Science.gov

Sample records for accurate error estimates

  1. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  2. Bayesian Error Estimation Functionals

    NASA Astrophysics Data System (ADS)

    Jacobsen, Karsten W.

    The challenge of approximating the exchange-correlation functional in Density Functional Theory (DFT) has led to the development of numerous different approximations of varying accuracy on different calculated properties. There is therefore a need for reliable estimation of prediction errors within the different approximation schemes to DFT. The Bayesian Error Estimation Functionals (BEEF) have been developed with this in mind. The functionals are constructed by fitting to experimental and high-quality computational databases for molecules and solids including chemisorption and van der Waals systems. This leads to reasonably accurate general-purpose functionals with particual focus on surface science. The fitting procedure involves considerations on how to combine different types of data, and applies Tikhonov regularization and bootstrap cross validation. The methodology has been applied to construct GGA and metaGGA functionals with and without inclusion of long-ranged van der Waals contributions. The error estimation is made possible by the generation of not only a single functional but through the construction of a probability distribution of functionals represented by a functional ensemble. The use of the functional ensemble is illustrated on compound heat of formation and by investigations of the reliability of calculated catalytic ammonia synthesis rates.

  3. Micromagnetometer calibration for accurate orientation estimation.

    PubMed

    Zhang, Zhi-Qiang; Yang, Guang-Zhong

    2015-02-01

    Micromagnetometers, together with inertial sensors, are widely used for attitude estimation for a wide variety of applications. However, appropriate sensor calibration, which is essential to the accuracy of attitude reconstruction, must be performed in advance. Thus far, many different magnetometer calibration methods have been proposed to compensate for errors such as scale, offset, and nonorthogonality. They have also been used for obviate magnetic errors due to soft and hard iron. However, in order to combine the magnetometer with inertial sensor for attitude reconstruction, alignment difference between the magnetometer and the axes of the inertial sensor must be determined as well. This paper proposes a practical means of sensor error correction by simultaneous consideration of sensor errors, magnetic errors, and alignment difference. We take the summation of the offset and hard iron error as the combined bias and then amalgamate the alignment difference and all the other errors as a transformation matrix. A two-step approach is presented to determine the combined bias and transformation matrix separately. In the first step, the combined bias is determined by finding an optimal ellipsoid that can best fit the sensor readings. In the second step, the intrinsic relationships of the raw sensor readings are explored to estimate the transformation matrix as a homogeneous linear least-squares problem. Singular value decomposition is then applied to estimate both the transformation matrix and magnetic vector. The proposed method is then applied to calibrate our sensor node. Although there is no ground truth for the combined bias and transformation matrix for our node, the consistency of calibration results among different trials and less than 3(°) root mean square error for orientation estimation have been achieved, which illustrates the effectiveness of the proposed sensor calibration method for practical applications. PMID:25265625

  4. A posteriori error estimator and error control for contact problems

    NASA Astrophysics Data System (ADS)

    Weiss, Alexander; Wohlmuth, Barbara I.

    2009-09-01

    In this paper, we consider two error estimators for one-body contact problems. The first error estimator is defined in terms of H( div ) -conforming stress approximations and equilibrated fluxes while the second is a standard edge-based residual error estimator without any modification with respect to the contact. We show reliability and efficiency for both estimators. Moreover, the error is bounded by the first estimator with a constant one plus a higher order data oscillation term plus a term arising from the contact that is shown numerically to be of higher order. The second estimator is used in a control-based AFEM refinement strategy, and the decay of the error in the energy is shown. Several numerical tests demonstrate the performance of both estimators.

  5. Control by model error estimation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Skelton, R. E.

    1976-01-01

    Modern control theory relies upon the fidelity of the mathematical model of the system. Truncated modes, external disturbances, and parameter errors in linear system models are corrected by augmenting to the original system of equations an 'error system' which is designed to approximate the effects of such model errors. A Chebyshev error system is developed for application to the Large Space Telescope (LST).

  6. Accurate identification and compensation of geometric errors of 5-axis CNC machine tools using double ball bar

    NASA Astrophysics Data System (ADS)

    Lasemi, Ali; Xue, Deyi; Gu, Peihua

    2016-05-01

    Five-axis CNC machine tools are widely used in manufacturing of parts with free-form surfaces. Geometric errors of machine tools have significant effects on the quality of manufactured parts. This research focuses on development of a new method to accurately identify geometric errors of 5-axis CNC machines, especially the errors due to rotary axes, using the magnetic double ball bar. A theoretical model for identification of geometric errors is provided. In this model, both position-independent errors and position-dependent errors are considered as the error sources. This model is simplified by identification and removal of the correlated and insignificant error sources of the machine. Insignificant error sources are identified using the sensitivity analysis technique. Simulation results reveal that the simplified error identification model can result in more accurate estimations of the error parameters. Experiments on a 5-axis CNC machine tool also demonstrate significant reduction in the volumetric error after error compensation.

  7. Accurate pose estimation using single marker single camera calibration system

    NASA Astrophysics Data System (ADS)

    Pati, Sarthak; Erat, Okan; Wang, Lejing; Weidert, Simon; Euler, Ekkehard; Navab, Nassir; Fallavollita, Pascal

    2013-03-01

    Visual marker based tracking is one of the most widely used tracking techniques in Augmented Reality (AR) applications. Generally, multiple square markers are needed to perform robust and accurate tracking. Various marker based methods for calibrating relative marker poses have already been proposed. However, the calibration accuracy of these methods relies on the order of the image sequence and pre-evaluation of pose-estimation errors, making the method offline. Several studies have shown that the accuracy of pose estimation for an individual square marker depends on camera distance and viewing angle. We propose a method to accurately model the error in the estimated pose and translation of a camera using a single marker via an online method based on the Scaled Unscented Transform (SUT). Thus, the pose estimation for each marker can be estimated with highly accurate calibration results independent of the order of image sequences compared to cases when this knowledge is not used. This removes the need for having multiple markers and an offline estimation system to calculate camera pose in an AR application.

  8. Systematic Error Estimation for Chemical Reaction Energies.

    PubMed

    Simm, Gregor N; Reiher, Markus

    2016-06-14

    For a theoretical understanding of the reactivity of complex chemical systems, accurate relative energies between intermediates and transition states are required. Despite its popularity, density functional theory (DFT) often fails to provide sufficiently accurate data, especially for molecules containing transition metals. Due to the huge number of intermediates that need to be studied for all but the simplest chemical processes, DFT is, to date, the only method that is computationally feasible. Here, we present a Bayesian framework for DFT that allows for error estimation of calculated properties. Since the optimal choice of parameters in present-day density functionals is strongly system dependent, we advocate for a system-focused reparameterization. While, at first sight, this approach conflicts with the first-principles character of DFT that should make it, in principle, system independent, we deliberately introduce system dependence to be able to assign a stochastically meaningful error to the system-dependent parametrization, which makes it nonarbitrary. By reparameterizing a functional that was derived on a sound physical basis to a chemical system of interest, we obtain a functional that yields reliable confidence intervals for reaction energies. We demonstrate our approach on the example of catalytic nitrogen fixation. PMID:27159007

  9. Adjoint Error Estimation for Linear Advection

    SciTech Connect

    Connors, J M; Banks, J W; Hittinger, J A; Woodward, C S

    2011-03-30

    An a posteriori error formula is described when a statistical measurement of the solution to a hyperbolic conservation law in 1D is estimated by finite volume approximations. This is accomplished using adjoint error estimation. In contrast to previously studied methods, the adjoint problem is divorced from the finite volume method used to approximate the forward solution variables. An exact error formula and computable error estimate are derived based on an abstractly defined approximation of the adjoint solution. This framework allows the error to be computed to an arbitrary accuracy given a sufficiently well resolved approximation of the adjoint solution. The accuracy of the computable error estimate provably satisfies an a priori error bound for sufficiently smooth solutions of the forward and adjoint problems. The theory does not currently account for discontinuities. Computational examples are provided that show support of the theory for smooth solutions. The application to problems with discontinuities is also investigated computationally.

  10. Accurate parameter estimation for unbalanced three-phase system.

    PubMed

    Chen, Yuan; So, Hing Cheung

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS. PMID:25162056

  11. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  12. Statistical errors in Monte Carlo estimates of systematic errors

    NASA Astrophysics Data System (ADS)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.

  13. Estimates of Random Error in Satellite Rainfall Averages

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.

    2003-01-01

    Satellite rain estimates are most accurate when obtained with microwave instruments on low earth-orbiting satellites. Estimation of daily or monthly total areal rainfall, typically of interest to hydrologists and climate researchers, is made difficult, however, by the relatively poor coverage generally available from such satellites. Intermittent coverage by the satellites leads to random "sampling error" in the satellite products. The inexact information about hydrometeors inferred from microwave data also leads to random "retrieval errors" in the rain estimates. In this talk we will review approaches to quantitative estimation of the sampling error in area/time averages of satellite rain retrievals using ground-based observations, and methods of estimating rms random error, both sampling and retrieval, in averages using satellite measurements themselves.

  14. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  15. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  16. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  17. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  18. Approaches to relativistic positioning around Earth and error estimations

    NASA Astrophysics Data System (ADS)

    Puchades, Neus; Sáez, Diego

    2016-01-01

    In the context of relativistic positioning, the coordinates of a given user may be calculated by using suitable information broadcast by a 4-tuple of satellites. Our 4-tuples belong to the Galileo constellation. Recently, we estimated the positioning errors due to uncertainties in the satellite world lines (U-errors). A distribution of U-errors was obtained, at various times, in a set of points covering a large region surrounding Earth. Here, the positioning errors associated to the simplifying assumption that photons move in Minkowski space-time (S-errors) are estimated and compared with the U-errors. Both errors have been calculated for the same points and times to make comparisons possible. For a certain realistic modeling of the world line uncertainties, the estimated S-errors have proved to be smaller than the U-errors, which shows that the approach based on the assumption that the Earth's gravitational field produces negligible effects on photons may be used in a large region surrounding Earth. The applicability of this approach - which simplifies numerical calculations - to positioning problems, and the usefulness of our S-error maps, are pointed out. A better approach, based on the assumption that photons move in the Schwarzschild space-time governed by an idealized Earth, is also analyzed. More accurate descriptions of photon propagation involving non symmetric space-time structures are not necessary for ordinary positioning and spacecraft navigation around Earth.

  19. Systematic Error Modeling and Bias Estimation

    PubMed Central

    Zhang, Feihu; Knoll, Alois

    2016-01-01

    This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386

  20. Effects of Structural Errors on Parameter Estimates

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Paper introduces concept of near equivalence in probability between different parameters or mathematical models of physical system. One in series of papers, each establishes different part of rigorous theory of mathematical modeling based on concepts of structural error, identifiability, and equivalence. This installment focuses upon effects of additive structural errors on degree of bias in estimates parameters.

  1. Systematic Error Modeling and Bias Estimation.

    PubMed

    Zhang, Feihu; Knoll, Alois

    2016-01-01

    This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386

  2. Error Estimates for Numerical Integration Rules

    ERIC Educational Resources Information Center

    Mercer, Peter R.

    2005-01-01

    The starting point for this discussion of error estimates is the fact that integrals that arise in Fourier series have properties that can be used to get improved bounds. This idea is extended to more general situations.

  3. Estimating Filtering Errors Using the Peano Kernel Theorem

    SciTech Connect

    Jerome Blair

    2009-02-20

    The Peano Kernel Theorem is introduced and a frequency domain derivation is given. It is demonstrated that the application of this theorem yields simple and accurate formulas for estimating the error introduced into a signal by filtering it to reduce noise.

  4. Estimating Filtering Errors Using the Peano Kernel Theorem

    SciTech Connect

    Jerome Blair

    2008-03-01

    The Peano Kernel Theorem is introduced and a frequency domain derivation is given. It is demonstrated that the application of this theorem yields simple and accurate formulas for estimating the error introduced into a signal by filtering it to reduce noise.

  5. Accurate and robust estimation of camera parameters using RANSAC

    NASA Astrophysics Data System (ADS)

    Zhou, Fuqiang; Cui, Yi; Wang, Yexin; Liu, Liu; Gao, He

    2013-03-01

    Camera calibration plays an important role in the field of machine vision applications. The popularly used calibration approach based on 2D planar target sometimes fails to give reliable and accurate results due to the inaccurate or incorrect localization of feature points. To solve this problem, an accurate and robust estimation method for camera parameters based on RANSAC algorithm is proposed to detect the unreliability and provide the corresponding solutions. Through this method, most of the outliers are removed and the calibration errors that are the main factors influencing measurement accuracy are reduced. Both simulative and real experiments have been carried out to evaluate the performance of the proposed method and the results show that the proposed method is robust under large noise condition and quite efficient to improve the calibration accuracy compared with the original state.

  6. Optimal error regions for quantum state estimation

    NASA Astrophysics Data System (ADS)

    Shang, Jiangwei; Khoon Ng, Hui; Sehrawat, Arun; Li, Xikun; Englert, Berthold-Georg

    2013-12-01

    An estimator is a state that represents one's best guess of the actual state of the quantum system for the given data. Such estimators are points in the state space. To be statistically meaningful, they have to be endowed with error regions, the generalization of error bars beyond one dimension. As opposed to standard ad hoc constructions of error regions, we introduce the maximum-likelihood region—the region of largest likelihood among all regions of the same size—as the natural counterpart of the popular maximum-likelihood estimator. Here, the size of a region is its prior probability. A related concept is the smallest credible region—the smallest region with pre-chosen posterior probability. In both cases, the optimal error region has constant likelihood on its boundary. This surprisingly simple characterization permits concise reporting of the error regions, even in high-dimensional problems. For illustration, we identify optimal error regions for single-qubit and two-qubit states from computer-generated data that simulate incomplete tomography with few measured copies.

  7. Practical Aspects of the Equation-Error Method for Aircraft Parameter Estimation

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene a.

    2006-01-01

    Various practical aspects of the equation-error approach to aircraft parameter estimation were examined. The analysis was based on simulated flight data from an F-16 nonlinear simulation, with realistic noise sequences added to the computed aircraft responses. This approach exposes issues related to the parameter estimation techniques and results, because the true parameter values are known for simulation data. The issues studied include differentiating noisy time series, maximum likelihood parameter estimation, biases in equation-error parameter estimates, accurate computation of estimated parameter error bounds, comparisons of equation-error parameter estimates with output-error parameter estimates, analyzing data from multiple maneuvers, data collinearity, and frequency-domain methods.

  8. Reducing Measurement Error in Student Achievement Estimation

    ERIC Educational Resources Information Center

    Battauz, Michela; Bellio, Ruggero; Gori, Enrico

    2008-01-01

    The achievement level is a variable measured with error, that can be estimated by means of the Rasch model. Teacher grades also measure the achievement level but they are expressed on a different scale. This paper proposes a method for combining these two scores to obtain a synthetic measure of the achievement level based on the theory developed…

  9. MONTE CARLO ERROR ESTIMATION APPLIED TO NONDESTRUCTIVE ASSAY METHODS

    SciTech Connect

    R. ESTEP; ET AL

    2000-06-01

    Monte Carlo randomization of nuclear counting data into N replicate sets is the basis of a simple and effective method for estimating error propagation through complex analysis algorithms such as those using neural networks or tomographic image reconstructions. The error distributions of properly simulated replicate data sets mimic those of actual replicate measurements and can be used to estimate the std. dev. for an assay along with other statistical quantities. We have used this technique to estimate the standard deviation in radionuclide masses determined using the tomographic gamma scanner (TGS) and combined thermal/epithermal neutron (CTEN) methods. The effectiveness of this approach is demonstrated by a comparison of our Monte Carlo error estimates with the error distributions in actual replicate measurements and simulations of measurements. We found that the std. dev. estimated this way quickly converges to an accurate value on average and has a predictable error distribution similar to N actual repeat measurements. The main drawback of the Monte Carlo method is that N additional analyses of the data are required, which may be prohibitively time consuming with slow analysis algorithms.

  10. State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation.

    PubMed

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-04-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space

  11. State space truncation with quantified errors for accurate solutions to discrete Chemical Master Equation

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEG), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of 1) the birth and death model, 2) the single gene expression model, 3) the genetic toggle switch model, and 4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate out theories. Overall, the novel state space

  12. Tolerance for error and computational estimation ability.

    PubMed

    Hogan, Thomas P; Wyckoff, Laurie A; Krebs, Paul; Jones, William; Fitzgerald, Mark P

    2004-06-01

    Previous investigators have suggested that the personality variable tolerance for error is related to success in computational estimation. However, this suggestion has not been tested directly. This study examined the relationship between performance on a computational estimation test and scores on the NEO-Five Factor Inventory, a measure of the Big Five personality traits, including Openness, an index of tolerance for ambiguity. Other variables included SAT-I Verbal and Mathematics scores and self-rated mathematics ability. Participants were 65 college students. There was no significant relationship between the tolerance variable and computational estimation performance. There was a modest negative relationship between Agreeableness and estimation performance. The skepticism associated with the negative pole of the Agreeableness dimension may be important to pursue in further understanding of estimation ability. PMID:15362423

  13. 31 CFR 205.24 - How are accurate estimates maintained?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are accurate estimates maintained... Treasury-State Agreement § 205.24 How are accurate estimates maintained? (a) If a State has knowledge that an estimate does not reasonably correspond to the State's cash needs for a Federal assistance...

  14. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  15. Estimating errors in least-squares fitting

    NASA Technical Reports Server (NTRS)

    Richter, P. H.

    1995-01-01

    While least-squares fitting procedures are commonly used in data analysis and are extensively discussed in the literature devoted to this subject, the proper assessment of errors resulting from such fits has received relatively little attention. The present work considers statistical errors in the fitted parameters, as well as in the values of the fitted function itself, resulting from random errors in the data. Expressions are derived for the standard error of the fit, as a function of the independent variable, for the general nonlinear and linear fitting problems. Additionally, closed-form expressions are derived for some examples commonly encountered in the scientific and engineering fields, namely ordinary polynomial and Gaussian fitting functions. These results have direct application to the assessment of the antenna gain and system temperature characteristics, in addition to a broad range of problems in data analysis. The effects of the nature of the data and the choice of fitting function on the ability to accurately model the system under study are discussed, and some general rules are deduced to assist workers intent on maximizing the amount of information obtained form a given set of measurements.

  16. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  17. Density Estimation Framework for Model Error Assessment

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Liu, Z.; Najm, H. N.; Safta, C.; VanBloemenWaanders, B.; Michelsen, H. A.; Bambha, R.

    2014-12-01

    In this work we highlight the importance of model error assessment in physical model calibration studies. Conventional calibration methods often assume the model is perfect and account for data noise only. Consequently, the estimated parameters typically have biased values that implicitly compensate for model deficiencies. Moreover, improving the amount and the quality of data may not improve the parameter estimates since the model discrepancy is not accounted for. In state-of-the-art methods model discrepancy is explicitly accounted for by enhancing the physical model with a synthetic statistical additive term, which allows appropriate parameter estimates. However, these statistical additive terms do not increase the predictive capability of the model because they are tuned for particular output observables and may even violate physical constraints. We introduce a framework in which model errors are captured by allowing variability in specific model components and parameterizations for the purpose of achieving meaningful predictions that are both consistent with the data spread and appropriately disambiguate model and data errors. Here we cast model parameters as random variables, embedding the calibration problem within a density estimation framework. Further, we calibrate for the parameters of the joint input density. The likelihood function for the associated inverse problem is degenerate, therefore we use Approximate Bayesian Computation (ABC) to build prediction-constraining likelihoods and illustrate the strengths of the method on synthetic cases. We also apply the ABC-enhanced density estimation to the TransCom 3 CO2 intercomparison study (Gurney, K. R., et al., Tellus, 55B, pp. 555-579, 2003) and calibrate 15 transport models for regional carbon sources and sinks given atmospheric CO2 concentration measurements.

  18. Ultraspectral Sounding Retrieval Error Budget and Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2011-01-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..

  19. Factoring Algebraic Error for Relative Pose Estimation

    SciTech Connect

    Lindstrom, P; Duchaineau, M

    2009-03-09

    We address the problem of estimating the relative pose, i.e. translation and rotation, of two calibrated cameras from image point correspondences. Our approach is to factor the nonlinear algebraic pose error functional into translational and rotational components, and to optimize translation and rotation independently. This factorization admits subproblems that can be solved using direct methods with practical guarantees on global optimality. That is, for a given translation, the corresponding optimal rotation can directly be determined, and vice versa. We show that these subproblems are equivalent to computing the least eigenvector of second- and fourth-order symmetric tensors. When neither translation or rotation is known, alternating translation and rotation optimization leads to a simple, efficient, and robust algorithm for pose estimation that improves on the well-known 5- and 8-point methods.

  20. GOMOS data characterization and error estimation

    NASA Astrophysics Data System (ADS)

    Tamminen, J.; Kyrölä, E.; Sofieva, V. F.; Laine, M.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton-D'Andon, O.; Barrot, G.; Mangin, A.; Guirlet, M.; Blanot, L.; Fehr, T.; Saavedra de Miguel, L.; Fraisse, R.

    2010-03-01

    The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument uses stellar occultation technique for monitoring ozone and other trace gases in the stratosphere and mesosphere. The self-calibrating measurement principle of GOMOS together with a relatively simple data retrieval where only minimal use of a priori data is required, provides excellent possibilities for long term monitoring of atmospheric composition. GOMOS uses about 180 brightest stars as the light source. Depending on the individual spectral characteristics of the stars, the signal-to-noise ratio of GOMOS is changing from star to star, resulting also varying accuracy to the retrieved profiles. We present the overview of the GOMOS data characterization and error estimation, including modeling errors, for ozone, NO2, NO3 and aerosol profiles. The retrieval error (precision) of the night time measurements in the stratosphere is typically 0.5-4% for ozone, about 10-20% for NO2, 20-40% for NO3 and 2-50% for aerosols. Mesospheric O3, up to 100 km, can be measured with 2-10% precision. The main sources of the modeling error are the incompletely corrected atmospheric turbulence causing scintillation, inaccurate aerosol modeling, uncertainties in cross sections of the trace gases and in the atmospheric temperature. The sampling resolution of GOMOS varies depending on the measurement geometry. In the data inversion a Tikhonov-type regularization with pre-defined target resolution requirement is applied leading to 2-3 km resolution for ozone and 4 km resolution for other trace gases.

  1. GOMOS data characterisation and error estimation

    NASA Astrophysics Data System (ADS)

    Tamminen, J.; Kyrölä, E.; Sofieva, V. F.; Laine, M.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton-D'Andon, O.; Barrot, G.; Mangin, A.; Guirlet, M.; Blanot, L.; Fehr, T.; Saavedra de Miguel, L.; Fraisse, R.

    2010-10-01

    The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument uses stellar occultation technique for monitoring ozone, other trace gases and aerosols in the stratosphere and mesosphere. The self-calibrating measurement principle of GOMOS together with a relatively simple data retrieval where only minimal use of a priori data is required provides excellent possibilities for long-term monitoring of atmospheric composition. GOMOS uses about 180 of the brightest stars as its light source. Depending on the individual spectral characteristics of the stars, the signal-to-noise ratio of GOMOS varies from star to star, resulting also in varying accuracy of retrieved profiles. We present here an overview of the GOMOS data characterisation and error estimation, including modeling errors, for O3, NO2, NO3, and aerosol profiles. The retrieval error (precision) of night-time measurements in the stratosphere is typically 0.5-4% for ozone, about 10-20% for NO2, 20-40% for NO3 and 2-50% for aerosols. Mesospheric O3, up to 100 km, can be measured with 2-10% precision. The main sources of the modeling error are incompletely corrected scintillation, inaccurate aerosol modeling, uncertainties in cross sections of trace gases and in atmospheric temperature. The sampling resolution of GOMOS varies depending on the measurement geometry. In the data inversion a Tikhonov-type regularization with pre-defined target resolution requirement is applied leading to 2-3 km vertical resolution for ozone and 4 km resolution for other trace gases and aerosols.

  2. Finite Element A Posteriori Error Estimation for Heat Conduction. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lang, Christapher G.; Bey, Kim S. (Technical Monitor)

    2002-01-01

    This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.

  3. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  4. High-dimensional bolstered error estimation

    PubMed Central

    Sima, Chao; Braga-Neto, Ulisses M.; Dougherty, Edward R.

    2011-01-01

    Motivation: In small-sample settings, bolstered error estimation has been shown to perform better than cross-validation and competitively with bootstrap with regard to various criteria. The key issue for bolstering performance is the variance setting for the bolstering kernel. Heretofore, this variance has been determined in a non-parametric manner from the data. Although bolstering based on this variance setting works well for small feature sets, results can deteriorate for high-dimensional feature spaces. Results: This article computes an optimal kernel variance depending on the classification rule, sample size, model and feature space, both the original number and the number remaining after feature selection. A key point is that the optimal variance is robust relative to the model. This allows us to develop a method for selecting a suitable variance to use in real-world applications where the model is not known, but the other factors in determining the optimal kernel are known. Availability: Companion website at http://compbio.tgen.org/paper_supp/high_dim_bolstering Contact: edward@mail.ece.tamu.edu PMID:21914630

  5. Augmented GNSS differential corrections minimum mean square error estimation sensitivity to spatial correlation modeling errors.

    PubMed

    Kassabian, Nazelie; Lo Presti, Letizia; Rispoli, Francesco

    2014-01-01

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454

  6. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    PubMed Central

    Kassabian, Nazelie; Presti, Letizia Lo; Rispoli, Francesco

    2014-01-01

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454

  7. A posteriori pointwise error estimates for the boundary element method

    SciTech Connect

    Paulino, G.H.; Gray, L.J.; Zarikian, V.

    1995-01-01

    This report presents a new approach for a posteriori pointwise error estimation in the boundary element method. The estimator relies upon the evaluation of hypersingular integral equations, and is therefore intrinsic to the boundary integral equation approach. This property allows some theoretical justification by mathematically correlating the exact and estimated errors. A methodology is developed for approximating the error on the boundary as well as in the interior of the domain. In the interior, error estimates for both the function and its derivatives (e.g. potential and interior gradients for potential problems, displacements and stresses for elasticity problems) are presented. Extensive computational experiments have been performed for the two dimensional Laplace equation on interior domains, employing Dirichlet and mixed boundary conditions. The results indicate that the error estimates successfully track the form of the exact error curve. Moreover, a reasonable estimate of the magnitude of the actual error is also obtained.

  8. Real-Time Parameter Estimation Using Output Error

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  9. Estimating IMU heading error from SAR images.

    SciTech Connect

    Doerry, Armin Walter

    2009-03-01

    Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.

  10. Gap filling strategies and error in estimating annual soil respiration.

    PubMed

    Gomez-Casanovas, Nuria; Anderson-Teixeira, Kristina; Zeri, Marcelo; Bernacchi, Carl J; DeLucia, Evan H

    2013-06-01

    Soil respiration (Rsoil ) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap filling of automated records to produce a complete time series. Although many gap filling methodologies have been employed, there is no standardized procedure for producing defensible estimates of annual Rsoil . Here, we test the reliability of nine different gap filling techniques by inserting artificial gaps into 20 automated Rsoil records and comparing gap filling Rsoil estimates of each technique to measured values. We show that although the most commonly used techniques do not, on average, produce large systematic biases, gap filling accuracy may be significantly improved through application of the most reliable methods. All methods performed best at lower gap fractions and had relatively high, systematic errors for simulated survey measurements. Overall, the most accurate technique estimated Rsoil based on the soil temperature dependence of Rsoil by assuming constant temperature sensitivity and linearly interpolating reference respiration (Rsoil at 10 °C) across gaps. The linear interpolation method was the second best-performing method. In contrast, estimating Rsoil based on a single annual Rsoil - Tsoil relationship, which is currently the most commonly used technique, was among the most poorly-performing methods. Thus, our analysis demonstrates that gap filling accuracy may be improved substantially without sacrificing computational simplicity. Improved and standardized techniques for estimation of annual Rsoil will be valuable for understanding the role of Rsoil in the global C cycle. PMID:23504959

  11. A Note on Confidence Interval Estimation and Margin of Error

    ERIC Educational Resources Information Center

    Gilliland, Dennis; Melfi, Vince

    2010-01-01

    Confidence interval estimation is a fundamental technique in statistical inference. Margin of error is used to delimit the error in estimation. Dispelling misinterpretations that teachers and students give to these terms is important. In this note, we give examples of the confusion that can arise in regard to confidence interval estimation and…

  12. Improved Soundings and Error Estimates using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2006-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.

  13. Field evaluation of distance-estimation error during wetland-dependent bird surveys

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2012-01-01

    Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point

  14. Estimation of Model Error Variances During Data Assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick

    2003-01-01

    Data assimilation is all about understanding the error characteristics of the data and models that are used in the assimilation process. Reliable error estimates are needed to implement observational quality control, bias correction of observations and model fields, and intelligent data selection. Meaningful covariance specifications are obviously required for the analysis as well, since the impact of any single observation strongly depends on the assumed structure of the background errors. Operational atmospheric data assimilation systems still rely primarily on climatological background error covariances. To obtain error estimates that reflect both the character of the flow and the current state of the observing system, it is necessary to solve three problems: (1) how to account for the short-term evolution of errors in the initial conditions; (2) how to estimate the additional component of error caused by model defects; and (3) how to compute the error reduction in the analysis due to observational information. Various approaches are now available that provide approximate solutions to the first and third of these problems. However, the useful accuracy of these solutions very much depends on the size and character of the model errors and the ability to account for them. Model errors represent the real-world forcing of the error evolution in a data assimilation system. Clearly, meaningful model error estimates and/or statistics must be based on information external to the model itself. The most obvious information source is observational, and since the volume of available geophysical data is growing rapidly, there is some hope that a purely statistical approach to model error estimation can be viable. This requires that the observation errors themselves are well understood and quantifiable. We will discuss some of these challenges and present a new sequential scheme for estimating model error variances from observations in the context of an atmospheric data

  15. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    SciTech Connect

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  16. Semiclassical Dynamicswith Exponentially Small Error Estimates

    NASA Astrophysics Data System (ADS)

    Hagedorn, George A.; Joye, Alain

    We construct approximate solutions to the time-dependent Schrödingerequation for small values of ħ. If V satisfies appropriate analyticity and growth hypotheses and , these solutions agree with exact solutions up to errors whose norms are bounded by for some C and γ>0. Under more restrictive hypotheses, we prove that for sufficiently small T', implies the norms of the errors are bounded by for some C', γ'>0, and σ > 0.

  17. Adaptive error covariances estimation methods for ensemble Kalman filters

    SciTech Connect

    Zhen, Yicun; Harlim, John

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.

  18. Improved Margin of Error Estimates for Proportions in Business: An Educational Example

    ERIC Educational Resources Information Center

    Arzumanyan, George; Halcoussis, Dennis; Phillips, G. Michael

    2015-01-01

    This paper presents the Agresti & Coull "Adjusted Wald" method for computing confidence intervals and margins of error for common proportion estimates. The presented method is easily implementable by business students and practitioners and provides more accurate estimates of proportions particularly in extreme samples and small…

  19. The Effect of Retrospective Sampling on Estimates of Prediction Error for Multifactor Dimensionality Reduction

    PubMed Central

    Winham, Stacey J.; Motsinger-Reif, Alison A.

    2010-01-01

    SUMMARY The standard in genetic association studies of complex diseases is replication and validation of positive results, with an emphasis on assessing the predictive value of associations. In response to this need, a number of analytical approaches have been developed to identify predictive models that account for complex genetic etiologies. Multifactor Dimensionality Reduction (MDR) is a commonly used, highly successful method designed to evaluate potential gene-gene interactions. MDR relies on classification error in a cross-validation framework to rank and evaluate potentially predictive models. Previous work has demonstrated the high power of MDR, but has not considered the accuracy and variance of the MDR prediction error estimate. Currently, we evaluate the bias and variance of the MDR error estimate as both a retrospective and prospective estimator and show that MDR can both underestimate and overestimate error. We argue that a prospective error estimate is necessary if MDR models are used for prediction, and propose a bootstrap resampling estimate, integrating population prevalence, to accurately estimate prospective error. We demonstrate that this bootstrap estimate is preferable for prediction to the error estimate currently produced by MDR. While demonstrated with MDR, the proposed estimation is applicable to all data-mining methods that use similar estimates. PMID:20560921

  20. An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance

    PubMed Central

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  1. An accurate link correlation estimator for improving wireless protocol performance.

    PubMed

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  2. Fisher classifier and its probability of error estimation

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.

  3. Finite element error estimation and adaptivity based on projected stresses

    SciTech Connect

    Jung, J.

    1990-08-01

    This report investigates the behavior of a family of finite element error estimators based on projected stresses, i.e., continuous stresses that are a least squared error fit to the conventional Gauss point stresses. An error estimate based on element force equilibrium appears to be quite effective. Examples of adaptive mesh refinement for a one-dimensional problem are presented. Plans for two-dimensional adaptivity are discussed. 12 refs., 82 figs.

  4. Error Estimation for Reduced Order Models of Dynamical Systems

    SciTech Connect

    Homescu, C; Petzold, L; Serban, R

    2004-01-22

    The use of reduced order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a combination of small sample statistical condition estimation and error estimation using the adjoint method. Most importantly, the proposed approach allows the assessment of regions of validity for reduced models, i.e., ranges of perturbations in the original system over which the reduced model is still appropriate. Numerical examples validate our approach: the error norm estimates approximate well the forward error while the derived bounds are within an order of magnitude.

  5. Fast and accurate estimation for astrophysical problems in large databases

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.

    2010-10-01

    A recent flood of astronomical data has created much demand for sophisticated statistical and machine learning tools that can rapidly draw accurate inferences from large databases of high-dimensional data. In this Ph.D. thesis, methods for statistical inference in such databases will be proposed, studied, and applied to real data. I use methods for low-dimensional parametrization of complex, high-dimensional data that are based on the notion of preserving the connectivity of data points in the context of a Markov random walk over the data set. I show how this simple parameterization of data can be exploited to: define appropriate prototypes for use in complex mixture models, determine data-driven eigenfunctions for accurate nonparametric regression, and find a set of suitable features to use in a statistical classifier. In this thesis, methods for each of these tasks are built up from simple principles, compared to existing methods in the literature, and applied to data from astronomical all-sky surveys. I examine several important problems in astrophysics, such as estimation of star formation history parameters for galaxies, prediction of redshifts of galaxies using photometric data, and classification of different types of supernovae based on their photometric light curves. Fast methods for high-dimensional data analysis are crucial in each of these problems because they all involve the analysis of complicated high-dimensional data in large, all-sky surveys. Specifically, I estimate the star formation history parameters for the nearly 800,000 galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog, determine redshifts for over 300,000 galaxies in the SDSS photometric catalog, and estimate the types of 20,000 supernovae as part of the Supernova Photometric Classification Challenge. Accurate predictions and classifications are imperative in each of these examples because these estimates are utilized in broader inference problems

  6. Parameter estimation and error analysis in environmental modeling and computation

    NASA Technical Reports Server (NTRS)

    Kalmaz, E. E.

    1986-01-01

    A method for the estimation of parameters and error analysis in the development of nonlinear modeling for environmental impact assessment studies is presented. The modular computer program can interactively fit different nonlinear models to the same set of data, dynamically changing the error structure associated with observed values. Parameter estimation techniques and sequential estimation algorithms employed in parameter identification and model selection are first discussed. Then, least-square parameter estimation procedures are formulated, utilizing differential or integrated equations, and are used to define a model for association of error with experimentally observed data.

  7. Empirical State Error Covariance Matrix for Batch Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe

    2015-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.

  8. Preliminary estimates of radiosonde thermistor errors

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Luers, J. K.; Huffman, P. D.

    1986-01-01

    Radiosonde temperature measurements are subject to errors, not the least of which is the effect of long- and short-wave radiation. Methods of adjusting the daytime temperatures to a nighttime equivalent are used by some analysis centers. Other than providing consistent observations for analysis this procedure does not provide a true correction. The literature discusses the problem of radiosonde temperature errors but it is not apparent what effort, if any, has been taken to quantify these errors. To accomplish the latter, radiosondes containing multiple thermistors with different coatings were flown at Goddard Space Flight Center/Wallops Flight Facility. The coatings employed had different spectral characteristics and, therefore, different adsorption and emissivity properties. Discrimination of the recorded temperatures enabled day and night correction values to be determined for the US standard white-coated rod thermistor. The correction magnitudes are given and a comparison of US measured temperatures before and after correction are compared with temperatures measured with the Vaisala radiosonde. The corrections are in the proper direction, day and night, and reduce day-night temperature differences to less than 0.5 C between surface and 30 hPa. The present uncorrected temperatures used with the Viz radiosonde have day-night differences that exceed 1 C at levels below 90 hPa. Additional measurements are planned to confirm these preliminary results and determine the solar elevation angle effect on the corrections. The technique used to obtain the corrections may also be used to recover a true absolute value and might be considered a valuable contribution to the meteorological community for use as a reference instrument.

  9. Validation of Large-Scale Geophysical Estimates Using In Situ Measurements with Representativeness Error

    NASA Astrophysics Data System (ADS)

    Konings, A. G.; Gruber, A.; Mccoll, K. A.; Alemohammad, S. H.; Entekhabi, D.

    2015-12-01

    Validating large-scale estimates of geophysical variables by comparing them to in situ measurements neglects the fact that these in situ measurements are not generally representative of the larger area. That is, in situ measurements contain some `representativeness error'. They also have their own sensor errors. The naïve approach of characterizing the errors of a remote sensing or modeling dataset by comparison to in situ measurements thus leads to error estimates that are spuriously inflated by the representativeness and other errors in the in situ measurements. Nevertheless, this naïve approach is still very common in the literature. In this work, we introduce an alternative estimator of the large-scale dataset error that explicitly takes into account the fact that the in situ measurements have some unknown error. The performance of the two estimators is then compared in the context of soil moisture datasets under different conditions for the true soil moisture climatology and dataset biases. The new estimator is shown to lead to a more accurate characterization of the dataset errors under the most common conditions. If a third dataset is available, the principles of the triple collocation method can be used to determine the errors of both the large-scale estimates and in situ measurements. However, triple collocation requires that the errors in all datasets are uncorrelated with each other and with the truth. We show that even when the assumptions of triple collocation are violated, a triple collocation-based validation approach may still be more accurate than a naïve comparison to in situ measurements that neglects representativeness errors.

  10. Spatio-temporal Error on the Discharge Estimates for the SWOT Mission

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Alsdorf, D. E.; Andreadis, K. M.; Clark, E.; Durand, M.; Lettenmaier, D. P.; Mognard, N. M.; Oudin, Y.; Rodriguez, E.

    2008-12-01

    The Surface Water and Ocean Topography (SWOT) mission measures two key quantities over rivers: water surface elevation and slope. Water surface elevation from SWOT will have a vertical accuracy, when averaged over approximately one square kilometer, on the order of centimeters. Over reaches from 1-10 km long, SWOT slope measurements will be accurate to microradians. Elevation (depth) and slope offer the potential to produce discharge as a derived quantity. Estimates of instantaneous and temporally integrated discharge from SWOT data will also contain a certain degree of error. Two primary sources of measurement error exist. The first is the temporal sub-sampling of water elevations. For example, SWOT will sample some locations twice in the 21-day repeat cycle. If these two overpasses occurred during flood stage, an estimate of monthly discharge based on these observations would be much higher than the true value. Likewise, if estimating maximum or minimum monthly discharge, in some cases, SWOT may miss those events completely. The second source of measurement error results from the instrument's capability to accurately measure the magnitude of the water surface elevation. How this error affects discharge estimates depends on errors in the model used to derive discharge from water surface elevation. We present a global distribution of estimated relative errors in mean annual discharge based on a power law relationship between stage and discharge. Additionally, relative errors in integrated and average instantaneous monthly discharge associated with temporal sub-sampling over the proposed orbital tracks are presented for several river basins.

  11. Methods for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, M.R.; Bland, R.

    2000-01-01

    Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three

  12. A-posteriori error estimation for second order mechanical systems

    NASA Astrophysics Data System (ADS)

    Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter

    2012-06-01

    One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.

  13. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  14. Error Estimates for Generalized Barycentric Interpolation.

    PubMed

    Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit

    2012-10-01

    We prove the optimal convergence estimate for first order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Harmonic approach defines the functions as the solution of a PDE. We show that given certain conditions on the geometry of the polygon, each of these constructions can obtain the optimal convergence estimate. In particular, we show that the well-known maximum interior angle condition required for interpolants over triangles is still required for Wachspress functions but not for Sibson functions. PMID:23338826

  15. Error Estimates for Generalized Barycentric Interpolation

    PubMed Central

    Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit

    2011-01-01

    We prove the optimal convergence estimate for first order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Harmonic approach defines the functions as the solution of a PDE. We show that given certain conditions on the geometry of the polygon, each of these constructions can obtain the optimal convergence estimate. In particular, we show that the well-known maximum interior angle condition required for interpolants over triangles is still required for Wachspress functions but not for Sibson functions. PMID:23338826

  16. Nonparametric Item Response Curve Estimation with Correction for Measurement Error

    ERIC Educational Resources Information Center

    Guo, Hongwen; Sinharay, Sandip

    2011-01-01

    Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…

  17. Bootstrap Estimates of Standard Errors in Generalizability Theory

    ERIC Educational Resources Information Center

    Tong, Ye; Brennan, Robert L.

    2007-01-01

    Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…

  18. CTER-rapid estimation of CTF parameters with error assessment.

    PubMed

    Penczek, Pawel A; Fang, Jia; Li, Xueming; Cheng, Yifan; Loerke, Justus; Spahn, Christian M T

    2014-05-01

    In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03Å without, and 3.85Å with, inclusion of astigmatism parameters. PMID:24562077

  19. CTER—Rapid estimation of CTF parameters with error assessment

    PubMed Central

    Penczek, Pawel A.; Fang, Jia; Li, Xueming; Cheng, Yifan; Loerke, Justus; Spahn, Christian M.T.

    2014-01-01

    In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300 kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03 Å without, and 3.85 Å with, inclusion of astigmatism parameters. PMID:24562077

  20. Correcting errors in the optical path difference in Fourier spectroscopy: a new accurate method.

    PubMed

    Kauppinen, J; Kärkköinen, T; Kyrö, E

    1978-05-15

    A new computational method for calculating and correcting the errors of the optical path difference in Fourier spectrometers is presented. This method only requires an one-sided interferogram and a single well-separated line in the spectrum. The method also cancels out the linear phase error. The practical theory of the method is included, and an example of the progress of the method is illustrated by simulations. The method is also verified by several simulations in order to estimate its usefulness and accuracy. An example of the use of this method in practice is also given. PMID:20198027

  1. Error magnitude estimation in model-reference adaptive systems

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III

    1975-01-01

    A second order approximation is derived from a linearized error characteristic equation for Lyapunov designed model-reference adaptive systems and is used to estimate the maximum error between the model and plant states, and the time to reach this peak following a plant perturbation. The results are applicable in the analysis of plants containing magnitude-dependent nonlinearities.

  2. Robust ODF smoothing for accurate estimation of fiber orientation.

    PubMed

    Beladi, Somaieh; Pathirana, Pubudu N; Brotchie, Peter

    2010-01-01

    Q-ball imaging was presented as a model free, linear and multimodal diffusion sensitive approach to reconstruct diffusion orientation distribution function (ODF) using diffusion weighted MRI data. The ODFs are widely used to estimate the fiber orientations. However, the smoothness constraint was proposed to achieve a balance between the angular resolution and noise stability for ODF constructs. Different regularization methods were proposed for this purpose. However, these methods are not robust and quite sensitive to the global regularization parameter. Although, numerical methods such as L-curve test are used to define a globally appropriate regularization parameter, it cannot serve as a universal value suitable for all regions of interest. This may result in over smoothing and potentially end up in neglecting an existing fiber population. In this paper, we propose to include an interpolation step prior to the spherical harmonic decomposition. This interpolation based approach is based on Delaunay triangulation provides a reliable, robust and accurate smoothing approach. This method is easy to implement and does not require other numerical methods to define the required parameters. Also, the fiber orientations estimated using this approach are more accurate compared to other common approaches. PMID:21096202

  3. Accurate estimators of correlation functions in Fourier space

    NASA Astrophysics Data System (ADS)

    Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.

    2016-08-01

    Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.

  4. Using doppler radar images to estimate aircraft navigational heading error

    DOEpatents

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  5. Evaluating concentration estimation errors in ELISA microarray experiments

    PubMed Central

    Daly, Don Simone; White, Amanda M; Varnum, Susan M; Anderson, Kevin K; Zangar, Richard C

    2005-01-01

    Background Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to estimate a protein's concentration in a sample. Deploying ELISA in a microarray format permits simultaneous estimation of the concentrations of numerous proteins in a small sample. These estimates, however, are uncertain due to processing error and biological variability. Evaluating estimation error is critical to interpreting biological significance and improving the ELISA microarray process. Estimation error evaluation must be automated to realize a reliable high-throughput ELISA microarray system. In this paper, we present a statistical method based on propagation of error to evaluate concentration estimation errors in the ELISA microarray process. Although propagation of error is central to this method and the focus of this paper, it is most effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization, and statistical diagnostics when evaluating ELISA microarray concentration estimation errors. Results We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of concentration estimation errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error. We summarize the results with a simple, three-panel diagnostic visualization featuring a scatterplot of the standard data with logistic standard curve and 95% confidence intervals, an annotated histogram of sample measurements, and a plot of the 95% concentration coefficient of variation, or relative error, as a function of concentration. Conclusions This statistical method should be of value in the rapid evaluation and quality control of high-throughput ELISA microarray analyses

  6. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  7. PERIOD ERROR ESTIMATION FOR THE KEPLER ECLIPSING BINARY CATALOG

    SciTech Connect

    Mighell, Kenneth J.; Plavchan, Peter

    2013-06-15

    The Kepler Eclipsing Binary Catalog (KEBC) describes 2165 eclipsing binaries identified in the 115 deg{sup 2} Kepler Field based on observations from Kepler quarters Q0, Q1, and Q2. The periods in the KEBC are given in units of days out to six decimal places but no period errors are provided. We present the PEC (Period Error Calculator) algorithm, which can be used to estimate the period errors of strictly periodic variables observed by the Kepler Mission. The PEC algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. The PEC algorithm can be efficiently programmed using just a few lines of C computer language code. The PEC algorithm was used to develop a simple model that provides period error estimates for eclipsing binaries in the KEBC with periods less than 62.5 days: log {sigma}{sub P} Almost-Equal-To - 5.8908 + 1.4425(1 + log P), where P is the period of an eclipsing binary in the KEBC in units of days. KEBC systems with periods {>=}62.5 days have KEBC period errors of {approx}0.0144 days. Periods and period errors of seven eclipsing binary systems in the KEBC were measured using the NASA Exoplanet Archive Periodogram Service and compared to period errors estimated using the PEC algorithm.

  8. Period Error Estimation for the Kepler Eclipsing Binary Catalog

    NASA Astrophysics Data System (ADS)

    Mighell, Kenneth J.; Plavchan, Peter

    2013-06-01

    The Kepler Eclipsing Binary Catalog (KEBC) describes 2165 eclipsing binaries identified in the 115 deg2 Kepler Field based on observations from Kepler quarters Q0, Q1, and Q2. The periods in the KEBC are given in units of days out to six decimal places but no period errors are provided. We present the PEC (Period Error Calculator) algorithm, which can be used to estimate the period errors of strictly periodic variables observed by the Kepler Mission. The PEC algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. The PEC algorithm can be efficiently programmed using just a few lines of C computer language code. The PEC algorithm was used to develop a simple model that provides period error estimates for eclipsing binaries in the KEBC with periods less than 62.5 days: log σ P ≈ - 5.8908 + 1.4425(1 + log P), where P is the period of an eclipsing binary in the KEBC in units of days. KEBC systems with periods >=62.5 days have KEBC period errors of ~0.0144 days. Periods and period errors of seven eclipsing binary systems in the KEBC were measured using the NASA Exoplanet Archive Periodogram Service and compared to period errors estimated using the PEC algorithm.

  9. An Empirical State Error Covariance Matrix for Batch State Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the

  10. Estimation of optical proximity effect caused by mask fabrication error

    NASA Astrophysics Data System (ADS)

    Kamon, Kazuya; Hanawa, Tetsuro; Moriizumi, Koichi

    1997-07-01

    To get wide lithography latitudes in ULSI fabrication, an optical proximity correction system is being widely used. We previously demonstrated that the optical proximity effect is highly dependent on beam interference conditions. By using an aperture with a spindle shaped opaque region and a controlling interference beam number optimized for imaging, we can obtain a high correction accuracy of less than +/- 0.01 micrometers for all kinds of pattern. To put the optical proximity correction into practical use, we must fabricate the corrected mask either by an EB or a laser writing system. But during mask writing, there is another problematic proximity effect. The optical proximity effect caused by mask fabrication error is becoming a serious problem. In this paper, we estimate the optical proximity effect caused by mask fabrication error. For EB writing, the mask feature size of 0.35 micrometers line changes dramatically in a space less than 0.8 micrometers in size; this is not tolerable. For a large pitch pattern, modified illumination reduces the DOF to 0 micrometers . Otherwise, laser writing stably fabricates a mask feature size for a 0.35 micrometers line, and the modified illumination reduces the optical proximity effect. This resist feature fluctuation is binary, so, correcting the mask pattern is easy. Although, it was wrongly thought that for larger pitch pattern, the DOF was reduced by the modified illumination, the DOF reduction actually came from the combination of the two proximity effects. Using an accurate mask produced by a laser writer, we do not observe any DOF reduction in modified illumination. Moreover, this has led to development of an optical proximity correction system with EB proximity correction.

  11. Errors-in-variables modeling in optical flow estimation.

    PubMed

    Ng, L; Solo, V

    2001-01-01

    Gradient-based optical flow estimation methods typically do not take into account errors in the spatial derivative estimates. The presence of these errors causes an errors-in-variables (EIV) problem. Moreover, the use of finite difference methods to calculate these derivatives ensures that the errors are strongly correlated between pixels. Total least squares (TLS) has often been used to address this EIV problem. However, its application in this context is flawed as TLS implicitly assumes that the errors between neighborhood pixels are independent. In this paper, a new optical flow estimation method (EIVM) is formulated to properly treat the EIV problem in optical flow. EIVM is based on Sprent's (1966) procedure which allows the incorporation of a general EIV model in the estimation process. In EIVM, the neighborhood size acts as a smoothing parameter. Due to the weights in the EIVM objective function, the effect of changing the neighborhood size is more complex than in other local model methods such as Lucas and Kanade (1981). These weights, which are functions of the flow estimate, can alter the effective size and orientation of the neighborhood. In this paper, we also present a data-driven method for choosing the neighborhood size based on Stein's unbiased risk estimators (SURE). PMID:18255496

  12. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large

  13. Sensitivity analysis of DOA estimation algorithms to sensor errors

    NASA Astrophysics Data System (ADS)

    Li, Fu; Vaccaro, Richard J.

    1992-07-01

    A unified statistical performance analysis using subspace perturbation expansions is applied to subspace-based algorithms for direction-of-arrival (DOA) estimation in the presence of sensor errors. In particular, the multiple signal classification (MUSIC), min-norm, state-space realization (TAM and DDA) and estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms are analyzed. This analysis assumes that only a finite amount of data is available. An analytical expression for the mean-squared error of the DOA estimates is developed for theoretical comparison in a simple and self-contained fashion. The tractable formulas provide insight into the algorithms. Simulation results verify the analysis.

  14. Error decomposition and estimation of inherent optical properties.

    PubMed

    Salama, Mhd Suhyb; Stein, Alfred

    2009-09-10

    We describe a methodology to quantify and separate the errors of inherent optical properties (IOPs) derived from ocean-color model inversion. Their total error is decomposed into three different sources, namely, model approximations and inversion, sensor noise, and atmospheric correction. Prior information on plausible ranges of observation, sensor noise, and inversion goodness-of-fit are employed to derive the posterior probability distribution of the IOPs. The relative contribution of each error component to the total error budget of the IOPs, all being of stochastic nature, is then quantified. The method is validated with the International Ocean Colour Coordinating Group (IOCCG) data set and the NASA bio-Optical Marine Algorithm Data set (NOMAD). The derived errors are close to the known values with correlation coefficients of 60-90% and 67-90% for IOCCG and NOMAD data sets, respectively. Model-induced errors inherent to the derived IOPs are between 10% and 57% of the total error, whereas atmospheric-induced errors are in general above 43% and up to 90% for both data sets. The proposed method is applied to synthesized and in situ measured populations of IOPs. The mean relative errors of the derived values are between 2% and 20%. A specific error table to the Medium Resolution Imaging Spectrometer (MERIS) sensor is constructed. It serves as a benchmark to evaluate the performance of the atmospheric correction method and to compute atmospheric-induced errors. Our method has a better performance and is more appropriate to estimate actual errors of ocean-color derived products than the previously suggested methods. Moreover, it is generic and can be applied to quantify the error of any derived biogeophysical parameter regardless of the used derivation. PMID:19745859

  15. Error Estimation for Reduced Order Models of Dynamical systems

    SciTech Connect

    Homescu, C; Petzold, L R; Serban, R

    2003-12-16

    The use of reduced order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a combination of the small sample statistical condition estimation method and of error estimation using the adjoint method. More importantly, the proposed approach allows the assessment of so-called regions of validity for reduced models, i.e., ranges of perturbations in the original system over which the reduced model is still appropriate. This question is particularly important for applications in which reduced models are used not just to approximate the solution to the system that provided the data used in constructing the reduced model, but rather to approximate the solution of systems perturbed from the original one. Numerical examples validate our approach: the error norm estimates approximate well the forward error while the derived bounds are within an order of magnitude.

  16. Minimax Mean-Squared Error Location Estimation Using TOA Measurements

    NASA Astrophysics Data System (ADS)

    Shen, Chih-Chang; Chang, Ann-Chen

    This letter deals with mobile location estimation based on a minimax mean-squared error (MSE) algorithm using time-of-arrival (TOA) measurements for mitigating the nonline-of-sight (NLOS) effects in cellular systems. Simulation results are provided for illustrating the minimax MSE estimator yields good performance than the other least squares and weighted least squares estimators under relatively low signal-to-noise ratio and moderately NLOS conditions.

  17. Sampling errors in satellite estimates of tropical rain

    NASA Technical Reports Server (NTRS)

    Mcconnell, Alan; North, Gerald R.

    1987-01-01

    The GATE rainfall data set is used in a statistical study to estimate the sampling errors that might be expected for the type of snapshot sampling that a low earth-orbiting satellite makes. For averages over the entire 400-km square and for the duration of several weeks, strong evidence is found that sampling errors less than 10 percent can be expected in contributions from each of four rain rate categories which individually account for about one quarter of the total rain.

  18. Estimation of rod scale errors in geodetic leveling

    USGS Publications Warehouse

    Craymer, Michael R.; Vaníček, Petr; Castle, Robert O.

    1995-01-01

    Comparisons among repeated geodetic levelings have often been used for detecting and estimating residual rod scale errors in leveled heights. Individual rod-pair scale errors are estimated by a two-step procedure using a model based on either differences in heights, differences in section height differences, or differences in section tilts. It is shown that the estimated rod-pair scale errors derived from each model are identical only when the data are correctly weighted, and the mathematical correlations are accounted for in the model based on heights. Analyses based on simple regressions of changes in height versus height can easily lead to incorrect conclusions. We also show that the statistically estimated scale errors are not a simple function of height, height difference, or tilt. The models are valid only when terrain slope is constant over adjacent pairs of setups (i.e., smoothly varying terrain). In order to discriminate between rod scale errors and vertical displacements due to crustal motion, the individual rod-pairs should be used in more than one leveling, preferably in areas of contrasting tectonic activity. From an analysis of 37 separately calibrated rod-pairs used in 55 levelings in southern California, we found eight statistically significant coefficients that could be reasonably attributed to rod scale errors, only one of which was larger than the expected random error in the applied calibration-based scale correction. However, significant differences with other independent checks indicate that caution should be exercised before accepting these results as evidence of scale error. Further refinements of the technique are clearly needed if the results are to be routinely applied in practice.

  19. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis

    NASA Astrophysics Data System (ADS)

    Jones, Reese E.; Mandadapu, Kranthi K.

    2012-04-01

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  20. Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes

    NASA Astrophysics Data System (ADS)

    Florjanczyk, Jan; Brun, Todd; Center for Quantum Information Science; Technology Team

    We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.

  1. Verification of unfold error estimates in the unfold operator code

    SciTech Connect

    Fehl, D.L.; Biggs, F.

    1997-01-01

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}

  2. Verification of unfold error estimates in the unfold operator code

    NASA Astrophysics Data System (ADS)

    Fehl, D. L.; Biggs, F.

    1997-01-01

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums.

  3. Regularization Based Iterative Point Match Weighting for Accurate Rigid Transformation Estimation.

    PubMed

    Liu, Yonghuai; De Dominicis, Luigi; Wei, Baogang; Chen, Liang; Martin, Ralph R

    2015-09-01

    Feature extraction and matching (FEM) for 3D shapes finds numerous applications in computer graphics and vision for object modeling, retrieval, morphing, and recognition. However, unavoidable incorrect matches lead to inaccurate estimation of the transformation relating different datasets. Inspired by AdaBoost, this paper proposes a novel iterative re-weighting method to tackle the challenging problem of evaluating point matches established by typical FEM methods. Weights are used to indicate the degree of belief that each point match is correct. Our method has three key steps: (i) estimation of the underlying transformation using weighted least squares, (ii) penalty parameter estimation via minimization of the weighted variance of the matching errors, and (iii) weight re-estimation taking into account both matching errors and information learnt in previous iterations. A comparative study, based on real shapes captured by two laser scanners, shows that the proposed method outperforms four other state-of-the-art methods in terms of evaluating point matches between overlapping shapes established by two typical FEM methods, resulting in more accurate estimates of the underlying transformation. This improved transformation can be used to better initialize the iterative closest point algorithm and its variants, making 3D shape registration more likely to succeed. PMID:26357287

  4. Error estimates for Gaussian quadratures of analytic functions

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.; Pranic, Miroslav S.

    2009-12-01

    For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes [varrho]>1 for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod's method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures.

  5. Application of variance components estimation to calibrate geoid error models.

    PubMed

    Guo, Dong-Mei; Xu, Hou-Ze

    2015-01-01

    The method of using Global Positioning System-leveling data to obtain orthometric heights has been well studied. A simple formulation for the weighted least squares problem has been presented in an earlier work. This formulation allows one directly employing the errors-in-variables models which completely descript the covariance matrices of the observables. However, an important question that what accuracy level can be achieved has not yet to be satisfactorily solved by this traditional formulation. One of the main reasons for this is the incorrectness of the stochastic models in the adjustment, which in turn allows improving the stochastic models of measurement noises. Therefore the issue of determining the stochastic modeling of observables in the combined adjustment with heterogeneous height types will be a main focus point in this paper. Firstly, the well-known method of variance component estimation is employed to calibrate the errors of heterogeneous height data in a combined least square adjustment of ellipsoidal, orthometric and gravimetric geoid. Specifically, the iterative algorithms of minimum norm quadratic unbiased estimation are used to estimate the variance components for each of heterogeneous observations. Secondly, two different statistical models are presented to illustrate the theory. The first method directly uses the errors-in-variables as a priori covariance matrices and the second method analyzes the biases of variance components and then proposes bias-corrected variance component estimators. Several numerical test results show the capability and effectiveness of the variance components estimation procedure in combined adjustment for calibrating geoid error model. PMID:26306296

  6. Bootstrapped DEPICT for error estimation in PET functional imaging.

    PubMed

    Kukreja, Sunil L; Gunn, Roger N

    2004-03-01

    Basis pursuit denoising is a new approach for data-driven estimation of parametric images from dynamic positron emission tomography (PET) data. At present, this kinetic modeling technique does not allow for the estimation of the errors on the parameters. These estimates are useful when performing subsequent statistical analysis, such as, inference across a group of subjects or when applying partial volume correction algorithms. The difficulty with calculating the error estimates is a consequence of using an overcomplete dictionary of kinetic basis functions. In this paper, a bootstrap approach for the estimation of parameter errors from dynamic PET data is presented. This paper shows that the bootstrap can be used successfully to compute parameter errors on a region of interest or parametric image basis. Validation studies evaluate the methods performance on simulated and measured PET data ([(11)C]Diprenorphine-opiate receptor and [(11)C]Raclopride-dopamine D(2) receptor). The method is presented in the context of PET neuroreceptor binding studies, however, it has general applicability to a wide range of PET/SPET radiotracers in neurology, oncology and cardiology. PMID:15006677

  7. Estimation of errors in partial Mueller matrix polarimeter calibration

    NASA Astrophysics Data System (ADS)

    Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott

    2016-05-01

    While active polarimeters have been shown to be successful at improving discriminability of the targets of interest from their background in a wide range of applications, their use can be problematic for cases with strong bandwidth constraints. In order to limit the number of performed measurements, a number of successive studies have developed the concept of partial Mueller matrix polarimeters (pMMPs) into a competitive solution. Like all systems, pMMPs need to be calibrated in order to yield accurate results. In this treatment we provide a method by which to select a limited number of reference objects to calibrate a given pMMP design. To demonstrate the efficacy of the approach, we apply the method to a sample system and show that, depending on the kind of errors present within the system, a significantly reduced number of reference objects measurements will suffice for accurate characterization of the errors.

  8. Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees.

    PubMed

    Omasa, Kenji; Qiu, Guo Yu; Watanuki, Kenichi; Yoshimi, Kenji; Akiyama, Yukihide

    2003-03-15

    Forests are one of the most important carbon sinks on Earth. However, owing to the complex structure, variable geography, and large area of forests, accurate estimation of forest carbon stocks is still a challenge for both site surveying and remote sensing. For these reasons, the Kyoto Protocol requires the establishment of methodologies for estimating the carbon stocks of forests (Kyoto Protocol, Article 5). A possible solution to this challenge is to remotely measure the carbon stocks of every tree in an entire forest. Here, we present a methodology for estimating carbon stocks of a Japanese cedar forest by using a high-resolution, helicopter-borne 3-dimensional (3-D) scanning lidar system that measures the 3-D canopy structure of every tree in a forest. Results show that a digital image (10-cm mesh) of woody canopy can be acquired. The treetop can be detected automatically with a reasonable accuracy. The absolute error ranges for tree height measurements are within 42 cm. Allometric relationships of height to carbon stocks then permit estimation of total carbon storage by measurement of carbon stocks of every tree. Thus, we suggest that our methodology can be used to accurately estimate the carbon stocks of Japanese cedar forests at a stand scale. Periodic measurements will reveal changes in forest carbon stocks. PMID:12680675

  9. Accurate reconstruction of viral quasispecies spectra through improved estimation of strain richness

    PubMed Central

    2015-01-01

    Background Estimating the number of different species (richness) in a mixed microbial population has been a main focus in metagenomic research. Existing methods of species richness estimation ride on the assumption that the reads in each assembled contig correspond to only one of the microbial genomes in the population. This assumption and the underlying probabilistic formulations of existing methods are not useful for quasispecies populations where the strains are highly genetically related. The lack of knowledge on the number of different strains in a quasispecies population is observed to hinder the precision of existing Viral Quasispecies Spectrum Reconstruction (QSR) methods due to the uncontrolled reconstruction of a large number of in silico false positives. In this work, we formulated a novel probabilistic method for strain richness estimation specifically targeting viral quasispecies. By using this approach we improved our recently proposed spectrum reconstruction pipeline ViQuaS to achieve higher levels of precision in reconstructed quasispecies spectra without compromising the recall rates. We also discuss how one other existing popular QSR method named ShoRAH can be improved using this new approach. Results On benchmark data sets, our estimation method provided accurate richness estimates (< 0.2 median estimation error) and improved the precision of ViQuaS by 2%-13% and F-score by 1%-9% without compromising the recall rates. We also demonstrate that our estimation method can be used to improve the precision and F-score of ShoRAH by 0%-7% and 0%-5% respectively. Conclusions The proposed probabilistic estimation method can be used to estimate the richness of viral populations with a quasispecies behavior and to improve the accuracy of the quasispecies spectra reconstructed by the existing methods ViQuaS and ShoRAH in the presence of a moderate level of technical sequencing errors. Availability http://sourceforge.net/projects/viquas/ PMID:26678073

  10. Error propagation and scaling for tropical forest biomass estimates.

    PubMed Central

    Chave, Jerome; Condit, Richard; Aguilar, Salomon; Hernandez, Andres; Lao, Suzanne; Perez, Rolando

    2004-01-01

    The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 10(4) m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find that the most important source of error is currently related to the choice of the allometric model. More work should be devoted to improving the predictive power of allometric models for biomass. PMID:15212093

  11. Error Estimation for the Linearized Auto-Localization Algorithm

    PubMed Central

    Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando

    2012-01-01

    The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965

  12. Error estimation for the linearized auto-localization algorithm.

    PubMed

    Guevara, Jorge; Jiménez, Antonio R; Prieto, Jose Carlos; Seco, Fernando

    2012-01-01

    The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons' positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965

  13. Real-Time Estimation Of Aiming Error Of Spinning Antenna

    NASA Technical Reports Server (NTRS)

    Dolinsky, Shlomo

    1992-01-01

    Spinning-spacecraft dynamics and amplitude variations in communications links studied from received-signal fluctuations. Mathematical model and associated analysis procedure provide real-time estimates of aiming error of remote rotating transmitting antenna radiating constant power in narrow, pencillike beam from spinning platform, and current amplitude of received signal. Estimates useful in analyzing and enhancing calibration of communication system, and in analyzing complicated dynamic effects in spinning platform and antenna-aiming mechanism.

  14. Development of an integrated system for estimating human error probabilities

    SciTech Connect

    Auflick, J.L.; Hahn, H.A.; Morzinski, J.A.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project had as its main objective the development of a Human Reliability Analysis (HRA), knowledge-based expert system that would provide probabilistic estimates for potential human errors within various risk assessments, safety analysis reports, and hazard assessments. HRA identifies where human errors are most likely, estimates the error rate for individual tasks, and highlights the most beneficial areas for system improvements. This project accomplished three major tasks. First, several prominent HRA techniques and associated databases were collected and translated into an electronic format. Next, the project started a knowledge engineering phase where the expertise, i.e., the procedural rules and data, were extracted from those techniques and compiled into various modules. Finally, these modules, rules, and data were combined into a nearly complete HRA expert system.

  15. ORAN- ORBITAL AND GEODETIC PARAMETER ESTIMATION ERROR ANALYSIS

    NASA Technical Reports Server (NTRS)

    Putney, B.

    1994-01-01

    The Orbital and Geodetic Parameter Estimation Error Analysis program, ORAN, was developed as a Bayesian least squares simulation program for orbital trajectories. ORAN does not process data, but is intended to compute the accuracy of the results of a data reduction, if measurements of a given accuracy are available and are processed by a minimum variance data reduction program. Actual data may be used to provide the time when a given measurement was available and the estimated noise on that measurement. ORAN is designed to consider a data reduction process in which a number of satellite data periods are reduced simultaneously. If there is more than one satellite in a data period, satellite-to-satellite tracking may be analyzed. The least squares estimator in most orbital determination programs assumes that measurements can be modeled by a nonlinear regression equation containing a function of parameters to be estimated and parameters which are assumed to be constant. The partitioning of parameters into those to be estimated (adjusted) and those assumed to be known (unadjusted) is somewhat arbitrary. For any particular problem, the data will be insufficient to adjust all parameters subject to uncertainty, and some reasonable subset of these parameters is selected for estimation. The final errors in the adjusted parameters may be decomposed into a component due to measurement noise and a component due to errors in the assumed values of the unadjusted parameters. Error statistics associated with the first component are generally evaluated in an orbital determination program. ORAN is used to simulate the orbital determination processing and to compute error statistics associated with the second component. Satellite observations may be simulated with desired noise levels given in many forms including range and range rate, altimeter height, right ascension and declination, direction cosines, X and Y angles, azimuth and elevation, and satellite-to-satellite range and

  16. An Empirically Based Error-Model for Radar Rainfall Estimates

    NASA Astrophysics Data System (ADS)

    Ciach, G. J.

    2004-05-01

    Mathematical modeling of the way radar rainfall (RR) approximates the physical truth is a prospective method to quantify the RR uncertainties. In this approach one can represent RR in the form of an "observation equation," that is, as a function of the corresponding true rainfall and a random error process. The error process describes the cumulative effect of all the sources of RR uncertainties. We present the results of our work on the identification and estimation of this relationship. They are based on the Level II reflectivity data from the WSR-88D radar in Tulsa, Oklahoma, and rainfall measurements from 23 surrounding Oklahoma Mesonet raingauges. Accumulation intervals from one hour to one day were analyzed using this sample. The raingauge accumulations were used as an approximation of the true rainfall in this study. The RR error-model that we explored is factorized into a deterministic distortion, which is a function of the true rainfall, and a multiplicative random error factor that is a positively-defined random variable. The distribution of the error factor depends on the true rainfall, however, its expectation in this representation is always equal to one (all the biases are modeled by the deterministic component). With this constraint, the deterministic distortion function can be defined as the conditional mean of RR conditioned on the true rainfall. We use nonparametric regression to estimate the deterministic distortion, and the variance and quantiles of the random error factor, as functions of the true rainfall. The results show that the deterministic distortion is a nonlinear function of the true rainfall that indicates systematic overestimation of week rainfall and underestimation of strong rainfall (conditional bias). The standard deviation of the error factor is a decreasing function of the true rainfall that ranges from about 0.8 for week rainfall to about 0.3 for strong rainfall. For larger time-scales, both the deterministic distortion and the

  17. Error estimates for universal back-projection-based photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Pandey, Prabodh K.; Naik, Naren; Munshi, Prabhat; Pradhan, Asima

    2015-07-01

    Photo-acoustic tomography is a hybrid imaging modality that combines the advantages of optical as well as ultrasound imaging techniques to produce images with high resolution and good contrast at high penetration depths. Choice of reconstruction algorithm as well as experimental and computational parameters plays a major role in governing the accuracy of a tomographic technique. Therefore error estimates with the variation of these parameters have extreme importance. Due to the finite support, that photo-acoustic source has, the pressure signals are not band-limited, but in practice, our detection system is. Hence the reconstructed image from ideal, noiseless band-limited forward data (for future references we will call this band-limited reconstruction) is the best approximation that we have for the unknown object. In the present study, we report the error that arises in the universal back-projection (UBP) based photo-acoustic reconstruction for planer detection geometry due to sampling and filtering of forward data (pressure signals).Computational validation of the error estimates have been carried out for synthetic phantoms. Validation with noisy forward data has also been carried out, to study the effect of noise on the error estimates derived in our work. Although here we have derived the estimates for planar detection geometry, the derivations for spherical and cylindrical geometries follow accordingly.

  18. Condition and Error Estimates in Numerical Matrix Computations

    SciTech Connect

    Konstantinov, M. M.; Petkov, P. H.

    2008-10-30

    This tutorial paper deals with sensitivity and error estimates in matrix computational processes. The main factors determining the accuracy of the result computed in floating--point machine arithmetics are considered. Special attention is paid to the perturbation analysis of matrix algebraic equations and unitary matrix decompositions.

  19. Concise Formulas for the Standard Errors of Component Loading Estimates.

    ERIC Educational Resources Information Center

    Ogasawara, Haruhiko

    2002-01-01

    Derived formulas for the asymptotic standard errors of component loading estimates to cover the cases of principal component analysis for unstandardized and standardized variables with orthogonal and oblique rotations. Used the formulas with a real correlation matrix of 355 subjects who took 12 psychological tests. (SLD)

  20. Note: Statistical errors estimation for Thomson scattering diagnostics

    SciTech Connect

    Maslov, M.; Beurskens, M. N. A.; Flanagan, J.; Kempenaars, M.; Collaboration: JET-EFDA Contributors

    2012-09-15

    A practical way of estimating statistical errors of a Thomson scattering diagnostic measuring plasma electron temperature and density is described. Analytically derived expressions are successfully tested with Monte Carlo simulations and implemented in an automatic data processing code of the JET LIDAR diagnostic.

  1. Bootstrap Standard Error Estimates in Dynamic Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Browne, Michael W.

    2010-01-01

    Dynamic factor analysis summarizes changes in scores on a battery of manifest variables over repeated measurements in terms of a time series in a substantially smaller number of latent factors. Algebraic formulae for standard errors of parameter estimates are more difficult to obtain than in the usual intersubject factor analysis because of the…

  2. Error analysis for the Fourier domain offset estimation algorithm

    NASA Astrophysics Data System (ADS)

    Wei, Ling; He, Jieling; He, Yi; Yang, Jinsheng; Li, Xiqi; Shi, Guohua; Zhang, Yudong

    2016-02-01

    The offset estimation algorithm is crucial for the accuracy of the Shack-Hartmann wave-front sensor. Recently, the Fourier Domain Offset (FDO) algorithm has been proposed for offset estimation. Similar to other algorithms, the accuracy of FDO is affected by noise such as background noise, photon noise, and 'fake' spots. However, no adequate quantitative error analysis has been performed for FDO in previous studies, which is of great importance for practical applications of the FDO. In this study, we quantitatively analysed how the estimation error of FDO is affected by noise based on theoretical deduction, numerical simulation, and experiments. The results demonstrate that the standard deviation of the wobbling error is: (1) inversely proportional to the raw signal to noise ratio, and proportional to the square of the sub-aperture size in the presence of background noise; and (2) proportional to the square root of the intensity in the presence of photonic noise. Furthermore, the upper bound of the estimation error is proportional to the intensity of 'fake' spots and the sub-aperture size. The results of the simulation and experiments agreed with the theoretical analysis.

  3. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1983-01-01

    Alternatives to sampling-theory stratified and regression estimators of crop production and timber biomass were examined. An alternative estimator which is viewed as especially promising is the errors-in-variable regression estimator. Investigations established the need for caution with this estimator when the ratio of two error variances is not precisely known.

  4. DEB: definite error bounded tangent estimator for digital curves.

    PubMed

    Prasad, Dilip K; Leung, Maylor K H; Quek, Chai; Brown, Michael S

    2014-10-01

    We propose a simple and fast method for tangent estimation of digital curves. This geometric-based method uses a small local region for tangent estimation and has a definite upper bound error for continuous as well as digital conics, i.e., circles, ellipses, parabolas, and hyperbolas. Explicit expressions of the upper bounds for continuous and digitized curves are derived, which can also be applied to nonconic curves. Our approach is benchmarked against 72 contemporary tangent estimation methods and demonstrates good performance for conic, nonconic, and noisy curves. In addition, we demonstrate a good multigrid and isotropic performance and low computational complexity of O(1) and better performance than most methods in terms of maximum and average errors in tangent computation for a large variety of digital curves. PMID:25122569

  5. The accurate estimation of physicochemical properties of ternary mixtures containing ionic liquids via artificial neural networks.

    PubMed

    Cancilla, John C; Díaz-Rodríguez, Pablo; Matute, Gemma; Torrecilla, José S

    2015-02-14

    The estimation of the density and refractive index of ternary mixtures comprising the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate, 2-propanol, and water at a fixed temperature of 298.15 K has been attempted through artificial neural networks. The obtained results indicate that the selection of this mathematical approach was a well-suited option. The mean prediction errors obtained, after simulating with a dataset never involved in the training process of the model, were 0.050% and 0.227% for refractive index and density estimation, respectively. These accurate results, which have been attained only using the composition of the dissolutions (mass fractions), imply that, most likely, ternary mixtures similar to the one analyzed, can be easily evaluated utilizing this algorithmic tool. In addition, different chemical processes involving ILs can be monitored precisely, and furthermore, the purity of the compounds in the studied mixtures can be indirectly assessed thanks to the high accuracy of the model. PMID:25583241

  6. Background error covariance estimation for atmospheric CO2 data assimilation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhishek; Engelen, Richard J.; Kawa, Stephan R.; Sweeney, Colm; Michalak, Anna M.

    2013-09-01

    any data assimilation framework, the background error covariance statistics play the critical role of filtering the observed information and determining the quality of the analysis. For atmospheric CO2 data assimilation, however, the background errors cannot be prescribed via traditional forecast or ensemble-based techniques as these fail to account for the uncertainties in the carbon emissions and uptake, or for the errors associated with the CO2 transport model. We propose an approach where the differences between two modeled CO2 concentration fields, based on different but plausible CO2 flux distributions and atmospheric transport models, are used as a proxy for the statistics of the background errors. The resulting error statistics: (1) vary regionally and seasonally to better capture the uncertainty in the background CO2 field, and (2) have a positive impact on the analysis estimates by allowing observations to adjust predictions over large areas. A state-of-the-art four-dimensional variational (4D-VAR) system developed at the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to illustrate the impact of the proposed approach for characterizing background error statistics on atmospheric CO2 concentration estimates. Observations from the Greenhouse gases Observing SATellite "IBUKI" (GOSAT) are assimilated into the ECMWF 4D-VAR system along with meteorological variables, using both the new error statistics and those based on a traditional forecast-based technique. Evaluation of the four-dimensional CO2 fields against independent CO2 observations confirms that the performance of the data assimilation system improves substantially in the summer, when significant variability and uncertainty in the fluxes are present.

  7. Error estimates and specification parameters for functional renormalization

    SciTech Connect

    Schnoerr, David; Boettcher, Igor; Pawlowski, Jan M.; Wetterich, Christof

    2013-07-15

    We present a strategy for estimating the error of truncated functional flow equations. While the basic functional renormalization group equation is exact, approximated solutions by means of truncations do not only depend on the choice of the retained information, but also on the precise definition of the truncation. Therefore, results depend on specification parameters that can be used to quantify the error of a given truncation. We demonstrate this for the BCS–BEC crossover in ultracold atoms. Within a simple truncation the precise definition of the frequency dependence of the truncated propagator affects the results, indicating a shortcoming of the choice of a frequency independent cutoff function.

  8. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  9. Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.

  10. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach

    NASA Astrophysics Data System (ADS)

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-06-01

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors.

  11. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach

    PubMed Central

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-01-01

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors. PMID:26065707

  12. Intraocular lens power estimation by accurate ray tracing for eyes underwent previous refractive surgeries

    NASA Astrophysics Data System (ADS)

    Yang, Que; Wang, Shanshan; Wang, Kai; Zhang, Chunyu; Zhang, Lu; Meng, Qingyu; Zhu, Qiudong

    2015-08-01

    For normal eyes without history of any ocular surgery, traditional equations for calculating intraocular lens (IOL) power, such as SRK-T, Holladay, Higis, SRK-II, et al., all were relativley accurate. However, for eyes underwent refractive surgeries, such as LASIK, or eyes diagnosed as keratoconus, these equations may cause significant postoperative refractive error, which may cause poor satisfaction after cataract surgery. Although some methods have been carried out to solve this problem, such as Hagis-L equation[1], or using preoperative data (data before LASIK) to estimate K value[2], no precise equations were available for these eyes. Here, we introduced a novel intraocular lens power estimation method by accurate ray tracing with optical design software ZEMAX. Instead of using traditional regression formula, we adopted the exact measured corneal elevation distribution, central corneal thickness, anterior chamber depth, axial length, and estimated effective lens plane as the input parameters. The calculation of intraocular lens power for a patient with keratoconus and another LASIK postoperative patient met very well with their visual capacity after cataract surgery.

  13. Fast and Accurate Learning When Making Discrete Numerical Estimates.

    PubMed

    Sanborn, Adam N; Beierholm, Ulrik R

    2016-04-01

    Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155

  14. Fast and Accurate Learning When Making Discrete Numerical Estimates

    PubMed Central

    Sanborn, Adam N.; Beierholm, Ulrik R.

    2016-01-01

    Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155

  15. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.

    2013-01-01

    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  16. Divergent estimation error in portfolio optimization and in linear regression

    NASA Astrophysics Data System (ADS)

    Kondor, I.; Varga-Haszonits, I.

    2008-08-01

    The problem of estimation error in portfolio optimization is discussed, in the limit where the portfolio size N and the sample size T go to infinity such that their ratio is fixed. The estimation error strongly depends on the ratio N/T and diverges for a critical value of this parameter. This divergence is the manifestation of an algorithmic phase transition, it is accompanied by a number of critical phenomena, and displays universality. As the structure of a large number of multidimensional regression and modelling problems is very similar to portfolio optimization, the scope of the above observations extends far beyond finance, and covers a large number of problems in operations research, machine learning, bioinformatics, medical science, economics, and technology.

  17. GPS/DR Error Estimation for Autonomous Vehicle Localization.

    PubMed

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  18. Stress Recovery and Error Estimation for Shell Structures

    NASA Technical Reports Server (NTRS)

    Yazdani, A. A.; Riggs, H. R.; Tessler, A.

    2000-01-01

    The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.

  19. GPS/DR Error Estimation for Autonomous Vehicle Localization

    PubMed Central

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  20. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGESBeta

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  1. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    SciTech Connect

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.

  2. Real-Time Baseline Error Estimation and Correction for GNSS/Strong Motion Seismometer Integration

    NASA Astrophysics Data System (ADS)

    Li, C. Y. N.; Groves, P. D.; Ziebart, M. K.

    2014-12-01

    Accurate and rapid estimation of permanent surface displacement is required immediately after a slip event for earthquake monitoring or tsunami early warning. It is difficult to achieve the necessary accuracy and precision at high- and low-frequencies using GNSS or seismometry alone. GNSS and seismic sensors can be integrated to overcome the limitations of each. Kalman filter algorithms with displacement and velocity states have been developed to combine GNSS and accelerometer observations to obtain the optimal displacement solutions. However, the sawtooth-like phenomena caused by the bias or tilting of the sensor decrease the accuracy of the displacement estimates. A three-dimensional Kalman filter algorithm with an additional baseline error state has been developed. An experiment with both a GNSS receiver and a strong motion seismometer mounted on a movable platform and subjected to known displacements was carried out. The results clearly show that the additional baseline error state enables the Kalman filter to estimate the instrument's sensor bias and tilt effects and correct the state estimates in real time. Furthermore, the proposed Kalman filter algorithm has been validated with data sets from the 2010 Mw 7.2 El Mayor-Cucapah Earthquake. The results indicate that the additional baseline error state can not only eliminate the linear and quadratic drifts but also reduce the sawtooth-like effects from the displacement solutions. The conventional zero-mean baseline-corrected results cannot show the permanent displacements after an earthquake; the two-state Kalman filter can only provide stable and optimal solutions if the strong motion seismometer had not been moved or tilted by the earthquake. Yet the proposed Kalman filter can achieve the precise and accurate displacements by estimating and correcting for the baseline error at each epoch. The integration filters out noise-like distortions and thus improves the real-time detection and measurement capability

  3. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb, we incorporated Pb-contaminated soils or Pb acetate into diets for Japanese quail (Coturnix japonica), fed the quail for 15 days, and ...

  4. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL

    EPA Science Inventory

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...

  5. Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons.

    PubMed

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2013-08-01

    In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π. PMID:24027379

  6. Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons

    PubMed Central

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2012-01-01

    In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π. PMID:24027379

  7. Model error estimation and correction by solving a inverse problem

    NASA Astrophysics Data System (ADS)

    Xue, Haile

    2016-04-01

    Nowadays, the weather forecasts and climate predictions are increasingly relied on numerical models. Yet, errors inevitably exist in model due to the imperfect numeric and parameterizations. From the practical point of view, model correction is an efficient strategy. Despite of the different complexity of forecast error correction algorithms, the general idea is to estimate the forecast errors by considering the NWP as a direct problem. Chou (1974) suggested an alternative view by considering the NWP as an inverse problem. The model error tendency term (ME) due to the model deficiency is assumed as an unknown term in NWP model, which can be discretized into short intervals (for example 6 hour) and considered as a constant or linear form in each interval. Given the past re-analyses and NWP model, the discretized MEs in the past intervals can be solved iteratively as a constant or linear-increased tendency term in each interval. These MEs can be further used as the online corrections. In this study, an iterative method for obtaining the MEs in past intervals was presented, and its convergence had been confirmed with sets of experiments in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August (JA) 2009 and January-February (JF) 2010. Then these MEs were used to get online model corretions based of systematic errors of GRAPES-GFS for July 2009 and January 2010. The data sets associated with initial condition and sea surface temperature (SST) used in this study are both based on NCEP final (FNL) data. According to the iterative numerical experiments, the following key conclusions can be drawn:(1) Batches of iteration test results indicated that the hour 6 forecast errors were reduced to 10% of their original value after 20 steps of iteration.(2) By offlinely comparing the error corrections estimated by MEs to the mean forecast errors, the patterns of estimated errors were considered to agree well with those

  8. Quantifying Error in the CMORPH Satellite Precipitation Estimates

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yoo, S.; Xie, P.

    2010-12-01

    As part of the collaboration between China Meteorological Administration (CMA) National Meteorological Information Centre (NMIC) and NOAA Climate Prediction Center (CPC), a new system is being developed to construct hourly precipitation analysis on a 0.25olat/lon grid over China by merging information derived from gauge observations and CMORPH satellite precipitation estimates. Foundation to the development of the gauge-satellite merging algorithm is the definition of the systematic and random error inherent in the CMORPH satellite precipitation estimates. In this study, we quantify the CMORPH error structures through comparisons against a gauge-based analysis of hourly precipitation derived from station reports from a dense network over China. First, systematic error (bias) of the CMORPH satellite estimates are examined with co-located hourly gauge precipitation analysis over 0.25olat/lon grid boxes with at least one reporting station. The CMORPH exhibits biases of regional variations showing over-estimates over eastern China, and seasonal changes with over-/under-estimates during warm/cold seasons. The CMORPH bias presents range-dependency. In general, the CMORPH tends to over-/under-estimate weak / strong rainfall. The bias, when expressed in the form of ratio between the gauge observations and the CMORPH satellite estimates, increases with the rainfall intensity but tends to saturate at a certain level for high rainfall. Based on the above results, a prototype algorithm is developed to remove the CMORPH bias through matching the PDF of original CMORPH estimates against that of the gauge analysis using data pairs co-located over grid boxes with at least one reporting gauge over a 30-day period ending at the target date. The spatial domain for collecting the co-located data pairs is expanded so that at least 5000 pairs of data are available to ensure statistical availability. The bias-corrected CMORPH is then compared against the gauge data to quantify the

  9. A Foundation for the Accurate Prediction of the Soft Error Vulnerability of Scientific Applications

    SciTech Connect

    Bronevetsky, G; de Supinski, B; Schulz, M

    2009-02-13

    Understanding the soft error vulnerability of supercomputer applications is critical as these systems are using ever larger numbers of devices that have decreasing feature sizes and, thus, increasing frequency of soft errors. As many large scale parallel scientific applications use BLAS and LAPACK linear algebra routines, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. This paper analyzes the vulnerability of these routines to soft errors by characterizing how their outputs are affected by injected errors and by evaluating several techniques for predicting how errors propagate from the input to the output of each routine. The resulting error profiles can be used to understand the fault vulnerability of full applications that use these routines.

  10. Estimation of discretization errors in contact pressure measurements.

    PubMed

    Fregly, Benjamin J; Sawyer, W Gregory

    2003-04-01

    Contact pressure measurements in total knee replacements are often made using a discrete sensor such as the Tekscan K-Scan sensor. However, no method currently exists for predicting the magnitude of sensor discretization errors in contact force, peak pressure, average pressure, and contact area, making it difficult to evaluate the accuracy of such measurements. This study identifies a non-dimensional area variable, defined as the ratio of the number of perimeter elements to the total number of elements with pressure, which can be used to predict these errors. The variable was evaluated by simulating discrete pressure sensors subjected to Hertzian and uniform pressure distributions with two different calibration procedures. The simulations systematically varied the size of the sensor elements, the contact ellipse aspect ratio, and the ellipse's location on the sensor grid. In addition, contact pressure measurements made with a K-Scan sensor on four different total knee designs were used to evaluate the magnitude of discretization errors under practical conditions. The simulations predicted a strong power law relationship (r(2)>0.89) between worst-case discretization errors and the proposed non-dimensional area variable. In the total knee experiments, predicted discretization errors were on the order of 1-4% for contact force and peak pressure and 3-9% for average pressure and contact area. These errors are comparable to those arising from inserting a sensor into the joint space or truncating pressures with pressure sensitive film. The reported power law regression coefficients provide a simple way to estimate the accuracy of experimental measurements made with discrete pressure sensors when the contact patch is approximately elliptical. PMID:12600352

  11. Gross error detection and stage efficiency estimation in a separation process

    SciTech Connect

    Serth, R.W.; Srikanth, B. . Dept. of Chemical and Natural Gas Engineering); Maronga, S.J. . Dept. of Chemical and Process Engineering)

    1993-10-01

    Accurate process models are required for optimization and control in chemical plants and petroleum refineries. These models involve various equipment parameters, such as stage efficiencies in distillation columns, the values of which must be determined by fitting the models to process data. Since the data contain random and systematic measurement errors, some of which may be large (gross errors), they must be reconciled to obtain reliable estimates of equipment parameters. The problem thus involves parameter estimation coupled with gross error detection and data reconciliation. MacDonald and Howat (1988) studied the above problem for a single-stage flash distillation process. Their analysis was based on the definition of stage efficiency due to Hausen, which has some significant disadvantages in this context, as discussed below. In addition, they considered only data sets which contained no gross errors. The purpose of this article is to extend the above work by considering alternative definitions of state efficiency and efficiency estimation in the presence of gross errors.

  12. Estimation of Separation Buffers for Wind-Prediction Error in an Airborne Separation Assistance System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette

    2009-01-01

    Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.

  13. Impacts of Characteristics of Errors in Radar Rainfall Estimates for Rainfall-Runoff Simulation

    NASA Astrophysics Data System (ADS)

    KO, D.; PARK, T.; Lee, T. S.; Shin, J. Y.; Lee, D.

    2015-12-01

    For flood prediction, weather radar has been commonly employed to measure the amount of precipitation and its spatial distribution. However, estimated rainfall from the radar contains uncertainty caused by its errors such as beam blockage and ground clutter. Even though, previous studies have been focused on removing error of radar data, it is crucial to evaluate runoff volumes which are influenced primarily by the radar errors. Furthermore, resolution of rainfall modeled by previous studies for rainfall uncertainty analysis or distributed hydrological simulation are quite coarse to apply to real application. Therefore, in the current study, we tested the effects of radar rainfall errors on rainfall runoff with a high resolution approach, called spatial error model (SEM). In the current study, the synthetic generation of random and cross-correlated radar errors were employed as SEM. A number of events for the Nam River dam region were tested to investigate the peak discharge from a basin according to error variance. The results indicate that the dependent error brings much higher variations in peak discharge than the independent random error. To further investigate the effect of the magnitude of cross-correlation between radar errors, the different magnitudes of spatial cross-correlations were employed for the rainfall-runoff simulation. The results demonstrate that the stronger correlation leads to higher variation of peak discharge and vice versa. We conclude that the error structure in radar rainfall estimates significantly affects on predicting the runoff peak. Therefore, the efforts must take into consideration on not only removing radar rainfall error itself but also weakening the cross-correlation structure of radar errors in order to forecast flood events more accurately. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which

  14. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    NASA Astrophysics Data System (ADS)

    Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M. P.; Gloor, E.; Houweling, S.; Kawa, S. R.; Krol, M.; Patra, P. K.; Prinn, R. G.; Rigby, M.; Saito, R.; Wilson, C.

    2013-10-01

    transport model errors in current inverse systems. Future inversions should include more accurately prescribed observation covariances matrices in order to limit the impact of transport model errors on estimated methane fluxes.

  15. CADNA: a library for estimating round-off error propagation

    NASA Astrophysics Data System (ADS)

    Jézéquel, Fabienne; Chesneaux, Jean-Marie

    2008-06-01

    The CADNA library enables one to estimate round-off error propagation using a probabilistic approach. With CADNA the numerical quality of any simulation program can be controlled. Furthermore by detecting all the instabilities which may occur at run time, a numerical debugging of the user code can be performed. CADNA provides new numerical types on which round-off errors can be estimated. Slight modifications are required to control a code with CADNA, mainly changes in variable declarations, input and output. This paper describes the features of the CADNA library and shows how to interpret the information it provides concerning round-off error propagation in a code. Program summaryProgram title:CADNA Catalogue identifier:AEAT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAT_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:53 420 No. of bytes in distributed program, including test data, etc.:566 495 Distribution format:tar.gz Programming language:Fortran Computer:PC running LINUX with an i686 or an ia64 processor, UNIX workstations including SUN, IBM Operating system:LINUX, UNIX Classification:4.14, 6.5, 20 Nature of problem:A simulation program which uses floating-point arithmetic generates round-off errors, due to the rounding performed at each assignment and at each arithmetic operation. Round-off error propagation may invalidate the result of a program. The CADNA library enables one to estimate round-off error propagation in any simulation program and to detect all numerical instabilities that may occur at run time. Solution method:The CADNA library [1] implements Discrete Stochastic Arithmetic [2-4] which is based on a probabilistic model of round-off errors. The program is run several times with a random rounding mode generating different results each

  16. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1989-01-01

    Let u(x,t) be the possibly discontinuous entropy solution of a nonlinear scalar conservation law with smooth initial data. Suppose u sub epsilon(x,t) is the solution of an approximate viscosity regularization, where epsilon greater than 0 is the small viscosity amplitude. It is shown that by post-processing the small viscosity approximation u sub epsilon, pointwise values of u and its derivatives can be recovered with an error as close to epsilon as desired. The analysis relies on the adjoint problem of the forward error equation, which in this case amounts to a backward linear transport with discontinuous coefficients. The novelty of this approach is to use a (generalized) E-condition of the forward problem in order to deduce a W(exp 1,infinity) energy estimate for the discontinuous backward transport equation; this, in turn, leads one to an epsilon-uniform estimate on moments of the error u(sub epsilon) - u. This approach does not follow the characteristics and, therefore, applies mutatis mutandis to other approximate solutions such as E-difference schemes.

  17. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.

    PubMed

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Lebel, Luc; Kolus, Ahmet

    2016-05-01

    Heart rate (HR) was monitored continuously in 41 forest workers performing brushcutting or tree planting work. 10-min seated rest periods were imposed during the workday to estimate the HR thermal component (ΔHRT) per Vogt et al. (1970, 1973). VO2 was measured using a portable gas analyzer during a morning submaximal step-test conducted at the work site, during a work bout over the course of the day (range: 9-74 min), and during an ensuing 10-min rest pause taken at the worksite. The VO2 estimated, from measured HR and from corrected HR (thermal component removed), were compared to VO2 measured during work and rest. Varied levels of HR thermal component (ΔHRTavg range: 0-38 bpm) originating from a wide range of ambient thermal conditions, thermal clothing insulation worn, and physical load exerted during work were observed. Using raw HR significantly overestimated measured work VO2 by 30% on average (range: 1%-64%). 74% of VO2 prediction error variance was explained by the HR thermal component. VO2 estimated from corrected HR, was not statistically different from measured VO2. Work VO2 can be estimated accurately in the presence of thermal stress using Vogt et al.'s method, which can be implemented easily by the practitioner with inexpensive instruments. PMID:26851474

  18. Estimation of Aperture Errors with Direct Interferometer-Output Feedback for Spacecraft Formation Control

    NASA Technical Reports Server (NTRS)

    Lu, Hui-Ling; Cheng, Victor H. L.; Leitner, Jesse A.; Carpenter, Kenneth G.

    2004-01-01

    Long-baseline space interferometers involving formation flying of multiple spacecraft hold great promise as future space missions for high-resolution imagery. The major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to control these spacecraft and their optics payloads in the specified configuration accurately. In this paper, we describe our effort toward fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present an estimation procedure that effectively extracts relative x/y translational exit pupil aperture deviations from the raw interferometric image with small estimation errors.

  19. Accurate biopsy-needle depth estimation in limited-angle tomography using multi-view geometry

    NASA Astrophysics Data System (ADS)

    van der Sommen, Fons; Zinger, Sveta; de With, Peter H. N.

    2016-03-01

    Recently, compressed-sensing based algorithms have enabled volume reconstruction from projection images acquired over a relatively small angle (θ < 20°). These methods enable accurate depth estimation of surgical tools with respect to anatomical structures. However, they are computationally expensive and time consuming, rendering them unattractive for image-guided interventions. We propose an alternative approach for depth estimation of biopsy needles during image-guided interventions, in which we split the problem into two parts and solve them independently: needle-depth estimation and volume reconstruction. The complete proposed system consists of the previous two steps, preceded by needle extraction. First, we detect the biopsy needle in the projection images and remove it by interpolation. Next, we exploit epipolar geometry to find point-to-point correspondences in the projection images to triangulate the 3D position of the needle in the volume. Finally, we use the interpolated projection images to reconstruct the local anatomical structures and indicate the position of the needle within this volume. For validation of the algorithm, we have recorded a full CT scan of a phantom with an inserted biopsy needle. The performance of our approach ranges from a median error of 2.94 mm for an distributed viewing angle of 1° down to an error of 0.30 mm for an angle larger than 10°. Based on the results of this initial phantom study, we conclude that multi-view geometry offers an attractive alternative to time-consuming iterative methods for the depth estimation of surgical tools during C-arm-based image-guided interventions.

  20. Error Estimation of An Ensemble Statistical Seasonal Precipitation Prediction Model

    NASA Technical Reports Server (NTRS)

    Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Gui-Long

    2001-01-01

    This NASA Technical Memorandum describes an optimal ensemble canonical correlation forecasting model for seasonal precipitation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. Since new CCA scheme is derived for continuous fields of predictor and predictand, an area-factor is automatically included. Thus our model is an improvement of the spectral CCA scheme of Barnett and Preisendorfer. The improvements include (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States (US) precipitation field. The predictor is the sea surface temperature (SST). The US Climate Prediction Center's reconstructed SST is used as the predictor's historical data. The US National Center for Environmental Prediction's optimally interpolated precipitation (1951-2000) is used as the predictand's historical data. Our forecast experiments show that the new ensemble canonical correlation scheme renders a reasonable forecasting skill. For example, when using September-October-November SST to predict the next season December-January-February precipitation, the spatial pattern correlation between the observed and predicted are positive in 46 years among the 50 years of experiments. The positive correlations are close to or greater than 0.4 in 29 years, which indicates excellent performance of the forecasting model. The forecasting skill can be further enhanced when several predictors are used.

  1. Effects of measurement error on estimating biological half-life

    SciTech Connect

    Caudill, S.P.; Pirkle, J.L.; Michalek, J.E. )

    1992-10-01

    Direct computation of the observed biological half-life of a toxic compound in a person can lead to an undefined estimate when subsequent concentration measurements are greater than or equal to previous measurements. The likelihood of such an occurrence depends upon the length of time between measurements and the variance (intra-subject biological and inter-sample analytical) associated with the measurements. If the compound is lipophilic the subject's percentage of body fat at the times of measurement can also affect this likelihood. We present formulas for computing a model-predicted half-life estimate and its variance; and we derive expressions for the effect of sample size, measurement error, time between measurements, and any relevant covariates on the variability in model-predicted half-life estimates. We also use statistical modeling to estimate the probability of obtaining an undefined half-life estimate and to compute the expected number of undefined half-life estimates for a sample from a study population. Finally, we illustrate our methods using data from a study of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure among 36 members of Operation Ranch Hand, the Air Force unit responsible for the aerial spraying of Agent Orange in Vietnam.

  2. How Accurately Do Spectral Methods Estimate Effective Elastic Thickness?

    NASA Astrophysics Data System (ADS)

    Perez-Gussinye, M.; Lowry, A. R.; Watts, A. B.; Velicogna, I.

    2002-12-01

    The effective elastic thickness, Te, is an important parameter that has the potential to provide information on the long-term thermal and mechanical properties of the the lithosphere. Previous studies have estimated Te using both forward and inverse (spectral) methods. While there is generally good agreement between the results obtained using these methods, spectral methods are limited because they depend on the spectral estimator and the window size chosen for analysis. In order to address this problem, we have used a multitaper technique which yields optimal estimates of the bias and variance of the Bouguer coherence function relating topography and gravity anomaly data. The technique has been tested using realistic synthetic topography and gravity. Synthetic data were generated assuming surface and sub-surface (buried) loading of an elastic plate with fractal statistics consistent with real data sets. The cases of uniform and spatially varying Te are examined. The topography and gravity anomaly data consist of 2000x2000 km grids sampled at 8 km interval. The bias in the Te estimate is assessed from the difference between the true Te value and the mean from analyzing 100 overlapping windows within the 2000x2000 km data grids. For the case in which Te is uniform, the bias and variance decrease with window size and increase with increasing true Te value. In the case of a spatially varying Te, however, there is a trade-off between spatial resolution and variance. With increasing window size the variance of the Te estimate decreases, but the spatial changes in Te are smeared out. We find that for a Te distribution consisting of a strong central circular region of Te=50 km (radius 600 km) and progressively smaller Te towards its edges, the 800x800 and 1000x1000 km window gave the best compromise between spatial resolution and variance. Our studies demonstrate that assumed stationarity of the relationship between gravity and topography data yields good results even in

  3. Verification of unfold error estimates in the UFO code

    SciTech Connect

    Fehl, D.L.; Biggs, F.

    1996-07-01

    Spectral unfolding is an inverse mathematical operation which attempts to obtain spectral source information from a set of tabulated response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the UFO (UnFold Operator) code. In addition to an unfolded spectrum, UFO also estimates the unfold uncertainty (error) induced by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). 100 random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetemined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-Pinch and ion-beam driven hohlraums.

  4. Accurate feature detection and estimation using nonlinear and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Rudin, Leonid; Osher, Stanley

    1994-11-01

    A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.

  5. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  6. Estimation of flood warning runoff thresholds in ungauged basins with asymmetric error functions

    NASA Astrophysics Data System (ADS)

    Toth, Elena

    2016-06-01

    In many real-world flood forecasting systems, the runoff thresholds for activating warnings or mitigation measures correspond to the flow peaks with a given return period (often 2 years, which may be associated with the bankfull discharge). At locations where the historical streamflow records are absent or very limited, the threshold can be estimated with regionally derived empirical relationships between catchment descriptors and the desired flood quantile. Whatever the function form, such models are generally parameterised by minimising the mean square error, which assigns equal importance to overprediction or underprediction errors. Considering that the consequences of an overestimated warning threshold (leading to the risk of missing alarms) generally have a much lower level of acceptance than those of an underestimated threshold (leading to the issuance of false alarms), the present work proposes to parameterise the regression model through an asymmetric error function, which penalises the overpredictions more. The estimates by models (feedforward neural networks) with increasing degree of asymmetry are compared with those of a traditional, symmetrically trained network, in a rigorous cross-validation experiment referred to a database of catchments covering the country of Italy. The analysis shows that the use of the asymmetric error function can substantially reduce the number and extent of overestimation errors, if compared to the use of the traditional square errors. Of course such reduction is at the expense of increasing underestimation errors, but the overall accurateness is still acceptable and the results illustrate the potential value of choosing an asymmetric error function when the consequences of missed alarms are more severe than those of false alarms.

  7. Estimation of flood warning runoff thresholds in ungauged basins with asymmetric error functions

    NASA Astrophysics Data System (ADS)

    Toth, E.

    2015-06-01

    In many real-world flood forecasting systems, the runoff thresholds for activating warnings or mitigation measures correspond to the flow peaks with a given return period (often the 2-year one, that may be associated with the bankfull discharge). At locations where the historical streamflow records are absent or very limited, the threshold can be estimated with regionally-derived empirical relationships between catchment descriptors and the desired flood quantile. Whatever is the function form, such models are generally parameterised by minimising the mean square error, that assigns equal importance to overprediction or underprediction errors. Considering that the consequences of an overestimated warning threshold (leading to the risk of missing alarms) generally have a much lower level of acceptance than those of an underestimated threshold (leading to the issuance of false alarms), the present work proposes to parameterise the regression model through an asymmetric error function, that penalises more the overpredictions. The estimates by models (feedforward neural networks) with increasing degree of asymmetry are compared with those of a traditional, symmetrically-trained network, in a rigorous cross-validation experiment referred to a database of catchments covering the Italian country. The analysis shows that the use of the asymmetric error function can substantially reduce the number and extent of overestimation errors, if compared to the use of the traditional square errors. Of course such reduction is at the expense of increasing underestimation errors, but the overall accurateness is still acceptable and the results illustrate the potential value of choosing an asymmetric error function when the consequences of missed alarms are more severe than those of false alarms.

  8. Accurate tempo estimation based on harmonic + noise decomposition

    NASA Astrophysics Data System (ADS)

    Alonso, Miguel; Richard, Gael; David, Bertrand

    2006-12-01

    We present an innovative tempo estimation system that processes acoustic audio signals and does not use any high-level musical knowledge. Our proposal relies on a harmonic + noise decomposition of the audio signal by means of a subspace analysis method. Then, a technique to measure the degree of musical accentuation as a function of time is developed and separately applied to the harmonic and noise parts of the input signal. This is followed by a periodicity estimation block that calculates the salience of musical accents for a large number of potential periods. Next, a multipath dynamic programming searches among all the potential periodicities for the most consistent prospects through time, and finally the most energetic candidate is selected as tempo. Our proposal is validated using a manually annotated test-base containing 961 music signals from various musical genres. In addition, the performance of the algorithm under different configurations is compared. The robustness of the algorithm when processing signals of degraded quality is also measured.

  9. Richardson Extrapolation Based Error Estimation for Stochastic Kinetic Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Cartwright, Keigh

    2014-10-01

    To have a high degree of confidence in simulations one needs code verification, validation, solution verification and uncertainty qualification. This talk will focus on numerical error estimation for stochastic kinetic plasma simulations using the Particle-In-Cell (PIC) method and how it impacts the code verification and validation. A technique Is developed to determine the full converged solution with error bounds from the stochastic output of a Particle-In-Cell code with multiple convergence parameters (e.g. ?t, ?x, and macro particle weight). The core of this method is a multi parameter regression based on a second-order error convergence model with arbitrary convergence rates. Stochastic uncertainties in the data set are propagated through the model usin gstandard bootstrapping on a redundant data sets, while a suite of nine regression models introduces uncertainties in the fitting process. These techniques are demonstrated on Flasov-Poisson Child-Langmuir diode, relaxation of an electro distribution to a Maxwellian due to collisions and undriven sheaths and pre-sheaths. Sandia National Laboratories is a multie-program laboratory managed and operated by Sandia Corporation, a wholly owned subisidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  10. A New Stratified Sampling Procedure which Decreases Error Estimation of Varroa Mite Number on Sticky Boards.

    PubMed

    Kretzschmar, A; Durand, E; Maisonnasse, A; Vallon, J; Le Conte, Y

    2015-06-01

    A new procedure of stratified sampling is proposed in order to establish an accurate estimation of Varroa destructor populations on sticky bottom boards of the hive. It is based on the spatial sampling theory that recommends using regular grid stratification in the case of spatially structured process. The distribution of varroa mites on sticky board being observed as spatially structured, we designed a sampling scheme based on a regular grid with circles centered on each grid element. This new procedure is then compared with a former method using partially random sampling. Relative error improvements are exposed on the basis of a large sample of simulated sticky boards (n=20,000) which provides a complete range of spatial structures, from a random structure to a highly frame driven structure. The improvement of varroa mite number estimation is then measured by the percentage of counts with an error greater than a given level. PMID:26470273

  11. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    USGS Publications Warehouse

    Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John

    2016-01-01

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.

  12. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates

    SciTech Connect

    Kunin, Victor; Engelbrektson, Anna; Ochman, Howard; Hugenholtz, Philip

    2009-08-01

    Massively parallel pyrosequencing of the small subunit (16S) ribosomal RNA gene has revealed that the extent of rare microbial populations in several environments, the 'rare biosphere', is orders of magnitude higher than previously thought. One important caveat with this method is that sequencing error could artificially inflate diversity estimates. Although the per-base error of 16S rDNA amplicon pyrosequencing has been shown to be as good as or lower than Sanger sequencing, no direct assessments of pyrosequencing errors on diversity estimates have been reported. Using only Escherichia coli MG1655 as a reference template, we find that 16S rDNA diversity is grossly overestimated unless relatively stringent read quality filtering and low clustering thresholds are applied. In particular, the common practice of removing reads with unresolved bases and anomalous read lengths is insufficient to ensure accurate estimates of microbial diversity. Furthermore, common and reproducible homopolymer length errors can result in relatively abundant spurious phylotypes further confounding data interpretation. We suggest that stringent quality-based trimming of 16S pyrotags and clustering thresholds no greater than 97% identity should be used to avoid overestimates of the rare biosphere.

  13. Estimating Ocean Middle-Depth Velocities from ARGO Floats: Error Estimation and Application to Pacific

    NASA Astrophysics Data System (ADS)

    Xie, J.; Zhu, J.; Yan, C.

    2006-07-01

    The Array for Real-time Geostrophic Oceanography (ARGO) project creates a unique opportunity to estimate the absolute velocity at mid-depths of the global oceans. However, the estimation can only be made based on float surface trajectories. The diving and resurfacing positions of the float are not available in its trajectory file. This surface drifting effect makes it difficult to estimate mid-depth current. Moreover, the vertical shear during decent or ascent between parking depth and the surface is another major error source. In this presentation, we first quantify the contributions of the two major error sources using the current estimates from Estimating the Climate and Circulation of the Ocean (ECCO) and find that the surface drifting is a primary error source. Then, a sequential surface trajectory prediction/estimation scheme based on Kalman Filter is introduced and implemented to reduce the surface drifting error in the Pacific during November 2001 to October 2004. On average, the error of the estimated velocities is greatly reduced from 2.7 to 0.2 cm s if neglecting the vertical shear. These velocities with relative error less than 25% are analyzed and compared with previous studies on mid-depth currents. The current system derived from ARGO floats in Pacific at 1000 and 2000 dB is comparable to other measured by ADCP (Reid, 1997; Firing et al., 1998). This presentation is based on two submitted manuscripts of the same authors (Xie and Zhu, 2006; Zhu et al., 2006). More detailed results can be found in the two manuscripts.

  14. Bioaccessibility tests accurately estimate bioavailability of lead to quail.

    PubMed

    Beyer, W Nelson; Basta, Nicholas T; Chaney, Rufus L; Henry, Paula F P; Mosby, David E; Rattner, Barnett A; Scheckel, Kirk G; Sprague, Daniel T; Weber, John S

    2016-09-01

    Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of

  15. Models and error analyses in urban air quality estimation

    NASA Technical Reports Server (NTRS)

    Englar, T., Jr.; Diamante, J. M.; Jazwinski, A. H.

    1976-01-01

    Estimation theory has been applied to a wide range of aerospace problems. Application of this expertise outside the aerospace field has been extremely limited, however. This paper describes the use of covariance error analysis techniques in evaluating the accuracy of pollution estimates obtained from a variety of concentration measuring devices. It is shown how existing software developed for aerospace applications can be applied to the estimation of pollution through the processing of measurement types involving a range of spatial and temporal responses. The modeling of pollutant concentration by meandering Gaussian plumes is described in some detail. Time averaged measurements are associated with a model of the average plume, using some of the same state parameters and thus avoiding the problem of state memory. The covariance analysis has been implemented using existing batch estimation software. This usually involves problems in handling dynamic noise; however, the white dynamic noise has been replaced by a band-limited process which can be easily accommodated by the software.

  16. A new geometric-based model to accurately estimate arm and leg inertial estimates.

    PubMed

    Wicke, Jason; Dumas, Geneviève A

    2014-06-01

    Segment estimates of mass, center of mass and moment of inertia are required input parameters to analyze the forces and moments acting across the joints. The objectives of this study were to propose a new geometric model for limb segments, to evaluate it against criterion values obtained from DXA, and to compare its performance to five other popular models. Twenty five female and 24 male college students participated in the study. For the criterion measures, the participants underwent a whole body DXA scan, and estimates for segment mass, center of mass location, and moment of inertia (frontal plane) were directly computed from the DXA mass units. For the new model, the volume was determined from two standing frontal and sagittal photographs. Each segment was modeled as a stack of slices, the sections of which were ellipses if they are not adjoining another segment and sectioned ellipses if they were adjoining another segment (e.g. upper arm and trunk). Length of axes of the ellipses was obtained from the photographs. In addition, a sex-specific, non-uniform density function was developed for each segment. A series of anthropometric measurements were also taken by directly following the definitions provided of the different body segment models tested, and the same parameters determined for each model. Comparison of models showed that estimates from the new model were consistently closer to the DXA criterion than those from the other models, with an error of less than 5% for mass and moment of inertia and less than about 6% for center of mass location. PMID:24735506

  17. Close-range radar rainfall estimation and error analysis

    NASA Astrophysics Data System (ADS)

    van de Beek, C. Z.; Leijnse, H.; Hazenberg, P.; Uijlenhoet, R.

    2012-04-01

    It is well-known that quantitative precipitation estimation (QPE) is affected by many sources of error. The most important of these are 1) radar calibration, 2) wet radome attenuation, 3) rain attenuation, 4) vertical profile of reflectivity, 5) variations in drop size distribution, and 6) sampling effects. The study presented here is an attempt to separate and quantify these sources of error. For this purpose, QPE is performed very close to the radar (~1-2 km) so that 3), 4), and 6) will only play a minor role. Error source 5) can be corrected for because of the availability of two disdrometers (instruments that measure the drop size distribution). A 3-day rainfall event (25-27 August 2010) that produced more than 50 mm in De Bilt, The Netherlands is analyzed. Radar, rain gauge, and disdrometer data from De Bilt are used for this. It is clear from the analyses that without any corrections, the radar severely underestimates the total rain amount (only 25 mm). To investigate the effect of wet radome attenuation, stable returns from buildings close to the radar are analyzed. It is shown that this may have caused an underestimation up to ~4 dB. The calibration of the radar is checked by looking at received power from the sun. This turns out to cause another 1 dB of underestimation. The effect of variability of drop size distributions is shown to cause further underestimation. Correcting for all of these effects yields a good match between radar QPE and gauge measurements.

  18. Can student health professionals accurately estimate alcohol content in commonly occurring drinks?

    PubMed Central

    Sinclair, Julia; Searle, Emma

    2016-01-01

    Objectives: Correct identification of alcohol as a contributor to, or comorbidity of, many psychiatric diseases requires health professionals to be competent and confident to take an accurate alcohol history. Being able to estimate (or calculate) the alcohol content in commonly consumed drinks is a prerequisite for quantifying levels of alcohol consumption. The aim of this study was to assess this ability in medical and nursing students. Methods: A cross-sectional survey of 891 medical and nursing students across different years of training was conducted. Students were asked the alcohol content of 10 different alcoholic drinks by seeing a slide of the drink (with picture, volume and percentage of alcohol by volume) for 30 s. Results: Overall, the mean number of correctly estimated drinks (out of the 10 tested) was 2.4, increasing to just over 3 if a 10% margin of error was used. Wine and premium strength beers were underestimated by over 50% of students. Those who drank alcohol themselves, or who were further on in their clinical training, did better on the task, but overall the levels remained low. Conclusions: Knowledge of, or the ability to work out, the alcohol content of commonly consumed drinks is poor, and further research is needed to understand the reasons for this and the impact this may have on the likelihood to undertake screening or initiate treatment. PMID:27536344

  19. Ultrasound Fetal Weight Estimation: How Accurate Are We Now Under Emergency Conditions?

    PubMed

    Dimassi, Kaouther; Douik, Fatma; Ajroudi, Mariem; Triki, Amel; Gara, Mohamed Faouzi

    2015-10-01

    The primary aim of this study was to evaluate the accuracy of sonographic estimation of fetal weight when performed at due date by first-line sonographers. This was a prospective study including 500 singleton pregnancies. Ultrasound examinations were performed by residents on delivery day. Estimated fetal weights (EFWs) were calculated and compared with the corresponding birth weights. The median absolute difference between EFW and birth weight was 200 g (100-330). This difference was within ±10% in 75.2% of the cases. The median absolute percentage error was 5.53% (2.70%-10.03%). Linear regression analysis revealed a good correlation between EFW and birth weight (r = 0.79, p < 0.0001). According to Bland-Altman analysis, bias was -85.06 g (95% limits of agreement: -663.33 to 494.21). In conclusion, EFWs calculated by residents were as accurate as those calculated by experienced sonographers. Nevertheless, predictive performance remains limited, with a low sensitivity in the diagnosis of macrosomia. PMID:26164286

  20. Research on Parameter Estimation Methods for Alpha Stable Noise in a Laser Gyroscope’s Random Error

    PubMed Central

    Wang, Xueyun; Li, Kui; Gao, Pengyu; Meng, Suxia

    2015-01-01

    Alpha stable noise, determined by four parameters, has been found in the random error of a laser gyroscope. Accurate estimation of the four parameters is the key process for analyzing the properties of alpha stable noise. Three widely used estimation methods—quantile, empirical characteristic function (ECF) and logarithmic moment method—are analyzed in contrast with Monte Carlo simulation in this paper. The estimation accuracy and the application conditions of all methods, as well as the causes of poor estimation accuracy, are illustrated. Finally, the highest precision method, ECF, is applied to 27 groups of experimental data to estimate the parameters of alpha stable noise in a laser gyroscope’s random error. The cumulative probability density curve of the experimental data fitted by an alpha stable distribution is better than that by a Gaussian distribution, which verifies the existence of alpha stable noise in a laser gyroscope’s random error. PMID:26230698

  1. Error estimation for CFD aeroheating prediction under rarefied flow condition

    NASA Astrophysics Data System (ADS)

    Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2014-12-01

    Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.

  2. Effects of measurement error on horizontal hydraulic gradient estimates.

    PubMed

    Devlin, J F; McElwee, C D

    2007-01-01

    During the design of a natural gradient tracer experiment, it was noticed that the hydraulic gradient was too small to measure reliably on an approximately 500-m(2) site. Additional wells were installed to increase the monitored area to 26,500 m(2), and wells were instrumented with pressure transducers. The resulting monitoring system was capable of measuring heads with a precision of +/-1.3 x 10(-2) m. This measurement error was incorporated into Monte Carlo calculations, in which only hydraulic head values were varied between realizations. The standard deviation in the estimated gradient and the flow direction angle from the x-axis (east direction) were calculated. The data yielded an average hydraulic gradient of 4.5 x 10(-4)+/-25% with a flow direction of 56 degrees southeast +/-18 degrees, with the variations representing 1 standard deviation. Further Monte Carlo calculations investigated the effects of number of wells, aspect ratio of the monitored area, and the size of the monitored area on the previously mentioned uncertainties. The exercise showed that monitored areas must exceed a size determined by the magnitude of the measurement error if meaningful gradient estimates and flow directions are to be obtained. The aspect ratio of the monitored zone should be as close to 1 as possible, although departures as great as 0.5 to 2 did not degrade the quality of the data unduly. Numbers of wells beyond three to five provided little advantage. These conclusions were supported for the general case with a preliminary theoretical analysis. PMID:17257340

  3. Model Error Estimation for the CPTEC Eta Model

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; daSilva, Arlindo

    1999-01-01

    Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.

  4. Error analysis of leaf area estimates made from allometric regression models

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H.; Chhikara, R. S.

    1986-01-01

    Biological net productivity, measured in terms of the change in biomass with time, affects global productivity and the quality of life through biochemical and hydrological cycles and by its effect on the overall energy balance. Estimating leaf area for large ecosystems is one of the more important means of monitoring this productivity. For a particular forest plot, the leaf area is often estimated by a two-stage process. In the first stage, known as dimension analysis, a small number of trees are felled so that their areas can be measured as accurately as possible. These leaf areas are then related to non-destructive, easily-measured features such as bole diameter and tree height, by using a regression model. In the second stage, the non-destructive features are measured for all or for a sample of trees in the plots and then used as input into the regression model to estimate the total leaf area. Because both stages of the estimation process are subject to error, it is difficult to evaluate the accuracy of the final plot leaf area estimates. This paper illustrates how a complete error analysis can be made, using an example from a study made on aspen trees in northern Minnesota. The study was a joint effort by NASA and the University of California at Santa Barbara known as COVER (Characterization of Vegetation with Remote Sensing).

  5. Convergence and error estimation in free energy calculations using the weighted histogram analysis method

    PubMed Central

    Zhu, Fangqiang; Hummer, Gerhard

    2012-01-01

    The weighted histogram analysis method (WHAM) has become the standard technique for the analysis of umbrella sampling simulations. In this paper, we address the challenges (1) of obtaining fast and accurate solutions of the coupled nonlinear WHAM equations, (2) of quantifying the statistical errors of the resulting free energies, (3) of diagnosing possible systematic errors, and (4) of optimal allocation of the computational resources. Traditionally, the WHAM equations are solved by a fixed-point direct iteration method, despite poor convergence and possible numerical inaccuracies in the solutions. Here we instead solve the mathematically equivalent problem of maximizing a target likelihood function, by using superlinear numerical optimization algorithms with a significantly faster convergence rate. To estimate the statistical errors in one-dimensional free energy profiles obtained from WHAM, we note that for densely spaced umbrella windows with harmonic biasing potentials, the WHAM free energy profile can be approximated by a coarse-grained free energy obtained by integrating the mean restraining forces. The statistical errors of the coarse-grained free energies can be estimated straightforwardly and then used for the WHAM results. A generalization to multidimensional WHAM is described. We also propose two simple statistical criteria to test the consistency between the histograms of adjacent umbrella windows, which help identify inadequate sampling and hysteresis in the degrees of freedom orthogonal to the reaction coordinate. Together, the estimates of the statistical errors and the diagnostics of inconsistencies in the potentials of mean force provide a basis for the efficient allocation of computational resources in free energy simulations. PMID:22109354

  6. Detecting Positioning Errors and Estimating Correct Positions by Moving Window

    PubMed Central

    Song, Ha Yoon; Lee, Jun Seok

    2015-01-01

    In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282

  7. Errors of Remapping of Radar Estimates onto Cartesian Coordinates

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Ogden, F. L.

    2014-12-01

    Recent upgrades to operational radar rainfall products in terms of quality and resolution call for re-examination of the factors that contribute to the uncertainty of radar rainfall estimation. Remapping or gridding of radar polar observations onto Cartesian coordinates is implemented using various methods, and is often applied when radar estimates are compared against rain gauge observations, in hydrologic applications, or for merging data from different radars. However, assuming perfect radar observations, many of the widely used remapping methodologies do not conserve mass for the rainfall rate field. Research has suggested that optimal remapping should select all polar bins falling within or intersecting a Cartesian grid and assign them weights based on the proportion of each individual bin's area falling within the grid. However, to reduce computational demand practitioners use a variety of approximate remapping approaches. The most popular approximate approaches used are those based on extracting information from radar bins whose centers fall within a certain distance from the center of the Cartesian grid. This paper introduces a mass-conserving method for remapping, which we call "precise remapping", and evaluates it by comparing against two other commonly used remapping methods based on areal weighting and distance. Results show that the choice of the remapping method can lead to large errors in grid-averaged rainfall accumulations.

  8. Detecting Positioning Errors and Estimating Correct Positions by Moving Window.

    PubMed

    Song, Ha Yoon; Lee, Jun Seok

    2015-01-01

    In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282

  9. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error

    PubMed Central

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J.; Song, Xubo

    2014-01-01

    Purpose: Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. Methods: The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Results: Experiments with simulated datasets, images of an ex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors’ method. Simulated and real cardiac sequences tests showed that results in the authors’ method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors’ method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors’ method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. Conclusions: The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors’ method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods. PMID:24784402

  10. Techniques for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, Michael R.; Bland, Roger

    1999-01-01

    An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. The relative magnitude of equipment errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second. Typical maximum flow rates during the data-collection period averaged 750 cubic meters per second.

  11. Discrete state model and accurate estimation of loop entropy of RNA secondary structures.

    PubMed

    Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie

    2008-03-28

    Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html. PMID:18376982

  12. Accurate human microsatellite genotypes from high-throughput resequencing data using informed error profiles.

    PubMed

    Highnam, Gareth; Franck, Christopher; Martin, Andy; Stephens, Calvin; Puthige, Ashwin; Mittelman, David

    2013-01-01

    Repetitive sequences are biologically and clinically important because they can influence traits and disease, but repeats are challenging to analyse using short-read sequencing technology. We present a tool for genotyping microsatellite repeats called RepeatSeq, which uses Bayesian model selection guided by an empirically derived error model that incorporates sequence and read properties. Next, we apply RepeatSeq to high-coverage genomes from the 1000 Genomes Project to evaluate performance and accuracy. The software uses common formats, such as VCF, for compatibility with existing genome analysis pipelines. Source code and binaries are available at http://github.com/adaptivegenome/repeatseq. PMID:23090981

  13. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  14. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    NASA Astrophysics Data System (ADS)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  15. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors.

    PubMed

    Carlson, Joel N K; Park, Jong Min; Park, So-Yeon; Park, Jong In; Choi, Yunseok; Ye, Sung-Joon

    2016-03-21

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  16. A Posteriori Error Estimation for a Nodal Method in Neutron Transport Calculations

    SciTech Connect

    Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.

    1999-11-03

    An a posteriori error analysis of the spatial approximation is developed for the one-dimensional Arbitrarily High Order Transport-Nodal method. The error estimator preserves the order of convergence of the method when the mesh size tends to zero with respect to the L{sup 2} norm. It is based on the difference between two discrete solutions that are available from the analysis. The proposed estimator is decomposed into error indicators to allow the quantification of local errors. Some test problems with isotropic scattering are solved to compare the behavior of the true error to that of the estimated error.

  17. Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2014-01-01

    When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…

  18. Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains

    NASA Technical Reports Server (NTRS)

    Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang

    2013-01-01

    Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.

  19. Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report

    EIA Publications

    2016-01-01

    This document lists types of potential errors in EIA estimates published in the WNGSR. Survey errors are an unavoidable aspect of data collection. Error is inherent in all collected data, regardless of the source of the data and the care and competence of data collectors. The type and extent of error depends on the type and characteristics of the survey.

  20. Estimation of line-based target registration error

    NASA Astrophysics Data System (ADS)

    Ma, Burton; Peters, Terry M.; Chen, Elvis C. S.

    2016-03-01

    We present a novel method for estimating target registration error (TRE) in point-to-line registration. We develop a spatial stiffness model of the registration problem and derive the stiffness matrix of the model which leads to an analytic expression for predicting the root-mean-square (RMS) TRE. Under the assumption of isotropic localization noise, we show that the stiffness matrix for line-based registration is equal to the difference of the stiffness matrices for fiducial registration and surface-based registration. The expression for TRE is validated in the context of freehand ultrasound calibration performed using a tracked line fiducial as a calibration phantom. Measurements taken during calibration of a tracked linear ultrasound probe were used in simulations to assess TRE of point-to-line registration and the results were compared to the values predicted by the analytic expression. The difference between predicted and simulated RMS TRE magnitude for targets near the centroid of the registration points was less than 5% of the simulated magnitude when using more than 6 registration points. The difference between predicted and simulated RMS TRE magnitude for targets over the entire ultrasound image was almost always less than 10% of the simulated magnitude when using more than 10 registration points. TRE magnitude was minimized near the centroid of the registration points and the isocontours of TRE were elliptic in shape.

  1. Differential-equation-based representation of truncation errors for accurate numerical simulation

    NASA Astrophysics Data System (ADS)

    MacKinnon, Robert J.; Johnson, Richard W.

    1991-09-01

    High-order compact finite difference schemes for 2D convection-diffusion-type differential equations with constant and variable convection coefficients are derived. The governing equations are employed to represent leading truncation terms, including cross-derivatives, making the overall O(h super 4) schemes conform to a 3 x 3 stencil. It is shown that the two-dimensional constant coefficient scheme collapses to the optimal scheme for the one-dimensional case wherein the finite difference equation yields nodally exact results. The two-dimensional schemes are tested against standard model problems, including a Navier-Stokes application. Results show that the two schemes are generally more accurate, on comparable grids, than O(h super 2) centered differencing and commonly used O(h) and O(h super 3) upwinding schemes.

  2. Complex phase error and motion estimation in synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Soumekh, M.; Yang, H.

    1991-06-01

    Attention is given to a SAR wave equation-based system model that accurately represents the interaction of the impinging radar signal with the target to be imaged. The model is used to estimate the complex phase error across the synthesized aperture from the measured corrupted SAR data by combining the two wave equation models governing the collected SAR data at two temporal frequencies of the radar signal. The SAR system model shows that the motion of an object in a static scene results in coupled Doppler shifts in both the temporal frequency domain and the spatial frequency domain of the synthetic aperture. The velocity of the moving object is estimated through these two Doppler shifts. It is shown that once the dynamic target's velocity is known, its reconstruction can be formulated via a squint-mode SAR geometry with parameters that depend upon the dynamic target's velocity.

  3. Towards integrated error estimation and lag-aware data assimilation for operational streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ryu, D.; Western, A. W.; Wang, Q.; Robertson, D.; Crow, W. T.

    2013-12-01

    significantly. The EnKS streamflow forecasts are more accurate and reliable than the EnKF for the synthetic scenario. They also alleviate instability in the EnKF due to overcorrection of current state variables. For the operational forecasting case, the forecasts benefit less from state updating and the difference between the EnKS and EnKF becomes less significant. This is because the uncertainty in the NWP rainfall forecasts becomes dominant with increasing lead time. Forecast discharge in 2010. Solid curves are observations and gray areas indicate 95% of probabilistic forecasts. (a) openloop ensemble spread based on the error parameters estimated by the MAP; (b) 60-h lead time forecasts based on the EnKS.

  4. Evaluating EIV, OLS, and SEM Estimators of Group Slope Differences in the Presence of Measurement Error: The Single-Indicator Case

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew

    2012-01-01

    Measurement error significantly biases interaction effects and distorts researchers' inferences regarding interactive hypotheses. This article focuses on the single-indicator case and shows how to accurately estimate group slope differences by disattenuating interaction effects with errors-in-variables (EIV) regression. New analytic findings were…

  5. Evaluating concentration estimation errors in ELISA microarray experiments

    SciTech Connect

    Daly, Don S.; White, Amanda M.; Varnum, Susan M.; Anderson, Kevin K.; Zangar, Richard C.

    2005-01-26

    Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to predict a protein concentration in a sample. Deploying ELISA in a microarray format permits simultaneous prediction of the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Evaluating prediction error is critical to interpreting biological significance and improving the ELISA microarray process. Evaluating prediction error must be automated to realize a reliable high-throughput ELISA microarray system. Methods: In this paper, we present a statistical method based on propagation of error to evaluate prediction errors in the ELISA microarray process. Although propagation of error is central to this method, it is effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization and statistical diagnostics when evaluating ELISA microarray prediction errors. We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of prediction errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error.

  6. Estimating Equating Error in Observed-Score Equating. Research Report.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and in the population of examinees. This definition underlies, for example, the well-known approximation to the standard error of equating by Lord (1982).…

  7. Radiologists’ ability to accurately estimate and compare their own interpretative mammography performance to their peers

    PubMed Central

    Cook, Andrea J.; Elmore, Joann G.; Zhu, Weiwei; Jackson, Sara L.; Carney, Patricia A.; Flowers, Chris; Onega, Tracy; Geller, Berta; Rosenberg, Robert D.; Miglioretti, Diana L.

    2013-01-01

    Objective To determine if U.S. radiologists accurately estimate their own interpretive performance of screening mammography and how they compare their performance to their peers’. Materials and Methods 174 radiologists from six Breast Cancer Surveillance Consortium (BCSC) registries completed a mailed survey between 2005 and 2006. Radiologists’ estimated and actual recall, false positive, and cancer detection rates and positive predictive value of biopsy recommendation (PPV2) for screening mammography were compared. Radiologists’ ratings of their performance as lower, similar, or higher than their peers were compared to their actual performance. Associations with radiologist characteristics were estimated using weighted generalized linear models. The study was approved by the institutional review boards of the participating sites, informed consent was obtained from radiologists, and procedures were HIPAA compliant. Results While most radiologists accurately estimated their cancer detection and recall rates (74% and 78% of radiologists), fewer accurately estimated their false positive rate and PPV2 (19% and 26%). Radiologists reported having similar (43%) or lower (31%) recall rates and similar (52%) or lower (33%) false positive rates compared to their peers, and similar (72%) or higher (23%) cancer detection rates and similar (72%) or higher (38%) PPV2. Estimation accuracy did not differ by radiologists’ characteristics except radiologists who interpret ≤1,000 mammograms annually were less accurate at estimating their recall rates. Conclusion Radiologists perceive their performance to be better than it actually is and at least as good as their peers. Radiologists have particular difficulty estimating their false positive rates and PPV2. PMID:22915414

  8. Improved atmospheric soundings and error estimates from analysis of AIRS/AMSU data

    NASA Astrophysics Data System (ADS)

    Susskind, Joel

    2007-09-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave CO II channel observations in the spectral region 700 cm -1 to 750 cm -1 are used exclusively for cloud clearing purposes, while shortwave CO II channels in the spectral region 2195 cm -1 to 2395 cm -1 are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.

  9. Improved Atmospheric Soundings and Error Estimates from Analysis of AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2007-01-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave C02 channel observations in the spectral region 700 cm-' to 750 cm-' are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm-' to 2395 cm-' are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.

  10. An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.

  11. Impact of the Born approximation on the estimation error in 2D inverse scattering

    NASA Astrophysics Data System (ADS)

    Diong, M. L.; Roueff, A.; Lasaygues, P.; Litman, A.

    2016-06-01

    The aim is to quantify the impact of the Born approximation on the estimation error for a simple inverse scattering problem, while taking into account the noise measurement features. The proposed method consists of comparing two estimation errors: the error obtained with the Born approximation and the error obtained without it. The first error is characterized by the mean and variance of the maximum likelihood estimator, which are straightforward to compute with the Born approximation because the corresponding estimator is linear. The second error is evaluated with the Cramer–Rao bound (CRB). The CRB is a lower bound on the variance of unbiased estimators and thus does not depend on the choice of the estimation method. Beyond the conclusions that will be established under the Born approximation, this study lays out a general methodology that can be generalized to any other approximation.

  12. Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates.

    PubMed

    Butt, Nathalie; Slade, Eleanor; Thompson, Jill; Malhi, Yadvinder; Riutta, Terhi

    2013-06-01

    A typical way to quantify aboveground carbon in forests is to measure tree diameters and use species-specific allometric equations to estimate biomass and carbon stocks. Using "citizen scientists" to collect data that are usually time-consuming and labor-intensive can play a valuable role in ecological research. However, data validation, such as establishing the sampling error in volunteer measurements, is a crucial, but little studied, part of utilizing citizen science data. The aims of this study were to (1) evaluate the quality of tree diameter and height measurements carried out by volunteers compared to expert scientists and (2) estimate how sensitive carbon stock estimates are to these measurement sampling errors. Using all diameter data measured with a diameter tape, the volunteer mean sampling error (difference between repeated measurements of the same stem) was 9.9 mm, and the expert sampling error was 1.8 mm. Excluding those sampling errors > 1 cm, the mean sampling errors were 2.3 mm (volunteers) and 1.4 mm (experts) (this excluded 14% [volunteer] and 3% [expert] of the data). The sampling error in diameter measurements had a small effect on the biomass estimates of the plots: a volunteer (expert) diameter sampling error of 2.3 mm (1.4 mm) translated into 1.7% (0.9%) change in the biomass estimates calculated from species-specific allometric equations based upon diameter. Height sampling error had a dependent relationship with tree height. Including height measurements in biomass calculations compounded the sampling error markedly; the impact of volunteer sampling error on biomass estimates was +/- 15%, and the expert range was +/- 9%. Using dendrometer bands, used to measure growth rates, we calculated that the volunteer (vs. expert) sampling error was 0.6 mm (vs. 0.3 mm), which is equivalent to a difference in carbon storage of +/- 0.011 kg C/yr (vs. +/- 0.002 kg C/yr) per stem. Using a citizen science model for monitoring carbon stocks not only has

  13. Spatial accounting for errors in LiDAR-derived products: Snow volume and snow water equivalent estimation

    NASA Astrophysics Data System (ADS)

    Tinkham, W. T.; Hoffman, C. M.; Falkowski, M. J.; Smith, A. M.; Link, T. E.; Marshall, H.

    2011-12-01

    Light Detection and Ranging (LiDAR) has become one of the most effective and reliable means of characterizing surface topography and vegetation structure. Most LiDAR-derived estimates such as vegetation height, snow depth, and floodplain boundaries rely on the accurate creation of digital terrain models (DTM). As a result of the importance of an accurate DTM in using LiDAR data to estimate snow depth, it is necessary to understand the variables that influence the DTM accuracy in order to assess snow depth error. A series of 4 x 4 m plots that were surveyed at 0.5 m spacing in a semi-arid catchment were used for training the Random Forests algorithm along with a series of 35 variables in order to spatially predict vertical error within a LiDAR derived DTM. The final model was utilized to predict the combined error resulting from snow volume and snow water equivalent estimates derived from a snow-free LiDAR DTM and a snow-on LiDAR acquisition of the same site. The methodology allows for a statistical quantification of the spatially-distributed error patterns that are incorporated into the estimation of snow volume and snow water equivalents from LiDAR.

  14. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  15. Quasi-Monte Carlo, quasi-random numbers and quasi-error estimates

    NASA Astrophysics Data System (ADS)

    Kleiss, Ronald

    We discuss quasi-random number sequences as a basis for numerical integration with potentially better convergence properties than standard Monte Carlo. The importance of the discrepancy as both a measure of smoothness of distribution and an ingredient in the error estimate is reviewed. It is argued that the classical Koksma-Hlawka inequality is not relevant for error estimates in realistic cases, and a new class of error estimates is presented, based on a generalization of the Woźniakowski lemma.

  16. A posteriori error estimates for finite volume approximations of elliptic equations on general surfaces

    SciTech Connect

    Ju, Lili; Tian, Li; Wang, Desheng

    2009-01-01

    In this paper, we present a residual-based a posteriori error estimate for the finite volume discretization of steady convection– diffusion–reaction equations defined on surfaces in R3, which are often implicitly represented as level sets of smooth functions. Reliability and efficiency of the proposed a posteriori error estimator are rigorously proved. Numerical experiments are also conducted to verify the theoretical results and demonstrate the robustness of the error estimator.

  17. Aerial measurement error with a dot planimeter: Some experimental estimates

    NASA Technical Reports Server (NTRS)

    Yuill, R. S.

    1971-01-01

    A shape analysis is presented which utilizes a computer to simulate a multiplicity of dot grids mathematically. Results indicate that the number of dots placed over an area to be measured provides the entire correlation with accuracy of measurement, the indices of shape being of little significance. Equations and graphs are provided from which the average expected error, and the maximum range of error, for various numbers of dot points can be read.

  18. Integration of rain gauge measurement errors with the overall rainfall uncertainty estimation using kriging methods

    NASA Astrophysics Data System (ADS)

    Cecinati, Francesca; Moreno Ródenas, Antonio Manuel; Rico-Ramirez, Miguel Angel; ten Veldhuis, Marie-claire; Han, Dawei

    2016-04-01

    In many research studies rain gauges are used as a reference point measurement for rainfall, because they can reach very good accuracy, especially compared to radar or microwave links, and their use is very widespread. In some applications rain gauge uncertainty is assumed to be small enough to be neglected. This can be done when rain gauges are accurate and their data is correctly managed. Unfortunately, in many operational networks the importance of accurate rainfall data and of data quality control can be underestimated; budget and best practice knowledge can be limiting factors in a correct rain gauge network management. In these cases, the accuracy of rain gauges can drastically drop and the uncertainty associated with the measurements cannot be neglected. This work proposes an approach based on three different kriging methods to integrate rain gauge measurement errors in the overall rainfall uncertainty estimation. In particular, rainfall products of different complexity are derived through 1) block kriging on a single rain gauge 2) ordinary kriging on a network of different rain gauges 3) kriging with external drift to integrate all the available rain gauges with radar rainfall information. The study area is the Eindhoven catchment, contributing to the river Dommel, in the southern part of the Netherlands. The area, 590 km2, is covered by high quality rain gauge measurements by the Royal Netherlands Meteorological Institute (KNMI), which has one rain gauge inside the study area and six around it, and by lower quality rain gauge measurements by the Dommel Water Board and by the Eindhoven Municipality (six rain gauges in total). The integration of the rain gauge measurement error is accomplished in all the cases increasing the nugget of the semivariogram proportionally to the estimated error. Using different semivariogram models for the different networks allows for the separate characterisation of higher and lower quality rain gauges. For the kriging with

  19. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent

    PubMed Central

    Browning, Sharon R.; Browning, Brian L.

    2015-01-01

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package. PMID:26299365

  20. Adjustment of Measurements with Multiplicative Errors: Error Analysis, Estimates of the Variance of Unit Weight, and Effect on Volume Estimation from LiDAR-Type Digital Elevation Models

    PubMed Central

    Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan

    2014-01-01

    Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880

  1. Adjustment of measurements with multiplicative errors: error analysis, estimates of the variance of unit weight, and effect on volume estimation from LiDAR-type digital elevation models.

    PubMed

    Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan

    2013-01-01

    Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880

  2. Optimal estimation of large structure model errors. [in Space Shuttle controller design

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1979-01-01

    In-flight estimation of large structure model errors is usually required as a means of detecting inevitable deficiencies in large structure controller/estimator models. The present paper deals with a least-squares formulation which seeks to minimize a quadratic functional of the model errors. The properties of these error estimates are analyzed. It is shown that an arbitrary model error can be decomposed as the sum of two components that are orthogonal in a suitably defined function space. Relations between true and estimated errors are defined. The estimates are found to be approximations that retain many of the significant dynamics of the true model errors. Current efforts are directed toward application of the analytical results to a reference large structure model.

  3. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans.

    PubMed

    Racimo, Fernando; Renaud, Gabriel; Slatkin, Montgomery

    2016-04-01

    When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters-including drift times and admixture rates-for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called 'Demographic Inference with Contamination and Error' (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965

  4. Estimating model and observation error covariance information for land data assimilation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to operate efficiently, data assimilation systems require accurate assumptions concerning the statistical magnitude and cross-correlation structure of error in model forecasts and assimilated observations. Such information is seldom available for the operational implementation of land data ...

  5. Fragment-based error estimation in biomolecular modeling

    PubMed Central

    Faver, John C.; Merz, Kenneth M.

    2013-01-01

    Computer simulations are becoming an increasingly more important component of drug discovery. Computational models are now often able to reproduce and sometimes even predict outcomes of experiments. Still, potential energy models such as force fields contain significant amounts of bias and imprecision. We have shown how even small uncertainties in potential energy models can propagate to yield large errors, and have devised some general error-handling protocols for biomolecular modeling with imprecise energy functions. Herein we discuss those protocols within the contexts of protein–ligand binding and protein folding. PMID:23993915

  6. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    PubMed Central

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  7. Estimation of coherent error sources from stabilizer measurements

    NASA Astrophysics Data System (ADS)

    Orsucci, Davide; Tiersch, Markus; Briegel, Hans J.

    2016-04-01

    In the context of measurement-based quantum computation a way of maintaining the coherence of a graph state is to measure its stabilizer operators. Aside from performing quantum error correction, it is possible to exploit the information gained from these measurements to characterize and then counteract a coherent source of errors; that is, to determine all the parameters of an error channel that applies a fixed—but unknown—unitary operation to the physical qubits. Such a channel is generated, e.g., by local stray fields that act on the qubits. We study the case in which each qubit of a given graph state may see a different error channel and we focus on channels given by a rotation on the Bloch sphere around either the x ̂, the y ̂, or the z ̂ axis, for which analytical results can be given in a compact form. The possibility of reconstructing the channels at all qubits depends nontrivially on the topology of the graph state. We prove via perturbation methods that the reconstruction process is robust and supplement the analytic results with numerical evidence.

  8. Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors

    NASA Astrophysics Data System (ADS)

    Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.

    2012-12-01

    Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.

  9. Nonlinear and multiresolution error covariance estimation in ensemble data assimilation

    NASA Astrophysics Data System (ADS)

    Rainwater, Sabrina

    Ensemble Kalman Filters perform data assimilation by forming a background covariance matrix from an ensemble forecast. The spread of the ensemble is intended to represent the algorithm's uncertainty about the state of the physical system that produces the data. Usually the ensemble members are evolved with the same model. The first part of my dissertation presents and tests a modified Local Ensemble Transform Kalman Filter (LETKF) that takes its background covariance from a combination of a high resolution ensemble and a low resolution ensemble. The computational time and the accuracy of this mixed-resolution LETKF are explored and compared to the standard LETKF on a high resolution ensemble, using simulated observation experiments with the Lorenz Models II and III (more complex versions of the Lorenz 96 model). The results show that, for the same computation time, mixed resolution ensemble analysis achieves higher accuracy than standard ensemble analysis. The second part of my dissertation demonstrates that it can be fruitful to rescale the ensemble spread prior to the forecast and then reverse this rescaling after the forecast. This technique, denoted “forecast spread adjustment'' provides a tunable parameter that is complementary to covariance inflation, which cumulatively increases the ensemble spread to compensate for underestimation of uncertainty. As the adjustable parameter approaches zero, the filter approaches the Extended Kalman Filter when the ensemble size is sufficiently large. The improvement provided by forecast spread adjustment depends on ensemble size, observation error, and model error. The results indicate that it is most effective for smaller ensembles, smaller observation errors, and larger model error, though the effectiveness depends significantly on the type of model error.

  10. Simple, fast and accurate eight points amplitude estimation method of sinusoidal signals for DSP based instrumentation

    NASA Astrophysics Data System (ADS)

    Vizireanu, D. N.; Halunga, S. V.

    2012-04-01

    A simple, fast and accurate amplitude estimation algorithm of sinusoidal signals for DSP based instrumentation is proposed. It is shown that eight samples, used in two steps, are sufficient. A practical analytical formula for amplitude estimation is obtained. Numerical results are presented. Simulations have been performed when the sampled signal is affected by white Gaussian noise and when the samples are quantized on a given number of bits.

  11. Triple collocation: beyond three estimates and separation of structural/non-structural errors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study extends the popular triple collocation method for error assessment from three source estimates to an arbitrary number of source estimates, i.e., to solve the “multiple” collocation problem. The error assessment problem is solved through Pythagorean constraints in Hilbert space, which is s...

  12. Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife

    ERIC Educational Resources Information Center

    Jennrich, Robert I.

    2008-01-01

    The infinitesimal jackknife provides a simple general method for estimating standard errors in covariance structure analysis. Beyond its simplicity and generality what makes the infinitesimal jackknife method attractive is that essentially no assumptions are required to produce consistent standard error estimates, not even the requirement that the…

  13. Do Survey Data Estimate Earnings Inequality Correctly? Measurement Errors among Black and White Male Workers

    ERIC Educational Resources Information Center

    Kim, ChangHwan; Tamborini, Christopher R.

    2012-01-01

    Few studies have considered how earnings inequality estimates may be affected by measurement error in self-reported earnings in surveys. Utilizing restricted-use data that links workers in the Survey of Income and Program Participation with their W-2 earnings records, we examine the effect of measurement error on estimates of racial earnings…

  14. An accurate symplectic calculation of the inboard magnetic footprint from statistical topological noise and field errors in the DIII-D

    SciTech Connect

    Punjabi, Alkesh; Ali, Halima

    2011-02-15

    Any canonical transformation of Hamiltonian equations is symplectic, and any area-preserving transformation in 2D is a symplectomorphism. Based on these, a discrete symplectic map and its continuous symplectic analog are derived for forward magnetic field line trajectories in natural canonical coordinates. The unperturbed axisymmetric Hamiltonian for magnetic field lines is constructed from the experimental data in the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The equilibrium Hamiltonian is a highly accurate, analytic, and realistic representation of the magnetic geometry of the DIII-D. These symplectic mathematical maps are used to calculate the magnetic footprint on the inboard collector plate in the DIII-D. Internal statistical topological noise and field errors are irreducible and ubiquitous in magnetic confinement schemes for fusion. It is important to know the stochasticity and magnetic footprint from noise and error fields. The estimates of the spectrum and mode amplitudes of the spatial topological noise and magnetic errors in the DIII-D are used as magnetic perturbation. The discrete and continuous symplectic maps are used to calculate the magnetic footprint on the inboard collector plate of the DIII-D by inverting the natural coordinates to physical coordinates. The combination of highly accurate equilibrium generating function, natural canonical coordinates, symplecticity, and small step-size together gives a very accurate calculation of magnetic footprint. Radial variation of magnetic perturbation and the response of plasma to perturbation are not included. The inboard footprint from noise and errors are dominated by m=3, n=1 mode. The footprint is in the form of a toroidally winding helical strip. The width of stochastic layer scales as (1/2) power of amplitude. The area of footprint scales as first power of amplitude. The physical parameters such as toroidal angle, length, and poloidal angle covered before striking, and the

  15. The estimation of parameters in nonlinear, implicit measurement error models with experiment-wide measurements

    SciTech Connect

    Anderson, K.K.

    1994-05-01

    Measurement error modeling is a statistical approach to the estimation of unknown model parameters which takes into account the measurement errors in all of the data. Approaches which ignore the measurement errors in so-called independent variables may yield inferior estimates of unknown model parameters. At the same time, experiment-wide variables (such as physical constants) are often treated as known without error, when in fact they were produced from prior experiments. Realistic assessments of the associated uncertainties in the experiment-wide variables can be utilized to improve the estimation of unknown model parameters. A maximum likelihood approach to incorporate measurements of experiment-wide variables and their associated uncertainties is presented here. An iterative algorithm is presented which yields estimates of unknown model parameters and their estimated covariance matrix. Further, the algorithm can be used to assess the sensitivity of the estimates and their estimated covariance matrix to the given experiment-wide variables and their associated uncertainties.

  16. An hp-adaptivity and error estimation for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.

    1995-01-01

    This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.

  17. Voxel-based registration of simulated and real patient CBCT data for accurate dental implant pose estimation

    NASA Astrophysics Data System (ADS)

    Moreira, António H. J.; Queirós, Sandro; Morais, Pedro; Rodrigues, Nuno F.; Correia, André Ricardo; Fernandes, Valter; Pinho, A. C. M.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant's pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant's pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant's main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant's pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67+/-34μm and 108μm, and angular misfits of 0.15+/-0.08° and 1.4°, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants' pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

  18. Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors

    PubMed Central

    2011-01-01

    Background Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck). PMID:22185645

  19. Robust estimation of error covariance functions in GRACE gravity field determination

    NASA Astrophysics Data System (ADS)

    Behzadpour, Saniya; Mayer-Gürr, Torsten; Flury, Jakob

    2016-04-01

    The accurate modelling of the stochastic behaviour of the GRACE mission observations is an important task in the time variable gravity field determination. After fitting a model in the least-squares sense, it is necessary to determine whether all the necessary model assumptions, i.e., independence, normality, and homoscedasticity of the residuals, are valid before performing inference. Checking the model assumptions for the range rate residuals, it has been concluded that one of the major problems in the range rate observations is the outliers in the data. One way to deal with this problem is to implement a robust estimation procedure to dampen the effect of observations that would be highly influential if least squares were used. In addition to insensitivity to outliers, such a procedure tends to leave the residuals associated with outliers large, therefore making the identification of outliers much easier. Implementation of this procedure using robust error covariance functions, comparison of different robust estimators, e.g., Huber's and Tukey's estimators, and assessing the detected outliers with respect to temporal and spatial patterns are discussed.

  20. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  1. Reforming Triple Collocation: Beyond Three Estimates and Separation of Structural/Non-structural Errors

    NASA Astrophysics Data System (ADS)

    Pan, M.; Zhan, W.; Fisher, C. K.; Crow, W. T.; Wood, E. F.

    2014-12-01

    This study extends the popular triple collocation method for error assessment from three source estimates to an arbitrary number of source estimates, i.e., to solve the multiple collocation problem. The error assessment problem is solved through Pythagorean constraints in Hilbert space, which is slightly different from the original inner product solution but easier to extend to multiple collocation cases. The Pythagorean solution is fully equivalent to the original inner product solution for the triple collocation case. The multiple collocation turns out to be an over-constrained problem and a least squared solution is presented. As the most critical assumption of uncorrelated errors will almost for sure fail in multiple collocation problems, we propose to divide the source estimates into structural categories and treat the structural and non-structural errors separately. Such error separation allows the source estimates to have their structural errors fully correlated within the same structural category, which is much more realistic than the original assumption. A new error assessment procedure is developed which performs the collocation twice, each for one type of errors, and then sums up the two types of errors. The new procedure is also fully backward compatible with the original triple collocation. Error assessment experiments are carried out for surface soil moisture data from multiple remote sensing models, land surface models, and in situ measurements.

  2. Using modulation transfer function for estimate measurement errors of the digital image correlation method

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chung; Hwang, Chi Hung; Chen, Yung-Hsiang; Chuang, Tzu-Hung

    2013-06-01

    The digital image correlation (DIC) method has been well recognized as a simple, accurate and efficient method for mechanical behavior evaluation. However, very few researches have concentrated on the relationship between the characteristics of the camera lens and the measurement error of the DIC method. The modulation transfer function (MTF) has commonly used for evaluation of the resolution capability of camera lens. In practice, when the DIC method is used, it is possible that the captured images become too blur to analyze when the object is out of the focus of the camera lens or the object deviates from the line-of-view of the camera. In this paper, the traditional MTF calibration specimen was replaced by a pre-arranged speckle pattern on the specimen. For DIC images grabbed from several selected locations both approaching and departing from the focus of the camera lens, corresponding MTF curves were obtained from the pre-arranged speckle pattern. The displacement measurement errors of the DIC method were then estimated by those obtained MTF curves.

  3. Statistical uncertainties and systematic errors in weak lensing mass estimates of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Köhlinger, F.; Hoekstra, H.; Eriksen, M.

    2015-11-01

    Upcoming and ongoing large area weak lensing surveys will also discover large samples of galaxy clusters. Accurate and precise masses of galaxy clusters are of major importance for cosmology, for example, in establishing well-calibrated observational halo mass functions for comparison with cosmological predictions. We investigate the level of statistical uncertainties and sources of systematic errors expected for weak lensing mass estimates. Future surveys that will cover large areas on the sky, such as Euclid or LSST and to lesser extent DES, will provide the largest weak lensing cluster samples with the lowest level of statistical noise regarding ensembles of galaxy clusters. However, the expected low level of statistical uncertainties requires us to scrutinize various sources of systematic errors. In particular, we investigate the bias due to cluster member galaxies which are erroneously treated as background source galaxies due to wrongly assigned photometric redshifts. We find that this effect is significant when referring to stacks of galaxy clusters. Finally, we study the bias due to miscentring, i.e. the displacement between any observationally defined cluster centre and the true minimum of its gravitational potential. The impact of this bias might be significant with respect to the statistical uncertainties. However, complementary future missions such as eROSITA will allow us to define stringent priors on miscentring parameters which will mitigate this bias significantly.

  4. Multiclass Bayes error estimation by a feature space sampling technique

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.

    1979-01-01

    A general Gaussian M-class N-feature classification problem is defined. An algorithm is developed that requires the class statistics as its only input and computes the minimum probability of error through use of a combined analytical and numerical integration over a sequence simplifying transformations of the feature space. The results are compared with those obtained by conventional techniques applied to a 2-class 4-feature discrimination problem with results previously reported and 4-class 4-feature multispectral scanner Landsat data classified by training and testing of the available data.

  5. Goal-oriented explicit residual-type error estimates in XFEM

    NASA Astrophysics Data System (ADS)

    Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin

    2013-08-01

    A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.

  6. A Fortran IV Program for Estimating Parameters through Multiple Matrix Sampling with Standard Errors of Estimate Approximated by the Jackknife.

    ERIC Educational Resources Information Center

    Shoemaker, David M.

    Described and listed herein with concomitant sample input and output is the Fortran IV program which estimates parameters and standard errors of estimate per parameters for parameters estimated through multiple matrix sampling. The specific program is an improved and expanded version of an earlier version. (Author/BJG)

  7. Accurate Estimation of the Entropy of Rotation-Translation Probability Distributions.

    PubMed

    Fogolari, Federico; Dongmo Foumthuim, Cedrix Jurgal; Fortuna, Sara; Soler, Miguel Angel; Corazza, Alessandra; Esposito, Gennaro

    2016-01-12

    The estimation of rotational and translational entropies in the context of ligand binding has been the subject of long-time investigations. The high dimensionality (six) of the problem and the limited amount of sampling often prevent the required resolution to provide accurate estimates by the histogram method. Recently, the nearest-neighbor distance method has been applied to the problem, but the solutions provided either address rotation and translation separately, therefore lacking correlations, or use a heuristic approach. Here we address rotational-translational entropy estimation in the context of nearest-neighbor-based entropy estimation, solve the problem numerically, and provide an exact and an approximate method to estimate the full rotational-translational entropy. PMID:26605696

  8. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1985-01-01

    Research activities conducted under the auspices of National Aeronautics and Space Administration Cooperative Agreement NCC 9-9 are discussed. During this contract period research efforts are concentrated in two primary areas. The first are is an investigation of the use of measurement error models as alternatives to least squares regression estimators of crop production or timber biomass. The secondary primary area of investigation is on the estimation of the mixing proportion of two-component mixture models. This report lists publications, technical reports, submitted manuscripts, and oral presentation generated by these research efforts. Possible areas of future research are mentioned.

  9. Error Estimates Derived from the Data for Least-Squares Spline Fitting

    SciTech Connect

    Jerome Blair

    2007-06-25

    The use of least-squares fitting by cubic splines for the purpose of noise reduction in measured data is studied. Splines with variable mesh size are considered. The error, the difference between the input signal and its estimate, is divided into two sources: the R-error, which depends only on the noise and increases with decreasing mesh size, and the Ferror, which depends only on the signal and decreases with decreasing mesh size. The estimation of both errors as a function of time is demonstrated. The R-error estimation requires knowledge of the statistics of the noise and uses well-known methods. The primary contribution of the paper is a method for estimating the F-error that requires no prior knowledge of the signal except that it has four derivatives. It is calculated from the difference between two different spline fits to the data and is illustrated with Monte Carlo simulations and with an example.

  10. Space-Time Error Representation and Estimation in Navier-Stokes Calculations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2006-01-01

    The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.

  11. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  12. An a-posteriori finite element error estimator for adaptive grid computation of viscous incompressible flows

    NASA Astrophysics Data System (ADS)

    Wu, Heng

    2000-10-01

    In this thesis, an a-posteriori error estimator is presented and employed for solving viscous incompressible flow problems. In an effort to detect local flow features, such as vortices and separation, and to resolve flow details precisely, a velocity angle error estimator e theta which is based on the spatial derivative of velocity direction fields is designed and constructed. The a-posteriori error estimator corresponds to the antisymmetric part of the deformation-rate-tensor, and it is sensitive to the second derivative of the velocity angle field. Rationality discussions reveal that the velocity angle error estimator is a curvature error estimator, and its value reflects the accuracy of streamline curves. It is also found that the velocity angle error estimator contains the nonlinear convective term of the Navier-Stokes equations, and it identifies and computes the direction difference when the convective acceleration direction and the flow velocity direction have a disparity. Through benchmarking computed variables with the analytic solution of Kovasznay flow or the finest grid of cavity flow, it is demonstrated that the velocity angle error estimator has a better performance than the strain error estimator. The benchmarking work also shows that the computed profile obtained by using etheta can achieve the best matching outcome with the true theta field, and that it is asymptotic to the true theta variation field, with a promise of fewer unknowns. Unstructured grids are adapted by employing local cell division as well as unrefinement of transition cells. Using element class and node class can efficiently construct a hierarchical data structure which provides cell and node inter-reference at each adaptive level. Employing element pointers and node pointers can dynamically maintain the connection of adjacent elements and adjacent nodes, and thus avoids time-consuming search processes. The adaptive scheme is applied to viscous incompressible flow at different

  13. Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model.

    PubMed

    Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin

    2013-11-01

    The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles. PMID:24258878

  14. The effect of errors-in-variables on variance component estimation

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang

    2016-04-01

    Although total least squares (TLS) has been widely applied, variance components in an errors-in-variables (EIV) model can be inestimable under certain conditions and unstable in the sense that small random errors can result in very large errors in the estimated variance components. We investigate the effect of the random design matrix on variance component (VC) estimation of MINQUE type by treating the design matrix as if it were errors-free, derive the first-order bias of the VC estimate, and construct bias-corrected VC estimators. As a special case, we obtain a bias-corrected estimate for the variance of unit weight. Although TLS methods are statistically rigorous, they can be computationally too expensive. We directly Taylor-expand the nonlinear weighted LS estimate of parameters up to the second-order approximation in terms of the random errors of the design matrix, derive the bias of the estimate, and use it to construct a bias-corrected weighted LS estimate. Bearing in mind that the random errors of the design matrix will create a bias in the normal matrix of the weighted LS estimate, we propose to calibrate the normal matrix by computing and then removing the bias from the normal matrix. As a result, we can obtain a new parameter estimate, which is called the N-calibrated weighted LS estimate. The simulations have shown that (i) errors-in-variables have a significant effect on VC estimation, if they are large/significant but treated as non-random. The variance components can be incorrectly estimated by more than one order of magnitude, depending on the nature of problems and the sizes of EIV; (ii) the bias-corrected VC estimate can effectively remove the bias of the VC estimate. If the signal-to-noise is small, higher order terms may be necessary. Nevertheless, since we construct the bias-corrected VC estimate by directly removing the estimated bias from the estimate itself, the simulation results have clearly indicated that there is a great risk to obtain

  15. The effect of errors-in-variables on variance component estimation

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang

    2016-08-01

    Although total least squares (TLS) has been widely applied, variance components in an errors-in-variables (EIV) model can be inestimable under certain conditions and unstable in the sense that small random errors can result in very large errors in the estimated variance components. We investigate the effect of the random design matrix on variance component (VC) estimation of MINQUE type by treating the design matrix as if it were errors-free, derive the first-order bias of the VC estimate, and construct bias-corrected VC estimators. As a special case, we obtain a bias-corrected estimate for the variance of unit weight. Although TLS methods are statistically rigorous, they can be computationally too expensive. We directly Taylor-expand the nonlinear weighted LS estimate of parameters up to the second-order approximation in terms of the random errors of the design matrix, derive the bias of the estimate, and use it to construct a bias-corrected weighted LS estimate. Bearing in mind that the random errors of the design matrix will create a bias in the normal matrix of the weighted LS estimate, we propose to calibrate the normal matrix by computing and then removing the bias from the normal matrix. As a result, we can obtain a new parameter estimate, which is called the N-calibrated weighted LS estimate. The simulations have shown that (i) errors-in-variables have a significant effect on VC estimation, if they are large/significant but treated as non-random. The variance components can be incorrectly estimated by more than one order of magnitude, depending on the nature of problems and the sizes of EIV; (ii) the bias-corrected VC estimate can effectively remove the bias of the VC estimate. If the signal-to-noise is small, higher order terms may be necessary. Nevertheless, since we construct the bias-corrected VC estimate by directly removing the estimated bias from the estimate itself, the simulation results have clearly indicated that there is a great risk to obtain

  16. Improved estimates of coordinate error for molecular replacement

    SciTech Connect

    Oeffner, Robert D.; Bunkóczi, Gábor; McCoy, Airlie J.; Read, Randy J.

    2013-11-01

    A function for estimating the effective root-mean-square deviation in coordinates between two proteins has been developed that depends on both the sequence identity and the size of the protein and is optimized for use with molecular replacement in Phaser. A top peak translation-function Z-score of over 8 is found to be a reliable metric of when molecular replacement has succeeded. The estimate of the root-mean-square deviation (r.m.s.d.) in coordinates between the model and the target is an essential parameter for calibrating likelihood functions for molecular replacement (MR). Good estimates of the r.m.s.d. lead to good estimates of the variance term in the likelihood functions, which increases signal to noise and hence success rates in the MR search. Phaser has hitherto used an estimate of the r.m.s.d. that only depends on the sequence identity between the model and target and which was not optimized for the MR likelihood functions. Variance-refinement functionality was added to Phaser to enable determination of the effective r.m.s.d. that optimized the log-likelihood gain (LLG) for a correct MR solution. Variance refinement was subsequently performed on a database of over 21 000 MR problems that sampled a range of sequence identities, protein sizes and protein fold classes. Success was monitored using the translation-function Z-score (TFZ), where a TFZ of 8 or over for the top peak was found to be a reliable indicator that MR had succeeded for these cases with one molecule in the asymmetric unit. Good estimates of the r.m.s.d. are correlated with the sequence identity and the protein size. A new estimate of the r.m.s.d. that uses these two parameters in a function optimized to fit the mean of the refined variance is implemented in Phaser and improves MR outcomes. Perturbing the initial estimate of the r.m.s.d. from the mean of the distribution in steps of standard deviations of the distribution further increases MR success rates.

  17. Improved estimates of the range of errors on photomasks using measured values of skewness and kurtosis

    NASA Astrophysics Data System (ADS)

    Hamaker, Henry Chris

    1995-12-01

    Statistical process control (SPC) techniques often use six times the standard deviation sigma to estimate the range of errors within a process. Two assumptions are inherent in this choice of metric for the range: (1) the normal distribution adequately describes the errors, and (2) the fraction of errors falling within plus or minus 3 sigma, about 99.73%, is sufficiently large that we may consider the fraction occurring outside this range to be negligible. In state-of-the-art photomasks, however, the assumption of normality frequently breaks down, and consequently plus or minus 3 sigma is not a good estimate of the range of errors. In this study, we show that improved estimates for the effective maximum error Em, which is defined as the value for which 99.73% of all errors fall within plus or minus Em of the mean mu, may be obtained by quantifying the deviation from normality of the error distributions using the skewness and kurtosis of the error sampling. Data are presented indicating that in laser reticle- writing tools, Em less than or equal to 3 sigma. We also extend this technique for estimating the range of errors to specifications that are usually described by mu plus 3 sigma. The implications for SPC are examined.

  18. Error estimations and their biases in Monte Carlo eigenvalue calculations

    SciTech Connect

    Ueki, Taro; Mori, Takamasa; Nakagawa, Masayuki

    1997-01-01

    In the Monte Carlo eigenvalue calculation of neutron transport, the eigenvalue is calculated as the average of multiplication factors from cycles, which are called the cycle k{sub eff}`s. Biases in the estimators of the variance and intercycle covariances in Monte Carlo eigenvalue calculations are analyzed. The relations among the real and apparent values of variances and intercycle covariances are derived, where real refers to a true value that is calculated from independently repeated Monte Carlo runs and apparent refers to the expected value of estimates from a single Monte Carlo run. Next, iterative methods based on the foregoing relations are proposed to estimate the standard deviation of the eigenvalue. The methods work well for the cases in which the ratios of the real to apparent values of variances are between 1.4 and 3.1. Even in the case where the foregoing ratio is >5, >70% of the standard deviation estimates fall within 40% from the true value.

  19. EIA Corrects Errors in Its Drilling Activity Estimates Series

    EIA Publications

    1998-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status.

  20. Gap filling strategies and error in estimating annual soil respiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil respiration (Rsoil) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap-filling of automated records to produce a complete time series. While many gap-filling methodologies have been employed, there is ...

  1. Error estimation and adaptive mesh refinement for parallel analysis of shell structures

    NASA Technical Reports Server (NTRS)

    Keating, Scott C.; Felippa, Carlos A.; Park, K. C.

    1994-01-01

    The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.

  2. A-Posteriori Error Estimation for Hyperbolic Conservation Laws with Constraint

    NASA Technical Reports Server (NTRS)

    Barth, Timothy

    2004-01-01

    This lecture considers a-posteriori error estimates for the numerical solution of conservation laws with time invariant constraints such as those arising in magnetohydrodynamics (MHD) and gravitational physics. Using standard duality arguments, a-posteriori error estimates for the discontinuous Galerkin finite element method are then presented for MHD with solenoidal constraint. From these estimates, a procedure for adaptive discretization is outlined. A taxonomy of Green's functions for the linearized MHD operator is given which characterizes the domain of dependence for pointwise errors. The extension to other constrained systems such as the Einstein equations of gravitational physics are then considered. Finally, future directions and open problems are discussed.

  3. State and model error estimation for distributed parameter systems. [in large space structure control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1979-01-01

    In-flight estimation of large structure model errors in order to detect inevitable deficiencies in large structure controller/estimator models is discussed. Such an estimation process is particularly applicable in the area of shape control system design required to maintain a prescribed static structural shape and, in addition, suppress dynamic disturbances due to the vehicle vibrational modes. The paper outlines a solution to the problem of static shape estimation where the vehicle shape must be reconstructed from a set of measurements discretely located throughout the structure. The estimation process is based on the principle of least-squares that inherently contains the definition and explicit computation of model error estimates that are optimal in some sense. Consequently, a solution is provided for the problem of estimation of static model errors (e.g., external loads). A generalized formulation applicable to distributed parameters systems is first worked out and then applied to a one-dimensional beam-like structural configuration.

  4. On-line estimation of error covariance parameters for atmospheric data assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.

    1995-01-01

    A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including

  5. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  6. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans

    PubMed Central

    Slatkin, Montgomery

    2016-01-01

    When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters—including drift times and admixture rates—for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called ‘Demographic Inference with Contamination and Error’ (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965

  7. Quadratic Zeeman effect for hydrogen: A method for rigorous bound-state error estimates

    SciTech Connect

    Fonte, G.; Falsaperla, P. ); Schiffrer, G. ); Stanzial, D. )

    1990-06-01

    We present a variational method, based on direct minimization of energy, for the calculation of eigenvalues and eigenfunctions of a hydrogen atom in a strong uniform magnetic field in the framework of the nonrelativistic theory (quadratic Zeeman effect). Using semiparabolic coordinates and a harmonic-oscillator basis, we show that it is possible to give rigorous error estimates for both eigenvalues and eigenfunctions by applying some results of Kato (Proc. Phys. Soc. Jpn. 4, 334 (1949)). The method can be applied in this simple form only to the lowest level of given angular momentum and parity, but it is also possible to apply it to any excited state by using the standard Rayleigh-Ritz diagonalization method. However, due to the particular basis, the method is expected to be more effective, the weaker the field and the smaller the excitation energy, while the results of Kato we have employed lead to good estimates only when the level spacing is not too small. We present a numerical application to the {ital m}{sup {ital p}}=0{sup +} ground state and the lowest {ital m}{sup {ital p}}=1{sup {minus}} excited state, giving results that are among the most accurate in the literature for magnetic fields up to about 10{sup 10} G.

  8. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Larson, Mats G.; Barth, Timothy J.

    1999-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  9. How well can we estimate error variance of satellite precipitation data around the world?

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, Abebe S.; Hossain, Faisal

    2015-03-01

    Providing error information associated with existing satellite precipitation estimates is crucial to advancing applications in hydrologic modeling. In this study, we present a method of estimating the square difference prediction of satellite precipitation (hereafter used synonymously with "error variance") using regression model for three satellite precipitation products (3B42RT, CMORPH, and PERSIANN-CCS) using easily available geophysical features and satellite precipitation rate. Building on a suite of recent studies that have developed the error variance models, the goal of this work is to explore how well the method works around the world in diverse geophysical settings. Topography, climate, and seasons are considered as the governing factors to segregate the satellite precipitation uncertainty and fit a nonlinear regression equation as a function of satellite precipitation rate. The error variance models were tested on USA, Asia, Middle East, and Mediterranean region. Rain-gauge based precipitation product was used to validate the error variance of satellite precipitation products. The regression approach yielded good performance skill with high correlation between simulated and observed error variances. The correlation ranged from 0.46 to 0.98 during the independent validation period. In most cases (~ 85% of the scenarios), the correlation was higher than 0.72. The error variance models also captured the spatial distribution of observed error variance adequately for all study regions while producing unbiased residual error. The approach is promising for regions where missed precipitation is not a common occurrence in satellite precipitation estimation. Our study attests that transferability of model estimators (which help to estimate the error variance) from one region to another is practically possible by leveraging the similarity in geophysical features. Therefore, the quantitative picture of satellite precipitation error over ungauged regions can be

  10. Technical note: tree truthing: how accurate are substrate estimates in primate field studies?

    PubMed

    Bezanson, Michelle; Watts, Sean M; Jobin, Matthew J

    2012-04-01

    Field studies of primate positional behavior typically rely on ground-level estimates of substrate size, angle, and canopy location. These estimates potentially influence the identification of positional modes by the observer recording behaviors. In this study we aim to test ground-level estimates against direct measurements of support angles, diameters, and canopy heights in trees at La Suerte Biological Research Station in Costa Rica. After reviewing methods that have been used by past researchers, we provide data collected within trees that are compared to estimates obtained from the ground. We climbed five trees and measured 20 supports. Four observers collected measurements of each support from different locations on the ground. Diameter estimates varied from the direct tree measures by 0-28 cm (Mean: 5.44 ± 4.55). Substrate angles varied by 1-55° (Mean: 14.76 ± 14.02). Height in the tree was best estimated using a clinometer as estimates with a two-meter reference placed by the tree varied by 3-11 meters (Mean: 5.31 ± 2.44). We determined that the best support size estimates were those generated relative to the size of the focal animal and divided into broader categories. Support angles were best estimated in 5° increments and then checked using a Haglöf clinometer in combination with a laser pointer. We conclude that three major factors should be addressed when estimating support features: observer error (e.g., experience and distance from the target), support deformity, and how support size and angle influence the positional mode selected by a primate individual. individual. PMID:22371099

  11. Estimation of Error Components in Cohort Studies: A Cross-Cohort Analysis of Dutch Mathematics Achievement

    ERIC Educational Resources Information Center

    Keuning, Jos; Hemker, Bas

    2014-01-01

    The data collection of a cohort study requires making many decisions. Each decision may introduce error in the statistical analyses conducted later on. In the present study, a procedure was developed for estimation of the error made due to the composition of the sample, the item selection procedure, and the test equating process. The math results…

  12. MODIS Cloud Optical Property Retrieval Uncertainties Derived from Pixel-Level Radiometric Error Estimates

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Wind, Galina; Xiong, Xiaoxiong

    2011-01-01

    MODIS retrievals of cloud optical thickness and effective particle radius employ a well-known VNIR/SWIR solar reflectance technique. For this type of algorithm, we evaluate the uncertainty in simultaneous retrievals of these two parameters to pixel-level (scene-dependent) radiometric error estimates as well as other tractable error sources.

  13. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  14. The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates

    PubMed Central

    Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin

    2011-01-01

    An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030

  15. Estimating smooth distribution function in the presence of heteroscedastic measurement errors

    PubMed Central

    Wang, Xiao-Feng; Fan, Zhaozhi; Wang, Bin

    2009-01-01

    Measurement error occurs in many biomedical fields. The challenges arise when errors are heteroscedastic since we literally have only one observation for each error distribution. This paper concerns the estimation of smooth distribution function when data are contaminated with heteroscedastic errors. We study two types of methods to recover the unknown distribution function: a Fourier-type deconvolution method and a simulation extrapolation (SIMEX) method. The asymptotics of the two estimators are explored and the asymptotic pointwise confidence bands of the SIMEX estimator are obtained. The finite sample performances of the two estimators are evaluated through a simulation study. Finally, we illustrate the methods with medical rehabilitation data from a neuro-muscular electrical stimulation experiment. PMID:20160998

  16. A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2015-01-01

    A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.

  17. The use of neural networks in identifying error sources in satellite-derived tropical SST estimates.

    PubMed

    Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin

    2011-01-01

    An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030

  18. Type I Error Rates and Power Estimates of Selected Parametric and Nonparametric Tests of Scale.

    ERIC Educational Resources Information Center

    Olejnik, Stephen F.; Algina, James

    1987-01-01

    Estimated Type I Error rates and power are reported for the Brown-Forsythe, O'Brien, Klotz, and Siegal-Tukey procedures. The effect of aligning the data using deviations from group means or group medians is investigated. (RB)

  19. Why Don't We Learn to Accurately Forecast Feelings? How Misremembering Our Predictions Blinds Us to Past Forecasting Errors

    ERIC Educational Resources Information Center

    Meyvis, Tom; Ratner, Rebecca K.; Levav, Jonathan

    2010-01-01

    Why do affective forecasting errors persist in the face of repeated disconfirming evidence? Five studies demonstrate that people misremember their forecasts as consistent with their experience and thus fail to perceive the extent of their forecasting error. As a result, people do not learn from past forecasting errors and fail to adjust subsequent…

  20. Toward an Accurate and Inexpensive Estimation of CCSD(T)/CBS Binding Energies of Large Water Clusters.

    PubMed

    Sahu, Nityananda; Singh, Gurmeet; Nandi, Apurba; Gadre, Shridhar R

    2016-07-21

    Owing to the steep scaling behavior, highly accurate CCSD(T) calculations, the contemporary gold standard of quantum chemistry, are prohibitively difficult for moderate- and large-sized water clusters even with the high-end hardware. The molecular tailoring approach (MTA), a fragmentation-based technique is found to be useful for enabling such high-level ab initio calculations. The present work reports the CCSD(T) level binding energies of many low-lying isomers of large (H2O)n (n = 16, 17, and 25) clusters employing aug-cc-pVDZ and aug-cc-pVTZ basis sets within the MTA framework. Accurate estimation of the CCSD(T) level binding energies [within 0.3 kcal/mol of the respective full calculation (FC) results] is achieved after effecting the grafting procedure, a protocol for minimizing the errors in the MTA-derived energies arising due to the approximate nature of MTA. The CCSD(T) level grafting procedure presented here hinges upon the well-known fact that the MP2 method, which scales as O(N(5)), can be a suitable starting point for approximating to the highly accurate CCSD(T) [that scale as O(N(7))] energies. On account of the requirement of only an MP2-level FC on the entire cluster, the current methodology ultimately leads to a cost-effective solution for the CCSD(T) level accurate binding energies of large-sized water clusters even at the complete basis set limit utilizing off-the-shelf hardware. PMID:27351269

  1. Estimation of Error in Western Pacific Geoid Heights Derived from Gravity Data Only

    NASA Astrophysics Data System (ADS)

    Peters, M. F.; Brozena, J. M.

    2012-12-01

    The goal of the Western Pacific Geoid estimation project was to generate geoid height models for regions in the Western Pacific Ocean, and formal error estimates for those geoid heights, using all available gravity data and statistical parameters of the quality of the gravity data. Geoid heights were to be determined solely from gravity measurements, as a gravimetric geoid model and error estimates for that model would have applications in oceanography and satellite altimetry. The general method was to remove the gravity field associated with a "lower" order spherical harmonic global gravity model from the regional gravity set; to fit a covariance model to the residual gravity, and then calculate the (residual) geoid heights and error estimates by least-squares collocation fit with residual gravity, available statistical estimates of the gravity and the covariance model. The geoid heights corresponding to the lower order spherical harmonic model can be added back to the heights from the residual gravity to produce a complete geoid height model. As input we requested from NGA all unclassified available gravity data in the western Pacific between 15° to 45° N and 105° to 141°W. The total data set that was used to model and estimate errors in gravimetric geoid comprised an unclassified, open file data set (540,012 stations), a proprietary airborne survey of Taiwan (19,234 stations), and unclassified NAVO SSP survey data (95,111 stations), for official use only. Various programs were adapted to the problem including N.K. Pavlis' HSYNTH program and the covariance fit program GPFIT and least-squares collocation program GPCOL from the GRAVSOFT package (Forsberg and Schering, 2008 version) which were modified to handle larger data sets, but in some regions data were still too numerous. Formulas were derived that could be used to block-mean the data in a statistically optimal sense and still retain the error estimates required for the collocation algorithm. Running the

  2. Error covariance calculation for forecast bias estimation in hydrologic data assimilation

    NASA Astrophysics Data System (ADS)

    Pauwels, Valentijn R. N.; De Lannoy, Gabriëlle J. M.

    2015-12-01

    To date, an outstanding issue in hydrologic data assimilation is a proper way of dealing with forecast bias. A frequently used method to bypass this problem is to rescale the observations to the model climatology. While this approach improves the variability in the modeled soil wetness and discharge, it is not designed to correct the results for any bias. Alternatively, attempts have been made towards incorporating dynamic bias estimates into the assimilation algorithm. Persistent bias models are most often used to propagate the bias estimate, where the a priori forecast bias error covariance is calculated as a constant fraction of the unbiased a priori state error covariance. The latter approach is a simplification to the explicit propagation of the bias error covariance. The objective of this paper is to examine to which extent the choice for the propagation of the bias estimate and its error covariance influence the filter performance. An Observation System Simulation Experiment (OSSE) has been performed, in which ground water storage observations are assimilated into a biased conceptual hydrologic model. The magnitudes of the forecast bias and state error covariances are calibrated by optimizing the innovation statistics of groundwater storage. The obtained bias propagation models are found to be identical to persistent bias models. After calibration, both approaches for the estimation of the forecast bias error covariance lead to similar results, with a realistic attribution of error variances to the bias and state estimate, and significant reductions of the bias in both the estimates of groundwater storage and discharge. Overall, the results in this paper justify the use of the traditional approach for online bias estimation with a persistent bias model and a simplified forecast bias error covariance estimation.

  3. Easy and accurate variance estimation of the nonparametric estimator of the partial area under the ROC curve and its application.

    PubMed

    Yu, Jihnhee; Yang, Luge; Vexler, Albert; Hutson, Alan D

    2016-06-15

    The receiver operating characteristic (ROC) curve is a popular technique with applications, for example, investigating an accuracy of a biomarker to delineate between disease and non-disease groups. A common measure of accuracy of a given diagnostic marker is the area under the ROC curve (AUC). In contrast with the AUC, the partial area under the ROC curve (pAUC) looks into the area with certain specificities (i.e., true negative rate) only, and it can be often clinically more relevant than examining the entire ROC curve. The pAUC is commonly estimated based on a U-statistic with the plug-in sample quantile, making the estimator a non-traditional U-statistic. In this article, we propose an accurate and easy method to obtain the variance of the nonparametric pAUC estimator. The proposed method is easy to implement for both one biomarker test and the comparison of two correlated biomarkers because it simply adapts the existing variance estimator of U-statistics. In this article, we show accuracy and other advantages of the proposed variance estimation method by broadly comparing it with previously existing methods. Further, we develop an empirical likelihood inference method based on the proposed variance estimator through a simple implementation. In an application, we demonstrate that, depending on the inferences by either the AUC or pAUC, we can make a different decision on a prognostic ability of a same set of biomarkers. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26790540

  4. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.

    PubMed

    Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range. PMID:27611785

  5. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  6. Effective Echo Detection and Accurate Orbit Estimation Algorithms for Space Debris Radar

    NASA Astrophysics Data System (ADS)

    Isoda, Kentaro; Sakamoto, Takuya; Sato, Toru

    Orbit estimation of space debris, objects of no inherent value orbiting the earth, is a task that is important for avoiding collisions with spacecraft. The Kamisaibara Spaceguard Center radar system was built in 2004 as the first radar facility in Japan devoted to the observation of space debris. In order to detect the smaller debris, coherent integration is effective in improving SNR (Signal-to-Noise Ratio). However, it is difficult to apply coherent integration to real data because the motions of the targets are unknown. An effective algorithm is proposed for echo detection and orbit estimation of the faint echoes from space debris. The characteristics of the evaluation function are utilized by the algorithm. Experiments show the proposed algorithm improves SNR by 8.32dB and enables estimation of orbital parameters accurately to allow for re-tracking with a single radar.

  7. Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2001-01-01

    The phenomenal growth of the satellite communications industry has created a large demand for traveling-wave tubes (TWT's) operating with unprecedented specifications requiring the design and production of many novel devices in record time. To achieve this, the TWT industry heavily relies on computational modeling. However, the TWT industry's computational modeling capabilities need to be improved because there are often discrepancies between measured TWT data and that predicted by conventional two-dimensional helical TWT interaction codes. This limits the analysis and design of novel devices or TWT's with parameters differing from what is conventionally manufactured. In addition, the inaccuracy of current computational tools limits achievable TWT performance because optimized designs require highly accurate models. To address these concerns, a fully three-dimensional, time-dependent, helical TWT interaction model was developed using the electromagnetic particle-in-cell code MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm). The model includes a short section of helical slow-wave circuit with excitation fed by radiofrequency input/output couplers, and an electron beam contained by periodic permanent magnet focusing. A cutaway view of several turns of the three-dimensional helical slow-wave circuit with input/output couplers is shown. This has been shown to be more accurate than conventionally used two-dimensional models. The growth of the communications industry has also imposed a demand for increased data rates for the transmission of large volumes of data. To achieve increased data rates, complex modulation and multiple access techniques are employed requiring minimum distortion of the signal as it is passed through the TWT. Thus, intersymbol interference (ISI) becomes a major consideration, as well as suspected causes such as reflections within the TWT. To experimentally investigate effects of the physical TWT on ISI would be

  8. Parameter Estimation of Ion Current Formulations Requires Hybrid Optimization Approach to Be Both Accurate and Reliable

    PubMed Central

    Loewe, Axel; Wilhelms, Mathias; Schmid, Jochen; Krause, Mathias J.; Fischer, Fathima; Thomas, Dierk; Scholz, Eberhard P.; Dössel, Olaf; Seemann, Gunnar

    2016-01-01

    Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today’s high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non

  9. Anisotropic mesh adaptation for solution of finite element problems using hierarchical edge-based error estimates

    SciTech Connect

    Lipnikov, Konstantin; Agouzal, Abdellatif; Vassilevski, Yuri

    2009-01-01

    We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.

  10. A function space approach to state and model error estimation for elliptic systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1983-01-01

    An approach is advanced for the concurrent estimation of the state and of the model errors of a system described by elliptic equations. The estimates are obtained by a deterministic least-squares approach that seeks to minimize a quadratic functional of the model errors, or equivalently, to find the vector of smallest norm subject to linear constraints in a suitably defined function space. The minimum norm solution can be obtained by solving either a Fredholm integral equation of the second kind for the case with continuously distributed data or a related matrix equation for the problem with discretely located measurements. Solution of either one of these equations is obtained in a batch-processing mode in which all of the data is processed simultaneously or, in certain restricted geometries, in a spatially scanning mode in which the data is processed recursively. After the methods for computation of the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the corresponding estimation error is conducted. Based on this analysis, explicit expressions for the mean-square estimation error associated with both the state and model error estimates are then developed.

  11. Estimation of error limits for cerebral blood flow values obtained from xenon-133 clearance curves

    SciTech Connect

    Ryding, E.

    1989-02-01

    I provide the theoretical basis for an error calculus for measurements of cerebral blood flow using a freely diffusible tracer substance such as xenon-133. The use of the error calculus is exemplified by a study of the effect on the error margins in measurements of gray matter blood flow from flow level, relative weight of the gray matter compartment, and use of the earliest parts of the clearance curves. The clinical value of the error calculus is illustrated by its ability to separate different sources of measurement error. As a consequence, it is possible to optimize the method for blood flow calculation from the clearance curves, depending on the type of cerebral blood flow measurement. I show that if a true picture of the regional gray matter blood flow distribution is sought, the earliest part of the clearance curves should be used. This does, however, increase the error in the estimate of the average cerebral blood flow value.

  12. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  13. An improved approach for estimating observation and model error parameters for soil moisture data assimilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accurate specification of observing and/or modeling errors presents a remaining challenge to the successful implementation of many land data assimilation systems. Recent work has developed adaptive filtering approaches which address this issue. However, such approaches possess a number of know...

  14. Accurate motion parameter estimation for colonoscopy tracking using a regression method

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2010-03-01

    Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.

  15. Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Moaveni, Babak

    2016-07-01

    This paper presents a Hierarchical Bayesian model updating framework to account for the effects of ambient temperature and excitation amplitude. The proposed approach is applied for model calibration, response prediction and damage identification of a footbridge under changing environmental/ambient conditions. The concrete Young's modulus of the footbridge deck is the considered updating structural parameter with its mean and variance modeled as functions of temperature and excitation amplitude. The identified modal parameters over 27 months of continuous monitoring of the footbridge are used to calibrate the updating parameters. One of the objectives of this study is to show that by increasing the levels of information in the updating process, the posterior variation of the updating structural parameter (concrete Young's modulus) is reduced. To this end, the calibration is performed at three information levels using (1) the identified modal parameters, (2) modal parameters and ambient temperatures, and (3) modal parameters, ambient temperatures, and excitation amplitudes. The calibrated model is then validated by comparing the model-predicted natural frequencies and those identified from measured data after deliberate change to the structural mass. It is shown that accounting for modeling error uncertainties is crucial for reliable response prediction, and accounting only the estimated variability of the updating structural parameter is not sufficient for accurate response predictions. Finally, the calibrated model is used for damage identification of the footbridge.

  16. Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows

    NASA Astrophysics Data System (ADS)

    McClure, Jeffrey; Yarusevych, Serhiy

    2015-11-01

    The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.

  17. A function space approach to state and model error estimation for elliptic systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1983-01-01

    An approach is advanced for the concurrent estimation of the state and of the model errors of a system described by elliptic equations. The estimates are obtained by a deterministic least-squares approach that seeks to minimize a quadratic functional of the model errors, or equivalently, to find the vector of smallest norm subject to linear constraints in a suitably defined function space. The minimum norm solution can be obtained by solving either a Fredholm integral equation of the second kind for the case with continuously distributed data or a related matrix equation for the problem with discretely located measurements. Solution of either one of these equations is obtained in a batch-processing mode in which all of the data is processed simultaneously or, in certain restricted geometries, in a spatially scanning mode in which the data is processed recursively. After the methods for computation of the optimal esimates are developed, an analysis of the second-order statistics of the estimates and of the corresponding estimation error is conducted. Based on this analysis, explicit expressions for the mean-square estimation error associated with both the state and model error estimates are then developed. While this paper focuses on theoretical developments, applications arising in the area of large structure static shape determination are contained in a closely related paper (Rodriguez and Scheid, 1982).

  18. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-01

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems. PMID:26651397

  19. Estimating Conditional Standard Errors of Measurement for Tests Composed of Testlets.

    ERIC Educational Resources Information Center

    Lee, Guemin

    The primary purpose of this study was to investigate the appropriateness and implication of incorporating a testlet definition into the estimation of the conditional standard error of measurement (SEM) for tests composed of testlets. The five conditional SEM estimation methods used in this study were classified into two categories: item-based and…

  20. Measurement Error in Nonparametric Item Response Curve Estimation. Research Report. ETS RR-11-28

    ERIC Educational Resources Information Center

    Guo, Hongwen; Sinharay, Sandip

    2011-01-01

    Nonparametric, or kernel, estimation of item response curve (IRC) is a concern theoretically and operationally. Accuracy of this estimation, often used in item analysis in testing programs, is biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. In this study, we investigate…

  1. Higher Accurate Estimation of Axial and Bending Stiffnesses of Plates Clamped by Bolts

    NASA Astrophysics Data System (ADS)

    Naruse, Tomohiro; Shibutani, Yoji

    Equivalent stiffness of clamped plates should be prescribed not only to evaluate the strength of bolted joints by the scheme of “joint diagram” but also to make structural analyses for practical structures with many bolted joints. We estimated the axial stiffness and bending stiffness of clamped plates by using Finite Element (FE) analyses while taking the contact condition on bearing surfaces and between the plates into account. The FE models were constructed for bolted joints tightened with M8, 10, 12 and 16 bolts and plate thicknesses of 3.2, 4.5, 6.0 and 9.0 mm, and the axial and bending compliances were precisely evaluated. These compliances of clamped plates were compared with those from VDI 2230 (2003) code, in which the equivalent conical compressive stress field in the plate has been assumed. The code gives larger axial stiffness for 11% and larger bending stiffness for 22%, and it cannot apply to the clamped plates with different thickness. Thus the code shall give lower bolt stress (unsafe estimation). We modified the vertical angle tangent, tanφ, of the equivalent conical by adding a term of the logarithm of thickness ratio t1/t2 and by fitting to the analysis results. The modified tanφ can estimate the axial compliance with the error from -1.5% to 6.8% and the bending compliance with the error from -6.5% to 10%. Furthermore, the modified tanφ can take the thickness difference into consideration.

  2. A novel data-driven approach to model error estimation in Data Assimilation

    NASA Astrophysics Data System (ADS)

    Pathiraja, Sahani; Moradkhani, Hamid; Marshall, Lucy; Sharma, Ashish

    2016-04-01

    Error characterisation is a fundamental component of Data Assimilation (DA) studies. Effectively describing model error statistics has been a challenging area, with many traditional methods requiring some level of subjectivity (for instance in defining the error covariance structure). Recent advances have focused on removing the need for tuning of error parameters, although there are still some outstanding issues. Many methods focus only on the first and second moments, and rely on assuming multivariate Gaussian statistics. We propose a non-parametric, data-driven framework to estimate the full distributional form of model error, ie. the transition density p(xt|xt‑1). All sources of uncertainty associated with the model simulations are considered, without needing to assign error characteristics/devise stochastic perturbations for individual components of model uncertainty (eg. input, parameter and structural). A training period is used to derive the error distribution of observed variables, conditioned on (potentially hidden) states. Errors in hidden states are estimated from the conditional distribution of observed variables using non-linear optimization. The framework is discussed in detail, and an application to a hydrologic case study with hidden states for one-day ahead streamflow prediction is presented. Results demonstrate improved predictions and more realistic uncertainty bounds compared to a standard tuning approach.

  3. Facial motion parameter estimation and error criteria in model-based image coding

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  4. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    SciTech Connect

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-18

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1–2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S{sub 0} and A{sub 0}, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A{sub 0} to thickness variations was shown to be superior to S{sub 0}, however, the attenuation from A{sub 0} when a liquid loading was present was much higher than S{sub 0}. A{sub 0} was less sensitive to the presence of coatings on the surface of than S{sub 0}.

  5. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    NASA Astrophysics Data System (ADS)

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-01

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1-2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S0 and A0, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A0 to thickness variations was shown to be superior to S0, however, the attenuation from A0 when a liquid loading was present was much higher than S0. A0 was less sensitive to the presence of coatings on the surface of than S0.

  6. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets

    PubMed Central

    Granata, Daniele; Carnevale, Vincenzo

    2016-01-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant “collective” variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset. PMID:27510265

  7. Hybridization modeling of oligonucleotide SNP arrays for accurate DNA copy number estimation

    PubMed Central

    Wan, Lin; Sun, Kelian; Ding, Qi; Cui, Yuehua; Li, Ming; Wen, Yalu; Elston, Robert C.; Qian, Minping; Fu, Wenjiang J

    2009-01-01

    Affymetrix SNP arrays have been widely used for single-nucleotide polymorphism (SNP) genotype calling and DNA copy number variation inference. Although numerous methods have achieved high accuracy in these fields, most studies have paid little attention to the modeling of hybridization of probes to off-target allele sequences, which can affect the accuracy greatly. In this study, we address this issue and demonstrate that hybridization with mismatch nucleotides (HWMMN) occurs in all SNP probe-sets and has a critical effect on the estimation of allelic concentrations (ACs). We study sequence binding through binding free energy and then binding affinity, and develop a probe intensity composite representation (PICR) model. The PICR model allows the estimation of ACs at a given SNP through statistical regression. Furthermore, we demonstrate with cell-line data of known true copy numbers that the PICR model can achieve reasonable accuracy in copy number estimation at a single SNP locus, by using the ratio of the estimated AC of each sample to that of the reference sample, and can reveal subtle genotype structure of SNPs at abnormal loci. We also demonstrate with HapMap data that the PICR model yields accurate SNP genotype calls consistently across samples, laboratories and even across array platforms. PMID:19586935

  8. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets.

    PubMed

    Granata, Daniele; Carnevale, Vincenzo

    2016-01-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant "collective" variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset. PMID:27510265

  9. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  10. High-Resolution Tsunami Inundation Simulations Based on Accurate Estimations of Coastal Waveforms

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Imamura, F.; Sugawara, D.; Furumura, T.

    2015-12-01

    We evaluate the accuracy of high-resolution tsunami inundation simulations in detail using the actual observational data of the 2011 Tohoku-Oki earthquake (Mw9.0) and investigate the methodologies to improve the simulation accuracy.Due to the recent development of parallel computing technologies, high-resolution tsunami inundation simulations are conducted more commonly than before. To evaluate how accurately these simulations can reproduce inundation processes, we test several types of simulation configurations on a parallel computer, where we can utilize the observational data (e.g., offshore and coastal waveforms and inundation properties) that are recorded during the Tohoku-Oki earthquake.Before discussing the accuracy of inundation processes on land, the incident waves at coastal sites must be accurately estimated. However, for megathrust earthquakes, it is difficult to find the tsunami source that can provide accurate estimations of tsunami waveforms at every coastal site because of the complex spatiotemporal distribution of the source and the limitation of observation. To overcome this issue, we employ a site-specific source inversion approach that increases the estimation accuracy within a specific coastal site by applying appropriate weighting to the observational data in the inversion process.We applied our source inversion technique to the Tohoku tsunami and conducted inundation simulations using 5-m resolution digital elevation model data (DEM) for the coastal area around Miyako Bay and Sendai Bay. The estimated waveforms at the coastal wave gauges of these bays successfully agree with the observed waveforms. However, the simulations overestimate the inundation extent indicating the necessity to improve the inundation model. We find that the value of Manning's roughness coefficient should be modified from the often-used value of n = 0.025 to n = 0.033 to obtain proper results at both cities.In this presentation, the simulation results with several

  11. Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.

    PubMed

    Van, Anh T; Hernando, Diego; Sutton, Bradley P

    2011-11-01

    A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method. PMID:21652284

  12. Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions

    NASA Astrophysics Data System (ADS)

    McCullough, Christopher; Bettadpur, Srinivas

    2015-04-01

    In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.

  13. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  14. Estimating error cross-correlations in soil moisture data sets using extended collocation analysis

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Su, C.-H.; Crow, W. T.; Zwieback, S.; Dorigo, W. A.; Wagner, W.

    2016-02-01

    Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite-based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified data set. However, this requires an appropriate parameterization of the error structures of the underlying data sets. While triple collocation (TC) analysis has been widely recognized as a powerful tool for estimating random error variances of coarse-resolution soil moisture data sets, the estimation of error cross covariances remains an unresolved challenge. Here we propose a method—referred to as extended collocation (EC) analysis—for estimating error cross-correlations by generalizing the TC method to an arbitrary number of data sets and relaxing the therein made assumption of zero error cross-correlation for certain data set combinations. A synthetic experiment shows that EC analysis is able to reliably recover true error cross-correlation levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer-EOS (AMSR-E) C-band and X-band observations together with advanced scatterometer (ASCAT) retrievals, modeled data from Global Land Data Assimilation System (GLDAS)-Noah and in situ measurements drawn from the International Soil Moisture Network, EC yields reasonable and strong nonzero error cross-correlations between the two AMSR-E products. Against expectation, nonzero error cross-correlations are also found between ASCAT and AMSR-E. We conclude that the proposed EC method represents an important step toward a fully parameterized error covariance matrix for coarse-resolution soil moisture data sets, which is vital for any rigorous data assimilation framework or data merging scheme.

  15. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  16. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas.

    PubMed

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo; Hansen, Peter Møller; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-08-01

    A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis to cross-sectional scans of the fistulas, the major axis was on average 10.2mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p=0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice. PMID:27164045

  17. Estimation of 3D reconstruction errors in a stereo-vision system

    NASA Astrophysics Data System (ADS)

    Belhaoua, A.; Kohler, S.; Hirsch, E.

    2009-06-01

    The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.

  18. Raman spectroscopy for highly accurate estimation of the age of refrigerated porcine muscle

    NASA Astrophysics Data System (ADS)

    Timinis, Constantinos; Pitris, Costas

    2016-03-01

    The high water content of meat, combined with all the nutrients it contains, make it vulnerable to spoilage at all stages of production and storage even when refrigerated at 5 °C. A non-destructive and in situ tool for meat sample testing, which could provide an accurate indication of the storage time of meat, would be very useful for the control of meat quality as well as for consumer safety. The proposed solution is based on Raman spectroscopy which is non-invasive and can be applied in situ. For the purposes of this project, 42 meat samples from 14 animals were obtained and three Raman spectra per sample were collected every two days for two weeks. The spectra were subsequently processed and the sample age was calculated using a set of linear differential equations. In addition, the samples were classified in categories corresponding to the age in 2-day steps (i.e., 0, 2, 4, 6, 8, 10, 12 or 14 days old), using linear discriminant analysis and cross-validation. Contrary to other studies, where the samples were simply grouped into two categories (higher or lower quality, suitable or unsuitable for human consumption, etc.), in this study, the age was predicted with a mean error of ~ 1 day (20%) or classified, in 2-day steps, with 100% accuracy. Although Raman spectroscopy has been used in the past for the analysis of meat samples, the proposed methodology has resulted in a prediction of the sample age far more accurately than any report in the literature.

  19. An a posteriori error estimator for shape optimization: application to EIT

    NASA Astrophysics Data System (ADS)

    Giacomini, M.; Pantz, O.; Trabelsi, K.

    2015-11-01

    In this paper we account for the numerical error introduced by the Finite Element approximation of the shape gradient to construct a guaranteed shape optimization method. We present a goal-oriented strategy inspired by the complementary energy principle to construct a constant-free, fully-computable a posteriori error estimator and to derive a certified upper bound of the error in the shape gradient. The resulting Adaptive Boundary Variation Algorithm (ABVA) is able to identify a genuine descent direction at each iteration and features a reliable stopping criterion for the optimization loop. Some preliminary numerical results for the inverse identification problem of Electrical Impedance Tomography are presented.

  20. Accurate description of torsion potentials in conjugated polymers using density functionals with reduced self-interaction error

    SciTech Connect

    Sutton, Christopher; Gray, Matthew T.; Brunsfeld, Max; Parrish, Robert M.; Sherrill, C. David; Sears, John S.; Brédas, Jean-Luc E-mail: thomas.koerzdoerfer@uni-potsdam.de; Körzdörfer, Thomas E-mail: thomas.koerzdoerfer@uni-potsdam.de

    2014-02-07

    We investigate the torsion potentials in two prototypical π-conjugated polymers, polyacetylene and polydiacetylene, as a function of chain length using different flavors of density functional theory. Our study provides a quantitative analysis of the delocalization error in standard semilocal and hybrid density functionals and demonstrates how it can influence structural and thermodynamic properties. The delocalization error is quantified by evaluating the many-electron self-interaction error (MESIE) for fractional electron numbers, which allows us to establish a direct connection between the MESIE and the error in the torsion barriers. The use of non-empirically tuned long-range corrected hybrid functionals results in a very significant reduction of the MESIE and leads to an improved description of torsion barrier heights. In addition, we demonstrate how our analysis allows the determination of the effective conjugation length in polyacetylene and polydiacetylene chains.

  1. Uncertainty quantification for radiation measurements: Bottom-up error variance estimation using calibration information.

    PubMed

    Burr, T; Croft, S; Krieger, T; Martin, K; Norman, C; Walsh, S

    2016-02-01

    One example of top-down uncertainty quantification (UQ) involves comparing two or more measurements on each of multiple items. One example of bottom-up UQ expresses a measurement result as a function of one or more input variables that have associated errors, such as a measured count rate, which individually (or collectively) can be evaluated for impact on the uncertainty in the resulting measured value. In practice, it is often found that top-down UQ exhibits larger error variances than bottom-up UQ, because some error sources are present in the fielded assay methods used in top-down UQ that are not present (or not recognized) in the assay studies used in bottom-up UQ. One would like better consistency between the two approaches in order to claim understanding of the measurement process. The purpose of this paper is to refine bottom-up uncertainty estimation by using calibration information so that if there are no unknown error sources, the refined bottom-up uncertainty estimate will agree with the top-down uncertainty estimate to within a specified tolerance. Then, in practice, if the top-down uncertainty estimate is larger than the refined bottom-up uncertainty estimate by more than the specified tolerance, there must be omitted sources of error beyond those predicted from calibration uncertainty. The paper develops a refined bottom-up uncertainty approach for four cases of simple linear calibration: (1) inverse regression with negligible error in predictors, (2) inverse regression with non-negligible error in predictors, (3) classical regression followed by inversion with negligible error in predictors, and (4) classical regression followed by inversion with non-negligible errors in predictors. Our illustrations are of general interest, but are drawn from our experience with nuclear material assay by non-destructive assay. The main example we use is gamma spectroscopy that applies the enrichment meter principle. Previous papers that ignore error in predictors

  2. Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This paper presents the development of a mesh adaptation module for a multilevel Cartesian solver. While the module allows mesh refinement to be driven by a variety of different refinement parameters, a central feature in its design is the incorporation of a multilevel error estimator based upon direct estimates of the local truncation error using tau-extrapolation. This error indicator exploits the fact that in regions of uniform Cartesian mesh, the spatial operator is exactly the same on the fine and coarse grids, and local truncation error estimates can be constructed by evaluating the residual on the coarse grid of the restricted solution from the fine grid. A new strategy for adaptive h-refinement is also developed to prevent errors in smooth regions of the flow from being masked by shocks and other discontinuous features. For certain classes of error histograms, this strategy is optimal for achieving equidistribution of the refinement parameters on hierarchical meshes, and therefore ensures grid converged solutions will be achieved for appropriately chosen refinement parameters. The robustness and accuracy of the adaptation module is demonstrated using both simple model problems and complex three dimensional examples using meshes with from 10(exp 6), to 10(exp 7) cells.

  3. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have about 7am/7pm orbital geometry) and afternoon satellites (NOAA 7, 9, 11 and 14 that have about 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error. We find we can decrease the global temperature trend by about 0.07 K/decade. In addition there are systematic time dependent errors present in the data that are introduced by the drift in the satellite orbital geometry arises from the diurnal cycle in temperature which is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observations made in the MSU Ch 1 (50.3 GHz) support this approach. The error is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the errors on the global temperature trend. In one path the

  4. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have approximately 7am/7pm orbital geometry) and. afternoon satellites (NOAA 7, 9, 11 and 14 that have approximately 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error eo. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error eo. We find eo can decrease the global temperature trend by approximately 0.07 K/decade. In addition there are systematic time dependent errors ed and ec present in the data that are introduced by the drift in the satellite orbital geometry. ed arises from the diurnal cycle in temperature and ec is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error ed can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observation made in the MSU Ch 1 (50.3 GHz) support this approach. The error ec is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the

  5. Are satellite based rainfall estimates accurate enough for crop modelling under Sahelian climate?

    NASA Astrophysics Data System (ADS)

    Ramarohetra, J.; Sultan, B.

    2012-04-01

    EPSAT-SG) are integrated using a crop model, then compared and tested against simulations obtained using in situ data. As in situ data, kriged rain gauge measurements are computed from about 50 rain gauges within the square degree. We show that direct use of SRFE does not reproduce the yield variability obtained from in situ observations. In a second time, different satellite products errors (e.g. annual bias, accuracy at the beginning of the rainy season) are corrected before yield modelling to assess their impact on crop yield simulation and to be able to know which improvement in SRFE will be useful for crop yield estimation. We show that corrected satellite products enable a better yield variability representation and that error correction does not have the same impact on the different varieties computed. Finally, simulated yield quality versus precipitations temporal resolution is assessed - as well as SRFE accuracy versus SRFE temporal resolution - in order to sort out the best agreement between temporal resolution and SRFE accuracy.

  6. Use of an OSSE to Evaluate Background Error Covariances Estimated by the 'NMC Method'

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.; Prive, Nikki C.; Gu, Wei

    2014-01-01

    The NMC method has proven utility for prescribing approximate background-error covariances required by variational data assimilation systems. Here, untunedNMCmethod estimates are compared with explicitly determined error covariances produced within an OSSE context by exploiting availability of the true simulated states. Such a comparison provides insights into what kind of rescaling is required to render the NMC method estimates usable. It is shown that rescaling of variances and directional correlation lengths depends greatly on both pressure and latitude. In particular, some scaling coefficients appropriate in the Tropics are the reciprocal of those in the Extratropics. Also, the degree of dynamic balance is grossly overestimated by the NMC method. These results agree with previous examinations of the NMC method which used ensembles as an alternative for estimating background-error statistics.

  7. Accurate estimation of the RMS emittance from single current amplifier data

    SciTech Connect

    Stockli, Martin P.; Welton, R.F.; Keller, R.; Letchford, A.P.; Thomae, R.W.; Thomason, J.W.G.

    2002-05-31

    This paper presents the SCUBEEx rms emittance analysis, a self-consistent, unbiased elliptical exclusion method, which combines traditional data-reduction methods with statistical methods to obtain accurate estimates for the rms emittance. Rather than considering individual data, the method tracks the average current density outside a well-selected, variable boundary to separate the measured beam halo from the background. The average outside current density is assumed to be part of a uniform background and not part of the particle beam. Therefore the average outside current is subtracted from the data before evaluating the rms emittance within the boundary. As the boundary area is increased, the average outside current and the inside rms emittance form plateaus when all data containing part of the particle beam are inside the boundary. These plateaus mark the smallest acceptable exclusion boundary and provide unbiased estimates for the average background and the rms emittance. Small, trendless variations within the plateaus allow for determining the uncertainties of the estimates caused by variations of the measured background outside the smallest acceptable exclusion boundary. The robustness of the method is established with complementary variations of the exclusion boundary. This paper presents a detailed comparison between traditional data reduction methods and SCUBEEx by analyzing two complementary sets of emittance data obtained with a Lawrence Berkeley National Laboratory and an ISIS H{sup -} ion source.

  8. Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data.

    PubMed

    Schütt, Heiko H; Harmeling, Stefan; Macke, Jakob H; Wichmann, Felix A

    2016-05-01

    The psychometric function describes how an experimental variable, such as stimulus strength, influences the behaviour of an observer. Estimation of psychometric functions from experimental data plays a central role in fields such as psychophysics, experimental psychology and in the behavioural neurosciences. Experimental data may exhibit substantial overdispersion, which may result from non-stationarity in the behaviour of observers. Here we extend the standard binomial model which is typically used for psychometric function estimation to a beta-binomial model. We show that the use of the beta-binomial model makes it possible to determine accurate credible intervals even in data which exhibit substantial overdispersion. This goes beyond classical measures for overdispersion-goodness-of-fit-which can detect overdispersion but provide no method to do correct inference for overdispersed data. We use Bayesian inference methods for estimating the posterior distribution of the parameters of the psychometric function. Unlike previous Bayesian psychometric inference methods our software implementation-psignifit 4-performs numerical integration of the posterior within automatically determined bounds. This avoids the use of Markov chain Monte Carlo (MCMC) methods typically requiring expert knowledge. Extensive numerical tests show the validity of the approach and we discuss implications of overdispersion for experimental design. A comprehensive MATLAB toolbox implementing the method is freely available; a python implementation providing the basic capabilities is also available. PMID:27013261

  9. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method. PMID:23893759

  10. Estimation of bias errors in measured airplane responses using maximum likelihood method

    NASA Technical Reports Server (NTRS)

    Klein, Vladiaslav; Morgan, Dan R.

    1987-01-01

    A maximum likelihood method is used for estimation of unknown bias errors in measured airplane responses. The mathematical model of an airplane is represented by six-degrees-of-freedom kinematic equations. In these equations the input variables are replaced by their measured values which are assumed to be without random errors. The resulting algorithm is verified with a simulation and flight test data. The maximum likelihood estimates from in-flight measured data are compared with those obtained by using a nonlinear-fixed-interval-smoother and an extended Kalmar filter.

  11. Least squares support vector machines for direction of arrival estimation with error control and validation.

    SciTech Connect

    Christodoulou, Christos George (University of New Mexico, Albuquerque, NM); Abdallah, Chaouki T. (University of New Mexico, Albuquerque, NM); Rohwer, Judd Andrew

    2003-02-01

    The paper presents a multiclass, multilabel implementation of least squares support vector machines (LS-SVM) for direction of arrival (DOA) estimation in a CDMA system. For any estimation or classification system, the algorithm's capabilities and performance must be evaluated. Specifically, for classification algorithms, a high confidence level must exist along with a technique to tag misclassifications automatically. The presented learning algorithm includes error control and validation steps for generating statistics on the multiclass evaluation path and the signal subspace dimension. The error statistics provide a confidence level for the classification accuracy.

  12. Error Analysis for Estimation of Trace Vapor Concentration Pathlength in Stack Plumes

    SciTech Connect

    Gallagher, Neal B.; Wise, Barry M.; Sheen, David M.

    2003-06-01

    Near infrared hpyerspectral imaging is finding utility in remote sensing applications such as detection and quantification of chemical vapor effluents in stack plumes. Optimizing the sensing system or quantification algorithms is difficult since reference images are rarely well characterized. The present work uses a radiance model for a down looking scene and a detailed noise model for a dispersive and Fourier transform spectrometer to generate well-characterized synthetic data. These data were used in conjunction with a classical least squares based estimation procedure in an error analysis to provide estimates of different sources of concentration-pathlength quantification error in the remote sensing problem.

  13. Estimation of ozone with total ozone portable spectroradiometer instruments. I. Theoretical model and error analysis

    NASA Astrophysics Data System (ADS)

    Flynn, Lawrence E.; Labow, Gordon J.; Beach, Robert A.; Rawlins, Michael A.; Flittner, David E.

    1996-10-01

    Inexpensive devices to measure solar UV irradiance are available to monitor atmospheric ozone, for example, total ozone portable spectroradiometers (TOPS instruments). A procedure to convert these measurements into ozone estimates is examined. For well-characterized filters with 7-nm FWHM bandpasses, the method provides ozone values (from 304- and 310-nm channels) with less than 0.4 error attributable to inversion of the theoretical model. Analysis of sensitivity to model assumptions and parameters yields estimates of 3 bias in total ozone results with dependence on total ozone and path length. Unmodeled effects of atmospheric constituents and instrument components can result in additional 2 errors.

  14. Quick and accurate estimation of the elastic constants using the minimum image method

    NASA Astrophysics Data System (ADS)

    Tretiakov, Konstantin V.; Wojciechowski, Krzysztof W.

    2015-04-01

    A method for determining the elastic properties using the minimum image method (MIM) is proposed and tested on a model system of particles interacting by the Lennard-Jones (LJ) potential. The elastic constants of the LJ system are determined in the thermodynamic limit, N → ∞, using the Monte Carlo (MC) method in the NVT and NPT ensembles. The simulation results show that when determining the elastic constants, the contribution of long-range interactions cannot be ignored, because that would lead to erroneous results. In addition, the simulations have revealed that the inclusion of further interactions of each particle with all its minimum image neighbors even in case of small systems leads to results which are very close to the values of elastic constants in the thermodynamic limit. This enables one for a quick and accurate estimation of the elastic constants using very small samples.

  15. Assumption-free estimation of the genetic contribution to refractive error across childhood

    PubMed Central

    St Pourcain, Beate; McMahon, George; Timpson, Nicholas J.; Evans, David M.; Williams, Cathy

    2015-01-01

    Purpose Studies in relatives have generally yielded high heritability estimates for refractive error: twins 75–90%, families 15–70%. However, because related individuals often share a common environment, these estimates are inflated (via misallocation of unique/common environment variance). We calculated a lower-bound heritability estimate for refractive error free from such bias. Methods Between the ages 7 and 15 years, participants in the Avon Longitudinal Study of Parents and Children (ALSPAC) underwent non-cycloplegic autorefraction at regular research clinics. At each age, an estimate of the variance in refractive error explained by single nucleotide polymorphism (SNP) genetic variants was calculated using genome-wide complex trait analysis (GCTA) using high-density genome-wide SNP genotype information (minimum N at each age=3,404). Results The variance in refractive error explained by the SNPs (“SNP heritability”) was stable over childhood: Across age 7–15 years, SNP heritability averaged 0.28 (SE=0.08, p<0.001). The genetic correlation for refractive error between visits varied from 0.77 to 1.00 (all p<0.001) demonstrating that a common set of SNPs was responsible for the genetic contribution to refractive error across this period of childhood. Simulations suggested lack of cycloplegia during autorefraction led to a small underestimation of SNP heritability (adjusted SNP heritability=0.35; SE=0.09). To put these results in context, the variance in refractive error explained (or predicted) by the time participants spent outdoors was <0.005 and by the time spent reading was <0.01, based on a parental questionnaire completed when the child was aged 8–9 years old. Conclusions Genetic variation captured by common SNPs explained approximately 35% of the variation in refractive error between unrelated subjects. This value sets an upper limit for predicting refractive error using existing SNP genotyping arrays, although higher-density genotyping in

  16. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms.

    PubMed

    Saccà, Alessandro

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes' principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of 'unellipticity' introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  17. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms

    PubMed Central

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes’ principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of ‘unellipticity’ introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  18. Accurate Estimation of the Fine Layering Effect on the Wave Propagation in the Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Bouchaala, F.; Ali, M. Y.

    2014-12-01

    The attenuation caused to the seismic wave during its propagation can be mainly divided into two parts, the scattering and the intrinsic attenuation. The scattering is an elastic redistribution of the energy due to the medium heterogeneities. However the intrinsic attenuation is an inelastic phenomenon, mainly due to the fluid-grain friction during the wave passage. The intrinsic attenuation is directly related to the physical characteristics of the medium, so this parameter is very can be used for media characterization and fluid detection, which is beneficial for the oil and gas industry. The intrinsic attenuation is estimated by subtracting the scattering from the total attenuation, therefore the accuracy of the intrinsic attenuation is directly dependent on the accuracy of the total attenuation and the scattering. The total attenuation can be estimated from the recorded waves, by using in-situ methods as the spectral ratio and frequency shift methods. The scattering is estimated by assuming the heterogeneities as a succession of stacked layers, each layer is characterized by a single density and velocity. The accuracy of the scattering is strongly dependent on the layer thicknesses, especially in the case of the media composed of carbonate rocks, such media are known for their strong heterogeneity. Previous studies gave some assumptions for the choice of the layer thickness, but they showed some limitations especially in the case of carbonate rocks. In this study we established a relationship between the layer thicknesses and the frequency of the propagation, after certain mathematical development of the Generalized O'Doherty-Anstey formula. We validated this relationship through some synthetic tests and real data provided from a VSP carried out over an onshore oilfield in the emirate of Abu Dhabi in the United Arab Emirates, primarily composed of carbonate rocks. The results showed the utility of our relationship for an accurate estimation of the scattering

  19. Sampling of systematic errors to estimate likelihood weights in nuclear data uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Helgesson, P.; Sjöstrand, H.; Koning, A. J.; Rydén, J.; Rochman, D.; Alhassan, E.; Pomp, S.

    2016-01-01

    In methodologies for nuclear data (ND) uncertainty assessment and propagation based on random sampling, likelihood weights can be used to infer experimental information into the distributions for the ND. As the included number of correlated experimental points grows large, the computational time for the matrix inversion involved in obtaining the likelihood can become a practical problem. There are also other problems related to the conventional computation of the likelihood, e.g., the assumption that all experimental uncertainties are Gaussian. In this study, a way to estimate the likelihood which avoids matrix inversion is investigated; instead, the experimental correlations are included by sampling of systematic errors. It is shown that the model underlying the sampling methodology (using univariate normal distributions for random and systematic errors) implies a multivariate Gaussian for the experimental points (i.e., the conventional model). It is also shown that the likelihood estimates obtained through sampling of systematic errors approach the likelihood obtained with matrix inversion as the sample size for the systematic errors grows large. In studied practical cases, it is seen that the estimates for the likelihood weights converge impractically slowly with the sample size, compared to matrix inversion. The computational time is estimated to be greater than for matrix inversion in cases with more experimental points, too. Hence, the sampling of systematic errors has little potential to compete with matrix inversion in cases where the latter is applicable. Nevertheless, the underlying model and the likelihood estimates can be easier to intuitively interpret than the conventional model and the likelihood function involving the inverted covariance matrix. Therefore, this work can both have pedagogical value and be used to help motivating the conventional assumption of a multivariate Gaussian for experimental data. The sampling of systematic errors could also

  20. Standard errors for EM estimates in generalized linear models with random effects.

    PubMed

    Friedl, H; Kauermann, G

    2000-09-01

    A procedure is derived for computing standard errors of EM estimates in generalized linear models with random effects. Quadrature formulas are used to approximate the integrals in the EM algorithm, where two different approaches are pursued, i.e., Gauss-Hermite quadrature in the case of Gaussian random effects and nonparametric maximum likelihood estimation for an unspecified random effect distribution. An approximation of the expected Fisher information matrix is derived from an expansion of the EM estimating equations. This allows for inferential arguments based on EM estimates, as demonstrated by an example and simulations. PMID:10985213

  1. Estimation of the minimum mRNA splicing error rate in vertebrates.

    PubMed

    Skandalis, A

    2016-01-01

    The majority of protein coding genes in vertebrates contain several introns that are removed by the mRNA splicing machinery. Errors during splicing can generate aberrant transcripts and degrade the transmission of genetic information thus contributing to genomic instability and disease. However, estimating the error rate of constitutive splicing is complicated by the process of alternative splicing which can generate multiple alternative transcripts per locus and is particularly active in humans. In order to estimate the error frequency of constitutive mRNA splicing and avoid bias by alternative splicing we have characterized the frequency of splice variants at three loci, HPRT, POLB, and TRPV1 in multiple tissues of six vertebrate species. Our analysis revealed that the frequency of splice variants varied widely among loci, tissues, and species. However, the lowest observed frequency is quite constant among loci and approximately 0.1% aberrant transcripts per intron. Arguably this reflects the "irreducible" error rate of splicing, which consists primarily of the combination of replication errors by RNA polymerase II in splice consensus sequences and spliceosome errors in correctly pairing exons. PMID:26811995

  2. Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime

    NASA Astrophysics Data System (ADS)

    Bao, WeiZhu; Cai, YongYong; Jia, XiaoWei; Yin, Jia

    2016-08-01

    We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation in the nonrelativistic limit regime, involving a small dimensionless parameter $0<\\varepsilon\\ll 1$ which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e. there are propagating waves with wavelength $O(\\varepsilon^2)$ and $O(1)$ in time and space, respectively. We begin with the conservative Crank-Nicolson finite difference (CNFD) method and establish rigorously its error estimate which depends explicitly on the mesh size $h$ and time step $\\tau$ as well as the small parameter $0<\\varepsilon\\le 1$. Based on the error bound, in order to obtain `correct' numerical solutions in the nonrelativistic limit regime, i.e. $0<\\varepsilon\\ll 1$, the CNFD method requests the $\\varepsilon$-scalability: $\\tau=O(\\varepsilon^3)$ and $h=O(\\sqrt{\\varepsilon})$. Then we propose and analyze two numerical methods for the discretization of the nonlinear Dirac equation by using the Fourier spectral discretization for spatial derivatives combined with the exponential wave integrator and time-splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their $\\varepsilon$-scalability is improved to $\\tau=O(\\varepsilon^2)$ and $h=O(1)$ when $0<\\varepsilon\\ll 1$ compared with the CNFD method. Extensive numerical results are reported to confirm our error estimates.

  3. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  4. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. C.; Alden, C.; White, J. W. C.

    2014-10-01

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of C in the atmosphere, ocean, and land; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate error and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2 σ error of the atmospheric growth rate has decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s, leading to a ~20% reduction in the over-all uncertainty of net global C uptake by the biosphere. While fossil fuel emissions have increased by a factor of 4 over the last 5 decades, 2 σ errors in fossil fuel emissions due to national reporting errors and differences in energy reporting practices have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s. At the same time land use emissions have declined slightly over the last 5 decades, but their relative errors remain high. Notably, errors associated with fossil fuel emissions have come to dominate uncertainty in the global C budget and are now comparable to the total emissions from land use, thus efforts to reduce errors in fossil fuel emissions are necessary. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that C uptake has increased and 97% confident that C uptake by the terrestrial biosphere has increased over the last 5 decades. Although the persistence of future C sinks remains unknown and some ecosystem services may be compromised by this continued C uptake (e.g. ocean acidification), it is clear that arguably the greatest ecosystem service currently provided by the biosphere is the

  5. Error estimates of triangular finite elements under a weak angle condition

    NASA Astrophysics Data System (ADS)

    Mao, Shipeng; Shi, Zhongci

    2009-08-01

    In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin,1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma.

  6. Geodesy by radio interferometry - Effects of atmospheric modeling errors on estimates of baseline length

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.

    1985-01-01

    Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.

  7. Estimation of bias errors in angle-of-arrival measurements using platform motion

    NASA Astrophysics Data System (ADS)

    Grindlay, A.

    1981-08-01

    An algorithm has been developed to estimate the bias errors in angle-of-arrival measurements made by electromagnetic detection devices on-board a pitching and rolling platform. The algorithm assumes that continuous exact measurements of the platform's roll and pitch conditions are available. When the roll and pitch conditions are used to transform deck-plane angular measurements of a nearly fixed target's position to a stabilized coordinate system, the resulting stabilized coordinates (azimuth and elevation) should not vary with changes in the roll and pitch conditions. If changes do occur they are a result of bias errors in the measurement system and the algorithm which has been developed uses these changes to estimate the sense and magnitude of angular bias errors.

  8. Nuclear power plant fault-diagnosis using neural networks with error estimation

    SciTech Connect

    Kim, K.; Bartlett, E.B.

    1994-12-31

    The assurance of the diagnosis obtained from a nuclear power plant (NPP) fault-diagnostic advisor based on artificial neural networks (ANNs) is essential for the practical implementation of the advisor to fault detection and identification. The objectives of this study are to develop an error estimation technique (EET) for diagnosis validation and apply it to the NPP fault-diagnostic advisor. Diagnosis validation is realized by estimating error bounds on the advisor`s diagnoses. The 22 transients obtained from the Duane Arnold Energy Center (DAEC) training simulator are used for this research. The results show that the NPP fault-diagnostic advisor are effective at producing proper diagnoses on which errors are assessed for validation and verification purposes.

  9. Standard Error Estimation of 3PL IRT True Score Equating with an MCMC Method

    ERIC Educational Resources Information Center

    Liu, Yuming; Schulz, E. Matthew; Yu, Lei

    2008-01-01

    A Markov chain Monte Carlo (MCMC) method and a bootstrap method were compared in the estimation of standard errors of item response theory (IRT) true score equating. Three test form relationships were examined: parallel, tau-equivalent, and congeneric. Data were simulated based on Reading Comprehension and Vocabulary tests of the Iowa Tests of…

  10. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  11. Superconvergence of the derivative patch recovery technique and a posteriorii error estimation

    SciTech Connect

    Zhang, Z.; Zhu, J.Z.

    1995-12-31

    The derivative patch recovery technique developed by Zienkiewicz and Zhu for the finite element method is analyzed. It is shown that, for one dimensional problems and two dimensional problems using tensor product elements, the patch recovery technique yields superconvergence recovery for the derivatives. Consequently, the error estimator based on the recovered derivative is asymptotically exact.

  12. A Generalizability Theory Approach to Standard Error Estimates for Bookmark Standard Settings

    ERIC Educational Resources Information Center

    Lee, Guemin; Lewis, Daniel M.

    2008-01-01

    The bookmark standard-setting procedure is an item response theory-based method that is widely implemented in state testing programs. This study estimates standard errors for cut scores resulting from bookmark standard settings under a generalizability theory model and investigates the effects of different universes of generalization and error…

  13. A Derivation of the Unbiased Standard Error of Estimate: The General Case.

    ERIC Educational Resources Information Center

    O'Brien, Francis J., Jr.

    This paper is part of a series of applied statistics monographs intended to provide supplementary reading for applied statistics students. In the present paper, derivations of the unbiased standard error of estimate for both the raw score and standard score linear models are presented. The derivations for raw score linear models are presented in…

  14. Comparison of Parametric and Nonparametric Bootstrap Methods for Estimating Random Error in Equipercentile Equating

    ERIC Educational Resources Information Center

    Cui, Zhongmin; Kolen, Michael J.

    2008-01-01

    This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…

  15. Estimation of chromatic errors from broadband images for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  16. Application of a posteriori error estimates for the steady Stokes-Brinkman equation in 2D

    NASA Astrophysics Data System (ADS)

    Hasal, Martin; Burda, Pavel

    2016-06-01

    The paper deals with the Stokes-Brinkman equation. We investigate a posteriori error estimates for the Stokes-Brinkman equation on two-dimensional polygonal domains. Special attention is paid to the value of the hydraulic conductivity coefficients. We present numerical results for an incompressible flow problem in a domain with corners.

  17. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  18. Approximation and error estimation in high dimensional space for stochastic collocation methods on arbitrary sparse samples

    SciTech Connect

    Archibald, Richard K; Deiterding, Ralf; Hauck, Cory D; Jakeman, John D; Xiu, Dongbin

    2012-01-01

    We have develop a fast method that can capture piecewise smooth functions in high dimensions with high order and low computational cost. This method can be used for both approximation and error estimation of stochastic simulations where the computations can either be guided or come from a legacy database.

  19. Mapping the Origins of Time: Scalar Errors in Infant Time Estimation

    ERIC Educational Resources Information Center

    Addyman, Caspar; Rocha, Sinead; Mareschal, Denis

    2014-01-01

    Time is central to any understanding of the world. In adults, estimation errors grow linearly with the length of the interval, much faster than would be expected of a clock-like mechanism. Here we present the first direct demonstration that this is also true in human infants. Using an eye-tracking paradigm, we examined 4-, 6-, 10-, and…

  20. Interval Estimation for True Raw and Scale Scores under the Binomial Error Model

    ERIC Educational Resources Information Center

    Lee, Won-Chan; Brennan, Robert L.; Kolen, Michael J.

    2006-01-01

    Assuming errors of measurement are distributed binomially, this article reviews various procedures for constructing an interval for an individual's true number-correct score; presents two general interval estimation procedures for an individual's true scale score (i.e., normal approximation and endpoints conversion methods); compares various…

  1. Discretization error estimation and exact solution generation using the method of nearby problems.

    SciTech Connect

    Sinclair, Andrew J.; Raju, Anil; Kurzen, Matthew J.; Roy, Christopher John; Phillips, Tyrone S.

    2011-10-01

    The Method of Nearby Problems (MNP), a form of defect correction, is examined as a method for generating exact solutions to partial differential equations and as a discretization error estimator. For generating exact solutions, four-dimensional spline fitting procedures were developed and implemented into a MATLAB code for generating spline fits on structured domains with arbitrary levels of continuity between spline zones. For discretization error estimation, MNP/defect correction only requires a single additional numerical solution on the same grid (as compared to Richardson extrapolation which requires additional numerical solutions on systematically-refined grids). When used for error estimation, it was found that continuity between spline zones was not required. A number of cases were examined including 1D and 2D Burgers equation, the 2D compressible Euler equations, and the 2D incompressible Navier-Stokes equations. The discretization error estimation results compared favorably to Richardson extrapolation and had the advantage of only requiring a single grid to be generated.

  2. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, David C.; Goorvitch, D.

    1994-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schr\\"{o}dinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  3. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    DOE PAGESBeta

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; et al

    2015-04-30

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we concludemore » that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr₋1 in the 1960s to 0.3 Pg C yr₋1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr₋1 in the 1960s to almost 1.0 Pg C yr₋1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the

  4. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.

    2015-04-01

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere

  5. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    SciTech Connect

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.

    2015-04-30

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr₋1 in the 1960s to 0.3 Pg C yr₋1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr₋1 in the 1960s to almost 1.0 Pg C yr₋1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half

  6. Accurate evaluation of free-form surface profile error based on quasi particle swarm optimization algorithm and surface subdivision

    NASA Astrophysics Data System (ADS)

    Wen, Xiulan; Zhao, Yibing; Wang, Dongxia; Zhu, Xiaochu; Xue, Xiaoqiang

    2013-03-01

    Although significant progress has been made in precision machining of free-form surfaces recently, inspection of such surfaces remains a difficult problem. In order to solve the problem that no specific standards for the verification of free-form surface profile are available, the profile parameters of free-form surface are proposed by referring to ISO standards regarding form tolerances and considering its complexity and non-rotational symmetry. Non-uniform rational basis spline(NURBS) for describing free-form surface is formulated. Crucial issues in surface inspection and profile error verification are localization between the design coordinate system(DCS) and measurement coordinate system(MCS) for searching the closest points on the design model corresponding to measured points. A quasi particle swarm optimization(QPSO) is proposed to search the transformation parameters to implement localization between DCS and MCS. Surface subdivide method which does the searching in a recursively reduced range of the parameters u and v of the NURBS design model is developed to find the closest points. In order to verify the effectiveness of the proposed methods, the design model is generated by NURBS and the measurement data of simulation example are generated by transforming the design model to arbitrary position and orientation, and the parts are machined based on the design model and are measured on CMM. The profile errors of simulation example and actual parts are calculated by the proposed method. The results verify that the evaluation precision of freeform surface profile error by the proposed method is higher 10%-22% than that by CMM software. The proposed method deals with the hard problem that it has a lower precision in profile error evaluation of free-form surface.

  7. Large area aggregation and mean-squared prediction error estimation for LACIE yield and production forecasts. [wheat

    NASA Technical Reports Server (NTRS)

    Chhikara, R. S.; Feiveson, A. H. (Principal Investigator)

    1979-01-01

    Aggregation formulas are given for production estimation of a crop type for a zone, a region, and a country, and methods for estimating yield prediction errors for the three areas are described. A procedure is included for obtaining a combined yield prediction and its mean-squared error estimate for a mixed wheat pseudozone.

  8. Estimation of local error by a neural model in an inverse scattering problem

    NASA Astrophysics Data System (ADS)

    Robert, S.; Mure-Rauvaud, A.; Thiria, S.; Badran, F.

    2005-07-01

    Characterization of optical gratings by resolution of inverse scattering problem has become a widely used tool. Indeed, it is known as a non-destructive, rapid and non-invasive method in opposition with microscopic characterizations. Use of a neural model is generally implemented and has shown better results by comparison with other regression methods. The neural network learns the relationship between the optical signature and the corresponding profile shape. The performance of such a non-linear regression method is usually estimated by the root mean square error calculated on a data set not involved in the training process. However, this error estimation is not very significant and tends to flatten the error in the different areas of variable space. We introduce, in this paper, the calculation of local error for each geometrical parameter representing the profile shape. For this purpose a second neural network is implemented to learn the variance of results obtained by the first one. A comparison with the root mean square error confirms a gain of local precision. Finally, the method is applied in the optical characterization of a semi-conductor grating with a 1 μ m period.

  9. Estimation of sampling error uncertainties in observed surface air temperature change in China

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2016-06-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  10. Enabling Predictive Simulation and UQ of Complex Multiphysics PDE Systems by the Development of Goal-Oriented Variational Sensitivity Analysis and A Posteriori Error Estimation Methods

    SciTech Connect

    Ginting, Victor

    2014-03-15

    it was demonstrated that a posteriori analyses in general and in particular one that uses adjoint methods can accurately and efficiently compute numerical error estimates and sensitivity for critical Quantities of Interest (QoIs) that depend on a large number of parameters. Activities include: analysis and implementation of several time integration techniques for solving system of ODEs as typically obtained from spatial discretization of PDE systems; multirate integration methods for ordinary differential equations; formulation and analysis of an iterative multi-discretization Galerkin finite element method for multi-scale reaction-diffusion equations; investigation of an inexpensive postprocessing technique to estimate the error of finite element solution of the second-order quasi-linear elliptic problems measured in some global metrics; investigation of an application of the residual-based a posteriori error estimates to symmetric interior penalty discontinuous Galerkin method for solving a class of second order quasi-linear elliptic problems; a posteriori analysis of explicit time integrations for system of linear ordinary differential equations; derivation of accurate a posteriori goal oriented error estimates for a user-defined quantity of interest for two classes of first and second order IMEX schemes for advection-diffusion-reaction problems; Postprocessing finite element solution; and A Bayesian Framework for Uncertain Quantification of Porous Media Flows.

  11. Test models for improving filtering with model errors through stochastic parameter estimation

    SciTech Connect

    Gershgorin, B.; Harlim, J. Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  12. Accurate Visual Heading Estimation at High Rotation Rate Without Oculomotor or Static-Depth Cues

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    It has been claimed that either oculomotor or static depth cues provide the signals about self-rotation necessary approx.-1 deg/s. We tested this hypothesis by simulating self-motion along a curved path with the eyes fixed in the head (plus or minus 16 deg/s of rotation). Curvilinear motion offers two advantages: 1) heading remains constant in retinotopic coordinates, and 2) there is no visual-oculomotor conflict (both actual and simulated eye position remain stationary). We simulated 400 ms of rotation combined with 16 m/s of translation at fixed angles with respect to gaze towards two vertical planes of random dots initially 12 and 24 m away, with a field of view of 45 degrees. Four subjects were asked to fixate a central cross and to respond whether they were translating to the left or right of straight-ahead gaze. From the psychometric curves, heading bias (mean) and precision (semi-interquartile) were derived. The mean bias over 2-5 runs was 3.0, 4.0, -2.0, -0.4 deg for the first author and three naive subjects, respectively (positive indicating towards the rotation direction). The mean precision was 2.0, 1.9, 3.1, 1.6 deg. respectively. The ability of observers to make relatively accurate and precise heading judgments, despite the large rotational flow component, refutes the view that extra-flow-field information is necessary for human visual heading estimation at high rotation rates. Our results support models that process combined translational/rotational flow to estimate heading, but should not be construed to suggest that other cues do not play an important role when they are available to the observer.

  13. Estimated Cost Savings from Reducing Errors in the Preparation of Sterile Doses of Medications

    PubMed Central

    Schneider, Philip J.

    2014-01-01

    Abstract Background: Preventing intravenous (IV) preparation errors will improve patient safety and reduce costs by an unknown amount. Objective: To estimate the financial benefit of robotic preparation of sterile medication doses compared to traditional manual preparation techniques. Methods: A probability pathway model based on published rates of errors in the preparation of sterile doses of medications was developed. Literature reports of adverse events were used to project the array of medical outcomes that might result from these errors. These parameters were used as inputs to a customized simulation model that generated a distribution of possible outcomes, their probability, and associated costs. Results: By varying the important parameters across ranges found in published studies, the simulation model produced a range of outcomes for all likely possibilities. Thus it provided a reliable projection of the errors avoided and the cost savings of an automated sterile preparation technology. The average of 1,000 simulations resulted in the prevention of 5,420 medication errors and associated savings of $288,350 per year. The simulation results can be narrowed to specific scenarios by fixing model parameters that are known and allowing the unknown parameters to range across values found in previously published studies. Conclusions: The use of a robotic device can reduce health care costs by preventing errors that can cause adverse drug events. PMID:25477598

  14. Allowance for random dose estimation errors in atomic bomb survivor studies: a revision.

    PubMed

    Pierce, Donald A; Vaeth, Michael; Cologne, John B

    2008-07-01

    Allowing for imprecision of radiation dose estimates for A-bomb survivors followed up by the Radiation Effects Research Foundation can be improved through recent statistical methodology. Since the entire RERF dosimetry system has recently been revised, it is timely to reconsider this. We have found that the dosimetry revision itself does not warrant changes in these methods but that the new methodology does. In addition to assumptions regarding the form and magnitude of dose estimation errors, previous and current methods involve the apparent distribution of true doses in the cohort. New formulas give results conveniently and explicitly in terms of these inputs. Further, it is now possible to use assumptions about two components of the dose errors, referred to in the statistical literature as "classical" and "Berkson-type". There are indirect statistical indications, involving non-cancer biological effects, that errors may be somewhat larger than assumed before, in line with recommendations made here. Inevitably, methods must rely on uncertain assumptions about the magnitude of dose errors, and it is comforting to find that, within the range of plausibility, eventual cancer risk estimates are not very sensitive to these. PMID:18582151

  15. Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems.

    PubMed

    Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang

    2015-01-01

    The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches. PMID:26007726

  16. Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems

    PubMed Central

    Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang

    2015-01-01

    The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches. PMID:26007726

  17. Estimating pole/zero errors in GSN-IRIS/USGS network calibration metadata

    USGS Publications Warehouse

    Ringler, A.T.; Hutt, C.R.; Aster, R.; Bolton, H.; Gee, L.S.; Storm, T.

    2012-01-01

    Mapping the digital record of a seismograph into true ground motion requires the correction of the data by some description of the instrument's response. For the Global Seismographic Network (Butler et al., 2004), as well as many other networks, this instrument response is represented as a Laplace domain pole–zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. This Laplace representation assumes that the seismometer behaves as a linear system, with any abrupt changes described adequately via multiple time-invariant epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We present an iterative three-step method to estimate the instrument response parameters (poles and zeros) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least-squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least-squares best-fit Laplace pole–zero–gain model. Third, by applying the central limit theorem, we estimate the errors in this pole–zero model by solving the inverse problem at each frequency in a two-thirds octave band centered at each best-fit pole–zero frequency. This procedure yields error estimates of the 99% confidence interval. We demonstrate the method by applying it to a number of recent Incorporated Research Institutions in Seismology/United States Geological Survey (IRIS/USGS) network calibrations (network code IU).

  18. A variational method for finite element stress recovery and error estimation

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Riggs, H. R.; Macy, S. C.

    1993-01-01

    A variational method for obtaining smoothed stresses from a finite element derived nonsmooth stress field is presented. The method is based on minimizing a functional involving discrete least-squares error plus a penalty constraint that ensures smoothness of the stress field. An equivalent accuracy criterion is developed for the smoothing analysis which results in a C sup 1-continuous smoothed stress field possessing the same order of accuracy as that found at the superconvergent optimal stress points of the original finite element analysis. Application of the smoothing analysis to residual error estimation is also demonstrated.

  19. A family of approximate solutions and explicit error estimates for the nonlinear stationary Navier-Stokes problem

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Karel, S.

    1975-01-01

    An algorithm for solving the nonlinear stationary Navier-Stokes problem is developed. Explicit error estimates are given. This mathematical technique is potentially adaptable to the separation problem.

  20. Estimates of ocean forecast error covariance derived from Hessian Singular Vectors

    NASA Astrophysics Data System (ADS)

    Smith, Kevin D.; Moore, Andrew M.; Arango, Hernan G.

    2015-05-01

    Experience in numerical weather prediction suggests that singular value decomposition (SVD) of a forecast can yield useful a priori information about the growth of forecast errors. It has been shown formally that SVD using the inverse of the expected analysis error covariance matrix to define the norm at initial time yields the Empirical Orthogonal Functions (EOFs) of the forecast error covariance matrix at the final time. Because of their connection to the 2nd derivative of the cost function in 4-dimensional variational (4D-Var) data assimilation, the initial time singular vectors defined in this way are often referred to as the Hessian Singular Vectors (HSVs). In the present study, estimates of ocean forecast errors and forecast error covariance were computed using SVD applied to a baroclinically unstable temperature front in a re-entrant channel using the Regional Ocean Modeling System (ROMS). An identical twin approach was used in which a truth run of the model was sampled to generate synthetic hydrographic observations that were then assimilated into the same model started from an incorrect initial condition using 4D-Var. The 4D-Var system was run sequentially, and forecasts were initialized from each ocean analysis. SVD was performed on the resulting forecasts to compute the HSVs and corresponding EOFs of the expected forecast error covariance matrix. In this study, a reduced rank approximation of the inverse expected analysis error covariance matrix was used to compute the HSVs and EOFs based on the Lanczos vectors computed during the 4D-Var minimization of the cost function. This has the advantage that the entire spectrum of HSVs and EOFs in the reduced space can be computed. The associated singular value spectrum is found to yield consistent and reliable estimates of forecast error variance in the space spanned by the EOFs. In addition, at long forecast lead times the resulting HSVs and companion EOFs are able to capture many features of the actual

  1. Mass load estimation errors utilizing grab sampling strategies in a karst watershed

    USGS Publications Warehouse

    Fogle, A.W.; Taraba, J.L.; Dinger, J.S.

    2003-01-01

    Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.

  2. DTI quality control assessment via error estimation from Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Farzinfar, Mahshid; Li, Yin; Verde, Audrey R.; Oguz, Ipek; Gerig, Guido; Styner, Martin A.

    2013-03-01

    Diffusion Tensor Imaging (DTI) is currently the state of the art method for characterizing the microscopic tissue structure of white matter in normal or diseased brain in vivo. DTI is estimated from a series of Diffusion Weighted Imaging (DWI) volumes. DWIs suffer from a number of artifacts which mandate stringent Quality Control (QC) schemes to eliminate lower quality images for optimal tensor estimation. Conventionally, QC procedures exclude artifact-affected DWIs from subsequent computations leading to a cleaned, reduced set of DWIs, called DWI-QC. Often, a rejection threshold is heuristically/empirically chosen above which the entire DWI-QC data is rendered unacceptable and thus no DTI is computed. In this work, we have devised a more sophisticated, Monte-Carlo (MC) simulation based method for the assessment of resulting tensor properties. This allows for a consistent, error-based threshold definition in order to reject/accept the DWI-QC data. Specifically, we propose the estimation of two error metrics related to directional distribution bias of Fractional Anisotropy (FA) and the Principal Direction (PD). The bias is modeled from the DWI-QC gradient information and a Rician noise model incorporating the loss of signal due to the DWI exclusions. Our simulations further show that the estimated bias can be substantially different with respect to magnitude and directional distribution depending on the degree of spatial clustering of the excluded DWIs. Thus, determination of diffusion properties with minimal error requires an evenly distributed sampling of the gradient directions before and after QC.

  3. Estimation of chromatic errors from broadband images for high contrast imaging: sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2016-01-01

    Many concepts have been proposed to enable direct imaging of planets around nearby stars, and which would enable spectroscopic observations of their atmospheric observations and the potential discovery of biomarkers. The main technical challenge associated with direct imaging of exoplanets is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. Usage of an internal coronagraph with an adaptive optical system for wavefront correction is one of the most mature methods and is being developed as an instrument addition to the WFIRST-AFTA space mission. In addition, such instruments as GPI and SPHERE are already being used on the ground and are yielding spectra of giant planets. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, mid-spatial frequency wavefront errors must be estimated. To date, most broadband lab demonstrations use narrowband filters to obtain an estimate of the the chromaticity of the wavefront error and this can result in usage of a large percentage of the total integration time. Previously, we have proposed a method to estimate the chromaticity of wavefront errors using only broadband images; we have demonstrated that under idealized conditions wavefront errors can be estimated from images composed of discrete wavelengths. This is achieved by using DM probes with sufficient spatially-localized chromatic diversity. Here we report on the results of a study of the performance of this method with respect to realistic broadband images including noise. Additionally, we study optimal probe patterns that enable reduction of the number of probes used and compare the integration time with narrowband and IFS estimation methods.

  4. Accurate establishment of error models for the satellite gravity gradiometry recovery and requirements analysis for the future GOCE follow-on mission

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Zhaokui; Ding, Yanwei; Li, Zhaowei

    2016-05-01

    Firstly, the new single and combined error models applied to estimate the cumulative geoid height error are efficiently produced by the dominating error sources consisting of the gravity gradient of the satellite-equipped gradiometer and the orbital position of the space-borne GPS/GLONASS receiver using the power spectral principle. At degree 250, the cumulative geoid height error is 1.769 × 10-1 m based on the new combined error model, which preferably accords with a recovery accuracy of 1.760 × 10-1 m from the GOCE-only Earth gravity field model GO_CONS_GCF_2_TIM_R2 released in Germany. Therefore, the new combined error model of the cumulative geoid height is correct and reliable in this study. Secondly, the requirements analysis for the future GOCE Follow-On satellite system is carried out in respect of the preferred design of the matching measurement accuracy of key payloads comprising the gravity gradient and orbital position and the optimal selection of the orbital altitude of the satellite. We recommend the gravity gradient with an accuracy of 10-13-10-15/s2, the orbital position with a precision of 1-0.1 cm and the orbital altitude of 200-250 km in the future GOCE Follow-On mission.

  5. Robust Estimator for Non-Line-of-Sight Error Mitigation in Indoor Localization

    NASA Astrophysics Data System (ADS)

    Casas, R.; Marco, A.; Guerrero, J. J.; Falcó, J.

    2006-12-01

    Indoor localization systems are undoubtedly of interest in many application fields. Like outdoor systems, they suffer from non-line-of-sight (NLOS) errors which hinder their robustness and accuracy. Though many ad hoc techniques have been developed to deal with this problem, unfortunately most of them are not applicable indoors due to the high variability of the environment (movement of furniture and of people, etc.). In this paper, we describe the use of robust regression techniques to detect and reject NLOS measures in a location estimation using multilateration. We show how the least-median-of-squares technique can be used to overcome the effects of NLOS errors, even in environments with little infrastructure, and validate its suitability by comparing it to other methods described in the bibliography. We obtained remarkable results when using it in a real indoor positioning system that works with Bluetooth and ultrasound (BLUPS), even when nearly half the measures suffered from NLOS or other coarse errors.

  6. Time-to-contact estimation errors among older drivers with useful field of view impairments.

    PubMed

    Rusch, Michelle L; Schall, Mark C; Lee, John D; Dawson, Jeffrey D; Edwards, Samantha V; Rizzo, Matthew

    2016-10-01

    Previous research indicates that useful field of view (UFOV) decline affects older driver performance. In particular, elderly drivers have difficulty estimating oncoming vehicle time-to-contact (TTC). The objective of this study was to evaluate how UFOV impairments affect TTC estimates in elderly drivers deciding when to make a left turn across oncoming traffic. TTC estimates were obtained from 64 middle-aged (n=17, age=46±6years) and older (n=37, age=75±6years) licensed drivers with a range of UFOV abilities using interactive scenarios in a fixed-base driving simulator. Each driver was situated in an intersection to turn left across oncoming traffic approaching and disappearing at differing distances (1.5, 3, or 5s) and speeds (45, 55, or 65mph). Drivers judged when each oncoming vehicle would collide with them if they were to turn left. Findings showed that TTC estimates across all drivers, on average, were most accurate for oncoming vehicles travelling at the highest velocities and least accurate for those travelling at the slowest velocities. Drivers with the worst UFOV scores had the least accurate TTC estimates, especially for slower oncoming vehicles. Results suggest age-related UFOV decline impairs older driver judgment of TTC with oncoming vehicles in safety-critical left-turn situations. Our results are compatible with national statistics on older driver crash proclivity at intersections. PMID:27472816

  7. Quadratic Zeeman effect in hydrogen Rydberg states: Rigorous bound-state error estimates in the weak-field regime

    SciTech Connect

    Falsaperla, P.; Fonte, G. Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I-95129 Catania )

    1993-05-01

    Applying a method based on some results due to Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)], we show that series of Rydberg eigenvalues and Rydberg eigenfunctions of hydrogen in a uniform magnetic field can be calculated with a rigorous error estimate. The efficiency of the method decreases as the eigenvalue density increases and as [gamma][ital n][sup 3][r arrow]1, where [gamma] is the magnetic-field strength in units of 2.35[times]10[sup 9] G and [ital n] is the principal quantum number of the unperturbed hydrogenic manifold from which the diamagnetic Rydberg states evolve. Fixing [gamma] at the laboratory value 2[times]10[sup [minus]5] and confining our calculations to the region [gamma][ital n][sup 3][lt]1 (weak-field regime), we obtain extremely accurate results up to states corresponding to the [ital n]=32 manifold.

  8. Local error estimates for adaptive simulation of the Reaction–Diffusion Master Equation via operator splitting

    PubMed Central

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2015-01-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735

  9. Local error estimates for adaptive simulation of the reaction-diffusion master equation via operator splitting

    NASA Astrophysics Data System (ADS)

    Hellander, Andreas; Lawson, Michael J.; Drawert, Brian; Petzold, Linda

    2014-06-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps were adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the diffusive finite-state projection (DFSP) method, to incorporate temporal adaptivity.

  10. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    USGS Publications Warehouse

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.

    2013-01-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  11. Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Evin, Guillaume; Thyer, Mark; Kavetski, Dmitri; McInerney, David; Kuczera, George

    2014-03-01

    The paper appraises two approaches for the treatment of heteroscedasticity and autocorrelation in residual errors of hydrological models. Both approaches use weighted least squares (WLS), with heteroscedasticity modeled as a linear function of predicted flows and autocorrelation represented using an AR(1) process. In the first approach, heteroscedasticity and autocorrelation parameters are inferred jointly with hydrological model parameters. The second approach is a two-stage "postprocessor" scheme, where Stage 1 infers the hydrological parameters ignoring autocorrelation and Stage 2 conditionally infers the heteroscedasticity and autocorrelation parameters. These approaches are compared to a WLS scheme that ignores autocorrelation. Empirical analysis is carried out using daily data from 12 US catchments from the MOPEX set using two conceptual rainfall-runoff models, GR4J, and HBV. Under synthetic conditions, the postprocessor and joint approaches provide similar predictive performance, though the postprocessor approach tends to underestimate parameter uncertainty. However, the MOPEX results indicate that the joint approach can be nonrobust. In particular, when applied to GR4J, it often produces poor predictions due to strong multiway interactions between a hydrological water balance parameter and the error model parameters. The postprocessor approach is more robust precisely because it ignores these interactions. Practical benefits of accounting for error autocorrelation are demonstrated by analyzing streamflow predictions aggregated to a monthly scale (where ignoring daily-scale error autocorrelation leads to significantly underestimated predictive uncertainty), and by analyzing one-day-ahead predictions (where accounting for the error autocorrelation produces clearly higher precision and better tracking of observed data). Including autocorrelation into the residual error model also significantly affects calibrated parameter values and uncertainty estimates. The

  12. Skin Temperature Over the Carotid Artery, an Accurate Non-invasive Estimation of Near Core Temperature

    PubMed Central

    Imani, Farsad; Karimi Rouzbahani, Hamid Reza; Goudarzi, Mehrdad; Tarrahi, Mohammad Javad; Ebrahim Soltani, Alireza

    2016-01-01

    Background: During anesthesia, continuous body temperature monitoring is essential, especially in children. Anesthesia can increase the risk of loss of body temperature by three to four times. Hypothermia in children results in increased morbidity and mortality. Since the measurement points of the core body temperature are not easily accessible, near core sites, like rectum, are used. Objectives: The purpose of this study was to measure skin temperature over the carotid artery and compare it with the rectum temperature, in order to propose a model for accurate estimation of near core body temperature. Patients and Methods: Totally, 124 patients within the age range of 2 - 6 years, undergoing elective surgery, were selected. Temperature of rectum and skin over the carotid artery was measured. Then, the patients were randomly divided into two groups (each including 62 subjects), namely modeling (MG) and validation groups (VG). First, in the modeling group, the average temperature of the rectum and skin over the carotid artery were measured separately. The appropriate model was determined, according to the significance of the model’s coefficients. The obtained model was used to predict the rectum temperature in the second group (VG group). Correlation of the predicted values with the real values (the measured rectum temperature) in the second group was investigated. Also, the difference in the average values of these two groups was examined in terms of significance. Results: In the modeling group, the average rectum and carotid temperatures were 36.47 ± 0.54°C and 35.45 ± 0.62°C, respectively. The final model was obtained, as follows: Carotid temperature × 0.561 + 16.583 = Rectum temperature. The predicted value was calculated based on the regression model and then compared with the measured rectum value, which showed no significant difference (P = 0.361). Conclusions: The present study was the first research, in which rectum temperature was compared with that

  13. Error estimation and adaptive order nodal method for solving multidimensional transport problems

    SciTech Connect

    Zamonsky, O.M.; Gho, C.J.; Azmy, Y.Y.

    1998-01-01

    The authors propose a modification of the Arbitrarily High Order Transport Nodal method whereby they solve each node and each direction using different expansion order. With this feature and a previously proposed a posteriori error estimator they develop an adaptive order scheme to automatically improve the accuracy of the solution of the transport equation. They implemented the modified nodal method, the error estimator and the adaptive order scheme into a discrete-ordinates code for solving monoenergetic, fixed source, isotropic scattering problems in two-dimensional Cartesian geometry. They solve two test problems with large homogeneous regions to test the adaptive order scheme. The results show that using the adaptive process the storage requirements are reduced while preserving the accuracy of the results.

  14. A Novel Four-Node Quadrilateral Smoothing Element for Stress Enhancement and Error Estimation

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Riggs, H. R.; Dambach, M.

    1998-01-01

    A four-node, quadrilateral smoothing element is developed based upon a penalized-discrete-least-squares variational formulation. The smoothing methodology recovers C1-continuous stresses, thus enabling effective a posteriori error estimation and automatic adaptive mesh refinement. The element formulation is originated with a five-node macro-element configuration consisting of four triangular anisoparametric smoothing elements in a cross-diagonal pattern. This element pattern enables a convenient closed-form solution for the degrees of freedom of the interior node, resulting from enforcing explicitly a set of natural edge-wise penalty constraints. The degree-of-freedom reduction scheme leads to a very efficient formulation of a four-node quadrilateral smoothing element without any compromise in robustness and accuracy of the smoothing analysis. The application examples include stress recovery and error estimation in adaptive mesh refinement solutions for an elasticity problem and an aerospace structural component.

  15. Estimation of random errors for lidar based on noise scale factor

    NASA Astrophysics Data System (ADS)

    Wang, Huan-Xue; Liu, Jian-Guo; Zhang, Tian-Shu

    2015-08-01

    Estimation of random errors, which are due to shot noise of photomultiplier tube (PMT) or avalanche photodiode (APD) detectors, is very necessary in lidar observation. Due to the Poisson distribution of incident electrons, there still exists a proportional relationship between standard deviation and square root of its mean value. Based on this relationship, noise scale factor (NSF) is introduced into the estimation, which only needs a single data sample. This method overcomes the distractions of atmospheric fluctuations during calculation of random errors. The results show that this method is feasible and reliable. Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB05040300) and the National Natural Science Foundation of China (Grant No. 41205119).

  16. Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method

    NASA Astrophysics Data System (ADS)

    Bai, YanHong; Wu, YongKe; Xie, XiaoPing

    2016-09-01

    Superconvergence and a posteriori error estimators of recovery type are analyzed for the 4-node hybrid stress quadrilateral finite element method proposed by Pian and Sumihara (Int. J. Numer. Meth. Engrg., 1984, 20: 1685-1695) for linear elasticity problems. Uniform superconvergence of order $O(h^{1+\\min\\{\\alpha,1\\}})$ with respect to the Lam\\'{e} constant $\\lambda$ is established for both the recovered gradients of the displacement vector and the stress tensor under a mesh assumption, where $\\alpha>0$ is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. A posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.

  17. Estimation of random duty-cycle error in periodically poled lithium niobate by simple diffraction experiment

    NASA Astrophysics Data System (ADS)

    Dwivedi, Prashant Povel; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik

    2014-02-01

    Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched background noise. Although such noise contribution can be evaluated by measuring second-harmonic generation (SHG) spectrum with tunable narrow-band lasers, the limited tuning ranges usually results in inaccurate measurement of pure noise. Instead of SHG, we took a diffraction pattern which is mathematically equivalent to the SHG spectrum, but can be obtained with greater simplicity. With our proposed method applied to periodically poled lithium niobate, RDE could be evaluated more accurately from the pure background noise measurement.

  18. Sampling Errors of SSM/I and TRMM Rainfall Averages: Comparison with Error Estimates from Surface Data and a Sample Model

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.

  19. Estimating sampling error of evolutionary statistics based on genetic covariance matrices using maximum likelihood.

    PubMed

    Houle, D; Meyer, K

    2015-08-01

    We explore the estimation of uncertainty in evolutionary parameters using a recently devised approach for resampling entire additive genetic variance-covariance matrices (G). Large-sample theory shows that maximum-likelihood estimates (including restricted maximum likelihood, REML) asymptotically have a multivariate normal distribution, with covariance matrix derived from the inverse of the information matrix, and mean equal to the estimated G. This suggests that sampling estimates of G from this distribution can be used to assess the variability of estimates of G, and of functions of G. We refer to this as the REML-MVN method. This has been implemented in the mixed-model program WOMBAT. Estimates of sampling variances from REML-MVN were compared to those from the parametric bootstrap and from a Bayesian Markov chain Monte Carlo (MCMC) approach (implemented in the R package MCMCglmm). We apply each approach to evolvability statistics previously estimated for a large, 20-dimensional data set for Drosophila wings. REML-MVN and MCMC sampling variances are close to those estimated with the parametric bootstrap. Both slightly underestimate the error in the best-estimated aspects of the G matrix. REML analysis supports the previous conclusion that the G matrix for this population is full rank. REML-MVN is computationally very efficient, making it an attractive alternative to both data resampling and MCMC approaches to assessing confidence in parameters of evolutionary interest. PMID:26079756

  20. Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2012-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.

  1. Estimate of procession and polar motion errors from planetary encounter station location solutions

    NASA Technical Reports Server (NTRS)

    Pease, G. E.

    1978-01-01

    Jet Propulsion Laboratory Deep Space Station (DSS) location solutions based on two JPL planetary ephemerides, DE 84 and DE 96, at eight planetary encounters were used to obtain weighted least squares estimates of precession and polar motion errors. The solution for precession error in right ascension yields a value of 0.3 X 10 to the minus 5 power plus or minus 0.8 X 10 to the minus 6 power deg/year. This maps to a right ascension error of 1.3 X 10 to the minus 5 power plus or minus 0.4 X 10 to the minus 5 power deg at the first Voyager 1979 Jupiter encounter if the current JPL DSS location set is used. Solutions for precession and polar motion using station locations based on DE 84 agree well with the solution using station locations referenced to DE 96. The precession solution removes the apparent drift in station longitude and spin axis distance estimates, while the encounter polar motion solutions consistently decrease the scatter in station spin axis distance estimates.

  2. Accuracy and sampling error of two age estimation techniques using rib histomorphometry on a modern sample.

    PubMed

    García-Donas, Julieta G; Dyke, Jeffrey; Paine, Robert R; Nathena, Despoina; Kranioti, Elena F

    2016-02-01

    Most age estimation methods are proven problematic when applied in highly fragmented skeletal remains. Rib histomorphometry is advantageous in such cases; yet it is vital to test and revise existing techniques particularly when used in legal settings (Crowder and Rosella, 2007). This study tested Stout & Paine (1992) and Stout et al. (1994) histological age estimation methods on a Modern Greek sample using different sampling sites. Six left 4th ribs of known age and sex were selected from a modern skeletal collection. Each rib was cut into three equal segments. Two thin sections were acquired from each segment. A total of 36 thin sections were prepared and analysed. Four variables (cortical area, intact and fragmented osteon density and osteon population density) were calculated for each section and age was estimated according to Stout & Paine (1992) and Stout et al. (1994). The results showed that both methods produced a systemic underestimation of the individuals (to a maximum of 43 years) although a general improvement in accuracy levels was observed when applying the Stout et al. (1994) formula. There is an increase of error rates with increasing age with the oldest individual showing extreme differences between real age and estimated age. Comparison of the different sampling sites showed small differences between the estimated ages suggesting that any fragment of the rib could be used without introducing significant error. Yet, a larger sample should be used to confirm these results. PMID:26698389

  3. Figure of merit of diamond power devices based on accurately estimated impact ionization processes

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Kawarada, Hiroshi

    2013-07-01

    Although a high breakdown voltage or field is considered as a major advantage of diamond, there has been a large difference in breakdown voltages or fields of diamond devices in literature. Most of these apparently contradictory results did not correctly reflect material properties because of specific device designs, such as punch-through structure and insufficient edge termination. Once these data were removed, the remaining few results, including a record-high breakdown field of 20 MV/cm, were theoretically reproduced, exactly calculating ionization integrals based on the ionization coefficients that were obtained after compensating for possible errors involved in reported theoretical values. In this compensation, we newly developed a method for extracting an ionization coefficient from an arbitrary relationship between breakdown voltage and doping density in the Chynoweth's framework. The breakdown field of diamond was estimated to depend on the doping density more than other materials, and accordingly required to be compared at the same doping density. The figure of merit (FOM) of diamond devices, obtained using these breakdown data, was comparable to the FOMs of 4H-SiC and Wurtzite-GaN devices at room temperature, but was projected to be larger than the latter by more than one order of magnitude at higher temperatures about 300 °C. Considering the relatively undeveloped state of diamond technology, there is room for further enhancement of the diamond FOM, improving breakdown voltage and mobility. Through these investigations, junction breakdown was found to be initiated by electrons or holes in a p--type or n--type drift layer, respectively. The breakdown voltages in the two types of drift layers differed from each other in a strict sense but were practically the same. Hence, we do not need to care about the conduction type of drift layers, but should rather exactly calculate the ionization integral without approximating ionization coefficients by a power

  4. Estimating and comparing microbial diversity in the presence of sequencing errors

    PubMed Central

    Chiu, Chun-Huo

    2016-01-01

    Estimating and comparing microbial diversity are statistically challenging due to limited sampling and possible sequencing errors for low-frequency counts, producing spurious singletons. The inflated singleton count seriously affects statistical analysis and inferences about microbial diversity. Previous statistical approaches to tackle the sequencing errors generally require different parametric assumptions about the sampling model or about the functional form of frequency counts. Different parametric assumptions may lead to drastically different diversity estimates. We focus on nonparametric methods which are universally valid for all parametric assumptions and can be used to compare diversity across communities. We develop here a nonparametric estimator of the true singleton count to replace the spurious singleton count in all methods/approaches. Our estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons and quadrupletons, provided these three frequency counts are reliable. To quantify microbial alpha diversity for an individual community, we adopt the measure of Hill numbers (effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an order q that determines the measures’ emphasis on rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1, the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of Simpson index). A diversity profile which depicts the Hill number as a function of order q conveys all information contained in a taxa abundance distribution. Based on the estimated singleton count and the original non-singleton frequency counts, two statistical approaches (non-asymptotic and asymptotic) are developed to compare microbial diversity for multiple communities. (1) A non-asymptotic approach refers to the comparison of estimated diversities of standardized samples with a common finite sample size or sample completeness. This

  5. Estimating and comparing microbial diversity in the presence of sequencing errors.

    PubMed

    Chiu, Chun-Huo; Chao, Anne

    2016-01-01

    Estimating and comparing microbial diversity are statistically challenging due to limited sampling and possible sequencing errors for low-frequency counts, producing spurious singletons. The inflated singleton count seriously affects statistical analysis and inferences about microbial diversity. Previous statistical approaches to tackle the sequencing errors generally require different parametric assumptions about the sampling model or about the functional form of frequency counts. Different parametric assumptions may lead to drastically different diversity estimates. We focus on nonparametric methods which are universally valid for all parametric assumptions and can be used to compare diversity across communities. We develop here a nonparametric estimator of the true singleton count to replace the spurious singleton count in all methods/approaches. Our estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons and quadrupletons, provided these three frequency counts are reliable. To quantify microbial alpha diversity for an individual community, we adopt the measure of Hill numbers (effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an order q that determines the measures' emphasis on rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1, the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of Simpson index). A diversity profile which depicts the Hill number as a function of order q conveys all information contained in a taxa abundance distribution. Based on the estimated singleton count and the original non-singleton frequency counts, two statistical approaches (non-asymptotic and asymptotic) are developed to compare microbial diversity for multiple communities. (1) A non-asymptotic approach refers to the comparison of estimated diversities of standardized samples with a common finite sample size or sample completeness. This approach

  6. Eliminating Obliquity Error from the Estimation of Ionospheric Delay in a Satellite-Based Augmentation System

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence

    2013-01-01

    Current satellite-based augmentation systems estimate ionospheric delay using algorithms that assume the electron density of the ionosphere is non-negligible only in a thin shell located near the peak of the actual profile. In its initial operating capability, for example, the Wide Area Augmentation System incorporated the thin shell model into an estimation algorithm that calculates vertical delay using a planar fit. Under disturbed conditions or at low latitude where ionospheric structure is complex, however, the thin shell approximation can serve as a significant source of estimation error. A recent upgrade of the system replaced the planar fit algorithm with an algorithm based upon kriging. The upgrade owes its success, in part, to the ability of kriging to mitigate the error due to this approximation. Previously, alternative delay estimation algorithms have been proposed that eliminate the need for invoking the thin shell model altogether. Prior analyses have compared the accuracy achieved by these methods to the accuracy achieved by the planar fit algorithm. This paper extends these analyses to include a comparison with the accuracy achieved by kriging. It concludes by examining how a satellite-based augmentation system might be implemented without recourse to the thin shell approximation.

  7. Compensation technique for the intrinsic error in ultrasound motion estimation using a speckle tracking method

    NASA Astrophysics Data System (ADS)

    Taki, Hirofumi; Yamakawa, Makoto; Shiina, Tsuyoshi; Sato, Toru

    2015-07-01

    High-accuracy ultrasound motion estimation has become an essential technique in blood flow imaging, elastography, and motion imaging of the heart wall. Speckle tracking has been one of the best motion estimators; however, conventional speckle-tracking methods neglect the effect of out-of-plane motion and deformation. Our proposed method assumes that the cross-correlation between a reference signal and a comparison signal depends on the spatio-temporal distance between the two signals. The proposed method uses the decrease in the cross-correlation value in a reference frame to compensate for the intrinsic error caused by out-of-plane motion and deformation without a priori information. The root-mean-square error of the estimated lateral tissue motion velocity calculated by the proposed method ranged from 6.4 to 34% of that using a conventional speckle-tracking method. This study demonstrates the high potential of the proposed method for improving the estimation of tissue motion using an ultrasound speckle-tracking method in medical diagnosis.

  8. p-adaption for compressible flow problems using a goal-based error estimator

    NASA Astrophysics Data System (ADS)

    Ekelschot, Dirk; Moxey, David; Peiro, Joaquim; Sherwin, Spencer

    2014-11-01

    We present an approach of applying p-adaption to compressible flow problems using a dual-weighted error estimator. This technique has been implemented in the high-order h/p spectral element library Nektar + + . The compressible solver uses a high-order discontinuous Galerkin (DG) discretization. This approach is generally considered to be expensive and that is why the introduced p-adaption technique aims for lowering the computational cost while preserving the high-order accuracy and the exponential convergence properties. The numerical fluxes between the elements are discontinuous which allows one to use a different polynomial order in each element. After identifying and localizing the sources of error, the order of approximation of the solution within the element is improved. The solution to the adjoint equations for the compressible Euler equations is used to weigh the local residual of the primal solution. This provides both the error in the target quantity, which is typically the lift or drag coefficient, and an indication on how sensitive the local solution is to the target quantity. The dual-weighted error within each element serves then as a local refinement indicator that drives the p-adaptive algorithm. The performance of this p-adaptive method is demonstrated using a test case of subsonic flow past a 3D wing geometry.

  9. SANG-a kernel density estimator incorporating information about the measurement error

    NASA Astrophysics Data System (ADS)

    Hayes, Robert

    Analyzing nominally large data sets having a measurement error unique to each entry is evaluated with a novel technique. This work begins with a review of modern analytical methodologies such as histograming data, ANOVA, regression (weighted and unweighted) along with various error propagation and estimation techniques. It is shown that by assuming the errors obey a functional distribution (such as normal or Poisson), a superposition of the assumed forms then provides the most comprehensive and informative graphical depiction of the data set's statistical information. The resultant approach is evaluated only for normally distributed errors so that the method is effectively a Superposition Analysis of Normalized Gaussians (SANG). SANG is shown to be easily calculated and highly informative in a single graph from what would otherwise require multiple analysis and figures to accomplish the same result. The work is demonstrated using historical radiochemistry measurements from a transuranic waste geological repository's environmental monitoring program. This work paid for under NRC-HQ-84-14-G-0059.

  10. PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems

    NASA Astrophysics Data System (ADS)

    Hocker, David; Kosut, Robert; Rabitz, Herschel

    2016-06-01

    A Physical Error Estimation Tool (PEET) is introduced in Matlab for predicting physical gate errors of quantum information processing (QIP) operations by constructing and then simulating gate sequences for a wide variety of user-defined, Hamiltonian-based physical systems. PEET is designed to accommodate the interdisciplinary needs of quantum computing design by assessing gate performance for users familiar with the underlying physics of QIP, as well as those interested in higher-level computing operations. The structure of PEET separates the bulk of the physical details of a system into Gate objects, while the construction of quantum computing gate operations are contained in GateSequence objects. Gate errors are estimated by Monte Carlo sampling of noisy gate operations. The main utility of PEET, though, is the implementation of QuantumControl methods that act to generate and then test gate sequence and pulse-shaping techniques for QIP performance. This work details the structure of PEET and gives instructive examples for its operation.

  11. Optimum data weighting and error calibration for estimation of gravitational parameters

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.

    1989-01-01

    A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 (Goddard Earth Model, 36x36 spherical harmonic field) were employed toward application of this technique for gravity field parameters. Also, GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized here. The method employs subset solutions of the data associated with the complete solution and uses an algorithm to adjust the data weights by requiring the differences of parameters between solutions to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting as compared to the nominal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.

  12. Adjoint-based error estimation and mesh adaptation for the correction procedure via reconstruction method

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Wang, Z. J.

    2015-08-01

    Adjoint-based mesh adaptive methods are capable of distributing computational resources to areas which are important for predicting an engineering output. In this paper, we develop an adjoint-based h-adaptation approach based on the high-order correction procedure via reconstruction formulation (CPR) to minimize the output or functional error. A dual-consistent CPR formulation of hyperbolic conservation laws is developed and its dual consistency is analyzed. Super-convergent functional and error estimate for the output with the CPR method are obtained. Factors affecting the dual consistency, such as the solution point distribution, correction functions, boundary conditions and the discretization approach for the non-linear flux divergence term, are studied. The presented method is then used to perform simulations for the 2D Euler and Navier-Stokes equations with mesh adaptation driven by the adjoint-based error estimate. Several numerical examples demonstrate the ability of the presented method to dramatically reduce the computational cost comparing with uniform grid refinement.

  13. The impact of theoretical errors on velocity estimation and accuracy of duplex grading of carotid stenosis.

    PubMed

    Thomas, Nicholas; Taylor, Peter; Padayachee, Soundrie

    2002-02-01

    Two potential errors in velocity estimation, Doppler angle misalignment and intrinsic spectral broadening (ISB), were determined and used to correct recorded blood velocities obtained from 20 patients (38 bifurcations). The recorded and corrected velocities were used to grade stenoses of greater than 70% using two duplex classification schemes. The first scheme used a peak systolic velocity (PSV) of > 250 cm/s in the internal carotid artery (ICA), and the second a PSV ratio of > 3.4 (ICA PSV/common carotid artery PSV). The "gold standard" was digital subtraction angiography (DSA). The maximum error in velocity estimation due to Doppler angle misalignment was 33 cm/s, but this did not alter sensitivity of stenosis detection. ISB correction caused a reduction in PSV that decreased the sensitivity of the PSV scheme from 65% to 45%. The PSV ratio classification was not affected by ISB errors. Centres using a PSV criterion for grading stenosis should use a fixed Doppler angle and should establish velocity thresholds in-house. PMID:11937281

  14. Optimum data weighting and error calibration for estimation of gravitational parameters

    NASA Technical Reports Server (NTRS)

    Lerch, Francis J.

    1989-01-01

    A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least-squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 Goddard Earth Model-T1 (GEM-T1) were employed toward application of this technique for gravity field parameters. Also GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized. The method employs subset solutions of the data associated with the complete solution to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.

  15. Model for the fast estimation of basis set superposition error in biomolecular systems

    PubMed Central

    Faver, John C.; Zheng, Zheng; Merz, Kenneth M.

    2011-01-01

    Basis set superposition error (BSSE) is a significant contributor to errors in quantum-based energy functions, especially for large chemical systems with many molecular contacts such as folded proteins and protein-ligand complexes. While the counterpoise method has become a standard procedure for correcting intermolecular BSSE, most current approaches to correcting intramolecular BSSE are simply fragment-based analogues of the counterpoise method which require many (two times the number of fragments) additional quantum calculations in their application. We propose that magnitudes of both forms of BSSE can be quickly estimated by dividing a system into interacting fragments, estimating each fragment's contribution to the overall BSSE with a simple statistical model, and then propagating these errors throughout the entire system. Such a method requires no additional quantum calculations, but rather only an analysis of the system's interacting fragments. The method is described herein and is applied to a protein-ligand system, a small helical protein, and a set of native and decoy protein folds. PMID:22010701

  16. Effects of flight instrumentation errors on the estimation of aircraft stability and control derivatives. [including Monte Carlo analysis

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.; Hodge, W. F.

    1974-01-01

    An error analysis program based on an output error estimation method was used to evaluate the effects of sensor and instrumentation errors on the estimation of aircraft stability and control derivatives. A Monte Carlo analysis was performed using simulated flight data for a high performance military aircraft, a large commercial transport, and a small general aviation aircraft for typical cruise flight conditions. The effects of varying the input sequence and combinations of the sensor and instrumentation errors were investigated. The results indicate that both the parameter accuracy and the corresponding measurement trajectory fit error can be significantly affected. Of the error sources considered, instrumentation lags and control measurement errors were found to be most significant.

  17. DTI Quality Control Assessment via Error Estimation From Monte Carlo Simulations

    PubMed Central

    Farzinfar, Mahshid; Li, Yin; Verde, Audrey R.; Oguz, Ipek; Gerig, Guido; Styner, Martin A.

    2013-01-01

    Diffusion Tensor Imaging (DTI) is currently the state of the art method for characterizing microscopic tissue structure in the white matter in normal or diseased brain in vivo. DTI is estimated from a series of Diffusion Weighted Imaging (DWI) volumes. DWIs suffer from a number of artifacts which mandate stringent Quality Control (QC) schemes to eliminate lower quality images for optimal tensor estimation. Conventionally, QC procedures exclude artifact-affected DWIs from subsequent computations leading to a cleaned, reduced set of DWIs, called DWI-QC. Often, a rejection threshold is heuristically/empirically chosen above which the entire DWI-QC data is rendered unacceptable and thus no DTI is computed. In this work, we have devised a more sophisticated, Monte-Carlo simulation based method for the assessment of resulting tensor properties. This allows for a consistent, error-based threshold definition in order to reject/accept the DWI-QC data. Specifically, we propose the estimation of two error metrics related to directional distribution bias of Fractional Anisotropy (FA) and the Principal Direction (PD). The bias is modeled from the DWI-QC gradient information and a Rician noise model incorporating the loss of signal due to the DWI exclusions. Our simulations further show that the estimated bias can be substantially different with respect to magnitude and directional distribution depending on the degree of spatial clustering of the excluded DWIs. Thus, determination of diffusion properties with minimal error requires an evenly distributed sampling of the gradient directions before and after QC. PMID:23833547

  18. An integrated error parameter estimation and lag-aware data assimilation scheme for real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Ryu, Dongryeol; Western, Andrew W.; Wang, Q. J.; Robertson, David E.; Crow, Wade T.

    2014-11-01

    For operational flood forecasting, discharge observations may be assimilated into a hydrologic model to improve forecasts. However, the performance of conventional filtering schemes can be degraded by ignoring the time lag between soil moisture and discharge responses. This has led to ongoing development of more appropriate ways to implement sequential data assimilation. In this paper, an ensemble Kalman smoother (EnKS) with fixed time window is implemented for the GR4H hydrologic model (modèle du Génie Rural à 4 paramètres Horaire) to update current and antecedent model states. Model and observation error parameters are estimated through the maximum a posteriori method constrained by prior information drawn from flow gauging data. When evaluated in a hypothetical forecasting mode using observed rainfall, the EnKS is found to be more stable and produce more accurate discharge forecasts than a standard ensemble Kalman filter (EnKF) by reducing the mean of the ensemble root mean squared error (MRMSE) by 13-17%. The latter tends to over-correct current model states and leads to spurious peaks and oscillations in discharge forecasts. When evaluated in a real-time forecasting mode using rainfall forecasts from a numerical weather prediction model, the benefit of the EnKS is reduced as uncertainty in rainfall forecasts becomes dominant, especially at large forecast lead time.

  19. Estimating regression coefficients from clustered samples: Sampling errors and optimum sample allocation

    NASA Astrophysics Data System (ADS)

    Kalton, G.

    1983-05-01

    A number of surveys were conducted to study the relationship between the level of aircraft or traffic noise exposure experienced by people living in a particular area and their annoyance with it. These surveys generally employ a clustered sample design which affects the precision of the survey estimates. Regression analysis of annoyance on noise measures and other variables is often an important component of the survey analysis. Formulae are presented for estimating the standard errors of regression coefficients and ratio of regression coefficients that are applicable with a two- or three-stage clustered sample design. Using a simple cost function, they also determine the optimum allocation of the sample across the stages of the sample design for the estimation of a regression coefficient.

  20. Estimating regression coefficients from clustered samples: Sampling errors and optimum sample allocation

    NASA Technical Reports Server (NTRS)

    Kalton, G.

    1983-01-01

    A number of surveys were conducted to study the relationship between the level of aircraft or traffic noise exposure experienced by people living in a particular area and their annoyance with it. These surveys generally employ a clustered sample design which affects the precision of the survey estimates. Regression analysis of annoyance on noise measures and other variables is often an important component of the survey analysis. Formulae are presented for estimating the standard errors of regression coefficients and ratio of regression coefficients that are applicable with a two- or three-stage clustered sample design. Using a simple cost function, they also determine the optimum allocation of the sample across the stages of the sample design for the estimation of a regression coefficient.

  1. mBEEF-vdW: Robust fitting of error estimation density functionals

    NASA Astrophysics Data System (ADS)

    Lundgaard, Keld T.; Wellendorff, Jess; Voss, Johannes; Jacobsen, Karsten W.; Bligaard, Thomas

    2016-06-01

    We propose a general-purpose semilocal/nonlocal exchange-correlation functional approximation, named mBEEF-vdW. The exchange is a meta generalized gradient approximation, and the correlation is a semilocal and nonlocal mixture, with the Rutgers-Chalmers approximation for van der Waals (vdW) forces. The functional is fitted within the Bayesian error estimation functional (BEEF) framework [J. Wellendorff et al., Phys. Rev. B 85, 235149 (2012), 10.1103/PhysRevB.85.235149; J. Wellendorff et al., J. Chem. Phys. 140, 144107 (2014), 10.1063/1.4870397]. We improve the previously used fitting procedures by introducing a robust MM-estimator based loss function, reducing the sensitivity to outliers in the datasets. To more reliably determine the optimal model complexity, we furthermore introduce a generalization of the bootstrap 0.632 estimator with hierarchical bootstrap sampling and geometric mean estimator over the training datasets. Using this estimator, we show that the robust loss function leads to a 10 % improvement in the estimated prediction error over the previously used least-squares loss function. The mBEEF-vdW functional is benchmarked against popular density functional approximations over a wide range of datasets relevant for heterogeneous catalysis, including datasets that were not used for its training. Overall, we find that mBEEF-vdW has a higher general accuracy than competing popular functionals, and it is one of the best performing functionals on chemisorption systems, surface energies, lattice constants, and dispersion. We also show the potential-energy curve of graphene on the nickel(111) surface, where mBEEF-vdW matches the experimental binding length. mBEEF-vdW is currently available in gpaw and other density functional theory codes through Libxc, version 3.0.0.

  2. A parametric multiclass Bayes error estimator for the multispectral scanner spatial model performance evaluation

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.; Anuta, P. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The probability of correct classification of various populations in data was defined as the primary performance index. The multispectral data being of multiclass nature as well, required a Bayes error estimation procedure that was dependent on a set of class statistics alone. The classification error was expressed in terms of an N dimensional integral, where N was the dimensionality of the feature space. The multispectral scanner spatial model was represented by a linear shift, invariant multiple, port system where the N spectral bands comprised the input processes. The scanner characteristic function, the relationship governing the transformation of the input spatial, and hence, spectral correlation matrices through the systems, was developed.

  3. An analytic technique for statistically modeling random atomic clock errors in estimation

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1981-01-01

    Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.

  4. An accurate modeling, simulation, and analysis tool for predicting and estimating Raman LIDAR system performance

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Russo, Leonard P.; Barrett, John L.; Odhner, Jefferson E.; Egbert, Paul I.

    2007-09-01

    BAE Systems presents the results of a program to model the performance of Raman LIDAR systems for the remote detection of atmospheric gases, air polluting hydrocarbons, chemical and biological weapons, and other molecular species of interest. Our model, which integrates remote Raman spectroscopy, 2D and 3D LADAR, and USAF atmospheric propagation codes permits accurate determination of the performance of a Raman LIDAR system. The very high predictive performance accuracy of our model is due to the very accurate calculation of the differential scattering cross section for the specie of interest at user selected wavelengths. We show excellent correlation of our calculated cross section data, used in our model, with experimental data obtained from both laboratory measurements and the published literature. In addition, the use of standard USAF atmospheric models provides very accurate determination of the atmospheric extinction at both the excitation and Raman shifted wavelengths.

  5. Relativistic regimes in which Compton scattering doubly differential cross sections obtained from impulse approximation are accurate due to cancelation of errors

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2015-05-01

    There is no simple parameter that can be used to predict when impulse approximation (IA) can yield accurate Compton scattering doubly differential cross sections (DDCS) in relativistic regimes. When Z is low, a small value of the parameter /q (where is the average initial electron momentum and q is the momentum transfer) suffices. For small Z the photon electron kinematic contribution described in relativistic S-matrix (SM) theory reduces to an expression, Xrel, which is present in the relativistic impulse approximation (RIA) formula for Compton DDCS. When Z is high, the S-Matrix photon electron kinematics no longer reduces to Xrel, and this along with the error characterized by the magnitude of /q contribute to the RIA error Δ. We demonstrate and illustrate in the form of contour plots that there are regimes of incident photon energy ωi and scattering angle θ in which the two types of errors at least partially cancel. Our calculations show that when θ is about 65° for Uranium K-shell scattering, Δ is less than 1% over an ωi range of 300 to 900 keV.

  6. Mean square displacements with error estimates from non-equidistant time-step kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Leetmaa, Mikael; Skorodumova, Natalia V.

    2015-06-01

    We present a method to calculate mean square displacements (MSD) with error estimates from kinetic Monte Carlo (KMC) simulations of diffusion processes with non-equidistant time-steps. An analytical solution for estimating the errors is presented for the special case of one moving particle at fixed rate constant. The method is generalized to an efficient computational algorithm that can handle any number of moving particles or different rates in the simulated system. We show with examples that the proposed method gives the correct statistical error when the MSD curve describes pure Brownian motion and can otherwise be used as an upper bound for the true error.

  7. Analysis of open-loop conical scan pointing error and variance estimators

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.

    1993-01-01

    General pointing error and variance estimators for an open-loop conical scan (conscan) system are derived and analyzed. The conscan algorithm is modeled as a weighted least-squares estimator whose inputs are samples of receiver carrier power and its associated measurement uncertainty. When the assumptions of constant measurement noise and zero pointing error estimation are applied, the variance equation is then strictly a function of the carrier power to uncertainty ratio and the operator selectable radius and period input to the algorithm. The performance equation is applied to a 34-m mirror-based beam-waveguide conscan system interfaced with the Block V Receiver Subsystem tracking a Ka-band (32-GHz) downlink. It is shown that for a carrier-to-noise power ratio greater than or equal to 30 dB-Hz, the conscan period for Ka-band operation may be chosen well below the current DSN minimum of 32 sec. The analysis presented forms the basis of future conscan work in both research and development as well as for the upcoming DSN antenna controller upgrade for the new DSS-24 34-m beam-waveguide antenna.

  8. Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects

    PubMed Central

    Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.

    2015-01-01

    We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341

  9. Estimating Random Errors Due to Shot Noise in Backscatter Lidar Observations

    NASA Technical Reports Server (NTRS)

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark A.; Hostetler, Chris A.; McGill, Matthew J.; Powell, Kathy; Winker, David M.; Hu, Yongxiang

    2006-01-01

    In this paper, we discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson-distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root-mean-square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF uncertainties can be reliably calculated from/for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar and tested using data from the Lidar In-space Technology Experiment (LITE). OCIS Codes:

  10. Bi-fluorescence imaging for estimating accurately the nuclear condition of Rhizoctonia spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To simplify the determination of the nuclear condition of the pathogenic Rhizoctonia, which currently needs to be performed either using two fluorescent dyes, thus is more costly and time-consuming, or using only one fluorescent dye, and thus less accurate. Methods and Results: A red primary ...

  11. Estimation method of point spread function based on Kalman filter for accurately evaluating real optical properties of photonic crystal fibers.

    PubMed

    Shen, Yan; Lou, Shuqin; Wang, Xin

    2014-03-20

    The evaluation accuracy of real optical properties of photonic crystal fibers (PCFs) is determined by the accurate extraction of air hole edges from microscope images of cross sections of practical PCFs. A novel estimation method of point spread function (PSF) based on Kalman filter is presented to rebuild the micrograph image of the PCF cross-section and thus evaluate real optical properties for practical PCFs. Through tests on both artificially degraded images and microscope images of cross sections of practical PCFs, we prove that the proposed method can achieve more accurate PSF estimation and lower PSF variance than the traditional Bayesian estimation method, and thus also reduce the defocus effect. With this method, we rebuild the microscope images of two kinds of commercial PCFs produced by Crystal Fiber and analyze the real optical properties of these PCFs. Numerical results are in accord with the product parameters. PMID:24663461

  12. A combined approach to the estimation of statistical error of the direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Plotnikov, M. Yu.; Shkarupa, E. V.

    2015-11-01

    Presently, the direct simulation Monte Carlo (DSMC) method is widely used for solving rarefied gas dynamics problems. As applied to steady-state problems, a feature of this method is the use of dependent sample values of random variables for the calculation of macroparameters of gas flows. A new combined approach to estimating the statistical error of the method is proposed that does not practically require additional computations, and it is applicable for any degree of probabilistic dependence of sample values. Features of the proposed approach are analyzed theoretically and numerically. The approach is tested using the classical Fourier problem and the problem of supersonic flow of rarefied gas through permeable obstacle.

  13. Error in Estimates of Tissue Material Properties from Shear Wave Dispersion Ultrasound Vibrometry

    PubMed Central

    Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.

    2009-01-01

    Shear wave velocity measurements are used in elasticity imaging to find the shear elasticity and viscosity of tissue. A technique called shear wave dispersion ultrasound vibrometry (SDUV) has been introduced to use the dispersive nature of shear wave velocity to locally estimate the material properties of tissue. Shear waves are created using a multifrequency ultrasound radiation force, and the propagating shear waves are measured a few millimeters away from the excitation point. The shear wave velocity is measured using a repetitive pulse-echo method and Kalman filtering to find the phase of the harmonic shear wave at 2 different locations. A viscoelastic Voigt model and the shear wave velocity measurements at different frequencies are used to find the shear elasticity (μ1) and viscosity (μ2) of the tissue. The purpose of this paper is to report the accuracy of the SDUV method over a range of different values of μ1 and μ2. A motion detection model of a vibrating scattering medium was used to analyze measurement errors of vibration phase in a scattering medium. To assess the accuracy of the SDUV method, we modeled the effects of phase errors on estimates of shear wave velocity and material properties while varying parameters such as shear stiffness and viscosity, shear wave amplitude, the distance between shear wave measurements (Δr), signal-to-noise ratio (SNR) of the ultrasound pulse-echo method, and the frequency range of the measurements. We performed an experiment in a section of porcine muscle to evaluate variation of the aforementioned parameters on the estimated shear wave velocity and material property measurements and to validate the error prediction model. The model showed that errors in the shear wave velocity and material property estimates were minimized by maximizing shear wave amplitude, pulse-echo SNR, Δr, and the bandwidth used for shear wave measurements. The experimental model showed optimum performance could be obtained for Δr = 3-6 mm

  14. Errors in Expected Human Losses Due to Incorrect Seismic Hazard Estimates

    NASA Astrophysics Data System (ADS)

    Wyss, M.; Nekrasova, A.; Kossobokov, V. G.

    2011-12-01

    The probability of strong ground motion is presented in seismic hazard maps, in which peak ground accelerations (PGA) with 10% probability of exceedance in 50 years are shown by color codes. It has become evident that these maps do not correctly give the seismic hazard. On the seismic hazard map of Japan, the epicenters of the recent large earthquakes are located in the regions of relatively low hazard. The errors of the GSHAP maps have been measured by the difference between observed and expected intensities due to large earthquakes. Here, we estimate how the errors in seismic hazard estimates propagate into errors in estimating the potential fatalities and affected population. We calculated the numbers of fatalities that would have to be expected in the regions of the nine earthquakes with more than 1,000 fatalities during the last 10 years with relatively reliable estimates of fatalities, assuming a magnitude which generates as a maximum intensity the one given by the GSHAP maps. This value is the number of fatalities to be exceeded with probability of 10% during 50 years. In most regions of devastating earthquakes, there are no instruments to measure ground accelerations. Therefore, we converted the PGA expected as a likely maximum based on the GSHAP maps to intensity. The magnitude of the earthquake that would cause the intensity expected by GSHAP as a likely maximum was calculated by M(GSHAP) = (I0 +1.5)/1.5. The numbers of fatalities, which were expected, based on earthquakes with M(GSHAP), were calculated using the loss estimating program QLARM. We calibrated this tool for each case by calculating the theoretical damage and numbers of fatalities (Festim) for the disastrous test earthquakes, generating a match with the observe numbers of fatalities (Fobs=Festim) by adjusting the attenuation relationship within the bounds of commonly observed laws. Calculating the numbers of fatalities expected for the earthquakes with M(GSHAP) will thus yield results that

  15. Simultaneous Estimation of Photometric Redshifts and SED Parameters: Improved Techniques and a Realistic Error Budget

    NASA Astrophysics Data System (ADS)

    Acquaviva, Viviana; Raichoor, Anand; Gawiser, Eric

    2015-05-01

    We seek to improve the accuracy of joint galaxy photometric redshift estimation and spectral energy distribution (SED) fitting. By simulating different sources of uncorrected systematic errors, we demonstrate that if the uncertainties in the photometric redshifts are estimated correctly, so are those on the other SED fitting parameters, such as stellar mass, stellar age, and dust reddening. Furthermore, we find that if the redshift uncertainties are over(under)-estimated, the uncertainties in SED parameters tend to be over(under)-estimated by similar amounts. These results hold even in the presence of severe systematics and provide, for the first time, a mechanism to validate the uncertainties on these parameters via comparison with spectroscopic redshifts. We propose a new technique (annealing) to re-calibrate the joint uncertainties in the photo-z and SED fitting parameters without compromising the performance of the SED fitting + photo-z estimation. This procedure provides a consistent estimation of the multi-dimensional probability distribution function in SED fitting + z parameter space, including all correlations. While the performance of joint SED fitting and photo-z estimation might be hindered by template incompleteness, we demonstrate that the latter is “flagged” by a large fraction of outliers in redshift, and that significant improvements can be achieved by using flexible stellar populations synthesis models and more realistic star formation histories. In all cases, we find that the median stellar age is better recovered than the time elapsed from the onset of star formation. Finally, we show that using a photometric redshift code such as EAZY to obtain redshift probability distributions that are then used as priors for SED fitting codes leads to only a modest bias in the SED fitting parameters and is thus a viable alternative to the simultaneous estimation of SED parameters and photometric redshifts.

  16. Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data

    PubMed Central

    Xu, Cong; Baines, Paul D.; Wang, Jane-Ling

    2014-01-01

    Joint modeling of survival and longitudinal data has been studied extensively in the recent literature. The likelihood approach is one of the most popular estimation methods employed within the joint modeling framework. Typically, the parameters are estimated using maximum likelihood, with computation performed by the expectation maximization (EM) algorithm. However, one drawback of this approach is that standard error (SE) estimates are not automatically produced when using the EM algorithm. Many different procedures have been proposed to obtain the asymptotic covariance matrix for the parameters when the number of parameters is typically small. In the joint modeling context, however, there may be an infinite-dimensional parameter, the baseline hazard function, which greatly complicates the problem, so that the existing methods cannot be readily applied. The profile likelihood and the bootstrap methods overcome the difficulty to some extent; however, they can be computationally intensive. In this paper, we propose two new methods for SE estimation using the EM algorithm that allow for more efficient computation of the SE of a subset of parametric components in a semiparametric or high-dimensional parametric model. The precision and computation time are evaluated through a thorough simulation study. We conclude with an application of our SE estimation method to analyze an HIV clinical trial dataset. PMID:24771699

  17. Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data.

    PubMed

    Xu, Cong; Baines, Paul D; Wang, Jane-Ling

    2014-10-01

    Joint modeling of survival and longitudinal data has been studied extensively in the recent literature. The likelihood approach is one of the most popular estimation methods employed within the joint modeling framework. Typically, the parameters are estimated using maximum likelihood, with computation performed by the expectation maximization (EM) algorithm. However, one drawback of this approach is that standard error (SE) estimates are not automatically produced when using the EM algorithm. Many different procedures have been proposed to obtain the asymptotic covariance matrix for the parameters when the number of parameters is typically small. In the joint modeling context, however, there may be an infinite-dimensional parameter, the baseline hazard function, which greatly complicates the problem, so that the existing methods cannot be readily applied. The profile likelihood and the bootstrap methods overcome the difficulty to some extent; however, they can be computationally intensive. In this paper, we propose two new methods for SE estimation using the EM algorithm that allow for more efficient computation of the SE of a subset of parametric components in a semiparametric or high-dimensional parametric model. The precision and computation time are evaluated through a thorough simulation study. We conclude with an application of our SE estimation method to analyze an HIV clinical trial dataset. PMID:24771699

  18. A Comparison of Bias and Mean Squared Error in Parameter Estimates of Interaction Effects: Moderated Multiple Regression versus Errors-in-Variables Regression.

    ERIC Educational Resources Information Center

    Anderson, Lance E.; And Others

    1996-01-01

    Simulations were used to compare the moderator variable detection capabilities of moderated multiple regression (MMR) and errors-in-variables regression (EIVR). Findings show that EIVR estimates are superior for large samples, but that MMR is better when reliabilities or sample sizes are low. (SLD)

  19. Prediction and standard error estimation for a finite universe total when a stratum is not sampled

    SciTech Connect

    Wright, T.

    1994-01-01

    In the context of a universe of trucks operating in the United States in 1990, this paper presents statistical methodology for estimating a finite universe total on a second occasion when a part of the universe is sampled and the remainder of the universe is not sampled. Prediction is used to compensate for the lack of data from the unsampled portion of the universe. The sample is assumed to be a subsample of an earlier sample where stratification is used on both occasions before sample selection. Accounting for births and deaths in the universe between the two points in time, the detailed sampling plan, estimator, standard error, and optimal sample allocation, are presented with a focus on the second occasion. If prior auxiliary information is available, the methodology is also applicable to a first occasion.

  20. Up-scaling analysis with rigorous error estimates for poromechanics in random polycrystals of porous laminates

    SciTech Connect

    Berryman, J G

    2005-01-03

    A detailed analytical model of random polycrystals of porous laminates has been developed. This approach permits detailed calculations of poromechanics constants as well as transport coefficients. The resulting earth reservoir model allows studies of both geomechanics and fluid permeability to proceed semi-analytically. Rigorous bounds of the Hashin-Shtrikman type provide estimates of overall bulk and shear moduli, and thereby also provide rigorous error estimates for geomechanical constants obtained from up-scaling based on a self-consistent effective medium method. The influence of hidden or unknown microstructure on the final results can then be evaluated quantitatively. Descriptions of the use of the model and some examples of typical results on the poromechanics of such a heterogeneous reservoir are presented.

  1. Multivariate Error Covariance Estimates by Monte-Carlo Simulation for Assimilation Studies in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Borovikov, Anna; Rienecker, Michele M.; Keppenne, Christian; Johnson, Gregory C.

    2004-01-01

    One of the most difficult aspects of ocean state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model-observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross-covariances between different model variables used. Here a comparison is made between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature. In the UOI case only temperature is updated using a Gaussian covariance function and in the MvOI salinity, zonal and meridional velocities as well as temperature, are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimation of the model error statistics is made by Monte-Carlo techniques from an ensemble of model integrations. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross-covariances between the fields of different physical variables constituting the model state vector, at the same time incorporating the model's dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere-Ocean array have been assimilated in this study. In order to investigate the efficacy of the multivariate scheme two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity and temperature. For reference, a third control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the

  2. A Model based Survey of Colour Deconvolution in Diagnostic Brightfield Microscopy: Error Estimation and Spectral Consideration

    PubMed Central

    Haub, Peter; Meckel, Tobias

    2015-01-01

    Colour deconvolution is a method used in diagnostic brightfield microscopy to transform colour images of multiple stained biological samples into images representing the stain concentrations. It is applied by decomposing the absorbance values of stain mixtures into absorbance values of single stains. The method assumes a linear relation between stain concentration and absorbance, which is only valid under monochromatic conditions. Diagnostic applications, in turn, are often performed under polychromatic conditions, for which an accurate deconvolution result cannot be achieved. To show this, we establish a mathematical model to calculate non-monochromatic absorbance values based on imaging equipment typically used in histology and use this simulated data as the ground truth to evaluate the accuracy of colour deconvolution. We show the non-linear characteristics of the absorbance formation and demonstrate how it leads to significant deconvolution errors. In particular, our calculations reveal that polychromatic illumination causes 10-times higher deconvolution errors than sequential monochromatic LED illumination. In conclusion, our model can be used for a quantitative assessment of system components - and also to assess and compare colour deconvolution methods. PMID:26223691

  3. Accurate state estimation for a hydraulic actuator via a SDRE nonlinear filter

    NASA Astrophysics Data System (ADS)

    Strano, Salvatore; Terzo, Mario

    2016-06-01

    The state estimation in hydraulic actuators is a fundamental tool for the detection of faults or a valid alternative to the installation of sensors. Due to the hard nonlinearities that characterize the hydraulic actuators, the performances of the linear/linearization based techniques for the state estimation are strongly limited. In order to overcome these limits, this paper focuses on an alternative nonlinear estimation method based on the State-Dependent-Riccati-Equation (SDRE). The technique is able to fully take into account the system nonlinearities and the measurement noise. A fifth order nonlinear model is derived and employed for the synthesis of the estimator. Simulations and experimental tests have been conducted and comparisons with the largely used Extended Kalman Filter (EKF) are illustrated. The results show the effectiveness of the SDRE based technique for applications characterized by not negligible nonlinearities such as dead zone and frictions.

  4. Laboratory measurement error in external dose estimates and its effects on dose-response analyses of Hanford worker mortality data

    SciTech Connect

    Gilbert, E.S.; Fix, J.J.

    1996-08-01

    This report addresses laboratory measurement error in estimates of external doses obtained from personnel dosimeters, and investigates the effects of these errors on linear dose-response analyses of data from epidemiologic studies of nuclear workers. These errors have the distinguishing feature that they are independent across time and across workers. Although the calculations made for this report were based on Hanford data, the overall conclusions are likely to be relevant for other epidemiologic studies of workers exposed to external radiation.

  5. Estimation of parameters in linear structural relationships: Sensitivity to the choice of the ratio of error variances

    NASA Technical Reports Server (NTRS)

    Lakshminarayanan, M. Y.; Gunst, R. F.

    1984-01-01

    Maximum likelihood estimation of parameters in linear structural relationships under normality assumptions requires knowledge of one or more of the model parameters if no replication is available. The most common assumption added to the model definition is that the ratio of the error variances of the response and predictor variates is known. The use of asymptotic formulae for variances and mean squared errors as a function of sample size and the assumed value for the error variance ratio is investigated.

  6. Estimation of parameters in linear structural relationships Sensitivity to the choice of the ratio of error variances

    NASA Technical Reports Server (NTRS)

    Lakshminarayanan, M. Y.; Gunst, R. F.

    1984-01-01

    Maximum likelihood estimation of parameters in linear structural relationships under normality assumptions requires knowledge of one or more of the model parameters if no replication is available. The most common assumption added to the model definition is that the ratio of the error variances of the response and predictor variates is known. This paper investigates the use of asymptotic formulae for variances and mean squared errors as a function of sample size and the assumed value for the error variance ratio.

  7. Practical error estimates for Reynolds' lubrication approximation and its higher order corrections

    SciTech Connect

    Wilkening, Jon

    2008-12-10

    Reynolds lubrication approximation is used extensively to study flows between moving machine parts, in narrow channels, and in thin films. The solution of Reynolds equation may be thought of as the zeroth order term in an expansion of the solution of the Stokes equations in powers of the aspect ratio {var_epsilon} of the domain. In this paper, we show how to compute the terms in this expansion to arbitrary order on a two-dimensional, x-periodic domain and derive rigorous, a-priori error bounds for the difference between the exact solution and the truncated expansion solution. Unlike previous studies of this sort, the constants in our error bounds are either independent of the function h(x) describing the geometry, or depend on h and its derivatives in an explicit, intuitive way. Specifically, if the expansion is truncated at order 2k, the error is O({var_epsilon}{sup 2k+2}) and h enters into the error bound only through its first and third inverse moments {integral}{sub 0}{sup 1} h(x){sup -m} dx, m = 1,3 and via the max norms {parallel} 1/{ell}! h{sup {ell}-1}{partial_derivative}{sub x}{sup {ell}}h{parallel}{sub {infinity}}, 1 {le} {ell} {le} 2k + 2. We validate our estimates by comparing with finite element solutions and present numerical evidence that suggests that even when h is real analytic and periodic, the expansion solution forms an asymptotic series rather than a convergent series.

  8. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  9. Online estimation of the target registration error for n-ocular optical tracking systems.

    PubMed

    Sielhorst, Tobias; Bauer, Martin; Wenisch, Oliver; Klinker, Gudrun; Navab, Nassir

    2007-01-01

    For current surgical navigation systems optical tracking is state of the art. The accuracy of these tracking systems is currently determined statically for the case of full visibility of all tracking targets. We propose a dynamic determination of the accuracy based on the visibility and geometry of the tracking setup. This real time estimation of accuracy has a multitude of applications. For multiple camera systems it allows reducing line of sight problems and guaranteeing a certain accuracy. The visualization of these accuracies allows surgeons to perform the procedures taking to the tracking accuracy into account. It also allows engineers to design tracking setups interactively guaranteeing a certain accuracy. Our model is an extension to the state of the art models of Fitzpatrick et al. and Hoff et al. We model the error in the camera sensor plane. The error is propagated using the internal camera parameter, camera poses, tracking target poses, target geometry and marker visibility, in order to estimate the final accuracy of the tracked instrument. PMID:18044624

  10. Multi Function Heat Pulse Probes (MFHPP) to Estimate Ground Heat Flux and Reduce Surface Energy Budget Errors

    NASA Astrophysics Data System (ADS)

    Ciocca, Francesco; Sharma, Varun; Lunati, Ivan; Parlange, Marc B.

    2013-04-01

    Ground heat flux plays a crucial role in surface energy budget: an incorrect estimation of energy storage and heat fluxes in soils occur when probes such as heat flux plates are adopted, and these mistakes can account for up to 90% of the residual variance (Higgins, GRL, 2012). A promising alternative to heat flux plates is represented by Multi Function Heat Pulse Probes (MFHPP). They have proven to be accurate in thermal properties and heat fluxes estimation (e.g. Cobos, VZJ, 2003) and can be used to monitor and quantify subsurface evaporation in field experiments (Xiao et al., VZJ, 2011). We perform a laboratory experiment with controlled temperature in a small Plexiglas column (20cm diameter and 40cm height). The column is packed with homogeneously saturated sandy soil and equipped with three MFHPPs in the upper 4cm and thermocouples and dielectric soil moisture probes deeper. This configuration allows for accurate and simultaneous ground heat flux, soil moisture and subsurface evaporation measurements. Total evaporation is monitored using a precision scale, while an infrared gun and a long wave radiometer measure the soil skin temperature and the outgoing long-short wave radiation, respectively. A fan and a heat lamp placed above the column allow to mimick on a smaller and more controlled scale the field conditions induced by the diurnal cycle. At a reference height above the column relative humidity, wind speed and air temperature are collected. Results are interpreted by means of numerical simulations performed with an ad-hoc-developed numerical model that simulates coupled heat and moisture transfer in soils and is used to match and interpolate the temperature and soil moisture values got at finite depths within the column. Ground heat fluxes are then estimated by integrating over almost continuous, numerically simulated temperature profiles, which avoids errors due to use of discrete data (Lunati et al., WRR, 2012) and leads to a more reliable estimate of

  11. Standard error in the Jacobson and Truax Reliable Change Index: the "classical approach" leads to poor estimates.

    PubMed

    Temkin, Nancy R

    2004-10-01

    Different authors have used different estimates of variability in the denominator of the Reliable Change Index (RCI). Maassen attempts to clarify some of the differences and the assumptions underlying them. In particular he compares the 'classical' approach using an estimate S(Ed) supposedly based on measurement error alone with an estimate S(Diff) based on the variability of observed differences in a population that should have no true change. Maassen concludes that not only is S(Ed) based on classical theory, but it properly estimates variability due to measurement error and practice effect while S(Diff) overestimates variability by accounting twice for the variability due to practice. Simulations show Maassen to be wrong on both accounts. With an error rate nominally set to 10%, RCI estimates using S(Diff) wrongly declare change in 10.4% and 9.4% of simulated cases without true change while estimates using S(Ed) wrongly declare change in 17.5% and 12.3% of the simulated cases (p < .000000001 and p < .008, respectively). In the simulation that separates measurement error and practice effects, SEd estimates the variability of change due to measurement error to be .34, when the true variability due to measurement error was .014. Neuropsychologists should not use SEd in the denominator of the RCI. PMID:15637781

  12. Edge-based a posteriori error estimators for generation of d-dimensional quasi-optimal meshes

    SciTech Connect

    Lipnikov, Konstantin; Agouzal, Abdellatif; Vassilevski, Yuri

    2009-01-01

    We present a new method of metric recovery for minimization of L{sub p}-norms of the interpolation error or its gradient. The method uses edge-based a posteriori error estimates. The method is analyzed for conformal simplicial meshes in spaces of arbitrary dimension d.

  13. A Comparison of Item Parameter Standard Error Estimation Procedures for Unidimensional and Multidimensional Item Response Theory Modeling

    ERIC Educational Resources Information Center

    Paek, Insu; Cai, Li

    2014-01-01

    The present study was motivated by the recognition that standard errors (SEs) of item response theory (IRT) model parameters are often of immediate interest to practitioners and that there is currently a lack of comparative research on different SE (or error variance-covariance matrix) estimation procedures. The present study investigated item…

  14. Application of parameter estimation to aircraft stability and control: The output-error approach

    NASA Technical Reports Server (NTRS)

    Maine, Richard E.; Iliff, Kenneth W.

    1986-01-01

    The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific program for an example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results.

  15. FAST TRACK COMMUNICATION Accurate estimate of α variation and isotope shift parameters in Na and Mg+

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2010-12-01

    We present accurate calculations of fine-structure constant variation coefficients and isotope shifts in Na and Mg+ using the relativistic coupled-cluster method. In our approach, we are able to discover the roles of various correlation effects explicitly to all orders in these calculations. Most of the results, especially for the excited states, are reported for the first time. It is possible to ascertain suitable anchor and probe lines for the studies of possible variation in the fine-structure constant by using the above results in the considered systems.

  16. Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2006-01-01

    Autonomous space rendezvous scenarios require knowledge of the target vehicle state in order to safely dock with the chaser vehicle. Ideally, the target vehicle state information is derived from telemetered data, or with the use of known tracking points on the target vehicle. However, if the target vehicle is non-cooperative and does not have the ability to maintain attitude control, or transmit attitude knowledge, the docking becomes more challenging. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a tracking control scheme. The approach is tested with the robotic servicing mission concept for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates, but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST.

  17. Precision Pointing Control to and Accurate Target Estimation of a Non-Cooperative Vehicle

    NASA Technical Reports Server (NTRS)

    VanEepoel, John; Thienel, Julie; Sanner, Robert M.

    2006-01-01

    In 2004, NASA began investigating a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates in order to achieve capture by the proposed Hubble Robotic Vehicle (HRV), but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST. To generalize the situation, HST is the target vehicle and HRV is the chaser. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a control scheme. Non-cooperative in this context relates to the target vehicle no longer having the ability to maintain attitude control or transmit attitude knowledge.

  18. Fast and accurate probability density estimation in large high dimensional astronomical datasets

    NASA Astrophysics Data System (ADS)

    Gupta, Pramod; Connolly, Andrew J.; Gardner, Jeffrey P.

    2015-01-01

    Astronomical surveys will generate measurements of hundreds of attributes (e.g. color, size, shape) on hundreds of millions of sources. Analyzing these large, high dimensional data sets will require efficient algorithms for data analysis. An example of this is probability density estimation that is at the heart of many classification problems such as the separation of stars and quasars based on their colors. Popular density estimation techniques use binning or kernel density estimation. Kernel density estimation has a small memory footprint but often requires large computational resources. Binning has small computational requirements but usually binning is implemented with multi-dimensional arrays which leads to memory requirements which scale exponentially with the number of dimensions. Hence both techniques do not scale well to large data sets in high dimensions. We present an alternative approach of binning implemented with hash tables (BASH tables). This approach uses the sparseness of data in the high dimensional space to ensure that the memory requirements are small. However hashing requires some extra computation so a priori it is not clear if the reduction in memory requirements will lead to increased computational requirements. Through an implementation of BASH tables in C++ we show that the additional computational requirements of hashing are negligible. Hence this approach has small memory and computational requirements. We apply our density estimation technique to photometric selection of quasars using non-parametric Bayesian classification and show that the accuracy of the classification is same as the accuracy of earlier approaches. Since the BASH table approach is one to three orders of magnitude faster than the earlier approaches it may be useful in various other applications of density estimation in astrostatistics.

  19. Spectral estimation from laser scanner data for accurate color rendering of objects

    NASA Astrophysics Data System (ADS)

    Baribeau, Rejean

    2002-06-01

    Estimation methods are studied for the recovery of the spectral reflectance across the visible range from the sensing at just three discrete laser wavelengths. Methods based on principal component analysis and on spline interpolation are judged based on the CIE94 color differences for some reference data sets. These include the Macbeth color checker, the OSA-UCS color charts, some artist pigments, and a collection of miscellaneous surface colors. The optimal three sampling wavelengths are also investigated. It is found that color can be estimated with average accuracy ΔE94 = 2.3 when optimal wavelengths 455 nm, 540 n, and 610 nm are used.

  20. Accurate radiocarbon age estimation using "early" measurements: a new approach to reconstructing the Paleolithic absolute chronology

    NASA Astrophysics Data System (ADS)

    Omori, Takayuki; Sano, Katsuhiro; Yoneda, Minoru

    2014-05-01

    This paper presents new correction approaches for "early" radiocarbon ages to reconstruct the Paleolithic absolute chronology. In order to discuss time-space distribution about the replacement of archaic humans, including Neanderthals in Europe, by the modern humans, a massive data, which covers a wide-area, would be needed. Today, some radiocarbon databases focused on the Paleolithic have been published and used for chronological studies. From a viewpoint of current analytical technology, however, the any database have unreliable results that make interpretation of radiocarbon dates difficult. Most of these unreliable ages had been published in the early days of radiocarbon analysis. In recent years, new analytical methods to determine highly-accurate dates have been developed. Ultrafiltration and ABOx-SC methods, as new sample pretreatments for bone and charcoal respectively, have attracted attention because they could remove imperceptible contaminates and derive reliable accurately ages. In order to evaluate the reliability of "early" data, we investigated the differences and variabilities of radiocarbon ages on different pretreatments, and attempted to develop correction functions for the assessment of the reliability. It can be expected that reliability of the corrected age is increased and the age applied to chronological research together with recent ages. Here, we introduce the methodological frameworks and archaeological applications.

  1. Improved Object Localization Using Accurate Distance Estimation in Wireless Multimedia Sensor Networks

    PubMed Central

    Ur Rehman, Yasar Abbas; Tariq, Muhammad; Khan, Omar Usman

    2015-01-01

    Object localization plays a key role in many popular applications of Wireless Multimedia Sensor Networks (WMSN) and as a result, it has acquired a significant status for the research community. A significant body of research performs this task without considering node orientation, object geometry and environmental variations. As a result, the localized object does not reflect the real world scenarios. In this paper, a novel object localization scheme for WMSN has been proposed that utilizes range free localization, computer vision, and principle component analysis based algorithms. The proposed approach provides the best possible approximation of distance between a wmsn sink and an object, and the orientation of the object using image based information. Simulation results report 99% efficiency and an error ratio of 0.01 (around 1 ft) when compared to other popular techniques. PMID:26528919

  2. An online model correction method based on an inverse problem: Part I—Model error estimation by iteration

    NASA Astrophysics Data System (ADS)

    Xue, Haile; Shen, Xueshun; Chou, Jifan

    2015-10-01

    Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS.

  3. Error and bias in size estimates of whale sharks: implications for understanding demography

    PubMed Central

    Sequeira, Ana M. M.; Thums, Michele; Brooks, Kim; Meekan, Mark G.

    2016-01-01

    Body size and age at maturity are indicative of the vulnerability of a species to extinction. However, they are both difficult to estimate for large animals that cannot be restrained for measurement. For very large species such as whale sharks, body size is commonly estimated visually, potentially resulting in the addition of errors and bias. Here, we investigate the errors and bias associated with total lengths of whale sharks estimated visually by comparing them with measurements collected using a stereo-video camera system at Ningaloo Reef, Western Australia. Using linear mixed-effects models, we found that visual lengths were biased towards underestimation with increasing size of the shark. When using the stereo-video camera, the number of larger individuals that were possibly mature (or close to maturity) that were detected increased by approximately 10%. Mean lengths calculated by each method were, however, comparable (5.002 ± 1.194 and 6.128 ± 1.609 m, s.d.), confirming that the population at Ningaloo is mostly composed of immature sharks based on published lengths at maturity. We then collated data sets of total lengths sampled from aggregations of whale sharks worldwide between 1995 and 2013. Except for locations in the East Pacific where large females have been reported, these aggregations also largely consisted of juveniles (mean lengths less than 7 m). Sightings of the largest individuals were limited and occurred mostly prior to 2006. This result highlights the urgent need to locate and quantify the numbers of mature male and female whale sharks in order to ascertain the conservation status and ensure persistence of the species. PMID:27069656

  4. Error and bias in size estimates of whale sharks: implications for understanding demography.

    PubMed

    Sequeira, Ana M M; Thums, Michele; Brooks, Kim; Meekan, Mark G

    2016-03-01

    Body size and age at maturity are indicative of the vulnerability of a species to extinction. However, they are both difficult to estimate for large animals that cannot be restrained for measurement. For very large species such as whale sharks, body size is commonly estimated visually, potentially resulting in the addition of errors and bias. Here, we investigate the errors and bias associated with total lengths of whale sharks estimated visually by comparing them with measurements collected using a stereo-video camera system at Ningaloo Reef, Western Australia. Using linear mixed-effects models, we found that visual lengths were biased towards underestimation with increasing size of the shark. When using the stereo-video camera, the number of larger individuals that were possibly mature (or close to maturity) that were detected increased by approximately 10%. Mean lengths calculated by each method were, however, comparable (5.002 ± 1.194 and 6.128 ± 1.609 m, s.d.), confirming that the population at Ningaloo is mostly composed of immature sharks based on published lengths at maturity. We then collated data sets of total lengths sampled from aggregations of whale sharks worldwide between 1995 and 2013. Except for locations in the East Pacific where large females have been reported, these aggregations also largely consisted of juveniles (mean lengths less than 7 m). Sightings of the largest individuals were limited and occurred mostly prior to 2006. This result highlights the urgent need to locate and quantify the numbers of mature male and female whale sharks in order to ascertain the conservation status and ensure persistence of the species. PMID:27069656

  5. A Generalized Subspace Least Mean Square Method for High-resolution Accurate Estimation of Power System Oscillation Modes

    SciTech Connect

    Zhang, Peng; Zhou, Ning; Abdollahi, Ali

    2013-09-10

    A Generalized Subspace-Least Mean Square (GSLMS) method is presented for accurate and robust estimation of oscillation modes from exponentially damped power system signals. The method is based on orthogonality of signal and noise eigenvectors of the signal autocorrelation matrix. Performance of the proposed method is evaluated using Monte Carlo simulation and compared with Prony method. Test results show that the GSLMS is highly resilient to noise and significantly dominates Prony method in tracking power system modes under noisy environments.

  6. How Accurate and Robust Are the Phylogenetic Estimates of Austronesian Language Relationships?

    PubMed Central

    Greenhill, Simon J.; Drummond, Alexei J.; Gray, Russell D.

    2010-01-01

    We recently used computational phylogenetic methods on lexical data to test between two scenarios for the peopling of the Pacific. Our analyses of lexical data supported a pulse-pause scenario of Pacific settlement in which the Austronesian speakers originated in Taiwan around 5,200 years ago and rapidly spread through the Pacific in a series of expansion pulses and settlement pauses. We claimed that there was high congruence between traditional language subgroups and those observed in the language phylogenies, and that the estimated age of the Austronesian expansion at 5,200 years ago was consistent with the archaeological evidence. However, the congruence between the language phylogenies and the evidence from historical linguistics was not quantitatively assessed using tree comparison metrics. The robustness of the divergence time estimates to different calibration points was also not investigated exhaustively. Here we address these limitations by using a systematic tree comparison metric to calculate the similarity between the Bayesian phylogenetic trees and the subgroups proposed by historical linguistics, and by re-estimating the age of the Austronesian expansion using only the most robust calibrations. The results show that the Austronesian language phylogenies are highly congruent with the traditional subgroupings, and the date estimates are robust even when calculated using a restricted set of historical calibrations. PMID:20224774

  7. Accurate Angle Estimator for High-Frame-Rate 2-D Vector Flow Imaging.

    PubMed

    Villagomez Hoyos, Carlos Armando; Stuart, Matthias Bo; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2016-06-01

    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using the experimental ultrasound scanner SARUS and a flow rig before being tested in vivo. An 8-MHz linear array transducer is used with defocused beam emissions. In the simulations of a spinning disk phantom, a 360° uniform behavior on the angle estimation is observed with a median angle bias of 1.01° and a median angle SD of 1.8°. Similar results are obtained on a straight vessel for both simulations and measurements, where the obtained angle biases are below 1.5° with SDs around 1°. Estimated velocity magnitudes are also kept under 10% bias and 5% relative SD in both simulations and measurements. An in vivo measurement is performed on a carotid bifurcation of a healthy individual. A 3-s acquisition during three heart cycles is captured. A consistent and repetitive vortex is observed in the carotid bulb during systoles. PMID:27093598

  8. Accurate estimation of influenza epidemics using Google search data via ARGO.

    PubMed

    Yang, Shihao; Santillana, Mauricio; Kou, S C

    2015-11-24

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions. PMID:26553980

  9. Accurate estimation of influenza epidemics using Google search data via ARGO

    PubMed Central

    Yang, Shihao; Santillana, Mauricio; Kou, S. C.

    2015-01-01

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search–based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people’s online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions. PMID:26553980

  10. A Novel Systematic Error Compensation Algorithm Based on Least Squares Support Vector Regression for Star Sensor Image Centroid Estimation

    PubMed Central

    Yang, Jun; Liang, Bin; Zhang, Tao; Song, Jingyan

    2011-01-01

    The star centroid estimation is the most important operation, which directly affects the precision of attitude determination for star sensors. This paper presents a theoretical study of the systematic error introduced by the star centroid estimation algorithm. The systematic error is analyzed through a frequency domain approach and numerical simulations. It is shown that the systematic error consists of the approximation error and truncation error which resulted from the discretization approximation and sampling window limitations, respectively. A criterion for choosing the size of the sampling window to reduce the truncation error is given in this paper. The systematic error can be evaluated as a function of the actual star centroid positions under different Gaussian widths of star intensity distribution. In order to eliminate the systematic error, a novel compensation algorithm based on the least squares support vector regression (LSSVR) with Radial Basis Function (RBF) kernel is proposed. Simulation results show that when the compensation algorithm is applied to the 5-pixel star sampling window, the accuracy of star centroid estimation is improved from 0.06 to 6 × 10−5 pixels. PMID:22164021

  11. Impact of model errors in convective transport on CO source estimates inferred from MOPITT CO retrievals

    NASA Astrophysics Data System (ADS)

    Jiang, Zhe; Jones, Dylan B. A.; Worden, Helen M.; Deeter, Merritt N.; Henze, Daven K.; Worden, John; Bowman, Kevin W.; Brenninkmeijer, C. A. M.; Schuck, T. J.

    2013-02-01

    Estimates of surface fluxes of carbon monoxide (CO) inferred from remote sensing observations or free tropospheric trace gas measurements using global chemical transport models can have significant uncertainties because of discrepancies in the vertical transport in the models, which make it challenging to unequivocally relate the observations back to the surface fluxes in the models. The new Measurement of Pollution in the Troposphere (MOPITT) version 5 retrievals provide greater sensitivity to lower tropospheric CO over land relative to the previous versions and are, therefore, useful for evaluating vertical transport in models. We have assimilated the new MOPITT CO retrievals, using the Goddard Earth Observing System (GEOS)-Chem model, to study the influence of vertical transport errors on inferred CO sources. We compared the source estimates obtained by assimilating the CO profiles, the column amounts, and the surface level retrievals for June-August 2006. The three different inversions produced large differences in the source estimates in regions of convection and strong CO emissions. The inversion using the CO profiles suggested an 85% increase in emissions in India/Southeast Asia, which exacerbated the model bias in the lower and middle troposphere, whereas using the surface level retrievals produced a 37% decrease in Indian/Southeast Asian emissions, which exacerbated the underestimate of CO in the upper troposphere. Globally, the inversion with the surface retrievals suggested a 22% reduction in emissions from the a priori estimate of 161 Tg CO/month (from combustion and the oxidation of biogenic volatile organic compounds), averaged in June-August 2006. The analysis results were validated with independent surface CO measurements from NOAA Global Monitoring Division (GMD) network and upper troposphere CO measurements from the Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrumented Container (CARIBIC). We found that the

  12. Estimating ages of white-tailed deer: Age and sex patterns of error using tooth wear-and-replacement and consistency of cementum annuli

    USGS Publications Warehouse

    Samuel, Michael D.; Storm, Daniel J.; Rolley, Robert E.; Beissel, Thomas; Richards, Bryan J.; Van Deelen, Timothy R.

    2014-01-01

    The age structure of harvested animals provides the basis for many demographic analyses. Ages of harvested white-tailed deer (Odocoileus virginianus) and other ungulates often are estimated by evaluating replacement and wear patterns of teeth, which is subjective and error-prone. Few previous studies however, examined age- and sex-specific error rates. Counting cementum annuli of incisors is an alternative, more accurate method of estimating age, but factors that influence consistency of cementum annuli counts are poorly known. We estimated age of 1,261 adult (≥1.5 yr old) white-tailed deer harvested in Wisconsin and Illinois (USA; 2005–2008) using both wear-and-replacement and cementum annuli. We compared cementum annuli with wear-and-replacement estimates to assess misclassification rates by sex and age. Wear-and-replacement for estimating ages of white-tailed deer resulted in substantial misclassification compared with cementum annuli. Age classes of females were consistently underestimated, while those of males were underestimated for younger age classes but overestimated for older age classes. Misclassification resulted in an impression of a younger age-structure than actually was the case. Additionally, we obtained paired age-estimates from cementum annuli for 295 deer. Consistency of paired cementum annuli age-estimates decreased with age, was lower in females than males, and decreased as age estimates became less certain. Our results indicated that errors in the wear-and-replacement techniques are substantial and could impact demographic analyses that use age-structure information. 

  13. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1991-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  14. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1990-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  15. Plant DNA Barcodes Can Accurately Estimate Species Richness in Poorly Known Floras

    PubMed Central

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Background Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Methodology/Principal Findings Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. Conclusions/Significance We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways. PMID:22096501

  16. Accurate estimation of retinal vessel width using bagged decision trees and an extended multiresolution Hermite model.

    PubMed

    Lupaşcu, Carmen Alina; Tegolo, Domenico; Trucco, Emanuele

    2013-12-01

    We present an algorithm estimating the width of retinal vessels in fundus camera images. The algorithm uses a novel parametric surface model of the cross-sectional intensities of vessels, and ensembles of bagged decision trees to estimate the local width from the parameters of the best-fit surface. We report comparative tests with REVIEW, currently the public database of reference for retinal width estimation, containing 16 images with 193 annotated vessel segments and 5066 profile points annotated manually by three independent experts. Comparative tests are reported also with our own set of 378 vessel widths selected sparsely in 38 images from the Tayside Scotland diabetic retinopathy screening programme and annotated manually by two clinicians. We obtain considerably better accuracies compared to leading methods in REVIEW tests and in Tayside tests. An important advantage of our method is its stability (success rate, i.e., meaningful measurement returned, of 100% on all REVIEW data sets and on the Tayside data set) compared to a variety of methods from the literature. We also find that results depend crucially on testing data and conditions, and discuss criteria for selecting a training set yielding optimal accuracy. PMID:24001930

  17. Compact and accurate linear and nonlinear autoregressive moving average model parameter estimation using laguerre functions.

    PubMed

    Chon, K H; Cohen, R J; Holstein-Rathlou, N H

    1997-01-01

    A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes the physiological interpretation of higher order kernels easier. Furthermore, simulation results show better performance of the proposed approach in estimating the system dynamics than LEK in certain cases, and it remains effective in the presence of significant additive measurement noise. PMID:9236985

  18. Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry

    NASA Astrophysics Data System (ADS)

    Rosenthal, Yair; Lohmann, George P.

    2002-09-01

    Paired δ18O and Mg/Ca measurements on the same foraminiferal shells offer the ability to independently estimate sea surface temperature (SST) changes and assess their temporal relationship to the growth and decay of continental ice sheets. The accuracy of this method is confounded, however, by the absence of a quantitative method to correct Mg/Ca records for alteration by dissolution. Here we describe dissolution-corrected calibrations for Mg/Ca-paleothermometry in which the preexponent constant is a function of size-normalized shell weight: (1) for G. ruber (212-300 μm) (Mg/Ca)ruber = (0.025 wt + 0.11) e0.095T and (b) for G. sacculifer (355-425 μm) (Mg/Ca)sacc = (0.0032 wt + 0.181) e0.095T. The new calibrations improve the accuracy of SST estimates and are globally applicable. With this correction, eastern equatorial Atlantic SST during the Last Glacial Maximum is estimated to be 2.9° ± 0.4°C colder than today.

  19. Systematic Errors in Low-latency Gravitational Wave Parameter Estimation Impact Electromagnetic Follow-up Observations

    NASA Astrophysics Data System (ADS)

    Littenberg, Tyson B.; Farr, Ben; Coughlin, Scott; Kalogera, Vicky

    2016-03-01

    Among the most eagerly anticipated opportunities made possible by Advanced LIGO/Virgo are multimessenger observations of compact mergers. Optical counterparts may be short-lived so rapid characterization of gravitational wave (GW) events is paramount for discovering electromagnetic signatures. One way to meet the demand for rapid GW parameter estimation is to trade off accuracy for speed, using waveform models with simplified treatment of the compact objects’ spin. We report on the systematic errors in GW parameter estimation suffered when using different spin approximations to recover generic signals. Component mass measurements can be biased by \\gt 5σ using simple-precession waveforms and in excess of 20σ when non-spinning templates are employed. This suggests that electromagnetic observing campaigns should not take a strict approach to selecting which LIGO/Virgo candidates warrant follow-up observations based on low-latency mass estimates. For sky localization, we find that searched areas are up to a factor of ∼ 2 larger for non-spinning analyses, and are systematically larger for any of the simplified waveforms considered in our analysis. Distance biases for the non-precessing waveforms can be in excess of 100% and are largest when the spin angular momenta are in the orbital plane of the binary. We confirm that spin-aligned waveforms should be used for low-latency parameter estimation at the minimum. Including simple precession, though more computationally costly, mitigates biases except for signals with extreme precession effects. Our results shine a spotlight on the critical need for development of computationally inexpensive precessing waveforms and/or massively parallel algorithms for parameter estimation.

  20. Estimation of immunization providers' activities cost, medication cost, and immunization dose errors cost in Iraq.

    PubMed

    Al-lela, Omer Qutaiba B; Bahari, Mohd Baidi; Al-abbassi, Mustafa G; Salih, Muhannad R M; Basher, Amena Y

    2012-06-01

    The immunization status of children is improved by interventions that increase community demand for compulsory and non-compulsory vaccines, one of the most important interventions related to immunization providers. The aim of this study is to evaluate the activities of immunization providers in terms of activities time and cost, to calculate the immunization doses cost, and to determine the immunization dose errors cost. Time-motion and cost analysis study design was used. Five public health clinics in Mosul-Iraq participated in the study. Fifty (50) vaccine doses were required to estimate activities time and cost. Micro-costing method was used; time and cost data were collected for each immunization-related activity performed by the clinic staff. A stopwatch was used to measure the duration of activity interactions between the parents and clinic staff. The immunization service cost was calculated by multiplying the average salary/min by activity time per minute. 528 immunization cards of Iraqi children were scanned to determine the number and the cost of immunization doses errors (extraimmunization doses and invalid doses). The average time for child registration was 6.7 min per each immunization dose, and the physician spent more than 10 min per dose. Nurses needed more than 5 min to complete child vaccination. The total cost of immunization activities was 1.67 US$ per each immunization dose. Measles vaccine (fifth dose) has a lower price (0.42 US$) than all other immunization doses. The cost of a total of 288 invalid doses was 744.55 US$ and the cost of a total of 195 extra immunization doses was 503.85 US$. The time spent on physicians' activities was longer than that spent on registrars' and nurses' activities. Physician total cost was higher than registrar cost and nurse cost. The total immunization cost will increase by about 13.3% owing to dose errors. PMID:22521848

  1. How errors in the calibration of GRACE accelerometers affect the estimates of temporal gravity fields

    NASA Astrophysics Data System (ADS)

    Tregoning, P.; McClusky, S.; Purcell, A. P.; McQueen, H.

    2015-12-01

    Non-gravitational accelerations acting on each of the GRACE satellites are measured in the along-track, cross-track and radial directions by the accelerometers onboard each satellite. The calibration of the observed non-gravitational accelerations requires determining a scaling factor and (at least) an offset for the observations in each of the three directions. We demonstrate in this presentation how small errors in the scale factors used to calibrate the accelerometer observations affect the noise level in the estimated temporal gravity field. We performed a parameter space search to find the optimal scale factors that generated the smallest prefit range-rate residuals and found that we can model the satellite orbits without the use of any empirical parameters, whilst still being able to identify the temporal gravity field signal in the prefit KBRR residuals. We will describe some physical conditions when the satellites are in the shadow of the Earth that we use to constrain the estimates of calibration biases and scales and show how the noise level of the estimated temporal gravity field varies with and without the use of the optimal calibration values for the accelerometer observations. A similar approach will be both required and effective to calibrate the accelerometers onboard the GRACE Follow-On mission.

  2. Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models.

    PubMed

    Liang, Hua; Wu, Hulin

    2008-12-01

    Differential equation (DE) models are widely used in many scientific fields that include engineering, physics and biomedical sciences. The so-called "forward problem", the problem of simulations and predictions of state variables for given parameter values in the DE models, has been extensively studied by mathematicians, physicists, engineers and other scientists. However, the "inverse problem", the problem of parameter estimation based on the measurements of output variables, has not been well explored using modern statistical methods, although some least squares-based approaches have been proposed and studied. In this paper, we propose parameter estimation methods for ordinary differential equation models (ODE) based on the local smoothing approach and a pseudo-least squares (PsLS) principle under a framework of measurement error in regression models. The asymptotic properties of the proposed PsLS estimator are established. We also compare the PsLS method to the corresponding SIMEX method and evaluate their finite sample performances via simulation studies. We illustrate the proposed approach using an application example from an HIV dynamic study. PMID:19956350

  3. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  4. Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Garcia, P.

    2016-04-01

    Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its

  5. Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System

    PubMed Central

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-01-01

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384

  6. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system.

    PubMed

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-01-01

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384

  7. Assessing stand water use in four coastal wetland forests using sapflow techniques: annual estimates, errors and associated uncertainties

    USGS Publications Warehouse

    Krauss, Ken W.; Duberstein, Jamie A.; Conner, William H.

    2015-01-01

    Forests comprise approximately 37% of the terrestrial land surface and influence global water cycling. However, very little attention has been directed towards understanding environmental impacts on stand water use (S) or in identifying rates of S from specific forested wetlands. Here, we use sapflow techniques to address two separate but linked objectives: (1) determine S in four, hydrologically distinctive South Carolina (USA) wetland forests from 2009–2010 and (2) describe potential error, uncertainty and stand-level variation associated with these assessments. Sapflow measurements were made from a number of tree species for approximately 2–8 months over 2 years to initiate the model, which was applied to canopy trees (DBH > 10–20 cm). We determined that S in three healthy forested wetlands varied from 1.97–3.97 mm day−1 or 355–687 mm year−1 when scaled. In contrast, saltwater intrusion impacted individual tree physiology and size class distributions on a fourth site, which decreased S to 0.61–1.13 mm day−1 or 110–196 mm year−1. The primary sources of error in estimations using sapflow probes would relate to calibration of probes and standardization relative to no flow periods and accounting for accurate sapflow attenuation with radial depth into the sapwood by species and site. Such inherent variation in water use among wetland forest stands makes small differences in S (<200 mm year−1) difficult to detect statistically through modelling, even though small differences may be important to local water cycling. These data also represent some of the first assessments of S from temperate, coastal forested wetlands along the Atlantic coast of the USA.

  8. Error estimates for the analysis of differential expression from RNA-seq count data

    PubMed Central

    Qureshi, Sumaira E.; Wilson, Susan R.

    2014-01-01

    Background. A number of algorithms exist for analysing RNA-sequencing data to infer profiles of differential gene expression. Problems inherent in building algorithms around statistical models of over dispersed count data are formidable and frequently lead to non-uniform p-value distributions for null-hypothesis data and to inaccurate estimates of false discovery rates (FDRs). This can lead to an inaccurate measure of significance and loss of power to detect differential expression. Results. We use synthetic and real biological data to assess the ability of several available R packages to accurately estimate FDRs. The packages surveyed are based on statistical models of overdispersed Poisson data and include edgeR, DESeq, DESeq2, PoissonSeq and QuasiSeq. Also tested is an add-on package to edgeR and DESeq which we introduce called Polyfit. Polyfit aims to address the problem of a non-uniform null p-value distribution for two-class datasets by adapting the Storey–Tibshirani procedure. Conclusions. We find the best performing package in the sense that it achieves a low FDR which is accurately estimated over the full range of p-values, albeit with a very slow run time, is the QLSpline implementation of QuasiSeq. This finding holds provided the number of biological replicates in each condition is at least 4. The next best performing packages are edgeR and DESeq2. When the number of biological replicates is sufficiently high, and within a range accessible to multiplexed experimental designs, the Polyfit extension improves the performance DESeq (for approximately 6 or more replicates per condition), making its performance comparable with that of edgeR and DESeq2 in our tests with synthetic data. PMID:25337456

  9. Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method.

    PubMed

    Bahşı, Ayşe Kurt; Yalçınbaş, Salih

    2016-01-01

    In this study, the Fibonacci collocation method based on the Fibonacci polynomials are presented to solve for the fractional diffusion equations with variable coefficients. The fractional derivatives are described in the Caputo sense. This method is derived by expanding the approximate solution with Fibonacci polynomials. Using this method of the fractional derivative this equation can be reduced to a set of linear algebraic equations. Also, an error estimation algorithm which is based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation algorithm. If the exact solution of the problem is not known, the absolute error function of the problems can be approximately computed by using the Fibonacci polynomial solution. By using this error estimation function, we can find improved solutions which are more efficient than direct numerical solutions. Numerical examples, figures, tables are comparisons have been presented to show efficiency and usable of proposed method. PMID:27610294

  10. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    SciTech Connect

    Bokanowski, Olivier; Picarelli, Athena; Zidani, Hasnaa

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.

  11. Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD

    SciTech Connect

    Smith, Thomas Michael; Shadid, John N.; Pawlowski, Roger P.; Cyr, Eric C.; Wildey, Timothy Michael

    2014-01-01

    This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.

  12. A Complementary Note to 'A Lag-1 Smoother Approach to System-Error Estimation': The Intrinsic Limitations of Residual Diagnostics

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo

    2015-01-01

    Recently, this author studied an approach to the estimation of system error based on combining observation residuals derived from a sequential filter and fixed lag-1 smoother. While extending the methodology to a variational formulation, experimenting with simple models and making sure consistency was found between the sequential and variational formulations, the limitations of the residual-based approach came clearly to the surface. This note uses the sequential assimilation application to simple nonlinear dynamics to highlight the issue. Only when some of the underlying error statistics are assumed known is it possible to estimate the unknown component. In general, when considerable uncertainties exist in the underlying statistics as a whole, attempts to obtain separate estimates of the various error covariances are bound to lead to misrepresentation of errors. The conclusions are particularly relevant to present-day attempts to estimate observation-error correlations from observation residual statistics. A brief illustration of the issue is also provided by comparing estimates of error correlations derived from a quasi-operational assimilation system and a corresponding Observing System Simulation Experiments framework.

  13. Accurate estimation of airborne ultrasonic time-of-flight for overlapping echoes.

    PubMed

    Sarabia, Esther G; Llata, Jose R; Robla, Sandra; Torre-Ferrero, Carlos; Oria, Juan P

    2013-01-01

    In this work, an analysis of the transmission of ultrasonic signals generated by piezoelectric sensors for air applications is presented. Based on this analysis, an ultrasonic response model is obtained for its application to the recognition of objects and structured environments for navigation by autonomous mobile robots. This model enables the analysis of the ultrasonic response that is generated using a pair of sensors in transmitter-receiver configuration using the pulse-echo technique. This is very interesting for recognizing surfaces that simultaneously generate a multiple echo response. This model takes into account the effect of the radiation pattern, the resonant frequency of the sensor, the number of cycles of the excitation pulse, the dynamics of the sensor and the attenuation with distance in the medium. This model has been developed, programmed and verified through a battery of experimental tests. Using this model a new procedure for obtaining accurate time of flight is proposed. This new method is compared with traditional ones, such as threshold or correlation, to highlight its advantages and drawbacks. Finally the advantages of this method are demonstrated for calculating multiple times of flight when the echo is formed by several overlapping echoes. PMID:24284774

  14. Accurate Estimation of Airborne Ultrasonic Time-of-Flight for Overlapping Echoes

    PubMed Central

    Sarabia, Esther G.; Llata, Jose R.; Robla, Sandra; Torre-Ferrero, Carlos; Oria, Juan P.

    2013-01-01

    In this work, an analysis of the transmission of ultrasonic signals generated by piezoelectric sensors for air applications is presented. Based on this analysis, an ultrasonic response model is obtained for its application to the recognition of objects and structured environments for navigation by autonomous mobile robots. This model enables the analysis of the ultrasonic response that is generated using a pair of sensors in transmitter-receiver configuration using the pulse-echo technique. This is very interesting for recognizing surfaces that simultaneously generate a multiple echo response. This model takes into account the effect of the radiation pattern, the resonant frequency of the sensor, the number of cycles of the excitation pulse, the dynamics of the sensor and the attenuation with distance in the medium. This model has been developed, programmed and verified through a battery of experimental tests. Using this model a new procedure for obtaining accurate time of flight is proposed. This new method is compared with traditional ones, such as threshold or correlation, to highlight its advantages and drawbacks. Finally the advantages of this method are demonstrated for calculating multiple times of flight when the echo is formed by several overlapping echoes. PMID:24284774

  15. An Energy-Efficient Strategy for Accurate Distance Estimation in Wireless Sensor Networks

    PubMed Central

    Tarrío, Paula; Bernardos, Ana M.; Casar, José R.

    2012-01-01

    In line with recent research efforts made to conceive energy saving protocols and algorithms and power sensitive network architectures, in this paper we propose a transmission strategy to minimize the energy consumption in a sensor network when using a localization technique based on the measurement of the strength (RSS) or the time of arrival (TOA) of the received signal. In particular, we find the transmission power and the packet transmission rate that jointly minimize the total consumed energy, while ensuring at the same time a desired accuracy in the RSS or TOA measurements. We also propose some corrections to these theoretical results to take into account the effects of shadowing and packet loss in the propagation channel. The proposed strategy is shown to be effective in realistic scenarios providing energy savings with respect to other transmission strategies, and also guaranteeing a given accuracy in the distance estimations, which will serve to guarantee a desired accuracy in the localization result. PMID:23202218

  16. A class of error estimators based on interpolating the finite element solutions for reaction-diffusion equations

    SciTech Connect

    Lin, T.; Wang, H.

    1995-12-31

    The swift improvement of computational capabilities enables us to apply finite element methods to simulate more and more problems arising from various applications. A fundamental question associated with finite element simulations is their accuracy. In other words, before we can make any decisions based on the numerical solutions, we must be sure that they are acceptable in the sense that their errors are within the given tolerances. Various estimators have been developed to assess the accuracy of finite element solutions, and they can be classified basically into two types: a priori error estimates and a posteriori error estimates. While a priori error estimates can give us asymptotic convergence rates of numerical solutions in terms of the grid size before the computations, they depend on certain Sobolev norms of the true solutions which are not known, in general. Therefore, it is difficult, if not impossible, to use a priori estimates directly to decide whether a numerical solution is acceptable or a finer partition (and so a new numerical solution) is needed. In contrast, a posteriori error estimates depends only on the numerical solutions, and they usually give computable quantities about the accuracy of the numerical solutions.

  17. Item Parameter Recovery, Standard Error Estimates, and Fit Statistics of the Winsteps Program for the Family of Rasch Models

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Chen, Cheng-Te

    2005-01-01

    This study investigates item parameter recovery, standard error estimates, and fit statistics yielded by the WINSTEPS program under the Rasch model and the rating scale model through Monte Carlo simulations. The independent variables were item response model, test length, and sample size. WINSTEPS yielded practically unbiased estimates for the…

  18. Likelihood-based genetic mark-recapture estimates when genotype samples are incomplete and contain typing errors.

    PubMed

    Macbeth, Gilbert M; Broderick, Damien; Ovenden, Jennifer R; Buckworth, Rik C

    2011-11-01

    Genotypes produced from samples collected non-invasively in harsh field conditions often lack the full complement of data from the selected microsatellite loci. The application to genetic mark-recapture methodology in wildlife species can therefore be prone to misidentifications leading to both 'true non-recaptures' being falsely accepted as recaptures (Type I errors) and 'true recaptures' being undetected (Type II errors). Here we present a new likelihood method that allows every pairwise genotype comparison to be evaluated independently. We apply this method to determine the total number of recaptures by estimating and optimising the balance between Type I errors and Type II errors. We show through simulation that the standard error of recapture estimates can be minimised through our algorithms. Interestingly, the precision of our recapture estimates actually improved when we included individuals with missing genotypes, as this increased the number of pairwise comparisons potentially uncovering more recaptures. Simulations suggest that the method is tolerant to per locus error rates of up to 5% per locus and can theoretically work in datasets with as little as 60% of loci genotyped. Our methods can be implemented in datasets where standard mismatch analyses fail to distinguish recaptures. Finally, we show that by assigning a low Type I error rate to our matching algorithms we can generate a dataset of individuals of known capture histories that is suitable for the downstream analysis with traditional mark-recapture methods. PMID:21763337

  19. Surface loading effects for precise geodetic observations: models and error estimates

    NASA Astrophysics Data System (ADS)

    Boy, J. P.

    2015-12-01

    The precision reached by modern geodetic techniques requires an accurate modeling of surface loading processes in order to reach the millimeter-level for displacements, the nanogal-level for surface gravity observations. Over the past decade, many operational loading services have been established, allowing researchers to access atmospheric, tidal and non-tidal oceanic, hydrological loading models and correct geodetic observations. We present here an overview of the EOST loading service (http://loading.u-strasbg.fr) providing different products of atmospheric, non-tidal oceanic and hydrological loading effects on displacements and surface gravity. We also investigate and assess the different sources of errors in loading computations: The choice of the reference frame for displacement computations (Center-of-Figure versus Center-of-Mass). The differences between different atmospheric (reanalysis versus operational models), non-tidal oceanic (low resolution versus eddy-resolving models) and hydrological models. The model of ocean response to pressure forcing (inverted barometer versus a dynamic model). The resolution of the land/sea mask used for the loading computations. The choice of an Earth model to compute Green's functions. The differences between interpolated loading grids and station computations.

  20. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].

    PubMed

    Wu, Qian; Sun, Hong; Li, Min-zan; Song, Yuan-yuan; Zhang, Yan-e

    2015-01-01

    In order to rapidly acquire maize growing information in the field, a non-destructive method of maize chlorophyll content index measurement was conducted based on multi-spectral imaging technique and imaging processing technology. The experiment was conducted at Yangling in Shaanxi province of China and the crop was Zheng-dan 958 planted in about 1 000 m X 600 m experiment field. Firstly, a 2-CCD multi-spectral image monitoring system was available to acquire the canopy images. The system was based on a dichroic prism, allowing precise separation of the visible (Blue (B), Green (G), Red (R): 400-700 nm) and near-infrared (NIR, 760-1 000 nm) band. The multispectral images were output as RGB and NIR images via the system vertically fixed to the ground with vertical distance of 2 m and angular field of 50°. SPAD index of each sample was'measured synchronously to show the chlorophyll content index. Secondly, after the image smoothing using adaptive smooth filtering algorithm, the NIR maize image was selected to segment the maize leaves from background, because there was a big difference showed in gray histogram between plant and soil background. The NIR image segmentation algorithm was conducted following steps of preliminary and accuracy segmentation: (1) The results of OTSU image segmentation method and the variable threshold algorithm were discussed. It was revealed that the latter was better one in corn plant and weed segmentation. As a result, the variable threshold algorithm based on local statistics was selected for the preliminary image segmentation. The expansion and corrosion were used to optimize the segmented image. (2) The region labeling algorithm was used to segment corn plants from soil and weed background with an accuracy of 95. 59 %. And then, the multi-spectral image of maize canopy was accurately segmented in R, G and B band separately. Thirdly, the image parameters were abstracted based on the segmented visible and NIR images. The average gray