Science.gov

Sample records for accurate error estimates

  1. Accurate absolute GPS positioning through satellite clock error estimation

    NASA Astrophysics Data System (ADS)

    Han, S.-C.; Kwon, J. H.; Jekeli, C.

    2001-05-01

    An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them.

  2. Alpha's standard error (ASE): an accurate and precise confidence interval estimate.

    PubMed

    Duhachek, Adam; Lacobucci, Dawn

    2004-10-01

    This research presents the inferential statistics for Cronbach's coefficient alpha on the basis of the standard statistical assumption of multivariate normality. The estimation of alpha's standard error (ASE) and confidence intervals are described, and the authors analytically and empirically investigate the effects of the components of these equations. The authors then demonstrate the superiority of this estimate compared with previous derivations of ASE in a separate Monte Carlo simulation. The authors also present a sampling error and test statistic for a test of independent sample alphas. They conclude with a recommendation that all alpha coefficients be reported in conjunction with standard error or confidence interval estimates and offer SAS and SPSS programming codes for easy implementation.

  3. Error Estimation And Accurate Mapping Based ALE Formulation For 3D Simulation Of Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Guerdoux, Simon; Fourment, Lionel

    2007-05-01

    An Arbitrary Lagrangian Eulerian (ALE) formulation is developed to simulate the different stages of the Friction Stir Welding (FSW) process with the FORGE3® F.E. software. A splitting method is utilized: a) the material velocity/pressure and temperature fields are calculated, b) the mesh velocity is derived from the domain boundary evolution and an adaptive refinement criterion provided by error estimation, c) P1 and P0 variables are remapped. Different velocity computation and remap techniques have been investigated, providing significant improvement with respect to more standard approaches. The proposed ALE formulation is applied to FSW simulation. Steady state welding, but also transient phases are simulated, showing good robustness and accuracy of the developed formulation. Friction parameters are identified for an Eulerian steady state simulation by comparison with experimental results. Void formation can be simulated. Simulations of the transient plunge and welding phases help to better understand the deposition process that occurs at the trailing edge of the probe. Flexibility and robustness of the model finally allows investigating the influence of new tooling designs on the deposition process.

  4. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  5. Bayesian Error Estimation Functionals

    NASA Astrophysics Data System (ADS)

    Jacobsen, Karsten W.

    The challenge of approximating the exchange-correlation functional in Density Functional Theory (DFT) has led to the development of numerous different approximations of varying accuracy on different calculated properties. There is therefore a need for reliable estimation of prediction errors within the different approximation schemes to DFT. The Bayesian Error Estimation Functionals (BEEF) have been developed with this in mind. The functionals are constructed by fitting to experimental and high-quality computational databases for molecules and solids including chemisorption and van der Waals systems. This leads to reasonably accurate general-purpose functionals with particual focus on surface science. The fitting procedure involves considerations on how to combine different types of data, and applies Tikhonov regularization and bootstrap cross validation. The methodology has been applied to construct GGA and metaGGA functionals with and without inclusion of long-ranged van der Waals contributions. The error estimation is made possible by the generation of not only a single functional but through the construction of a probability distribution of functionals represented by a functional ensemble. The use of the functional ensemble is illustrated on compound heat of formation and by investigations of the reliability of calculated catalytic ammonia synthesis rates.

  6. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  7. Error Estimates for Mixed Methods.

    DTIC Science & Technology

    1979-03-01

    This paper presents abstract error estimates for mixed methods for the approximate solution of elliptic boundary value problems. These estimates are...then applied to obtain quasi-optimal error estimates in the usual Sobolev norms for four examples: three mixed methods for the biharmonic problem and a mixed method for 2nd order elliptic problems. (Author)

  8. Mars gravitational field estimation error

    NASA Technical Reports Server (NTRS)

    Compton, H. R.; Daniels, E. F.

    1972-01-01

    The error covariance matrices associated with a weighted least-squares differential correction process have been analyzed for accuracy in determining the gravitational coefficients through degree and order five in the Mars gravitational potential junction. The results are presented in terms of standard deviations for the assumed estimated parameters. The covariance matrices were calculated by assuming Doppler tracking data from a Mars orbiter, a priori statistics for the estimated parameters, and model error uncertainties for tracking-station locations, the Mars ephemeris, the astronomical unit, the Mars gravitational constant (G sub M), and the gravitational coefficients of degrees six and seven. Model errors were treated by using the concept of consider parameters.

  9. An estimation error bound for pixelated sensing

    NASA Astrophysics Data System (ADS)

    Kreucher, Chris; Bell, Kristine

    2016-05-01

    This paper considers the ubiquitous problem of estimating the state (e.g., position) of an object based on a series of noisy measurements. The standard approach is to formulate this problem as one of measuring the state (or a function of the state) corrupted by additive Gaussian noise. This model assumes both (i) the sensor provides a measurement of the true target (or, alternatively, a separate signal processing step has eliminated false alarms), and (ii) The error source in the measurement is accurately described by a Gaussian model. In reality, however, sensor measurement are often formed on a grid of pixels - e.g., Ground Moving Target Indication (GMTI) measurements are formed for a discrete set of (angle, range, velocity) voxels, and EO imagery is made on (x, y) grids. When a target is present in a pixel, therefore, uncertainty is not Gaussian (instead it is a boxcar function) and unbiased estimation is not generally possible as the location of the target within the pixel defines the bias of the estimator. It turns out that this small modification to the measurement model makes traditional bounding approaches not applicable. This paper discusses pixelated sensing in more detail and derives the minimum mean squared error (MMSE) bound for estimation in the pixelated scenario. We then use this error calculation to investigate the utility of using non-thresholded measurements.

  10. Implicit a posteriori error estimates for the Maxwell equations

    NASA Astrophysics Data System (ADS)

    Izsak, Ferenc; Harutyunyan, Davit; van der Vegt, Jaap J. W.

    2008-09-01

    An implicit a posteriori error estimation technique is presented and analyzed for the numerical solution of the time-harmonic Maxwell equations using Nedelec edge elements. For this purpose we define a weak formulation for the error on each element and provide an efficient and accurate numerical solution technique to solve the error equations locally. We investigate the well-posedness of the error equations and also consider the related eigenvalue problem for cubic elements. Numerical results for both smooth and non-smooth problems, including a problem with reentrant corners, show that an accurate prediction is obtained for the local error, and in particular the error distribution, which provides essential information to control an adaptation process. The error estimation technique is also compared with existing methods and provides significantly sharper estimates for a number of reported test cases.

  11. Control by model error estimation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Skelton, R. E.

    1976-01-01

    Modern control theory relies upon the fidelity of the mathematical model of the system. Truncated modes, external disturbances, and parameter errors in linear system models are corrected by augmenting to the original system of equations an 'error system' which is designed to approximate the effects of such model errors. A Chebyshev error system is developed for application to the Large Space Telescope (LST).

  12. A hardware error estimate for floating-point computations

    NASA Astrophysics Data System (ADS)

    Lang, Tomás; Bruguera, Javier D.

    2008-08-01

    We propose a hardware-computed estimate of the roundoff error in floating-point computations. The estimate is computed concurrently with the execution of the program and gives an estimation of the accuracy of the result. The intention is to have a qualitative indication when the accuracy of the result is low. We aim for a simple implementation and a negligible effect on the execution of the program. Large errors due to roundoff occur in some computations, producing inaccurate results. However, usually these large errors occur only for some values of the data, so that the result is accurate in most executions. As a consequence, the computation of an estimate of the error during execution would allow the use of algorithms that produce accurate results most of the time. In contrast, if an error estimate is not available, the solution is to perform an error analysis. However, this analysis is complex or impossible in some cases, and it produces a worst-case error bound. The proposed approach is to keep with each value an estimate of its error, which is computed when the value is produced. This error is the sum of a propagated error, due to the errors of the operands, plus the generated error due to roundoff during the operation. Since roundoff errors are signed values (when rounding to nearest is used), the computation of the error allows for compensation when errors are of different sign. However, since the error estimate is of finite precision, it suffers from similar accuracy problems as any floating-point computation. Moreover, it is not an error bound. Ideally, the estimate should be large when the error is large and small when the error is small. Since this cannot be achieved always with an inexact estimate, we aim at assuring the first property always, and the second most of the time. As a minimum, we aim to produce a qualitative indication of the error. To indicate the accuracy of the value, the most appropriate type of error is the relative error. However

  13. Error estimation and structural shape optimization

    NASA Astrophysics Data System (ADS)

    Song, Xiaoguang

    This work is concerned with three topics: error estimation, data smoothing process and the structural shape optimization design and analysis. In particular, the superconvergent stress recovery technique, the dual kriging B-spline curve and surface fittings, the development and the implementation of a novel node-based numerical shape optimization package are addressed. Concept and new technique of accurate stress recovery are developed and applied in finding the lateral buckling parameters of plate structures. Some useful conclusions are made for the finite element Reissner-Mindlin plate solutions. The powerful dual kriging B-spline fitting technique is reviewed and a set of new compact formulations are developed. This data smoothing method is then applied in accurately recovering curves and surfaces. The new node-based shape optimization method is based on the consideration that the critical stress and displacement constraints are generally located along or near the structural boundary. The method puts the maximum weights on the selected boundary nodes, referred to as the design points, so that the time-consuming sensitivity analysis is related to the perturbation of only these nodes. The method also allows large shape changes to achieve the optimal shape. The design variables are specified as the moving magnitudes for the prescribed design points that are always located at the structural boundary. Theories, implementations and applications are presented for various modules by which the package is constructed. Especially, techniques involving finite element error estimation, adaptive mesh generation, design sensitivity analysis, and data smoothing are emphasized.

  14. Accurate identification and compensation of geometric errors of 5-axis CNC machine tools using double ball bar

    NASA Astrophysics Data System (ADS)

    Lasemi, Ali; Xue, Deyi; Gu, Peihua

    2016-05-01

    Five-axis CNC machine tools are widely used in manufacturing of parts with free-form surfaces. Geometric errors of machine tools have significant effects on the quality of manufactured parts. This research focuses on development of a new method to accurately identify geometric errors of 5-axis CNC machines, especially the errors due to rotary axes, using the magnetic double ball bar. A theoretical model for identification of geometric errors is provided. In this model, both position-independent errors and position-dependent errors are considered as the error sources. This model is simplified by identification and removal of the correlated and insignificant error sources of the machine. Insignificant error sources are identified using the sensitivity analysis technique. Simulation results reveal that the simplified error identification model can result in more accurate estimations of the error parameters. Experiments on a 5-axis CNC machine tool also demonstrate significant reduction in the volumetric error after error compensation.

  15. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  16. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Astrophysics Data System (ADS)

    Wheeler, K.; Knuth, K.; Castle, P.

    2005-12-01

    and IKONOS imagery and the 3-D volume estimates. The combination of these then allow for a rapid and hopefully very accurate estimation of biomass.

  17. Adjoint Error Estimation for Linear Advection

    SciTech Connect

    Connors, J M; Banks, J W; Hittinger, J A; Woodward, C S

    2011-03-30

    An a posteriori error formula is described when a statistical measurement of the solution to a hyperbolic conservation law in 1D is estimated by finite volume approximations. This is accomplished using adjoint error estimation. In contrast to previously studied methods, the adjoint problem is divorced from the finite volume method used to approximate the forward solution variables. An exact error formula and computable error estimate are derived based on an abstractly defined approximation of the adjoint solution. This framework allows the error to be computed to an arbitrary accuracy given a sufficiently well resolved approximation of the adjoint solution. The accuracy of the computable error estimate provably satisfies an a priori error bound for sufficiently smooth solutions of the forward and adjoint problems. The theory does not currently account for discontinuities. Computational examples are provided that show support of the theory for smooth solutions. The application to problems with discontinuities is also investigated computationally.

  18. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  19. A posteriori error estimates for Maxwell equations

    NASA Astrophysics Data System (ADS)

    Schoeberl, Joachim

    2008-06-01

    Maxwell equations are posed as variational boundary value problems in the function space H(operatorname{curl}) and are discretized by Nedelec finite elements. In Beck et al., 2000, a residual type a posteriori error estimator was proposed and analyzed under certain conditions onto the domain. In the present paper, we prove the reliability of that error estimator on Lipschitz domains. The key is to establish new error estimates for the commuting quasi-interpolation operators recently introduced in J. Schoeberl, Commuting quasi-interpolation operators for mixed finite elements. Similar estimates are required for additive Schwarz preconditioning. To incorporate boundary conditions, we establish a new extension result.

  20. Estimates of Random Error in Satellite Rainfall Averages

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.

    2003-01-01

    Satellite rain estimates are most accurate when obtained with microwave instruments on low earth-orbiting satellites. Estimation of daily or monthly total areal rainfall, typically of interest to hydrologists and climate researchers, is made difficult, however, by the relatively poor coverage generally available from such satellites. Intermittent coverage by the satellites leads to random "sampling error" in the satellite products. The inexact information about hydrometeors inferred from microwave data also leads to random "retrieval errors" in the rain estimates. In this talk we will review approaches to quantitative estimation of the sampling error in area/time averages of satellite rain retrievals using ground-based observations, and methods of estimating rms random error, both sampling and retrieval, in averages using satellite measurements themselves.

  1. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  2. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  3. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  4. Error Estimates for Numerical Integration Rules

    ERIC Educational Resources Information Center

    Mercer, Peter R.

    2005-01-01

    The starting point for this discussion of error estimates is the fact that integrals that arise in Fourier series have properties that can be used to get improved bounds. This idea is extended to more general situations.

  5. Unbiased bootstrap error estimation for linear discriminant analysis.

    PubMed

    Vu, Thang; Sima, Chao; Braga-Neto, Ulisses M; Dougherty, Edward R

    2014-12-01

    Convex bootstrap error estimation is a popular tool for classifier error estimation in gene expression studies. A basic question is how to determine the weight for the convex combination between the basic bootstrap estimator and the resubstitution estimator such that the resulting estimator is unbiased at finite sample sizes. The well-known 0.632 bootstrap error estimator uses asymptotic arguments to propose a fixed 0.632 weight, whereas the more recent 0.632+ bootstrap error estimator attempts to set the weight adaptively. In this paper, we study the finite sample problem in the case of linear discriminant analysis under Gaussian populations. We derive exact expressions for the weight that guarantee unbiasedness of the convex bootstrap error estimator in the univariate and multivariate cases, without making asymptotic simplifications. Using exact computation in the univariate case and an accurate approximation in the multivariate case, we obtain the required weight and show that it can deviate significantly from the constant 0.632 weight, depending on the sample size and Bayes error for the problem. The methodology is illustrated by application on data from a well-known cancer classification study.

  6. Estimating Filtering Errors Using the Peano Kernel Theorem

    SciTech Connect

    Jerome Blair

    2009-02-20

    The Peano Kernel Theorem is introduced and a frequency domain derivation is given. It is demonstrated that the application of this theorem yields simple and accurate formulas for estimating the error introduced into a signal by filtering it to reduce noise.

  7. Bayes Error Rate Estimation Using Classifier Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Ghosh, Joydeep

    2003-01-01

    The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.

  8. Optimal input design for aircraft instrumentation systematic error estimation

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1991-01-01

    A new technique for designing optimal flight test inputs for accurate estimation of instrumentation systematic errors was developed and demonstrated. A simulation model of the F-18 High Angle of Attack Research Vehicle (HARV) aircraft was used to evaluate the effectiveness of the optimal input compared to input recorded during flight test. Instrumentation systematic error parameter estimates and their standard errors were compared. It was found that the optimal input design improved error parameter estimates and their accuracies for a fixed time input design. Pilot acceptability of the optimal input design was demonstrated using a six degree-of-freedom fixed base piloted simulation of the F-18 HARV. The technique described in this work provides a practical, optimal procedure for designing inputs for data compatibility experiments.

  9. Accurate Compensation of Attitude Angle Error in a Dual-Axis Rotation Inertial Navigation System

    PubMed Central

    Jiang, Rui; Yang, Gongliu; Zou, Rui; Wang, Jing; Li, Jing

    2017-01-01

    In the dual-axis rotation inertial navigation system (INS), besides the gyro error, accelerometer error, rolling misalignment angle error, and the gimbal angle error, the shaft swing angle and the axis non-orthogonal angle also affect the attitude accuracy. Through the analysis of the structure, we can see that the shaft swing angle and axis non-orthogonal angle will produce coning errors which cause the fluctuation of the attitude. According to the analysis of the rotation vector, it can be seen that the coning error will generate additional drift velocity along the rotating shaft, which can reduce the navigation precision of the system. In this paper, based on the establishment of the modulation average frame, the vector projection is carried out, and then the attitude conversion matrix and the attitude error matrix mainly including the shaft swing angle and axis non-orthogonal are obtained. Because the attitude angles are given under the static condition, the shaft swing angle and the axis non-orthogonal angle are estimated by the static Kalman filter (KF). This kind of KF method has been widely recognized as the standard optimal estimation tool for estimating the parameters such as coning angles (α1 , α2), initial phase angles (ϕ1,ϕ2), and the non-perpendicular angle (η). In order to carry out the system level verification, a dual axis rotation INS is designed. Through simulation and experiments, the results show that the amplitudes of the attitude angles’ variation are reduced by about 20%–30% when the shaft rotates. The attitude error equation is reasonably simplified and the calibration method is accurate enough. The attitude accuracy is further improved. PMID:28304354

  10. Accurate Compensation of Attitude Angle Error in a Dual-Axis Rotation Inertial Navigation System.

    PubMed

    Jiang, Rui; Yang, Gongliu; Zou, Rui; Wang, Jing; Li, Jing

    2017-03-17

    In the dual-axis rotation inertial navigation system (INS), besides the gyro error, accelerometer error, rolling misalignment angle error, and the gimbal angle error, the shaft swing angle and the axis non-orthogonal angle also affect the attitude accuracy. Through the analysis of the structure, we can see that the shaft swing angle and axis non-orthogonal angle will produce coning errors which cause the fluctuation of the attitude. According to the analysis of the rotation vector, it can be seen that the coning error will generate additional drift velocity along the rotating shaft, which can reduce the navigation precision of the system. In this paper, based on the establishment of the modulation average frame, the vector projection is carried out, and then the attitude conversion matrix and the attitude error matrix mainly including the shaft swing angle and axis non-orthogonal are obtained. Because the attitude angles are given under the static condition, the shaft swing angle and the axis non-orthogonal angle are estimated by the static Kalman filter (KF). This kind of KF method has been widely recognized as the standard optimal estimation tool for estimating the parameters such as coning angles (α₁ , α₂), initial phase angles (ϕ₁,ϕ₂), and the non-perpendicular angle (η). In order to carry out the system level verification, a dual axis rotation INS is designed. Through simulation and experiments, the results show that the amplitudes of the attitude angles' variation are reduced by about 20%-30% when the shaft rotates. The attitude error equation is reasonably simplified and the calibration method is accurate enough. The attitude accuracy is further improved.

  11. Moments and Root-Mean-Square Error of the Bayesian MMSE Estimator of Classification Error in the Gaussian Model.

    PubMed

    Zollanvari, Amin; Dougherty, Edward R

    2014-06-01

    The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.

  12. Practical Aspects of the Equation-Error Method for Aircraft Parameter Estimation

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene a.

    2006-01-01

    Various practical aspects of the equation-error approach to aircraft parameter estimation were examined. The analysis was based on simulated flight data from an F-16 nonlinear simulation, with realistic noise sequences added to the computed aircraft responses. This approach exposes issues related to the parameter estimation techniques and results, because the true parameter values are known for simulation data. The issues studied include differentiating noisy time series, maximum likelihood parameter estimation, biases in equation-error parameter estimates, accurate computation of estimated parameter error bounds, comparisons of equation-error parameter estimates with output-error parameter estimates, analyzing data from multiple maneuvers, data collinearity, and frequency-domain methods.

  13. Error estimation in the direct state tomography

    NASA Astrophysics Data System (ADS)

    Sainz, I.; Klimov, A. B.

    2016-10-01

    We show that reformulating the Direct State Tomography (DST) protocol in terms of projections into a set of non-orthogonal bases one can perform an accuracy analysis of DST in a similar way as in the standard projection-based reconstruction schemes, i.e., in terms of the Hilbert-Schmidt distance between estimated and true states. This allows us to determine the estimation error for any measurement strength, including the weak measurement case, and to obtain an explicit analytic form for the average minimum square errors.

  14. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  15. Coping with dating errors in causality estimation

    NASA Astrophysics Data System (ADS)

    Smirnov, D. A.; Marwan, N.; Breitenbach, S. F. M.; Lechleitner, F.; Kurths, J.

    2017-01-01

    We consider the problem of estimating causal influences between observed processes from time series possibly corrupted by errors in the time variable (dating errors) which are typical in palaeoclimatology, planetary science and astrophysics. “Causality ratio” based on the Wiener-Granger causality is proposed and studied for a paradigmatic class of model systems to reveal conditions under which it correctly indicates directionality of unidirectional coupling. It is argued that in the case of a priori known directionality, the causality ratio allows a characterization of dating errors and observational noise. Finally, we apply the developed approach to palaeoclimatic data and quantify the influence of solar activity on tropical Atlantic climate dynamics over the last two millennia. A stronger solar influence in the first millennium A.D. is inferred. The results also suggest a dating error of about 20 years in the solar proxy time series over the same period.

  16. State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation.

    PubMed

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-04-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space

  17. State space truncation with quantified errors for accurate solutions to discrete Chemical Master Equation

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEG), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of 1) the birth and death model, 2) the single gene expression model, 3) the genetic toggle switch model, and 4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate out theories. Overall, the novel state space

  18. Estimating standard errors in feature network models.

    PubMed

    Frank, Laurence E; Heiser, Willem J

    2007-05-01

    Feature network models are graphical structures that represent proximity data in a discrete space while using the same formalism that is the basis of least squares methods employed in multidimensional scaling. Existing methods to derive a network model from empirical data only give the best-fitting network and yield no standard errors for the parameter estimates. The additivity properties of networks make it possible to consider the model as a univariate (multiple) linear regression problem with positivity restrictions on the parameters. In the present study, both theoretical and empirical standard errors are obtained for the constrained regression parameters of a network model with known features. The performance of both types of standard error is evaluated using Monte Carlo techniques.

  19. Preparing Rapid, Accurate Construction Cost Estimates with a Personal Computer.

    ERIC Educational Resources Information Center

    Gerstel, Sanford M.

    1986-01-01

    An inexpensive and rapid method for preparing accurate cost estimates of construction projects in a university setting, using a personal computer, purchased software, and one estimator, is described. The case against defined estimates, the rapid estimating system, and adjusting standard unit costs are discussed. (MLW)

  20. Estimating errors in least-squares fitting

    NASA Technical Reports Server (NTRS)

    Richter, P. H.

    1995-01-01

    While least-squares fitting procedures are commonly used in data analysis and are extensively discussed in the literature devoted to this subject, the proper assessment of errors resulting from such fits has received relatively little attention. The present work considers statistical errors in the fitted parameters, as well as in the values of the fitted function itself, resulting from random errors in the data. Expressions are derived for the standard error of the fit, as a function of the independent variable, for the general nonlinear and linear fitting problems. Additionally, closed-form expressions are derived for some examples commonly encountered in the scientific and engineering fields, namely ordinary polynomial and Gaussian fitting functions. These results have direct application to the assessment of the antenna gain and system temperature characteristics, in addition to a broad range of problems in data analysis. The effects of the nature of the data and the choice of fitting function on the ability to accurately model the system under study are discussed, and some general rules are deduced to assist workers intent on maximizing the amount of information obtained form a given set of measurements.

  1. How utilities can achieve more accurate decommissioning cost estimates

    SciTech Connect

    Knight, R.

    1999-07-01

    The number of commercial nuclear power plants that are undergoing decommissioning coupled with the economic pressure of deregulation has increased the focus on adequate funding for decommissioning. The introduction of spent-fuel storage and disposal of low-level radioactive waste into the cost analysis places even greater concern as to the accuracy of the fund calculation basis. The size and adequacy of the decommissioning fund have also played a major part in the negotiations for transfer of plant ownership. For all of these reasons, it is important that the operating plant owner reduce the margin of error in the preparation of decommissioning cost estimates. To data, all of these estimates have been prepared via the building block method. That is, numerous individual calculations defining the planning, engineering, removal, and disposal of plant systems and structures are performed. These activity costs are supplemented by the period-dependent costs reflecting the administration, control, licensing, and permitting of the program. This method will continue to be used in the foreseeable future until adequate performance data are available. The accuracy of the activity cost calculation is directly related to the accuracy of the inventory of plant system component, piping and equipment, and plant structural composition. Typically, it is left up to the cost-estimating contractor to develop this plant inventory. The data are generated by searching and analyzing property asset records, plant databases, piping and instrumentation drawings, piping system isometric drawings, and component assembly drawings. However, experience has shown that these sources may not be up to date, discrepancies may exist, there may be missing data, and the level of detail may not be sufficient. Again, typically, the time constraints associated with the development of the cost estimate preclude perfect resolution of the inventory questions. Another problem area in achieving accurate cost

  2. Ultraspectral Sounding Retrieval Error Budget and Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2011-01-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..

  3. Factoring Algebraic Error for Relative Pose Estimation

    SciTech Connect

    Lindstrom, P; Duchaineau, M

    2009-03-09

    We address the problem of estimating the relative pose, i.e. translation and rotation, of two calibrated cameras from image point correspondences. Our approach is to factor the nonlinear algebraic pose error functional into translational and rotational components, and to optimize translation and rotation independently. This factorization admits subproblems that can be solved using direct methods with practical guarantees on global optimality. That is, for a given translation, the corresponding optimal rotation can directly be determined, and vice versa. We show that these subproblems are equivalent to computing the least eigenvector of second- and fourth-order symmetric tensors. When neither translation or rotation is known, alternating translation and rotation optimization leads to a simple, efficient, and robust algorithm for pose estimation that improves on the well-known 5- and 8-point methods.

  4. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  5. Target parameter and error estimation using magnetometry

    NASA Astrophysics Data System (ADS)

    Norton, S. J.; Witten, A. J.; Won, I. J.; Taylor, D.

    The problem of locating and identifying buried unexploded ordnance from magnetometry measurements is addressed within the context of maximum likelihood estimation. In this approach, the magnetostatic theory is used to develop data templates, which represent the modeled magnetic response of a buried ferrous object of arbitrary location, iron content, size, shape, and orientation. It is assumed that these objects are characterized both by a magnetic susceptibility representing their passive response to the earth's magnetic field and by a three-dimensional magnetization vector representing a permanent dipole magnetization. Analytical models were derived for four types of targets: spheres, spherical shells, ellipsoids, and ellipsoidal shells. The models can be used to quantify the Cramer-Rao (error) bounds on the parameter estimates. These bounds give the minimum variance in the estimated parameters as a function of measurement signal-to-noise ratio, spatial sampling, and target characteristics. For cases where analytic expressions for the Cramer-Rao bounds can be derived, these expressions prove quite useful in establishing optimal sampling strategies. Analytic expressions for various Cramer-Rao bounds have been developed for spherical- and spherical shell-type objects. An maximum likelihood estimation algorithm has been developed and tested on data acquired at the Magnetic Test Range at the Naval Explosive Ordnance Disposal Tech Center in Indian Head, Maryland. This algorithm estimates seven target parameters. These parameters are the three Cartesian coordinates (x, y, z) identifying the buried ordnance's location, the three Cartesian components of the permanent dipole magnetization vector, and the equivalent radius of the ordnance assuming it is a passive solid iron sphere.

  6. Error estimates of numerical solutions for a cyclic plasticity problem

    NASA Astrophysics Data System (ADS)

    Han, W.

    A cyclic plasticity problem is numerically analyzed in [13], where a sub-optimal order error estimate is shown for a spatially discrete scheme. In this note, we prove an optimal order error estimate for the spatially discrete scheme under the same solution regularity condition. We also derive an error estimate for a fully discrete scheme for solving the plasticity problem.

  7. Finite Element A Posteriori Error Estimation for Heat Conduction. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lang, Christapher G.; Bey, Kim S. (Technical Monitor)

    2002-01-01

    This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.

  8. Analysis of Measurement Error and Estimator Shape in Three-Point Hydraulic Gradient Estimators

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Wahi, A. K.

    2003-12-01

    Three spatially separated measurements of head provide a means of estimating the magnitude and orientation of the hydraulic gradient. Previous work with three-point estimators has focused on the effect of the size (area) of the three-point estimator and measurement error on the final estimates of the gradient magnitude and orientation in laboratory and field studies (Mizell, 1980; Silliman and Frost, 1995; Silliman and Mantz, 2000; Ruskauff and Rumbaugh, 1996). However, a systematic analysis of the combined effects of measurement error, estimator shape and estimator orientation relative to the gradient orientation has not previously been conducted. Monte Carlo simulation with an underlying assumption of a homogeneous transmissivity field is used to examine the effects of uncorrelated measurement error on a series of eleven different three-point estimators having the same size but different shapes as a function of the orientation of the true gradient. Results show that the variance in the estimate of both the magnitude and the orientation increase linearly with the increase in measurement error in agreement with the results of stochastic theory for estimators that are small relative to the correlation length of transmissivity (Mizell, 1980). Three-point estimator shapes with base to height ratios between 0.5 and 5.0 provide accurate estimates of magnitude and orientation across all orientations of the true gradient. As an example, these results are applied to data collected from a monitoring network of 25 wells at the WIPP site during two different time periods. The simulation results are used to reduce the set of all possible combinations of three wells to those combinations with acceptable measurement errors relative to the amount of head drop across the estimator and base to height ratios between 0.5 and 5.0. These limitations reduce the set of all possible well combinations by 98 percent and show that size alone as defined by triangle area is not a valid

  9. Erasing Errors due to Alignment Ambiguity When Estimating Positive Selection

    PubMed Central

    Redelings, Benjamin

    2014-01-01

    Current estimates of diversifying positive selection rely on first having an accurate multiple sequence alignment. Simulation studies have shown that under biologically plausible conditions, relying on a single estimate of the alignment from commonly used alignment software can lead to unacceptably high false-positive rates in detecting diversifying positive selection. We present a novel statistical method that eliminates excess false positives resulting from alignment error by jointly estimating the degree of positive selection and the alignment under an evolutionary model. Our model treats both substitutions and insertions/deletions as sequence changes on a tree and allows site heterogeneity in the substitution process. We conduct inference starting from unaligned sequence data by integrating over all alignments. This approach naturally accounts for ambiguous alignments without requiring ambiguously aligned sites to be identified and removed prior to analysis. We take a Bayesian approach and conduct inference using Markov chain Monte Carlo to integrate over all alignments on a fixed evolutionary tree topology. We introduce a Bayesian version of the branch-site test and assess the evidence for positive selection using Bayes factors. We compare two models of differing dimensionality using a simple alternative to reversible-jump methods. We also describe a more accurate method of estimating the Bayes factor using Rao-Blackwellization. We then show using simulated data that jointly estimating the alignment and the presence of positive selection solves the problem with excessive false positives from erroneous alignments and has nearly the same power to detect positive selection as when the true alignment is known. We also show that samples taken from the posterior alignment distribution using the software BAli-Phy have substantially lower alignment error compared with MUSCLE, MAFFT, PRANK, and FSA alignments. PMID:24866534

  10. Accurate genome relative abundance estimation based on shotgun metagenomic reads.

    PubMed

    Xia, Li C; Cram, Jacob A; Chen, Ting; Fuhrman, Jed A; Sun, Fengzhu

    2011-01-01

    Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data-sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes.

  11. A posteriori pointwise error estimates for the boundary element method

    SciTech Connect

    Paulino, G.H.; Gray, L.J.; Zarikian, V.

    1995-01-01

    This report presents a new approach for a posteriori pointwise error estimation in the boundary element method. The estimator relies upon the evaluation of hypersingular integral equations, and is therefore intrinsic to the boundary integral equation approach. This property allows some theoretical justification by mathematically correlating the exact and estimated errors. A methodology is developed for approximating the error on the boundary as well as in the interior of the domain. In the interior, error estimates for both the function and its derivatives (e.g. potential and interior gradients for potential problems, displacements and stresses for elasticity problems) are presented. Extensive computational experiments have been performed for the two dimensional Laplace equation on interior domains, employing Dirichlet and mixed boundary conditions. The results indicate that the error estimates successfully track the form of the exact error curve. Moreover, a reasonable estimate of the magnitude of the actual error is also obtained.

  12. Real-Time Parameter Estimation Using Output Error

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  13. Augmented GNSS differential corrections minimum mean square error estimation sensitivity to spatial correlation modeling errors.

    PubMed

    Kassabian, Nazelie; Lo Presti, Letizia; Rispoli, Francesco

    2014-06-11

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.

  14. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    PubMed Central

    Kassabian, Nazelie; Presti, Letizia Lo; Rispoli, Francesco

    2014-01-01

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454

  15. Estimating IMU heading error from SAR images.

    SciTech Connect

    Doerry, Armin Walter

    2009-03-01

    Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.

  16. Prediction and simulation errors in parameter estimation for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Aguirre, Luis A.; Barbosa, Bruno H. G.; Braga, Antônio P.

    2010-11-01

    This article compares the pros and cons of using prediction error and simulation error to define cost functions for parameter estimation in the context of nonlinear system identification. To avoid being influenced by estimators of the least squares family (e.g. prediction error methods), and in order to be able to solve non-convex optimisation problems (e.g. minimisation of some norm of the free-run simulation error), evolutionary algorithms were used. Simulated examples which include polynomial, rational and neural network models are discussed. Our results—obtained using different model classes—show that, in general the use of simulation error is preferable to prediction error. An interesting exception to this rule seems to be the equation error case when the model structure includes the true model. In the case of error-in-variables, although parameter estimation is biased in both cases, the algorithm based on simulation error is more robust.

  17. Standard Error of Empirical Bayes Estimate in NONMEM® VI

    PubMed Central

    Kang, Dongwoo; Houk, Brett E.; Savic, Radojka M.; Karlsson, Mats O.

    2012-01-01

    The pharmacokinetics/pharmacodynamics analysis software NONMEM® output provides model parameter estimates and associated standard errors. However, the standard error of empirical Bayes estimates of inter-subject variability is not available. A simple and direct method for estimating standard error of the empirical Bayes estimates of inter-subject variability using the NONMEM® VI internal matrix POSTV is developed and applied to several pharmacokinetic models using intensively or sparsely sampled data for demonstration and to evaluate performance. The computed standard error is in general similar to the results from other post-processing methods and the degree of difference, if any, depends on the employed estimation options. PMID:22563254

  18. A Note on Confidence Interval Estimation and Margin of Error

    ERIC Educational Resources Information Center

    Gilliland, Dennis; Melfi, Vince

    2010-01-01

    Confidence interval estimation is a fundamental technique in statistical inference. Margin of error is used to delimit the error in estimation. Dispelling misinterpretations that teachers and students give to these terms is important. In this note, we give examples of the confusion that can arise in regard to confidence interval estimation and…

  19. Improved Soundings and Error Estimates using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2006-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.

  20. An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance

    PubMed Central

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  1. Fast and accurate estimation for astrophysical problems in large databases

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.

    2010-10-01

    A recent flood of astronomical data has created much demand for sophisticated statistical and machine learning tools that can rapidly draw accurate inferences from large databases of high-dimensional data. In this Ph.D. thesis, methods for statistical inference in such databases will be proposed, studied, and applied to real data. I use methods for low-dimensional parametrization of complex, high-dimensional data that are based on the notion of preserving the connectivity of data points in the context of a Markov random walk over the data set. I show how this simple parameterization of data can be exploited to: define appropriate prototypes for use in complex mixture models, determine data-driven eigenfunctions for accurate nonparametric regression, and find a set of suitable features to use in a statistical classifier. In this thesis, methods for each of these tasks are built up from simple principles, compared to existing methods in the literature, and applied to data from astronomical all-sky surveys. I examine several important problems in astrophysics, such as estimation of star formation history parameters for galaxies, prediction of redshifts of galaxies using photometric data, and classification of different types of supernovae based on their photometric light curves. Fast methods for high-dimensional data analysis are crucial in each of these problems because they all involve the analysis of complicated high-dimensional data in large, all-sky surveys. Specifically, I estimate the star formation history parameters for the nearly 800,000 galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog, determine redshifts for over 300,000 galaxies in the SDSS photometric catalog, and estimate the types of 20,000 supernovae as part of the Supernova Photometric Classification Challenge. Accurate predictions and classifications are imperative in each of these examples because these estimates are utilized in broader inference problems

  2. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  3. Field evaluation of distance-estimation error during wetland-dependent bird surveys

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2012-01-01

    Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point

  4. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    SciTech Connect

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  5. Adaptive error covariances estimation methods for ensemble Kalman filters

    SciTech Connect

    Zhen, Yicun; Harlim, John

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.

  6. Estimation of Model Error Variances During Data Assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick

    2003-01-01

    Data assimilation is all about understanding the error characteristics of the data and models that are used in the assimilation process. Reliable error estimates are needed to implement observational quality control, bias correction of observations and model fields, and intelligent data selection. Meaningful covariance specifications are obviously required for the analysis as well, since the impact of any single observation strongly depends on the assumed structure of the background errors. Operational atmospheric data assimilation systems still rely primarily on climatological background error covariances. To obtain error estimates that reflect both the character of the flow and the current state of the observing system, it is necessary to solve three problems: (1) how to account for the short-term evolution of errors in the initial conditions; (2) how to estimate the additional component of error caused by model defects; and (3) how to compute the error reduction in the analysis due to observational information. Various approaches are now available that provide approximate solutions to the first and third of these problems. However, the useful accuracy of these solutions very much depends on the size and character of the model errors and the ability to account for them. Model errors represent the real-world forcing of the error evolution in a data assimilation system. Clearly, meaningful model error estimates and/or statistics must be based on information external to the model itself. The most obvious information source is observational, and since the volume of available geophysical data is growing rapidly, there is some hope that a purely statistical approach to model error estimation can be viable. This requires that the observation errors themselves are well understood and quantifiable. We will discuss some of these challenges and present a new sequential scheme for estimating model error variances from observations in the context of an atmospheric data

  7. Improved Margin of Error Estimates for Proportions in Business: An Educational Example

    ERIC Educational Resources Information Center

    Arzumanyan, George; Halcoussis, Dennis; Phillips, G. Michael

    2015-01-01

    This paper presents the Agresti & Coull "Adjusted Wald" method for computing confidence intervals and margins of error for common proportion estimates. The presented method is easily implementable by business students and practitioners and provides more accurate estimates of proportions particularly in extreme samples and small…

  8. Semiclassical Dynamicswith Exponentially Small Error Estimates

    NASA Astrophysics Data System (ADS)

    Hagedorn, George A.; Joye, Alain

    We construct approximate solutions to the time-dependent Schrödingerequation for small values of ħ. If V satisfies appropriate analyticity and growth hypotheses and , these solutions agree with exact solutions up to errors whose norms are bounded by for some C and γ>0. Under more restrictive hypotheses, we prove that for sufficiently small T', implies the norms of the errors are bounded by for some C', γ'>0, and σ > 0.

  9. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction

    PubMed Central

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-01-01

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions. PMID:27754469

  10. The effect of retrospective sampling on estimates of prediction error for multifactor dimensionality reduction.

    PubMed

    Winham, Stacey J; Motsinger-Reif, Alison A

    2011-01-01

    The standard in genetic association studies of complex diseases is replication and validation of positive results, with an emphasis on assessing the predictive value of associations. In response to this need, a number of analytical approaches have been developed to identify predictive models that account for complex genetic etiologies. Multifactor Dimensionality Reduction (MDR) is a commonly used, highly successful method designed to evaluate potential gene-gene interactions. MDR relies on classification error in a cross-validation framework to rank and evaluate potentially predictive models. Previous work has demonstrated the high power of MDR, but has not considered the accuracy and variance of the MDR prediction error estimate. Currently, we evaluate the bias and variance of the MDR error estimate as both a retrospective and prospective estimator and show that MDR can both underestimate and overestimate error. We argue that a prospective error estimate is necessary if MDR models are used for prediction, and propose a bootstrap resampling estimate, integrating population prevalence, to accurately estimate prospective error. We demonstrate that this bootstrap estimate is preferable for prediction to the error estimate currently produced by MDR. While demonstrated with MDR, the proposed estimation is applicable to all data-mining methods that use similar estimates.

  11. Deconvolution Estimation in Measurement Error Models: The R Package decon

    PubMed Central

    Wang, Xiao-Feng; Wang, Bin

    2011-01-01

    Data from many scientific areas often come with measurement error. Density or distribution function estimation from contaminated data and nonparametric regression with errors-in-variables are two important topics in measurement error models. In this paper, we present a new software package decon for R, which contains a collection of functions that use the deconvolution kernel methods to deal with the measurement error problems. The functions allow the errors to be either homoscedastic or heteroscedastic. To make the deconvolution estimators computationally more efficient in R, we adapt the fast Fourier transform algorithm for density estimation with error-free data to the deconvolution kernel estimation. We discuss the practical selection of the smoothing parameter in deconvolution methods and illustrate the use of the package through both simulated and real examples. PMID:21614139

  12. Fisher classifier and its probability of error estimation

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.

  13. Methods for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, M.R.; Bland, R.

    2000-01-01

    Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three

  14. Systematic estimation of forecast and observation error covariances in four-dimensional data assimilation

    NASA Technical Reports Server (NTRS)

    Dee, D. P.; Cohn, S. E.; Ghil, M.

    1985-01-01

    A two-part algorithm is presented for reliably computing weather forecast model and observational error covariances during data assimilation. Data errors arise from instrumental inaccuracies and sub-grid scale variability, whereas forecast errors occur because of modeling errors and the propagation of previous analysis errors. A Kalman filter is defined as the primary algorithm for estimating the forecast and analysis error convariance matrices. A second algorithm is described for quantifying the noise covariance matrices of any degree to obtain accurate values for the observational error covariances. Numerical results are provided from a linearized one-dimensional shallow-water model. The results cover observational noise covariances, initial instrumental errors and erroneous model values.

  15. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  16. An Ensemble-type Approach to Numerical Error Estimation

    NASA Astrophysics Data System (ADS)

    Ackmann, J.; Marotzke, J.; Korn, P.

    2015-12-01

    The estimation of the numerical error in a specific physical quantity of interest (goal) is of key importance in geophysical modelling. Towards this aim, we have formulated an algorithm that combines elements of the classical dual-weighted error estimation with stochastic methods. Our algorithm is based on the Dual-weighted Residual method in which the residual of the model solution is weighed by the adjoint solution, i.e. by the sensitivities of the goal towards the residual. We extend this method by modelling the residual as a stochastic process. Parameterizing the residual by a stochastic process was motivated by the Mori-Zwanzig formalism from statistical mechanics.Here, we apply our approach to two-dimensional shallow-water flows with lateral boundaries and an eddy viscosity parameterization. We employ different parameters of the stochastic process for different dynamical regimes in different regions. We find that for each region the temporal fluctuations of local truncation errors (discrete residuals) can be interpreted stochastically by a Laplace-distributed random variable. Assuming that these random variables are fully correlated in time leads to a stochastic process that parameterizes a problem-dependent temporal evolution of local truncation errors. The parameters of this stochastic process are estimated from short, near-initial, high-resolution simulations. Under the assumption that the estimated parameters can be extrapolated to the full time window of the error estimation, the estimated stochastic process is proven to be a valid surrogate for the local truncation errors.Replacing the local truncation errors by a stochastic process puts our method within the class of ensemble methods and makes the resulting error estimator a random variable. The result of our error estimator is thus a confidence interval on the error in the respective goal. We will show error estimates for two 2D ocean-type experiments and provide an outlook for the 3D case.

  17. Error Estimation for Reduced Order Models of Dynamical Systems

    SciTech Connect

    Homescu, C; Petzold, L; Serban, R

    2004-01-22

    The use of reduced order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a combination of small sample statistical condition estimation and error estimation using the adjoint method. Most importantly, the proposed approach allows the assessment of regions of validity for reduced models, i.e., ranges of perturbations in the original system over which the reduced model is still appropriate. Numerical examples validate our approach: the error norm estimates approximate well the forward error while the derived bounds are within an order of magnitude.

  18. On the errors in molecular dipole moments derived from accurate diffraction data.

    PubMed

    Coppens; Volkov; Abramov; Koritsanszky

    1999-09-01

    The error in the molecular dipole moment as derived from accurate X-ray diffraction data is shown to be origin dependent in the general case. It is independent of the choice of origin if an electroneutrality constraint is introduced, even when additional constraints are applied to the monopole populations. If a constraint is not applied to individual moieties, as is appropriate for multicomponent crystals or crystals containing molecular ions, the geometric center of the entity considered is a suitable choice of origin for the error treatment.

  19. Error latency estimation using functional fault modeling

    NASA Technical Reports Server (NTRS)

    Manthani, S. R.; Saxena, N. R.; Robinson, J. P.

    1983-01-01

    A complete modeling of faults at gate level for a fault tolerant computer is both infeasible and uneconomical. Functional fault modeling is an approach where units are characterized at an intermediate level and then combined to determine fault behavior. The applicability of functional fault modeling to the FTMP is studied. Using this model a forecast of error latency is made for some functional blocks. This approach is useful in representing larger sections of the hardware and aids in uncovering system level deficiencies.

  20. Bias in parameter estimation of form errors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangchao; Zhang, Hao; He, Xiaoying; Xu, Min

    2014-09-01

    The surface form qualities of precision components are critical to their functionalities. In precision instruments algebraic fitting is usually adopted and the form deviations are assessed in the z direction only, in which case the deviations at steep regions of curved surfaces will be over-weighted, making the fitted results biased and unstable. In this paper the orthogonal distance fitting is performed for curved surfaces and the form errors are measured along the normal vectors of the fitted ideal surfaces. The relative bias of the form error parameters between the vertical assessment and orthogonal assessment are analytically calculated and it is represented as functions of the surface slopes. The parameter bias caused by the non-uniformity of data points can be corrected by weighting, i.e. each data is weighted by the 3D area of the Voronoi cell around the projection point on the fitted surface. Finally numerical experiments are given to compare different fitting methods and definitions of the form error parameters. The proposed definition is demonstrated to show great superiority in terms of stability and unbiasedness.

  1. Towards accurate and precise estimates of lion density.

    PubMed

    Elliot, Nicholas B; Gopalaswamy, Arjun M

    2016-12-13

    Reliable estimates of animal density are fundamental to our understanding of ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation biology since wildlife authorities rely on these figures to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging species such as carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores. African lions (Panthera leo) provide an excellent example as although abundance indices have been shown to produce poor inferences, they continue to be used to estimate lion density and inform management and policy. In this study we adapt a Bayesian spatially explicit capture-recapture model to estimate lion density in the Maasai Mara National Reserve (MMNR) and surrounding conservancies in Kenya. We utilize sightings data from a three-month survey period to produce statistically rigorous spatial density estimates. Overall posterior mean lion density was estimated to be 16.85 (posterior standard deviation = 1.30) lions over one year of age per 100km(2) with a sex ratio of 2.2♀:1♂. We argue that such methods should be developed, improved and favored over less reliable methods such as track and call-up surveys. We caution against trend analyses based on surveys of differing reliability and call for a unified framework to assess lion numbers across their range in order for better informed management and policy decisions to be made. This article is protected by copyright. All rights reserved.

  2. LSimpute: accurate estimation of missing values in microarray data with least squares methods.

    PubMed

    Bø, Trond Hellem; Dysvik, Bjarte; Jonassen, Inge

    2004-02-20

    Microarray experiments generate data sets with information on the expression levels of thousands of genes in a set of biological samples. Unfortunately, such experiments often produce multiple missing expression values, normally due to various experimental problems. As many algorithms for gene expression analysis require a complete data matrix as input, the missing values have to be estimated in order to analyze the available data. Alternatively, genes and arrays can be removed until no missing values remain. However, for genes or arrays with only a small number of missing values, it is desirable to impute those values. For the subsequent analysis to be as informative as possible, it is essential that the estimates for the missing gene expression values are accurate. A small amount of badly estimated missing values in the data might be enough for clustering methods, such as hierachical clustering or K-means clustering, to produce misleading results. Thus, accurate methods for missing value estimation are needed. We present novel methods for estimation of missing values in microarray data sets that are based on the least squares principle, and that utilize correlations between both genes and arrays. For this set of methods, we use the common reference name LSimpute. We compare the estimation accuracy of our methods with the widely used KNNimpute on three complete data matrices from public data sets by randomly knocking out data (labeling as missing). From these tests, we conclude that our LSimpute methods produce estimates that consistently are more accurate than those obtained using KNNimpute. Additionally, we examine a more classic approach to missing value estimation based on expectation maximization (EM). We refer to our EM implementations as EMimpute, and the estimate errors using the EMimpute methods are compared with those our novel methods produce. The results indicate that on average, the estimates from our best performing LSimpute method are at least as

  3. Empirical State Error Covariance Matrix for Batch Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe

    2015-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.

  4. Validation of Large-Scale Geophysical Estimates Using In Situ Measurements with Representativeness Error

    NASA Astrophysics Data System (ADS)

    Konings, A. G.; Gruber, A.; Mccoll, K. A.; Alemohammad, S. H.; Entekhabi, D.

    2015-12-01

    Validating large-scale estimates of geophysical variables by comparing them to in situ measurements neglects the fact that these in situ measurements are not generally representative of the larger area. That is, in situ measurements contain some `representativeness error'. They also have their own sensor errors. The naïve approach of characterizing the errors of a remote sensing or modeling dataset by comparison to in situ measurements thus leads to error estimates that are spuriously inflated by the representativeness and other errors in the in situ measurements. Nevertheless, this naïve approach is still very common in the literature. In this work, we introduce an alternative estimator of the large-scale dataset error that explicitly takes into account the fact that the in situ measurements have some unknown error. The performance of the two estimators is then compared in the context of soil moisture datasets under different conditions for the true soil moisture climatology and dataset biases. The new estimator is shown to lead to a more accurate characterization of the dataset errors under the most common conditions. If a third dataset is available, the principles of the triple collocation method can be used to determine the errors of both the large-scale estimates and in situ measurements. However, triple collocation requires that the errors in all datasets are uncorrelated with each other and with the truth. We show that even when the assumptions of triple collocation are violated, a triple collocation-based validation approach may still be more accurate than a naïve comparison to in situ measurements that neglects representativeness errors.

  5. Accurate estimators of correlation functions in Fourier space

    NASA Astrophysics Data System (ADS)

    Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.

    2016-08-01

    Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.

  6. Preliminary estimates of radiosonde thermistor errors

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Luers, J. K.; Huffman, P. D.

    1986-01-01

    Radiosonde temperature measurements are subject to errors, not the least of which is the effect of long- and short-wave radiation. Methods of adjusting the daytime temperatures to a nighttime equivalent are used by some analysis centers. Other than providing consistent observations for analysis this procedure does not provide a true correction. The literature discusses the problem of radiosonde temperature errors but it is not apparent what effort, if any, has been taken to quantify these errors. To accomplish the latter, radiosondes containing multiple thermistors with different coatings were flown at Goddard Space Flight Center/Wallops Flight Facility. The coatings employed had different spectral characteristics and, therefore, different adsorption and emissivity properties. Discrimination of the recorded temperatures enabled day and night correction values to be determined for the US standard white-coated rod thermistor. The correction magnitudes are given and a comparison of US measured temperatures before and after correction are compared with temperatures measured with the Vaisala radiosonde. The corrections are in the proper direction, day and night, and reduce day-night temperature differences to less than 0.5 C between surface and 30 hPa. The present uncorrected temperatures used with the Viz radiosonde have day-night differences that exceed 1 C at levels below 90 hPa. Additional measurements are planned to confirm these preliminary results and determine the solar elevation angle effect on the corrections. The technique used to obtain the corrections may also be used to recover a true absolute value and might be considered a valuable contribution to the meteorological community for use as a reference instrument.

  7. Accurate self-correction of errors in long reads using de Bruijn graphs

    PubMed Central

    Walve, Riku; Rivals, Eric; Ukkonen, Esko

    2017-01-01

    Abstract Motivation: New long read sequencing technologies, like PacBio SMRT and Oxford NanoPore, can produce sequencing reads up to 50 000 bp long but with an error rate of at least 15%. Reducing the error rate is necessary for subsequent utilization of the reads in, e.g. de novo genome assembly. The error correction problem has been tackled either by aligning the long reads against each other or by a hybrid approach that uses the more accurate short reads produced by second generation sequencing technologies to correct the long reads. Results: We present an error correction method that uses long reads only. The method consists of two phases: first, we use an iterative alignment-free correction method based on de Bruijn graphs with increasing length of k-mers, and second, the corrected reads are further polished using long-distance dependencies that are found using multiple alignments. According to our experiments, the proposed method is the most accurate one relying on long reads only for read sets with high coverage. Furthermore, when the coverage of the read set is at least 75×, the throughput of the new method is at least 20% higher. Availability and Implementation: LoRMA is freely available at http://www.cs.helsinki.fi/u/lmsalmel/LoRMA/. Contact: leena.salmela@cs.helsinki.fi PMID:27273673

  8. Nonparametric Item Response Curve Estimation with Correction for Measurement Error

    ERIC Educational Resources Information Center

    Guo, Hongwen; Sinharay, Sandip

    2011-01-01

    Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…

  9. Bootstrap Estimates of Standard Errors in Generalizability Theory

    ERIC Educational Resources Information Center

    Tong, Ye; Brennan, Robert L.

    2007-01-01

    Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…

  10. Robust and accurate fundamental frequency estimation based on dominant harmonic components.

    PubMed

    Nakatani, Tomohiro; Irino, Toshio

    2004-12-01

    This paper presents a new method for robust and accurate fundamental frequency (F0) estimation in the presence of background noise and spectral distortion. Degree of dominance and dominance spectrum are defined based on instantaneous frequencies. The degree of dominance allows one to evaluate the magnitude of individual harmonic components of the speech signals relative to background noise while reducing the influence of spectral distortion. The fundamental frequency is more accurately estimated from reliable harmonic components which are easy to select given the dominance spectra. Experiments are performed using white and babble background noise with and without spectral distortion as produced by a SRAEN filter. The results show that the present method is better than previously reported methods in terms of both gross and fine F0 errors.

  11. Using doppler radar images to estimate aircraft navigational heading error

    SciTech Connect

    Doerry, Armin W; Jordan, Jay D; Kim, Theodore J

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  12. Laser Doppler anemometer measurements using nonorthogonal velocity components - Error estimates

    NASA Technical Reports Server (NTRS)

    Orloff, K. L.; Snyder, P. K.

    1982-01-01

    Laser Doppler anemometers (LDAs) that are arranged to measure nonorthogonal velocity components (from which orthogonal components are computed through transformation equations) are more susceptible to calibration and sampling errors than are systems with uncoupled channels. In this paper uncertainty methods and estimation theory are used to evaluate, respectively, the systematic and statistical errors that are present when such devices are applied to the measurement of mean velocities in turbulent flows. Statistical errors are estimated for two-channel LDA data that are either correlated or uncorrelated. For uncorrelated data the directional uncertainty of the measured velocity vector is considered for applications where mean streamline patterns are desired.

  13. Laser Doppler anemometer measurements using nonorthogonal velocity components: error estimates.

    PubMed

    Orloff, K L; Snyder, P K

    1982-01-15

    Laser Doppler anemometers (LDAs) that are arranged to measure nonorthogonal velocity components (from which orthogonal components are computed through transformation equations) are more susceptible to calibration and sampling errors than are systems with uncoupled channels. In this paper uncertainty methods and estimation theory are used to evaluate, respectively, the systematic and statistical errors that are present when such devices are applied to the measurement of mean velocities in turbulent flows. Statistical errors are estimated for two-channel LDA data that are either correlated or uncorrelated. For uncorrelated data the directional uncertainty of the measured velocity vector is considered for applications where mean streamline patterns are desired.

  14. PERIOD ERROR ESTIMATION FOR THE KEPLER ECLIPSING BINARY CATALOG

    SciTech Connect

    Mighell, Kenneth J.; Plavchan, Peter

    2013-06-15

    The Kepler Eclipsing Binary Catalog (KEBC) describes 2165 eclipsing binaries identified in the 115 deg{sup 2} Kepler Field based on observations from Kepler quarters Q0, Q1, and Q2. The periods in the KEBC are given in units of days out to six decimal places but no period errors are provided. We present the PEC (Period Error Calculator) algorithm, which can be used to estimate the period errors of strictly periodic variables observed by the Kepler Mission. The PEC algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. The PEC algorithm can be efficiently programmed using just a few lines of C computer language code. The PEC algorithm was used to develop a simple model that provides period error estimates for eclipsing binaries in the KEBC with periods less than 62.5 days: log {sigma}{sub P} Almost-Equal-To - 5.8908 + 1.4425(1 + log P), where P is the period of an eclipsing binary in the KEBC in units of days. KEBC systems with periods {>=}62.5 days have KEBC period errors of {approx}0.0144 days. Periods and period errors of seven eclipsing binary systems in the KEBC were measured using the NASA Exoplanet Archive Periodogram Service and compared to period errors estimated using the PEC algorithm.

  15. An Empirical State Error Covariance Matrix for Batch State Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the

  16. Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes

    PubMed Central

    Faver, John C.; Benson, Mark L.; He, Xiao; Roberts, Benjamin P.; Wang, Bing; Marshall, Michael S.; Kennedy, Matthew R.; Sherrill, C. David; Merz, Kenneth M.

    2011-01-01

    A largely unsolved problem in computational biochemistry is the accurate prediction of binding affinities of small ligands to protein receptors. We present a detailed analysis of the systematic and random errors present in computational methods through the use of error probability density functions, specifically for computed interaction energies between chemical fragments comprising a protein-ligand complex. An HIV-II protease crystal structure with a bound ligand (indinavir) was chosen as a model protein-ligand complex. The complex was decomposed into twenty-one (21) interacting fragment pairs, which were studied using a number of computational methods. The chemically accurate complete basis set coupled cluster theory (CCSD(T)/CBS) interaction energies were used as reference values to generate our error estimates. In our analysis we observed significant systematic and random errors in most methods, which was surprising especially for parameterized classical and semiempirical quantum mechanical calculations. After propagating these fragment-based error estimates over the entire protein-ligand complex, our total error estimates for many methods are large compared to the experimentally determined free energy of binding. Thus, we conclude that statistical error analysis is a necessary addition to any scoring function attempting to produce reliable binding affinity predictions. PMID:21666841

  17. Visual field test simulation and error in threshold estimation.

    PubMed Central

    Spenceley, S E; Henson, D B

    1996-01-01

    AIM: To establish, via computer simulation, the effects of patient response variability and staircase starting level upon the accuracy and repeatability of static full threshold visual field tests. METHOD: Patient response variability, defined by the standard deviation of the frequency of seeing versus stimulus intensity curve, is varied from 0.5 to 20 dB (in steps of 0.5 dB) with staircase starting levels ranging from 30 dB below to 30 dB above the patient's threshold (in steps of 10 dB). Fifty two threshold estimates are derived for each condition and the error of each estimate calculated (difference between the true threshold and the threshold estimate derived from the staircase procedure). The mean and standard deviation of the errors are then determined for each condition. The results from a simulated quadrantic defect (response variability set to typical values for a patient with glaucoma) are presented using two different algorithms. The first corresponds with that normally used when performing a full threshold examination while the second uses results from an earlier simulated full threshold examination for the staircase starting values. RESULTS: The mean error in threshold estimates was found to be biased towards the staircase starting level. The extent of the bias was dependent upon patient response variability. The standard deviation of the error increased both with response variability and staircase starting level. With the routinely used full threshold strategy the quadrantic defect was found to have a large mean error in estimated threshold values and an increase in the standard deviation of the error along the edge of the defect. When results from an earlier full threshold test are used as staircase starting values this error and increased standard deviation largely disappeared. CONCLUSION: The staircase procedure widely used in threshold perimetry increased the error and the variability of threshold estimates along the edges of defects. Using

  18. North error estimation based on solar elevation errors in the third step of sky-polarimetric Viking navigation.

    PubMed

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Egri, Ádám; Horváth, Gábor

    2016-07-01

    The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors ΔωN was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal ΔωN was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations.

  19. North error estimation based on solar elevation errors in the third step of sky-polarimetric Viking navigation

    NASA Astrophysics Data System (ADS)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Egri, Ádám; Horváth, Gábor

    2016-07-01

    The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors ΔωN was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal ΔωN was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations.

  20. Factor Loading Estimation Error and Stability Using Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Sass, Daniel A.

    2010-01-01

    Exploratory factor analysis (EFA) is commonly employed to evaluate the factor structure of measures with dichotomously scored items. Generally, only the estimated factor loadings are provided with no reference to significance tests, confidence intervals, and/or estimated factor loading standard errors. This simulation study assessed factor loading…

  1. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large

  2. Accurate and Robust Attitude Estimation Using MEMS Gyroscopes and a Monocular Camera

    NASA Astrophysics Data System (ADS)

    Kobori, Norimasa; Deguchi, Daisuke; Takahashi, Tomokazu; Ide, Ichiro; Murase, Hiroshi

    In order to estimate accurate rotations of mobile robots and vehicle, we propose a hybrid system which combines a low-cost monocular camera with gyro sensors. Gyro sensors have drift errors that accumulate over time. On the other hand, a camera cannot obtain the rotation continuously in the case where feature points cannot be extracted from images, although the accuracy is better than gyro sensors. To solve these problems we propose a method for combining these sensors based on Extended Kalman Filter. The errors of the gyro sensors are corrected by referring to the rotations obtained from the camera. In addition, by using the reliability judgment of camera rotations and devising the state value of the Extended Kalman Filter, even when the rotation is not continuously observable from the camera, the proposed method shows a good performance. Experimental results showed the effectiveness of the proposed method.

  3. Error Estimation for Reduced Order Models of Dynamical systems

    SciTech Connect

    Homescu, C; Petzold, L R; Serban, R

    2003-12-16

    The use of reduced order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a combination of the small sample statistical condition estimation method and of error estimation using the adjoint method. More importantly, the proposed approach allows the assessment of so-called regions of validity for reduced models, i.e., ranges of perturbations in the original system over which the reduced model is still appropriate. This question is particularly important for applications in which reduced models are used not just to approximate the solution to the system that provided the data used in constructing the reduced model, but rather to approximate the solution of systems perturbed from the original one. Numerical examples validate our approach: the error norm estimates approximate well the forward error while the derived bounds are within an order of magnitude.

  4. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis

    NASA Astrophysics Data System (ADS)

    Jones, Reese E.; Mandadapu, Kranthi K.

    2012-04-01

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  5. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis.

    PubMed

    Jones, Reese E; Mandadapu, Kranthi K

    2012-04-21

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)] and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  6. Estimation of bone permeability using accurate microstructural measurements.

    PubMed

    Beno, Thoma; Yoon, Young-June; Cowin, Stephen C; Fritton, Susannah P

    2006-01-01

    While interstitial fluid flow is necessary for the viability of osteocytes, it is also believed to play a role in bone's mechanosensory system by shearing bone cell membranes or causing cytoskeleton deformation and thus activating biochemical responses that lead to the process of bone adaptation. However, the fluid flow properties that regulate bone's adaptive response are poorly understood. In this paper, we present an analytical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity in bone. First, we estimate the total number of canaliculi emanating from each osteocyte lacuna based on published measurements from parallel-fibered shaft bones of several species (chick, rabbit, bovine, horse, dog, and human). Next, we determine the local three-dimensional permeability of the lacunar-canalicular porosity for these species using recent microstructural measurements and adapting a previously developed model. Results demonstrated that the number of canaliculi per osteocyte lacuna ranged from 41 for human to 115 for horse. Permeability coefficients were found to be different in three local principal directions, indicating local orthotropic symmetry of bone permeability in parallel-fibered cortical bone for all species examined. For the range of parameters investigated, the local lacunar-canalicular permeability varied more than three orders of magnitude, with the osteocyte lacunar shape and size along with the 3-D canalicular distribution determining the degree of anisotropy of the local permeability. This two-step theoretical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity will be useful for accurate quantification of interstitial fluid movement in bone.

  7. Sampling errors in satellite estimates of tropical rain

    NASA Technical Reports Server (NTRS)

    Mcconnell, Alan; North, Gerald R.

    1987-01-01

    The GATE rainfall data set is used in a statistical study to estimate the sampling errors that might be expected for the type of snapshot sampling that a low earth-orbiting satellite makes. For averages over the entire 400-km square and for the duration of several weeks, strong evidence is found that sampling errors less than 10 percent can be expected in contributions from each of four rain rate categories which individually account for about one quarter of the total rain.

  8. Estimation of rod scale errors in geodetic leveling

    USGS Publications Warehouse

    Craymer, Michael R.; Vaníček, Petr; Castle, Robert O.

    1995-01-01

    Comparisons among repeated geodetic levelings have often been used for detecting and estimating residual rod scale errors in leveled heights. Individual rod-pair scale errors are estimated by a two-step procedure using a model based on either differences in heights, differences in section height differences, or differences in section tilts. It is shown that the estimated rod-pair scale errors derived from each model are identical only when the data are correctly weighted, and the mathematical correlations are accounted for in the model based on heights. Analyses based on simple regressions of changes in height versus height can easily lead to incorrect conclusions. We also show that the statistically estimated scale errors are not a simple function of height, height difference, or tilt. The models are valid only when terrain slope is constant over adjacent pairs of setups (i.e., smoothly varying terrain). In order to discriminate between rod scale errors and vertical displacements due to crustal motion, the individual rod-pairs should be used in more than one leveling, preferably in areas of contrasting tectonic activity. From an analysis of 37 separately calibrated rod-pairs used in 55 levelings in southern California, we found eight statistically significant coefficients that could be reasonably attributed to rod scale errors, only one of which was larger than the expected random error in the applied calibration-based scale correction. However, significant differences with other independent checks indicate that caution should be exercised before accepting these results as evidence of scale error. Further refinements of the technique are clearly needed if the results are to be routinely applied in practice.

  9. Verification of unfold error estimates in the unfold operator code

    SciTech Connect

    Fehl, D.L.; Biggs, F.

    1997-01-01

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}

  10. Verification of unfold error estimates in the unfold operator code

    NASA Astrophysics Data System (ADS)

    Fehl, D. L.; Biggs, F.

    1997-01-01

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums.

  11. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1983-01-01

    Alternatives to sampling-theory stratified and regression estimators of crop production and timber biomass were examined. An alternative estimator which is viewed as especially promising is the errors-in-variable regression estimator. Investigations established the need for caution with this estimator when the ratio of two error variances is not precisely known.

  12. An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method

    NASA Astrophysics Data System (ADS)

    Lins, R. M.; Ferreira, M. D. C.; Proença, S. P. B.; Duarte, C. A.

    2015-12-01

    In this study, a recovery-based a-posteriori error estimator originally proposed for the Corrected XFEM is investigated in the framework of the stable generalized FEM (SGFEM). Both Heaviside and branch functions are adopted to enrich the approximations in the SGFEM. Some necessary adjustments to adapt the expressions defining the enhanced stresses in the original error estimator are discussed in the SGFEM framework. Relevant aspects such as effectivity indexes, error distribution, convergence rates and accuracy of the recovered stresses are used in order to highlight the main findings and the effectiveness of the error estimator. Two benchmark problems of the 2-D fracture mechanics are selected to assess the robustness of the error estimator hereby investigated. The main findings of this investigation are: the SGFEM shows higher accuracy than G/XFEM and a reduced sensitivity to blending element issues. The error estimator can accurately capture these features of both methods.

  13. Estimating errors in IceBridge freeboard at ICESat Scales

    NASA Astrophysics Data System (ADS)

    Prado, D. W.; Xie, H.; Ackley, S. F.; Wang, X.

    2014-12-01

    The Airborne Topographic Mapping (ATM) system flown on NASA Operation IceBridge allows for estimation of sea ice thickness from surface elevations in the Bellingshausen - Amundsen Seas. The estimation of total freeboard is based on the accuracy of local sea level estimations and the footprint size. We used the high density of ATM L1B (~1 m footprint) observations at varying spatial resolutions to assess errors associated with averaging over larger footprints and deviation of local sea level from the WGS-84 geoid over longer segment lengths The ATM data sets allow for a comparison between IceBridge (2009-2014) and ICESat(2003-2009)derived freeboards by comparing the ATM L2 (~70 m footprint) data, similar to the IceSAT footprint. While The average freeboard estimates for the L2 data in 2009 underestimate total freeboard by only 5 cm at 5 km segment lengths the error increases to 49 cm at the 50 km segment lengths typical of IceSAT analyses. Since the error in freeboard estimation greatly increases at the segment lengths used for IceSAT analyses, some caution may be required in comparing IceSAT thickness estimates with later IceBridge estimates over the same region.

  14. Analytical formula for three points sinusoidal signals amplitude estimation errors

    NASA Astrophysics Data System (ADS)

    Nicolae Vizireanu, Dragos; Viorica Halunga, Simona

    2012-01-01

    In this note, we show that the amplitude estimation of sinusoidal signals proposed in Wu and Hong [Wu, S.T., and Hong, J.L. (2010), 'Five-point Amplitude Estimation of Sinusoidal Signals: With Application to LVDT Signal Conditioning', IEEE Transactions on Instrumentation and Measurement, 59, 623-630] is a particular case of Vizireanu and Halunga [Vizireanu, D.N, and Halunga, S.V. (2011), 'Single Sine Wave Parameters Estimation Method Based on Four Equally Spaced Samples', International Journal of Electronics, 98(7), pp. 941-948]. An analytical formula for amplitude estimation errors as effects of sampling period deviation is obtained.

  15. Error Estimation for the Linearized Auto-Localization Algorithm

    PubMed Central

    Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando

    2012-01-01

    The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965

  16. Error propagation and scaling for tropical forest biomass estimates.

    PubMed Central

    Chave, Jerome; Condit, Richard; Aguilar, Salomon; Hernandez, Andres; Lao, Suzanne; Perez, Rolando

    2004-01-01

    The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 10(4) m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find that the most important source of error is currently related to the choice of the allometric model. More work should be devoted to improving the predictive power of allometric models for biomass. PMID:15212093

  17. Correcting the optimal resampling-based error rate by estimating the error rate of wrapper algorithms.

    PubMed

    Bernau, Christoph; Augustin, Thomas; Boulesteix, Anne-Laure

    2013-09-01

    High-dimensional binary classification tasks, for example, the classification of microarray samples into normal and cancer tissues, usually involve a tuning parameter. By reporting the performance of the best tuning parameter value only, over-optimistic prediction errors are obtained. For correcting this tuning bias, we develop a new method which is based on a decomposition of the unconditional error rate involving the tuning procedure, that is, we estimate the error rate of wrapper algorithms as introduced in the context of internal cross-validation (ICV) by Varma and Simon (2006, BMC Bioinformatics 7, 91). Our subsampling-based estimator can be written as a weighted mean of the errors obtained using the different tuning parameter values, and thus can be interpreted as a smooth version of ICV, which is the standard approach for avoiding tuning bias. In contrast to ICV, our method guarantees intuitive bounds for the corrected error. Additionally, we suggest to use bias correction methods also to address the conceptually similar method selection bias that results from the optimal choice of the classification method itself when evaluating several methods successively. We demonstrate the performance of our method on microarray and simulated data and compare it to ICV. This study suggests that our approach yields competitive estimates at a much lower computational price.

  18. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  19. ORAN- ORBITAL AND GEODETIC PARAMETER ESTIMATION ERROR ANALYSIS

    NASA Technical Reports Server (NTRS)

    Putney, B.

    1994-01-01

    The Orbital and Geodetic Parameter Estimation Error Analysis program, ORAN, was developed as a Bayesian least squares simulation program for orbital trajectories. ORAN does not process data, but is intended to compute the accuracy of the results of a data reduction, if measurements of a given accuracy are available and are processed by a minimum variance data reduction program. Actual data may be used to provide the time when a given measurement was available and the estimated noise on that measurement. ORAN is designed to consider a data reduction process in which a number of satellite data periods are reduced simultaneously. If there is more than one satellite in a data period, satellite-to-satellite tracking may be analyzed. The least squares estimator in most orbital determination programs assumes that measurements can be modeled by a nonlinear regression equation containing a function of parameters to be estimated and parameters which are assumed to be constant. The partitioning of parameters into those to be estimated (adjusted) and those assumed to be known (unadjusted) is somewhat arbitrary. For any particular problem, the data will be insufficient to adjust all parameters subject to uncertainty, and some reasonable subset of these parameters is selected for estimation. The final errors in the adjusted parameters may be decomposed into a component due to measurement noise and a component due to errors in the assumed values of the unadjusted parameters. Error statistics associated with the first component are generally evaluated in an orbital determination program. ORAN is used to simulate the orbital determination processing and to compute error statistics associated with the second component. Satellite observations may be simulated with desired noise levels given in many forms including range and range rate, altimeter height, right ascension and declination, direction cosines, X and Y angles, azimuth and elevation, and satellite-to-satellite range and

  20. Insights Into the Robustness of Minimum Error Entropy Estimation.

    PubMed

    Chen, Badong; Xing, Lei; Xu, Bin; Zhao, Haiquan; Principe, Jose C

    2016-12-22

    The minimum error entropy (MEE) is an important and highly effective optimization criterion in information theoretic learning (ITL). For regression problems, MEE aims at minimizing the entropy of the prediction error such that the estimated model preserves the information of the data generating system as much as possible. In many real world applications, the MEE estimator can outperform significantly the well-known minimum mean square error (MMSE) estimator and show strong robustness to noises especially when data are contaminated by non-Gaussian (multimodal, heavy tailed, discrete valued, and so on) noises. In this brief, we present some theoretical results on the robustness of MEE. For a one-parameter linear errors-in-variables (EIV) model and under some conditions, we derive a region that contains the MEE solution, which suggests that the MEE estimate can be very close to the true value of the unknown parameter even in presence of arbitrarily large outliers in both input and output variables. Theoretical prediction is verified by an illustrative example.

  1. Bootstrap Standard Error Estimates in Dynamic Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Browne, Michael W.

    2010-01-01

    Dynamic factor analysis summarizes changes in scores on a battery of manifest variables over repeated measurements in terms of a time series in a substantially smaller number of latent factors. Algebraic formulae for standard errors of parameter estimates are more difficult to obtain than in the usual intersubject factor analysis because of the…

  2. Uplink channel estimation error for large scale MIMO system

    NASA Astrophysics Data System (ADS)

    Albdran, Saleh; Alshammari, Ahmad; Matin, Mohammad

    2016-09-01

    The high demand on the wireless networks and the need for higher data rates are the motivation to develop new technologies. Recently, the idea of using large-scale MIMO systems has grabbed great attention from the researchers due to its high spectral and energy efficiency. In this paper, we analyze the UL channel estimation error using large number of antennas in the base station where the UL channel is based on predefined pilot signal. By making a comparison between the identified UL pilot signal and the received UL signal we can get the realization of the channel. We choose to deal with one cell scenario where the effect of inter-cell interference is eliminated for the sake of studying simple approach. While the number of antennas is very large in the base station side, we choose to have one antennal in the user terminal side. We choose to have two models to generate the channel covariance matrix includes one-ring model and exponential correlation model. Figures of channel estimation error are generated where the performance of the mean square error MSE per antenna is presented as a function signal to noise ratio SNR. The simulation results show that the higher the SNR the better the performance. Furthermore, the affect of the pilot length on the channel estimation error is studied where two different covariance models are used to see the impact of the two cases. In the two cases, the increase of the pilot length has improved the estimation accuracy.

  3. Condition and Error Estimates in Numerical Matrix Computations

    SciTech Connect

    Konstantinov, M. M.; Petkov, P. H.

    2008-10-30

    This tutorial paper deals with sensitivity and error estimates in matrix computational processes. The main factors determining the accuracy of the result computed in floating--point machine arithmetics are considered. Special attention is paid to the perturbation analysis of matrix algebraic equations and unitary matrix decompositions.

  4. Fast and Accurate Learning When Making Discrete Numerical Estimates

    PubMed Central

    Sanborn, Adam N.; Beierholm, Ulrik R.

    2016-01-01

    Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155

  5. Intraocular lens power estimation by accurate ray tracing for eyes underwent previous refractive surgeries

    NASA Astrophysics Data System (ADS)

    Yang, Que; Wang, Shanshan; Wang, Kai; Zhang, Chunyu; Zhang, Lu; Meng, Qingyu; Zhu, Qiudong

    2015-08-01

    For normal eyes without history of any ocular surgery, traditional equations for calculating intraocular lens (IOL) power, such as SRK-T, Holladay, Higis, SRK-II, et al., all were relativley accurate. However, for eyes underwent refractive surgeries, such as LASIK, or eyes diagnosed as keratoconus, these equations may cause significant postoperative refractive error, which may cause poor satisfaction after cataract surgery. Although some methods have been carried out to solve this problem, such as Hagis-L equation[1], or using preoperative data (data before LASIK) to estimate K value[2], no precise equations were available for these eyes. Here, we introduced a novel intraocular lens power estimation method by accurate ray tracing with optical design software ZEMAX. Instead of using traditional regression formula, we adopted the exact measured corneal elevation distribution, central corneal thickness, anterior chamber depth, axial length, and estimated effective lens plane as the input parameters. The calculation of intraocular lens power for a patient with keratoconus and another LASIK postoperative patient met very well with their visual capacity after cataract surgery.

  6. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL

    EPA Science Inventory

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...

  7. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb, we incorporated Pb-contaminated soils or Pb acetate into diets for Japanese quail (Coturnix japonica), fed the quail for 15 days, and ...

  8. Sensitivity of LIDAR Canopy Height Estimate to Geolocation Error

    NASA Astrophysics Data System (ADS)

    Tang, H.; Dubayah, R.

    2010-12-01

    Many factors affect the quality of canopy height structure data derived from space-based lidar such as DESDynI. Among these is geolocation accuracy. Inadequate geolocation information hinders subsequent analyses because a different portion of the canopy is observed relative to what is assumed. This is especially true in mountainous terrain where the effects of slope magnify geolocation errors. Mission engineering design must trade the expense of providing more accurate geolocation with the potential improvement in measurement accuracy. The objective of our work is to assess the effects of small errors in geolocation on subsequent retrievals of maximum canopy height for a varying set of canopy structures and terrains. Dense discrete lidar data from different forest sites (from La Selva Biological Station, Costa Rica, Sierra National Forest, California, and Hubbard Brook and Bartlett Experimental Forests in New Hampshire) are used to simulate DESDynI height retrievals using various geolocation accuracies. Results show that canopy height measurement errors generally increase as the geolocation error increases. Interestingly, most of the height errors are caused by variation of canopy height rather than topography (slope and aspect).

  9. DEB: definite error bounded tangent estimator for digital curves.

    PubMed

    Prasad, Dilip K; Leung, Maylor K H; Quek, Chai; Brown, Michael S

    2014-10-01

    We propose a simple and fast method for tangent estimation of digital curves. This geometric-based method uses a small local region for tangent estimation and has a definite upper bound error for continuous as well as digital conics, i.e., circles, ellipses, parabolas, and hyperbolas. Explicit expressions of the upper bounds for continuous and digitized curves are derived, which can also be applied to nonconic curves. Our approach is benchmarked against 72 contemporary tangent estimation methods and demonstrates good performance for conic, nonconic, and noisy curves. In addition, we demonstrate a good multigrid and isotropic performance and low computational complexity of O(1) and better performance than most methods in terms of maximum and average errors in tangent computation for a large variety of digital curves.

  10. How accurate are physical property estimation programs for organosilicon compounds?

    PubMed

    Boethling, Robert; Meylan, William

    2013-11-01

    Organosilicon compounds are important in chemistry and commerce, and nearly 10% of new chemical substances for which premanufacture notifications are processed by the US Environmental Protection Agency (USEPA) contain silicon (Si). Yet, remarkably few measured values are submitted for key physical properties, and the accuracy of estimation programs such as the Estimation Programs Interface (EPI) Suite and the SPARC Performs Automated Reasoning in Chemistry (SPARC) system is largely unknown. To address this issue, the authors developed an extensive database of measured property values for organic compounds containing Si and evaluated the performance of no-cost estimation programs for several properties of importance in environmental assessment. These included melting point (mp), boiling point (bp), vapor pressure (vp), water solubility, n-octanol/water partition coefficient (log KOW ), and Henry's law constant. For bp and the larger of 2 vp datasets, SPARC, MPBPWIN, and the USEPA's Toxicity Estimation Software Tool (TEST) had similar accuracy. For log KOW and water solubility, the authors tested 11 and 6 no-cost estimators, respectively. The best performers were Molinspiration and WSKOWWIN, respectively. The TEST's consensus mp method outperformed that of MPBPWIN by a considerable margin. Generally, the best programs estimated the listed properties of diverse organosilicon compounds with accuracy sufficient for chemical screening. The results also highlight areas where improvement is most needed.

  11. An Anisotropic A posteriori Error Estimator for CFD

    NASA Astrophysics Data System (ADS)

    Feijóo, Raúl A.; Padra, Claudio; Quintana, Fernando

    In this article, a robust anisotropic adaptive algorithm is presented, to solve compressible-flow equations using a stabilized CFD solver and automatic mesh generators. The association includes a mesh generator, a flow solver, and an a posteriori error-estimator code. The estimator was selected among several choices available (Almeida et al. (2000). Comput. Methods Appl. Mech. Engng, 182, 379-400; Borges et al. (1998). "Computational mechanics: new trends and applications". Proceedings of the 4th World Congress on Computational Mechanics, Bs.As., Argentina) giving a powerful computational tool. The main aim is to capture solution discontinuities, in this case, shocks, using the least amount of computational resources, i.e. elements, compatible with a solution of good quality. This leads to high aspect-ratio elements (stretching). To achieve this, a directional error estimator was specifically selected. The numerical results show good behavior of the error estimator, resulting in strongly-adapted meshes in few steps, typically three or four iterations, enough to capture shocks using a moderate and well-distributed amount of elements.

  12. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach

    PubMed Central

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-01-01

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors. PMID:26065707

  13. Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.

  14. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.

    PubMed

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Lebel, Luc; Kolus, Ahmet

    2016-05-01

    Heart rate (HR) was monitored continuously in 41 forest workers performing brushcutting or tree planting work. 10-min seated rest periods were imposed during the workday to estimate the HR thermal component (ΔHRT) per Vogt et al. (1970, 1973). VO2 was measured using a portable gas analyzer during a morning submaximal step-test conducted at the work site, during a work bout over the course of the day (range: 9-74 min), and during an ensuing 10-min rest pause taken at the worksite. The VO2 estimated, from measured HR and from corrected HR (thermal component removed), were compared to VO2 measured during work and rest. Varied levels of HR thermal component (ΔHRTavg range: 0-38 bpm) originating from a wide range of ambient thermal conditions, thermal clothing insulation worn, and physical load exerted during work were observed. Using raw HR significantly overestimated measured work VO2 by 30% on average (range: 1%-64%). 74% of VO2 prediction error variance was explained by the HR thermal component. VO2 estimated from corrected HR, was not statistically different from measured VO2. Work VO2 can be estimated accurately in the presence of thermal stress using Vogt et al.'s method, which can be implemented easily by the practitioner with inexpensive instruments.

  15. Real-Time Baseline Error Estimation and Correction for GNSS/Strong Motion Seismometer Integration

    NASA Astrophysics Data System (ADS)

    Li, C. Y. N.; Groves, P. D.; Ziebart, M. K.

    2014-12-01

    Accurate and rapid estimation of permanent surface displacement is required immediately after a slip event for earthquake monitoring or tsunami early warning. It is difficult to achieve the necessary accuracy and precision at high- and low-frequencies using GNSS or seismometry alone. GNSS and seismic sensors can be integrated to overcome the limitations of each. Kalman filter algorithms with displacement and velocity states have been developed to combine GNSS and accelerometer observations to obtain the optimal displacement solutions. However, the sawtooth-like phenomena caused by the bias or tilting of the sensor decrease the accuracy of the displacement estimates. A three-dimensional Kalman filter algorithm with an additional baseline error state has been developed. An experiment with both a GNSS receiver and a strong motion seismometer mounted on a movable platform and subjected to known displacements was carried out. The results clearly show that the additional baseline error state enables the Kalman filter to estimate the instrument's sensor bias and tilt effects and correct the state estimates in real time. Furthermore, the proposed Kalman filter algorithm has been validated with data sets from the 2010 Mw 7.2 El Mayor-Cucapah Earthquake. The results indicate that the additional baseline error state can not only eliminate the linear and quadratic drifts but also reduce the sawtooth-like effects from the displacement solutions. The conventional zero-mean baseline-corrected results cannot show the permanent displacements after an earthquake; the two-state Kalman filter can only provide stable and optimal solutions if the strong motion seismometer had not been moved or tilted by the earthquake. Yet the proposed Kalman filter can achieve the precise and accurate displacements by estimating and correcting for the baseline error at each epoch. The integration filters out noise-like distortions and thus improves the real-time detection and measurement capability

  16. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGES

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  17. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    SciTech Connect

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.

  18. Stress Recovery and Error Estimation for Shell Structures

    NASA Technical Reports Server (NTRS)

    Yazdani, A. A.; Riggs, H. R.; Tessler, A.

    2000-01-01

    The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.

  19. Divergent estimation error in portfolio optimization and in linear regression

    NASA Astrophysics Data System (ADS)

    Kondor, I.; Varga-Haszonits, I.

    2008-08-01

    The problem of estimation error in portfolio optimization is discussed, in the limit where the portfolio size N and the sample size T go to infinity such that their ratio is fixed. The estimation error strongly depends on the ratio N/T and diverges for a critical value of this parameter. This divergence is the manifestation of an algorithmic phase transition, it is accompanied by a number of critical phenomena, and displays universality. As the structure of a large number of multidimensional regression and modelling problems is very similar to portfolio optimization, the scope of the above observations extends far beyond finance, and covers a large number of problems in operations research, machine learning, bioinformatics, medical science, economics, and technology.

  20. GPS/DR Error Estimation for Autonomous Vehicle Localization

    PubMed Central

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  1. GPS/DR Error Estimation for Autonomous Vehicle Localization.

    PubMed

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-08-21

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.

  2. Accurate biopsy-needle depth estimation in limited-angle tomography using multi-view geometry

    NASA Astrophysics Data System (ADS)

    van der Sommen, Fons; Zinger, Sveta; de With, Peter H. N.

    2016-03-01

    Recently, compressed-sensing based algorithms have enabled volume reconstruction from projection images acquired over a relatively small angle (θ < 20°). These methods enable accurate depth estimation of surgical tools with respect to anatomical structures. However, they are computationally expensive and time consuming, rendering them unattractive for image-guided interventions. We propose an alternative approach for depth estimation of biopsy needles during image-guided interventions, in which we split the problem into two parts and solve them independently: needle-depth estimation and volume reconstruction. The complete proposed system consists of the previous two steps, preceded by needle extraction. First, we detect the biopsy needle in the projection images and remove it by interpolation. Next, we exploit epipolar geometry to find point-to-point correspondences in the projection images to triangulate the 3D position of the needle in the volume. Finally, we use the interpolated projection images to reconstruct the local anatomical structures and indicate the position of the needle within this volume. For validation of the algorithm, we have recorded a full CT scan of a phantom with an inserted biopsy needle. The performance of our approach ranges from a median error of 2.94 mm for an distributed viewing angle of 1° down to an error of 0.30 mm for an angle larger than 10°. Based on the results of this initial phantom study, we conclude that multi-view geometry offers an attractive alternative to time-consuming iterative methods for the depth estimation of surgical tools during C-arm-based image-guided interventions.

  3. Error Covariance Estimation and Representation for Mesoscale Data Assimilation

    DTIC Science & Technology

    2003-09-30

    Error Covariance Estimation and Representation for Mesoscale Data Assimilation Dr. Qin Xu CIMMS , University of Oklahoma 100 E. Boyd (Rm 1110...calculations are performed by project-supported research scientists at CIMMS , the University of Oklahoma. The required innovation data are collected by project...AND ADDRESS(ES) CIMMS , University of Oklahoma,,100 E. Boyd (Rm 1110),,Norman,,OK,73019 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  4. Error Covariance Estimation and Representation for Mesoscale Data Assimilation

    DTIC Science & Technology

    2005-09-30

    Error Covariance Estimation and Representation for Mesoscale Data Assimilation Dr. Qin Xu CIMMS , University of Oklahoma, 100 E. Boyd (Rm 1110...by project-supported research scientists at CIMMS , the University of Oklahoma. The required innovation data were collected by Drs. Edward Barker and...AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CIMMS , University of Oklahoma

  5. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.

    2013-01-01

    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  6. Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons

    PubMed Central

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2012-01-01

    In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π. PMID:24027379

  7. Accurate feature detection and estimation using nonlinear and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Rudin, Leonid; Osher, Stanley

    1994-11-01

    A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.

  8. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2008-11-30

    Prediction of the microbial growth rate as a response to changing temperatures is an important aspect in the control of food safety and food spoilage. Accurate model predictions of the microbial evolution ask for correct model structures and reliable parameter values with good statistical quality. Given the widely accepted validity of the Cardinal Temperature Model with Inflection (CTMI) [Rosso, L., Lobry, J. R., Bajard, S. and Flandrois, J. P., 1995. Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Microbiology, 61: 610-616], this paper focuses on the accurate estimation of its four parameters (T(min), T(opt), T(max) and micro(opt)) by applying the technique of optimal experiment design for parameter estimation (OED/PE). This secondary model describes the influence of temperature on the microbial specific growth rate from the minimum to the maximum temperature for growth. Dynamic temperature profiles are optimized within two temperature regions ([15 degrees C, 43 degrees C] and [15 degrees C, 45 degrees C]), focusing on the minimization of the parameter estimation (co)variance (D-optimal design). The optimal temperature profiles are implemented in a computer controlled bioreactor, and the CTMI parameters are identified from the resulting experimental data. Approximately equal CTMI parameter values were derived irrespective of the temperature region, except for T(max). The latter could only be estimated accurately from the optimal experiments within [15 degrees C, 45 degrees C]. This observation underlines the importance of selecting the upper temperature constraint for OED/PE as close as possible to the true T(max). Cardinal temperature estimates resulting from designs within [15 degrees C, 45 degrees C] correspond with values found in literature, are characterized by a small uncertainty error and yield a good result during validation. As compared to estimates from non-optimized dynamic

  9. Model error estimation and correction by solving a inverse problem

    NASA Astrophysics Data System (ADS)

    Xue, Haile

    2016-04-01

    Nowadays, the weather forecasts and climate predictions are increasingly relied on numerical models. Yet, errors inevitably exist in model due to the imperfect numeric and parameterizations. From the practical point of view, model correction is an efficient strategy. Despite of the different complexity of forecast error correction algorithms, the general idea is to estimate the forecast errors by considering the NWP as a direct problem. Chou (1974) suggested an alternative view by considering the NWP as an inverse problem. The model error tendency term (ME) due to the model deficiency is assumed as an unknown term in NWP model, which can be discretized into short intervals (for example 6 hour) and considered as a constant or linear form in each interval. Given the past re-analyses and NWP model, the discretized MEs in the past intervals can be solved iteratively as a constant or linear-increased tendency term in each interval. These MEs can be further used as the online corrections. In this study, an iterative method for obtaining the MEs in past intervals was presented, and its convergence had been confirmed with sets of experiments in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August (JA) 2009 and January-February (JF) 2010. Then these MEs were used to get online model corretions based of systematic errors of GRAPES-GFS for July 2009 and January 2010. The data sets associated with initial condition and sea surface temperature (SST) used in this study are both based on NCEP final (FNL) data. According to the iterative numerical experiments, the following key conclusions can be drawn:(1) Batches of iteration test results indicated that the hour 6 forecast errors were reduced to 10% of their original value after 20 steps of iteration.(2) By offlinely comparing the error corrections estimated by MEs to the mean forecast errors, the patterns of estimated errors were considered to agree well with those

  10. Estimation of Separation Buffers for Wind-Prediction Error in an Airborne Separation Assistance System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette

    2009-01-01

    Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.

  11. Accurate tempo estimation based on harmonic + noise decomposition

    NASA Astrophysics Data System (ADS)

    Alonso, Miguel; Richard, Gael; David, Bertrand

    2006-12-01

    We present an innovative tempo estimation system that processes acoustic audio signals and does not use any high-level musical knowledge. Our proposal relies on a harmonic + noise decomposition of the audio signal by means of a subspace analysis method. Then, a technique to measure the degree of musical accentuation as a function of time is developed and separately applied to the harmonic and noise parts of the input signal. This is followed by a periodicity estimation block that calculates the salience of musical accents for a large number of potential periods. Next, a multipath dynamic programming searches among all the potential periodicities for the most consistent prospects through time, and finally the most energetic candidate is selected as tempo. Our proposal is validated using a manually annotated test-base containing 961 music signals from various musical genres. In addition, the performance of the algorithm under different configurations is compared. The robustness of the algorithm when processing signals of degraded quality is also measured.

  12. Fast and Accurate Estimates of Divergence Times from Big Data.

    PubMed

    Mello, Beatriz; Tao, Qiqing; Tamura, Koichiro; Kumar, Sudhir

    2017-01-01

    Ongoing advances in sequencing technology have led to an explosive expansion in the molecular data available for building increasingly larger and more comprehensive timetrees. However, Bayesian relaxed-clock approaches frequently used to infer these timetrees impose a large computational burden and discourage critical assessment of the robustness of inferred times to model assumptions, influence of calibrations, and selection of optimal data subsets. We analyzed eight large, recently published, empirical datasets to compare time estimates produced by RelTime (a non-Bayesian method) with those reported by using Bayesian approaches. We find that RelTime estimates are very similar to Bayesian approaches, yet RelTime requires orders of magnitude less computational time. This means that the use of RelTime will enable greater rigor in molecular dating, because faster computational speeds encourage more extensive testing of the robustness of inferred timetrees to prior assumptions (models and calibrations) and data subsets. Thus, RelTime provides a reliable and computationally thrifty approach for dating the tree of life using large-scale molecular datasets.

  13. Local estimation of posterior class probabilities to minimize classification errors.

    PubMed

    Guerrero-Curieses, Alicia; Cid-Sueiro, Jesús; Alaiz-Rodríguez, Rocío; Figueiras-Vidal, Aníbal R

    2004-03-01

    Decision theory shows that the optimal decision is a function of the posterior class probabilities. More specifically, in binary classification, the optimal decision is based on the comparison of the posterior probabilities with some threshold. Therefore, the most accurate estimates of the posterior probabilities are required near these decision thresholds. This paper discusses the design of objective functions that provide more accurate estimates of the probability values, taking into account the characteristics of each decision problem. We propose learning algorithms based on the stochastic gradient minimization of these loss functions. We show that the performance of the classifier is improved when these algorithms behave like sample selectors: samples near the decision boundary are the most relevant during learning.

  14. A Foundation for the Accurate Prediction of the Soft Error Vulnerability of Scientific Applications

    SciTech Connect

    Bronevetsky, G; de Supinski, B; Schulz, M

    2009-02-13

    Understanding the soft error vulnerability of supercomputer applications is critical as these systems are using ever larger numbers of devices that have decreasing feature sizes and, thus, increasing frequency of soft errors. As many large scale parallel scientific applications use BLAS and LAPACK linear algebra routines, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. This paper analyzes the vulnerability of these routines to soft errors by characterizing how their outputs are affected by injected errors and by evaluating several techniques for predicting how errors propagate from the input to the output of each routine. The resulting error profiles can be used to understand the fault vulnerability of full applications that use these routines.

  15. Impacts of Characteristics of Errors in Radar Rainfall Estimates for Rainfall-Runoff Simulation

    NASA Astrophysics Data System (ADS)

    KO, D.; PARK, T.; Lee, T. S.; Shin, J. Y.; Lee, D.

    2015-12-01

    For flood prediction, weather radar has been commonly employed to measure the amount of precipitation and its spatial distribution. However, estimated rainfall from the radar contains uncertainty caused by its errors such as beam blockage and ground clutter. Even though, previous studies have been focused on removing error of radar data, it is crucial to evaluate runoff volumes which are influenced primarily by the radar errors. Furthermore, resolution of rainfall modeled by previous studies for rainfall uncertainty analysis or distributed hydrological simulation are quite coarse to apply to real application. Therefore, in the current study, we tested the effects of radar rainfall errors on rainfall runoff with a high resolution approach, called spatial error model (SEM). In the current study, the synthetic generation of random and cross-correlated radar errors were employed as SEM. A number of events for the Nam River dam region were tested to investigate the peak discharge from a basin according to error variance. The results indicate that the dependent error brings much higher variations in peak discharge than the independent random error. To further investigate the effect of the magnitude of cross-correlation between radar errors, the different magnitudes of spatial cross-correlations were employed for the rainfall-runoff simulation. The results demonstrate that the stronger correlation leads to higher variation of peak discharge and vice versa. We conclude that the error structure in radar rainfall estimates significantly affects on predicting the runoff peak. Therefore, the efforts must take into consideration on not only removing radar rainfall error itself but also weakening the cross-correlation structure of radar errors in order to forecast flood events more accurately. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which

  16. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    USGS Publications Warehouse

    Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John

    2016-01-01

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.

  17. Estimation of Aperture Errors with Direct Interferometer-Output Feedback for Spacecraft Formation Control

    NASA Technical Reports Server (NTRS)

    Lu, Hui-Ling; Cheng, Victor H. L.; Leitner, Jesse A.; Carpenter, Kenneth G.

    2004-01-01

    Long-baseline space interferometers involving formation flying of multiple spacecraft hold great promise as future space missions for high-resolution imagery. The major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to control these spacecraft and their optics payloads in the specified configuration accurately. In this paper, we describe our effort toward fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present an estimation procedure that effectively extracts relative x/y translational exit pupil aperture deviations from the raw interferometric image with small estimation errors.

  18. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1989-01-01

    Let u(x,t) be the possibly discontinuous entropy solution of a nonlinear scalar conservation law with smooth initial data. Suppose u sub epsilon(x,t) is the solution of an approximate viscosity regularization, where epsilon greater than 0 is the small viscosity amplitude. It is shown that by post-processing the small viscosity approximation u sub epsilon, pointwise values of u and its derivatives can be recovered with an error as close to epsilon as desired. The analysis relies on the adjoint problem of the forward error equation, which in this case amounts to a backward linear transport with discontinuous coefficients. The novelty of this approach is to use a (generalized) E-condition of the forward problem in order to deduce a W(exp 1,infinity) energy estimate for the discontinuous backward transport equation; this, in turn, leads one to an epsilon-uniform estimate on moments of the error u(sub epsilon) - u. This approach does not follow the characteristics and, therefore, applies mutatis mutandis to other approximate solutions such as E-difference schemes.

  19. Close-range radar rainfall estimation and error analysis

    NASA Astrophysics Data System (ADS)

    van de Beek, C. Z.; Leijnse, H.; Hazenberg, P.; Uijlenhoet, R.

    2016-08-01

    Quantitative precipitation estimation (QPE) using ground-based weather radar is affected by many sources of error. The most important of these are (1) radar calibration, (2) ground clutter, (3) wet-radome attenuation, (4) rain-induced attenuation, (5) vertical variability in rain drop size distribution (DSD), (6) non-uniform beam filling and (7) variations in DSD. This study presents an attempt to separate and quantify these sources of error in flat terrain very close to the radar (1-2 km), where (4), (5) and (6) only play a minor role. Other important errors exist, like beam blockage, WLAN interferences and hail contamination and are briefly mentioned, but not considered in the analysis. A 3-day rainfall event (25-27 August 2010) that produced more than 50 mm of precipitation in De Bilt, the Netherlands, is analyzed using radar, rain gauge and disdrometer data. Without any correction, it is found that the radar severely underestimates the total rain amount (by more than 50 %). The calibration of the radar receiver is operationally monitored by analyzing the received power from the sun. This turns out to cause a 1 dB underestimation. The operational clutter filter applied by KNMI is found to incorrectly identify precipitation as clutter, especially at near-zero Doppler velocities. An alternative simple clutter removal scheme using a clear sky clutter map improves the rainfall estimation slightly. To investigate the effect of wet-radome attenuation, stable returns from buildings close to the radar are analyzed. It is shown that this may have caused an underestimation of up to 4 dB. Finally, a disdrometer is used to derive event and intra-event specific Z-R relations due to variations in the observed DSDs. Such variations may result in errors when applying the operational Marshall-Palmer Z-R relation. Correcting for all of these effects has a large positive impact on the radar-derived precipitation estimates and yields a good match between radar QPE and gauge

  20. Bioaccessibility tests accurately estimate bioavailability of lead to quail.

    PubMed

    Beyer, W Nelson; Basta, Nicholas T; Chaney, Rufus L; Henry, Paula F P; Mosby, David E; Rattner, Barnett A; Scheckel, Kirk G; Sprague, Daniel T; Weber, John S

    2016-09-01

    Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of

  1. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  2. Error estimation and adaptivity for transport problems with uncertain parameters

    NASA Astrophysics Data System (ADS)

    Sahni, Onkar; Li, Jason; Oberai, Assad

    2016-11-01

    Stochastic partial differential equations (PDEs) with uncertain parameters and source terms arise in many transport problems. In this study, we develop and apply an adaptive approach based on the variational multiscale (VMS) formulation for discretizing stochastic PDEs. In this approach we employ finite elements in the physical domain and generalize polynomial chaos based spectral basis in the stochastic domain. We demonstrate our approach on non-trivial transport problems where the uncertain parameters are such that the advective and diffusive regimes are spanned in the stochastic domain. We show that the proposed method is effective as a local error estimator in quantifying the element-wise error and in driving adaptivity in the physical and stochastic domains. We will also indicate how this approach may be extended to the Navier-Stokes equations. NSF Award 1350454 (CAREER).

  3. Two-wavelength interferometry: extended range and accurate optical path difference analytical estimator.

    PubMed

    Houairi, Kamel; Cassaing, Frédéric

    2009-12-01

    Two-wavelength interferometry combines measurement at two wavelengths lambda(1) and lambda(2) in order to increase the unambiguous range (UR) for the measurement of an optical path difference. With the usual algorithm, the UR is equal to the synthetic wavelength Lambda=lambda(1)lambda(2)/|lambda(1)-lambda(2)|, and the accuracy is a fraction of Lambda. We propose here a new analytical algorithm based on arithmetic properties, allowing estimation of the absolute fringe order of interference in a noniterative way. This algorithm has nice properties compared with the usual algorithm: it is at least as accurate as the most accurate measurement at one wavelength, whereas the UR is extended to several times the synthetic wavelength. The analysis presented shows how the actual UR depends on the wavelengths and different sources of error. The simulations presented are confirmed by experimental results, showing that the new algorithm has enabled us to reach an UR of 17.3 microm, much larger than the synthetic wavelength, which is only Lambda=2.2 microm. Applications to metrology and fringe tracking are discussed.

  4. Error Estimation of An Ensemble Statistical Seasonal Precipitation Prediction Model

    NASA Technical Reports Server (NTRS)

    Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Gui-Long

    2001-01-01

    This NASA Technical Memorandum describes an optimal ensemble canonical correlation forecasting model for seasonal precipitation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. Since new CCA scheme is derived for continuous fields of predictor and predictand, an area-factor is automatically included. Thus our model is an improvement of the spectral CCA scheme of Barnett and Preisendorfer. The improvements include (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States (US) precipitation field. The predictor is the sea surface temperature (SST). The US Climate Prediction Center's reconstructed SST is used as the predictor's historical data. The US National Center for Environmental Prediction's optimally interpolated precipitation (1951-2000) is used as the predictand's historical data. Our forecast experiments show that the new ensemble canonical correlation scheme renders a reasonable forecasting skill. For example, when using September-October-November SST to predict the next season December-January-February precipitation, the spatial pattern correlation between the observed and predicted are positive in 46 years among the 50 years of experiments. The positive correlations are close to or greater than 0.4 in 29 years, which indicates excellent performance of the forecasting model. The forecasting skill can be further enhanced when several predictors are used.

  5. Verification of unfold error estimates in the UFO code

    SciTech Connect

    Fehl, D.L.; Biggs, F.

    1996-07-01

    Spectral unfolding is an inverse mathematical operation which attempts to obtain spectral source information from a set of tabulated response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the UFO (UnFold Operator) code. In addition to an unfolded spectrum, UFO also estimates the unfold uncertainty (error) induced by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). 100 random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetemined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-Pinch and ion-beam driven hohlraums.

  6. Estimation of flood warning runoff thresholds in ungauged basins with asymmetric error functions

    NASA Astrophysics Data System (ADS)

    Toth, Elena

    2016-06-01

    In many real-world flood forecasting systems, the runoff thresholds for activating warnings or mitigation measures correspond to the flow peaks with a given return period (often 2 years, which may be associated with the bankfull discharge). At locations where the historical streamflow records are absent or very limited, the threshold can be estimated with regionally derived empirical relationships between catchment descriptors and the desired flood quantile. Whatever the function form, such models are generally parameterised by minimising the mean square error, which assigns equal importance to overprediction or underprediction errors. Considering that the consequences of an overestimated warning threshold (leading to the risk of missing alarms) generally have a much lower level of acceptance than those of an underestimated threshold (leading to the issuance of false alarms), the present work proposes to parameterise the regression model through an asymmetric error function, which penalises the overpredictions more. The estimates by models (feedforward neural networks) with increasing degree of asymmetry are compared with those of a traditional, symmetrically trained network, in a rigorous cross-validation experiment referred to a database of catchments covering the country of Italy. The analysis shows that the use of the asymmetric error function can substantially reduce the number and extent of overestimation errors, if compared to the use of the traditional square errors. Of course such reduction is at the expense of increasing underestimation errors, but the overall accurateness is still acceptable and the results illustrate the potential value of choosing an asymmetric error function when the consequences of missed alarms are more severe than those of false alarms.

  7. Estimation of flood warning runoff thresholds in ungauged basins with asymmetric error functions

    NASA Astrophysics Data System (ADS)

    Toth, E.

    2015-06-01

    In many real-world flood forecasting systems, the runoff thresholds for activating warnings or mitigation measures correspond to the flow peaks with a given return period (often the 2-year one, that may be associated with the bankfull discharge). At locations where the historical streamflow records are absent or very limited, the threshold can be estimated with regionally-derived empirical relationships between catchment descriptors and the desired flood quantile. Whatever is the function form, such models are generally parameterised by minimising the mean square error, that assigns equal importance to overprediction or underprediction errors. Considering that the consequences of an overestimated warning threshold (leading to the risk of missing alarms) generally have a much lower level of acceptance than those of an underestimated threshold (leading to the issuance of false alarms), the present work proposes to parameterise the regression model through an asymmetric error function, that penalises more the overpredictions. The estimates by models (feedforward neural networks) with increasing degree of asymmetry are compared with those of a traditional, symmetrically-trained network, in a rigorous cross-validation experiment referred to a database of catchments covering the Italian country. The analysis shows that the use of the asymmetric error function can substantially reduce the number and extent of overestimation errors, if compared to the use of the traditional square errors. Of course such reduction is at the expense of increasing underestimation errors, but the overall accurateness is still acceptable and the results illustrate the potential value of choosing an asymmetric error function when the consequences of missed alarms are more severe than those of false alarms.

  8. A New Stratified Sampling Procedure which Decreases Error Estimation of Varroa Mite Number on Sticky Boards.

    PubMed

    Kretzschmar, A; Durand, E; Maisonnasse, A; Vallon, J; Le Conte, Y

    2015-06-01

    A new procedure of stratified sampling is proposed in order to establish an accurate estimation of Varroa destructor populations on sticky bottom boards of the hive. It is based on the spatial sampling theory that recommends using regular grid stratification in the case of spatially structured process. The distribution of varroa mites on sticky board being observed as spatially structured, we designed a sampling scheme based on a regular grid with circles centered on each grid element. This new procedure is then compared with a former method using partially random sampling. Relative error improvements are exposed on the basis of a large sample of simulated sticky boards (n=20,000) which provides a complete range of spatial structures, from a random structure to a highly frame driven structure. The improvement of varroa mite number estimation is then measured by the percentage of counts with an error greater than a given level.

  9. Can student health professionals accurately estimate alcohol content in commonly occurring drinks?

    PubMed Central

    Sinclair, Julia; Searle, Emma

    2016-01-01

    Objectives: Correct identification of alcohol as a contributor to, or comorbidity of, many psychiatric diseases requires health professionals to be competent and confident to take an accurate alcohol history. Being able to estimate (or calculate) the alcohol content in commonly consumed drinks is a prerequisite for quantifying levels of alcohol consumption. The aim of this study was to assess this ability in medical and nursing students. Methods: A cross-sectional survey of 891 medical and nursing students across different years of training was conducted. Students were asked the alcohol content of 10 different alcoholic drinks by seeing a slide of the drink (with picture, volume and percentage of alcohol by volume) for 30 s. Results: Overall, the mean number of correctly estimated drinks (out of the 10 tested) was 2.4, increasing to just over 3 if a 10% margin of error was used. Wine and premium strength beers were underestimated by over 50% of students. Those who drank alcohol themselves, or who were further on in their clinical training, did better on the task, but overall the levels remained low. Conclusions: Knowledge of, or the ability to work out, the alcohol content of commonly consumed drinks is poor, and further research is needed to understand the reasons for this and the impact this may have on the likelihood to undertake screening or initiate treatment. PMID:27536344

  10. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates

    SciTech Connect

    Kunin, Victor; Engelbrektson, Anna; Ochman, Howard; Hugenholtz, Philip

    2009-08-01

    Massively parallel pyrosequencing of the small subunit (16S) ribosomal RNA gene has revealed that the extent of rare microbial populations in several environments, the 'rare biosphere', is orders of magnitude higher than previously thought. One important caveat with this method is that sequencing error could artificially inflate diversity estimates. Although the per-base error of 16S rDNA amplicon pyrosequencing has been shown to be as good as or lower than Sanger sequencing, no direct assessments of pyrosequencing errors on diversity estimates have been reported. Using only Escherichia coli MG1655 as a reference template, we find that 16S rDNA diversity is grossly overestimated unless relatively stringent read quality filtering and low clustering thresholds are applied. In particular, the common practice of removing reads with unresolved bases and anomalous read lengths is insufficient to ensure accurate estimates of microbial diversity. Furthermore, common and reproducible homopolymer length errors can result in relatively abundant spurious phylotypes further confounding data interpretation. We suggest that stringent quality-based trimming of 16S pyrotags and clustering thresholds no greater than 97% identity should be used to avoid overestimates of the rare biosphere.

  11. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators

    NASA Astrophysics Data System (ADS)

    Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.

    2017-04-01

    In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the ;exact; adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.

  12. Models and error analyses in urban air quality estimation

    NASA Technical Reports Server (NTRS)

    Englar, T., Jr.; Diamante, J. M.; Jazwinski, A. H.

    1976-01-01

    Estimation theory has been applied to a wide range of aerospace problems. Application of this expertise outside the aerospace field has been extremely limited, however. This paper describes the use of covariance error analysis techniques in evaluating the accuracy of pollution estimates obtained from a variety of concentration measuring devices. It is shown how existing software developed for aerospace applications can be applied to the estimation of pollution through the processing of measurement types involving a range of spatial and temporal responses. The modeling of pollutant concentration by meandering Gaussian plumes is described in some detail. Time averaged measurements are associated with a model of the average plume, using some of the same state parameters and thus avoiding the problem of state memory. The covariance analysis has been implemented using existing batch estimation software. This usually involves problems in handling dynamic noise; however, the white dynamic noise has been replaced by a band-limited process which can be easily accommodated by the software.

  13. An Error-Reduction Algorithm to Improve Lidar Turbulence Estimates for Wind Energy

    SciTech Connect

    Newman, Jennifer F.; Clifton, Andrew

    2016-08-01

    Currently, cup anemometers on meteorological (met) towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability. However, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install met towers at potential sites. As a result, remote sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. While lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount of uncertainty surrounding the measurement of turbulence with lidars. This uncertainty in lidar turbulence measurements is one of the key roadblocks that must be overcome in order to replace met towers with lidars for wind energy applications. In this talk, a model for reducing errors in lidar turbulence estimates is presented. Techniques for reducing errors from instrument noise, volume averaging, and variance contamination are combined in the model to produce a corrected value of the turbulence intensity (TI), a commonly used parameter in wind energy. In the next step of the model, machine learning techniques are used to further decrease the error in lidar TI estimates.

  14. CO2 flux estimation errors associated with moist atmospheric processes

    NASA Astrophysics Data System (ADS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-04-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between moist transport, satellite CO2 retrievals, and source/sink inversion has not yet been established. Here we examine the effect of moist processes on (1) synoptic CO2 transport by Version-4 and Version-5 NASA Goddard Earth Observing System Data Assimilation System (NASA-DAS) meteorological analyses, and (2) source/sink inversion. We find that synoptic transport processes, such as fronts and dry/moist conveyors, feed off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to continental scale source/sink estimation errors of up to 0.25 PgC yr-1 in northern mid-latitudes. Second, moist processes are represented differently in GEOS-4 and GEOS-5, leading to differences in vertical CO2 gradients, moist poleward and dry equatorward CO2 transport, and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified, causing source/sink estimation errors of up to 0.55 PgC yr-1 in northern mid-latitudes. These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  15. Robust and Accurate Vision-Based Pose Estimation Algorithm Based on Four Coplanar Feature Points

    PubMed Central

    Zhang, Zimiao; Zhang, Shihai; Li, Qiu

    2016-01-01

    Vision-based pose estimation is an important application of machine vision. Currently, analytical and iterative methods are used to solve the object pose. The analytical solutions generally take less computation time. However, the analytical solutions are extremely susceptible to noise. The iterative solutions minimize the distance error between feature points based on 2D image pixel coordinates. However, the non-linear optimization needs a good initial estimate of the true solution, otherwise they are more time consuming than analytical solutions. Moreover, the image processing error grows rapidly with measurement range increase. This leads to pose estimation errors. All the reasons mentioned above will cause accuracy to decrease. To solve this problem, a novel pose estimation method based on four coplanar points is proposed. Firstly, the coordinates of feature points are determined according to the linear constraints formed by the four points. The initial coordinates of feature points acquired through the linear method are then optimized through an iterative method. Finally, the coordinate system of object motion is established and a method is introduced to solve the object pose. The growing image processing error causes pose estimation errors the measurement range increases. Through the coordinate system, the pose estimation errors could be decreased. The proposed method is compared with two other existing methods through experiments. Experimental results demonstrate that the proposed method works efficiently and stably. PMID:27999338

  16. Discrete state model and accurate estimation of loop entropy of RNA secondary structures.

    PubMed

    Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie

    2008-03-28

    Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html.

  17. Techniques for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, Michael R.; Bland, Roger

    1999-01-01

    An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. The relative magnitude of equipment errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second. Typical maximum flow rates during the data-collection period averaged 750 cubic meters per second.

  18. Sampling Errors in Rainfall Estimates by Multiple Satellites.

    NASA Astrophysics Data System (ADS)

    North, Gerald R.; Shen, Samuel S. P.; Upson, Robert

    1993-02-01

    This paper examines the sampling characteristics of combining data collected by several low-orbiting satellites attempting to estimate the space time average of rain rates. The several satellites can have different orbital and swath-width parameters. The satellite overpasses are allowed to make partial coverage snapshots of the grid box with each overpass. Such partial visits are considered in an approximate way, letting each intersection area fraction of the grid box by a particular satellite swath be a random variable with mean and variance parameters computed from exact orbit calculations. The derivation procedure is based upon the spectral minimum mean-square error formalism introduced by North and Nakamoto. By using a simple parametric form for the space time spectral density, simple formulas are derived for a large number of examples, including the combination of the Tropical Rainfall Measuring Mission with an operational sun-synchronous orbiter. The approximations and results are discussed and directions for future research are summarized.

  19. Sampling errors in rainfall estimates by multiple satellites

    NASA Technical Reports Server (NTRS)

    North, Gerald R.; Shen, Samuel S. P.; Upson, Robert

    1993-01-01

    This paper examines the sampling characteristics of combining data collected by several low-orbiting satellites attempting to estimate the space-time average of rain rates. The several satellites can have different orbital and swath-width parameters. The satellite overpasses are allowed to make partial coverage snapshots of the grid box with each overpass. Such partial visits are considered in an approximate way, letting each intersection area fraction of the grid box by a particular satellite swath be a random variable with mean and variance parameters computed from exact orbit calculations. The derivation procedure is based upon the spectral minimum mean-square error formalism introduced by North and Nakamoto. By using a simple parametric form for the spacetime spectral density, simple formulas are derived for a large number of examples, including the combination of the Tropical Rainfall Measuring Mission with an operational sun-synchronous orbiter. The approximations and results are discussed and directions for future research are summarized.

  20. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator

    PubMed Central

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B.; van Dieën, Jaap H.

    2016-01-01

    Gait analysis can provide valuable information on a person’s condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars—related to the user condition—and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation. PMID:27834911

  1. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator.

    PubMed

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B; van Dieën, Jaap H

    2016-11-10

    Gait analysis can provide valuable information on a person's condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars-related to the user condition-and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  2. Convergence and error estimation in free energy calculations using the weighted histogram analysis method.

    PubMed

    Zhu, Fangqiang; Hummer, Gerhard

    2012-02-05

    The weighted histogram analysis method (WHAM) has become the standard technique for the analysis of umbrella sampling simulations. In this article, we address the challenges (1) of obtaining fast and accurate solutions of the coupled nonlinear WHAM equations, (2) of quantifying the statistical errors of the resulting free energies, (3) of diagnosing possible systematic errors, and (4) of optimally allocating of the computational resources. Traditionally, the WHAM equations are solved by a fixed-point direct iteration method, despite poor convergence and possible numerical inaccuracies in the solutions. Here, we instead solve the mathematically equivalent problem of maximizing a target likelihood function, by using superlinear numerical optimization algorithms with a significantly faster convergence rate. To estimate the statistical errors in one-dimensional free energy profiles obtained from WHAM, we note that for densely spaced umbrella windows with harmonic biasing potentials, the WHAM free energy profile can be approximated by a coarse-grained free energy obtained by integrating the mean restraining forces. The statistical errors of the coarse-grained free energies can be estimated straightforwardly and then used for the WHAM results. A generalization to multidimensional WHAM is described. We also propose two simple statistical criteria to test the consistency between the histograms of adjacent umbrella windows, which help identify inadequate sampling and hysteresis in the degrees of freedom orthogonal to the reaction coordinate. Together, the estimates of the statistical errors and the diagnostics of inconsistencies in the potentials of mean force provide a basis for the efficient allocation of computational resources in free energy simulations.

  3. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error

    PubMed Central

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J.; Song, Xubo

    2014-01-01

    Purpose: Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. Methods: The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Results: Experiments with simulated datasets, images of an ex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors’ method. Simulated and real cardiac sequences tests showed that results in the authors’ method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors’ method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors’ method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. Conclusions: The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors’ method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods. PMID:24784402

  4. Detecting Positioning Errors and Estimating Correct Positions by Moving Window

    PubMed Central

    Song, Ha Yoon; Lee, Jun Seok

    2015-01-01

    In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282

  5. Detecting Positioning Errors and Estimating Correct Positions by Moving Window.

    PubMed

    Song, Ha Yoon; Lee, Jun Seok

    2015-01-01

    In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research.

  6. Model Error Estimation for the CPTEC Eta Model

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; daSilva, Arlindo

    1999-01-01

    Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.

  7. Estimation of genotyping error rate from repeat genotyping, unintentional recaptures and known parent-offspring comparisons in 16 microsatellite loci for brown rockfish (Sebastes auriculatus).

    PubMed

    Hess, Maureen A; Rhydderch, James G; LeClair, Larry L; Buckley, Raymond M; Kawase, Mitsuhiro; Hauser, Lorenz

    2012-11-01

    Genotyping errors are present in almost all genetic data and can affect biological conclusions of a study, particularly for studies based on individual identification and parentage. Many statistical approaches can incorporate genotyping errors, but usually need accurate estimates of error rates. Here, we used a new microsatellite data set developed for brown rockfish (Sebastes auriculatus) to estimate genotyping error using three approaches: (i) repeat genotyping 5% of samples, (ii) comparing unintentionally recaptured individuals and (iii) Mendelian inheritance error checking for known parent-offspring pairs. In each data set, we quantified genotyping error rate per allele due to allele drop-out and false alleles. Genotyping error rate per locus revealed an average overall genotyping error rate by direct count of 0.3%, 1.5% and 1.7% (0.002, 0.007 and 0.008 per allele error rate) from replicate genotypes, known parent-offspring pairs and unintentionally recaptured individuals, respectively. By direct-count error estimates, the recapture and known parent-offspring data sets revealed an error rate four times greater than estimated using repeat genotypes. There was no evidence of correlation between error rates and locus variability for all three data sets, and errors appeared to occur randomly over loci in the repeat genotypes, but not in recaptures and parent-offspring comparisons. Furthermore, there was no correlation in locus-specific error rates between any two of the three data sets. Our data suggest that repeat genotyping may underestimate true error rates and may not estimate locus-specific error rates accurately. We therefore suggest using methods for error estimation that correspond to the overall aim of the study (e.g. known parent-offspring comparisons in parentage studies).

  8. Accurate kinetic parameter estimation during progress curve analysis of systems with endogenous substrate production.

    PubMed

    Goudar, Chetan T

    2011-10-01

    We have identified an error in the published integral form of the modified Michaelis-Menten equation that accounts for endogenous substrate production. The correct solution is presented and the error in both the substrate concentration, S, and the kinetic parameters Vm , Km , and R resulting from the incorrect solution was characterized. The incorrect integral form resulted in substrate concentration errors as high as 50% resulting in 7-50% error in kinetic parameter estimates. To better reflect experimental scenarios, noise containing substrate depletion data were analyzed by both the incorrect and correct integral equations. While both equations resulted in identical fits to substrate depletion data, the final estimates of Vm , Km , and R were different and Km and R estimates from the incorrect integral equation deviated substantially from the actual values. Another observation was that at R = 0, the incorrect integral equation reduced to the correct form of the Michaelis-Menten equation. We believe this combination of excellent fits to experimental data, albeit with incorrect kinetic parameter estimates, and the reduction to the Michaelis-Menten equation at R = 0 is primarily responsible for the incorrectness to go unnoticed. However, the resulting error in kinetic parameter estimates will lead to incorrect biological interpretation and we urge the use of the correct integral form presented in this study.

  9. Comparing the standards of one metabolic equivalent of task in accurately estimating physical activity energy expenditure based on acceleration.

    PubMed

    Kim, Dohyun; Lee, Jongshill; Park, Hoon Ki; Jang, Dong Pyo; Song, Soohwa; Cho, Baek Hwan; Jung, Yoo-Suk; Park, Rae-Woong; Joo, Nam-Seok; Kim, In Young

    2016-08-24

    The purpose of the study is to analyse how the standard of resting metabolic rate (RMR) affects estimation of the metabolic equivalent of task (MET) using an accelerometer. In order to investigate the effect on estimation according to intensity of activity, comparisons were conducted between the 3.5 ml O2 · kg(-1) · min(-1) and individually measured resting VO2 as the standard of 1 MET. MET was estimated by linear regression equations that were derived through five-fold cross-validation using 2 types of MET values and accelerations; the accuracy of estimation was analysed through cross-validation, Bland and Altman plot, and one-way ANOVA test. There were no significant differences in the RMS error after cross-validation. However, the individual RMR-based estimations had as many as 0.5 METs of mean difference in modified Bland and Altman plots than RMR of 3.5 ml O2 · kg(-1) · min(-1). Finally, the results of an ANOVA test indicated that the individual RMR-based estimations had less significant differences between the reference and estimated values at each intensity of activity. In conclusion, the RMR standard is a factor that affects accurate estimation of METs by acceleration; therefore, RMR requires individual specification when it is used for estimation of METs using an accelerometer.

  10. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  11. CO2 flux estimation errors associated with moist atmospheric processes

    NASA Astrophysics Data System (ADS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-07-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43 ± 0.35 PgC yr-1). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  12. Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2014-01-01

    When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…

  13. Error estimates for density-functional theory predictions of surface energy and work function

    NASA Astrophysics Data System (ADS)

    De Waele, Sam; Lejaeghere, Kurt; Sluydts, Michael; Cottenier, Stefaan

    2016-12-01

    Density-functional theory (DFT) predictions of materials properties are becoming ever more widespread. With increased use comes the demand for estimates of the accuracy of DFT results. In view of the importance of reliable surface properties, this work calculates surface energies and work functions for a large and diverse test set of crystalline solids. They are compared to experimental values by performing a linear regression, which results in a measure of the predictable and material-specific error of the theoretical result. Two of the most prevalent functionals, the local density approximation (LDA) and the Perdew-Burke-Ernzerhof parametrization of the generalized gradient approximation (PBE-GGA), are evaluated and compared. Both LDA and GGA-PBE are found to yield accurate work functions with error bars below 0.3 eV, rivaling the experimental precision. LDA also provides satisfactory estimates for the surface energy with error bars smaller than 10%, but GGA-PBE significantly underestimates the surface energy for materials with a large correlation energy.

  14. Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains

    NASA Technical Reports Server (NTRS)

    Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang

    2013-01-01

    Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.

  15. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    NASA Astrophysics Data System (ADS)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  16. Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report

    EIA Publications

    2016-01-01

    This document lists types of potential errors in EIA estimates published in the WNGSR. Survey errors are an unavoidable aspect of data collection. Error is inherent in all collected data, regardless of the source of the data and the care and competence of data collectors. The type and extent of error depends on the type and characteristics of the survey.

  17. Evaluating EIV, OLS, and SEM Estimators of Group Slope Differences in the Presence of Measurement Error: The Single-Indicator Case

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew

    2012-01-01

    Measurement error significantly biases interaction effects and distorts researchers' inferences regarding interactive hypotheses. This article focuses on the single-indicator case and shows how to accurately estimate group slope differences by disattenuating interaction effects with errors-in-variables (EIV) regression. New analytic findings were…

  18. An error reduction algorithm to improve lidar turbulence estimates for wind energy

    DOE PAGES

    Newman, Jennifer F.; Clifton, Andrew

    2017-02-10

    Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine

  19. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent.

    PubMed

    Browning, Sharon R; Browning, Brian L

    2015-09-03

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package.

  20. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent

    PubMed Central

    Browning, Sharon R.; Browning, Brian L.

    2015-01-01

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package. PMID:26299365

  1. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations

    SciTech Connect

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; Dechant, Lawrence

    2016-05-31

    Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.

  2. Evaluating concentration estimation errors in ELISA microarray experiments

    SciTech Connect

    Daly, Don S.; White, Amanda M.; Varnum, Susan M.; Anderson, Kevin K.; Zangar, Richard C.

    2005-01-26

    Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to predict a protein concentration in a sample. Deploying ELISA in a microarray format permits simultaneous prediction of the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Evaluating prediction error is critical to interpreting biological significance and improving the ELISA microarray process. Evaluating prediction error must be automated to realize a reliable high-throughput ELISA microarray system. Methods: In this paper, we present a statistical method based on propagation of error to evaluate prediction errors in the ELISA microarray process. Although propagation of error is central to this method, it is effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization and statistical diagnostics when evaluating ELISA microarray prediction errors. We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of prediction errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error.

  3. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3.

    PubMed

    Han, Mira V; Thomas, Gregg W C; Lugo-Martinez, Jose; Hahn, Matthew W

    2013-08-01

    Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.

  4. Improved Atmospheric Soundings and Error Estimates from Analysis of AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2007-01-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave C02 channel observations in the spectral region 700 cm-' to 750 cm-' are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm-' to 2395 cm-' are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.

  5. An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.

  6. Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates.

    PubMed

    Butt, Nathalie; Slade, Eleanor; Thompson, Jill; Malhi, Yadvinder; Riutta, Terhi

    2013-06-01

    A typical way to quantify aboveground carbon in forests is to measure tree diameters and use species-specific allometric equations to estimate biomass and carbon stocks. Using "citizen scientists" to collect data that are usually time-consuming and labor-intensive can play a valuable role in ecological research. However, data validation, such as establishing the sampling error in volunteer measurements, is a crucial, but little studied, part of utilizing citizen science data. The aims of this study were to (1) evaluate the quality of tree diameter and height measurements carried out by volunteers compared to expert scientists and (2) estimate how sensitive carbon stock estimates are to these measurement sampling errors. Using all diameter data measured with a diameter tape, the volunteer mean sampling error (difference between repeated measurements of the same stem) was 9.9 mm, and the expert sampling error was 1.8 mm. Excluding those sampling errors > 1 cm, the mean sampling errors were 2.3 mm (volunteers) and 1.4 mm (experts) (this excluded 14% [volunteer] and 3% [expert] of the data). The sampling error in diameter measurements had a small effect on the biomass estimates of the plots: a volunteer (expert) diameter sampling error of 2.3 mm (1.4 mm) translated into 1.7% (0.9%) change in the biomass estimates calculated from species-specific allometric equations based upon diameter. Height sampling error had a dependent relationship with tree height. Including height measurements in biomass calculations compounded the sampling error markedly; the impact of volunteer sampling error on biomass estimates was +/- 15%, and the expert range was +/- 9%. Using dendrometer bands, used to measure growth rates, we calculated that the volunteer (vs. expert) sampling error was 0.6 mm (vs. 0.3 mm), which is equivalent to a difference in carbon storage of +/- 0.011 kg C/yr (vs. +/- 0.002 kg C/yr) per stem. Using a citizen science model for monitoring carbon stocks not only has

  7. Reliable Selection of the Number of Fascicles in Diffusion Images by Estimation of the Generalization Error

    PubMed Central

    Scherrer, Benoit; Taquet, Maxime; Warfield, Simon K.

    2014-01-01

    A number of diffusion models have been proposed to overcome the limitations of diffusion tensor imaging (DTI) which cannot represent multiple fascicles with heterogeneous orientations at each voxel. Among them, generative models such as multi-tensor models, CHARMED or NODDI represent each fascicle with a parametric model and are of great interest to characterize and compare white matter properties. However, the identification of the appropriate model, and particularly the estimation of the number of fascicles, has proven challenging. In this context, different model selection approaches have been proposed to identify the number of fascicles at each voxel. Most approaches attempt to maximize the quality of fit while penalizing complex models to avoid overfitting. However, the choice of a penalization strategy and the trade-off between penalization and quality of fit are rather arbitrary and produce highly variable results. In this paper, we propose for the first time to determine the number of fascicles at each voxel by assessing the generalization error. This criterion naturally prevents overfitting by comparing how the models predict new data not included in the model estimation. Since the generalization error cannot be directly computed, we propose to estimate it by the 632 bootstrap technique which has low bias and low variance. Results on synthetic phantoms and in vivo data show that our approach performs better than existing techniques, and is robust to the choice of decision threshold. Together with generative models of the diffusion signal, this technique will enable accurate identification of the model complexity at each voxel and accurate assessment of the white matter characteristics. PMID:24684014

  8. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  9. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    PubMed Central

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  10. Integration of rain gauge measurement errors with the overall rainfall uncertainty estimation using kriging methods

    NASA Astrophysics Data System (ADS)

    Cecinati, Francesca; Moreno Ródenas, Antonio Manuel; Rico-Ramirez, Miguel Angel; ten Veldhuis, Marie-claire; Han, Dawei

    2016-04-01

    In many research studies rain gauges are used as a reference point measurement for rainfall, because they can reach very good accuracy, especially compared to radar or microwave links, and their use is very widespread. In some applications rain gauge uncertainty is assumed to be small enough to be neglected. This can be done when rain gauges are accurate and their data is correctly managed. Unfortunately, in many operational networks the importance of accurate rainfall data and of data quality control can be underestimated; budget and best practice knowledge can be limiting factors in a correct rain gauge network management. In these cases, the accuracy of rain gauges can drastically drop and the uncertainty associated with the measurements cannot be neglected. This work proposes an approach based on three different kriging methods to integrate rain gauge measurement errors in the overall rainfall uncertainty estimation. In particular, rainfall products of different complexity are derived through 1) block kriging on a single rain gauge 2) ordinary kriging on a network of different rain gauges 3) kriging with external drift to integrate all the available rain gauges with radar rainfall information. The study area is the Eindhoven catchment, contributing to the river Dommel, in the southern part of the Netherlands. The area, 590 km2, is covered by high quality rain gauge measurements by the Royal Netherlands Meteorological Institute (KNMI), which has one rain gauge inside the study area and six around it, and by lower quality rain gauge measurements by the Dommel Water Board and by the Eindhoven Municipality (six rain gauges in total). The integration of the rain gauge measurement error is accomplished in all the cases increasing the nugget of the semivariogram proportionally to the estimated error. Using different semivariogram models for the different networks allows for the separate characterisation of higher and lower quality rain gauges. For the kriging with

  11. Estimation of projection errors in human ocular fundus imaging.

    PubMed

    Doelemeyer, A; Petrig, B L

    2000-03-01

    Photogrammetric analysis of features in human ocular fundus images is affected by various sources of errors, for example aberrations of the camera and eye optics. Another--usually disregarded--type of distortion arises from projecting the near spherical shape of the fundus onto a planar imaging device. In this paper we quantify such projection errors based on geometrical analysis of the reduced model eye imaged by a pinhole camera. The projection error found near the edge of a 50 degrees fundus image is 24%. In addition, the influence of axial ametropia is investigated for both myopia and hyperopia. The projection errors found in hyperopia are similar to those in emmetropia, but decrease in myopia. Spherical as well as ellipsoidal eye shapes were used in the above calculation and their effect was compared. Our results suggest that the simple spherical eye shape is sufficient for correcting projection distortions within a range of ametropia from -5 to +5 diopters.

  12. Sample Size Requirements for Accurate Estimation of Squared Semi-Partial Correlation Coefficients.

    ERIC Educational Resources Information Center

    Algina, James; Moulder, Bradley C.; Moser, Barry K.

    2002-01-01

    Studied the sample size requirements for accurate estimation of squared semi-partial correlation coefficients through simulation studies. Results show that the sample size necessary for adequate accuracy depends on: (1) the population squared multiple correlation coefficient (p squared); (2) the population increase in p squared; and (3) the…

  13. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans.

    PubMed

    Racimo, Fernando; Renaud, Gabriel; Slatkin, Montgomery

    2016-04-01

    When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters-including drift times and admixture rates-for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called 'Demographic Inference with Contamination and Error' (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%.

  14. Adjustment of Measurements with Multiplicative Errors: Error Analysis, Estimates of the Variance of Unit Weight, and Effect on Volume Estimation from LiDAR-Type Digital Elevation Models

    PubMed Central

    Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan

    2014-01-01

    Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880

  15. Adjustment of measurements with multiplicative errors: error analysis, estimates of the variance of unit weight, and effect on volume estimation from LiDAR-type digital elevation models.

    PubMed

    Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan

    2014-01-10

    Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM.

  16. Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

    NASA Astrophysics Data System (ADS)

    Ródenas, J. J.; González-Estrada, O. A.; Fuenmayor, F. J.; Chinesta, F.

    2013-08-01

    In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. In the techniques based on the superconvergent patch recovery (SPR) the continuity of the recovered field is provided by the shape functions of the underlying mesh. We explore the capabilities of a recovery technique based on an MLS fitting, more flexible than SPR techniques as it directly provides continuous interpolated fields without relying on any FE mesh, to obtain estimates of the error in energy norm as an alternative to SPR. In the enhanced MLS proposed in the paper, boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results indicate the high accuracy of the proposed error.

  17. Do We Know Whether Researchers and Reviewers are Estimating Risk and Benefit Accurately?

    PubMed

    Hey, Spencer Phillips; Kimmelman, Jonathan

    2016-10-01

    Accurate estimation of risk and benefit is integral to good clinical research planning, ethical review, and study implementation. Some commentators have argued that various actors in clinical research systems are prone to biased or arbitrary risk/benefit estimation. In this commentary, we suggest the evidence supporting such claims is very limited. Most prior work has imputed risk/benefit beliefs based on past behavior or goals, rather than directly measuring them. We describe an approach - forecast analysis - that would enable direct and effective measure of the quality of risk/benefit estimation. We then consider some objections and limitations to the forecasting approach.

  18. Towards an accurate estimation of the isosteric heat of adsorption - A correlation with the potential theory.

    PubMed

    Askalany, Ahmed A; Saha, Bidyut B

    2017-03-15

    Accurate estimation of the isosteric heat of adsorption is mandatory for a good modeling of adsorption processes. In this paper a thermodynamic formalism on adsorbed phase volume which is a function of adsorption pressure and temperature has been proposed for the precise estimation of the isosteric heat of adsorption. The estimated isosteric heat of adsorption using the new correlation has been compared with measured values of prudently selected several adsorbent-refrigerant pairs from open literature. Results showed that the proposed isosteric heat of adsorption correlation fits the experimentally measured values better than the Clausius-Clapeyron equation.

  19. Voxel-based registration of simulated and real patient CBCT data for accurate dental implant pose estimation

    NASA Astrophysics Data System (ADS)

    Moreira, António H. J.; Queirós, Sandro; Morais, Pedro; Rodrigues, Nuno F.; Correia, André Ricardo; Fernandes, Valter; Pinho, A. C. M.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant's pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant's pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant's main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant's pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67+/-34μm and 108μm, and angular misfits of 0.15+/-0.08° and 1.4°, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants' pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

  20. Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors

    PubMed Central

    2011-01-01

    Background Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck). PMID:22185645

  1. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  2. Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors

    NASA Astrophysics Data System (ADS)

    Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.

    2012-12-01

    Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.

  3. Accurate Estimation of the Entropy of Rotation-Translation Probability Distributions.

    PubMed

    Fogolari, Federico; Dongmo Foumthuim, Cedrix Jurgal; Fortuna, Sara; Soler, Miguel Angel; Corazza, Alessandra; Esposito, Gennaro

    2016-01-12

    The estimation of rotational and translational entropies in the context of ligand binding has been the subject of long-time investigations. The high dimensionality (six) of the problem and the limited amount of sampling often prevent the required resolution to provide accurate estimates by the histogram method. Recently, the nearest-neighbor distance method has been applied to the problem, but the solutions provided either address rotation and translation separately, therefore lacking correlations, or use a heuristic approach. Here we address rotational-translational entropy estimation in the context of nearest-neighbor-based entropy estimation, solve the problem numerically, and provide an exact and an approximate method to estimate the full rotational-translational entropy.

  4. [Guidelines for Accurate and Transparent Health Estimates Reporting: the GATHER Statement].

    PubMed

    Stevens, Gretchen A; Alkema, Leontine; Black, Robert E; Boerma, J Ties; Collins, Gary S; Ezzati, Majid; Grove, John T; Hogan, Daniel R; Hogan, Margaret C; Horton, Richard; Lawn, Joy E; Marušic, Ana; Mathers, Colin D; Murray, Christopher J L; Rudan, Igor; Salomon, Joshua A; Simpson, Paul J; Vos, Theo; Welch, Vivian

    2017-01-01

    Measurements of health indicators are rarely available for every population and period of interest, and available data may not be comparable. The Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) define best reporting practices for studies that calculate health estimates for multiple populations (in time or space) using multiple information sources. Health estimates that fall within the scope of GATHER include all quantitative population-level estimates (including global, regional, national, or subnational estimates) of health indicators, including indicators of health status, incidence and prevalence of diseases, injuries, and disability and functioning; and indicators of health determinants, including health behaviours and health exposures. GATHER comprises a checklist of 18 items that are essential for best reporting practice. A more detailed explanation and elaboration document, describing the interpretation and rationale of each reporting item along with examples of good reporting, is available on the GATHER website (http://gather-statement.org).

  5. Pedigree error due to extra-pair reproduction substantially biases estimates of inbreeding depression.

    PubMed

    Reid, Jane M; Keller, Lukas F; Marr, Amy B; Nietlisbach, Pirmin; Sardell, Rebecca J; Arcese, Peter

    2014-03-01

    Understanding the evolutionary dynamics of inbreeding and inbreeding depression requires unbiased estimation of inbreeding depression across diverse mating systems. However, studies estimating inbreeding depression often measure inbreeding with error, for example, based on pedigree data derived from observed parental behavior that ignore paternity error stemming from multiple mating. Such paternity error causes error in estimated coefficients of inbreeding (f) and reproductive success and could bias estimates of inbreeding depression. We used complete "apparent" pedigree data compiled from observed parental behavior and analogous "actual" pedigree data comprising genetic parentage to quantify effects of paternity error stemming from extra-pair reproduction on estimates of f, reproductive success, and inbreeding depression in free-living song sparrows (Melospiza melodia). Paternity error caused widespread error in estimates of f and male reproductive success, causing inbreeding depression in male and female annual and lifetime reproductive success and juvenile male survival to be substantially underestimated. Conversely, inbreeding depression in adult male survival tended to be overestimated when paternity error was ignored. Pedigree error stemming from extra-pair reproduction therefore caused substantial and divergent bias in estimates of inbreeding depression that could bias tests of evolutionary theories regarding inbreeding and inbreeding depression and their links to variation in mating system.

  6. Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolin; Zhang, Shaoqing; Lin, Xiaopei; Li, Mingkui

    2017-03-01

    The uncertainties in values of coupled model parameters are an important source of model bias that causes model climate drift. The values can be calibrated by a parameter estimation procedure that projects observational information onto model parameters. The signal-to-noise ratio of error covariance between the model state and the parameter being estimated directly determines whether the parameter estimation succeeds or not. With a conceptual climate model that couples the stochastic atmosphere and slow-varying ocean, this study examines the sensitivity of state-parameter covariance on the accuracy of estimated model states in different model components of a coupled system. Due to the interaction of multiple timescales, the fast-varying atmosphere with a chaotic nature is the major source of the inaccuracy of estimated state-parameter covariance. Thus, enhancing the estimation accuracy of atmospheric states is very important for the success of coupled model parameter estimation, especially for the parameters in the air-sea interaction processes. The impact of chaotic-to-periodic ratio in state variability on parameter estimation is also discussed. This simple model study provides a guideline when real observations are used to optimize model parameters in a coupled general circulation model for improving climate analysis and predictions.

  7. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1985-01-01

    Research activities conducted under the auspices of National Aeronautics and Space Administration Cooperative Agreement NCC 9-9 are discussed. During this contract period research efforts are concentrated in two primary areas. The first are is an investigation of the use of measurement error models as alternatives to least squares regression estimators of crop production or timber biomass. The secondary primary area of investigation is on the estimation of the mixing proportion of two-component mixture models. This report lists publications, technical reports, submitted manuscripts, and oral presentation generated by these research efforts. Possible areas of future research are mentioned.

  8. Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters.

    PubMed

    Damon, Bruce M; Heemskerk, Anneriet M; Ding, Zhaohua

    2012-06-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor magnetic resonance imaging fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image data sets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8 and 15.3 m(-1)), signal-to-noise ratio (50, 75, 100 and 150) and voxel geometry (13.8- and 27.0-mm(3) voxel volume with isotropic resolution; 13.5-mm(3) volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to second-order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m(-1)), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation.

  9. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  10. Triple collocation: beyond three estimates and separation of structural/non-structural errors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study extends the popular triple collocation method for error assessment from three source estimates to an arbitrary number of source estimates, i.e., to solve the “multiple” collocation problem. The error assessment problem is solved through Pythagorean constraints in Hilbert space, which is s...

  11. Do Survey Data Estimate Earnings Inequality Correctly? Measurement Errors among Black and White Male Workers

    ERIC Educational Resources Information Center

    Kim, ChangHwan; Tamborini, Christopher R.

    2012-01-01

    Few studies have considered how earnings inequality estimates may be affected by measurement error in self-reported earnings in surveys. Utilizing restricted-use data that links workers in the Survey of Income and Program Participation with their W-2 earnings records, we examine the effect of measurement error on estimates of racial earnings…

  12. Estimation of prediction error variances via Monte Carlo sampling methods using different formulations of the prediction error variance.

    PubMed

    Hickey, John M; Veerkamp, Roel F; Calus, Mario P L; Mulder, Han A; Thompson, Robin

    2009-02-09

    Calculation of the exact prediction error variance covariance matrix is often computationally too demanding, which limits its application in REML algorithms, the calculation of accuracies of estimated breeding values and the control of variance of response to selection. Alternatively Monte Carlo sampling can be used to calculate approximations of the prediction error variance, which converge to the true values if enough samples are used. However, in practical situations the number of samples, which are computationally feasible, is limited. The objective of this study was to compare the convergence rate of different formulations of the prediction error variance calculated using Monte Carlo sampling. Four of these formulations were published, four were corresponding alternative versions, and two were derived as part of this study. The different formulations had different convergence rates and these were shown to depend on the number of samples and on the level of prediction error variance. Four formulations were competitive and these made use of information on either the variance of the estimated breeding value and on the variance of the true breeding value minus the estimated breeding value or on the covariance between the true and estimated breeding values.

  13. An accurate symplectic calculation of the inboard magnetic footprint from statistical topological noise and field errors in the DIII-D

    SciTech Connect

    Punjabi, Alkesh; Ali, Halima

    2011-02-15

    Any canonical transformation of Hamiltonian equations is symplectic, and any area-preserving transformation in 2D is a symplectomorphism. Based on these, a discrete symplectic map and its continuous symplectic analog are derived for forward magnetic field line trajectories in natural canonical coordinates. The unperturbed axisymmetric Hamiltonian for magnetic field lines is constructed from the experimental data in the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The equilibrium Hamiltonian is a highly accurate, analytic, and realistic representation of the magnetic geometry of the DIII-D. These symplectic mathematical maps are used to calculate the magnetic footprint on the inboard collector plate in the DIII-D. Internal statistical topological noise and field errors are irreducible and ubiquitous in magnetic confinement schemes for fusion. It is important to know the stochasticity and magnetic footprint from noise and error fields. The estimates of the spectrum and mode amplitudes of the spatial topological noise and magnetic errors in the DIII-D are used as magnetic perturbation. The discrete and continuous symplectic maps are used to calculate the magnetic footprint on the inboard collector plate of the DIII-D by inverting the natural coordinates to physical coordinates. The combination of highly accurate equilibrium generating function, natural canonical coordinates, symplecticity, and small step-size together gives a very accurate calculation of magnetic footprint. Radial variation of magnetic perturbation and the response of plasma to perturbation are not included. The inboard footprint from noise and errors are dominated by m=3, n=1 mode. The footprint is in the form of a toroidally winding helical strip. The width of stochastic layer scales as (1/2) power of amplitude. The area of footprint scales as first power of amplitude. The physical parameters such as toroidal angle, length, and poloidal angle covered before striking, and the

  14. The estimation of parameters in nonlinear, implicit measurement error models with experiment-wide measurements

    SciTech Connect

    Anderson, K.K.

    1994-05-01

    Measurement error modeling is a statistical approach to the estimation of unknown model parameters which takes into account the measurement errors in all of the data. Approaches which ignore the measurement errors in so-called independent variables may yield inferior estimates of unknown model parameters. At the same time, experiment-wide variables (such as physical constants) are often treated as known without error, when in fact they were produced from prior experiments. Realistic assessments of the associated uncertainties in the experiment-wide variables can be utilized to improve the estimation of unknown model parameters. A maximum likelihood approach to incorporate measurements of experiment-wide variables and their associated uncertainties is presented here. An iterative algorithm is presented which yields estimates of unknown model parameters and their estimated covariance matrix. Further, the algorithm can be used to assess the sensitivity of the estimates and their estimated covariance matrix to the given experiment-wide variables and their associated uncertainties.

  15. The coefficient of error of optical fractionator population size estimates: a computer simulation comparing three estimators.

    PubMed

    Glaser, E M; Wilson, P D

    1998-11-01

    The optical fractionator is a design-based two-stage systematic sampling method that is used to estimate the number of cells in a specified region of an organ when the population is too large to count exhaustively. The fractionator counts the cells found in optical disectors that have been systematically sampled in serial sections. Heretofore, evaluations of optical fractionator performance have been made by performing tests on actual tissue sections, but it is difficult to evaluate the coefficient of error (CE), i.e. the precision of a population size estimate, by using biological tissue samples because they do not permit a comparison of an estimated CE with the true CE. However, computer simulation does permit making such comparisons while avoiding the observational biases inherent in working with biological tissue. This study is the first instance in which computer simulation has been applied to population size estimation by the optical fractionator. We used computer simulation to evaluate the performance of three CE estimators. The estimated CEs were evaluated in tests of three types of non-random cell population distribution and one random cell population distribution. The non-random population distributions varied by differences in 'intensity', i.e. the expected cell counts per disector, according to both section and disector location within the section. Two distributions were sinusoidal and one was linearly increasing; in all three there was a six-fold difference between the high and low intensities. The sinusoidal distributions produced either a peak or a depression of cell intensity at the centre of the simulated region. The linear cell intensity gradually increased from the beginning to the end of the region that contained the cells. The random population distribution had a constant intensity over the region. A 'test condition' was defined by its population distribution, the period between consecutive sampled sections and the spacing between consecutive

  16. An hp-adaptivity and error estimation for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.

    1995-01-01

    This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.

  17. Robust estimation of error covariance functions in GRACE gravity field determination

    NASA Astrophysics Data System (ADS)

    Behzadpour, Saniya; Mayer-Gürr, Torsten; Flury, Jakob

    2016-04-01

    The accurate modelling of the stochastic behaviour of the GRACE mission observations is an important task in the time variable gravity field determination. After fitting a model in the least-squares sense, it is necessary to determine whether all the necessary model assumptions, i.e., independence, normality, and homoscedasticity of the residuals, are valid before performing inference. Checking the model assumptions for the range rate residuals, it has been concluded that one of the major problems in the range rate observations is the outliers in the data. One way to deal with this problem is to implement a robust estimation procedure to dampen the effect of observations that would be highly influential if least squares were used. In addition to insensitivity to outliers, such a procedure tends to leave the residuals associated with outliers large, therefore making the identification of outliers much easier. Implementation of this procedure using robust error covariance functions, comparison of different robust estimators, e.g., Huber's and Tukey's estimators, and assessing the detected outliers with respect to temporal and spatial patterns are discussed.

  18. Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude

    DTIC Science & Technology

    2009-12-01

    TRACKER SYSTEM FOR ACCURATE ESTIMATION OF SPACECRAFT ATTITUDE by Jack A. Tappe December 2009 Thesis Co-Advisors: Jae Jun Kim Brij N... Brij N. Agrawal Co-Advisor Dr. Knox T. Millsaps Chairman, Department of Mechanical and Astronautical Engineering iv THIS PAGE...much with my studies here. I would like to especially thank Professors Barry Leonard, Brij Agrawal, Grand Master Shin, and Comrade Oleg Yakimenko

  19. Accurate and unbiased estimation of power-law exponents from single-emitter blinking data.

    PubMed

    Hoogenboom, Jacob P; den Otter, Wouter K; Offerhaus, Herman L

    2006-11-28

    Single emitter blinking with a power-law distribution for the on and off times has been observed on a variety of systems including semiconductor nanocrystals, conjugated polymers, fluorescent proteins, and organic fluorophores. The origin of this behavior is still under debate. Reliable estimation of power exponents from experimental data is crucial in validating the various models under consideration. We derive a maximum likelihood estimator for power-law distributed data and analyze its accuracy as a function of data set size and power exponent both analytically and numerically. Results are compared to least-squares fitting of the double logarithmically transformed probability density. We demonstrate that least-squares fitting introduces a severe bias in the estimation result and that the maximum likelihood procedure is superior in retrieving the correct exponent and reducing the statistical error. For a data set as small as 50 data points, the error margins of the maximum likelihood estimator are already below 7%, giving the possibility to quantify blinking behavior when data set size is limited, e.g., due to photobleaching.

  20. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  1. Goal-oriented explicit residual-type error estimates in XFEM

    NASA Astrophysics Data System (ADS)

    Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin

    2013-08-01

    A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.

  2. Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada

    NASA Astrophysics Data System (ADS)

    Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.

    2015-08-01

    Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion

  3. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities.

    PubMed

    Helb, Danica A; Tetteh, Kevin K A; Felgner, Philip L; Skinner, Jeff; Hubbard, Alan; Arinaitwe, Emmanuel; Mayanja-Kizza, Harriet; Ssewanyana, Isaac; Kamya, Moses R; Beeson, James G; Tappero, Jordan; Smith, David L; Crompton, Peter D; Rosenthal, Philip J; Dorsey, Grant; Drakeley, Christopher J; Greenhouse, Bryan

    2015-08-11

    Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual's recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86-0.93), whereas responses to six antigens accurately estimated an individual's malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.

  4. Multiclass Bayes error estimation by a feature space sampling technique

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.

    1979-01-01

    A general Gaussian M-class N-feature classification problem is defined. An algorithm is developed that requires the class statistics as its only input and computes the minimum probability of error through use of a combined analytical and numerical integration over a sequence simplifying transformations of the feature space. The results are compared with those obtained by conventional techniques applied to a 2-class 4-feature discrimination problem with results previously reported and 4-class 4-feature multispectral scanner Landsat data classified by training and testing of the available data.

  5. Error Estimates Derived from the Data for Least-Squares Spline Fitting

    SciTech Connect

    Jerome Blair

    2007-06-25

    The use of least-squares fitting by cubic splines for the purpose of noise reduction in measured data is studied. Splines with variable mesh size are considered. The error, the difference between the input signal and its estimate, is divided into two sources: the R-error, which depends only on the noise and increases with decreasing mesh size, and the Ferror, which depends only on the signal and decreases with decreasing mesh size. The estimation of both errors as a function of time is demonstrated. The R-error estimation requires knowledge of the statistics of the noise and uses well-known methods. The primary contribution of the paper is a method for estimating the F-error that requires no prior knowledge of the signal except that it has four derivatives. It is calculated from the difference between two different spline fits to the data and is illustrated with Monte Carlo simulations and with an example.

  6. Accurate and efficient velocity estimation using Transmission matrix formalism based on the domain decomposition method

    NASA Astrophysics Data System (ADS)

    Wang, Benfeng; Jakobsen, Morten; Wu, Ru-Shan; Lu, Wenkai; Chen, Xiaohong

    2017-03-01

    Full waveform inversion (FWI) has been regarded as an effective tool to build the velocity model for the following pre-stack depth migration. Traditional inversion methods are built on Born approximation and are initial model dependent, while this problem can be avoided by introducing Transmission matrix (T-matrix), because the T-matrix includes all orders of scattering effects. The T-matrix can be estimated from the spatial aperture and frequency bandwidth limited seismic data using linear optimization methods. However the full T-matrix inversion method (FTIM) is always required in order to estimate velocity perturbations, which is very time consuming. The efficiency can be improved using the previously proposed inverse thin-slab propagator (ITSP) method, especially for large scale models. However, the ITSP method is currently designed for smooth media, therefore the estimation results are unsatisfactory when the velocity perturbation is relatively large. In this paper, we propose a domain decomposition method (DDM) to improve the efficiency of the velocity estimation for models with large perturbations, as well as guarantee the estimation accuracy. Numerical examples for smooth Gaussian ball models and a reservoir model with sharp boundaries are performed using the ITSP method, the proposed DDM and the FTIM. The estimated velocity distributions, the relative errors and the elapsed time all demonstrate the validity of the proposed DDM.

  7. Space-Time Error Representation and Estimation in Navier-Stokes Calculations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2006-01-01

    The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.

  8. The effect of errors-in-variables on variance component estimation

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang

    2016-08-01

    Although total least squares (TLS) has been widely applied, variance components in an errors-in-variables (EIV) model can be inestimable under certain conditions and unstable in the sense that small random errors can result in very large errors in the estimated variance components. We investigate the effect of the random design matrix on variance component (VC) estimation of MINQUE type by treating the design matrix as if it were errors-free, derive the first-order bias of the VC estimate, and construct bias-corrected VC estimators. As a special case, we obtain a bias-corrected estimate for the variance of unit weight. Although TLS methods are statistically rigorous, they can be computationally too expensive. We directly Taylor-expand the nonlinear weighted LS estimate of parameters up to the second-order approximation in terms of the random errors of the design matrix, derive the bias of the estimate, and use it to construct a bias-corrected weighted LS estimate. Bearing in mind that the random errors of the design matrix will create a bias in the normal matrix of the weighted LS estimate, we propose to calibrate the normal matrix by computing and then removing the bias from the normal matrix. As a result, we can obtain a new parameter estimate, which is called the N-calibrated weighted LS estimate. The simulations have shown that (i) errors-in-variables have a significant effect on VC estimation, if they are large/significant but treated as non-random. The variance components can be incorrectly estimated by more than one order of magnitude, depending on the nature of problems and the sizes of EIV; (ii) the bias-corrected VC estimate can effectively remove the bias of the VC estimate. If the signal-to-noise is small, higher order terms may be necessary. Nevertheless, since we construct the bias-corrected VC estimate by directly removing the estimated bias from the estimate itself, the simulation results have clearly indicated that there is a great risk to obtain

  9. Improved estimates of coordinate error for molecular replacement

    SciTech Connect

    Oeffner, Robert D.; Bunkóczi, Gábor; McCoy, Airlie J.; Read, Randy J.

    2013-11-01

    A function for estimating the effective root-mean-square deviation in coordinates between two proteins has been developed that depends on both the sequence identity and the size of the protein and is optimized for use with molecular replacement in Phaser. A top peak translation-function Z-score of over 8 is found to be a reliable metric of when molecular replacement has succeeded. The estimate of the root-mean-square deviation (r.m.s.d.) in coordinates between the model and the target is an essential parameter for calibrating likelihood functions for molecular replacement (MR). Good estimates of the r.m.s.d. lead to good estimates of the variance term in the likelihood functions, which increases signal to noise and hence success rates in the MR search. Phaser has hitherto used an estimate of the r.m.s.d. that only depends on the sequence identity between the model and target and which was not optimized for the MR likelihood functions. Variance-refinement functionality was added to Phaser to enable determination of the effective r.m.s.d. that optimized the log-likelihood gain (LLG) for a correct MR solution. Variance refinement was subsequently performed on a database of over 21 000 MR problems that sampled a range of sequence identities, protein sizes and protein fold classes. Success was monitored using the translation-function Z-score (TFZ), where a TFZ of 8 or over for the top peak was found to be a reliable indicator that MR had succeeded for these cases with one molecule in the asymmetric unit. Good estimates of the r.m.s.d. are correlated with the sequence identity and the protein size. A new estimate of the r.m.s.d. that uses these two parameters in a function optimized to fit the mean of the refined variance is implemented in Phaser and improves MR outcomes. Perturbing the initial estimate of the r.m.s.d. from the mean of the distribution in steps of standard deviations of the distribution further increases MR success rates.

  10. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  11. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images

    PubMed Central

    Lavoie, Benjamin R.; Okoniewski, Michal; Fear, Elise C.

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range. PMID:27611785

  12. On Kolmogorov Asymptotics of Estimators of the Misclassification Error Rate in Linear Discriminant Analysis.

    PubMed

    Zollanvari, Amin; Genton, Marc G

    2013-08-01

    We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.

  13. A posteriori error estimates for the Johnson–Nédélec FEM–BEM coupling

    PubMed Central

    Aurada, M.; Feischl, M.; Karkulik, M.; Praetorius, D.

    2012-01-01

    Only very recently, Sayas [The validity of Johnson–Nédélec's BEM-FEM coupling on polygonal interfaces. SIAM J Numer Anal 2009;47:3451–63] proved that the Johnson–Nédélec one-equation approach from [On the coupling of boundary integral and finite element methods. Math Comput 1980;35:1063–79] provides a stable coupling of finite element method (FEM) and boundary element method (BEM). In our work, we now adapt the analytical results for different a posteriori error estimates developed for the symmetric FEM–BEM coupling to the Johnson–Nédélec coupling. More precisely, we analyze the weighted-residual error estimator, the two-level error estimator, and different versions of (h−h/2)-based error estimators. In numerical experiments, we use these estimators to steer h-adaptive algorithms, and compare the effectivity of the different approaches. PMID:22347772

  14. EIA Corrects Errors in Its Drilling Activity Estimates Series

    EIA Publications

    1998-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status.

  15. Error estimations and their biases in Monte Carlo eigenvalue calculations

    SciTech Connect

    Ueki, Taro; Mori, Takamasa; Nakagawa, Masayuki

    1997-01-01

    In the Monte Carlo eigenvalue calculation of neutron transport, the eigenvalue is calculated as the average of multiplication factors from cycles, which are called the cycle k{sub eff}`s. Biases in the estimators of the variance and intercycle covariances in Monte Carlo eigenvalue calculations are analyzed. The relations among the real and apparent values of variances and intercycle covariances are derived, where real refers to a true value that is calculated from independently repeated Monte Carlo runs and apparent refers to the expected value of estimates from a single Monte Carlo run. Next, iterative methods based on the foregoing relations are proposed to estimate the standard deviation of the eigenvalue. The methods work well for the cases in which the ratios of the real to apparent values of variances are between 1.4 and 3.1. Even in the case where the foregoing ratio is >5, >70% of the standard deviation estimates fall within 40% from the true value.

  16. Gap filling strategies and error in estimating annual soil respiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil respiration (Rsoil) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap-filling of automated records to produce a complete time series. While many gap-filling methodologies have been employed, there is ...

  17. Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices.

    PubMed

    Lake, Douglas E; Moorman, J Randall

    2011-01-01

    Entropy estimation is useful but difficult in short time series. For example, automated detection of atrial fibrillation (AF) in very short heart beat interval time series would be useful in patients with cardiac implantable electronic devices that record only from the ventricle. Such devices require efficient algorithms, and the clinical situation demands accuracy. Toward these ends, we optimized the sample entropy measure, which reports the probability that short templates will match with others within the series. We developed general methods for the rational selection of the template length m and the tolerance matching r. The major innovation was to allow r to vary so that sufficient matches are found for confident entropy estimation, with conversion of the final probability to a density by dividing by the matching region volume, 2r(m). The optimized sample entropy estimate and the mean heart beat interval each contributed to accurate detection of AF in as few as 12 heartbeats. The final algorithm, called the coefficient of sample entropy (COSEn), was developed using the canonical MIT-BIH database and validated in a new and much larger set of consecutive Holter monitor recordings from the University of Virginia. In patients over the age of 40 yr old, COSEn has high degrees of accuracy in distinguishing AF from normal sinus rhythm in 12-beat calculations performed hourly. The most common errors are atrial or ventricular ectopy, which increase entropy despite sinus rhythm, and atrial flutter, which can have low or high entropy states depending on dynamics of atrioventricular conduction.

  18. Accurate estimates of age at maturity from the growth trajectories of fishes and other ectotherms.

    PubMed

    Honsey, Andrew E; Staples, David F; Venturelli, Paul A

    2017-01-01

    Age at maturity (AAM) is a key life history trait that provides insight into ecology, evolution, and population dynamics. However, maturity data can be costly to collect or may not be available. Life history theory suggests that growth is biphasic for many organisms, with a change-point in growth occurring at maturity. If so, then it should be possible to use a biphasic growth model to estimate AAM from growth data. To test this prediction, we used the Lester biphasic growth model in a likelihood profiling framework to estimate AAM from length at age data. We fit our model to simulated growth trajectories to determine minimum data requirements (in terms of sample size, precision in length at age, and the cost to somatic growth of maturity) for accurate AAM estimates. We then applied our method to a large walleye Sander vitreus data set and show that our AAM estimates are in close agreement with conventional estimates when our model fits well. Finally, we highlight the potential of our method by applying it to length at age data for a variety of ectotherms. Our method shows promise as a tool for estimating AAM and other life history traits from contemporary and historical samples.

  19. A-Posteriori Error Estimation for Hyperbolic Conservation Laws with Constraint

    NASA Technical Reports Server (NTRS)

    Barth, Timothy

    2004-01-01

    This lecture considers a-posteriori error estimates for the numerical solution of conservation laws with time invariant constraints such as those arising in magnetohydrodynamics (MHD) and gravitational physics. Using standard duality arguments, a-posteriori error estimates for the discontinuous Galerkin finite element method are then presented for MHD with solenoidal constraint. From these estimates, a procedure for adaptive discretization is outlined. A taxonomy of Green's functions for the linearized MHD operator is given which characterizes the domain of dependence for pointwise errors. The extension to other constrained systems such as the Einstein equations of gravitational physics are then considered. Finally, future directions and open problems are discussed.

  20. Error estimation and adaptive mesh refinement for parallel analysis of shell structures

    NASA Technical Reports Server (NTRS)

    Keating, Scott C.; Felippa, Carlos A.; Park, K. C.

    1994-01-01

    The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.

  1. On-line estimation of error covariance parameters for atmospheric data assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.

    1995-01-01

    A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including

  2. The estimation error covariance matrix for the ideal state reconstructor with measurement noise

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1988-01-01

    A general expression is derived for the state estimation error covariance matrix for the Ideal State Reconstructor when the input measurements are corrupted by measurement noise. An example is presented which shows that the more measurements used in estimating the state at a given time, the better the estimator.

  3. Round-Robin Analysis of Social Interaction: Exact and Estimated Standard Errors.

    ERIC Educational Resources Information Center

    Bond, Charles F., Jr.; Lashley, Brian R.

    1996-01-01

    The Social Relations model of D. A. Kenny estimates variances and covariances from a round-robin of two-person interactions. This paper presents a matrix formulation of the Social Relations model, using the formulation to derive exact and estimated standard errors for round-robin estimates of Social Relations parameters. (SLD)

  4. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  5. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Larson, Mats G.; Barth, Timothy J.

    1999-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  6. On the estimation errors of KM and V from time-course experiments using the Michaelis-Menten equation.

    PubMed

    Stroberg, Wylie; Schnell, Santiago

    2016-12-01

    The conditions under which the Michaelis-Menten equation accurately captures the steady-state kinetics of a simple enzyme-catalyzed reaction is contrasted with the conditions under which the same equation can be used to estimate parameters, KM and V, from progress curve data. Validity of the underlying assumptions leading to the Michaelis-Menten equation are shown to be necessary, but not sufficient to guarantee accurate estimation of KM and V. Detailed error analysis and numerical "experiments" show the required experimental conditions for the independent estimation of both KM and V from progress curves. A timescale, tQ, measuring the portion of the time course over which the progress curve exhibits substantial curvature provides a novel criterion for accurate estimation of KM and V from a progress curve experiment. It is found that, if the initial substrate concentration is of the same order of magnitude as KM, the estimated values of the KM and V will correspond to their true values calculated from the microscopic rate constants of the corresponding mass-action system, only so long as the initial enzyme concentration is less than KM.

  7. READSCAN: a fast and scalable pathogen discovery program with accurate genome relative abundance estimation

    PubMed Central

    Rashid, Mamoon; Pain, Arnab

    2013-01-01

    Summary: READSCAN is a highly scalable parallel program to identify non-host sequences (of potential pathogen origin) and estimate their genome relative abundance in high-throughput sequence datasets. READSCAN accurately classified human and viral sequences on a 20.1 million reads simulated dataset in <27 min using a small Beowulf compute cluster with 16 nodes (Supplementary Material). Availability: http://cbrc.kaust.edu.sa/readscan Contact: arnab.pain@kaust.edu.sa or raeece.naeem@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23193222

  8. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  9. MODIS Cloud Optical Property Retrieval Uncertainties Derived from Pixel-Level Radiometric Error Estimates

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Wind, Galina; Xiong, Xiaoxiong

    2011-01-01

    MODIS retrievals of cloud optical thickness and effective particle radius employ a well-known VNIR/SWIR solar reflectance technique. For this type of algorithm, we evaluate the uncertainty in simultaneous retrievals of these two parameters to pixel-level (scene-dependent) radiometric error estimates as well as other tractable error sources.

  10. Estimation of Error Components in Cohort Studies: A Cross-Cohort Analysis of Dutch Mathematics Achievement

    ERIC Educational Resources Information Center

    Keuning, Jos; Hemker, Bas

    2014-01-01

    The data collection of a cohort study requires making many decisions. Each decision may introduce error in the statistical analyses conducted later on. In the present study, a procedure was developed for estimation of the error made due to the composition of the sample, the item selection procedure, and the test equating process. The math results…

  11. Error estimation in the neural network solution of ordinary differential equations.

    PubMed

    Filici, Cristian

    2010-06-01

    In this article a method of error estimation for the neural approximation of the solution of an Ordinary Differential Equation is presented. Some examples of the application of the method support the theory presented.

  12. A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2015-01-01

    A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.

  13. Type I Error Rates and Power Estimates of Selected Parametric and Nonparametric Tests of Scale.

    ERIC Educational Resources Information Center

    Olejnik, Stephen F.; Algina, James

    1987-01-01

    Estimated Type I Error rates and power are reported for the Brown-Forsythe, O'Brien, Klotz, and Siegal-Tukey procedures. The effect of aligning the data using deviations from group means or group medians is investigated. (RB)

  14. The estimation of tumor cell percentage for molecular testing by pathologists is not accurate.

    PubMed

    Smits, Alexander J J; Kummer, J Alain; de Bruin, Peter C; Bol, Mijke; van den Tweel, Jan G; Seldenrijk, Kees A; Willems, Stefan M; Offerhaus, G Johan A; de Weger, Roel A; van Diest, Paul J; Vink, Aryan

    2014-02-01

    Molecular pathology is becoming more and more important in present day pathology. A major challenge for any molecular test is its ability to reliably detect mutations in samples consisting of mixtures of tumor cells and normal cells, especially when the tumor content is low. The minimum percentage of tumor cells required to detect genetic abnormalities is a major variable. Information on tumor cell percentage is essential for a correct interpretation of the result. In daily practice, the percentage of tumor cells is estimated by pathologists on hematoxylin and eosin (H&E)-stained slides, the reliability of which has been questioned. This study aimed to determine the reliability of estimated tumor cell percentages in tissue samples by pathologists. On 47 H&E-stained slides of lung tumors a tumor area was marked. The percentage of tumor cells within this area was estimated independently by nine pathologists, using categories of 0-5%, 6-10%, 11-20%, 21-30%, and so on, until 91-100%. As gold standard, the percentage of tumor cells was counted manually. On average, the range between the lowest and the highest estimate per sample was 6.3 categories. In 33% of estimates, the deviation from the gold standard was at least three categories. The mean absolute deviation was 2.0 categories (range between observers 1.5-3.1 categories). There was a significant difference between the observers (P<0.001). If 20% of tumor cells were considered the lower limit to detect a mutation, samples with an insufficient tumor cell percentage (<20%) would have been estimated to contain enough tumor cells in 27/72 (38%) observations, possibly causing false negative results. In conclusion, estimates of tumor cell percentages on H&E-stained slides are not accurate, which could result in misinterpretation of test results. Reliability could possibly be improved by using a training set with feedback.

  15. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-07

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems.

  16. Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity and Efficient Estimators

    DTIC Science & Technology

    2012-09-27

    REPORT Quantum tomography via compressed sensing : error bounds, sample complexity and efficient estimators 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS quantum tomography, compressed sensing Steven T Flammia, David Gross, Yi-Kai Liu... compressed sensing : error bounds, sample complexity and efficient estimators Report Title ABSTRACT Intuitively, if a density operator has small rank, then

  17. Enabling Predictive Simulation and UQ of Complex Multiphysics PDE Systems by the Development of Goal-Oriented Variational Sensitivity Analysis and a-Posteriori Error Estimation Methods

    SciTech Connect

    Estep, Donald

    2015-11-30

    This project addressed the challenge of predictive computational analysis of strongly coupled, highly nonlinear multiphysics systems characterized by multiple physical phenomena that span a large range of length- and time-scales. Specifically, the project was focused on computational estimation of numerical error and sensitivity analysis of computational solutions with respect to variations in parameters and data. In addition, the project investigated the use of accurate computational estimates to guide efficient adaptive discretization. The project developed, analyzed and evaluated new variational adjoint-based techniques for integration, model, and data error estimation/control and sensitivity analysis, in evolutionary multiphysics multiscale simulations.

  18. Why Don't We Learn to Accurately Forecast Feelings? How Misremembering Our Predictions Blinds Us to Past Forecasting Errors

    ERIC Educational Resources Information Center

    Meyvis, Tom; Ratner, Rebecca K.; Levav, Jonathan

    2010-01-01

    Why do affective forecasting errors persist in the face of repeated disconfirming evidence? Five studies demonstrate that people misremember their forecasts as consistent with their experience and thus fail to perceive the extent of their forecasting error. As a result, people do not learn from past forecasting errors and fail to adjust subsequent…

  19. Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2001-01-01

    The phenomenal growth of the satellite communications industry has created a large demand for traveling-wave tubes (TWT's) operating with unprecedented specifications requiring the design and production of many novel devices in record time. To achieve this, the TWT industry heavily relies on computational modeling. However, the TWT industry's computational modeling capabilities need to be improved because there are often discrepancies between measured TWT data and that predicted by conventional two-dimensional helical TWT interaction codes. This limits the analysis and design of novel devices or TWT's with parameters differing from what is conventionally manufactured. In addition, the inaccuracy of current computational tools limits achievable TWT performance because optimized designs require highly accurate models. To address these concerns, a fully three-dimensional, time-dependent, helical TWT interaction model was developed using the electromagnetic particle-in-cell code MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm). The model includes a short section of helical slow-wave circuit with excitation fed by radiofrequency input/output couplers, and an electron beam contained by periodic permanent magnet focusing. A cutaway view of several turns of the three-dimensional helical slow-wave circuit with input/output couplers is shown. This has been shown to be more accurate than conventionally used two-dimensional models. The growth of the communications industry has also imposed a demand for increased data rates for the transmission of large volumes of data. To achieve increased data rates, complex modulation and multiple access techniques are employed requiring minimum distortion of the signal as it is passed through the TWT. Thus, intersymbol interference (ISI) becomes a major consideration, as well as suspected causes such as reflections within the TWT. To experimentally investigate effects of the physical TWT on ISI would be

  20. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    SciTech Connect

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-18

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1–2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S{sub 0} and A{sub 0}, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A{sub 0} to thickness variations was shown to be superior to S{sub 0}, however, the attenuation from A{sub 0} when a liquid loading was present was much higher than S{sub 0}. A{sub 0} was less sensitive to the presence of coatings on the surface of than S{sub 0}.

  1. Magnetic gaps in organic tri-radicals: From a simple model to accurate estimates

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo

    2017-03-01

    The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results for the systems of current fundamental and technological interest. From the other side, proper parameterization of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic physical effects, unraveling the role played by electron delocalization, Coulomb repulsion, and effective exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three prototypical organic tri-radicals, namely, 1,3,5-trimethylenebenzene, 1,3,5-tridehydrobenzene, and 1,2,3-tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences among the three species and their consequences on the magnetic properties in terms of the simple model mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and the final results are discussed and compared to both available experimental and computational estimates.

  2. Do modelled or satellite-based estimates of surface solar irradiance accurately describe its temporal variability?

    NASA Astrophysics Data System (ADS)

    Bengulescu, Marc; Blanc, Philippe; Boilley, Alexandre; Wald, Lucien

    2017-02-01

    This study investigates the characteristic time-scales of variability found in long-term time-series of daily means of estimates of surface solar irradiance (SSI). The study is performed at various levels to better understand the causes of variability in the SSI. First, the variability of the solar irradiance at the top of the atmosphere is scrutinized. Then, estimates of the SSI in cloud-free conditions as provided by the McClear model are dealt with, in order to reveal the influence of the clear atmosphere (aerosols, water vapour, etc.). Lastly, the role of clouds on variability is inferred by the analysis of in-situ measurements. A description of how the atmosphere affects SSI variability is thus obtained on a time-scale basis. The analysis is also performed with estimates of the SSI provided by the satellite-derived HelioClim-3 database and by two numerical weather re-analyses: ERA-Interim and MERRA2. It is found that HelioClim-3 estimates render an accurate picture of the variability found in ground measurements, not only globally, but also with respect to individual characteristic time-scales. On the contrary, the variability found in re-analyses correlates poorly with all scales of ground measurements variability.

  3. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets

    PubMed Central

    Granata, Daniele; Carnevale, Vincenzo

    2016-01-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant “collective” variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset. PMID:27510265

  4. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets

    NASA Astrophysics Data System (ADS)

    Granata, Daniele; Carnevale, Vincenzo

    2016-08-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant “collective” variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset.

  5. Linear constraint relations in biochemical reaction systems: II. Diagnosis and estimation of gross errors.

    PubMed

    van der Heijden, R T; Romein, B; Heijnen, J J; Hellinga, C; Luyben, K C

    1994-01-05

    Conservation equations derived from elemental balances, heat balances, and metabolic stoichiometry, can be used to constrain the values of conversion rates of relevant components. In the present work, their use will be discussed for detection and localization of significant errors of the following types: 1.At least one of the primary measurements has a significant error (gross measurement error).2.The system definition is incorrect: a component a.is not included in the system description.b.has a composition different from that specified.3.The specified variances are too small, resulting in a too-sensitive test.The error diagnosis technique presented here, is based on the following: given the conservation equations, for each set of measured rates, a vector of residuals of these equations can be constructed, of which the direction is related to the error source, as its length is a measure of the error size. The similarity of the directions of such a residual vector and certain compare vectors, each corresponding to a specific error source, is considered in a statistical test. If two compare vectors that result from different error sources have (almost) the same direction, errors of these types cannot be distinguished from each other. For each possible error in the primary measurements of flows and concentrations, the compare vector can be constructed a priori, thus allowing analysis beforehand, which errors can be observed. Therefore, the detectability of certain errors likely to occur can be insured by selecting a proper measurement set. The possibility of performing this analysis before experiments are carried out is an important advantage, providing a profound understanding of the detectability of errors. The characteristics of the method with respect to diagnosis of simultaneous errors and error size estimation are discussed and compared to those of the serial elimination method and the serial compensation strategy, published elsewhere. (c) 1994 John Wiley & Sons

  6. Anisotropic mesh adaptation for solution of finite element problems using hierarchical edge-based error estimates

    SciTech Connect

    Lipnikov, Konstantin; Agouzal, Abdellatif; Vassilevski, Yuri

    2009-01-01

    We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.

  7. Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures.

    SciTech Connect

    Walsh, Timothy Francis; Reese, Garth M.; Hetmaniuk, Ulrich L.

    2005-07-01

    An a posteriori error estimator is developed for the eigenvalue analysis of three-dimensional heterogeneous elastic structures. It constitutes an extension of a well-known explicit estimator to heterogeneous structures. We prove that our estimates are independent of the variations in material properties and independent of the polynomial degree of finite elements. Finally, we study numerically the effectivity of this estimator on several model problems.

  8. MIDAS robust trend estimator for accurate GPS station velocities without step detection.

    PubMed

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij  = (xj-xi )/(tj-ti ) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  9. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  10. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences. PMID:27668140

  11. Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates

    DOE PAGES

    Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.; ...

    2015-12-01

    Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.

  12. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  13. A posteriori error estimation for hp -adaptivity for fourth-order equations

    NASA Astrophysics Data System (ADS)

    Moore, Peter K.; Rangelova, Marina

    2010-04-01

    A posteriori error estimates developed to drive hp-adaptivity for second-order reaction-diffusion equations are extended to fourth-order equations. A C^1 hierarchical finite element basis is constructed from Hermite-Lobatto polynomials. A priori estimates of the error in several norms for both the interpolant and finite element solution are derived. In the latter case this requires a generalization of the well-known Aubin-Nitsche technique to time-dependent fourth-order equations. We show that the finite element solution and corresponding Hermite-Lobatto interpolant are asymptotically equivalent. A posteriori error estimators based on this equivalence for solutions at two orders are presented. Both are shown to be asymptotically exact on grids of uniform order. These estimators can be used to control various adaptive strategies. Computational results for linear steady-state and time-dependent equations corroborate the theory and demonstrate the effectiveness of the estimators in adaptive settings.

  14. Accurate recapture identification for genetic mark-recapture studies with error-tolerant likelihood-based match calling and sample clustering.

    PubMed

    Sethi, Suresh A; Linden, Daniel; Wenburg, John; Lewis, Cara; Lemons, Patrick; Fuller, Angela; Hare, Matthew P

    2016-12-01

    Error-tolerant likelihood-based match calling presents a promising technique to accurately identify recapture events in genetic mark-recapture studies by combining probabilities of latent genotypes and probabilities of observed genotypes, which may contain genotyping errors. Combined with clustering algorithms to group samples into sets of recaptures based upon pairwise match calls, these tools can be used to reconstruct accurate capture histories for mark-recapture modelling. Here, we assess the performance of a recently introduced error-tolerant likelihood-based match-calling model and sample clustering algorithm for genetic mark-recapture studies. We assessed both biallelic (i.e. single nucleotide polymorphisms; SNP) and multiallelic (i.e. microsatellite; MSAT) markers using a combination of simulation analyses and case study data on Pacific walrus (Odobenus rosmarus divergens) and fishers (Pekania pennanti). A novel two-stage clustering approach is demonstrated for genetic mark-recapture applications. First, repeat captures within a sampling occasion are identified. Subsequently, recaptures across sampling occasions are identified. The likelihood-based matching protocol performed well in simulation trials, demonstrating utility for use in a wide range of genetic mark-recapture studies. Moderately sized SNP (64+) and MSAT (10-15) panels produced accurate match calls for recaptures and accurate non-match calls for samples from closely related individuals in the face of low to moderate genotyping error. Furthermore, matching performance remained stable or increased as the number of genetic markers increased, genotyping error notwithstanding.

  15. Accurate recapture identification for genetic mark–recapture studies with error-tolerant likelihood-based match calling and sample clustering

    PubMed Central

    Linden, Daniel; Wenburg, John; Lewis, Cara; Lemons, Patrick; Fuller, Angela; Hare, Matthew P.

    2016-01-01

    Error-tolerant likelihood-based match calling presents a promising technique to accurately identify recapture events in genetic mark–recapture studies by combining probabilities of latent genotypes and probabilities of observed genotypes, which may contain genotyping errors. Combined with clustering algorithms to group samples into sets of recaptures based upon pairwise match calls, these tools can be used to reconstruct accurate capture histories for mark–recapture modelling. Here, we assess the performance of a recently introduced error-tolerant likelihood-based match-calling model and sample clustering algorithm for genetic mark–recapture studies. We assessed both biallelic (i.e. single nucleotide polymorphisms; SNP) and multiallelic (i.e. microsatellite; MSAT) markers using a combination of simulation analyses and case study data on Pacific walrus (Odobenus rosmarus divergens) and fishers (Pekania pennanti). A novel two-stage clustering approach is demonstrated for genetic mark–recapture applications. First, repeat captures within a sampling occasion are identified. Subsequently, recaptures across sampling occasions are identified. The likelihood-based matching protocol performed well in simulation trials, demonstrating utility for use in a wide range of genetic mark–recapture studies. Moderately sized SNP (64+) and MSAT (10–15) panels produced accurate match calls for recaptures and accurate non-match calls for samples from closely related individuals in the face of low to moderate genotyping error. Furthermore, matching performance remained stable or increased as the number of genetic markers increased, genotyping error notwithstanding. PMID:28083094

  16. A non-orthogonal SVD-based decomposition for phase invariant error-related potential estimation.

    PubMed

    Phlypo, Ronald; Jrad, Nisrine; Rousseau, Sandra; Congedo, Marco

    2011-01-01

    The estimation of the Error Related Potential from a set of trials is a challenging problem. Indeed, the Error Related Potential is of low amplitude compared to the ongoing electroencephalographic activity. In addition, simple summing over the different trials is prone to errors, since the waveform does not appear at an exact latency with respect to the trigger. In this work, we propose a method to cope with the discrepancy of these latencies of the Error Related Potential waveform and offer a framework in which the estimation of the Error Related Potential waveform reduces to a simple Singular Value Decomposition of an analytic waveform representation of the observed signal. The followed approach is promising, since we are able to explain a higher portion of the variance of the observed signal with fewer components in the expansion.

  17. Conditional probability distribution (CPD) method in temperature based death time estimation: Error propagation analysis.

    PubMed

    Hubig, Michael; Muggenthaler, Holger; Mall, Gita

    2014-05-01

    Bayesian estimation applied to temperature based death time estimation was recently introduced as conditional probability distribution or CPD-method by Biermann and Potente. The CPD-method is useful, if there is external information that sets the boundaries of the true death time interval (victim last seen alive and found dead). CPD allows computation of probabilities for small time intervals of interest (e.g. no-alibi intervals of suspects) within the large true death time interval. In the light of the importance of the CPD for conviction or acquittal of suspects the present study identifies a potential error source. Deviations in death time estimates will cause errors in the CPD-computed probabilities. We derive formulae to quantify the CPD error as a function of input error. Moreover we observed the paradox, that in cases, in which the small no-alibi time interval is located at the boundary of the true death time interval, adjacent to the erroneous death time estimate, CPD-computed probabilities for that small no-alibi interval will increase with increasing input deviation, else the CPD-computed probabilities will decrease. We therefore advise not to use CPD if there is an indication of an error or a contra-empirical deviation in the death time estimates, that is especially, if the death time estimates fall out of the true death time interval, even if the 95%-confidence intervals of the estimate still overlap the true death time interval.

  18. Accurate relative location estimates for the North Korean nuclear tests using empirical slowness corrections

    NASA Astrophysics Data System (ADS)

    Gibbons, S. J.; Pabian, F.; Näsholm, S. P.; Kværna, T.; Mykkeltveit, S.

    2017-01-01

    velocity gradients reduce the residuals, the relative location uncertainties and the sensitivity to the combination of stations used. The traveltime gradients appear to be overestimated for the regional phases, and teleseismic relative location estimates are likely to be more accurate despite an apparent lower precision. Calibrations for regional phases are essential given that smaller magnitude events are likely not to be recorded teleseismically. We discuss the implications for the absolute event locations. Placing the 2006 event under a local maximum of overburden at 41.293°N, 129.105°E would imply a location of 41.299°N, 129.075°E for the January 2016 event, providing almost optimal overburden for the later four events.

  19. Accurate Relative Location Estimates for the North Korean Nuclear Tests Using Empirical Slowness Corrections

    NASA Astrophysics Data System (ADS)

    Gibbons, S. J.; Pabian, F.; Näsholm, S. P.; Kværna', T.; Mykkeltveit, S.

    2016-10-01

    modified velocity gradients reduce the residuals, the relative location uncertainties, and the sensitivity to the combination of stations used. The traveltime gradients appear to be overestimated for the regional phases, and teleseismic relative location estimates are likely to be more accurate despite an apparent lower precision. Calibrations for regional phases are essential given that smaller magnitude events are likely not to be recorded teleseismically. We discuss the implications for the absolute event locations. Placing the 2006 event under a local maximum of overburden at 41.293°N, 129.105°E would imply a location of 41.299°N, 129.075°E for the January 2016 event, providing almost optimal overburden for the later four events.

  20. An improved approach for estimating observation and model error parameters for soil moisture data assimilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accurate specification of observing and/or modeling errors presents a remaining challenge to the successful implementation of many land data assimilation systems. Recent work has developed adaptive filtering approaches which address this issue. However, such approaches possess a number of know...

  1. Raman spectroscopy for highly accurate estimation of the age of refrigerated porcine muscle

    NASA Astrophysics Data System (ADS)

    Timinis, Constantinos; Pitris, Costas

    2016-03-01

    The high water content of meat, combined with all the nutrients it contains, make it vulnerable to spoilage at all stages of production and storage even when refrigerated at 5 °C. A non-destructive and in situ tool for meat sample testing, which could provide an accurate indication of the storage time of meat, would be very useful for the control of meat quality as well as for consumer safety. The proposed solution is based on Raman spectroscopy which is non-invasive and can be applied in situ. For the purposes of this project, 42 meat samples from 14 animals were obtained and three Raman spectra per sample were collected every two days for two weeks. The spectra were subsequently processed and the sample age was calculated using a set of linear differential equations. In addition, the samples were classified in categories corresponding to the age in 2-day steps (i.e., 0, 2, 4, 6, 8, 10, 12 or 14 days old), using linear discriminant analysis and cross-validation. Contrary to other studies, where the samples were simply grouped into two categories (higher or lower quality, suitable or unsuitable for human consumption, etc.), in this study, the age was predicted with a mean error of ~ 1 day (20%) or classified, in 2-day steps, with 100% accuracy. Although Raman spectroscopy has been used in the past for the analysis of meat samples, the proposed methodology has resulted in a prediction of the sample age far more accurately than any report in the literature.

  2. Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Moaveni, Babak

    2016-07-01

    This paper presents a Hierarchical Bayesian model updating framework to account for the effects of ambient temperature and excitation amplitude. The proposed approach is applied for model calibration, response prediction and damage identification of a footbridge under changing environmental/ambient conditions. The concrete Young's modulus of the footbridge deck is the considered updating structural parameter with its mean and variance modeled as functions of temperature and excitation amplitude. The identified modal parameters over 27 months of continuous monitoring of the footbridge are used to calibrate the updating parameters. One of the objectives of this study is to show that by increasing the levels of information in the updating process, the posterior variation of the updating structural parameter (concrete Young's modulus) is reduced. To this end, the calibration is performed at three information levels using (1) the identified modal parameters, (2) modal parameters and ambient temperatures, and (3) modal parameters, ambient temperatures, and excitation amplitudes. The calibrated model is then validated by comparing the model-predicted natural frequencies and those identified from measured data after deliberate change to the structural mass. It is shown that accounting for modeling error uncertainties is crucial for reliable response prediction, and accounting only the estimated variability of the updating structural parameter is not sufficient for accurate response predictions. Finally, the calibrated model is used for damage identification of the footbridge.

  3. Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data.

    PubMed

    Schütt, Heiko H; Harmeling, Stefan; Macke, Jakob H; Wichmann, Felix A

    2016-05-01

    The psychometric function describes how an experimental variable, such as stimulus strength, influences the behaviour of an observer. Estimation of psychometric functions from experimental data plays a central role in fields such as psychophysics, experimental psychology and in the behavioural neurosciences. Experimental data may exhibit substantial overdispersion, which may result from non-stationarity in the behaviour of observers. Here we extend the standard binomial model which is typically used for psychometric function estimation to a beta-binomial model. We show that the use of the beta-binomial model makes it possible to determine accurate credible intervals even in data which exhibit substantial overdispersion. This goes beyond classical measures for overdispersion-goodness-of-fit-which can detect overdispersion but provide no method to do correct inference for overdispersed data. We use Bayesian inference methods for estimating the posterior distribution of the parameters of the psychometric function. Unlike previous Bayesian psychometric inference methods our software implementation-psignifit 4-performs numerical integration of the posterior within automatically determined bounds. This avoids the use of Markov chain Monte Carlo (MCMC) methods typically requiring expert knowledge. Extensive numerical tests show the validity of the approach and we discuss implications of overdispersion for experimental design. A comprehensive MATLAB toolbox implementing the method is freely available; a python implementation providing the basic capabilities is also available.

  4. Accurate estimation of the RMS emittance from single current amplifier data

    SciTech Connect

    Stockli, Martin P.; Welton, R.F.; Keller, R.; Letchford, A.P.; Thomae, R.W.; Thomason, J.W.G.

    2002-05-31

    This paper presents the SCUBEEx rms emittance analysis, a self-consistent, unbiased elliptical exclusion method, which combines traditional data-reduction methods with statistical methods to obtain accurate estimates for the rms emittance. Rather than considering individual data, the method tracks the average current density outside a well-selected, variable boundary to separate the measured beam halo from the background. The average outside current density is assumed to be part of a uniform background and not part of the particle beam. Therefore the average outside current is subtracted from the data before evaluating the rms emittance within the boundary. As the boundary area is increased, the average outside current and the inside rms emittance form plateaus when all data containing part of the particle beam are inside the boundary. These plateaus mark the smallest acceptable exclusion boundary and provide unbiased estimates for the average background and the rms emittance. Small, trendless variations within the plateaus allow for determining the uncertainties of the estimates caused by variations of the measured background outside the smallest acceptable exclusion boundary. The robustness of the method is established with complementary variations of the exclusion boundary. This paper presents a detailed comparison between traditional data reduction methods and SCUBEEx by analyzing two complementary sets of emittance data obtained with a Lawrence Berkeley National Laboratory and an ISIS H{sup -} ion source.

  5. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.

  6. A posteriori error estimators for the discrete ordinates approximation of the one-speed neutron transport equation

    SciTech Connect

    O'Brien, S.; Azmy, Y. Y.

    2013-07-01

    When calculating numerical solutions of the neutron transport equation it is important to have a measure of the accuracy of the solution. As the true solution is generally not known, a suitable estimation of the error must be made. The steady state transport equation possesses discretization errors in all its independent variables: angle, energy and space. In this work only spatial discretization errors are considered. An exact transport solution, in which the degree of regularity of the exact flux across the singular characteristic is controlled, is manufactured to determine the numerical solutions true discretization error. This solution is then projected onto a Legendre polynomial space in order to form an exact solution on the same basis space as the numerical solution, Discontinuous Galerkin Finite Element Method (DGFEM), to enable computation of the true error. Over a series of test problems the true error is compared to the error estimated by: Ragusa and Wang (RW), residual source (LER) and cell discontinuity estimators (JD). The validity and accuracy of the considered estimators are primarily assessed by considering the effectivity index and global L2 norm of the error. In general RW excels at approximating the true error distribution but usually under-estimates its magnitude; the LER estimator emulates the true error distribution but frequently over-estimates the magnitude of the true error; the JD estimator poorly captures the true error distribution and generally under-estimates the error about singular characteristics but over-estimates it elsewhere. (authors)

  7. Estimating effective model parameters for heterogeneous unsaturated flow using error models for bias correction

    NASA Astrophysics Data System (ADS)

    Erdal, D.; Neuweiler, I.; Huisman, J. A.

    2012-06-01

    Estimates of effective parameters for unsaturated flow models are typically based on observations taken on length scales smaller than the modeling scale. This complicates parameter estimation for heterogeneous soil structures. In this paper we attempt to account for soil structure not present in the flow model by using so-called external error models, which correct for bias in the likelihood function of a parameter estimation algorithm. The performance of external error models are investigated using data from three virtual reality experiments and one real world experiment. All experiments are multistep outflow and inflow experiments in columns packed with two sand types with different structures. First, effective parameters for equivalent homogeneous models for the different columns were estimated using soil moisture measurements taken at a few locations. This resulted in parameters that had a low predictive power for the averaged states of the soil moisture if the measurements did not adequately capture a representative elementary volume of the heterogeneous soil column. Second, parameter estimation was performed using error models that attempted to correct for bias introduced by soil structure not taken into account in the first estimation. Three different error models that required different amounts of prior knowledge about the heterogeneous structure were considered. The results showed that the introduction of an error model can help to obtain effective parameters with more predictive power with respect to the average soil water content in the system. This was especially true when the dynamic behavior of the flow process was analyzed.

  8. The displacement estimation error back-propagation (DEEP) method for a multiple structural displacement monitoring system

    NASA Astrophysics Data System (ADS)

    Jeon, H.; Shin, J. U.; Myung, H.

    2013-04-01

    Visually servoed paired structured light system (ViSP) has been found to be useful in estimating 6-DOF relative displacement. The system is composed of two screens facing each other, each with one or two lasers, a 2-DOF manipulator and a camera. The displacement between two sides is estimated by observing positions of the projected laser beams and rotation angles of the manipulators. To apply the system to massive structures, the whole area should be partitioned and each ViSP module is placed in each partition in a cascaded manner. The estimated displacement between adjoining ViSPs is combined with the next partition so that the entire movement of the structure can be estimated. The multiple ViSPs, however, have a major problem that the error is propagated through the partitions. Therefore, a displacement estimation error back-propagation (DEEP) method which uses Newton-Raphson or gradient descent formulation inspired by the error back-propagation algorithm is proposed. In this method, the estimated displacement from the ViSP is updated using the error back-propagated from a fixed position. To validate the performance of the proposed method, various simulations and experiments have been performed. The results show that the proposed method significantly reduces the propagation error throughout the multiple modules.

  9. Error estimation in multitemporal InSAR deformation time series, with application to Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    GonzáLez, Pablo J.; FernáNdez, José

    2011-10-01

    Interferometric Synthetic Aperture Radar (InSAR) is a reliable technique for measuring crustal deformation. However, despite its long application in geophysical problems, its error estimation has been largely overlooked. Currently, the largest problem with InSAR is still the atmospheric propagation errors, which is why multitemporal interferometric techniques have been successfully developed using a series of interferograms. However, none of the standard multitemporal interferometric techniques, namely PS or SB (Persistent Scatterers and Small Baselines, respectively) provide an estimate of their precision. Here, we present a method to compute reliable estimates of the precision of the deformation time series. We implement it for the SB multitemporal interferometric technique (a favorable technique for natural terrains, the most usual target of geophysical applications). We describe the method that uses a properly weighted scheme that allows us to compute estimates for all interferogram pixels, enhanced by a Montecarlo resampling technique that properly propagates the interferogram errors (variance-covariances) into the unknown parameters (estimated errors for the displacements). We apply the multitemporal error estimation method to Lanzarote Island (Canary Islands), where no active magmatic activity has been reported in the last decades. We detect deformation around Timanfaya volcano (lengthening of line-of-sight ˜ subsidence), where the last eruption in 1730-1736 occurred. Deformation closely follows the surface temperature anomalies indicating that magma crystallization (cooling and contraction) of the 300-year shallow magmatic body under Timanfaya volcano is still ongoing.

  10. Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows

    NASA Astrophysics Data System (ADS)

    McClure, Jeffrey; Yarusevych, Serhiy

    2015-11-01

    The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.

  11. Measurement Error in Nonparametric Item Response Curve Estimation. Research Report. ETS RR-11-28

    ERIC Educational Resources Information Center

    Guo, Hongwen; Sinharay, Sandip

    2011-01-01

    Nonparametric, or kernel, estimation of item response curve (IRC) is a concern theoretically and operationally. Accuracy of this estimation, often used in item analysis in testing programs, is biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. In this study, we investigate…

  12. Estimating phase errors from pupil discontinuities from simulated on sky data: examples with VLT and Keck

    NASA Astrophysics Data System (ADS)

    Lamb, Masen; Correia, Carlos; Sauvage, Jean-François; Véran, Jean-Pierre; Andersen, David; Vigan, Arthur; Wizinowich, Peter; van Dam, Marcos; Mugnier, Laurent; Bond, Charlotte

    2016-07-01

    We propose and apply two methods for estimating phase discontinuities for two realistic scenarios on VLT and Keck. The methods use both phase diversity and a form of image sharpening. For the case of VLT, we simulate the `low wind effect' (LWE) which is responsible for focal plane errors in low wind and good seeing conditions. We successfully estimate the LWE using both methods, and show that using both methods both independently and together yields promising results. We also show the use of single image phase diversity in the LWE estimation, and show that it too yields promising results. Finally, we simulate segmented piston effects on Keck/NIRC2 images and successfully recover the induced phase errors using single image phase diversity. We also show that on Keck we can estimate both the segmented piston errors and any Zernike modes affiliated with the non-common path.

  13. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  14. Quantifying the impact of material-model error on macroscale quantities-of-interest using multiscale a posteriori error-estimation techniques

    SciTech Connect

    Brown, Judith A.; Bishop, Joseph E.

    2016-07-20

    An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximate weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.

  15. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms

    PubMed Central

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes’ principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of ‘unellipticity’ introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  16. Exposure estimation errors to nitrogen oxides on a population scale due to daytime activity away from home.

    PubMed

    Shafran-Nathan, Rakefet; Yuval; Levy, Ilan; Broday, David M

    2017-02-15

    Accurate estimation of exposure to air pollution is necessary for assessing the impact of air pollution on the public health. Most environmental epidemiology studies assign the home address exposure to the study subjects. Here, we quantify the exposure estimation error at the population scale due to assigning it solely at the residence place. A cohort of most schoolchildren in Israel (~950,000), age 6-18, and a representative cohort of Israeli adults (~380,000), age 24-65, were used. For each subject the home and the work or school addresses were geocoded. Together, these two microenvironments account for the locations at which people are present during most of the weekdays. For each subject, we estimated ambient nitrogen oxide concentrations at the home and work or school addresses using two air quality models: a stationary land use regression model and a dynamic dispersion-like model. On average, accounting for the subjects' work or school address as well as for the daily pollutant variation reduced the estimation error of exposure to ambient NOx/NO2 by 5-10ppb, since daytime concentrations at work/school and at home can differ significantly. These results were consistent regardless which air quality model as used and even for subjects that work or study close to their home. Yet, due to their usually short commute, assigning schoolchildren exposure solely at their residential place seems to be a reasonable estimation. In contrast, since adults commute for longer distances, assigning exposure of adults only at the residential place has a lower correlation with the daily weighted exposure, resulting in larger exposure estimation errors. We show that exposure misclassification can result from not accounting for the subjects' time-location trajectories through the spatiotemporally varying pollutant concentrations field.

  17. National suicide rates a century after Durkheim: do we know enough to estimate error?

    PubMed

    Claassen, Cynthia A; Yip, Paul S; Corcoran, Paul; Bossarte, Robert M; Lawrence, Bruce A; Currier, Glenn W

    2010-06-01

    Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the most widely used population-level suicide metric today. After reviewing the unique sources of bias incurred during stages of suicide data collection and concatenation, we propose a model designed to uniformly estimate error in future studies. A standardized method of error estimation uniformly applied to mortality data could produce data capable of promoting high quality analyses of cross-national research questions.

  18. A Study on Estimating the Aiming Angle Error of Millimeter Wave Radar for Automobile

    NASA Astrophysics Data System (ADS)

    Kuroda, Hiroshi; Okai, Fumihiko; Takano, Kazuaki

    The 76GHz millimeter wave radar has been developed for automotive application such as ACC (Adaptive Cruise Control) and CWS (Collision Warning System). The radar is FSK (Frequency Shift Keying) monopulse type. The radar transmits 2 frequencies in time-duplex manner, and measures distance and relative speed of targets. The monopulse feature detects the azimuth angle of targets without a scanning mechanism. Conventionally a radar unit is aimed mechanically, although self-aiming capability, to detect and correct the aiming angle error automatically, has been required. The new algorithm, which estimates the aiming angle error and vehicle speed sensor error simultaneously, has been proposed and tested. The algorithm is based on the relationship of relative speed and azimuth angle of stationary objects, and the least squares method is used for calculation. The algorithm is applied to measured data of the millimeter wave radar, resulting in aiming angle estimation error of less than 0.6 degree.

  19. The potential of more accurate InSAR covariance matrix estimation for land cover mapping

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Yong, Bin; Tian, Xin; Malhotra, Rakesh; Hu, Rui; Li, Zhiwei; Yu, Zhongbo; Zhang, Xinxin

    2017-04-01

    Synthetic aperture radar (SAR) and Interferometric SAR (InSAR) provide both structural and electromagnetic information for the ground surface and therefore have been widely used for land cover classification. However, relatively few studies have developed analyses that investigate SAR datasets over richly textured areas where heterogeneous land covers exist and intermingle over short distances. One of main difficulties is that the shapes of the structures in a SAR image cannot be represented in detail as mixed pixels are likely to occur when conventional InSAR parameter estimation methods are used. To solve this problem and further extend previous research into remote monitoring of urban environments, we address the use of accurate InSAR covariance matrix estimation to improve the accuracy of land cover mapping. The standard and updated methods were tested using the HH-polarization TerraSAR-X dataset and compared with each other using the random forest classifier. A detailed accuracy assessment complied for six types of surfaces shows that the updated method outperforms the standard approach by around 9%, with an overall accuracy of 82.46% over areas with rich texture in Zhuhai, China. This paper demonstrates that the accuracy of land cover mapping can benefit from the 3 enhancement of the quality of the observations in addition to classifiers selection and multi-source data ingratiation reported in previous studies.

  20. Greater contrast in Martian hydrological history from more accurate estimates of paleodischarge

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. E.; Burr, D. M.

    2016-09-01

    Correlative width-discharge relationships from the Missouri River Basin are commonly used to estimate fluvial paleodischarge on Mars. However, hydraulic geometry provides alternative, and causal, width-discharge relationships derived from broader samples of channels, including those in reduced-gravity (submarine) environments. Comparison of these relationships implies that causal relationships from hydraulic geometry should yield more accurate and more precise discharge estimates. Our remote analysis of a Martian-terrestrial analog channel, combined with in situ discharge data, substantiates this implication. Applied to Martian features, these results imply that paleodischarges of interior channels of Noachian-Hesperian (~3.7 Ga) valley networks have been underestimated by a factor of several, whereas paleodischarges for smaller fluvial deposits of the Late Hesperian-Early Amazonian (~3.0 Ga) have been overestimated. Thus, these new paleodischarges significantly magnify the contrast between early and late Martian hydrologic activity. Width-discharge relationships from hydraulic geometry represent validated tools for quantifying fluvial input near candidate landing sites of upcoming missions.

  1. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  2. Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes.

    PubMed

    Creel, Scott; Spong, Goran; Sands, Jennifer L; Rotella, Jay; Zeigle, Janet; Joe, Lawrence; Murphy, Kerry M; Smith, Douglas

    2003-07-01

    Determining population sizes can be difficult, but is essential for conservation. By counting distinct microsatellite genotypes, DNA from noninvasive samples (hair, faeces) allows estimation of population size. Problems arise because genotypes from noninvasive samples are error-prone, but genotyping errors can be reduced by multiple polymerase chain reaction (PCR). For faecal genotypes from wolves in Yellowstone National Park, error rates varied substantially among samples, often above the 'worst-case threshold' suggested by simulation. Consequently, a substantial proportion of multilocus genotypes held one or more errors, despite multiple PCR. These genotyping errors created several genotypes per individual and caused overestimation (up to 5.5-fold) of population size. We propose a 'matching approach' to eliminate this overestimation bias.

  3. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  4. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended.

  5. Uncertainty quantification for radiation measurements: Bottom-up error variance estimation using calibration information.

    PubMed

    Burr, T; Croft, S; Krieger, T; Martin, K; Norman, C; Walsh, S

    2016-02-01

    One example of top-down uncertainty quantification (UQ) involves comparing two or more measurements on each of multiple items. One example of bottom-up UQ expresses a measurement result as a function of one or more input variables that have associated errors, such as a measured count rate, which individually (or collectively) can be evaluated for impact on the uncertainty in the resulting measured value. In practice, it is often found that top-down UQ exhibits larger error variances than bottom-up UQ, because some error sources are present in the fielded assay methods used in top-down UQ that are not present (or not recognized) in the assay studies used in bottom-up UQ. One would like better consistency between the two approaches in order to claim understanding of the measurement process. The purpose of this paper is to refine bottom-up uncertainty estimation by using calibration information so that if there are no unknown error sources, the refined bottom-up uncertainty estimate will agree with the top-down uncertainty estimate to within a specified tolerance. Then, in practice, if the top-down uncertainty estimate is larger than the refined bottom-up uncertainty estimate by more than the specified tolerance, there must be omitted sources of error beyond those predicted from calibration uncertainty. The paper develops a refined bottom-up uncertainty approach for four cases of simple linear calibration: (1) inverse regression with negligible error in predictors, (2) inverse regression with non-negligible error in predictors, (3) classical regression followed by inversion with negligible error in predictors, and (4) classical regression followed by inversion with non-negligible errors in predictors. Our illustrations are of general interest, but are drawn from our experience with nuclear material assay by non-destructive assay. The main example we use is gamma spectroscopy that applies the enrichment meter principle. Previous papers that ignore error in predictors

  6. The effect of sampling on estimates of lexical specificity and error rates.

    PubMed

    Rowland, Caroline F; Fletcher, Sarah L

    2006-11-01

    Studies based on naturalistic data are a core tool in the field of language acquisition research and have provided thorough descriptions of children's speech. However, these descriptions are inevitably confounded by differences in the relative frequency with which children use words and language structures. The purpose of the present work was to investigate the impact of sampling constraints on estimates of the productivity of children's utterances, and on the validity of error rates. Comparisons were made between five different sized samples of wh-question data produced by one child aged 2;8. First, we assessed whether sampling constraints undermined the claim (e.g. Tomasello, 2000) that the restricted nature of early child speech reflects a lack of adultlike grammatical knowledge. We demonstrated that small samples were equally likely to under- as overestimate lexical specificity in children's speech, and that the reliability of estimates varies according to sample size. We argued that reliable analyses require a comparison with a control sample, such as that from an adult speaker. Second, we investigated the validity of estimates of error rates based on small samples. The results showed that overall error rates underestimate the incidence of error in some rarely produced parts of the system and that analyses on small samples were likely to substantially over- or underestimate error rates in infrequently produced constructions. We concluded that caution must be used when basing arguments about the scope and nature of errors in children's early multi-word productions on analyses of samples of spontaneous speech.

  7. Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This paper presents the development of a mesh adaptation module for a multilevel Cartesian solver. While the module allows mesh refinement to be driven by a variety of different refinement parameters, a central feature in its design is the incorporation of a multilevel error estimator based upon direct estimates of the local truncation error using tau-extrapolation. This error indicator exploits the fact that in regions of uniform Cartesian mesh, the spatial operator is exactly the same on the fine and coarse grids, and local truncation error estimates can be constructed by evaluating the residual on the coarse grid of the restricted solution from the fine grid. A new strategy for adaptive h-refinement is also developed to prevent errors in smooth regions of the flow from being masked by shocks and other discontinuous features. For certain classes of error histograms, this strategy is optimal for achieving equidistribution of the refinement parameters on hierarchical meshes, and therefore ensures grid converged solutions will be achieved for appropriately chosen refinement parameters. The robustness and accuracy of the adaptation module is demonstrated using both simple model problems and complex three dimensional examples using meshes with from 10(exp 6), to 10(exp 7) cells.

  8. Borrowing information across genes and experiments for improved error variance estimation in microarray data analysis.

    PubMed

    Ji, Tieming; Liu, Peng; Nettleton, Dan

    2012-01-01

    Statistical inference for microarray experiments usually involves the estimation of error variance for each gene. Because the sample size available for each gene is often low, the usual unbiased estimator of the error variance can be unreliable. Shrinkage methods, including empirical Bayes approaches that borrow information across genes to produce more stable estimates, have been developed in recent years. Because the same microarray platform is often used for at least several experiments to study similar biological systems, there is an opportunity to improve variance estimation further by borrowing information not only across genes but also across experiments. We propose a lognormal model for error variances that involves random gene effects and random experiment effects. Based on the model, we develop an empirical Bayes estimator of the error variance for each combination of gene and experiment and call this estimator BAGE because information is Borrowed Across Genes and Experiments. A permutation strategy is used to make inference about the differential expression status of each gene. Simulation studies with data generated from different probability models and real microarray data show that our method outperforms existing approaches.

  9. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have about 7am/7pm orbital geometry) and afternoon satellites (NOAA 7, 9, 11 and 14 that have about 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error. We find we can decrease the global temperature trend by about 0.07 K/decade. In addition there are systematic time dependent errors present in the data that are introduced by the drift in the satellite orbital geometry arises from the diurnal cycle in temperature which is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observations made in the MSU Ch 1 (50.3 GHz) support this approach. The error is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the errors on the global temperature trend. In one path the

  10. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have approximately 7am/7pm orbital geometry) and. afternoon satellites (NOAA 7, 9, 11 and 14 that have approximately 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error eo. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error eo. We find eo can decrease the global temperature trend by approximately 0.07 K/decade. In addition there are systematic time dependent errors ed and ec present in the data that are introduced by the drift in the satellite orbital geometry. ed arises from the diurnal cycle in temperature and ec is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error ed can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observation made in the MSU Ch 1 (50.3 GHz) support this approach. The error ec is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the

  11. Computation of the factorized error covariance of the difference between correlated estimators

    NASA Technical Reports Server (NTRS)

    Wolff, Peter J.; Mohan, Srinivas N.; Stienon, Francis M.; Bierman, Gerald J.

    1990-01-01

    A state estimation problem where some of the measurements may be common to two or more data sets is considered. Two approaches for computing the error covariance of the difference between filtered estimates (for each data set) are discussed. The first algorithm is based on postprocessing of the Kalman gain profiles of two correlated estimators. It uses UD factors of the covariance of the relative error. The second algorithm uses a square root information filter applied to relative error analysis. In the absence of process noise, the square root information filter is computationally more efficient and more flexible than the Kalman gain (covariance update) method. Both the algorithms (covariance and information matrix based) are applied to a Venus orbiter simulation, and their performances are compared.

  12. Use of an OSSE to Evaluate Background Error Covariances Estimated by the 'NMC Method'

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.; Prive, Nikki C.; Gu, Wei

    2014-01-01

    The NMC method has proven utility for prescribing approximate background-error covariances required by variational data assimilation systems. Here, untunedNMCmethod estimates are compared with explicitly determined error covariances produced within an OSSE context by exploiting availability of the true simulated states. Such a comparison provides insights into what kind of rescaling is required to render the NMC method estimates usable. It is shown that rescaling of variances and directional correlation lengths depends greatly on both pressure and latitude. In particular, some scaling coefficients appropriate in the Tropics are the reciprocal of those in the Extratropics. Also, the degree of dynamic balance is grossly overestimated by the NMC method. These results agree with previous examinations of the NMC method which used ensembles as an alternative for estimating background-error statistics.

  13. Biases in atmospheric CO2 estimates from correlated meteorology modeling errors

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Hayek, M. N.; Andrews, A. E.; Fung, I.; Liu, J.

    2015-03-01

    Estimates of CO2 fluxes that are based on atmospheric measurements rely upon a meteorology model to simulate atmospheric transport. These models provide a quantitative link between the surface fluxes and CO2 measurements taken downwind. Errors in the meteorology can therefore cause errors in the estimated CO2 fluxes. Meteorology errors that correlate or covary across time and/or space are particularly worrisome; they can cause biases in modeled atmospheric CO2 that are easily confused with the CO2 signal from surface fluxes, and they are difficult to characterize. In this paper, we leverage an ensemble of global meteorology model outputs combined with a data assimilation system to estimate these biases in modeled atmospheric CO2. In one case study, we estimate the magnitude of month-long CO2 biases relative to CO2 boundary layer enhancements and quantify how that answer changes if we either include or remove error correlations or covariances. In a second case study, we investigate which meteorological conditions are associated with these CO2 biases. In the first case study, we estimate uncertainties of 0.5-7 ppm in monthly-averaged CO2 concentrations, depending upon location (95% confidence interval). These uncertainties correspond to 13-150% of the mean afternoon CO2 boundary layer enhancement at individual observation sites. When we remove error covariances, however, this range drops to 2-22%. Top-down studies that ignore these covariances could therefore underestimate the uncertainties and/or propagate transport errors into the flux estimate. In the second case study, we find that these month-long errors in atmospheric transport are anti-correlated with temperature and planetary boundary layer (PBL) height over terrestrial regions. In marine environments, by contrast, these errors are more strongly associated with weak zonal winds. Many errors, however, are not correlated with a single meteorological parameter, suggesting that a single meteorological proxy is

  14. Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error.

    PubMed

    Stenroos, Matti; Hauk, Olaf

    2013-11-01

    The conductivity profile of the head has a major effect on EEG signals, but unfortunately the conductivity for the most important compartment, skull, is only poorly known. In dipole modeling studies, errors in modeled skull conductivity have been considered to have a detrimental effect on EEG source estimation. However, as dipole models are very restrictive, those results cannot be generalized to other source estimation methods. In this work, we studied the sensitivity of EEG and combined MEG+EEG source estimation to errors in skull conductivity using a distributed source model and minimum-norm (MN) estimation. We used a MEG/EEG modeling set-up that reflected state-of-the-art practices of experimental research. Cortical surfaces were segmented and realistically-shaped three-layer anatomical head models were constructed, and forward models were built with Galerkin boundary element method while varying the skull conductivity. Lead-field topographies and MN spatial filter vectors were compared across conductivities, and the localization and spatial spread of the MN estimators were assessed using intuitive resolution metrics. The results showed that the MN estimator is robust against errors in skull conductivity: the conductivity had a moderate effect on amplitudes of lead fields and spatial filter vectors, but the effect on corresponding morphologies was small. The localization performance of the EEG or combined MEG+EEG MN estimator was only minimally affected by the conductivity error, while the spread of the estimate varied slightly. Thus, the uncertainty with respect to skull conductivity should not prevent researchers from applying minimum norm estimation to EEG or combined MEG+EEG data. Comparing our results to those obtained earlier with dipole models shows that general judgment on the performance of an imaging modality should not be based on analysis with one source estimation method only.

  15. Estimation and Propagation of Errors in Ice Sheet Bed Elevation Measurements

    NASA Astrophysics Data System (ADS)

    Johnson, J. V.; Brinkerhoff, D.; Nowicki, S.; Plummer, J.; Sack, K.

    2012-12-01

    This work is presented in two parts. In the first, we use a numerical inversion technique to determine a "mass conserving bed" (MCB) and estimate errors in interpolation of the bed elevation. The MCB inversion technique adjusts the bed elevation to assure that the mass flux determined from surface velocity measurements does not violate conservation. Cross validation of the MCB technique is done using a subset of available flight lines. The unused flight lines provide data to compare to, quantifying the errors produced by MCB and other interpolation methods. MCB errors are found to be similar to those produced with more conventional interpolation schemes, such as kriging. However, MCB interpolation is consistent with the physics that govern ice sheet models. In the second part, a numerical model of glacial ice is used to propagate errors in bed elevation to the kinematic surface boundary condition. Initially, a control run is completed to establish the surface velocity produced by the model. The control surface velocity is subsequently used as a target for data inversions performed on perturbed versions of the control bed. The perturbation of the bed represents the magnitude of error in bed measurement. Through the inversion for traction, errors in bed measurement are propagated forward to investigate errors in the evolution of the free surface. Our primary conclusion relates the magnitude of errors in the surface evolution to errors in the bed. By linking free surface errors back to the errors in bed interpolation found in the first part, we can suggest an optimal spacing of the radar flight lines used in bed acquisition.

  16. Error estimate of Taylor's frozen-in flow hypothesis in the spectral domain

    NASA Astrophysics Data System (ADS)

    Narita, Yasuhito

    2017-03-01

    The quality of Taylor's frozen-in flow hypothesis can be measured by estimating the amount of the fluctuation energy mapped from the streamwise wavenumbers onto the Doppler-shifted frequencies in the spectral domain. For a random sweeping case with a Gaussian variation of the large-scale flow, the mapping quality is expressed by the error function which depends on the mean flow speed, the sweeping velocity, the frequency bin, and the frequency of interest. Both hydrodynamic and magnetohydrodynamic treatments are presented on the error estimate of Taylor's hypothesis with examples from the solar wind measurements.

  17. ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆

    PubMed Central

    Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk

    2014-01-01

    In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725

  18. Assumption-free estimation of the genetic contribution to refractive error across childhood

    PubMed Central

    St Pourcain, Beate; McMahon, George; Timpson, Nicholas J.; Evans, David M.; Williams, Cathy

    2015-01-01

    Purpose Studies in relatives have generally yielded high heritability estimates for refractive error: twins 75–90%, families 15–70%. However, because related individuals often share a common environment, these estimates are inflated (via misallocation of unique/common environment variance). We calculated a lower-bound heritability estimate for refractive error free from such bias. Methods Between the ages 7 and 15 years, participants in the Avon Longitudinal Study of Parents and Children (ALSPAC) underwent non-cycloplegic autorefraction at regular research clinics. At each age, an estimate of the variance in refractive error explained by single nucleotide polymorphism (SNP) genetic variants was calculated using genome-wide complex trait analysis (GCTA) using high-density genome-wide SNP genotype information (minimum N at each age=3,404). Results The variance in refractive error explained by the SNPs (“SNP heritability”) was stable over childhood: Across age 7–15 years, SNP heritability averaged 0.28 (SE=0.08, p<0.001). The genetic correlation for refractive error between visits varied from 0.77 to 1.00 (all p<0.001) demonstrating that a common set of SNPs was responsible for the genetic contribution to refractive error across this period of childhood. Simulations suggested lack of cycloplegia during autorefraction led to a small underestimation of SNP heritability (adjusted SNP heritability=0.35; SE=0.09). To put these results in context, the variance in refractive error explained (or predicted) by the time participants spent outdoors was <0.005 and by the time spent reading was <0.01, based on a parental questionnaire completed when the child was aged 8–9 years old. Conclusions Genetic variation captured by common SNPs explained approximately 35% of the variation in refractive error between unrelated subjects. This value sets an upper limit for predicting refractive error using existing SNP genotyping arrays, although higher-density genotyping in

  19. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  20. Certainty in Heisenberg's uncertainty principle: Revisiting definitions for estimation errors and disturbance

    NASA Astrophysics Data System (ADS)

    Dressel, Justin; Nori, Franco

    2014-02-01

    We revisit the definitions of error and disturbance recently used in error-disturbance inequalities derived by Ozawa and others by expressing them in the reduced system space. The interpretation of the definitions as mean-squared deviations relies on an implicit assumption that is generally incompatible with the Bell-Kochen-Specker-Spekkens contextuality theorems, and which results in averaging the deviations over a non-positive-semidefinite joint quasiprobability distribution. For unbiased measurements, the error admits a concrete interpretation as the dispersion in the estimation of the mean induced by the measurement ambiguity. We demonstrate how to directly measure not only this dispersion but also every observable moment with the same experimental data, and thus demonstrate that perfect distributional estimations can have nonzero error according to this measure. We conclude that the inequalities using these definitions do not capture the spirit of Heisenberg's eponymous inequality, but do indicate a qualitatively different relationship between dispersion and disturbance that is appropriate for ensembles being probed by all outcomes of an apparatus. To reconnect with the discussion of Heisenberg, we suggest alternative definitions of error and disturbance that are intrinsic to a single apparatus outcome. These definitions naturally involve the retrodictive and interdictive states for that outcome, and produce complementarity and error-disturbance inequalities that have the same form as the traditional Heisenberg relation.

  1. Estimation of the minimum mRNA splicing error rate in vertebrates.

    PubMed

    Skandalis, A

    2016-01-01

    The majority of protein coding genes in vertebrates contain several introns that are removed by the mRNA splicing machinery. Errors during splicing can generate aberrant transcripts and degrade the transmission of genetic information thus contributing to genomic instability and disease. However, estimating the error rate of constitutive splicing is complicated by the process of alternative splicing which can generate multiple alternative transcripts per locus and is particularly active in humans. In order to estimate the error frequency of constitutive mRNA splicing and avoid bias by alternative splicing we have characterized the frequency of splice variants at three loci, HPRT, POLB, and TRPV1 in multiple tissues of six vertebrate species. Our analysis revealed that the frequency of splice variants varied widely among loci, tissues, and species. However, the lowest observed frequency is quite constant among loci and approximately 0.1% aberrant transcripts per intron. Arguably this reflects the "irreducible" error rate of splicing, which consists primarily of the combination of replication errors by RNA polymerase II in splice consensus sequences and spliceosome errors in correctly pairing exons.

  2. Accurate optical flow field estimation using mechanical properties of soft tissues

    NASA Astrophysics Data System (ADS)

    Mehrabian, Hatef; Karimi, Hirad; Samani, Abbas

    2009-02-01

    A novel optical flow based technique is presented in this paper to measure the nodal displacements of soft tissue undergoing large deformations. In hyperelasticity imaging, soft tissues maybe compressed extensively [1] and the deformation may exceed the number of pixels ordinary optical flow approaches can detect. Furthermore in most biomedical applications there is a large amount of image information that represent the geometry of the tissue and the number of tissue types present in the organ of interest. Such information is often ignored in applications such as image registration. In this work we incorporate the information pertaining to soft tissue mechanical behavior (Neo-Hookean hyperelastic model is used here) in addition to the tissue geometry before compression into a hierarchical Horn-Schunck optical flow method to overcome this large deformation detection weakness. Applying the proposed method to a phantom using several compression levels proved that it yields reasonably accurate displacement fields. Estimated displacement results of this phantom study obtained for displacement fields of 85 pixels/frame and 127 pixels/frame are reported and discussed in this paper.

  3. Practical error estimation in zoom-in and truncated tomography reconstructions

    SciTech Connect

    Xiao Xianghui; De Carlo, Francesco; Stock, Stuart

    2007-06-15

    Synchrotron-based microtomography provides high resolution, but the resolution in large samples is often limited by the detector field of view and the pixel size. For some samples, only a small region of interest is relevant and local tomography is a powerful approach for retaining high resolution. Two methods are truncated tomography and zoom-in tomography. In this article we use existing theoretical results to estimate the error present in truncated and zoom-in tomographic reconstructions. These errors agree with the errors calculated from exact tomographic reconstructions. We argue in a heuristic manner why zoom-in tomography is superior to the truncated tomography in terms of the reconstruction error. However, the theoretical formula is not usable in practice because it requires the complete high-resolution reconstruction to be known. To solve this problem we proposed a practical method for estimating the error in zoom-in and truncated tomographies. The results using this estimation method are in very good agreement with our experimental results.

  4. Practical error estimation in zoom-in and truncated tomography reconstructions.

    SciTech Connect

    Xiao, X.; De Carlo, F.; Stock, S.; X-Ray Science Division

    2007-06-01

    Synchrotron-based microtomography provides high resolution, but the resolution in large samples is often limited by the detector field of view and the pixel size. For some samples, only a small region of interest is relevant and local tomography is a powerful approach for retaining high resolution. Two methods are truncated tomography and zoom-in tomography. In this article we use existing theoretical results to estimate the error present in truncated and zoom-in tomographic reconstructions. These errors agree with the errors calculated from exact tomographic reconstructions. We argue in a heuristic manner why zoom-in tomography is superior to the truncated tomography in terms of the reconstruction error. However, the theoretical formula is not usable in practice because it requires the complete high-resolution reconstruction to be known. To solve this problem we proposed a practical method for estimating the error in zoom-in and truncated tomographies. The results using this estimation method are in very good agreement with our experimental results.

  5. On Time/Space Aggregation of Fine-Scale Error Estimates (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.

    2013-12-01

    Estimating errors inherent in fine time/space-scale satellite precipitation data sets is still an on-going problem and a key area of active research. Complicating features of these data sets include the intrinsic intermittency of the precipitation in space and time and the resulting highly skewed distribution of precipitation rates. Additional issues arise from the subsampling errors that satellites introduce, the errors due to retrieval algorithms, and the correlated error that retrieval and merger algorithms sometimes introduce. Several interesting approaches have been developed recently that appear to make progress on these long-standing issues. At the same time, the monthly averages over 2.5°x2.5° grid boxes in the Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) precipitation data set follow a very simple sampling-based error model (Huffman 1997) with coefficients that are set using coincident surface and GPCP SG data. This presentation outlines the unsolved problem of how to aggregate the fine-scale errors (discussed above) to an arbitrary time/space averaging volume for practical use in applications, reducing in the limit to simple Gaussian expressions at the monthly 2.5°x2.5° scale. Scatter diagrams with different time/space averaging show that the relationship between the satellite and validation data improves due to the reduction in random error. One of the key, and highly non-linear, issues is that fine-scale estimates tend to have large numbers of cases with points near the axes on the scatter diagram (one of the values is exactly or nearly zero, while the other value is higher). Averaging 'pulls' the points away from the axes and towards the 1:1 line, which usually happens for higher precipitation rates before lower rates. Given this qualitative observation of how aggregation affects error, we observe that existing aggregation rules, such as the Steiner et al. (2003) power law, only depend on the aggregated precipitation rate

  6. Comparison of Errors of 35 Weight Estimation Formulae in a Standard Collective

    PubMed Central

    Hoopmann, M.; Kagan, K. O.; Sauter, A.; Abele, H.; Wagner, P.

    2016-01-01

    Issue: The estimation of foetal weight is an integral part of prenatal care and obstetric routine. In spite of its known susceptibility to errors in cases of underweight or overweight babies, important obstetric decisions depend on it. In the present contribution we have examined the accuracy and error distribution of 35 weight estimation formulae within the normal weight range of 2500–4000 g. The aim of the study was to identify the weight estimation formulae with the best possible correspondence to the requirements of clinical routine. Materials and Methods: 35 clinically established weight estimation formulae were analysed in 3416 foetuses with weights between 2500 and 4000 g. For this we determined and compared the mean percentage error (MPE), the mean absolute percentage error (MAPE), and the proportions of estimates within the error ranges of 5, 10, 20 and 30 %. In addition, separate regression lines were calculated for the relationship between estimated and actual birth weights for the weight range 2500–4000 g. The formulae were thus examined for possible inhomogeneities. Results: The lowest MPE were achieved with the Hadlock III and V formulae (0.8 %, STW 9.2 % or, respectively, −0.8 %, STW 10.0 %). The lowest absolute error (6.6 %) as well as the most favourable frequency distribution in cases below 5 % and 10 % error (43.9 and 77.5) were seen for the Halaska formula. In graphic representations of the regression lines, 16 formulae revealed a weight overestimation in the lower weight range and an underestimation in the upper range. 14 formulae gave underestimations and merely 5 gave overestimations over the entire tested weight range. Conclusion: The majority of the tested formulae gave underestimations of the actual birth weight over the entire weight range or at least in the upper weight range. This result supports the current strategy of a two-stage weight estimation in which a formula is first chosen after a pre-estimation of

  7. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. C.; Alden, C.; White, J. W. C.

    2014-10-01

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of C in the atmosphere, ocean, and land; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate error and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2 σ error of the atmospheric growth rate has decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s, leading to a ~20% reduction in the over-all uncertainty of net global C uptake by the biosphere. While fossil fuel emissions have increased by a factor of 4 over the last 5 decades, 2 σ errors in fossil fuel emissions due to national reporting errors and differences in energy reporting practices have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s. At the same time land use emissions have declined slightly over the last 5 decades, but their relative errors remain high. Notably, errors associated with fossil fuel emissions have come to dominate uncertainty in the global C budget and are now comparable to the total emissions from land use, thus efforts to reduce errors in fossil fuel emissions are necessary. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that C uptake has increased and 97% confident that C uptake by the terrestrial biosphere has increased over the last 5 decades. Although the persistence of future C sinks remains unknown and some ecosystem services may be compromised by this continued C uptake (e.g. ocean acidification), it is clear that arguably the greatest ecosystem service currently provided by the biosphere is the

  8. Estimation of Smoothing Error in SBUV Profile and Total Ozone Retrieval

    NASA Technical Reports Server (NTRS)

    Kramarova, N. A.; Bhartia, P. K.; Frith, S. M.; Fisher, B. L.; McPeters, R. D.; Taylor, S.; Labow, G. J.

    2011-01-01

    Data from the Nimbus-4, Nimbus-7 Solar Backscatter Ultra Violet (SBUV) and seven of the NOAA series of SBUV/2 instruments spanning 41 years are being reprocessed using V8.6 algorithm. The data are scheduled to be released by the end of August 2011. An important focus of the new algorithm is to estimate various sources of errors in the SBUV profiles and total ozone retrievals. We discuss here the smoothing errors that describe the components of the profile variability that the SBUV observing system can not measure. The SBUV(/2) instruments have a vertical resolution of 5 km in the middle stratosphere, decreasing to 8 to 10 km below the ozone peak and above 0.5 hPa. To estimate the smoothing effect of the SBUV algorithm, the actual statistics of the fine vertical structure of ozone profiles must be known. The covariance matrix of the ensemble of measured ozone profiles with the high vertical resolution would be a formal representation of the actual ozone variability. We merged the MLS (version 3) and sonde ozone profiles to calculate the covariance matrix, which in general case, for single profile retrieval, might be a function of the latitude and month. Using the averaging kernels of the SBUV(/2) measurements and calculated total covariance matrix one can estimate the smoothing errors for the SBUV ozone profiles. A method to estimate the smoothing effect of the SBUV algorithm is described and the covariance matrixes and averaging kernels are provided along with the SBUV(/2) ozone profiles. The magnitude of the smoothing error varies with altitude, latitude, season and solar zenith angle. The analysis of the smoothing errors, based on the SBUV(/2) monthly zonal mean time series, shows that the largest smoothing errors were detected in the troposphere and might be as large as 15-20% and rapidly decrease with the altitude. In the stratosphere above 40 hPa the smoothing errors are less than 5% and between 10 and 1 hPa the smoothing errors are on the order of 1%. We

  9. Estimation of smoothing error in SBUV profile and total ozone retrieval

    NASA Astrophysics Data System (ADS)

    Kramarova, N. A.; Bhartia, P. K.; Frith, S. M.; Fisher, B. L.; McPeters, R. D.; Taylor, S.; Labow, G. J.

    2011-12-01

    Data from the Nimbus-4, Nimbus-7 Solar Backscatter Ultra Violet (SBUV) and seven of the NOAA series of SBUV/2 instruments spanning 41 years are being reprocessed using V8.6 algorithm. The data are scheduled to be released by the end of August 2011. An important focus of the new algorithm is to estimate various sources of errors in the SBUV profiles and total ozone retrievals. We discuss here the smoothing errors that describe the components of the profile variability that the SBUV observing system can not measure. The SBUV(/2) instruments have a vertical resolution of 5 km in the middle stratosphere, decreasing to 8 to 10 km below the ozone peak and above 0.5 hPa. To estimate the smoothing effect of the SBUV algorithm, the actual statistics of the fine vertical structure of ozone profiles must be known. The covariance matrix of the ensemble of measured ozone profiles with the high vertical resolution would be a formal representation of the actual ozone variability. We merged the MLS (version 3) and sonde ozone profiles to calculate the covariance matrix, which in general case, for single profile retrieval, might be a function of the latitude and month. Using the averaging kernels of the SBUV(/2) measurements and calculated total covariance matrix one can estimate the smoothing errors for the SBUV ozone profiles. A method to estimate the smoothing effect of the SBUV algorithm is described and the covariance matrixes and averaging kernels are provided along with the SBUV(/2) ozone profiles. The magnitude of the smoothing error varies with altitude, latitude, season and solar zenith angle. The analysis of the smoothing errors, based on the SBUV(/2) monthly zonal mean time series, shows that the largest smoothing errors were detected in the troposphere and might be as large as 15-20% and rapidly decrease with the altitude. In the stratosphere above 40 hPa the smoothing errors are less than 5% and between 10 and 1 hPa the smoothing errors are on the order of 1%. We

  10. Dynamic modelling and estimation of the error due to asynchronism in a redundant asynchronous multiprocessor system

    NASA Technical Reports Server (NTRS)

    Huynh, Loc C.; Duval, R. W.

    1986-01-01

    The use of Redundant Asynchronous Multiprocessor System to achieve ultrareliable Fault Tolerant Control Systems shows great promise. The development has been hampered by the inability to determine whether differences in the outputs of redundant CPU's are due to failures or to accrued error built up by slight differences in CPU clock intervals. This study derives an analytical dynamic model of the difference between redundant CPU's due to differences in their clock intervals and uses this model with on-line parameter identification to idenitify the differences in the clock intervals. The ability of this methodology to accurately track errors due to asynchronisity generate an error signal with the effect of asynchronisity removed and this signal may be used to detect and isolate actual system failures.

  11. Error estimates of triangular finite elements under a weak angle condition

    NASA Astrophysics Data System (ADS)

    Mao, Shipeng; Shi, Zhongci

    2009-08-01

    In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin,1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma.

  12. How accurately can we estimate energetic costs in a marine top predator, the king penguin?

    PubMed

    Halsey, Lewis G; Fahlman, Andreas; Handrich, Yves; Schmidt, Alexander; Woakes, Anthony J; Butler, Patrick J

    2007-01-01

    King penguins (Aptenodytes patagonicus) are one of the greatest consumers of marine resources. However, while their influence on the marine ecosystem is likely to be significant, only an accurate knowledge of their energy demands will indicate their true food requirements. Energy consumption has been estimated for many marine species using the heart rate-rate of oxygen consumption (f(H) - V(O2)) technique, and the technique has been applied successfully to answer eco-physiological questions. However, previous studies on the energetics of king penguins, based on developing or applying this technique, have raised a number of issues about the degree of validity of the technique for this species. These include the predictive validity of the present f(H) - V(O2) equations across different seasons and individuals and during different modes of locomotion. In many cases, these issues also apply to other species for which the f(H) - V(O2) technique has been applied. In the present study, the accuracy of three prediction equations for king penguins was investigated based on validity studies and on estimates of V(O2) from published, field f(H) data. The major conclusions from the present study are: (1) in contrast to that for walking, the f(H) - V(O2) relationship for swimming king penguins is not affected by body mass; (2) prediction equation (1), log(V(O2) = -0.279 + 1.24log(f(H) + 0.0237t - 0.0157log(f(H)t, derived in a previous study, is the most suitable equation presently available for estimating V(O2) in king penguins for all locomotory and nutritional states. A number of possible problems associated with producing an f(H) - V(O2) relationship are discussed in the present study. Finally, a statistical method to include easy-to-measure morphometric characteristics, which may improve the accuracy of f(H) - V(O2) prediction equations, is explained.

  13. Estimation of errors in diffraction data measured by CCD area detectors

    PubMed Central

    Waterman, David; Evans, Gwyndaf

    2010-01-01

    Current methods for diffraction-spot integration from CCD area detectors typically underestimate the errors in the measured intensities. In an attempt to understand fully and identify correctly the sources of all contributions to these errors, a simulation of a CCD-based area-detector module has been produced to address the problem of correct handling of data from such detectors. Using this simulation, it has been shown how, and by how much, measurement errors are underestimated. A model of the detector statistics is presented and an adapted summation integration routine that takes this into account is shown to result in more realistic error estimates. In addition, the effect of correlations between pixels on two-dimensional profile fitting is demonstrated and the problems surrounding improvements to profile-fitting algorithms are discussed. In practice, this requires knowledge of the expected correlation between pixels in the image. PMID:27006649

  14. Nuclear power plant fault-diagnosis using neural networks with error estimation

    SciTech Connect

    Kim, K.; Bartlett, E.B.

    1994-12-31

    The assurance of the diagnosis obtained from a nuclear power plant (NPP) fault-diagnostic advisor based on artificial neural networks (ANNs) is essential for the practical implementation of the advisor to fault detection and identification. The objectives of this study are to develop an error estimation technique (EET) for diagnosis validation and apply it to the NPP fault-diagnostic advisor. Diagnosis validation is realized by estimating error bounds on the advisor`s diagnoses. The 22 transients obtained from the Duane Arnold Energy Center (DAEC) training simulator are used for this research. The results show that the NPP fault-diagnostic advisor are effective at producing proper diagnoses on which errors are assessed for validation and verification purposes.

  15. Geodesy by radio interferometry - Effects of atmospheric modeling errors on estimates of baseline length

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.

    1985-01-01

    Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.

  16. Estimate error of frequency-dependent Q introduced by linear regression and its nonlinear implementation

    NASA Astrophysics Data System (ADS)

    Li, Guofa; Huang, Wei; Zheng, Hao; Zhang, Baoqing

    2016-02-01

    The spectral ratio method (SRM) is widely used to estimate quality factor Q via the linear regression of seismic attenuation under the assumption of a constant Q. However, the estimate error will be introduced when this assumption is violated. For the frequency-dependent Q described by a power-law function, we derived the analytical expression of estimate error as a function of the power-law exponent γ and the ratio of the bandwidth to the central frequency σ . Based on the theoretical analysis, we found that the estimate errors are mainly dominated by the exponent γ , and less affected by the ratio σ . This phenomenon implies that the accuracy of the Q estimate can hardly be improved by adjusting the width and range of the frequency band. Hence, we proposed a two-parameter regression method to estimate the frequency-dependent Q from the nonlinear seismic attenuation. The proposed method was tested using the direct waves acquired by a near-surface cross-hole survey, and its reliability was evaluated in comparison with the result of SRM.

  17. Estimation of chromatic errors from broadband images for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  18. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  19. Standard Error Estimation of 3PL IRT True Score Equating with an MCMC Method

    ERIC Educational Resources Information Center

    Liu, Yuming; Schulz, E. Matthew; Yu, Lei

    2008-01-01

    A Markov chain Monte Carlo (MCMC) method and a bootstrap method were compared in the estimation of standard errors of item response theory (IRT) true score equating. Three test form relationships were examined: parallel, tau-equivalent, and congeneric. Data were simulated based on Reading Comprehension and Vocabulary tests of the Iowa Tests of…

  20. Mapping the Origins of Time: Scalar Errors in Infant Time Estimation

    ERIC Educational Resources Information Center

    Addyman, Caspar; Rocha, Sinead; Mareschal, Denis

    2014-01-01

    Time is central to any understanding of the world. In adults, estimation errors grow linearly with the length of the interval, much faster than would be expected of a clock-like mechanism. Here we present the first direct demonstration that this is also true in human infants. Using an eye-tracking paradigm, we examined 4-, 6-, 10-, and…

  1. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  2. Error estimates for approximate dynamic systems. [linear and nonlinear control systems of different dimensions

    NASA Technical Reports Server (NTRS)

    Gunderson, R. W.; George, J. H.

    1974-01-01

    Two approaches are investigated for obtaining estimates on the error between approximate and exact solutions of dynamic systems. The first method is primarily useful if the system is nonlinear and of low dimension. The second requires construction of a system of v-functions but is useful for higher dimensional systems, either linear or nonlinear.

  3. A Generalizability Theory Approach to Standard Error Estimates for Bookmark Standard Settings

    ERIC Educational Resources Information Center

    Lee, Guemin; Lewis, Daniel M.

    2008-01-01

    The bookmark standard-setting procedure is an item response theory-based method that is widely implemented in state testing programs. This study estimates standard errors for cut scores resulting from bookmark standard settings under a generalizability theory model and investigates the effects of different universes of generalization and error…

  4. Discretization error estimation and exact solution generation using the method of nearby problems.

    SciTech Connect

    Sinclair, Andrew J.; Raju, Anil; Kurzen, Matthew J.; Roy, Christopher John; Phillips, Tyrone S.

    2011-10-01

    The Method of Nearby Problems (MNP), a form of defect correction, is examined as a method for generating exact solutions to partial differential equations and as a discretization error estimator. For generating exact solutions, four-dimensional spline fitting procedures were developed and implemented into a MATLAB code for generating spline fits on structured domains with arbitrary levels of continuity between spline zones. For discretization error estimation, MNP/defect correction only requires a single additional numerical solution on the same grid (as compared to Richardson extrapolation which requires additional numerical solutions on systematically-refined grids). When used for error estimation, it was found that continuity between spline zones was not required. A number of cases were examined including 1D and 2D Burgers equation, the 2D compressible Euler equations, and the 2D incompressible Navier-Stokes equations. The discretization error estimation results compared favorably to Richardson extrapolation and had the advantage of only requiring a single grid to be generated.

  5. Estimating the annotation error rate of curated GO database sequence annotations

    PubMed Central

    Jones, Craig E; Brown, Alfred L; Baumann, Ute

    2007-01-01

    Background Annotations that describe the function of sequences are enormously important to researchers during laboratory investigations and when making computational inferences. However, there has been little investigation into the data quality of sequence function annotations. Here we have developed a new method of estimating the error rate of curated sequence annotations, and applied this to the Gene Ontology (GO) sequence database (GOSeqLite). This method involved artificially adding errors to sequence annotations at known rates, and used regression to model the impact on the precision of annotations based on BLAST matched sequences. Results We estimated the error rate of curated GO sequence annotations in the GOSeqLite database (March 2006) at between 28% and 30%. Annotations made without use of sequence similarity based methods (non-ISS) had an estimated error rate of between 13% and 18%. Annotations made with the use of sequence similarity methodology (ISS) had an estimated error rate of 49%. Conclusion While the overall error rate is reasonably low, it would be prudent to treat all ISS annotations with caution. Electronic annotators that use ISS annotations as the basis of predictions are likely to have higher false prediction rates, and for this reason designers of these systems should consider avoiding ISS annotations where possible. Electronic annotators that use ISS annotations to make predictions should be viewed sceptically. We recommend that curators thoroughly review ISS annotations before accepting them as valid. Overall, users of curated sequence annotations from the GO database should feel assured that they are using a comparatively high quality source of information. PMID:17519041

  6. Block-Regularized m × 2 Cross-Validated Estimator of the Generalization Error.

    PubMed

    Wang, Ruibo; Wang, Yu; Li, Jihong; Yang, Xingli; Yang, Jing

    2017-02-01

    A cross-validation method based on [Formula: see text] replications of two-fold cross validation is called an [Formula: see text] cross validation. An [Formula: see text] cross validation is used in estimating the generalization error and comparing of algorithms' performance in machine learning. However, the variance of the estimator of the generalization error in [Formula: see text] cross validation is easily affected by random partitions. Poor data partitioning may cause a large fluctuation in the number of overlapping samples between any two training (test) sets in [Formula: see text] cross validation. This fluctuation results in a large variance in the [Formula: see text] cross-validated estimator. The influence of the random partitions on variance becomes serious as [Formula: see text] increases. Thus, in this study, the partitions with a restricted number of overlapping samples between any two training (test) sets are defined as a block-regularized partition set. The corresponding cross validation is called block-regularized [Formula: see text] cross validation ([Formula: see text] BCV). It can effectively reduce the influence of random partitions. We prove that the variance of the [Formula: see text] BCV estimator of the generalization error is smaller than the variance of [Formula: see text] cross-validated estimator and reaches the minimum in a special situation. An analytical expression of the variance can also be derived in this special situation. This conclusion is validated through simulation experiments. Furthermore, a practical construction method of [Formula: see text] BCV by a two-level orthogonal array is provided. Finally, a conservative estimator is proposed for the variance of estimator of the generalization error.

  7. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    SciTech Connect

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.

    2015-04-30

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr₋1 in the 1960s to 0.3 Pg C yr₋1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr₋1 in the 1960s to almost 1.0 Pg C yr₋1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half

  8. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    DOE PAGES

    Ballantyne, A. P.; Andres, R.; Houghton, R.; ...

    2015-04-30

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we concludemore » that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr₋1 in the 1960s to 0.3 Pg C yr₋1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr₋1 in the 1960s to almost 1.0 Pg C yr₋1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the

  9. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.

    2015-04-01

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere

  10. Enabling Predictive Simulation and UQ of Complex Multiphysics PDE Systems by the Development of Goal-Oriented Variational Sensitivity Analysis and A Posteriori Error Estimation Methods

    SciTech Connect

    Ginting, Victor

    2014-03-15

    it was demonstrated that a posteriori analyses in general and in particular one that uses adjoint methods can accurately and efficiently compute numerical error estimates and sensitivity for critical Quantities of Interest (QoIs) that depend on a large number of parameters. Activities include: analysis and implementation of several time integration techniques for solving system of ODEs as typically obtained from spatial discretization of PDE systems; multirate integration methods for ordinary differential equations; formulation and analysis of an iterative multi-discretization Galerkin finite element method for multi-scale reaction-diffusion equations; investigation of an inexpensive postprocessing technique to estimate the error of finite element solution of the second-order quasi-linear elliptic problems measured in some global metrics; investigation of an application of the residual-based a posteriori error estimates to symmetric interior penalty discontinuous Galerkin method for solving a class of second order quasi-linear elliptic problems; a posteriori analysis of explicit time integrations for system of linear ordinary differential equations; derivation of accurate a posteriori goal oriented error estimates for a user-defined quantity of interest for two classes of first and second order IMEX schemes for advection-diffusion-reaction problems; Postprocessing finite element solution; and A Bayesian Framework for Uncertain Quantification of Porous Media Flows.

  11. Distributed bounded-error state estimation based on practical robust positive invariance

    NASA Astrophysics Data System (ADS)

    Riverso, Stefano; Rubini, Daria; Ferrari-Trecate, Giancarlo

    2015-11-01

    We propose a state estimator for linear discrete-time systems composed by coupled subsystems affected by bounded disturbances. The architecture is distributed in the sense that each subsystem is equipped with a local state estimator that exploits suitable pieces of information from parent subsystems. Furthermore, each local estimator reconstructs the state of the corresponding subsystem only. Different from methods based on moving horizon estimation, our approach does not require the online solution to optimisation problems. Our state estimation scheme, which is based on the notion of practical robust positive invariance, also guarantees satisfaction of constraints on local estimation errors and it can be updated with a limited computational effort when subsystems are added or removed.

  12. Estimation of Sampling Errors and Scale Parameters Using Rainfall Data Analyses.

    NASA Astrophysics Data System (ADS)

    Soman, Vishwas V.

    Estimation of the sampling error in the rainfall measurement is an important issue because the accuracy of these measurements can influence the accuracy of the results from global circulation models (GCMs). This study addressed the issue of the sampling errors in the rainfall measurements from space using the statistical analyses of the rainfall data. The rainfall data collected during 1988, in the vicinity of Darwin, Australia, were analyzed in this study. The statistical analyses were conducted in one, two, and three dimensions. One dimensional analyses were performed on area averaged time series of land, ocean, and combined precipitation of Darwin I and Darwin II subsets. A strong diurnal signal was detected from periodograms and correlograms. Periodograms and correlograms also indicated the presence of the semidiurnal cycle. Simulated sampling error studies conducted using area averaged precipitation time series for Darwin I and II, indicate that the sampling errors range from 3 to 20% of the mean for sampling intervals from 5 to 12 hr. Removal of the semidiurnal cycle from the data reduced the errors by about 40 to 50%. Sampling errors were as high as 60% for sampling interval of 24 hr. In this case, the removal of diurnal cycle from the data, reduced the sampling errors by about 30 to 40%. Two dimensional rainfall fields were obtained by averaging the data along West-East, North-South, and along Time axes. Two dimensional periodograms estimated for these fields show the diurnal and semidiurnal cycle very clearly. The variations in the data are primarily in time. The rainfall fields were found to be almost isotropic in space. In three dimensional analyses, periodograms were obtained using a three dimensional Fourier transform which were used to obtain the sampling errors using North-Nakamoto method. The sampling errors range from 5 to 30% for sampling intervals from 5 to 13 hr. Significant increase in the sampling errors can be noticed for sampling interval of

  13. Estimation of sampling error uncertainties in observed surface air temperature change in China

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2016-06-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  14. Test models for improving filtering with model errors through stochastic parameter estimation

    SciTech Connect

    Gershgorin, B.; Harlim, J. Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  15. Estimating pole/zero errors in GSN-IRIS/USGS network calibration metadata

    USGS Publications Warehouse

    Ringler, A.T.; Hutt, C.R.; Aster, R.; Bolton, H.; Gee, L.S.; Storm, T.

    2012-01-01

    Mapping the digital record of a seismograph into true ground motion requires the correction of the data by some description of the instrument's response. For the Global Seismographic Network (Butler et al., 2004), as well as many other networks, this instrument response is represented as a Laplace domain pole–zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. This Laplace representation assumes that the seismometer behaves as a linear system, with any abrupt changes described adequately via multiple time-invariant epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We present an iterative three-step method to estimate the instrument response parameters (poles and zeros) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least-squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least-squares best-fit Laplace pole–zero–gain model. Third, by applying the central limit theorem, we estimate the errors in this pole–zero model by solving the inverse problem at each frequency in a two-thirds octave band centered at each best-fit pole–zero frequency. This procedure yields error estimates of the 99% confidence interval. We demonstrate the method by applying it to a number of recent Incorporated Research Institutions in Seismology/United States Geological Survey (IRIS/USGS) network calibrations (network code IU).

  16. An analysis of errors in special sensor microwave imager evaporation estimates over the global oceans

    NASA Technical Reports Server (NTRS)

    Esbensen, S. K.; Chelton, D. B.; Vickers, D.; Sun, J.

    1993-01-01

    The method proposed by Liu (1984) is used to estimate monthly averaged evaporation over the global oceans from 1 yr of special sensor microwave imager (SDSM/I) data. Intercomparisons involving SSM/I and in situ data are made over a wide range of oceanic conditions during August 1987 and February 1988 to determine the source of errors in the evaporation estimates. The most significant spatially coherent evaporation errors are found to come from estimates of near-surface specific humidity, q. Systematic discrepancies of over 2 g/kg are found in the tropics, as well as in the middle and high latitudes. The q errors are partitioned into contributions from the parameterization of q in terms of the columnar water vapor, i.e., the Liu q/W relationship, and from the retrieval algorithm for W. The effects of W retrieval errors are found to be smaller over most of the global oceans and due primarily to the implicitly assumed vertical structures of temperature and specific humidity on which the physically based SSM/I retrievals of W are based.

  17. Estimates of Mode-S EHS aircraft-derived wind observation errors using triple collocation

    NASA Astrophysics Data System (ADS)

    de Haan, Siebren

    2016-08-01

    Information on the accuracy of meteorological observation is essential to assess the applicability of the measurements. In general, accuracy information is difficult to obtain in operational situations, since the truth is unknown. One method to determine this accuracy is by comparison with the model equivalent of the observation. The advantage of this method is that all measured parameters can be evaluated, from 2 m temperature observation to satellite radiances. The drawback is that these comparisons also contain the (unknown) model error. By applying the so-called triple-collocation method , on two independent observations at the same location in space and time, combined with model output, and assuming uncorrelated observations, the three error variances can be estimated. This method is applied in this study to estimate wind observation errors from aircraft, obtained utilizing information from air traffic control surveillance radar with Selective Mode Enhanced Surveillance capabilities Mode-S EHS, see. Radial wind measurements from Doppler weather radar and wind vector measurements from sodar, together with equivalents from a non-hydrostatic numerical weather prediction model, are used to assess the accuracy of the Mode-S EHS wind observations. The Mode-S EHS wind (zonal and meridional) observation error is estimated to be less than 1.4 ± 0.1 m s-1 near the surface and around 1.1 ± 0.3 m s-1 at 500 hPa.

  18. Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems.

    PubMed

    Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang

    2015-05-21

    The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches.

  19. A family of approximate solutions and explicit error estimates for the nonlinear stationary Navier-Stokes problem

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Karel, S.

    1975-01-01

    An algorithm for solving the nonlinear stationary Navier-Stokes problem is developed. Explicit error estimates are given. This mathematical technique is potentially adaptable to the separation problem.

  20. WAVELET-BASED BAYESIAN ESTIMATION OF PARTIALLY LINEAR REGRESSION MODELSWITH LONG MEMORY ERRORS

    PubMed Central

    Ko, Kyungduk; Qu, Leming; Vannucci, Marina

    2013-01-01

    In this paper we focus on partially linear regression models with long memory errors, and propose a wavelet-based Bayesian procedure that allows the simultaneous estimation of the model parameters and the nonparametric part of the model. Employing discrete wavelet transforms is crucial in order to simplify the dense variance-covariance matrix of the long memory error. We achieve a fully Bayesian inference by adopting a Metropolis algorithm within a Gibbs sampler. We evaluate the performances of the proposed method on simulated data. In addition, we present an application to Northern hemisphere temperature data, a benchmark in the long memory literature. PMID:23946613

  1. A variational method for finite element stress recovery and error estimation

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Riggs, H. R.; Macy, S. C.

    1993-01-01

    A variational method for obtaining smoothed stresses from a finite element derived nonsmooth stress field is presented. The method is based on minimizing a functional involving discrete least-squares error plus a penalty constraint that ensures smoothness of the stress field. An equivalent accuracy criterion is developed for the smoothing analysis which results in a C sup 1-continuous smoothed stress field possessing the same order of accuracy as that found at the superconvergent optimal stress points of the original finite element analysis. Application of the smoothing analysis to residual error estimation is also demonstrated.

  2. Accurate Bit-Error Rate Evaluation for TH-PPM Systems in Nakagami Fading Channels Using Moment Generating Functions

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Gunawan, Erry; Law, Choi Look; Teh, Kah Chan

    Analytical expressions based on the Gauss-Chebyshev quadrature (GCQ) rule technique are derived to evaluate the bit-error rate (BER) for the time-hopping pulse position modulation (TH-PPM) ultra-wide band (UWB) systems under a Nakagami-m fading channel. The analyses are validated by the simulation results and adopted to assess the accuracy of the commonly used Gaussian approximation (GA) method. The influence of the fading severity on the BER performance of TH-PPM UWB system is investigated.

  3. Density-preserving sampling: robust and efficient alternative to cross-validation for error estimation.

    PubMed

    Budka, Marcin; Gabrys, Bogdan

    2013-01-01

    Estimation of the generalization ability of a classification or regression model is an important issue, as it indicates the expected performance on previously unseen data and is also used for model selection. Currently used generalization error estimation procedures, such as cross-validation (CV) or bootstrap, are stochastic and, thus, require multiple repetitions in order to produce reliable results, which can be computationally expensive, if not prohibitive. The correntropy-inspired density-preserving sampling (DPS) procedure proposed in this paper eliminates the need for repeating the error estimation procedure by dividing the available data into subsets that are guaranteed to be representative of the input dataset. This allows the production of low-variance error estimates with an accuracy comparable to 10 times repeated CV at a fraction of the computations required by CV. This method can also be used for model ranking and selection. This paper derives the DPS procedure and investigates its usability and performance using a set of public benchmark datasets and standard classifiers.

  4. Mass load estimation errors utilizing grab sampling strategies in a karst watershed

    USGS Publications Warehouse

    Fogle, A.W.; Taraba, J.L.; Dinger, J.S.

    2003-01-01

    Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.

  5. Estimates of ocean forecast error covariance derived from Hessian Singular Vectors

    NASA Astrophysics Data System (ADS)

    Smith, Kevin D.; Moore, Andrew M.; Arango, Hernan G.

    2015-05-01

    Experience in numerical weather prediction suggests that singular value decomposition (SVD) of a forecast can yield useful a priori information about the growth of forecast errors. It has been shown formally that SVD using the inverse of the expected analysis error covariance matrix to define the norm at initial time yields the Empirical Orthogonal Functions (EOFs) of the forecast error covariance matrix at the final time. Because of their connection to the 2nd derivative of the cost function in 4-dimensional variational (4D-Var) data assimilation, the initial time singular vectors defined in this way are often referred to as the Hessian Singular Vectors (HSVs). In the present study, estimates of ocean forecast errors and forecast error covariance were computed using SVD applied to a baroclinically unstable temperature front in a re-entrant channel using the Regional Ocean Modeling System (ROMS). An identical twin approach was used in which a truth run of the model was sampled to generate synthetic hydrographic observations that were then assimilated into the same model started from an incorrect initial condition using 4D-Var. The 4D-Var system was run sequentially, and forecasts were initialized from each ocean analysis. SVD was performed on the resulting forecasts to compute the HSVs and corresponding EOFs of the expected forecast error covariance matrix. In this study, a reduced rank approximation of the inverse expected analysis error covariance matrix was used to compute the HSVs and EOFs based on the Lanczos vectors computed during the 4D-Var minimization of the cost function. This has the advantage that the entire spectrum of HSVs and EOFs in the reduced space can be computed. The associated singular value spectrum is found to yield consistent and reliable estimates of forecast error variance in the space spanned by the EOFs. In addition, at long forecast lead times the resulting HSVs and companion EOFs are able to capture many features of the actual

  6. Measurement error in mobile source air pollution exposure estimates due to residential mobility during pregnancy.

    PubMed

    Pennington, Audrey Flak; Strickland, Matthew J; Klein, Mitchel; Zhai, Xinxin; Russell, Armistead G; Hansen, Craig; Darrow, Lyndsey A

    2016-12-14

    Prenatal air pollution exposure is frequently estimated using maternal residential location at the time of delivery as a proxy for residence during pregnancy. We describe residential mobility during pregnancy among 19,951 children from the Kaiser Air Pollution and Pediatric Asthma Study, quantify measurement error in spatially resolved estimates of prenatal exposure to mobile source fine particulate matter (PM2.5) due to ignoring this mobility, and simulate the impact of this error on estimates of epidemiologic associations. Two exposure estimates were compared, one calculated using complete residential histories during pregnancy (weighted average based on time spent at each address) and the second calculated using only residence at birth. Estimates were computed using annual averages of primary PM2.5 from traffic emissions modeled using a Research LINE-source dispersion model for near-surface releases (RLINE) at 250 m resolution. In this cohort, 18.6% of children were born to mothers who moved at least once during pregnancy. Mobile source PM2.5 exposure estimates calculated using complete residential histories during pregnancy and only residence at birth were highly correlated (rS>0.9). Simulations indicated that ignoring residential mobility resulted in modest bias of epidemiologic associations toward the null, but varied by maternal characteristics and prenatal exposure windows of interest (ranging from -2% to -10% bias).Journal of Exposure Science and Environmental Epidemiology advance online publication, 14 December 2016; doi:10.1038/jes.2016.66.

  7. Accurate Establishment of Error Models for the Satellite Gravity Gradiometry Recovery and Requirements Analysis for the Future GOCE Follow-On Mission

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Zhaokui; Ding, Yanwei; Li, Zhaowei

    2016-06-01

    Firstly, the new single and combined error models applied to estimate the cumulative geoid height error are efficiently produced by the dominating error sources consisting of the gravity gradient of the satellite-equipped gradiometer and the orbital position of the space-borne GPS/GLONASS receiver using the power spectral principle. At degree 250, the cumulative geoid height error is 1.769 × 10-1 m based on the new combined error model, which preferably accords with a recovery accuracy of 1.760 ×10-1 m from the GOCE-only Earth gravity field model GO_CONS_GCF_2_TIM_R2 released in Germany. Therefore, the new combined error model of the cumulative geoid height is correct and reliable in this study. Secondly, the requirements analysis for the future GOCE Follow-On satellite system is carried out in respect of the preferred design of the matching measurement accuracy of key payloads comprising the gravity gradient and orbital position and the optimal selection of the orbital altitude of the satellite. We recommend the gravity gradient with an accuracy of 10-13-10-15 /s2, the orbital position with a precision of 1-0.1 cm and the orbital altitude of 200-250 km in the future GOCE Follow-On mission.

  8. Local error estimates for adaptive simulation of the Reaction-Diffusion Master Equation via operator splitting.

    PubMed

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2014-06-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.

  9. Accurate Reaction Enthalpies and Sources of Error in DFT Thermochemistry for Aldol, Mannich, and α-Aminoxylation Reactions

    NASA Astrophysics Data System (ADS)

    Wheeler, Steven E.; Moran, Antonio; Pieniazek, Susan N.; Houk, K. N.

    2009-08-01

    Enthalpies for bond-forming reactions that are subject to organocatalysis have been predicted using the high-accuracy CBS-QB3 model chemistry and six DFT functionals. Reaction enthalpies were decomposed into contributions from changes in bonding and other intramolecular effects via the hierarchy of homodesmotic reactions. The order of the reaction exothermicities (aldol < Mannich ≈ α-aminoxylation) arises primarily from changes in formal bond types mediated by contributions from secondary intramolecular interactions. In each of these reaction types, methyl substitution at the β- and γ-positions stabilizes the products relative to the unsubstituted case. The performance of six DFT functionals (B3LYP, B3PW91, B1B95, MPW1PW91, PBE1PBE, and M06-2X), MP2, and SCS-MP2 has been assessed for the prediction of these reaction enthalpies. Even though the PBE1PBE and M06-2X functionals perform well for the aldol and Mannich reactions, errors roughly double when these functionals are applied to the α-aminoxylation reactions. B3PW91 and B1B95, which offer modest accuracy for the aldol and Mannich reactions, yield reliable predictions for the two α-aminoxylation reactions. The excellent performance of the M06-2X and PBE1PBE functionals for aldol and Mannich reactions stems from the cancellation of sizable errors arising from inadequate descriptions of the underlying bond transformations and intramolecular interactions. SCS-MP2/cc-pVTZ performs most consistently across these three classes of reactions, although the reaction exothermicities are systematically underestimated by 1-3 kcal mol-1. Conventional MP2, when paired with the cc-pVTZ basis set, performs somewhat better than SCS-MP2 for some of these reactions, particularly the α-aminoxylations. Finally, the merits of benchmarking DFT functionals for the set of simple chemically meaningful transformations underlying all bond-forming reactions are discussed.

  10. Computationally efficient error estimate for evaluation of regularization in photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Bhatt, Manish; Acharya, Atithi; Yalavarthy, Phaneendra K.

    2016-10-01

    The model-based image reconstruction techniques for photoacoustic (PA) tomography require an explicit regularization. An error estimate (η2) minimization-based approach was proposed and developed for the determination of a regularization parameter for PA imaging. The regularization was used within Lanczos bidiagonalization framework, which provides the advantage of dimensionality reduction for a large system of equations. It was shown that the proposed method is computationally faster than the state-of-the-art techniques and provides similar performance in terms of quantitative accuracy in reconstructed images. It was also shown that the error estimate (η2) can also be utilized in determining a suitable regularization parameter for other popular techniques such as Tikhonov, exponential, and nonsmooth (ℓ1 and total variation norm based) regularization methods.

  11. Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method

    NASA Astrophysics Data System (ADS)

    Bai, YanHong; Wu, YongKe; Xie, XiaoPing

    2016-09-01

    Superconvergence and a posteriori error estimators of recovery type are analyzed for the 4-node hybrid stress quadrilateral finite element method proposed by Pian and Sumihara (Int. J. Numer. Meth. Engrg., 1984, 20: 1685-1695) for linear elasticity problems. Uniform superconvergence of order $O(h^{1+\\min\\{\\alpha,1\\}})$ with respect to the Lam\\'{e} constant $\\lambda$ is established for both the recovered gradients of the displacement vector and the stress tensor under a mesh assumption, where $\\alpha>0$ is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. A posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.

  12. A Novel Four-Node Quadrilateral Smoothing Element for Stress Enhancement and Error Estimation

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Riggs, H. R.; Dambach, M.

    1998-01-01

    A four-node, quadrilateral smoothing element is developed based upon a penalized-discrete-least-squares variational formulation. The smoothing methodology recovers C1-continuous stresses, thus enabling effective a posteriori error estimation and automatic adaptive mesh refinement. The element formulation is originated with a five-node macro-element configuration consisting of four triangular anisoparametric smoothing elements in a cross-diagonal pattern. This element pattern enables a convenient closed-form solution for the degrees of freedom of the interior node, resulting from enforcing explicitly a set of natural edge-wise penalty constraints. The degree-of-freedom reduction scheme leads to a very efficient formulation of a four-node quadrilateral smoothing element without any compromise in robustness and accuracy of the smoothing analysis. The application examples include stress recovery and error estimation in adaptive mesh refinement solutions for an elasticity problem and an aerospace structural component.

  13. Impact of microscopy error on estimates of protective efficacy in malaria-prevention trials.

    PubMed

    Ohrt, Colin; Purnomo; Sutamihardja, M Awalludin; Tang, Douglas; Kain, Kevin C

    2002-08-15

    Microscopy is an imperfect reference standard used for malaria diagnosis in clinical trials. The purpose of this study was to provide an assessment of the accuracy of basic microscopy, to compare polymerase chain reaction (PCR)-based diagnosis with microscopy results, and to assess the effect of microscopy error on apparent protective efficacy. The sensitivity and specificity of basic, compared with expert, microscopy was determined to be 91% and 71%, respectively. In a clinical trial, agreement between PCR and microscopy results improved with expert confirmation of initial results. In a simulated 12-week trial with weekly routine malaria smears, a very high specificity (>99%) for each malaria smear was found to be necessary for an estimate of protective efficacy to be within 10%-25% of the true value, but sensitivity had little effect on this estimate. Microscopy error occurs and can affect clinical trial results.

  14. Estimating sampling error of evolutionary statistics based on genetic covariance matrices using maximum likelihood.

    PubMed

    Houle, D; Meyer, K

    2015-08-01

    We explore the estimation of uncertainty in evolutionary parameters using a recently devised approach for resampling entire additive genetic variance-covariance matrices (G). Large-sample theory shows that maximum-likelihood estimates (including restricted maximum likelihood, REML) asymptotically have a multivariate normal distribution, with covariance matrix derived from the inverse of the information matrix, and mean equal to the estimated G. This suggests that sampling estimates of G from this distribution can be used to assess the variability of estimates of G, and of functions of G. We refer to this as the REML-MVN method. This has been implemented in the mixed-model program WOMBAT. Estimates of sampling variances from REML-MVN were compared to those from the parametric bootstrap and from a Bayesian Markov chain Monte Carlo (MCMC) approach (implemented in the R package MCMCglmm). We apply each approach to evolvability statistics previously estimated for a large, 20-dimensional data set for Drosophila wings. REML-MVN and MCMC sampling variances are close to those estimated with the parametric bootstrap. Both slightly underestimate the error in the best-estimated aspects of the G matrix. REML analysis supports the previous conclusion that the G matrix for this population is full rank. REML-MVN is computationally very efficient, making it an attractive alternative to both data resampling and MCMC approaches to assessing confidence in parameters of evolutionary interest.

  15. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    USGS Publications Warehouse

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.

    2013-01-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  16. Theoretical estimation of systematic errors in local deformation measurements using digital image correlation

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohai; Su, Yong; Zhang, Qingchuan

    2017-01-01

    The measurement accuracy using the digital image correlation (DIC) method in local deformations such as the Portevin-Le Chatelier bands, the deformations near the gap, and the crack tips has raised a major concern. The measured displacement and strain results are heavily affected by the calculation parameters (such as the subset size, the grid step, and the strain window size) due to under-matched shape functions (for displacement measurement) and surface fitting functions (for strain calculation). To evaluate the systematic errors in local deformations, theoretical estimations and approximations of displacement and strain systematic errors have been deduced when the first-order shape functions and quadric surface fitting functions are employed. The following results come out: (1) the approximate displacement systematic errors are proportional to the second-order displacement gradients and the ratio is only determined by the subset size; (2) the approximate strain systematic errors are functions of the third-order displacement gradients and the coefficients are dependent on the subset size, the grid step and the strain window size. Simulated experiments have been carried out to verify the reliability. Besides, a convenient way by comparing displacement results measured by the DIC method with different subset sizes is proposed to approximately evaluate the displacement systematic errors.

  17. Sampling Errors of SSM/I and TRMM Rainfall Averages: Comparison with Error Estimates from Surface Data and a Sample Model

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.

  18. Expected Estimating Equation using Calibration Data for Generalized Linear Models with a Mixture of Berkson and Classical Errors in Covariates

    PubMed Central

    de Dieu Tapsoba, Jean; Lee, Shen-Ming; Wang, Ching-Yun

    2013-01-01

    Data collected in many epidemiological or clinical research studies are often contaminated with measurement errors that may be of classical or Berkson error type. The measurement error may also be a combination of both classical and Berkson errors and failure to account for both errors could lead to unreliable inference in many situations. We consider regression analysis in generalized linear models when some covariates are prone to a mixture of Berkson and classical errors and calibration data are available only for some subjects in a subsample. We propose an expected estimating equation approach to accommodate both errors in generalized linear regression analyses. The proposed method can consistently estimate the classical and Berkson error variances based on the available data, without knowing the mixture percentage. Its finite-sample performance is investigated numerically. Our method is illustrated by an application to real data from an HIV vaccine study. PMID:24009099

  19. Sampling error study for rainfall estimate by satellite using a stochastic model

    NASA Technical Reports Server (NTRS)

    Shin, Kyung-Sup; North, Gerald R.

    1988-01-01

    In a parameter study of satellite orbits, sampling errors of area-time averaged rain rate due to temporal sampling by satellites were estimated. The sampling characteristics were studied by accounting for the varying visiting intervals and varying fractions of averaging area on each visit as a function of the latitude of the grid box for a range of satellite orbital parameters. The sampling errors were estimated by a simple model based on the first-order Markov process of the time series of area averaged rain rates. For a satellite of nominal Tropical Rainfall Measuring Mission (Thiele, 1987) carrying an ideal scanning microwave radiometer for precipitation measurements, it is found that sampling error would be about 8 to 12 pct of estimated monthly mean rates over a grid box of 5 X 5 degrees. It is suggested that an observation system based on a low inclination satellite combined with a sunsynchronous satellite simultaneously might be the best candidate for making precipitation measurements from space.

  20. Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2012-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.

  1. Estimate of procession and polar motion errors from planetary encounter station location solutions

    NASA Technical Reports Server (NTRS)

    Pease, G. E.

    1978-01-01

    Jet Propulsion Laboratory Deep Space Station (DSS) location solutions based on two JPL planetary ephemerides, DE 84 and DE 96, at eight planetary encounters were used to obtain weighted least squares estimates of precession and polar motion errors. The solution for precession error in right ascension yields a value of 0.3 X 10 to the minus 5 power plus or minus 0.8 X 10 to the minus 6 power deg/year. This maps to a right ascension error of 1.3 X 10 to the minus 5 power plus or minus 0.4 X 10 to the minus 5 power deg at the first Voyager 1979 Jupiter encounter if the current JPL DSS location set is used. Solutions for precession and polar motion using station locations based on DE 84 agree well with the solution using station locations referenced to DE 96. The precession solution removes the apparent drift in station longitude and spin axis distance estimates, while the encounter polar motion solutions consistently decrease the scatter in station spin axis distance estimates.

  2. Accuracy and sampling error of two age estimation techniques using rib histomorphometry on a modern sample.

    PubMed

    García-Donas, Julieta G; Dyke, Jeffrey; Paine, Robert R; Nathena, Despoina; Kranioti, Elena F

    2016-02-01

    Most age estimation methods are proven problematic when applied in highly fragmented skeletal remains. Rib histomorphometry is advantageous in such cases; yet it is vital to test and revise existing techniques particularly when used in legal settings (Crowder and Rosella, 2007). This study tested Stout & Paine (1992) and Stout et al. (1994) histological age estimation methods on a Modern Greek sample using different sampling sites. Six left 4th ribs of known age and sex were selected from a modern skeletal collection. Each rib was cut into three equal segments. Two thin sections were acquired from each segment. A total of 36 thin sections were prepared and analysed. Four variables (cortical area, intact and fragmented osteon density and osteon population density) were calculated for each section and age was estimated according to Stout & Paine (1992) and Stout et al. (1994). The results showed that both methods produced a systemic underestimation of the individuals (to a maximum of 43 years) although a general improvement in accuracy levels was observed when applying the Stout et al. (1994) formula. There is an increase of error rates with increasing age with the oldest individual showing extreme differences between real age and estimated age. Comparison of the different sampling sites showed small differences between the estimated ages suggesting that any fragment of the rib could be used without introducing significant error. Yet, a larger sample should be used to confirm these results.

  3. A semiempirical error estimation technique for PWV derived from atmospheric radiosonde data

    NASA Astrophysics Data System (ADS)

    Castro-Almazán, Julio A.; Pérez-Jordán, Gabriel; Muñoz-Tuñón, Casiana

    2016-09-01

    A semiempirical method for estimating the error and optimum number of sampled levels in precipitable water vapour (PWV) determinations from atmospheric radiosoundings is proposed. Two terms have been considered: the uncertainties in the measurements and the sampling error. Also, the uncertainty has been separated in the variance and covariance components. The sampling and covariance components have been modelled from an empirical dataset of 205 high-vertical-resolution radiosounding profiles, equipped with Vaisala RS80 and RS92 sondes at four different locations: Güímar (GUI) in Tenerife, at sea level, and the astronomical observatory at Roque de los Muchachos (ORM, 2300 m a.s.l.) on La Palma (both on the Canary Islands, Spain), Lindenberg (LIN) in continental Germany, and Ny-Ålesund (NYA) in the Svalbard Islands, within the Arctic Circle. The balloons at the ORM were launched during intensive and unique site-testing runs carried out in 1990 and 1995, while the data for the other sites were obtained from radiosounding stations operating for a period of 1 year (2013-2014). The PWV values ranged between ˜ 0.9 and ˜ 41 mm. The method sub-samples the profile for error minimization. The result is the minimum error and the optimum number of levels. The results obtained in the four sites studied showed that the ORM is the driest of the four locations and the one with the fastest vertical decay of PWV. The exponential autocorrelation pressure lags ranged from 175 hPa (ORM) to 500 hPa (LIN). The results show a coherent behaviour with no biases as a function of the profile. The final error is roughly proportional to PWV whereas the optimum number of levels (N0) is the reverse. The value of N0 is less than 400 for 77 % of the profiles and the absolute errors are always < 0.6 mm. The median relative error is 2.0 ± 0.7 % and the 90th percentile P90 = 4.6 %. Therefore, whereas a radiosounding samples at least N0 uniform vertical levels, depending on the water

  4. Quantifying the impact of material-model error on macroscale quantities-of-interest using multiscale a posteriori error-estimation techniques

    DOE PAGES

    Brown, Judith A.; Bishop, Joseph E.

    2016-07-20

    An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximatemore » weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.« less

  5. Error quantification of polarimetry-based precipitation estimates from X-band radars

    NASA Astrophysics Data System (ADS)

    Behnke, K. K.; Diederich, M.; Troemel, S.; Ryzhkov, A.; Simmer, C.

    2012-12-01

    Although theory and derived methods for radar polarimetry advanced considerably during the past decades, the quantitative estimation of precipitation from these measurements is still subject to various error sources. Therefore an integrated quantification of estimated polarimetric moments uncertainties including their projection into rainfall rates is indispensable. Besides improved hydrometeor typing and raindrop size discrimination, polarimetric moments allow for the correction of attenuation and beam blockage which are major challenges for the derivation of reliable rainfall estimates especially at shorter wavelengths like X-band. Moreover, polarimetry provides for a multitude of rainfall estimators appropriate for different precipitation regimes and types. This study concentrates on the performance of the estimators R(Z) with Z, the attenuation and beam blockage corrected reflectivity factor at horizontal polarization, R(KDP) with KDP, the specific differential phase, a combination of both estimators, and finally, R(A) using the specific attenuation A derived with the ZPHI method. We analyze observations of the operational German polarimetric X-band twin radar system BoXPol (Bonn) and JüXPol (Jülich) with both radars separated by about 50 km. The large spatial overlap of the mutual observation areas and several in-situ rain measurements in the same area constitute an ideal testbed for our study. We present two approaches for quantifying the error in resulting rain rates. The first approach is based on a statistical evaluation of particle concentration Nw and mean drop diameter Dm analyzed from long-term disdrometer observations in the BoXPol/JüXPol region. The different estimator performances are analyzed by comparison of the retrieved rain rates with rain gauge observations in relation to the ranges of Nw observed during different synoptic conditions. In the second approach, the estimated drop size distributions are used to simulate the polarimetric moments

  6. An Analysis of a Finite Element Method for Convection-Diffusion Problems. Part II. A Posteriori Error Estimates and Adaptivity.

    DTIC Science & Technology

    1983-03-01

    AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for

  7. Equilibrating errors: reliable estimation of information transmission rates in biological systems with spectral analysis-based methods.

    PubMed

    Ignatova, Irina; French, Andrew S; Immonen, Esa-Ville; Frolov, Roman; Weckström, Matti

    2014-06-01

    Shannon's seminal approach to estimating information capacity is widely used to quantify information processing by biological systems. However, the Shannon information theory, which is based on power spectrum estimation, necessarily contains two sources of error: time delay bias error and random error. These errors are particularly important for systems with relatively large time delay values and for responses of limited duration, as is often the case in experimental work. The window function type and size chosen, as well as the values of inherent delays cause changes in both the delay bias and random errors, with possibly strong effect on the estimates of system properties. Here, we investigated the properties of these errors using white-noise simulations and analysis of experimental photoreceptor responses to naturalistic and white-noise light contrasts. Photoreceptors were used from several insect species, each characterized by different visual performance, behavior, and ecology. We show that the effect of random error on the spectral estimates of photoreceptor performance (gain, coherence, signal-to-noise ratio, Shannon information rate) is opposite to that of the time delay bias error: the former overestimates information rate, while the latter underestimates it. We propose a new algorithm for reducing the impact of time delay bias error and random error, based on discovering, and then using that size of window, at which the absolute values of these errors are equal and opposite, thus cancelling each other, allowing minimally biased measurement of neural coding.

  8. Children Can Accurately Monitor and Control Their Number-Line Estimation Performance

    ERIC Educational Resources Information Center

    Wall, Jenna L.; Thompson, Clarissa A.; Dunlosky, John; Merriman, William E.

    2016-01-01

    Accurate monitoring and control are essential for effective self-regulated learning. These metacognitive abilities may be particularly important for developing math skills, such as when children are deciding whether a math task is difficult or whether they made a mistake on a particular item. The present experiments investigate children's ability…

  9. Bi-fluorescence imaging for estimating accurately the nuclear condition of Rhizoctonia spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To simplify the determination of the nuclear condition of the pathogenic Rhizoctonia, which currently needs to be performed either using two fluorescent dyes, thus is more costly and time-consuming, or using only one fluorescent dye, and thus less accurate. Methods and Results: A red primary ...

  10. Estimating and comparing microbial diversity in the presence of sequencing errors

    PubMed Central

    Chiu, Chun-Huo

    2016-01-01

    Estimating and comparing microbial diversity are statistically challenging due to limited sampling and possible sequencing errors for low-frequency counts, producing spurious singletons. The inflated singleton count seriously affects statistical analysis and inferences about microbial diversity. Previous statistical approaches to tackle the sequencing errors generally require different parametric assumptions about the sampling model or about the functional form of frequency counts. Different parametric assumptions may lead to drastically different diversity estimates. We focus on nonparametric methods which are universally valid for all parametric assumptions and can be used to compare diversity across communities. We develop here a nonparametric estimator of the true singleton count to replace the spurious singleton count in all methods/approaches. Our estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons and quadrupletons, provided these three frequency counts are reliable. To quantify microbial alpha diversity for an individual community, we adopt the measure of Hill numbers (effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an order q that determines the measures’ emphasis on rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1, the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of Simpson index). A diversity profile which depicts the Hill number as a function of order q conveys all information contained in a taxa abundance distribution. Based on the estimated singleton count and the original non-singleton frequency counts, two statistical approaches (non-asymptotic and asymptotic) are developed to compare microbial diversity for multiple communities. (1) A non-asymptotic approach refers to the comparison of estimated diversities of standardized samples with a common finite sample size or sample completeness. This

  11. Estimating and comparing microbial diversity in the presence of sequencing errors.

    PubMed

    Chiu, Chun-Huo; Chao, Anne

    2016-01-01

    Estimating and comparing microbial diversity are statistically challenging due to limited sampling and possible sequencing errors for low-frequency counts, producing spurious singletons. The inflated singleton count seriously affects statistical analysis and inferences about microbial diversity. Previous statistical approaches to tackle the sequencing errors generally require different parametric assumptions about the sampling model or about the functional form of frequency counts. Different parametric assumptions may lead to drastically different diversity estimates. We focus on nonparametric methods which are universally valid for all parametric assumptions and can be used to compare diversity across communities. We develop here a nonparametric estimator of the true singleton count to replace the spurious singleton count in all methods/approaches. Our estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons and quadrupletons, provided these three frequency counts are reliable. To quantify microbial alpha diversity for an individual community, we adopt the measure of Hill numbers (effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an order q that determines the measures' emphasis on rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1, the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of Simpson index). A diversity profile which depicts the Hill number as a function of order q conveys all information contained in a taxa abundance distribution. Based on the estimated singleton count and the original non-singleton frequency counts, two statistical approaches (non-asymptotic and asymptotic) are developed to compare microbial diversity for multiple communities. (1) A non-asymptotic approach refers to the comparison of estimated diversities of standardized samples with a common finite sample size or sample completeness. This approach

  12. Improving occupancy estimation when two types of observational error occur: Non-detection and species misidentification

    USGS Publications Warehouse

    Miller, David A.; Nichols, J.D.; McClintock, B.T.; Grant, E.H.C.; Bailey, L.L.; Weir, L.A.

    2011-01-01

    Efforts to draw inferences about species occurrence frequently account for false negatives, the common situation when individuals of a species are not detected even when a site is occupied. However, recent studies suggest the need to also deal with false positives, which occur when species are misidentified so that a species is recorded as detected when a site is unoccupied. Bias in estimators of occupancy, colonization, and extinction can be severe when false positives occur. Accordingly, we propose models that simultaneously account for both types of error. Our approach can be used to improve estimates of occupancy for study designs where a subset of detections is of a type or method for which false positives can be assumed to not occur. We illustrate properties of the estimators with simulations and data for three species of frogs. We show that models that account for possible misidentification have greater support (lower AIC for two species) and can yield substantially different occupancy estimates than those that do not. When the potential for misidentification exists, researchers should consider analytical techniques that can account for this source of error, such as those presented here. ?? 2011 by the Ecological Society of America..

  13. Compensation technique for the intrinsic error in ultrasound motion estimation using a speckle tracking method

    NASA Astrophysics Data System (ADS)

    Taki, Hirofumi; Yamakawa, Makoto; Shiina, Tsuyoshi; Sato, Toru

    2015-07-01

    High-accuracy ultrasound motion estimation has become an essential technique in blood flow imaging, elastography, and motion imaging of the heart wall. Speckle tracking has been one of the best motion estimators; however, conventional speckle-tracking methods neglect the effect of out-of-plane motion and deformation. Our proposed method assumes that the cross-correlation between a reference signal and a comparison signal depends on the spatio-temporal distance between the two signals. The proposed method uses the decrease in the cross-correlation value in a reference frame to compensate for the intrinsic error caused by out-of-plane motion and deformation without a priori information. The root-mean-square error of the estimated lateral tissue motion velocity calculated by the proposed method ranged from 6.4 to 34% of that using a conventional speckle-tracking method. This study demonstrates the high potential of the proposed method for improving the estimation of tissue motion using an ultrasound speckle-tracking method in medical diagnosis.

  14. Eliminating Obliquity Error from the Estimation of Ionospheric Delay in a Satellite-Based Augmentation System

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence

    2013-01-01

    Current satellite-based augmentation systems estimate ionospheric delay using algorithms that assume the electron density of the ionosphere is non-negligible only in a thin shell located near the peak of the actual profile. In its initial operating capability, for example, the Wide Area Augmentation System incorporated the thin shell model into an estimation algorithm that calculates vertical delay using a planar fit. Under disturbed conditions or at low latitude where ionospheric structure is complex, however, the thin shell approximation can serve as a significant source of estimation error. A recent upgrade of the system replaced the planar fit algorithm with an algorithm based upon kriging. The upgrade owes its success, in part, to the ability of kriging to mitigate the error due to this approximation. Previously, alternative delay estimation algorithms have been proposed that eliminate the need for invoking the thin shell model altogether. Prior analyses have compared the accuracy achieved by these methods to the accuracy achieved by the planar fit algorithm. This paper extends these analyses to include a comparison with the accuracy achieved by kriging. It concludes by examining how a satellite-based augmentation system might be implemented without recourse to the thin shell approximation.

  15. Sieve Estimation of Constant and Time-Varying Coefficients in Nonlinear Ordinary Differential Equation Models by Considering Both Numerical Error and Measurement Error.

    PubMed

    Xue, Hongqi; Miao, Hongyu; Wu, Hulin

    2010-01-01

    This article considers estimation of constant and time-varying coefficients in nonlinear ordinary differential equation (ODE) models where analytic closed-form solutions are not available. The numerical solution-based nonlinear least squares (NLS) estimator is investigated in this study. A numerical algorithm such as the Runge-Kutta method is used to approximate the ODE solution. The asymptotic properties are established for the proposed estimators considering both numerical error and measurement error. The B-spline is used to approximate the time-varying coefficients, and the corresponding asymptotic theories in this case are investigated under the framework of the sieve approach. Our results show that if the maximum step size of the p-order numerical algorithm goes to zero at a rate faster than n(-1/(p∧4)), the numerical error is negligible compared to the measurement error. This result provides a theoretical guidance in selection of the step size for numerical evaluations of ODEs. Moreover, we have shown that the numerical solution-based NLS estimator and the sieve NLS estimator are strongly consistent. The sieve estimator of constant parameters is asymptotically normal with the same asymptotic co-variance as that of the case where the true ODE solution is exactly known, while the estimator of the time-varying parameter has the optimal convergence rate under some regularity conditions. The theoretical results are also developed for the case when the step size of the ODE numerical solver does not go to zero fast enough or the numerical error is comparable to the measurement error. We illustrate our approach with both simulation studies and clinical data on HIV viral dynamics.

  16. Sieve Estimation of Constant and Time-Varying Coefficients in Nonlinear Ordinary Differential Equation Models by Considering Both Numerical Error and Measurement Error

    PubMed Central

    Xue, Hongqi; Miao, Hongyu; Wu, Hulin

    2010-01-01

    This article considers estimation of constant and time-varying coefficients in nonlinear ordinary differential equation (ODE) models where analytic closed-form solutions are not available. The numerical solution-based nonlinear least squares (NLS) estimator is investigated in this study. A numerical algorithm such as the Runge–Kutta method is used to approximate the ODE solution. The asymptotic properties are established for the proposed estimators considering both numerical error and measurement error. The B-spline is used to approximate the time-varying coefficients, and the corresponding asymptotic theories in this case are investigated under the framework of the sieve approach. Our results show that if the maximum step size of the p-order numerical algorithm goes to zero at a rate faster than n−1/(p∧4), the numerical error is negligible compared to the measurement error. This result provides a theoretical guidance in selection of the step size for numerical evaluations of ODEs. Moreover, we have shown that the numerical solution-based NLS estimator and the sieve NLS estimator are strongly consistent. The sieve estimator of constant parameters is asymptotically normal with the same asymptotic co-variance as that of the case where the true ODE solution is exactly known, while the estimator of the time-varying parameter has the optimal convergence rate under some regularity conditions. The theoretical results are also developed for the case when the step size of the ODE numerical solver does not go to zero fast enough or the numerical error is comparable to the measurement error. We illustrate our approach with both simulation studies and clinical data on HIV viral dynamics. PMID:21132064

  17. Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis.

    PubMed

    Dufour, Emmanuel; Bréon, François-Marie

    2003-06-20

    For better knowledge of the carbon cycle, there is a need for spaceborne measurements of atmospheric CO2 concentration. Because the gradients are relatively small, the accuracy requirements are better than 1%. We analyze the feasibility of a CO2-weighted-column estimate, using the differential absorption technique, from high-resolution spectroscopic measurements in the 1.6- and 2-microm CO2 absorption bands. Several sources of uncertainty that can be neglected for other gases with less stringent accuracy requirements need to be assessed. We attempt a quantification of errors due to the radiometric noise, uncertainties in the temperature, humidity and surface pressure uncertainty, spectroscopic coefficients, and atmospheric scattering. Atmospheric scattering is the major source of error [5 parts per 10 (ppm) for a subvisual cirrus cloud with an assumed optical thickness of 0.03], and additional research is needed to properly assess the accuracy of correction methods. Spectroscopic data are currently a major source of uncertainty but can be improved with specific ground-based sunphotometry measurements. The other sources of error amount to several ppm, which is less than, but close to, the accuracy requirements. Fortunately, these errors are mostly random and will therefore be reduced by proper averaging.

  18. p-adaption for compressible flow problems using a goal-based error estimator

    NASA Astrophysics Data System (ADS)

    Ekelschot, Dirk; Moxey, David; Peiro, Joaquim; Sherwin, Spencer

    2014-11-01

    We present an approach of applying p-adaption to compressible flow problems using a dual-weighted error estimator. This technique has been implemented in the high-order h/p spectral element library Nektar + + . The compressible solver uses a high-order discontinuous Galerkin (DG) discretization. This approach is generally considered to be expensive and that is why the introduced p-adaption technique aims for lowering the computational cost while preserving the high-order accuracy and the exponential convergence properties. The numerical fluxes between the elements are discontinuous which allows one to use a different polynomial order in each element. After identifying and localizing the sources of error, the order of approximation of the solution within the element is improved. The solution to the adjoint equations for the compressible Euler equations is used to weigh the local residual of the primal solution. This provides both the error in the target quantity, which is typically the lift or drag coefficient, and an indication on how sensitive the local solution is to the target quantity. The dual-weighted error within each element serves then as a local refinement indicator that drives the p-adaptive algorithm. The performance of this p-adaptive method is demonstrated using a test case of subsonic flow past a 3D wing geometry.

  19. Errors in measuring blood gases in the intensive care unit: effect of delay in estimation.

    PubMed

    Woolley, Andrew; Hickling, Keith

    2003-03-01

    Arterial blood gas measurement is subject to a number of potential sources of error. We investigated some of these in the intensive care unit (ICU). We audited samples for adequate volume and the presence of air and found that all samples were of adequate volume, but 40% contained bubbles or froth. We compared pulse oximeter estimations of oxygen saturation (SpO(2)) with laboratory estimates (SO(2)) from arterial blood samples, and found that there was less than a 5% chance of a difference of 5% or more. We audited the delay between sampling and processing and looked for errors arising as a result. We found that 4% of samples waited longer than 30 minutes to be analyzed in the laboratory, but that there was no correlation between delay and error in partial pressure of oxygen (PO(2)), carbon dioxide (PCO(2)), or SO(2). We performed a bench study to document the changes in PO(2) and PCO(2) over time with samples stored at room temperature and on ice. We found that samples in 1.5-mL PICO 70 syringes (Radiometer Medical A/S, Bronshoj, Denmark) were stable for PO(2) and SO(2) for up to 30 minutes either at room temperature or kept in iced water, and that changes after 60 minutes were small and unlikely to be clinically significant. PCO(2) showed a statistically significant increase after 20 minutes at room temperature, but the changes were not clinically significant.

  20. PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems

    NASA Astrophysics Data System (ADS)

    Hocker, David; Kosut, Robert; Rabitz, Herschel

    2016-09-01

    A Physical Error Estimation Tool (PEET) is introduced in Matlab for predicting physical gate errors of quantum information processing (QIP) operations by constructing and then simulating gate sequences for a wide variety of user-defined, Hamiltonian-based physical systems. PEET is designed to accommodate the interdisciplinary needs of quantum computing design by assessing gate performance for users familiar with the underlying physics of QIP, as well as those interested in higher-level computing operations. The structure of PEET separates the bulk of the physical details of a system into Gate objects, while the construction of quantum computing gate operations are contained in GateSequence objects. Gate errors are estimated by Monte Carlo sampling of noisy gate operations. The main utility of PEET, though, is the implementation of QuantumControl methods that act to generate and then test gate sequence and pulse-shaping techniques for QIP performance. This work details the structure of PEET and gives instructive examples for its operation.

  1. Estimating regression coefficients from clustered samples: Sampling errors and optimum sample allocation

    NASA Technical Reports Server (NTRS)

    Kalton, G.

    1983-01-01

    A number of surveys were conducted to study the relationship between the level of aircraft or traffic noise exposure experienced by people living in a particular area and their annoyance with it. These surveys generally employ a clustered sample design which affects the precision of the survey estimates. Regression analysis of annoyance on noise measures and other variables is often an important component of the survey analysis. Formulae are presented for estimating the standard errors of regression coefficients and ratio of regression coefficients that are applicable with a two- or three-stage clustered sample design. Using a simple cost function, they also determine the optimum allocation of the sample across the stages of the sample design for the estimation of a regression coefficient.

  2. Multivariate assimilation in MERCATOR project: New statistical parameters from forecast error estimation

    NASA Astrophysics Data System (ADS)

    Etienne, H.; Benkiran, M.

    2007-03-01

    The new operational prototype of Mercator (french Global Ocean Data Assimilation Experiment contribution) is composed of a North Atlantic primitive equation ocean model OPA (Ocean Parallel Algorithm between 20°S and 70°N, [Madec, G., P. Delecluse, M. Imbard and C. Lévy (1998). OPA8.1 ocean general circulation model reference manuel. Notes du pôle de modélisation IPSL. n°11: 91p]) and of a multivariate and multidata assimilation scheme [De Mey, P. and M. Benkiran (2002). "A multivariate reduced-order optimal interpolation method and its application in Mediterranean basin-scale circulation." Ocean Forecasting : Conceptual basis and application, Pinardi, N., Springer Verlag.] This system has already given some significant improvements from previous Mercator configurations (M. Benkiran, personal communication). However some biases on ocean state still remain in the tropics where the reduced-order optimal interpolation scheme is suspected to be ill-parameted in the model forecast error. Indeed the guess error covariance matrix is decomposed into an error variance value and a spatio-temporal correlation function which are assumed to have some "good" properties (spatial homogeneity of the correlation function, constant ratio between signal and error variance). This study shows how we can use ensemble methods to validate these assumptions. We can see that the correlation function can reach negative values locally, mostly in regions of high variability contradictory with the homogeneous hypothesis. The reduced space used in the operational configuration is based on the signal seasonal Empirical Orthogonal Functions (EOFs). An empirical relationship between signal and error variance has been set and the correlation function is the same on every dimension of the reduced space. By projection of the estimated guess error variance onto the reduced space, we find a repartition of this quantity quite different to what was set in the system. The error statistics is found to

  3. Accurate state estimation for a hydraulic actuator via a SDRE nonlinear filter

    NASA Astrophysics Data System (ADS)

    Strano, Salvatore; Terzo, Mario

    2016-06-01

    The state estimation in hydraulic actuators is a fundamental tool for the detection of faults or a valid alternative to the installation of sensors. Due to the hard nonlinearities that characterize the hydraulic actuators, the performances of the linear/linearization based techniques for the state estimation are strongly limited. In order to overcome these limits, this paper focuses on an alternative nonlinear estimation method based on the State-Dependent-Riccati-Equation (SDRE). The technique is able to fully take into account the system nonlinearities and the measurement noise. A fifth order nonlinear model is derived and employed for the synthesis of the estimator. Simulations and experimental tests have been conducted and comparisons with the largely used Extended Kalman Filter (EKF) are illustrated. The results show the effectiveness of the SDRE based technique for applications characterized by not negligible nonlinearities such as dead zone and frictions.

  4. mBEEF-vdW: Robust fitting of error estimation density functionals

    NASA Astrophysics Data System (ADS)

    Lundgaard, Keld T.; Wellendorff, Jess; Voss, Johannes; Jacobsen, Karsten W.; Bligaard, Thomas

    2016-06-01

    We propose a general-purpose semilocal/nonlocal exchange-correlation functional approximation, named mBEEF-vdW. The exchange is a meta generalized gradient approximation, and the correlation is a semilocal and nonlocal mixture, with the Rutgers-Chalmers approximation for van der Waals (vdW) forces. The functional is fitted within the Bayesian error estimation functional (BEEF) framework [J. Wellendorff et al., Phys. Rev. B 85, 235149 (2012), 10.1103/PhysRevB.85.235149; J. Wellendorff et al., J. Chem. Phys. 140, 144107 (2014), 10.1063/1.4870397]. We improve the previously used fitting procedures by introducing a robust MM-estimator based loss function, reducing the sensitivity to outliers in the datasets. To more reliably determine the optimal model complexity, we furthermore introduce a generalization of the bootstrap 0.632 estimator with hierarchical bootstrap sampling and geometric mean estimator over the training datasets. Using this estimator, we show that the robust loss function leads to a 10 % improvement in the estimated prediction error over the previously used least-squares loss function. The mBEEF-vdW functional is benchmarked against popular density functional approximations over a wide range of datasets relevant for heterogeneous catalysis, including datasets that were not used for its training. Overall, we find that mBEEF-vdW has a higher general accuracy than competing popular functionals, and it is one of the best performing functionals on chemisorption systems, surface energies, lattice constants, and dispersion. We also show the potential-energy curve of graphene on the nickel(111) surface, where mBEEF-vdW matches the experimental binding length. mBEEF-vdW is currently available in gpaw and other density functional theory codes through Libxc, version 3.0.0.

  5. Accurate liability estimation improves power in ascertained case-control studies.

    PubMed

    Weissbrod, Omer; Lippert, Christoph; Geiger, Dan; Heckerman, David

    2015-04-01

    Linear mixed models (LMMs) have emerged as the method of choice for confounded genome-wide association studies. However, the performance of LMMs in nonrandomly ascertained case-control studies deteriorates with increasing sample size. We propose a framework called LEAP (liability estimator as a phenotype; https://github.com/omerwe/LEAP) that tests for association with estimated latent values corresponding to severity of phenotype, and we demonstrate that this can lead to a substantial power increase.

  6. An Efficient and Accurate Method of Estimating Substrate Noise Coupling in Heavily Doped Substrates

    DTIC Science & Technology

    2005-08-24

    αij values obtained from the original contact sizes. The αij calculated using the model is the same for both the cases. The error from this model is...substrate resistances in large circuits,” in Proc. European Design and Test Conference, March 1996, pp. 560-565. [5] E. Charbon , R. Gharpurey, P. Miliozzi...and E. Charbon , “Substrate coupling: modeling, simulation and design perspectives,” in Proc. of Quality Electronic Design, March 2004, pp. 283-290. [8

  7. An analytic technique for statistically modeling random atomic clock errors in estimation

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1981-01-01

    Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.

  8. A parametric multiclass Bayes error estimator for the multispectral scanner spatial model performance evaluation

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.; Anuta, P. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The probability of correct classification of various populations in data was defined as the primary performance index. The multispectral data being of multiclass nature as well, required a Bayes error estimation procedure that was dependent on a set of class statistics alone. The classification error was expressed in terms of an N dimensional integral, where N was the dimensionality of the feature space. The multispectral scanner spatial model was represented by a linear shift, invariant multiple, port system where the N spectral bands comprised the input processes. The scanner characteristic function, the relationship governing the transformation of the input spatial, and hence, spectral correlation matrices through the systems, was developed.

  9. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  10. Reiterative deconvolution: New technique for time of flight estimation errors reduction in case of close proximity of two reflections.

    PubMed

    Svilainis, Linas; Lukoseviciute, Kristina; Liaukonis, Dobilas

    2017-04-01

    ToF estimation errors for two reflections have been analyzed. Case of high signal-to-noise ratio was assumed, when accuracy of the order of few nanoseconds can be achieved. It was indicated that additional bias errors are introduced in ToF estimator when other reflection is in close temporal proximity to the reflection of interest. Research demonstrates that iterative deconvolution does not improve the accuracy significantly. Novel technique is suggested which addresses this issue by means of a reiterative deconvolution. Simulation and experimental performance evaluation is presented. Bias error quickly diminishes with every reiteration when using new technique and is below the other errors after few reiterations.

  11. Relativistic regimes in which Compton scattering doubly differential cross sections obtained from impulse approximation are accurate due to cancelation of errors

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2015-05-01

    There is no simple parameter that can be used to predict when impulse approximation (IA) can yield accurate Compton scattering doubly differential cross sections (DDCS) in relativistic regimes. When Z is low, a small value of the parameter /q (where is the average initial electron momentum and q is the momentum transfer) suffices. For small Z the photon electron kinematic contribution described in relativistic S-matrix (SM) theory reduces to an expression, Xrel, which is present in the relativistic impulse approximation (RIA) formula for Compton DDCS. When Z is high, the S-Matrix photon electron kinematics no longer reduces to Xrel, and this along with the error characterized by the magnitude of /q contribute to the RIA error Δ. We demonstrate and illustrate in the form of contour plots that there are regimes of incident photon energy ωi and scattering angle θ in which the two types of errors at least partially cancel. Our calculations show that when θ is about 65° for Uranium K-shell scattering, Δ is less than 1% over an ωi range of 300 to 900 keV.

  12. Analysis of open-loop conical scan pointing error and variance estimators

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.

    1993-01-01

    General pointing error and variance estimators for an open-loop conical scan (conscan) system are derived and analyzed. The conscan algorithm is modeled as a weighted least-squares estimator whose inputs are samples of receiver carrier power and its associated measurement uncertainty. When the assumptions of constant measurement noise and zero pointing error estimation are applied, the variance equation is then strictly a function of the carrier power to uncertainty ratio and the operator selectable radius and period input to the algorithm. The performance equation is applied to a 34-m mirror-based beam-waveguide conscan system interfaced with the Block V Receiver Subsystem tracking a Ka-band (32-GHz) downlink. It is shown that for a carrier-to-noise power ratio greater than or equal to 30 dB-Hz, the conscan period for Ka-band operation may be chosen well below the current DSN minimum of 32 sec. The analysis presented forms the basis of future conscan work in both research and development as well as for the upcoming DSN antenna controller upgrade for the new DSS-24 34-m beam-waveguide antenna.

  13. Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects

    PubMed Central

    Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.

    2015-01-01

    We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341

  14. Estimating the acute health effects of coarse particulate matter accounting for exposure measurement error.

    PubMed

    Chang, Howard H; Peng, Roger D; Dominici, Francesca

    2011-10-01

    In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse particulate matter (PM) with aerodynamic diameter between 2.5 and 10 μm. Coarse PM concentrations can exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not remain suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling approach for estimating the short-term effects of air pollution in time series analysis when the ambient concentrations vary spatially within the study region. Specifically, our approach quantifies the error in the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations measured across monitoring stations. This is accomplished by viewing monitor-level measurements as error-prone repeated measurements of the unobserved population average exposure. Inference is carried out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters. Finally, by using different exposure indicators, we investigate the sensitivity of the association between coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive association between coarse PM and same-day admission for cardiovascular diseases.

  15. Precision Pointing Control to and Accurate Target Estimation of a Non-Cooperative Vehicle

    NASA Technical Reports Server (NTRS)

    VanEepoel, John; Thienel, Julie; Sanner, Robert M.

    2006-01-01

    In 2004, NASA began investigating a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates in order to achieve capture by the proposed Hubble Robotic Vehicle (HRV), but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST. To generalize the situation, HST is the target vehicle and HRV is the chaser. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a control scheme. Non-cooperative in this context relates to the target vehicle no longer having the ability to maintain attitude control or transmit attitude knowledge.

  16. Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2006-01-01

    Autonomous space rendezvous scenarios require knowledge of the target vehicle state in order to safely dock with the chaser vehicle. Ideally, the target vehicle state information is derived from telemetered data, or with the use of known tracking points on the target vehicle. However, if the target vehicle is non-cooperative and does not have the ability to maintain attitude control, or transmit attitude knowledge, the docking becomes more challenging. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a tracking control scheme. The approach is tested with the robotic servicing mission concept for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates, but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST.

  17. Fast and accurate probability density estimation in large high dimensional astronomical datasets

    NASA Astrophysics Data System (ADS)

    Gupta, Pramod; Connolly, Andrew J.; Gardner, Jeffrey P.

    2015-01-01

    Astronomical surveys will generate measurements of hundreds of attributes (e.g. color, size, shape) on hundreds of millions of sources. Analyzing these large, high dimensional data sets will require efficient algorithms for data analysis. An example of this is probability density estimation that is at the heart of many classification problems such as the separation of stars and quasars based on their colors. Popular density estimation techniques use binning or kernel density estimation. Kernel density estimation has a small memory footprint but often requires large computational resources. Binning has small computational requirements but usually binning is implemented with multi-dimensional arrays which leads to memory requirements which scale exponentially with the number of dimensions. Hence both techniques do not scale well to large data sets in high dimensions. We present an alternative approach of binning implemented with hash tables (BASH tables). This approach uses the sparseness of data in the high dimensional space to ensure that the memory requirements are small. However hashing requires some extra computation so a priori it is not clear if the reduction in memory requirements will lead to increased computational requirements. Through an implementation of BASH tables in C++ we show that the additional computational requirements of hashing are negligible. Hence this approach has small memory and computational requirements. We apply our density estimation technique to photometric selection of quasars using non-parametric Bayesian classification and show that the accuracy of the classification is same as the accuracy of earlier approaches. Since the BASH table approach is one to three orders of magnitude faster than the earlier approaches it may be useful in various other applications of density estimation in astrostatistics.

  18. How many measurements are needed to estimate accurate daily and annual soil respiration fluxes? Analysis using data from a temperate rainforest

    NASA Astrophysics Data System (ADS)

    Perez-Quezada, Jorge F.; Brito, Carla E.; Cabezas, Julián; Galleguillos, Mauricio; Fuentes, Juan P.; Bown, Horacio E.; Franck, Nicolás

    2016-12-01

    Making accurate estimations of daily and annual Rs fluxes is key for understanding the carbon cycle process and projecting effects of climate change. In this study we used high-frequency sampling (24 measurements per day) of Rs in a temperate rainforest during 1 year, with the objective of answering the questions of when and how often measurements should be made to obtain accurate estimations of daily and annual Rs. We randomly selected data to simulate samplings of 1, 2, 4 or 6 measurements per day (distributed either during the whole day or only during daytime), combined with 4, 6, 12, 26 or 52 measurements per year. Based on the comparison of partial-data series with the full-data series, we estimated the performance of different partial sampling strategies based on bias, precision and accuracy. In the case of annual Rs estimation, we compared the performance of interpolation vs. using non-linear modelling based on soil temperature. The results show that, under our study conditions, sampling twice a day was enough to accurately estimate daily Rs (RMSE < 10 % of average daily flux), even if both measurements were done during daytime. The highest reduction in RMSE for the estimation of annual Rs was achieved when increasing from four to six measurements per year, but reductions were still relevant when further increasing the frequency of sampling. We found that increasing the number of field campaigns was more effective than increasing the number of measurements per day, provided a minimum of two measurements per day was used. Including night-time measurements significantly reduced the bias and was relevant in reducing the number of field campaigns when a lower level of acceptable error (RMSE < 5 %) was established. Using non-linear modelling instead of linear interpolation did improve the estimation of annual Rs, but not as expected. In conclusion, given that most of the studies of Rs use manual sampling techniques and apply only one measurement per day, we

  19. Spectral estimation from laser scanner data for accurate color rendering of objects

    NASA Astrophysics Data System (ADS)

    Baribeau, Rejean

    2002-06-01

    Estimation methods are studied for the recovery of the spectral reflectance across the visible range from the sensing at just three discrete laser wavelengths. Methods based on principal component analysis and on spline interpolation are judged based on the CIE94 color differences for some reference data sets. These include the Macbeth color checker, the OSA-UCS color charts, some artist pigments, and a collection of miscellaneous surface colors. The optimal three sampling wavelengths are also investigated. It is found that color can be estimated with average accuracy ΔE94 = 2.3 when optimal wavelengths 455 nm, 540 n, and 610 nm are used.

  20. Data Anonymization that Leads to the Most Accurate Estimates of Statistical Characteristics: Fuzzy-Motivated Approach

    PubMed Central

    Xiang, G.; Ferson, S.; Ginzburg, L.; Longpré, L.; Mayorga, E.; Kosheleva, O.

    2013-01-01

    To preserve privacy, the original data points (with exact values) are replaced by boxes containing each (inaccessible) data point. This privacy-motivated uncertainty leads to uncertainty in the statistical characteristics computed based on this data. In a previous paper, we described how to minimize this uncertainty under the assumption that we use the same standard statistical estimates for the desired characteristics. In this paper, we show that we can further decrease the resulting uncertainty if we allow fuzzy-motivated weighted estimates, and we explain how to optimally select the corresponding weights. PMID:25187183

  1. Estimating random errors due to shot noise in backscatter lidar observations

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark; Hostetler, Chris; McGill, Matthew; Powell, Kathleen; Winker, David; Hu, Yongxiang

    2006-06-01

    We discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson- distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root mean square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF, uncertainties can be reliably calculated from or for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar and tested using data from the Lidar In-space Technology Experiment.

  2. Estimating random errors due to shot noise in backscatter lidar observations.

    PubMed

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark; Hostetler, Chris; McGill, Matthew; Powell, Kathleen; Winker, David; Hu, Yongxiang

    2006-06-20

    We discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson- distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root mean square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF, uncertainties can be reliably calculated from or for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar and tested using data from the Lidar In-space Technology Experiment.

  3. Estimating Random Errors Due to Shot Noise in Backscatter Lidar Observations

    NASA Technical Reports Server (NTRS)

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark A.; Hostetler, Chris A.; McGill, Matthew J.; Powell, Kathy; Winker, David M.; Hu, Yongxiang

    2006-01-01

    In this paper, we discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson-distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root-mean-square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF uncertainties can be reliably calculated from/for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar and tested using data from the Lidar In-space Technology Experiment (LITE). OCIS Codes:

  4. Improved Object Localization Using Accurate Distance Estimation in Wireless Multimedia Sensor Networks.

    PubMed

    Ur Rehman, Yasar Abbas; Tariq, Muhammad; Khan, Omar Usman

    2015-01-01

    Object localization plays a key role in many popular applications of Wireless Multimedia Sensor Networks (WMSN) and as a result, it has acquired a significant status for the research community. A significant body of research performs this task without considering node orientation, object geometry and environmental variations. As a result, the localized object does not reflect the real world scenarios. In this paper, a novel object localization scheme for WMSN has been proposed that utilizes range free localization, computer vision, and principle component analysis based algorithms. The proposed approach provides the best possible approximation of distance between a wmsn sink and an object, and the orientation of the object using image based information. Simulation results report 99% efficiency and an error ratio of 0.01 (around 1 ft) when compared to other popular techniques.

  5. How Accurate and Robust Are the Phylogenetic Estimates of Austronesian Language Relationships?

    PubMed Central

    Greenhill, Simon J.; Drummond, Alexei J.; Gray, Russell D.

    2010-01-01

    We recently used computational phylogenetic methods on lexical data to test between two scenarios for the peopling of the Pacific. Our analyses of lexical data supported a pulse-pause scenario of Pacific settlement in which the Austronesian speakers originated in Taiwan around 5,200 years ago and rapidly spread through the Pacific in a series of expansion pulses and settlement pauses. We claimed that there was high congruence between traditional language subgroups and those observed in the language phylogenies, and that the estimated age of the Austronesian expansion at 5,200 years ago was consistent with the archaeological evidence. However, the congruence between the language phylogenies and the evidence from historical linguistics was not quantitatively assessed using tree comparison metrics. The robustness of the divergence time estimates to different calibration points was also not investigated exhaustively. Here we address these limitations by using a systematic tree comparison metric to calculate the similarity between the Bayesian phylogenetic trees and the subgroups proposed by historical linguistics, and by re-estimating the age of the Austronesian expansion using only the most robust calibrations. The results show that the Austronesian language phylogenies are highly congruent with the traditional subgroupings, and the date estimates are robust even when calculated using a restricted set of historical calibrations. PMID:20224774

  6. SIMULTANEOUS ESTIMATION OF PHOTOMETRIC REDSHIFTS AND SED PARAMETERS: IMPROVED TECHNIQUES AND A REALISTIC ERROR BUDGET

    SciTech Connect

    Acquaviva, Viviana; Raichoor, Anand

    2015-05-01

    We seek to improve the accuracy of joint galaxy photometric redshift estimation and spectral energy distribution (SED) fitting. By simulating different sources of uncorrected systematic errors, we demonstrate that if the uncertainties in the photometric redshifts are estimated correctly, so are those on the other SED fitting parameters, such as stellar mass, stellar age, and dust reddening. Furthermore, we find that if the redshift uncertainties are over(under)-estimated, the uncertainties in SED parameters tend to be over(under)-estimated by similar amounts. These results hold even in the presence of severe systematics and provide, for the first time, a mechanism to validate the uncertainties on these parameters via comparison with spectroscopic redshifts. We propose a new technique (annealing) to re-calibrate the joint uncertainties in the photo-z and SED fitting parameters without compromising the performance of the SED fitting + photo-z estimation. This procedure provides a consistent estimation of the multi-dimensional probability distribution function in SED fitting + z parameter space, including all correlations. While the performance of joint SED fitting and photo-z estimation might be hindered by template incompleteness, we demonstrate that the latter is “flagged” by a large fraction of outliers in redshift, and that significant improvements can be achieved by using flexible stellar populations synthesis models and more realistic star formation histories. In all cases, we find that the median stellar age is better recovered than the time elapsed from the onset of star formation. Finally, we show that using a photometric redshift code such as EAZY to obtain redshift probability distributions that are then used as priors for SED fitting codes leads to only a modest bias in the SED fitting parameters and is thus a viable alternative to the simultaneous estimation of SED parameters and photometric redshifts.

  7. Accurate estimation of influenza epidemics using Google search data via ARGO

    PubMed Central

    Yang, Shihao; Santillana, Mauricio; Kou, S. C.

    2015-01-01

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search–based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people’s online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions. PMID:26553980

  8. Do hand-held calorimeters provide reliable and accurate estimates of resting metabolic rate?

    PubMed

    Van Loan, Marta D

    2007-12-01

    This paper provides an overview of a new technique for indirect calorimetry and the assessment of resting metabolic rate. Information from the research literature includes findings on the reliability and validity of a new hand-held indirect calorimeter as well as use in clinical and field settings. Research findings to date are of mixed results. The MedGem instrument has provided more consistent results when compared to the Douglas bag method of measuring metabolic rate. The BodyGem instrument has been shown to be less accurate when compared to standard metabolic carts. Furthermore, when the Body Gem has been used with clinical patients or with under nourished individuals the results have not been acceptable. Overall, there is not a large enough body of evidence to definitively support the use of these hand-held devices for assessment of metabolic rate in a wide variety of clinical or research environments.

  9. Accurate estimation of influenza epidemics using Google search data via ARGO.

    PubMed

    Yang, Shihao; Santillana, Mauricio; Kou, S C

    2015-11-24

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.

  10. Unit Root Testing and Estimation in Nonlinear ESTAR Models with Normal and Non-Normal Errors

    PubMed Central

    Alamgir; Ali, Amjad; Khan, Dost Muhammad; Khan, Sajjad Ahmad; Khan, Zardad

    2016-01-01

    Exponential Smooth Transition Autoregressive (ESTAR) models can capture non-linear adjustment of the deviations from equilibrium conditions which may explain the economic behavior of many variables that appear non stationary from a linear viewpoint. Many researchers employ the Kapetanios test which has a unit root as the null and a stationary nonlinear model as the alternative. However this test statistics is based on the assumption of normally distributed errors in the DGP. Cook has analyzed the size of the nonlinear unit root of this test in the presence of heavy-tailed innovation process and obtained the critical values for both finite variance and infinite variance cases. However the test statistics of Cook are oversized. It has been found by researchers that using conventional tests is dangerous though the best performance among these is a HCCME. The over sizing for LM tests can be reduced by employing fixed design wild bootstrap remedies which provide a valuable alternative to the conventional tests. In this paper the size of the Kapetanios test statistic employing hetroscedastic consistent covariance matrices has been derived and the results are reported for various sample sizes in which size distortion is reduced. The properties for estimates of ESTAR models have been investigated when errors are assumed non-normal. We compare the results obtained through the fitting of nonlinear least square with that of the quantile regression fitting in the presence of outliers and the error distribution was considered to be from t-distribution for various sample sizes. PMID:27898702

  11. Estimating Measurement Error of the Patient Activation Measure for Respondents with Partially Missing Data.

    PubMed

    Linden, Ariel

    2015-01-01

    The patient activation measure (PAM) is an increasingly popular instrument used as the basis for interventions to improve patient engagement and as an outcome measure to assess intervention effect. However, a PAM score may be calculated when there are missing responses, which could lead to substantial measurement error. In this paper, measurement error is systematically estimated across the full possible range of missing items (one to twelve), using simulation in which populated items were randomly replaced with missing data for each of 1,138 complete surveys obtained in a randomized controlled trial. The PAM score was then calculated, followed by comparisons of overall simulated average mean, minimum, and maximum PAM scores to the true PAM score in order to assess the absolute percentage error (APE) for each comparison. With only one missing item, the average APE was 2.5% comparing the true PAM score to the simulated minimum score and 4.3% compared to the simulated maximum score. APEs increased with additional missing items, such that surveys with 12 missing items had average APEs of 29.7% (minimum) and 44.4% (maximum). Several suggestions and alternative approaches are offered that could be pursued to improve measurement accuracy when responses are missing.

  12. Estimation of the sampling interval error for LED measurement with a goniophotometer

    NASA Astrophysics Data System (ADS)

    Zhao, Weiqiang; Liu, Hui; Liu, Jian

    2013-06-01

    Using a goniophotometer to implant a total luminous flux measurement, an error comes from the sampling interval, especially in the situation for LED measurement. In this work, we use computer calculations to estimate the effect of sampling interval on the measuring the total luminous flux for four typical kinds of LEDs, whose spatial distributions of luminous intensity is similar to those LEDs shown in CIE 127 paper. Four basic kinds of mathematical functions are selected to simulate the distribution curves. Axial symmetric type LED and non-axial symmetric type LED are both take amount of. We consider polar angle sampling interval of 0.5°, 1°, 2°, and 5° respectively in one rotation for axial symmetric type, and consider azimuth angle sampling interval of 18°, 15°, 12°, 10° and 5° respectively for non-axial symmetric type. We noted that the error is strongly related to spatial distribution. However, for common LED light sources the calculation results show that a usage of polar angle sampling interval of 2° and azimuth angle sampling interval of 15° is recommended. The systematic error of sampling interval for a goniophotometer can be controlled at the level of 0.3%. For high precise level, the usage of polar angle sampling interval of 1° and azimuth angle sampling interval of 10° should be used.

  13. Multiple candidates and multiple constraints based accurate depth estimation for multi-view stereo

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhou, Fugen; Xue, Bindang

    2017-02-01

    In this paper, we propose a depth estimation method for multi-view image sequence. To enhance the accuracy of dense matching and reduce the inaccurate matching which is produced by inaccurate feature description, we select multiple matching points to build candidate matching sets. Then we compute an optimal depth from a candidate matching set which satisfies multiple constraints (epipolar constraint, similarity constraint and depth consistency constraint). To further increase the accuracy of depth estimation, depth consistency constraint of neighbor pixels is used to filter the inaccurate matching. On this basis, in order to get more complete depth map, depth diffusion is performed by neighbor pixels' depth consistency constraint. Through experiments on the benchmark datasets for multiple view stereo, we demonstrate the superiority of proposed method over the state-of-the-art method in terms of accuracy.

  14. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1990-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  15. Accurate dynamic power estimation for CMOS combinational logic circuits with real gate delay model.

    PubMed

    Fadl, Omnia S; Abu-Elyazeed, Mohamed F; Abdelhalim, Mohamed B; Amer, Hassanein H; Madian, Ahmed H

    2016-01-01

    Dynamic power estimation is essential in designing VLSI circuits where many parameters are involved but the only circuit parameter that is related to the circuit operation is the nodes' toggle rate. This paper discusses a deterministic and fast method to estimate the dynamic power consumption for CMOS combinational logic circuits using gate-level descriptions based on the Logic Pictures concept to obtain the circuit nodes' toggle rate. The delay model for the logic gates is the real-delay model. To validate the results, the method is applied to several circuits and compared against exhaustive, as well as Monte Carlo, simulations. The proposed technique was shown to save up to 96% processing time compared to exhaustive simulation.

  16. Accurate group velocity estimation for unmanned aerial vehicle-based acoustic atmospheric tomography.

    PubMed

    Rogers, Kevin J; Finn, Anthony

    2017-02-01

    Acoustic atmospheric tomography calculates temperature and wind velocity fields in a slice or volume of atmosphere based on travel time estimates between strategically located sources and receivers. The technique discussed in this paper uses the natural acoustic signature of an unmanned aerial vehicle as it overflies an array of microphones on the ground. The sound emitted by the aircraft is recorded on-board and by the ground microphones. The group velocities of the intersecting sound rays are then derived by comparing these measurements. Tomographic inversion is used to estimate the temperature and wind fields from the group velocity measurements. This paper describes a technique for deriving travel time (and hence group velocity) with an accuracy of 0.1% using these assets. This is shown to be sufficient to obtain highly plausible tomographic inversion results that correlate well with independent SODAR measurements.

  17. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1991-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  18. Prediction and standard error estimation for a finite universe total when a stratum is not sampled

    SciTech Connect

    Wright, T.

    1994-01-01

    In the context of a universe of trucks operating in the United States in 1990, this paper presents statistical methodology for estimating a finite universe total on a second occasion when a part of the universe is sampled and the remainder of the universe is not sampled. Prediction is used to compensate for the lack of data from the unsampled portion of the universe. The sample is assumed to be a subsample of an earlier sample where stratification is used on both occasions before sample selection. Accounting for births and deaths in the universe between the two points in time, the detailed sampling plan, estimator, standard error, and optimal sample allocation, are presented with a focus on the second occasion. If prior auxiliary information is available, the methodology is also applicable to a first occasion.

  19. Multivariate Error Covariance Estimates by Monte-Carlo Simulation for Assimilation Studies in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Borovikov, Anna; Rienecker, Michele M.; Keppenne, Christian; Johnson, Gregory C.

    2004-01-01

    One of the most difficult aspects of ocean state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model-observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross-covariances between different model variables used. Here a comparison is made between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature. In the UOI case only temperature is updated using a Gaussian covariance function and in the MvOI salinity, zonal and meridional velocities as well as temperature, are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimation of the model error statistics is made by Monte-Carlo techniques from an ensemble of model integrations. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross-covariances between the fields of different physical variables constituting the model state vector, at the same time incorporating the model's dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere-Ocean array have been assimilated in this study. In order to investigate the efficacy of the multivariate scheme two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity and temperature. For reference, a third control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the

  20. Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes

    NASA Astrophysics Data System (ADS)

    Calvo, M.; González-Pinto, S.; Montijano, J. I.

    2008-09-01

    Modern codes for the numerical solution of Initial Value Problems (IVPs) in ODEs are based in adaptive methods that, for a user supplied tolerance [delta], attempt to advance the integration selecting the size of each step so that some measure of the local error is [similar, equals][delta]. Although this policy does not ensure that the global errors are under the prescribed tolerance, after the early studies of Stetter [Considerations concerning a theory for ODE-solvers, in: R. Burlisch, R.D. Grigorieff, J. Schröder (Eds.), Numerical Treatment of Differential Equations, Proceedings of Oberwolfach, 1976, Lecture Notes in Mathematics, vol. 631, Springer, Berlin, 1978, pp. 188-200; Tolerance proportionality in ODE codes, in: R. März (Ed.), Proceedings of the Second Conference on Numerical Treatment of Ordinary Differential Equations, Humbold University, Berlin, 1980, pp. 109-123] and the extensions of Higham [Global error versus tolerance for explicit Runge-Kutta methods, IMA J. Numer. Anal. 11 (1991) 457-480; The tolerance proportionality of adaptive ODE solvers, J. Comput. Appl. Math. 45 (1993) 227-236; The reliability of standard local error control algorithms for initial value ordinary differential equations, in: Proceedings: The Quality of Numerical Software: Assessment and Enhancement, IFIP Series, Springer, Berlin, 1997], it has been proved that in many existing explicit Runge-Kutta codes the global errors behave asymptotically as some rational power of [delta]. This step-size policy, for a given IVP, determines at each grid point tn a new step-size hn+1=h(tn;[delta]) so that h(t;[delta]) is a continuous function of t. In this paper a study of the tolerance proportionality property under a discontinuous step-size policy that does not allow to change the size of the step if the step-size ratio between two consecutive steps is close to unity is carried out. This theory is applied to obtain global error estimations in a few problems that have been solved with

  1. Accuracy of the European solar water heater test procedure. Part 1: Measurement errors and parameter estimates

    SciTech Connect

    Rabl, A.; Leide, B. ); Carvalho, M.J.; Collares-Pereira, M. ); Bourges, B.

    1991-01-01

    The Collector and System Testing Group (CSTG) of the European Community has developed a procedure for testing the performance of solar water heaters. This procedure treats a solar water heater as a black box with input-output parameters that are determined by all-day tests. In the present study the authors carry out a systematic analysis of the accuracy of this procedure, in order to answer the question: what tolerances should one impose for the measurements and how many days of testing should one demand under what meteorological conditions, in order to be able to quarantee a specified maximum error for the long term performance The methodology is applicable to other test procedures as well. The present paper (Part 1) examines the measurement tolerances of the current version of the procedure and derives a priori estimates of the errors of the parameters; these errors are then compared with the regression results of the Round Robin test series. The companion paper (Part 2) evaluates the consequences for the accuracy of the long term performance prediction. The authors conclude that the CSTG test procedure makes it possible to predict the long term performance with standard errors around 5% for sunny climates (10% for cloudy climates). The apparent precision of individual test sequences is deceptive because of large systematic discrepancies between different sequences. Better results could be obtained by imposing tighter control on the constancy of the cold water supply temperature and on the environment of the test, the latter by enforcing the recommendation for the ventilation of the collector.

  2. Practical error estimates for Reynolds' lubrication approximation and its higher order corrections

    SciTech Connect

    Wilkening, Jon

    2008-12-10

    Reynolds lubrication approximation is used extensively to study flows between moving machine parts, in narrow channels, and in thin films. The solution of Reynolds equation may be thought of as the zeroth order term in an expansion of the solution of the Stokes equations in powers of the aspect ratio {var_epsilon} of the domain. In this paper, we show how to compute the terms in this expansion to arbitrary order on a two-dimensional, x-periodic domain and derive rigorous, a-priori error bounds for the difference between the exact solution and the truncated expansion solution. Unlike previous studies of this sort, the constants in our error bounds are either independent of the function h(x) describing the geometry, or depend on h and its derivatives in an explicit, intuitive way. Specifically, if the expansion is truncated at order 2k, the error is O({var_epsilon}{sup 2k+2}) and h enters into the error bound only through its first and third inverse moments {integral}{sub 0}{sup 1} h(x){sup -m} dx, m = 1,3 and via the max norms {parallel} 1/{ell}! h{sup {ell}-1}{partial_derivative}{sub x}{sup {ell}}h{parallel}{sub {infinity}}, 1 {le} {ell} {le} 2k + 2. We validate our estimates by comparing with finite element solutions and present numerical evidence that suggests that even when h is real analytic and periodic, the expansion solution forms an asymptotic series rather than a convergent series.

  3. Uncertainty estimation in form error evaluation of freeform surfaces for precision metrology

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangchao; Xiao, Hong; Zhang, Hao; He, Xiaoying; Xu, Min

    2016-01-01

    Freeform surfaces are widely used in precision components to realize novel functionalities. In order to evaluate the form qualities of the manufactured freeform parts, surface matching/fitting is required. The uncertainty of the obtained form deviations needs to be estimated to assess the reliability of form error evaluation. The GUM approach is extensively adopted for uncertainty assessment in precision metrology, but it is not suited for assessing the nonlinear matching/fitting problems of freeform models. In this paper a Monte-Carlo method is developed to estimate the uncertainty of the fitted position, shape and form error metrics. Based on the correlation analysis, the effects of objective functions in numerical optimization, noise amplitudes in measurement, shapes of freeform surfaces and so on are determined. Then the significant factors dominating the reliability of the fitted results can be identified. Henceforth the matching/fitting procedures can be arranged appropriately to reduce the uncertainty of the evaluation results and improve the reliability of freeform surface characterization.

  4. Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System

    PubMed Central

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-01-01

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384

  5. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system.

    PubMed

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-05-07

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path.

  6. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  7. A Comparison of Item Parameter Standard Error Estimation Procedures for Unidimensional and Multidimensional Item Response Theory Modeling

    ERIC Educational Resources Information Center

    Paek, Insu; Cai, Li

    2014-01-01

    The present study was motivated by the recognition that standard errors (SEs) of item response theory (IRT) model parameters are often of immediate interest to practitioners and that there is currently a lack of comparative research on different SE (or error variance-covariance matrix) estimation procedures. The present study investigated item…

  8. A Simple and Accurate Equation for Peak Capacity Estimation in Two Dimensional Liquid Chromatography

    PubMed Central

    Li, Xiaoping; Stoll, Dwight R.; Carr, Peter W.

    2009-01-01

    Two dimensional liquid chromatography (2DLC) is a very powerful way to greatly increase the resolving power and overall peak capacity of liquid chromatography. The traditional “product rule” for peak capacity usually overestimates the true resolving power due to neglect of the often quite severe under-sampling effect and thus provides poor guidance for optimizing the separation and biases comparisons to optimized one dimensional gradient liquid chromatography. Here we derive a simple yet accurate equation for the effective two dimensional peak capacity that incorporates a correction for under-sampling of the first dimension. The results show that not only is the speed of the second dimension separation important for reducing the overall analysis time, but it plays a vital role in determining the overall peak capacity when the first dimension is under-sampled. A surprising subsidiary finding is that for relatively short 2DLC separations (much less than a couple of hours), the first dimension peak capacity is far less important than is commonly believed and need not be highly optimized, for example through use of long columns or very small particles. PMID:19053226

  9. Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity

    NASA Astrophysics Data System (ADS)

    González-Estrada, Octavio A.; Natarajan, Sundararajan; Ródenas, Juan José; Nguyen-Xuan, Hung; Bordas, Stéphane P. A.

    2013-07-01

    An error control technique aimed to assess the quality of smoothed finite element approximations is presented in this paper. Finite element techniques based on strain smoothing appeared in 2007 were shown to provide significant advantages compared to conventional finite element approximations. In particular, a widely cited strength of such methods is improved accuracy for the same computational cost. Yet, few attempts have been made to directly assess the quality of the results obtained during the simulation by evaluating an estimate of the discretization error. Here we propose a recovery type error estimator based on an enhanced recovery technique. The salient features of the recovery are: enforcement of local equilibrium and, for singular problems a "smooth + singular" decomposition of the recovered stress. We evaluate the proposed estimator on a number of test cases from linear elastic structural mechanics and obtain efficient error estimations whose effectivities, both at local and global levels, are improved compared to recovery procedures not implementing these features.

  10. Application of parameter estimation to aircraft stability and control: The output-error approach

    NASA Technical Reports Server (NTRS)

    Maine, Richard E.; Iliff, Kenneth W.

    1986-01-01

    The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific program for an example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results.

  11. Accurate Estimation of Expression Levels of Homologous Genes in RNA-seq Experiments

    NASA Astrophysics Data System (ADS)

    Paşaniuc, Bogdan; Zaitlen, Noah; Halperin, Eran

    Next generation high throughput sequencing (NGS) is poised to replace array based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naïve algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

  12. Accurate estimation of expression levels of homologous genes in RNA-seq experiments.

    PubMed

    Paşaniuc, Bogdan; Zaitlen, Noah; Halperin, Eran

    2011-03-01

    Abstract Next generation high-throughput sequencing (NGS) is poised to replace array-based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naive algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood-based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

  13. Error and bias in size estimates of whale sharks: implications for understanding demography.

    PubMed

    Sequeira, Ana M M; Thums, Michele; Brooks, Kim; Meekan, Mark G

    2016-03-01

    Body size and age at maturity are indicative of the vulnerability of a species to extinction. However, they are both difficult to estimate for large animals that cannot be restrained for measurement. For very large species such as whale sharks, body size is commonly estimated visually, potentially resulting in the addition of errors and bias. Here, we investigate the errors and bias associated with total lengths of whale sharks estimated visually by comparing them with measurements collected using a stereo-video camera system at Ningaloo Reef, Western Australia. Using linear mixed-effects models, we found that visual lengths were biased towards underestimation with increasing size of the shark. When using the stereo-video camera, the number of larger individuals that were possibly mature (or close to maturity) that were detected increased by approximately 10%. Mean lengths calculated by each method were, however, comparable (5.002 ± 1.194 and 6.128 ± 1.609 m, s.d.), confirming that the population at Ningaloo is mostly composed of immature sharks based on published lengths at maturity. We then collated data sets of total lengths sampled from aggregations of whale sharks worldwide between 1995 and 2013. Except for locations in the East Pacific where large females have been reported, these aggregations also largely consisted of juveniles (mean lengths less than 7 m). Sightings of the largest individuals were limited and occurred mostly prior to 2006. This result highlights the urgent need to locate and quantify the numbers of mature male and female whale sharks in order to ascertain the conservation status and ensure persistence of the species.

  14. Error and bias in size estimates of whale sharks: implications for understanding demography

    PubMed Central

    Sequeira, Ana M. M.; Thums, Michele; Brooks, Kim; Meekan, Mark G.

    2016-01-01

    Body size and age at maturity are indicative of the vulnerability of a species to extinction. However, they are both difficult to estimate for large animals that cannot be restrained for measurement. For very large species such as whale sharks, body size is commonly estimated visually, potentially resulting in the addition of errors and bias. Here, we investigate the errors and bias associated with total lengths of whale sharks estimated visually by comparing them with measurements collected using a stereo-video camera system at Ningaloo Reef, Western Australia. Using linear mixed-effects models, we found that visual lengths were biased towards underestimation with increasing size of the shark. When using the stereo-video camera, the number of larger individuals that were possibly mature (or close to maturity) that were detected increased by approximately 10%. Mean lengths calculated by each method were, however, comparable (5.002 ± 1.194 and 6.128 ± 1.609 m, s.d.), confirming that the population at Ningaloo is mostly composed of immature sharks based on published lengths at maturity. We then collated data sets of total lengths sampled from aggregations of whale sharks worldwide between 1995 and 2013. Except for locations in the East Pacific where large females have been reported, these aggregations also largely consisted of juveniles (mean lengths less than 7 m). Sightings of the largest individuals were limited and occurred mostly prior to 2006. This result highlights the urgent need to locate and quantify the numbers of mature male and female whale sharks in order to ascertain the conservation status and ensure persistence of the species. PMID:27069656

  15. State estimation bias induced by optimization under uncertainty and error cost asymmetry is likely reflected in perception.

    PubMed

    Shimansky, Y P

    2011-05-01

    It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.

  16. Sensitivity of Active Remotely Sensed Total Column Observations to Atmospheric State Estimation Errors

    NASA Astrophysics Data System (ADS)

    Crowell, S.; Rayner, P. J.; Moore, B.

    2013-12-01

    The proposed Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission will retrieve total column CO2 using a laser-based measurement. The differential absorption lidar (DIAL) approach utilizes the difference in absorption between neighboring spectral lines to effectively determine the difference in absorption due to CO2. The actual measured quantity is equivalent to the differential absorption, defined by Δτ = ∫ q(p) Δξ(p) dp / g m, where m is the molar mass of air and Δξ is the differential absorption cross section. The main use of the measurement is the characterization of sources and sinks using atmospheric inverse methods. Changes in surface pressure or Δξ can change Δτ independent of sources and sinks and are, thus "nuisance variables". Δξ is strongly dependent on variations in temperature (T) and water vapor (w), which are usually taken from numerical models as estimates of the local atmospheric state. The authors seek to determine observable that contains the most information on the model column of CO2, which will provide the best estimates of sources and sinks in a transport model inversion. Three candidate obser