Science.gov

Sample records for accurate gas mixtures

  1. Development, implementation, and evaluation of accurate natural gas mixture models. Final report, June 1992-June 1995

    SciTech Connect

    Beyerlein, S.W.; Lemmon, E.W.

    1995-07-01

    DETAIL and GROSS characterization methods outlined in the 2nd edition of AGA Report No. 8 and ISO 12213 were developed, documented, and implemented in this work. This includes FORTRAN computer programs which can be obtained on diskette from the American Gas Association. Natural gas compressibility factor data which are consistent with new PVT reference data were used to establish the uncertainty of both characterization methods.

  2. Time-accurate analysis of nonequilibrium gas-particle mixtures using upwind/implicit finite-volume methodology

    SciTech Connect

    Hosangadi, A.; Sinha, N.; Dash, S.M. )

    1992-01-01

    A new Eulerian particulate solver whose numerical formulation is compatible with the numerics in state-of-the-art finite-volume upwind/implicit gas dynamic computer codes is presented. The heat transfer, drag, thermodynamic, and phase-change procedures in this code are derived from earlier, well established data fits and procedures. Performance for numerous flow problems with one- and two-way coupling is quite good. The solutions are nonoscillatory and robust and conserve flux balances very well. 18 refs.

  3. Hydrodynamic gas mixture separation

    SciTech Connect

    Stolyarov, A.A.

    1982-02-10

    The separation of gas mixtures is the basis of many chemical, petrochemical, and gas processes. Classical separation methods (absorption, adsorption, condensation, and freezing) require cumbersome and complex equipment. No adequate solution is provided by the cheapening and simplification of gas-processing apparatus and separation methods by hydration and diffusion. For example, an apparatus for extracting helium from natural gas by diffusion has a throughput of gas containing 0.45% helium of 117,000 m/sup 3//h and in the first stage has teflon membranes working at a pressure difference of 63.3x10/sup 5/ Pa of area 79,000 m/sup 2/, and the specific cost of the apparatus was 8500 dollars per m/sup 3//h of helium. Therefore, vigorous studies are being conducted on new ways of efficient separation of gas mixtures that are cheaper and simpler. Here we consider a novel method of physically essentially reversible separation of gas mixtures, which involves some features of single-phase supersonic flows.

  4. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  5. Equilibrium gas flow computations. I - Accurate and efficient calculation of equilibrium gas properties

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    1989-01-01

    This paper treats the accurate and efficient calculation of thermodynamic properties of arbitrary gas mixtures for equilibrium flow computations. New improvements in the Stupochenko-Jaffe model for the calculation of thermodynamic properties of diatomic molecules are presented. A unified formulation of equilibrium calculations for gas mixtures in terms of irreversible entropy is given. Using a highly accurate thermo-chemical data base, a new, efficient and vectorizable search algorithm is used to construct piecewise interpolation procedures with generate accurate thermodynamic variable and their derivatives required by modern computational algorithms. Results are presented for equilibrium air, and compared with those given by the Srinivasan program.

  6. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  7. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Hunter, Scott R.

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  8. Acoustic composition sensor for cryogenic gas mixtures

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Luchik, T. S.; Back, L. H.

    1991-01-01

    An acoustic sensor useful for the determination of the composition of a gaseous binary mixture in cryogenic liquid spills has been characterized. One version of the instrument traps a known mixture of helium and nitrogen at ambient temperature in a tube which is interrogated by sonic pulses to determine the speed of sound and hence the composition. Experimental data shows that this sensor is quite accurate. The second version uses two unconfined microphones which sense sound pulses. Experimental data acquired during mixing when liquid nitrogen is poured into a vessel of gaseous helium is presented. Data during transient cooling of the tubular sensor containing nitrogen when the sensor is dipped into liquid nitrogen and during transient warm-up when the sensor is withdrawn are also presented. This sensor is being developed for use in the mixing of liquid cryogens with gas evolution in the simulation of liquid hydrogen/liquid oxygen explosion hazards.

  9. Separation of gas mixtures by centrifugation

    NASA Technical Reports Server (NTRS)

    Park, C.; Love, W. L.

    1972-01-01

    Magnetohydrodynamic (MHD) centrifuge utilizing electric currents and magnetic fields produces a magnetic force which develops supersonic rotational velocities in gas mixtures. Device is superior to ordinary centrifuges because rotation of gas mixture is produced by MHD force rather than mechanical means.

  10. New approach in direct-simulation of gas mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren

    1991-01-01

    Results are reported for an investigation of a new direct-simulation Monte Carlo method by which energy transfer and chemical reactions are calculated. The new method, which reduces to the variable cross-section hard sphere model as a special case, allows different viscosity-temperature exponents for each species in a gas mixture when combined with a modified Larsen-Borgnakke phenomenological model. This removes the most serious limitation of the usefulness of the model for engineering simulations. The necessary kinetic theory for the application of the new method to mixtures of monatomic or polyatomic gases is presented, including gas mixtures involving chemical reactions. Calculations are made for the relaxation of a diatomic gas mixture, a plane shock wave in a gas mixture, and a chemically reacting gas flow along the stagnation streamline in front of a hypersonic vehicle. Calculated results show that the introduction of different molecular interactions for each species in a gas mixture produces significant differences in comparison with a common molecular interaction for all species in the mixture. This effect should not be neglected for accurate DSMC simulations in an engineering context.

  11. Viscosity of multicomponent partially ionized gas mixtures

    NASA Astrophysics Data System (ADS)

    Armaly, B. F.; Sutton, K.

    1980-07-01

    An approximate method is proposed for predicting the viscosity of partially ionized gas mixtures. This technique expresses the viscosity of a mixture in terms of the viscosities of the individual pure components, is simple in form, and does not require large computer run times or storage. Thus, the technique is suitable for use with complex flowfields and heat-transfer calculations. Results for gas mixtures which are representative of the atmospheres of Jupiter, Earth, and Venus, are presented and it is shown that the results compare favorably with detailed kinetic-theory analyses.

  12. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  13. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  14. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  15. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  16. SEPARATION OF GAS MIXTURES BY THERMOACOUSTIC WAVES

    SciTech Connect

    G.W. SWIFT; D.A. GELLER; P.S. SPOOR

    2001-06-01

    Imposing sound on a binary gas mixture in a duct separates the two gases along the acoustic-propagation axis. Mole-fraction differences as large as 10% and separation fluxes as high as 0.001 M-squared c, where M is Mach number and c is sound speed, are easily observed. We describe the accidental discovery of this phenomenon in a helium-xenon mixture, subsequent experiments with a helium-argon mixture, and theoretical developments. The phenomenon occurs because a thin layer of the gas adjacent to the wall is immobilized by viscosity while the rest of the gas moves back and forth with the wave, and the heat capacity of the wall holds this thin layer of the gas at constant temperature while the rest of the gas experiences temperature oscillations due to the wave's oscillating pressure. The oscillating temperature gradient causes the light and heavy atoms in the gas to take turns diffusing into and out of the immobilized layer, so that the oscillating motion of the wave outside the immobilized layer tends to carry light-enriched gas in one direction and heavy-enriched gas in the opposite direction. Experiment and theory are in very good agreement for the initial separation fluxes and the saturation mole-fraction differences.

  17. Thermal conductivity of partially ionized gas mixtures

    NASA Astrophysics Data System (ADS)

    Armaly, B. F.; Sutton, K.

    1981-06-01

    A method is proposed for predicting the translational component of the thermal conductivity of partially ionized gas mixtures. It is approximate but simple in form and offers a significant improvement over commonly utilized approximations. It does not require large computer run times nor storage, thus it is suitable for use with complex flow fields and heat transfer calculations. Results for gas mixtures which are representative of the atmosphere of Jupiter, Earth, and Venus are presented and they compare favorably with results from detailed kinetic theory analyses.

  18. Separation of gas mixtures by supported complexes

    SciTech Connect

    Nelson, D.A.; Lilga, M.A.; Hallen, R.T.; Lyke, S.E.

    1986-08-01

    The goal of this program is to determine the feasibility of solvent-dissolved coordination complexes for the separation of gas mixtures under bench-scale conditions. In particular, mixtures such as low-Btu gas are examined for CO and H/sub 2/ separation. Two complexes, Pd/sub 2/(dpm)/sub 2/Br/sub 2/ and Ru(CO)/sub 2/(PPh/sub 3/)/sub 3/, were examined in a bench-scale apparatus for the separation of binary (CO-N/sub 2/ or H/sub 2/-N/sub 2/) and quinary (H/sub 2/, CO, CO/sub 2/, CH/sub 4/, and N/sub 2/) mixtures. The separation of CO-N/sub 2/ was enhanced by the presence of the palladium complex in the 1,1,2-trichloroethane (TCE) solvent, especially at high gas and low liquid rates. The five-component gas mixture separation with the palladium complex in TCE provided quite unexpected results based on physical solubility and chemical coordination. The complex retained CO, while the solvent retained CO/sub 2/, CH/sub 4/, and N/sub 2/ to varying degrees. This allowed the hydrogen content to be enhanced due to its low solubility in TCE and inertness to the complex. Thus, a one-step, hydrogen separation can be achieved from gas mixtures with compositions similar to that of oxygen-blown coal gas. A preliminary economic evaluation of hydrogen separation was made for a system based on the palladium complex. The palladium system has a separation cost of 50 to 60 cents/MSCF with an assumed capital investment of $1.60/MSCF of annual capacity charged at 30% per year. This assumes a 3 to 4 year life for the complex. Starting with a 90% hydrogen feed, PSA separation costs are in the range of 30 to 50 cents/MSCF. The ruthenium complex was not as successful for hydrogen or carbon monoxide separation due to unfavorable kinetics. The palladium complex was found to strip hydrogen gas from H/sub 2/S. The complex could be regenerated with mild oxidants which removed the sulfur as SO/sub 2/. 24 refs., 26 figs., 10 tabs.

  19. Approximate Thermodynamics State Relations in Partially Ionized Gas Mixtures

    SciTech Connect

    Ramshaw, J D

    2003-12-30

    In practical applications, the thermodynamic state relations of partially ionized gas mixtures are usually approximated in terms of the state relations of the pure partially ionized constituent gases or materials in isolation. Such approximations are ordinarily based on an artificial partitioning or separation of the mixture into its constituent materials, with material k regarded as being confined by itself within a compartment or subvolume with volume fraction {alpha}k and possessing a fraction {beta}k of the total internal energy of the mixture. In a mixture of N materials, the quantities {alpha}k and {beta}k constitute an additional 2N--2 independent variables. The most common procedure for determining these variables, and hence the state relations for the mixture, is to require that the subvolumes all have the same temperature and pressure. This intuitively reasonable procedure is easily shown to reproduce the correct thermal and caloric state equations for a mixture of neutral (non-ionized) ideal gases. Here we wish to point out that (a) this procedure leads to incorrect state equations for a mixture of partially ionized ideal gases, whereas (b) the alternative procedure of requiring that the subvolumes all have the same temperature and free electron density reproduces the correct thermal and caloric state equations for such a mixture. These results readily generalize to the case of partially degenerate and/or relativistic electrons, to a common approximation used to represent pressure ionization effects, and to two-temperature plasmas. This suggests that equating the subvolume electron number densities or chemical potentials instead of pressures is likely to provide a more accurate approximation even in nonideal plasma mixtures.

  20. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  1. Precursors in gas-liquid mixtures

    NASA Astrophysics Data System (ADS)

    Gasenko, V. G.; Gorelik, R. S.; Nakoryakov, V. E.; Timkin, L. S.

    2013-10-01

    Two types of precursors propagating at the speed of sound in a pure liquid have been revealed in the experiments on the evolution of pressure pulses in a gas-liquid mixture; at the same time, the main pressure pulse propagates at a low equilibrium speed of sound and its evolution is described by the Burgers-Korteweg-de Vries equation. The first high-frequency precursor is a complete analog of a classical Sommerfeld precursor, because the resonance dispersion equation for a bubble mixture coincides with that for insulators in the Lorentz model, and oscillates at a frequency close to the "plasma frequency." The second low-frequency precursor has been revealed in this work. The frequency of the low-frequency precursor is close to the resonance frequency of pulsations of bubbles, which is almost an order of magnitude lower than the frequency of the high-frequency precursor. The low-frequency precursor has a much larger amplitude of pulsations and smaller damping and is not described within the homogeneous model of the gas-liquid mixture. The observed phenomenon of low-frequency precursors has been explained within a simple heterogeneous model of a bubble liquid.

  2. Dusty Plasma Structures in Gas Mixtures

    SciTech Connect

    Popova, D. V.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    The possibility of attainment of large Mach numbers is analyzed for the case of heavy ions drifting in a light gas. Under conditions of typical experiments with dust structures in plasmas, the use of the mixture of light and heavy gases is shown to make it possible to suppress the ion heating in the electric field and to form supersonic flows characterized by large Mach numbers. The drift of krypton ions in helium is considered as an example. Experiments with dc glow discharge at 1-10% of Kr show that the transition to the discharge in mixture leads to increase of interaction anisotropy and reinforcement of coupling of dust particles in the direction of ion drift. On the other hand, under certain conditions the phenomenon of abnormal 'heating' of dust particles was observed when the particles can obtain high kinetic energy which is several orders of magnitude higher than typical.

  3. Gettering of hydrogen and methane from a helium gas mixture

    SciTech Connect

    Cárdenas, Rosa Elia; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-11-01

    In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup ®} getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650 °C to decompose the methane, and the second at 110 °C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  4. Gettering of Hydrogen and Methane from a Helium Gas Mixture

    SciTech Connect

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-10-21

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172® getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650°C to decompose the methane, and the second at 110°C to remove the hydrogen. Finally, this approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  5. Gettering of Hydrogen and Methane from a Helium Gas Mixture

    DOE PAGESBeta

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-10-21

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172® getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650°C to decompose the methane, and the second at 110°C to remove the hydrogen. Finally, this approach eliminatedmore » the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.« less

  6. HDT mixtures treatment strategies by gas chromatography

    SciTech Connect

    Laquerbe, C.; Contreras, S.; Demoment, J.

    2008-07-15

    Gas phase chromatographic processes are of interest for the separation of hydrogen isotopes from an HDT mixture. For a certain quantity, they are very competitive and present several benefits. Nevertheless no active packing material allows to have simultaneously good enrichment performances for tritium production and high decontamination capabilities for HD gases. The influence of the packing material is first described in this article. Then two specific processes (TCAP and Reverse Chromatography), each well adapted to perform one target, are presented. Finally, the problematic to propose an optimized treatment scheme associating these two processes is formulated. (authors)

  7. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  8. Spark decomposition studies of dielectric gas mixtures

    NASA Astrophysics Data System (ADS)

    Sauers, I.; Christophorou, L. G.

    The ultimate usefulness of a high voltage insulating gas depends not only on the ability of the gas to withstand high voltages, but also on the degradation of the gas resulting from spark discharges, corona or prolonged electrical stress and the effect(s) of the by-products on the equipment and, possibly, the environment. In view of these considerations, the study of long-range spark decomposition was undertaken in an effort to improve the decomposition characteristics of dielectric gases through proper tailoring of gas mixtures while maintaining high breakdown strengths. The data reported are on the analyses of gases sparked by capactive (0.1 micro F) discharge into a 0.5-mm gap, resulting in an energy input of approximately 5 J per spark. The nature of the decomposition products of SF6 formed by high voltage discharges observed is found to be critically dependent on impurities (particularly H2O), electrode material and insulating materials present in the system.

  9. Shock wave dispersion of gas-particle mixtures

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.; Gubaidullin, D. A.; Tukmakov, D. A.

    2016-02-01

    The decay of a discontinuity in a two-component homogeneous gas mixture and the dispersion of a gas-particle mixture with a two-component carrier medium are numerically simulated. The mathematical model of the dynamics of heterogeneous media takes into account the interphase force interaction and interphase heat exchange. Experimental results known from the literature are compared with numerical results describing the dispersion of a gas-particle mixture in a shock tube.

  10. Smoothed particle hydrodynamics simulations of gas and dust mixtures

    NASA Astrophysics Data System (ADS)

    Booth, R. A.; Sijacki, D.; Clarke, C. J.

    2015-10-01

    We present a `two-fluid' implementation of dust in smoothed particle hydrodynamics (SPH) in the test particle limit. The scheme is able to handle both short and long stopping times and reproduces the short friction time limit, which is not properly handled in other implementations. We apply novel tests to verify its accuracy and limitations, including multidimensional tests that have not been previously applied to the drag-coupled dust problem and which are particularly relevant to self-gravitating protoplanetary discs. Our tests demonstrate several key requirements for accurate simulations of gas-dust mixtures. First, in standard SPH particle jitter can degrade the dust solution, even when the gas density is well reproduced. The use of integral gradients, a Wendland kernel and a large number of neighbours can control this, albeit at a greater computational cost. Secondly, when it is necessary to limit the artificial viscosity we recommend using the Cullen & Dehnen switch, since the alternative, using α ˜ 0.1, can generate a large velocity noise up to σv ≲ 0.3cs in the dust particles. Thirdly, we find that an accurate dust density estimate requires >400 neighbours, since, unlike the gas, the dust particles do not feel regularization forces. This density noise applies to all particle-based two-fluid implementations of dust, irrespective of the hydro solver and could lead to numerically induced fragmentation. Although our tests show accurate dusty gas simulations are possible, care must be taken to minimize the contribution from numerical noise.

  11. The accurate estimation of physicochemical properties of ternary mixtures containing ionic liquids via artificial neural networks.

    PubMed

    Cancilla, John C; Díaz-Rodríguez, Pablo; Matute, Gemma; Torrecilla, José S

    2015-02-14

    The estimation of the density and refractive index of ternary mixtures comprising the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate, 2-propanol, and water at a fixed temperature of 298.15 K has been attempted through artificial neural networks. The obtained results indicate that the selection of this mathematical approach was a well-suited option. The mean prediction errors obtained, after simulating with a dataset never involved in the training process of the model, were 0.050% and 0.227% for refractive index and density estimation, respectively. These accurate results, which have been attained only using the composition of the dissolutions (mass fractions), imply that, most likely, ternary mixtures similar to the one analyzed, can be easily evaluated utilizing this algorithmic tool. In addition, different chemical processes involving ILs can be monitored precisely, and furthermore, the purity of the compounds in the studied mixtures can be indirectly assessed thanks to the high accuracy of the model. PMID:25583241

  12. Separation of gas mixtures by supported complexes

    SciTech Connect

    Nelson, D.A.; Lilga, M.A.

    1986-12-01

    A system was investigated that catalyzes the dehydrogenation of alcohols and the hydrogenation of ketones. Such a catalyst, if used in a membrane containing an alcohol solvent, might be of use in selective H/sub 2/ separation from gas mixtures. The dehydrogenation of cyclohexanol and 2-octanol were studied using a RhCl/sub 3//SnCl/sub 2//LiCl catalyst system. These alcohols are dehydrogenated at rates that are initially rapid, but which gradually slow to a stop. The decrease in rate of H/sub 2/ evolution is a result of the establishment of an equilibrium between the alcohol and the liberated hydrogen and ketone. At 150/sup 0/C, cyclohexanol has the fastest rate of dehydrogenation. Several dehydrogenation/hydrogenation cycles have been carried out using this alcohol over a period of one week without serious catalyst deactivation or side reactions. Initial tests of the catalyst dissolved in cyclohexanol within two membranes were inconclusive. An anion exchange membrane was not suitably wetted by the catalyst solution and Celgard/sup TM/, which was wetted, could not be kept wet at 150/sup 0/C under flow conditions in the membrane cell. 9 refs., 3 figs., 1 tab.

  13. Chemical recognition of gases and gas mixtures with terahertz waves

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. H.; Mittleman, D. M.; Nuss, M. C.

    1996-12-01

    A time-domain chemical-recognition system for classifying gases and analyzing gas mixtures is presented. We analyze the free induction decay exhibited by gases excited by far-infrared (terahertz) pulses in the time domain, using digital signal-processing techniques. A simple geometric picture is used for the classification of the waveforms measured for unknown gas species. We demonstrate how the recognition system can be used to determine the partial pressures of an ammonia-water gas mixture.

  14. THE RECOVERY OF URANIUM FROM GAS MIXTURE

    DOEpatents

    Jury, S.H.

    1964-03-17

    A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)

  15. Inferential determination of various properties of a gas mixture

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2007-03-27

    Methods for inferentially determining various properties of a gas mixture, when the speed of sound in the gas is known at an arbitrary temperature and pressure. The method can be applied to natural gas mixtures, where the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for heating value calculations. The method may also be applied to inferentially determine density and molecular weight for gas mixtures other than natural gases.

  16. Devices for the Production of Reference Gas Mixtures.

    PubMed

    Fijało, Cyprian; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2016-09-01

    For many years there has been growing demand for gaseous reference materials, which is connected with development in many fields of science and technology. As a result, new methodological and instrumental solutions appear that can be used for this purpose. Appropriate quality assurance/quality control (QA/QC) must be used to make sure that measurement data are a reliable source of information. Reference materials are a significant element of such systems. In the case of gas samples, such materials are generally called reference gas mixtures. This article presents the application and classification of reference gas mixtures, which are a specific type of reference materials, and the methods for obtaining them are described. Construction solutions of devices for the production of reference gas mixtures are detailed, and a description of a prototype device for dynamic production of reference gas mixtures containing aroma compounds is presented. PMID:27437588

  17. Composition for absorbing hydrogen from gas mixtures

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Lee, Myung W.

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  18. Thermal Conductivity of Gas Mixtures in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Brokaw, Richard S.

    1960-01-01

    The expression for the thermal conductivity of gas mixtures in chemical equilibrium is presented in a simpler and less restrictive form. This new form is shown to be equivalent to the previous equations.

  19. Improved 02/H2 Gas Mixture Sensor

    NASA Technical Reports Server (NTRS)

    Moulthrop, L. C.

    1983-01-01

    Monitor of mixture concentrations uses catalyzed and uncatalyzed temperature probe. Sensor includes Pt-catalyzed temperature probe mounted in line with similar uncatalyzed temperature probe. Use of common temperature probes and standard, flareless, high-pressure tubefittings resulted in design conductive to installation in almost any system. Suitable for use in regenerative fuel cells, life-support systems, and other closed systems.

  20. Reduced viscosity interpreted for fluid/gas mixtures

    NASA Technical Reports Server (NTRS)

    Lewis, D. H.

    1981-01-01

    Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.

  1. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  2. Accurate Measurement of the Relative Abundance of Different DNA Species in Complex DNA Mixtures

    PubMed Central

    Jeong, Sangkyun; Yu, Hyunjoo; Pfeifer, Karl

    2012-01-01

    A molecular tool that can compare the abundances of different DNA sequences is necessary for comparing intergenic or interspecific gene expression. We devised and verified such a tool using a quantitative competitive polymerase chain reaction approach. For this approach, we adapted a competitor array, an artificially made plasmid DNA in which all the competitor templates for the target DNAs are arranged with a defined ratio, and melting analysis for allele quantitation for accurate quantitation of the fractional ratios of competitively amplified DNAs. Assays on two sets of DNA mixtures with explicitly known compositional structures of the test sequences were performed. The resultant average relative errors of 0.059 and 0.021 emphasize the highly accurate nature of this method. Furthermore, the method's capability of obtaining biological data is demonstrated by the fact that it can illustrate the tissue-specific quantitative expression signatures of the three housekeeping genes G6pdx, Ubc, and Rps27 by using the forms of the relative abundances of their transcripts, and the differential preferences of Igf2 enhancers for each of the multiple Igf2 promoters for the transcription. PMID:22334570

  3. High severity pyrolysis of shale and petroleum gas oil mixtures

    SciTech Connect

    Leftin, H.P.; Newsome, D.S.

    1986-01-01

    Light gas oil and heavy gas oil from Paraho shale oil and their mixtures with a petroleum light gas oil were pyrolyzed in the presence of steam at 880-900/sup 0/C and contact times between 60 and 90 ms in a nonisothermal bench-scale pyrolysis reactor. Blending of petroleum LGO into the shale oil feeds provided product yields that were the weighted linear combination of the yields of the individual components of the blends. Partial denitrogenation and a pronounced decrease in the rate of coke deposition on the reactor walls were observed when petroleum gas oil was blended with the shale gas oils.

  4. Autoignition of adiabatically compressed combustible gas mixtures

    SciTech Connect

    Hu, H.; Keck, J.

    1987-01-01

    Measurements of explosion limits for fuel/air/diluent mixtures compressed by an expanding laminar flame have been made in a constant volume spherical bomb. The fuels studied to date range from butane to octane at fuel/air equivalence ratios from 0.8 to 1.3. The explosion pressures and temperatures range from 10 to 100 atm and 650 to 850 K. The pressure versus time curves show the behavior typical of the two-stage ignition process observed in rapid compression machines. A branched chain kinetic model has been developed to correlate the data. The model has been used to predict both the explosion limits measured in the current bomb experiments and ignition delays measured in prior rapid compression machine experiments. Good agreement between experiment and theory can be achieved with minor adjustment in published rate constants.

  5. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  6. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  7. Recovery of purified helium or hydrogen from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1974-01-15

    A process is described for the removal of helium or hydrogen from gaseous mixtures also containing contaminants. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatomspheric pressure to preferentially absorb the contaminants in the fluorocarbon. Unabsorbed gas enriched in hydrogen or helium is withdrawn from the absorption zone as product. Liquid fluorocarbon enriched in contaminants is withdrawn separately from the absorption zone. (10 claims)

  8. Recent nuclear pumped laser results. [gas mixtures and laser plasmas

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Wells, W. E.; Akerman, M. A.; Anderson, J. H.

    1976-01-01

    Recent direct nuclear pumped laser research has concentrated on experiments with three gas mixtures (Ne-N2, He-Ne-O2, and He-Hg). One mixture has been made to lase and gain has been achieved with the other two. All three of these mixtures are discussed with particular attention paid to He-Hg. Of interest is the 6150-angstroms ion transition in Hg(+). The upper state of this transition is formed directly by charge transfer and by Penning ionization.

  9. Acoustics and precondensation phenomena in gas-vapor saturated mixtures.

    PubMed

    Guianvarc'h, C; Bruneau, M; Gavioso, R M

    2014-02-01

    Starting from fundamental hydrodynamics and thermodynamics equations for thermoviscous fluids, a new modeling procedure, which is suitable to describe acoustic propagation in gas mixtures, is presented. The model revises the boundary conditions which are appropriate to describe the condensation-evaporation processes taking place on a solid wall when one component of the mixture approaches saturation conditions. The general analytical solutions of these basic equations now give a unified description of acoustic propagation in an infinite, semi-infinite, or finite medium, throughout and beyond the boundary layers. The solutions account for the coupling between acoustic propagation and heat and concentration diffusion processes, including precondensation on the walls. The validity of the model and its predictive capability have been tested by a comparison with the description available in the literature of two particular systems (precondensation of propane and acoustic attenuation in a duct filled with an air-water vapor saturated mixture). The results of this comparison are discussed to clarify the relevance of the various physical phenomena that are involved in these processes. The model proposed here might be useful to develop methods for the acoustic determination of the thermodynamic and transport properties of gas mixtures as well as for practical applications involving gas and gas-vapor mixtures like thermoacoustics and acoustics in wet granular or porous media. PMID:25353596

  10. Acoustics and precondensation phenomena in gas-vapor saturated mixtures

    NASA Astrophysics Data System (ADS)

    Guianvarc'h, C.; Bruneau, M.; Gavioso, R. M.

    2014-02-01

    Starting from fundamental hydrodynamics and thermodynamics equations for thermoviscous fluids, a new modeling procedure, which is suitable to describe acoustic propagation in gas mixtures, is presented. The model revises the boundary conditions which are appropriate to describe the condensation-evaporation processes taking place on a solid wall when one component of the mixture approaches saturation conditions. The general analytical solutions of these basic equations now give a unified description of acoustic propagation in an infinite, semi-infinite, or finite medium, throughout and beyond the boundary layers. The solutions account for the coupling between acoustic propagation and heat and concentration diffusion processes, including precondensation on the walls. The validity of the model and its predictive capability have been tested by a comparison with the description available in the literature of two particular systems (precondensation of propane and acoustic attenuation in a duct filled with an air-water vapor saturated mixture). The results of this comparison are discussed to clarify the relevance of the various physical phenomena that are involved in these processes. The model proposed here might be useful to develop methods for the acoustic determination of the thermodynamic and transport properties of gas mixtures as well as for practical applications involving gas and gas-vapor mixtures like thermoacoustics and acoustics in wet granular or porous media.

  11. Characterization of Gas Amplification in Varied Gas Mixtures for Stacked Gas Electron Multiplier and Micromegas Detectors

    NASA Astrophysics Data System (ADS)

    Ehlers, Raymond

    2015-04-01

    Micropattern Gas Detectors (MPGDs) represent a promising group of gas amplification technologies. Utilizing large electric fields over geometries on the order of tens of micrometers, these elements can achieve large gas amplification while minimizing field distortions by minimizing the number of ions escaping from the amplification stage. Such properties are extremely useful for readout in gaseous detectors such as Time Projection Chambers. Two types of MPGDs are of particular interest, Gas Electron Multipliers (GEMs) and Micro-mesh Gaseous Structure (Micromegas) detectors. These elements may be stacked, which allows for the utilization of the best properties of both, further improving the amplification performance. We report here on the characterization of 2 GEMs stacked on top of a Micromegas. In particular, I will present the dependence of gas amplification on Micromegas voltage in various gas mixtures, as well as an investigation into stability of the elements against sparking.

  12. Quantum gas mixtures in different correlation regimes

    NASA Astrophysics Data System (ADS)

    Garcia-March, Miguel Angel; Busch, Thomas

    2013-06-01

    We present a many-body description for two-component ultracold bosonic gases when one of the species is in the weakly interacting regime and the other is either weakly or strongly interacting. In the one-dimensional limit the latter is a hybrid in which a Tonks-Girardeau gas is immersed in a Bose-Einstein condensate, which is an example of a class of quantum system involving a tunable, superfluid environment. We describe the process of phase separation microscopically as well as semiclassically in both situations and show that quantum correlations are maintained even in the separated phase.

  13. Trapping of gas mixtures by amorphous water ice

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Kleinfeld, I.; Kochavi, E.; Owen, T. (Principal Investigator)

    1988-01-01

    Our studies on gas trapping in amorphous water ice at 24-100 K were extended, by using mixtures of CH4, CO, N2, and Ar, rather than single gases. In 1:1 gas:(water vapor) mixtures, the competition among these gases on the available sites in the ice showed that the trapping capacity for the various gases is determined not only by the structure and dynamics of the ice, but is also influenced by the gas itself. Whereas at 24-35 K all four gases are trapped in the ice indiscriminantly, at 50-75 K there is a clear enhancement, in the order of CH4 > CO > N2 > or approximately Ar. This order is influenced by the gas-water interaction energy, the size of the trapped gas atom or molecule, the type of clathrate-hydrate formed (I or II) and, possibly, other factors. It seems that the gas can be trapped in the amorphous ice in several different locations, each being affected in a different way by the deposition temperature and gas composition. Once a gas atom or molecule is trapped in a specific location, it is predestined to emerge in one of eight different temperature ranges, which are associated with changes in the ice. The experimentally observed enhancements, together with the findings on the gas composition of comet Halley, might enable an estimation of the gas composition in the region of comet formation.

  14. Shock Compression of Cryogenic Noble Gas Mixtures: Xenon - Krypton

    NASA Astrophysics Data System (ADS)

    Root, Seth; Magyar, Rudolph; Lemke, Raymond; Mattsson, Thomas

    2013-06-01

    In past work, we have examined the multi-Mbar response of cryogenically cooled liquid xenon and liquid krypton measuring their Hugoniots to 8 Mbar. These results were utilized in the development of new EOS models for Xe and Kr to use in high energy density physics applications. The previous work demonstrated the usefulness of integrating high accuracy shock compression experiments with DFT to generate the basis for equation of state (EOS) models. In many physics applications, such as Z-pinch experiments, gas mixtures are used instead. However, we do not have reliable experimental data on these mixtures to provide informed decisions about the EOS models or mixture rules. To improve our understanding of mixtures at extreme conditions, we performed dynamic compression experiments using Sandia's Z - facility on a 70/30 molar ratio Kr/Xe cryogenically cooled liquid mixture. We measured the Hugoniot state and reshock state of the liquid mixture to several Mbar. The experimental data validated the DFT simulations for identical molar ratio mixtures. The combined experimental and DFT results are used to assess the EOS models and test the mixture rules. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  15. Standardisation of gas mixtures for estimating carbon monoxide transfer factor.

    PubMed Central

    Kendrick, A. H.; Laszlo, G.

    1993-01-01

    BACKGROUND--The American Thoracic Society recommends that the inspired concentration used for the estimation of carbon monoxide transfer factor (TLCO) mixture should be 0.25-0.35% carbon monoxide, 10-14% helium, 17-21% oxygen, balance nitrogen. Inspired oxygen influences alveolar oxygen and hence carbon monoxide uptake, such that transfer factor increases by 0.35% per mm Hg decrease in alveolar oxygen. To aid in the standardisation of TLCO either a known inspired oxygen concentration should be used, or TLCO should be corrected to a standard inspired oxygen concentration. The range of gas mixtures used in practice and the implications for cost and accuracy have been investigated. METHODS--A questionnaire was sent to 185 respiratory units in the UK requesting information on (1) the method used to estimate TLCO, (2) the manufacturer of the equipment, (3) the mixture used, (4) whether "medical quality" gas was ordered, and (5) the level of satisfaction with supplier service. RESULTS--Replies were received from 106 units. Most used the single breath breath holding method for which 17 different test mixtures were ordered. One unit also used the single breath exhalation method. Inspired oxygen ranged from 17.94% to 25%, giving a wide variation in alveolar oxygen and hence TLCO. Forty seven units ordered a specific inspired oxygen, the rest ordering "air" as balance. The cost per litre of gas varied greatly, with the mixture 14% helium, 0.28% carbon monoxide, balance air (17.9% oxygen) and 10% helium, 0.28% carbon monoxide, balance air (18.8% oxygen) being cheapest to produce. Ordering a specific inspired oxygen concentration increased the cost. Large cylinders of gas were cheaper for the same mixture. The mixture for the exhalation method was the most expensive. Sixty seven units ordered "medical quality" gas and six assumed this was supplied. Twenty nine (27%) were dissatisfied with their supplier due to (1) poor service, (2) long delivery times, (3) costs, or (4

  16. Penning transfer in argon-based gas mixtures

    NASA Astrophysics Data System (ADS)

    Şahin, Ö.; Tapan, İ.; Özmutlu, E. N.; Veenhof, R.

    2010-05-01

    Penning transfers, a group of processes by which excitation energy is used to ionise the gas, increase the gas gain in some detectors. Both the probability that such transfers occur and the mechanism by which the transfer takes place, vary with the gas composition and pressure. With a view to developing a microscopic electron transport model that takes Penning transfers into account, we use this dependence to identify the transfer mechanisms at play. We do this for a number of argon-based gas mixtures, using gain curves from the literature.

  17. Gas mixture studies for streamer operated Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Paoloni, A.; Longhin, A.; Mengucci, A.; Pupilli, F.; Ventura, M.

    2016-06-01

    Resistive Plate Chambers operated in streamer mode are interesting detectors in neutrino and astro-particle physics applications (like OPERA and ARGO experiments). Such experiments are typically characterized by large area apparatuses with no stringent requirements on detector aging and rate capabilities. In this paper, results of cosmic ray tests performed on a RPC prototype using different gas mixtures are presented, the principal aim being the optimization of the TetraFluoroPropene concentration in Argon-based mixtures. The introduction of TetraFluoroPropene, besides its low Global Warming Power, is helpful because it simplifies safety requirements allowing to remove also isobutane from the mixture. Results obtained with mixtures containing SF6, CF4, CO2, N2 and He are also shown, presented both in terms of detectors properties (efficiency, multiple-streamer probability and time resolution) and in terms of streamer characteristics.

  18. Regularized moment equations for binary gas mixtures: Derivation and linear analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Vinay Kumar; Struchtrup, Henning; Torrilhon, Manuel

    2016-04-01

    The applicability of the order of magnitude method [H. Struchtrup, "Stable transport equations for rarefied gases at high orders in the Knudsen number," Phys. Fluids 16, 3921-3934 (2004)] is extended to binary gas mixtures in order to derive various sets of equations—having minimum number of moments at a given order of accuracy in the Knudsen number—for binary mixtures of monatomic-inert-ideal gases interacting with the Maxwell interaction potential. For simplicity, the equations are derived in the linear regime up to third order accuracy in the Knudsen number. At zeroth order, the method produces the Euler equations; at first order, it results into the Fick, Navier-Stokes, and Fourier equations; at second order, it yields a set of 17 moment equations; and at third order, it leads to the regularized 17-moment equations. The transport coefficients in the Fick, Navier-Stokes, and Fourier equations obtained through order of magnitude method are compared with those obtained through the classical Chapman-Enskog expansion method. It is established that the different temperatures of different constituents do not play a role up to second order accurate theories in the Knudsen number, whereas they do contribute to third order accurate theory in the Knudsen number. Furthermore, it is found empirically that the zeroth, first, and second order accurate equations are linearly stable for all binary gas mixtures; however, although the third order accurate regularized 17-moment equations are linearly stable for most of the mixtures, they are linearly unstable for mixtures having extreme difference in molecular masses.

  19. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  20. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  1. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    DOEpatents

    Hupp, Joseph T.; Mulfort, Karen L.; Snurr, Randall Q.; Bae, Youn-Sang

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  2. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  3. Pulsed electron beam propagation in argon and nitrogen gas mixture

    SciTech Connect

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-15

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N{sub 2}). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  4. Predicting detection probabilities for gas mixtures over HSI backgrounds

    SciTech Connect

    Tardiff, Mark F.; Walsh, Stephen J.; Anderson, Kevin K.; Chilton, Lawrence

    2009-12-29

    Detecting and identifying weak gaseous plumes using thermal image data acquired by airborne detectors is an area of ongoing research. This contribution investigates the relative detectability of gas mixtures over different backgrounds and a range of plume temperatures that are warmer and cooler than the ground. The focus of this analysis to support mission planning. When the mission is intended to collect evidence of particular chemicals, the analysis presented is this report can be used to determine conditions under which useful data can be acquired. Initial analyses can be used to determine whether LWIR is useful for the anticipated gas, temperature, and background combination.

  5. Deflagration to detonation transition in combustible gas mixtures

    SciTech Connect

    Smirnov, N.N.; Panfilov, I.I.

    1995-04-01

    This paper presents the results of a computational investigation of the process of deflagration to detonation transition in a combustible gas mixture. The type of combustion (i.e., deflagration or detonation) supported by a two-step reaction scheme is studied as a function of the activation energies. It is shown that both a deflagration to detonation transition and a deflagration wave that lags behind a leading shock are possible. Two types of deflagration to detonation transitions are found theoretically: initiation of detonation from the flame zone and initiation of detonation along a contact discontinuity in the compressed gas near the primary shock wave.

  6. Modeling of non-thermal plasma in flammable gas mixtures

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.; Kochetov, I. V.; Leonov, S. B.

    2008-07-01

    An idea of using plasma-assisted methods of fuel ignition is based on non-equilibrium generation of chemically active species that speed up the combustion process. It is believed that gain in energy consumed for combustion acceleration by plasmas is due to the non-equilibrium nature of discharge plasma, which allows radicals to be produced in an above-equilibrium amount. Evidently, the size of the effect is strongly dependent on the initial temperature, pressure, and composition of the mixture. Of particular interest is comparison between thermal ignition of a fuel-air mixture and non-thermal plasma initiation of the combustion. Mechanisms of thermal ignition in various fuel-air mixtures have been studied for years, and a number of different mechanisms are known providing an agreement with experiments at various conditions. The problem is -- how to conform thermal chemistry approach to essentially non-equilibrium plasma description. The electric discharge produces much above-equilibrium amounts of chemically active species: atoms, radicals and ions. The point is that despite excess concentrations of a number of species, total concentration of these species is far below concentrations of the initial gas mixture. Therefore, rate coefficients for reactions of these discharge produced species with other gas mixture components are well known quantities controlled by the translational temperature, which can be calculated from the energy balance equation taking into account numerous processes initiated by plasma. A numerical model was developed combining traditional approach of thermal combustion chemistry with advanced description of the plasma kinetics based on solution of electron Boltzmann equation. This approach allows us to describe self-consistently strongly non-equilibrium electric discharge in chemically unstable (ignited) gas. Equations of pseudo-one-dimensional gas dynamics were solved in parallel with a system of thermal chemistry equations, kinetic equations

  7. Applications of accurate isentropic exponent determination for fuel gas measurement

    SciTech Connect

    Pack, D.J.; Edwards, T.J.; Fawcett, D.

    1996-07-01

    This paper discusses the determination and application of the isentropic exponent to the various thermodynamic processes found in a high-pressure natural gas transmission system. Increasing demands for more precise measurement of natural gas, coupled with the need for greater efficiency and accountability of transportation and processing operations, had led to the research and development of gas thermodynamic properties including isentropic exponent. The isentropic exponent has many applications, some of which include: the determination of the expansion factor {epsilon}, for calculation of flow using an orifice or venturi-type meter; the volumetric efficiency in a reciprocating compressor; the determination of the compression head for a centrifugal compressor; the engine power required for the given conditions for a gas compressor; the calculation of discharge temperatures for compressors; and the direct measurement of gas density. As can be appreciated, the application of an incorrect value for the isentropic exponent represents an error in the parameter determined. For large volume gas flows, this can translate into a significant cost penalty.

  8. Accurate evaluation of homogenous and nonhomogeneous gas emissivities

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Lee, K. P.

    1984-01-01

    Spectral transmittance and total band adsorptance of selected infrared bands of carbon dioxide and water vapor are calculated by using the line-by-line and quasi-random band models and these are compared with available experimental results to establish the validity of the quasi-random band model. Various wide-band model correlations are employed to calculate the total band absorptance and total emissivity of these two gases under homogeneous and nonhomogeneous conditions. These results are compared with available experimental results under identical conditions. From these comparisons, it is found that the quasi-random band model can provide quite accurate results and is quite suitable for most atmospheric applications.

  9. Ternary gas mixtures for high-voltage industrial insulation

    NASA Astrophysics Data System (ADS)

    Pace, M. O.; Chan, C. C.; Christophorou, L. G.

    1981-10-01

    Gas dielectrics for insulating power apparatus, e.g., gas insulated transmission lines (GITL), were evaluated. Particular attention was given to mixtures using large proportions of an electron moderating gas (viz., N2, CHF3, or 1,1,1-C2H3F3) and smaller quantities of two electron attaching gases: SF6 and one fluorocarbon (e.g., c-C4F8). The proportions were sought at which the three gases function best as a team, moderating free electrons from higher to lower energies and there attaching them. Small amounts of the electron attaching additives can drastically raise the dielectric strength of the moderator. Certain combinations of SF6 and fluorocarbons do not produce the undesirable spark by products associated with either SF6 or fluorocarbons alone and also show improved negative polarity impulse breakdown characteristics over pure SF6. Small scale breakdown measurements were made of various ternary mixtures in the GITL geometry. It was found that nitrogen moderates electrons to extremely low energies, where SF6 attaches; the dipolar gases moderate to somewhat higher energies, where some fluorocarbons attach best.

  10. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, Scott R.; Christophorou, Loucas G.

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  11. Accurate boundary conditions for exterior problems in gas dynamics

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.

    1988-01-01

    The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.

  12. Accurate boundary conditions for exterior problems in gas dynamics

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.

    1988-01-01

    The numerical solution of exterior problems is typically accomplished by introducing an artificial, far-field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far-field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.

  13. Asymptotic-preserving Boltzmann model equations for binary gas mixture

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Liang, Yihua

    2016-02-01

    An improved system of Boltzmann model equations is developed for binary gas mixture. This system of model equations has a complete asymptotic preserving property that can strictly recover the Navier-Stokes equations in the continuum limit with the correct constitutive relations and the correct viscosity, thermal conduction, diffusion, and thermal diffusion coefficients. In this equation system, the self- and cross-collision terms in Boltzmann equations are replaced by single relaxation terms. In monocomponent case, this system of equations can be reduced to the commonly used Shakhov equation. The conservation property and the H theorem which are important for model equations are also satisfied by this system of model equations.

  14. Asymptotic-preserving Boltzmann model equations for binary gas mixture.

    PubMed

    Liu, Sha; Liang, Yihua

    2016-02-01

    An improved system of Boltzmann model equations is developed for binary gas mixture. This system of model equations has a complete asymptotic preserving property that can strictly recover the Navier-Stokes equations in the continuum limit with the correct constitutive relations and the correct viscosity, thermal conduction, diffusion, and thermal diffusion coefficients. In this equation system, the self- and cross-collision terms in Boltzmann equations are replaced by single relaxation terms. In monocomponent case, this system of equations can be reduced to the commonly used Shakhov equation. The conservation property and the H theorem which are important for model equations are also satisfied by this system of model equations. PMID:26986408

  15. Cellular detonation diffraction in gas-particle mixtures

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Khmel, T. A.; Kratova, Y. V.

    2010-12-01

    Diffraction of cellular heterogeneous detonation out of a channel into open half-space in a mixture of aluminum particles and oxygen is investigated numerically. The flow is found to be very similar to gas detonation diffraction. The detonation weakening behind the step results in combustion front deceleration and decoupling from the leading shock wave. Subsequent re-initiation takes place in a transverse wave. New transverse waves are generated along the expanding front. The computations that were performed show that the critical number of cells is several times less than that for gases. This is confirmed by theoretical estimates based upon the Mitrofanov-Soloukhin approach.

  16. On the Solution of a Boltzmann System for Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Sotirov, Alexander; Yu, Shih-Hsien

    2010-02-01

    We study the Boltzmann equation for a mixture of two gases in one space dimension with initial condition of one gas near vacuum and the other near a Maxwellian equilibrium state. A qualitative-quantitative mathematical analysis is developed to study this mass diffusion problem based on the Green’s function of the Boltzmann equation for the single species hard sphere collision model in Liu andYu (Commun Pure Appl Math 57:1543-1608, 2004). The cross-species resonance of the mass diffusion and the diffusion-sound wave is investigated. An exponentially sharp global solution is obtained.

  17. Investigation of plasma-dust structures in He-Ar gas mixture

    SciTech Connect

    Maiorov, S. A.; Ramazanov, T. S.; Dzhumagulova, K. N.; Jumabekov, A. N.; Dosbolayev, M. K.

    2008-09-15

    The paper reports on the first experiments with plasma-dust formations in dc gas discharge plasma for a He-Ar mixture. It is shown that the choice of light and heavy gases for the mixture suppresses ion heating in electric field under the conventional conditions of experiments and results in a supersonic jet with high Mach numbers. Distribution functions for drifting ions in the gas mixture are calculated for various mixture concentrations, electric field strengths, and gas pressures.

  18. Stochastic PArallel Rarefied-gas Time-accurate Analyzer

    SciTech Connect

    Michael Gallis, Steve Plimpton

    2014-01-24

    The SPARTA package is software for simulating low-density fluids via the Direct Simulation Monte Carlo (DSMC) method, which is a particle-based method for tracking particle trajectories and collisions as a model of a multi-species gas. The main component of SPARTA is a simulation code which allows the user to specify a simulation domain, populate it with particles, embed triangulated surfaces as boundary conditions for the flow, overlay a grid for finding pairs of collision partners, and evolve the system in time via explicit timestepping. The package also includes various pre- and post-processing tools, useful for setting up simulations and analyzing the results. The simulation code runs either in serial on a single processor or desktop machine, or can be run in parallel using the MPI message-passing library, to enable faster performance on large problems.

  19. Stochastic PArallel Rarefied-gas Time-accurate Analyzer

    2014-01-24

    The SPARTA package is software for simulating low-density fluids via the Direct Simulation Monte Carlo (DSMC) method, which is a particle-based method for tracking particle trajectories and collisions as a model of a multi-species gas. The main component of SPARTA is a simulation code which allows the user to specify a simulation domain, populate it with particles, embed triangulated surfaces as boundary conditions for the flow, overlay a grid for finding pairs of collision partners,more » and evolve the system in time via explicit timestepping. The package also includes various pre- and post-processing tools, useful for setting up simulations and analyzing the results. The simulation code runs either in serial on a single processor or desktop machine, or can be run in parallel using the MPI message-passing library, to enable faster performance on large problems.« less

  20. Superconducting cable cooling system by helium gas and a mixture of gas and liquid helium

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming cryogenic fluid streams in the same enclosure in a closed cycle that changes from a cool high pressure helium gas to a cooler reduced pressure helium fluid comprised of a mixture of gas and boiling liquid so as to be near the same temperature but at different pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid in a go leg from a refrigerator at one end of the line as a high pressure helium gas near the normal boiling temperature of helium; then circulating the gas through an expander at the other end of the line where the gas becomes a mixture of reduced pressure gas and boiling liquid at its boiling temperature; then by circulating the mixture in a return leg that is separated from but in thermal contact with the gas in the go leg and in the same enclosure therewith; and finally returning the resulting low pressure gas to the refrigerator for compression into a high pressure gas at T.sub.2 is a closed cycle, where T.sub.1 >T.sub.2, the temperature distribution is such that the line temperature is nearly constant along its length from the refrigerator to the expander due to the boiling of the liquid in the mixture. A heat exchanger between the go and return lines removes the gas from the liquid in the return leg while cooling the go leg.

  1. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  2. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  3. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  4. Separation of SF6 from gas mixtures using gas hydrate formation.

    PubMed

    Cha, Inuk; Lee, Seungmin; Lee, Ju Dong; Lee, Gang-woo; Seo, Yongwon

    2010-08-15

    This study aims to examine the thermodynamic feasibility of separating sulfur hexafluoride (SF(6)), which is widely used in various industrial fields and is one of the most potent greenhouse gases, from gas mixtures using gas hydrate formation. The key process variables of hydrate phase equilibria, pressure-composition diagram, formation kinetics, and structure identification of the mixed gas hydrates, were closely investigated to verify the overall concept of this hydrate-based SF(6) separation process. The three-phase equilibria of hydrate (H), liquid water (L(W)), and vapor (V) for the binary SF(6) + water mixture and for the ternary N(2) + SF(6) + water mixtures with various SF(6) vapor compositions (10, 30, 50, and 70%) were experimentally measured to determine the stability regions and formation conditions of pure and mixed hydrates. The pressure-composition diagram at two different temperatures of 276.15 and 281.15 K was obtained to investigate the actual SF(6) separation efficiency. The vapor phase composition change was monitored during gas hydrate formation to confirm the formation pattern and time needed to reach a state of equilibrium. Furthermore, the structure of the mixed N(2) + SF(6) hydrate was confirmed to be structure II via Raman spectroscopy. Through close examination of the overall experimental results, it was clearly verified that highly concentrated SF(6) can be separated from gas mixtures at mild temperatures and low pressure conditions. PMID:20704207

  5. A fluidic device for measuring constituent masses of a flowing binary gas mixture

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.

    1973-01-01

    A continuous reading mass flow device was developed to measure the component flow of a binary gas mixture. The basic components of the device are a fluidic humidity sensor and a specially designed flow calorimeter. These components provide readings of gas mixture ratio, mixture heat capacity, heat dissipated by the calorimeter and the gas temperature rise across the calorimeter. These parameter values, applied in the general definitions of specific heat capacity and the heat capacity of a gas mixture, produce calculated component flow rates of the mixture being metered. A test program was conducted to evaluate both the steady state and dynamic performance of the device.

  6. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    NASA Astrophysics Data System (ADS)

    De Nardo, L.; Farahmand, M.

    2016-05-01

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 μm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a 244Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×103 has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  7. Enantiomeric separation in comprehensive two-dimensional gas chromatography with accurate mass analysis.

    PubMed

    Chin, Sung-Tong; Nolvachai, Yada; Marriott, Philip J

    2014-11-01

    Chiral comprehensive two-dimensional gas chromatography (eGC×GC) coupled to quadrupole-accurate mass time-of-flight mass spectrometry (QTOFMS) was evaluated for its capability to report the chiral composition of several monoterpenes, namely, α-pinene, β-pinene, and limonene in cardamom oil. Enantiomers in a standard mixture were fully resolved by direct enantiomeric-GC analysis with a 2,3-di-O-methyl-6-t-butylsilyl derivatized β-cyclodextrin phase; however, the (+)-(R)-limonene enantiomer in cardamom oil was overlapped with other background components including cymene and cineole. Verification of (+)-(R)-limonene components based on characteristic ions at m/z 136, 121, and 107 acquired by chiral single-dimension GC-QTOFMS in the alternate MS/MSMS mode of operation was unsuccessful due to similar parent/daughter ions generated by interfering or co-eluting cymene and cineole. Column phases SUPELCOWAX, SLB-IL111, HP-88, and SLB-IL59, were incorporated as the second dimension column ((2)D) in chiral GC×GC analysis; the SLB-IL59 offered the best resolution for the tested monoterpene enantiomers from the matrix background. Enantiomeric ratios for α-pinene, β-pinene, and limonene were determined to be 1.325, 2.703, and 1.040, respectively, in the cardamom oil sample based on relative peak area data. PMID:24420979

  8. Accurate values of some thermodynamic properties for carbon dioxide, ethane, propane, and some binary mixtures.

    PubMed

    Velasco, Inmaculada; Rivas, Clara; Martínez-López, José F; Blanco, Sofía T; Otín, Santos; Artal, Manuela

    2011-06-30

    Quasicontinuous PρT data of CO(2), ethane, propane, and the [CO(2) + ethane] mixture have been determined along subcritical, critical, and supercritical regions. These data have been used to develop the optimal experimental method and to determine the precision of the results obtained when using an Anton Paar DMA HPM vibrating-tube densimeter. A comparison with data from reference EoS and other authors confirm the quality of our experimental setup, its calibration, and testing. For pure compounds, the value of the mean relative deviation is MRD(ρ) = 0.05% for the liquid phase and for the extended critical and supercritical region. For binary mixtures the mean relative deviation is MRD(ρ) = 0.70% in the range up to 20 MPa and MRD(ρ) = 0.20% in the range up to 70 MPa. The number of experimental points measured and their just quality have enable us to determine some derivated properties with satisfactory precision; isothermal compressibilities, κ(T), have been calculated for CO(2) and ethane (MRD(κ(T)) = 1.5%), isobaric expasion coefficients, α(P), and internal pressures, π(i), for CO(2) (MRD(α(P)) = 5% and MRD(π(i)) = 7%) and ethane (MRD(α(P)) = 7.5% and MRD(π(i)) = 8%). An in-depth discussion is presented on the behavior of the properties obtained along subcritical, critical, and supercritical regions. In addition, PuT values have been determined for water and compressed ethane from 273.19 to 463.26 K up to pressures of 190.0 MPa, using a device based on a 5 MHz pulsed ultrasonic system (MRD(u) = 0.1%). With these data we have calibrated the apparatus and have verified the adequacy of the operation with normal liquids as well as with some compressed gases. From density and speed of sound data of ethane, isentropic compressibilities, κ(s), have been obtained, and from these and our values for κ(T) and α(P), isobaric heat capacities, C(p), have been calculated with MRD(C(p)) = 3%, wich is within that of the EoS. PMID:21639086

  9. Simulation of Gas Mixtures in RF Discharges for Nitride Deposition

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Tungsten and titanium nitride films have long been grown by chemical vapor deposition (CVD) methods. However, there has been recent interest in low temperature growth using plasma enhanced CVD. For the present work, we focus on the radio frequency (BE) discharge characteristics of gas mixtures used in nitride deposition (for example, WF6 and ammonia). Because the radial variations for a standard 200 mm, parallel plate reactor are limited to a small zone near the edges of the electrodes, a 1-D (one-dimensional) analysis is considered. This model consists of a self-consistent, 3-D (three-dimensional) moment fluid simulation that solves the continuity, momentum, and energy equations for neutral and charged species. The results in terms of plasma structure, radical concentrations, and local deposition rate will be presented. We will also compare the 1-D results with those obtained from a 2-D hybrid plasma equipment model (HPEM) developed at the University of Illinois.

  10. Fermion-fermion interaction in a dilute gas-mixture Bose condensate

    SciTech Connect

    Mogilyuk, T. I.

    2011-11-15

    A mixture of a one-component Bose gas and two-component Fermi gas is considered at temperatures at which the Bose gas is completely condensed. Two fermions in such a mixture can interact with each other exchanging bosons from the condensate or supercondensate. The interaction potential, a change in the effective mass, the decay, and fermion spectrum are calculated in this quantum Fermi-Bose mixture.

  11. Removal of Boron in Silicon by H2-H2O Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Andersson, Stefan; Nordstrand, Erlend; Tangstad, Merete

    2012-08-01

    The removal of boron in pure silicon by gas mixtures has been examined in the laboratory. Water-vapor-saturated hydrogen was used to remove boron doped in electronic-grade silicon in a vacuum frequency furnace. Boron concentrations in silicon were reduced from 52 ppm initially to 0.7 ppm and 3.4 ppm at 1450°C and 1500°C, respectively, after blowing a H2-3.2%H2O gas mixture for 180 min. The experimental results indicate that the boron removal as a function of gas-blowing time follows the law of exponential decay. After 99% of the boron is removed, approximately 90% of the silicon can be recovered. In order to better understand the gaseous refining mechanism, the quantum chemical coupled cluster with single and double excitations and a perturbative treatment of triple excitations method was used to accurately predict the enthalpy and entropy of formation of the HBO molecule. A simple refining model was then used to describe the boron refining process. This model can be used to optimize the refining efficiency.

  12. Development of traceable precision dynamic dilution method to generate dimethyl sulphide gas mixtures at sub-nanomole per mole levels for ambient measurement.

    PubMed

    Kim, Mi Eon; Kim, Yong Doo; Kang, Ji Hwan; Heo, Gwi Suk; Lee, Dong Soo; Lee, Sangil

    2016-04-01

    Dimethyl sulphide (DMS) is an important compound in global atmospheric chemistry and climate change. Traceable international standards are essential for measuring accurately the long-term global trend in ambient DMS. However, developing accurate gas standards for sub-nanomole per mole (nmol/mol) mole fractions of DMS in a cylinder is challenging, because DMS is reactive and unstable. In this study, a dynamic dilution method that is traceable and precise was developed to generate sub-nmol/mol DMS gas mixtures with a dynamic dilution system based on sonic nozzles and a long-term (>5 years) stable 10 μmol/mol parent DMS primary standard gas mixtures (PSMs). The dynamic dilution system was calibrated with traceable methane PSMs, and its estimated dilution factors were used to calculate the mole fractions of the dynamically generated DMS gas mixtures. A dynamically generated DMS gas mixture and a 6 nmol/mol DMS PSM were analysed against each other by gas chromatography with flame-ionisation detection (GC/FID) to evaluate the dilution system. The mole fractions of the dynamically generated DMS gas mixture determined against a DMS PSM and calculated with the dilution factor agreed within 1% at 6 nmol/mol. In addition, the dynamically generated DMS gas mixtures at various mole fractions between 0.4 and 11.7 nmol/mol were analysed by GC/FID and evaluated for their linearity. The analytically determined mole fractions showed good linearity with the mole fractions calculated with the dilution factors. Results showed that the dynamic dilution method generates DMS gas mixtures ranging between 0.4 nmol/mol and 12 nmol/mol with relative expanded uncertainties of less than 2%. Therefore, the newly developed dynamic dilution method is a promising reference method for generating sub-nmol/mol DMS gas standards for accurate ambient measurements. PMID:26838438

  13. Buffer-gas influence on multiphoton absorption and dissociation in different gas mixtures

    NASA Astrophysics Data System (ADS)

    Nikolić, J. D.; Rabasović, M. D.; Markushev, D. D.; Jovanović-Kurepa, J.

    2008-03-01

    Buffer-gas influence on the multiphoton absorption and dissociation in different mixtures was investigated using the simple method based on the empirical and theoretical vibrational energy distribution, generalized coupled two-level model and photoacoustic cell especially designed for low pressures studies. Energy transfer efficiency was analyzed by means of pulsed photoacoustic spectroscopy technique. Collisional effects of buffer-gas (Ar) pressure are introduced to enhance the absorption and relaxation characteristics of irradiated absorbing molecules (SF 6). Functional behavior of mean number of absorbed photons per molecule < n> total and a dependence on buffer-gas pressure ( pbuff) which enables us to confirm or predict some physical and chemical processes are presented. Limitation of proposed model was analyzed depending on both gas pressure and laser fluence. Results are compared with other previously obtained by the same experimental technique but for different absorber and different molecular buffer-gas.

  14. Quantitative Fourier transform infrared analysis of gas phase cigarette smoke and other gas mixtures

    SciTech Connect

    Cueto, R.; Church, D.F.; Pryor, W.A. )

    1989-03-01

    A new method for the analysis of selected components in complex gas mixtures has been developed utilizing a relatively inexpensive Fourier transform infrared spectrometer and a continuous flow gas cell. The method was used to monitor nitric oxide and nitrogen dioxide concentrations in cigarette smoke with time. Using multivariate least-square regression analysis, it is possible to simultaneously quantitate both NO and NO{sub 2}, even in the presence of overlapping peaks. Using this method, the oxidation of nitric oxide in the presence of isoprene in cigarette smoke and in a model system was followed with time. The method also can be applied to other compounds in smoke or to any other gaseous mixture.

  15. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  16. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  17. High-frequency sound wave propagation in binary gas mixtures flowing through microchannels

    NASA Astrophysics Data System (ADS)

    Bisi, M.; Lorenzani, S.

    2016-05-01

    The propagation of high-frequency sound waves in binary gas mixtures flowing through microchannels is investigated by using the linearized Boltzmann equation based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection boundary conditions. The results presented refer to mixtures whose constituents have comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures (composed of very heavy plus very light molecules, like He-Xe). The sound wave propagation model considered in the present paper allows to analyze the precise nature of the forced-sound modes excited in different gas mixtures.

  18. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    SciTech Connect

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  19. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  20. Metastable sound speed in gas-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1979-01-01

    A new method of calculating speed of sound for two-phase flow is presented. The new equation assumes no phase change during the propagation of an acoustic disturbance and assumes that only the total entropy of the mixture remains constant during the process. The new equation predicts single-phase values for the speed of sound in the limit of all gas or all liquid and agrees with available two-phase, air-water sound speed data. Other expressions used in the two-phase flow literature for calculating two-phase, metastable sound speed are reviewed and discussed. Comparisons are made between the new expression and several of the previous expressions -- most notably a triply isentropic equation as used, a triply isentropic equation as used, among others, by Karplus and by Wallis. Appropriate differences are pointed out and a thermodynamic criterion is derived which must be satisfied in order for the triply isentropic expression to be thermodynamically consistent. This criterion is not satisfied for the cases examined, which included two-phase nitrogen, air-water, two-phase parahydrogen, and steam-water. Consequently, the new equation derived is found to be superior to the other equations reviewed.

  1. Dissipation process of binary gas mixtures in thermally relativistic flow

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier–Stokes–Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165–74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  2. Accurate coarse-grained models for mixtures of colloids and linear polymers under good-solvent conditions

    SciTech Connect

    D’Adamo, Giuseppe; Pelissetto, Andrea; Pierleoni, Carlo

    2014-12-28

    A coarse-graining strategy, previously developed for polymer solutions, is extended here to mixtures of linear polymers and hard-sphere colloids. In this approach, groups of monomers are mapped onto a single pseudoatom (a blob) and the effective blob-blob interactions are obtained by requiring the model to reproduce some large-scale structural properties in the zero-density limit. We show that an accurate parametrization of the polymer-colloid interactions is obtained by simply introducing pair potentials between blobs and colloids. For the coarse-grained (CG) model in which polymers are modelled as four-blob chains (tetramers), the pair potentials are determined by means of the iterative Boltzmann inversion scheme, taking full-monomer (FM) pair correlation functions at zero-density as targets. For a larger number n of blobs, pair potentials are determined by using a simple transferability assumption based on the polymer self-similarity. We validate the model by comparing its predictions with full-monomer results for the interfacial properties of polymer solutions in the presence of a single colloid and for thermodynamic and structural properties in the homogeneous phase at finite polymer and colloid density. The tetramer model is quite accurate for q ≲ 1 (q=R{sup ^}{sub g}/R{sub c}, where R{sup ^}{sub g} is the zero-density polymer radius of gyration and R{sub c} is the colloid radius) and reasonably good also for q = 2. For q = 2, an accurate coarse-grained description is obtained by using the n = 10 blob model. We also compare our results with those obtained by using single-blob models with state-dependent potentials.

  3. Stability assessment of gas mixtures containing monoterpenes in varying cylinder materials and treatments.

    PubMed

    Rhoderick, George C; Lin, Janice

    2013-05-01

    Studies of climate change increasingly recognize the diverse influences exerted by monoterpenes in the atmosphere, including roles in particulates, ozone formation, and oxidizing potential. Measurements of key monoterpenes suggest atmospheric mole fractions ranging from low pmol/mol (parts-per-trillion; ppt) to nmol/mol (parts-per-billion; ppb), depending on location and compound. To accurately establish the mole fraction trends, assess the role of monoterpenes in atmospheric chemistry, and relate measurement records from many laboratories and researchers, it is essential to have good calibration standards. The feasibility of preparing well-characterized, stable gas cylinder standards for monoterpenes at the nmol/mol level was previously tested using treated (Aculife IV) aluminum gas cylinders at NIST. Results for 4 of the 11 monoterpenes, monitored versus an internal standard of benzene, indicated stability in these treated aluminum gas cylinders for over 6 months and projected long-term (years) stability. However, the mole fraction of the key monoterpene β-pinene decreased, while the mole fractions of α-pinene, d-limonene (R-(+)-limonene), p-cymene, and camphene (a terpene not present in the initial gas mixture) increased, indicating a chemical transformation of β-pinene to these species. A similar pattern of decreasing mole fraction was observed in α-pinene where growth of d-limonene, p-cymene, and camphene has been observed in treated gas cylinders prepared with a mixture of just α-pinene and benzene as the internal standard. The current research discusses the testing of other cylinders and treatments for the potential of long-term stability of monoterpenes in a gas mixture. In this current study, a similar pattern of decreasing mole fraction, although somewhat improved short-term stability, was observed for β-pinene and α-pinene, with growth of d-limonene, p-cymene, and camphene, in nickel-plated carbon steel cylinders. β-Pinene and α-pinene showed

  4. The nonlinear model for emergence of stable conditions in gas mixture in force field

    NASA Astrophysics Data System (ADS)

    Kalutskov, Oleg; Uvarova, Liudmila

    2016-06-01

    The case of M-component liquid evaporation from the straight cylindrical capillary into N - component gas mixture in presence of external forces was reviewed. It is assumed that the gas mixture is not ideal. The stable states in gas phase can be formed during the evaporation process for the certain model parameter valuesbecause of the mass transfer initial equationsnonlinearity. The critical concentrations of the resulting gas mixture components (the critical component concentrations at which the stable states occur in mixture) were determined mathematically for the case of single-component fluid evaporation into two-component atmosphere. It was concluded that this equilibrium concentration ratio of the mixture components can be achieved by external force influence on the mass transfer processes. It is one of the ways to create sustainable gas clusters that can be used effectively in modern nanotechnology.

  5. RAPID COMMUNICATION: Electron transport coefficients in SF6 and xenon gas mixtures

    NASA Astrophysics Data System (ADS)

    Xiao, D. M.; Zhu, L. L.; Li, X. G.

    2000-12-01

    The electron swarm growth processes in SF6-Xe gas mixtures have been studied by a pulsed Townsend method over the range 32.24≤E/N≤564.2 Td (1 Td = 10-21 Vm2), where E is the electric field and N is the gas density of the mixture. The variation patterns as a function of the density-reduced electric field of the effective ionization coefficient bar α, electron drift velocity Ve and longitudinal diffusion coefficient DL in SF6-Xe gas mixtures have been given. The dielectric strength of SF6-Xe gas mixtures has also been determined, which varies linearly with SF6 concentration in the gas mixtures.

  6. Gas-phase detonation propagation in mixture composition gradients.

    PubMed

    Kessler, D A; Gamezo, V N; Oran, E S

    2012-02-13

    The propagation of detonations through several fuel-air mixtures with spatially varying fuel concentrations is examined numerically. The detonations propagate through two-dimensional channels, inside of which the gradient of mixture composition is oriented normal to the direction of propagation. The simulations are performed using a two-component, single-step reaction model calibrated so that one-dimensional detonation properties of model low- and high-activation-energy mixtures are similar to those observed in a typical hydrocarbon-air mixture. In the low-activation-energy mixture, the reaction zone structure is complex, consisting of curved fuel-lean and fuel-rich detonations near the line of stoichiometry that transition to decoupled shocks and turbulent deflagrations near the channel walls where the mixture is extremely fuel-lean or fuel-rich. Reactants that are not consumed by the leading detonation combine downstream and burn in a diffusion flame. Detonation cells produced by the unstable reaction front vary in size across the channel, growing larger away from the line of stoichiometry. As the size of the channel decreases relative to the size of a detonation cell, the effect of the mixture composition gradient is lessened and cells of similar sizes form. In the high-activation-energy mixture, detonations propagate more slowly as the magnitude of the mixture composition gradient is increased and can be quenched in a large enough gradient. PMID:22213660

  7. Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor

    SciTech Connect

    Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.; Kriesel, Jason M.

    2015-07-01

    We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.

  8. Buffer gas-induced resonance vibrational polarizability in the SF6-rare gas mixtures

    NASA Astrophysics Data System (ADS)

    Bulanin, Michael O.; Burtsev, Andrey P.; Kerl, Klaus; Kisliakov, Ivan M.

    2001-04-01

    Mixed second refractivity virial coefficients BRab(ω) have been evaluated from the analysis of the pressure broadened ν3≈930 cm-1 34SF6 IR absorption band profile in mixtures with Ne, Ar, Kr, and Xe buffer gases at relative densities up to 150 Amagat. The values of the BRab(ω) in the resonance region are found to be orders of magnitude greater compared to those observed for the neat gases in the spectral regions far from resonance. The experimental results are compared with the predictions of the dynamic DID model for the buffer gas-induced vibrational pair polarizability. The DID model reproduces surprisingly well the frequency variation of BRab in the range of the band wings for the heavier buffer gases, but significantly deviates from experiment for the SF6-Ne mixture.

  9. Data set from chemical sensor array exposed to turbulent gas mixtures.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-06-01

    A chemical detection platform composed of 8 chemo-resistive gas sensors was exposed to turbulent gas mixtures generated naturally in a wind tunnel. The acquired time series of the sensors are provided. The experimental setup was designed to test gas sensors in realistic environments. Traditionally, chemical detection systems based on chemo-resistive sensors include a gas chamber to control the sample air flow and minimize turbulence. Instead, we utilized a wind tunnel with two independent gas sources that generate two gas plumes. The plumes get naturally mixed along a turbulent flow and reproduce the gas concentration fluctuations observed in natural environments. Hence, the gas sensors can capture the spatio-temporal information contained in the gas plumes. The sensor array was exposed to binary mixtures of ethylene with either methane or carbon monoxide. Volatiles were released at four different rates to induce different concentration levels in the vicinity of the sensor array. Each configuration was repeated 6 times, for a total of 180 measurements. The data is related to "Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry", by Fonollosa et al. [1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+senso+rarray+exposed+to+turbulent+gas+mixtures. PMID:26217747

  10. Data set from chemical sensor array exposed to turbulent gas mixtures

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-01-01

    A chemical detection platform composed of 8 chemo-resistive gas sensors was exposed to turbulent gas mixtures generated naturally in a wind tunnel. The acquired time series of the sensors are provided. The experimental setup was designed to test gas sensors in realistic environments. Traditionally, chemical detection systems based on chemo-resistive sensors include a gas chamber to control the sample air flow and minimize turbulence. Instead, we utilized a wind tunnel with two independent gas sources that generate two gas plumes. The plumes get naturally mixed along a turbulent flow and reproduce the gas concentration fluctuations observed in natural environments. Hence, the gas sensors can capture the spatio-temporal information contained in the gas plumes. The sensor array was exposed to binary mixtures of ethylene with either methane or carbon monoxide. Volatiles were released at four different rates to induce different concentration levels in the vicinity of the sensor array. Each configuration was repeated 6 times, for a total of 180 measurements. The data is related to “Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry”, by Fonollosa et al. [1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+senso+rarray+exposed+to+turbulent+gas+mixtures. PMID:26217747

  11. Falling microbead counter-flow process for separating gas mixtures

    DOEpatents

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2015-07-07

    A method and reactor for removing a component from a gas stream is provided. In one embodiment, the method includes providing the gas stream containing the component that is to be removed and adsorbing the component out of the gas stream as the gas stream rises via microbeads of a sorbent falling down an adsorber section of a reactor.

  12. Falling microbead counter-flow process for separating gas mixtures

    SciTech Connect

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2015-10-27

    A method and reactor for removing a component from a gas stream is provided. In one embodiment, the method includes providing the gas stream containing the component that is to be removed and adsorbing the component out of the gas stream as the gas stream rises via microbeads of a sorbent falling down an adsorber section of a reactor.

  13. Process for the separation of components from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1973-10-01

    A process for the removal, from gaseous mixtures of a desired component selected from oxygen, iodine, methyl iodide, and lower oxides of carbon, nitrogen, and sulfur is described. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatmospheric pressure to preferentially absorb the desired component in the fluorocarbon. Unabsorbed constituents of the gaseous mixture are withdrawn from the absorption zone. Liquid fluorocarbon enriched in the desired component is withdrawn separately from the zone, following which the desired component is recovered from the fluorocarbon absorbent. (Official Gazette)

  14. Calculation of the relative speed of sound in a gas mixture.

    PubMed

    Ackerman, M J; Maitland, G

    1975-12-01

    Since the frequency spectrum of a voice signal is directly dependent on the velocity of sound, studies of speech spectra include the problem of calculating the speed of sound in the gas mixture being used. A computer program written in BASIC has been developed to calculate the speed of sound relative to air in various diving gas mixtures. In addition, a set of tables available as a separate technical report has been generated using this program. These tables are designed to provide a standard reference for reporting spectral shifts in speech due to different gas mixtures under normal diving conditions. PMID:1226588

  15. Density-induced processes in quantum gas mixtures in optical lattices

    NASA Astrophysics Data System (ADS)

    Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören

    2012-10-01

    We show that off-site processes and multiorbital physics have a crucial impact on the phase diagram of quantum gas mixtures in optical lattices. In particular, we discuss Bose-Fermi mixtures where the intra- and interspecies interactions induce competing density-induced hopping processes, the so-called bond-charge interactions. Furthermore, higher bands strongly influence tunneling and on-site interactions. We apply a multiorbital interaction-induced dressing of the lowest band, which leads to renormalized hopping processes. These corrections give rise to an extended Hubbard model with intrinsically occupation-dependent parameters. The resulting decrease of the tunneling competes with a decrease of the total on-site interaction energy, both affecting the critical lattice depth of the superfluid to Mott-insulator transition. In contrast to the standard Bose-Fermi Hubbard model, we predict a large shift of the transition to shallower lattice depths with increasing Bose-Fermi attraction. The applied theoretical model allows an accurate prediction of the modified tunneling amplitudes and the critical lattice depth, both being recently observed experimentally.

  16. Viscosity and thermal conductivity of moderately dense gas mixtures.

    NASA Technical Reports Server (NTRS)

    Wakeham, W. A.; Kestin, J.; Mason, E. A.; Sandler, S. I.

    1972-01-01

    Derivation of a simple, semitheoretical expression for the initial density dependence of the viscosity and thermal conductivity of gaseous mixtures in terms of the appropriate properties of the pure components and of their interaction quantities. The derivation is based on Enskog's theory of dense gases and yields an equation in which the composition dependence of the linear factor in the density expansion is explicit. The interaction quantities are directly related to those of the mixture extrapolated to zero density and to a universal function valid for all gases. The reliability of the formulation is assessed with respect to the viscosity of several binary mixtures. It is found that the calculated viscosities of binary mixtures agree with the experimental data with a precision which is comparable to that of the most precise measurements.

  17. GAS CHROMATOGRAPHIC RETENTION PARAMETERS DATABASE FOR REFRIGERANT MIXTURE COMPOSITION MANAGEMENT

    EPA Science Inventory

    Composition management of mixed refrigerant systems is a challenging problem in the laboratory, manufacturing facilities, and large refrigeration machinery. Ths issue of composition management is especially critical for the maintenance of machinery that utilizes zeotropic mixture...

  18. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model

    SciTech Connect

    Fitzgerald, J.E.; Robinson, R.L.; Gasem, K.A.M.

    2006-11-07

    The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO{sub 2} sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO{sub 2} on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO{sub 2} on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.

  19. Gas puff Z-pinches with deuterium-krypton gas mixtures

    NASA Astrophysics Data System (ADS)

    Darling, Timothy; McKee, Erik; Covington, Aaron; Ivanov, Vladimir; Wessel, Frank; Rahman, Hafiz

    2015-11-01

    We discuss experiments with single-shell, pure and mixed-gas loads on the zebra pulsed-power generator at the Nevada Terawatt Facility (NTF). These experiments are modeled using the MACH2 code and provide input and benchmarking for further models and experiments on upcoming staged Z-pinch (SZP) studies under an ARPA-E program. The 1MA-70ns rise time discharge of Zebra produces bursts of both high and low energy X-rays and neutrons if deuterium gas is present. The gas is injected from the (grounded) anode to cathode as an expanding cylindrical shell of approximately 4cm diameter. A pulsed valve and a flow-forming nozzle determine the details of the gas target geometry which is imaged as a density map using a UV excited fluorescent tracer (LIF). The gases imaged are pure Kr and D2 and binary mixtures thereof. A pure D2 pinch produces a (yet to be optimized) neutron yield in the 1e10 regime. Additional diagnostics include a 2-frame Schlieren 1064nm IR imaging diagnostic, which provides information on the implosion dynamics of the pinch. Support for this work comes from DOE/NNSA (grant # DE-NA0002075) and the ARPA-E ALPHA program.

  20. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.

    1996-01-01

    A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

  1. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOEpatents

    Ruka, R.J.; Basel, R.A.

    1996-03-12

    A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

  2. Multifrequency laser probing of CO-containing gas mixtures excited in a pulsed discharge

    SciTech Connect

    Ionin, Andrei A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Rulev, O A; Seleznev, L V; Sinitsyn, D V

    2007-03-31

    The method of multifrequency laser probing is developed which can be used for diagnostics of the temperature and population of vibrational levels in gas mixtures containing CO molecules in excited vibrational states. The method is tested by studying the dynamics of the gas temperature and population of vibrational levels of the CO molecule in gas mixtures excited by a pulsed discharge. It is shown that the method provides the reduction of the gas temperature measurement error down to 3%. It is found that the population of lower vibrational levels in the CO-O{sub 2} mixture can exceed the population of levels in CO-He and CO-N{sub 2} laser mixtures by several times. (active media)

  3. Chemically accurate energy barriers of small gas molecules moving through hexagonal water rings.

    PubMed

    Hjertenæs, Eirik; Trinh, Thuat T; Koch, Henrik

    2016-07-21

    We present chemically accurate potential energy curves of CH4, CO2 and H2 moving through hexagonal water rings, calculated by CCSD(T)/aug-cc-pVTZ with counterpoise correction. The barriers are extracted from a potential energy surface obtained by allowing the water ring to expand while the gas molecule diffuses through. State-of-the-art XC-functionals are evaluated against the CCSD(T) potential energy surface. PMID:27345929

  4. Accurate exchange-correlation energies for the warm dense electron gas

    NASA Astrophysics Data System (ADS)

    Malone, Fionn; Blunt, Nicholas; Shepherd, James; Lee, Derek; Spencer, James; Foulkes, Matthew

    The accurate treatment of matter at high temperatures and densities is of increasing importance to many fields in physics and chemistry, with applications ranging from planetary physics to inertial confinement fusion and plasmonic catalysis. Faithfully including the effects of temperature in density functional theory simulations of warm dense matter requires accurate results for the uniform electron gas (UEG) across the whole temperature-density plane. While accurate ground state quantum Monte Carlo data have existed for over 30 years, there remains significant disagreement between results obtained using different path integral Monte Carlo methods at finite temperature. To resolve this disagreement, we use the systematically improvable density matrix quantum Monte Carlo method to calculate the exchange-correlation energy of the UEG. We also demonstrate how the evaluation of free energies emerges naturally from our method.

  5. PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release

    NASA Astrophysics Data System (ADS)

    Pizzocri, D.; Rabiti, C.; Luzzi, L.; Barani, T.; Van Uffelen, P.; Pastore, G.

    2016-09-01

    The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of the corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this paper, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, combined with polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of PolyPole-1 is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.

  6. Gas gain limitation in low pressure proportional counters filled with TEG mixtures

    NASA Astrophysics Data System (ADS)

    Kowalski, T. Z.

    2014-12-01

    Proportional counters filled with tissue equivalent gas mixtures (TEPC) can be used to simulate interactions and energy transferred to small tissue volumes. One criteria which allows to use TEPC as the dose meter is that the particle ranges are larger compared to the gas volume. TEPC achieve this by operating at low gas pressures. Single ionization events dominate the distribution of low-LET radiation at low gas pressure and therefore their detection is of primary importance, a high gas gain is necessary. Therefore gas gain factor has been measured for Methane- and Propane-based tissue equivalent gas mixtures. The highest stable gas gains, second ionization Townsend coefficient and electron avalanche dimensions have been determined.

  7. Grad's moment method for relativistic gas mixtures of Maxwellian particles

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.; Marques, Wilson

    2013-01-01

    Mixtures of relativistic gases are analyzed within the framework of Boltzmann equation by using Grad's moment method. A relativistic mixture of r constituent is characterized by the moments of the distribution function: particle four-flows, energy-momentum tensors, and third-order moment tensors. By using Eckart's decomposition and introducing 13r + 1 scalar fields - related with the four-velocity, temperature of the mixture, particle number densities, diffusion fluxes, non-equilibrium pressures, heat fluxes, and pressure deviator tensors - Grad's distribution functions are obtained. Grad's distribution functions are used to determine the third-order tensors and their production terms for mixtures whose constituent's rest masses are not too disparate, so that it follows a system of 13r + 1 scalar field equations. By restricting to a binary mixture characterized by the six fields of partial particle number densities, four-velocity and temperature, the remainder 21 scalar equations are used to determine the constitutive equations for the non-equilibrium pressures, diffusion fluxes, pressure deviator tensors, and heat fluxes. Hence the Navier-Stokes and generalized Fourier and Fick laws are obtained and the transport coefficients of bulk and shear viscosities, thermal conductivity, diffusion, thermal-diffusion, and diffusion-thermal are determined. Analytic expressions for the transport coefficients in the non-relativistic and ultra-relativistic limiting cases are given. Furthermore, solutions of the relativistic field equations for the binary mixture are obtained in form of forced and free waves. In the low frequency limiting case the phase velocity and the attenuation coefficient are determined for forced waves. In the small wavenumber limiting case it is shown that there exist four longitudinal eigenmodes, two of them corresponding to propagating sound modes and two associated with non-propagating diffusive modes.

  8. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures

    SciTech Connect

    Huang, Zuohua; Zhang, Yong; Zeng, Ke; Liu, Bing; Wang, Qian; Jiang, Deming

    2006-07-15

    Laminar flame characteristics of natural gas-hydrogen-air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (f from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas-air, hydrogen-air, and natural gas-hydrogen-air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas-hydrogen-air flames is proposed. (author)

  9. Current assessment of the potential of dielectric gas mixtures for industrial applications

    NASA Astrophysics Data System (ADS)

    Bouldin, D. W.; James, D. R.; Pace, M. O.; Christophorou, L. G.

    1984-04-01

    The need for more efficient, economical electrical power transmission and distribution has given impetus to the investigation of new insulating gases. Since no single gas meets all of the multiple needs and operating conditions that exist in power apparatus, mixtures were studied with the goal of tailoring the dielectric for a specific application by exploiting the properties of the component gases. Research results on dielectric gas mixtures and assesses the potential of such mixtures for industrial applications are reviewed. The topics considered include electrical breakdown characteristics, physical and chemical properties, and economics.

  10. Instantaneous Measurement of Local Concentration and Vapor Fraction in Liquid-Gas Mixtures by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kido, Akihiro; Hoshi, Kenji; Kusaka, Hiroto; Ogawa, Hideyuki; Miyamoto, Noboru

    Laser-induced breakdown spectroscopy (LIBS) with atomic emission excited with a focused high-energy ND: YAG laser was applied to quantify the concentration and the vapor fraction of liquid-gas mixtures. With LIBS it is possible to quantify local concentrations accurately even in liquid-gas mixtures as the ratio of the number of fuel-borne hydrogen atoms to nitrogen or oxygen atoms in the ambient gas. The ratio has a strong linear relation with the ratio of the peak emission intensities regardless of phase of the fuel. As the full width at half maximum (FWHM) of the emission peak from the fuel-borne hydrogen increases linearly with the liquid fraction due to the Doppler shift with micro-explosions, the FWHM yields the fuel vapor fraction. Simultaneous, high-resolution measurements of equivalence ratios and vapor fractions in an intermittent fuel spray in a pressurized atmosphere were obtained with this method. The results showed that the tip of the intermittent spray has a richer mixture with a lower vapor fraction.

  11. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  12. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... gas and other material. 173.305 Section 173.305 Transportation Other Regulations Relating to... Packaging § 173.305 Charging of cylinders with a mixture of compressed gas and other material. (a) Detailed requirements. A mixture of a compressed gas and any other material must be shipped as a compressed gas if...

  13. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... gas and other material. 173.305 Section 173.305 Transportation Other Regulations Relating to... Packaging § 173.305 Charging of cylinders with a mixture of compressed gas and other material. (a) Detailed requirements. A mixture of a compressed gas and any other material must be shipped as a compressed gas if...

  14. Direct nuclear excitation of a He-3 - CO2 gas mixture

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1981-01-01

    Probe measurements using a continuous wave CO2 laser have been carried out on a He-3 - CO2 gas mixture directly excited by the He-3(n,p)H-3 reaction. At a gas pressure of 1 atm and thermal neutron flux up to 10 to the 17th n/sq cm sec, total extinction of the probe beam was observed. Addition of N2 to the gas mixture (up to 20%) produced a media such as is used in electric discharge CO2 lasers. However, this mixture produced the same results as the He-3 - CO2 mixture. Absorption of the laser beam indicates that with direct nuclear excitation, it is the lower laser level which is excited. Therefore direct nuclear pumping of a CO2 laser does not appear feasible.

  15. Numerical simulation of the passive gas mixture flow

    NASA Astrophysics Data System (ADS)

    Kyncl, Martin; Pelant, Jaroslav

    2015-05-01

    We work with the system of equations describing non-stationary compressible turbulent multicomponent flow in the gravitational field, and we focus on the numerical solution of these equations. In these computations we assume the mixture of perfect inert gases. The thermodynamic constants are functions in time and space. The finite volume method is used. In order to solve the local boundary problem at each mesh face, we use the original analysis of the exact solution of the Riemann problem. The roughness of the surface is simulated via the specific dissipation at the wall. We show the computational results obtained with the own-developed code (C,FORTRAN) for the solution of the 3D compressible turbulent mixture flow. The originality of this work lies with the special handling of the boundary conditions, which shows superior behavior, and own computational code.

  16. Method of and apparatus for measuring the mean concentration of thoron and/or radon in a gas mixture

    DOEpatents

    Lucas, Henry

    1990-01-01

    A method of and an apparatus for detecting and accurately measuring the mean concentrations of .sup.222 Rn and .sup.220 Tn in a gas mixture, such as the ambient atmosphere in a mine, is provided. The apparatus includes an alpha target member which defines at least one operative target surface and which is preferably fabricated from a single piece of an alpha particle sensitive material. At least one portion of the operative target surface is covered with an alpha particle filter. The uncovered and filter covered operative surface is exposed to the gas mixture containing the .sup.222 Rn and .sup.220 Tn. In the radioactive decay series of these isotopes the maximum kinetic energy emitted by the alpha decay of .sup.222 Rn is about 1.1 MeV less than the maximum kinetic energy emitted by the alpha decay of a .sup.220 Tn. The alpha particle filter has a predetermined mass per unit area of the covered portion of the operative target surface that prevents penetration of alpha particles which originate from .sup.222 Rn decay, but which allows passage therethrough of the maximum kinetic energy alpha particles from .sup.220 Tn decay. Thus, a count of the alpha particle tracks in the uncovered portion of the target member is proportional to the mean concentration of sum of .sup.222 Rn and .sup.220 Tn in the gas mixture, while the count of alpha tracks in the target member under the filter is proportional to the concentration of only the .sup.220 Tn in the gas mixture.

  17. Nanostructure synthesis from high velocity gas mixture flows

    NASA Astrophysics Data System (ADS)

    Rebrov, Aleksey K.

    2014-12-01

    The synthesis of nanostructures is an emerging field of science, modern physics and technologies. The gas dynamic methods have become the instrument of fundamental researches and new basis of vacuum technologies. The gas jet deposition has taken important place in surface modification: deposition of metal, semiconductor, polymer films. History of rarefied gas dynamics and space sciences gave birth to fundamental knowledge for the progress in vacuum nanoscience and nanotechnology. Diamond synthesis holds a special place using the chemical vapor deposition method, based on processes in low density gases. The science on nanostructure synthesis now is on the boundary of new breakthroughs.

  18. Effects of various gas mixtures on plasma nitriding behavior of AISI 5140 steel

    SciTech Connect

    Karakan, Mehmet; Alsaran, Akguen; Celik, Ayhan

    2002-10-15

    AISI 5140 steel was plasma nitrided at various gas mixtures of nitrogen, hydrogen, and argon to investigate the actions of hydrogen and argon on plasma nitriding. The structural and mechanical properties of ion-nitrided AISI 5140 steel have been assessed by evaluating composition of phases, surface hardness, compound layer thickness, and case depth by using X-ray diffraction (XRD), microhardness tests, and scanning electron microscopy (SEM). It was found that the growth of compound layer can be controlled and the diffusion improved when the gas mixture includes H{sub 2} gas. Additionally, it was determined that the amount of Ar in dual gas mixture must be at 20% minimum to obtain distinctive surface hardness and compound layer thickness.

  19. Rayleigh-Brillouin Scattering in Binary-Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Gu, Z.; Ubachs, W.; Marques, W.; van de Water, W.

    2015-06-01

    Precise measurements are performed on spectral line shapes of spontaneous Rayleigh-Brillouin scattering in mixtures of the noble gases Ar and Kr, with He. Admixture of a light He atomic fraction results in marked changes of the spectra, although in all experiments He is merely a spectator atom: it affects the relaxation of density fluctuations of the heavy constituent, but its contribution to the scattered light intensity is negligibly small. The results are compared to a theory for the spectral line shape without adjustable parameters, yielding excellent agreement for the case of binary monatomic gases, signifying a step towards modeling and understanding of light scattering in more complex molecular media.

  20. Cryogenic process for removing acidic gases from gas mixtures

    SciTech Connect

    Gazzi, L.; Cotone, G.; Ginnasi, A.; Rescalli, C.; Soldati, G.; Vetere, A.

    1985-04-30

    Low temperature treatments are combined with solvent treatments using particularly selective solvents for stripping acidic gases such as carbon dioxide and hydrogen sulphide from natural gas or from synthetic gases. The preferred solvents are a wide range of compounds having an esteric or an etheric function in their molecule, but there are also examples of compounds which have the two functions simultaneously. The stripping process is comparatively simple, is efficient, especially for high contents of acidic gases in the raw gas streams, and is economically acceptable.

  1. Cryogenic process for fractionally removing acidic gases from gas mixtures

    SciTech Connect

    Gazzi, L.; Cotone, G.; Ginnasi, A.; Rescalli, C.; Soldati, G.; Vetere, A.

    1985-07-16

    A process is described for stripping acidic gases, mainly hydrogen sulphide and carbon dioxide, from natural gas or synthesis gas, especially when the percentages of such acidic gases are high and the conventional processes become economically objectionable. The process is based on the use of a number of selective solvents, generally belonging to the class of esters, ethers, mixed ester-ethers and lactones, in combination with sequential absorbing cycles which start from the stripping of hydrogen sulphide, and comprise the regeneration of the solvents used by several expansion cycles: H2S and CO2 are recovered and the regenerated solvents recycled.

  2. Some possibilities of using gas mixtures other than air in aerodynamic research

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R

    1956-01-01

    A study is made of the advantages that can be realized in compressible-flow research by employing a substitute heavy gas in place of air. The present report is based on the idea that by properly mixing a heavy monatomic gas with a suitable heavy polyatomic gas, it is possible to obtain a heavy gas mixture which has the correct ratio of specific heats and which is nontoxic, nonflammable, thermally stable, chemically inert, and comprised of commercially available components. Calculations were made of wind-tunnel characteristics for 63 gas pairs comprising 21 different polyatomic gases properly mixed with each of three monatomic gases (argon, krypton, and zenon).

  3. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOEpatents

    Owen, Thomas E.; Miller, Michael A.

    2010-08-24

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  4. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOEpatents

    Owen, Thomas E.; Miller, Michael A.

    2007-03-13

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  5. Inflammable Gas Mixture Detection with a Single Catalytic Sensor Based on the Electric Field Effect

    PubMed Central

    Tong, Ziyuan; Tong, Min-Ming; Meng, Wen; Li, Meng

    2014-01-01

    This paper introduces a new way to analyze mixtures of inflammable gases with a single catalytic sensor. The analysis technology was based on a new finding that an electric field on the catalytic sensor can change the output sensitivity of the sensor. The analysis of mixed inflammable gases results from processing the output signals obtained by adjusting the electric field parameter of the catalytic sensor. For the signal process, we designed a group of equations based on the heat balance of catalytic sensor expressing the relationship between the output signals and the concentration of gases. With these equations and the outputs of different electric fields, the gas concentration in a mixture could be calculated. In experiments, a mixture of methane, butane and ethane was analyzed by this new method, and the results showed that the concentration of each gas in the mixture could be detected with a single catalytic sensor, and the maximum relative error was less than 5%. PMID:24717635

  6. Numerical simulation of the passive gas mixture flow

    NASA Astrophysics Data System (ADS)

    Kyncl, Martin; Pelant, Jaroslav

    2016-03-01

    The aim of this paper is the numerical solution of the equations describing the non-stationary compressible turbulent multicomponent flow in gravitational field. The mixture of perfect inert gases is assumed. We work with the RANS equations equipped with the k-omega and the EARSM turbulence models. For the simulation of the wall roughness we use the modification of the specific turbulent dissipation. The finite volume method is used, with thermodynamic constants being functions in time and space. In order to compute the fluxes through the boundary faces we use the modification of the Riemann solver, which is the original result. We present the computational results, computed with the own-developed code (C, FORTRAN, multiprocessor, unstructured meshes in general).

  7. Sub-shock formation in Grad 10-moment equations for a binary gas mixture

    NASA Astrophysics Data System (ADS)

    Bisi, Marzia; Conforto, Fiammetta; Martalò, Giorgio

    2015-09-01

    The shock structure problem for Grad 10-moment equations for an inert binary mixture is investigated: necessary conditions for the formation of sub-shocks in fields of only one gas or of both components are rigorously obtained, and a detailed comparison with the shock-wave structure of its principal sub-system (deduced assuming vanishing viscous stress tensors) and of the equilibrium Euler sub-system is performed. Some numerical simulations for a mixture of argon and helium are presented.

  8. Two-phase turbine engines. [using gas-liquid mixture accelerated in nozzles

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.

    1976-01-01

    A description is given of a two-phase turbine which utilizes a uniform mixture of gas and liquid accelerated in nozzles of the types reported by Elliott and Weinberg (1968). The mixture acts directly on an axial flow or tangential impulse turbine or is separated into gas and liquid streams which operate separately on a gas turbine and a hydraulic turbine. The basic two-phase cycles are examined, taking into account working fluids, aspects of nozzle expansion, details of turbine cycle operation, and the effect of mixture ratio variation. Attention is also given to two-phase nozzle efficiency, two-phase turbine operating characteristics and efficiencies, separator turbines, and impulse turbine experiments.

  9. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    relaxation model, which can only be applied to molecules, the new model is applicable to atoms, molecules, ions, and their mixtures. Numerical examples and model validations are carried out with two gas mixtures using the maximum entropy linear model: one mixture consists of nitrogen molecules undergoing internal excitation and dissociation and the other consists of nitrogen atoms undergoing internal excitation and ionization. Results show that the original hundreds to thousands of microscopic equations can be reduced to two macroscopic equations with almost perfect agreement for the total number density and total internal energy using only one or two groups. We also obtain good prediction of the microscopic state populations using 5-10 groups in the macroscopic equations.

  10. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    SciTech Connect

    Liu, Yen Vinokur, Marcel; Panesi, Marco; Sahai, Amal

    2015-04-07

    relaxation model, which can only be applied to molecules, the new model is applicable to atoms, molecules, ions, and their mixtures. Numerical examples and model validations are carried out with two gas mixtures using the maximum entropy linear model: one mixture consists of nitrogen molecules undergoing internal excitation and dissociation and the other consists of nitrogen atoms undergoing internal excitation and ionization. Results show that the original hundreds to thousands of microscopic equations can be reduced to two macroscopic equations with almost perfect agreement for the total number density and total internal energy using only one or two groups. We also obtain good prediction of the microscopic state populations using 5-10 groups in the macroscopic equations.

  11. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

    PubMed

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    relaxation model, which can only be applied to molecules, the new model is applicable to atoms, molecules, ions, and their mixtures. Numerical examples and model validations are carried out with two gas mixtures using the maximum entropy linear model: one mixture consists of nitrogen molecules undergoing internal excitation and dissociation and the other consists of nitrogen atoms undergoing internal excitation and ionization. Results show that the original hundreds to thousands of microscopic equations can be reduced to two macroscopic equations with almost perfect agreement for the total number density and total internal energy using only one or two groups. We also obtain good prediction of the microscopic state populations using 5-10 groups in the macroscopic equations. PMID:25854230

  12. CO2 + N2O mixture gas hydrate formation kinetics and effect of soil minerals on mixture-gas hydrate formation process

    NASA Astrophysics Data System (ADS)

    Enkh-Amgalan, T.; Kyung, D.; Lee, W.

    2012-12-01

    CO2 mitigation is one of the most pressing global scientific topics in last 30 years. Nitrous oxide (N2O) is one of the main greenhouse gases (GHGs) defined by the Kyoto Protocol and its global warming potential (GWP) of one metric ton is equivalent to 310 metric tons of CO2. They have similar physical and chemical properties and therefore, mixture-gas (50% CO2 + 50% N2O) hydrate formation process was studied experimentally and computationally. There were no significant research to reduce N20 gas and we tried to make hydrate to mitigate N20 and CO2 in same time. Mixture gas hydrate formation periods were approximately two times faster than pure N2O hydrate formation kinetic in general. The fastest induction time of mixture-gas hydrate formation observed in Illite and Quartz among various soil mineral suspensions. It was also observed that hydrate formation kinetic was faster with clay mineral suspensions such as Nontronite, Sphalerite and Montmorillonite. Temperature and pressure change were not significant on hydrate formation kinetic; however, induction time can be significantly affected by various chemical species forming under the different suspension pHs. The distribution of chemical species in each mineral suspension was estimated by a chemical equilibrium model, PHREEQC, and used for the identification of hydrate formation characteristics in the suspensions. With the experimental limitations, a study on the molecular scale modeling has a great importance for the prediction of phase behavior of the gas hydrates. We have also performed molecular dynamics computer simulations on N2O and CO2 hydrate structures to estimate the residual free energy of two-phase (hydrate cage and guest molecule) at three different temperature ranges of 260K, 273K, and 280K. The calculation result implies that N2O hydrates are thermodynamically stable at real-world gas hydrate existing condition within given temperature and pressure. This phenomenon proves that mixture-gas could be

  13. Ring-shaped electric discharge as an igniter of gas mixtures

    NASA Astrophysics Data System (ADS)

    Barkhudarov, E. M.; Berezhetskaya, N. K.; Kop'ev, V. A.; Kossyi, I. A.; Popov, N. A.; Taktakishvili, M. I.; Temchin, S. M.

    2010-09-01

    Results are presented from experimental studies of ignition of a stoichiometric methane-oxygen mixture in a closed chamber by a ring electric discharge. It is shown that the process of fast (explosive) ignition of the reactor volume starts on the axis of the ring, near its centre, i.e. at a distance from the annular region of power deposition. Experimental evidence suggests that the ignition of a combustible gas mixture near the axis is triggered by strong gas-dynamic perturbations converging to the axis, radially propagating from the ring discharger.

  14. Diffusion of relativistic gas mixtures in gravitational fields

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.

    2014-01-01

    A mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric is studied on the basis of a relativistic Boltzmann equation in the presence of gravitational fields. A BGK-type model equation of the collision operator of the Boltzmann equation is used in order to compute the non-equilibrium distribution functions by the Chapman-Enskog method. The main focus of this work is to obtain Fick’s law without the thermal-diffusion cross-effect. Fick’s law has four contributions, two of them are the usual terms proportional to the gradients of concentration and pressure. The other two are of the same nature as those which appear in Fourier’s law in the presence of gravitational fields and are related to an acceleration and a gravitational potential gradient, but unlike Fourier’s law these last two terms are of non-relativistic order. Furthermore, it is shown that the coefficients of diffusion depend on the gravitational potential and become smaller than those in its absence.

  15. Shock wave processes in collisional gas particle mixtures

    NASA Astrophysics Data System (ADS)

    Khmel, T. A.; Fedorov, A. V.

    2016-06-01

    Structures and propagation of shock waves in high density particle suspensions in gas are investigated theoretically and numerically. A physical and mathematical model which takes into account integral collisions between the particles on the basis of molecular-kinetic approaches of theory of granular materials is applied. The possibility of different types of shock waves, including double front structures is revealed. The role of particle collisions in the dynamics of particle dense layer expansion under an influence of divergent shock wave and in processes of shock wave diffraction past a backward-facing step is analyzed.

  16. Nonequilibrium vibrational excitation of molecules behind a shock front in a gas mixture

    NASA Astrophysics Data System (ADS)

    Dobkin, S. V.; Son, E. E.

    1981-10-01

    It is shown that when a shock wave propagates in a light gas with a small admixture of heavy gas, the nonequilibrium vibrational excitation of molecules of the heavy gas can occur. In this case, the vibrational temperature can increase to values exceeding the gas temperature behind the shock wave, in contrast to the equilibrium case. Vibrational energy in a shock wave in a mixture of helium and uranium hexafluoride is calculated as an example. The possibility of experimentally observing this effect is discussed.

  17. Accurate determination of fiber water-retaining capability at process conditions by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; He, Liang

    2016-09-16

    This work reports on a method for the accurate determination of fiber water-retaining capability at process conditions by headspace gas chromatography (HS-GC) method. The method was based the HS-GC measurement of water vapor on a set closed vials containing in a given amount pulp with different amounts of water addition, from under-saturation to over-saturation. By plotting the equilibrated water vapor signal vs. the amount of water added in pulp, two different trend lines can be observed, in which the transition of the lines corresponds to fiber water-retaining capability. The results showed that the HS-GC method has good measurement precision (much better than the reference method) and good accuracy. The present method can be also used for determining pulp fiber water-retaining capability at the process temperatures in both laboratory research and mill applications. PMID:27554029

  18. Numerical Methodology for Coupled Time-Accurate Simulations of Primary and Secondary Flowpaths in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Athavale, M. M.; Hendricks, R. C.; Steinetz, B. M.

    2006-01-01

    Detailed information of the flow-fields in the secondary flowpaths and their interaction with the primary flows in gas turbine engines is necessary for successful designs with optimized secondary flow streams. Present work is focused on the development of a simulation methodology for coupled time-accurate solutions of the two flowpaths. The secondary flowstream is treated using SCISEAL, an unstructured adaptive Cartesian grid code developed for secondary flows and seals, while the mainpath flow is solved using TURBO, a density based code with capability of resolving rotor-stator interaction in multi-stage machines. An interface is being tested that links the two codes at the rim seal to allow data exchange between the two codes for parallel, coupled execution. A description of the coupling methodology and the current status of the interface development is presented. Representative steady-state solutions of the secondary flow in the UTRC HP Rig disc cavity are also presented.

  19. A Study for Health Hazard Evaluation of Methylene Chloride Evaporated from the Tear Gas Mixture

    PubMed Central

    Chung, Eun-Kyo; Yi, Gwang-Yong; Chung, Kwang-Jae; Shin, Jung-Ah; Lee, In-Seop

    2010-01-01

    This study explored the health hazard of those exposed to methylene chloride by assessing its atmospheric concentration when a tear gas mixture was aerially dispersed. The concentration of methylene chloride ranged from 311.1-980.3 ppm (geometric mean, 555.8 ppm), 30 seconds after the dispersion started. However, the concentration fell rapidly to below 10 ppm after dispersion was completed. The concentration during the dispersion did not surpass the National Institute for Occupational Safety and Health 'immediately dangerous to life or health' value of 2,300 ppm, but did exceed the American Conference of Governmental Industrial Hygienists excursion limit of 250 ppm. Since methylene chloride is highly volatile (vapor pressure, 349 mmHg at 20℃), the postdispersion atmospheric concentration can rise instantaneously. Moreover, the o-chlorobenzylidenemalononitrile formulation of tear gas (CS gas) is an acute upper respiratory tract irritant. Therefore, tear gas mixtures should be handled with delicate care. PMID:22953168

  20. Variable-temperature cryogenic trap for the separation of gas mixtures

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1978-01-01

    The paper describes a continuous variable-temperature U-shaped cold trap which can both purify vacuum-line combustion products for subsequent stable isotopic analysis and isolate the methane and ethane constituents of natural gases. The canister containing the trap is submerged in liquid nitrogen, and, as the gas cools, the gas mixture components condense sequentially according to their relative vapor pressures. After the about 12 min required for the bottom of the trap to reach the liquid-nitrogen temperature, passage of electric current through the resistance wire wrapped around the tubing covering the U-trap permits distillation of successive gas components at optimal temperatures. Data on the separation achieved for two mixtures, the first being typical vacuum-line combustion products of geochemical samples such as rocks and the second being natural gas, are presented, and the thermal behavior and power consumption are reported.

  1. A Method for Deriving Accurate Gas-Phase Abundances for the Multiphase Interstellar Galactic Halo

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Sembach, Kenneth R.; Savage, Blair D.

    2006-01-01

    We describe a new method for accurately determining total gas-phase abundances for the Galactic halo interstellar medium with minimal ionization uncertainties. For sight lines toward globular clusters containing both ultraviolet-bright stars and radio pulsars, it is possible to measure column densities of H I and several ionization states of selected metals using ultraviolet absorption line measurements and of H II using radio dispersion measurements. By measuring the ionized hydrogen column, we minimize ionization uncertainties that plague abundance measurements of Galactic halo gas. We apply this method for the first time to the sight line toward the globular cluster Messier 3 [(l,b)=(42.2d,+78.7d), d=10.2 kpc, z=10.0 kpc] using Far Ultraviolet Spectroscopic Explorer and Hubble Space Telescope ultraviolet spectroscopy of the post-asymptotic giant branch star von Zeipel 1128 and radio observations by Ransom et al. of recently discovered millisecond pulsars. The fraction of hydrogen associated with ionized gas along this sight line is 45%+/-5%, with the warm (T~104 K) and hot (T>~105 K) ionized phases present in roughly a 5:1 ratio. This is the highest measured fraction of ionized hydrogen along a high-latitude pulsar sight line. We derive total gas-phase abundances logN(S)/N(H)=-4.87+/-0.03 and logN(Fe)/N(H)=-5.27+/-0.05. Our derived sulfur abundance is in excellent agreement with recent solar system determinations of Asplund, Grevesse, & Sauval. However, it is -0.14 dex below the solar system abundance typically adopted in studies of the interstellar medium. The iron abundance is ~-0.7 dex below the solar system abundance, consistent with the significant incorporation of iron into interstellar grains. Abundance estimates derived by simply comparing S II and Fe II to H I are +0.17 and +0.11 dex higher, respectively, than the abundance estimates derived from our refined approach. Ionization corrections to the gas-phase abundances measured in the standard way are

  2. Recognizing indoor formaldehyde in binary gas mixtures with a micro gas sensor array and a neural network

    NASA Astrophysics Data System (ADS)

    Lv, Pin; Tang, Zhenan; Wei, Guangfen; Yu, Jun; Huang, Zhengxing

    2007-09-01

    Low-concentration formaldehyde (HCHO) together with ethanol/toluene/acetone/α-pinene (as an interference gas of HCHO) is detected with a micro gas sensor array, composed of eight tin oxide (SnO2) thin film gas sensors with Au, Cu, Pt or Pd metal catalysts. The characteristics of the multi-dimensional signals from the eight sensors are evaluated. A multilayer neural network with an error backpropagation (BP) learning algorithm, plus the principal component analysis (PCA) technique, is implemented to recognize these indoor volatile organic compounds (VOC). The results show that the micro gas sensor array, plus the multilayer neural network, is very effective in recognizing 0.06 ppm HCHO in single gas component and in binary gas mixtures, toluene/ethanol/α-pinene with small relative error.

  3. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids

    SciTech Connect

    Finotello Alexia; Bara Jason E.; Narayan Suguna; Campder Dean; Noble Richard D.

    2008-07-01

    This study focuses on the solubility behaviors of CO{sub 2}, CH{sub 4}, and N{sub 2} gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using l-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ((C{sub 2}mim)(Tf{sub 2}N)) and l-ethyl-3-methylimidazolium tetrafluoroborate ((C{sub 2}mim)(BF{sub 4})) at 40{sup o}C and low pressures (about 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % (C{sub 2}mim)(BF{sub 4}) in (C{sub 2}-mim)(Tf2{sub N}). Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO{sub 2} with N{sub 2} or CH{sub 4} in pure (C{sub 2}mim)(BF4) can be enhanced by adding 5 mol% (C{sub 2}-mim)(Tf{sub 2}N).

  4. Characterization and control of exhaust gas from diesel engine firing coal-water mixture

    SciTech Connect

    Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

    1990-03-01

    Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO[sub x] concentrations are also understood in terms of known reaction mechanisms.

  5. Characterization and control of exhaust gas from diesel engine firing coal-water mixture

    SciTech Connect

    Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

    1990-03-01

    Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO{sub x} concentrations are also understood in terms of known reaction mechanisms.

  6. New SI-traceable reference gas mixtures for fluorinated gases at atmospheric concentration

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Wyss, Simon A.; Pascale, Céline; Vollmer, Martin K.; Niederhauser, Bernhard; Reimann, Stefan

    2016-04-01

    In order to better support the monitoring of greenhouse gases in the atmosphere, we develop a method to produce reference gas mixtures for fluorinated gases (F-gases, i.e. gases containing fluorine atoms) in a SI-traceable way, meaning that the amount of substance fraction in mole per mole is traceable to SI-units. These research activities are conducted in the framework of the HIGHGAS and AtmoChem-ECV projects. First, single-component mixtures in synthetic air at ~85 nmol/mol (ppb) are generated for HFC-125 (pentafluoroethane, a widely used HFC) and HFC-1234yf (2,3,3,3-tetrafluoropropene, a car air conditioner fluid of growing importance). These mixtures are first dynamically produced by permeation: a permeator containing the pure substance loses mass linearly over time under a constant gas flow, in the permeation chamber of a magnetic suspension balance, which is regularly calibrated. This primary mixture is then pressurised into Silconert2000-coated stainless steel cylinders by cryo-filling. In a second step these mixtures are dynamically diluted using 2 subsequent dilution steps piloted by mass flow controllers (MFC) and pressure controllers. The assigned mixture concentration is calculated mostly based on the permeator mass loss, on the carrier gas purity and on the MFCs flows. An uncertainty budget is presented, resulting in an expanded uncertainty of 2% for the HFC-125 reference mixture and of 2.5% for the HFC-1234yf mixture (95% confidence interval). The final gas, with near-atmospheric concentration (17.11 pmol/mol for HFC-125, 2.14 pmol/mol for HFC-1234yf) is then measured with Medusa-GC/MS technology against standards calibrated on existing reference scales. The assigned values of the dynamic standards are in excellent agreement with measurements vs the existing reference scales, SIO-14 from the Scripps Institution of Oceanography for HFC-125 and Empa-2013 for HFC-1234yf. Moreover, the Medusa-GC/MS measurements show the excellent purity of the SI

  7. Program on the combustion chemistry of low- and intermediate-Btu gas mixtures

    SciTech Connect

    Not Available

    1981-11-30

    Low and intermediate Btu (LBTU and IBTU) gas mixtures are essentially mixtures of CO, H/sub 2/ and CH/sub 4/ diluted with nitrogen and CO/sub 2/. Although the combustion properties of these three fuels have been extensively investigated and their individual combustion kinetics are reasonably well established, prediction techniques for applying these gas mixtures remain for the most part empirical. This program has aimed to bring together and apply some of the fundamental combustion parameters to the CO-H/sub 2/-CH/sub 4/ flame system with the hope of reducing some of this empiricism. Four topical reports have resulted from this program. This final report summarizes these reports and other activities undertaken in this program. This program was initiated June 22, 1976 under ERDA Contract No. E(49-18)-2406 and was later continued under DOE/PETC and DOE Contract No. DE-AC22-76ET10653.

  8. Experimental study of flammability limits of natural gas-air mixture.

    PubMed

    Liao, S Y; Cheng, Q; Jiang, D M; Gao, J

    2005-03-17

    Flammability limits data are essential for a quantitative risk assessment of explosion hazard associated with the use of combustible gas. The present work is to obtain the fundamental flammability data for prevention of the hazards in the practical applications. Experiments have been conducted in a constant volume combustion bomb, and the fuel considered here is natural gas (NG). The pressure histories in the combustion bomb are recorded and a criterion of 7% pressure rise has been used to judge a flammable mixture. The effects of ethane on NG-air flammability limits have been investigated. By adding diluent (carbon dioxide, nitrogen or their mixture) into NG-air mixture, the dilution effects on the flammability limits have been explored as well, and the results are plotted as functions of diluent ratio. PMID:15752851

  9. Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons

    SciTech Connect

    Ihm, Yungok; Cooper, Valentino R; Gallego, Nidia C; Contescu, Cristian I; Morris, James R

    2014-01-01

    We demonstrate a successful, efficient framework for predicting gas adsorption properties in real materials based on first-principles calculations, with a specific comparison of experiment and theory for methane adsorption in activated carbons. These carbon materials have different pore size distributions, leading to a variety of uptake characteristics. Utilizing these distributions, we accurately predict experimental uptakes and heats of adsorption without empirical potentials or lengthy simulations. We demonstrate that materials with smaller pores have higher heats of adsorption, leading to a higher gas density in these pores. This pore-size dependence must be accounted for, in order to predict and understand the adsorption behavior. The theoretical approach combines: (1) ab initio calculations with a van der Waals density functional to determine adsorbent-adsorbate interactions, and (2) a thermodynamic method that predicts equilibrium adsorption densities by directly incorporating the calculated potential energy surface in a slit pore model. The predicted uptake at P=20 bar and T=298 K is in excellent agreement for all five activated carbon materials used. This approach uses only the pore-size distribution as an input, with no fitting parameters or empirical adsorbent-adsorbate interactions, and thus can be easily applied to other adsorbent-adsorbate combinations.

  10. A FORTRAN program for the determination of nozzle contours for rotational, non-homentropic gas mixtures

    NASA Technical Reports Server (NTRS)

    Kalben, P.

    1977-01-01

    A program was written which generates a nozzle contour and the complete flow field for two dimensional or axisymetric flows designed to exit parallel to the axis at uniform pressure. The flow is that of a rotational, non-homentropic gas mixture where viscous effects were neglected and the chemistry is assumed frozen. A description of the numerical program developed, is also described.

  11. Concentration measurement systems with stable solutions for binary gas mixtures using two flowmeters

    NASA Astrophysics Data System (ADS)

    Youn, Chongho; Kawashima, Kenji; Kagawa, Toshiharu

    2011-06-01

    The previously proposed gas concentration measurement system (Yamazaki et al 2007 Meas. Sci. Technol. 18 2762-8) shows a considerable error for some combinations of gases. The error increases when the system of equations determining mole fractions becomes a mathematically ill-conditioned system. Because the parameters of the equations reflect the material properties of the gases, the current paper considers flowmeters whose flow rate indication does not involve any gas property. This paper firstly illustrates the ill condition for the combination of venturi meter and laminar flowmeters. The paper then discusses the simultaneous measurement of flow rate and mole fractions by flowmeter combinations: an ultrasonic flowmeter and a venturi meter, an ultrasonic flowmeter and a laminar flowmeter. Experiments are conducted for a mixture of argon and air. When a venturi meter and a laminar flowmeter are used, the equations to evaluate the gas mixture ratio become an ill-conditioned system, and hence the evaluated mixture ratio shows a considerable error. On the other hand, the combination of an ultrasonic flowmeter and a laminar flowmeter detects the gas mixture ratio with proper accuracy.

  12. Ignition of a combustible gas mixture by a high-current electric discharge in a closed volume

    SciTech Connect

    Berezhetskaya, N. K.; Gritsinin, S. I.; Kop'ev, V. A.; Kossyi, I. A.; Kuleshov, P. S.; Popov, N. A.; Starik, A. M.; Tarasova, N. M.

    2009-06-15

    Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH{sub 4}: O{sub 2} gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.

  13. Plasma chemistry of NO in complex gas mixtures excited with a surfatron launcher.

    PubMed

    Hueso, J L; González-Elipe, A R; Cotrino, J; Caballero, A

    2005-06-01

    The plasma chemistry of NO has been investigated in gas mixtures with oxygen and/or hydrocarbon and Ar as carrier gas. Surface wave discharges operating at microwave frequencies have been used for this study. The different plasma reactions have been analyzed for a pressure range between 30 and 75 Torr. Differences in product concentration and/or reaction yields smaller than 10% were found as a function of this parameter. The following gas mixtures have been considered for investigation: Ar/NO, Ar/NO/O2, Ar/NO/CH4, Ar/CH4/O2, Ar/NO/CH4/O2. It is found that NO decomposes into N2 and O2, whereas other products such as CO, H2, and H2O are also formed when CH4 and O2 are present in the reaction mixture. Depending on the working conditions, other minority products such as HCN, CO2, and C2 or higher hydrocarbons have been also detected. The reaction of an Ar/NO plasma with deposits of solid carbon has also been studied. The experiments have provided useful information with respect to the possible removal of soot particles by this type of plasma. It has been shown that carbon deposits are progressively burned off by interaction with the plasma, and practically 100% decomposition of NO was found. Plasma intermediate species have been studied by optical emission spectroscopy (OES). Bands and/or peaks due to N2*, NO*, OH*, C2*, CN*, CH*, or H* were detected with different relative intensities depending on the gas mixture. From the analysis of both the reaction products and efficiency and the type of intermediate species detected by OES, different plasma reactions and processes are proposed to describe the plasma chemistry of NO in each particular mixture of gases. The results obtained provide interesting insights about the plasma removal of NO in real gas exhausts. PMID:16833840

  14. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    SciTech Connect

    Myint, P. C.; Hao, Y.; Firoozabadi, A.

    2015-03-27

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO2 activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO2, pure water, and both CO2-rich and aqueous (H2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun’s model yields accurate results for the partial molar enthalpy of CO2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H2O-CO2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  15. Preparation of Calibration Gas Mixtures Using a Dynamic Volumetric Method for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, W.; Oh, S.

    2008-12-01

    It is difficult to produce and maintain the quality of calibration gas mixtures stable and reliable in gas cylinders for the identification and quantification of trace environmental contaminants. Dynamic method has attracted an attention because immediate and on-site generation of calibration gas mixture is achievable in the range of percent, sub-ppm, and micro-mole fraction. The dynamic method for the preparation of standard reference gas/vapour mixtures was carried out using polymeric permeation membrane. Permeation behaviour of various organic compounds including aliphatic and aromatic hydrocarbons and chlorohydrocarbons was tested through semi-permeable silicone polymer and fluoropolymers. Experimental results showed the constant permeation rate of target compounds under the constant temperature condition. The permeation rate, however, was largely influenced by chemical components, membrane materials, and temperature change. Mole fractions of generated vapour were calculated using the mass loss of permeation tubes and mass-flow rate of carrier gas. Dynamic volumetric techniques can be applicable for the generation of standard reference materials for the calibration of various types of organics (volatile organic compounds, polycyclic aromatic hydrocarbons, etc) in ambient air and water. This technology is also applicable to develop novel materials for passive samplers for long-term environmental monitoring.

  16. Full-spectrum k-distribution look-up table for nonhomogeneous gas-soot mixtures

    NASA Astrophysics Data System (ADS)

    Wang, Chaojun; Modest, Michael F.; He, Boshu

    2016-06-01

    Full-spectrum k-distribution (FSK) look-up tables provide great accuracy combined with outstanding numerical efficiency for the evaluation of radiative transfer in nonhomogeneous gaseous media. However, previously published tables cannot be used for gas-soot mixtures that are found in most combustion scenarios since it is impossible to assemble k-distributions for a gas mixed with nongray absorbing particles from gas-only full-spectrum k-distributions. Consequently, a new FSK look-up table has been constructed by optimizing the previous table recently published by the authors and then adding one soot volume fraction to this optimized table. Two steps comprise the optimization scheme: (1) direct calculation of the nongray stretching factors (a-values) using the k-distributions (k-values) rather than tabulating them; (2) deletion of unnecessary mole fractions at many thermodynamic states. Results show that after optimization, the size of the new table is reduced from 5 GB (including the k-values and the a-values for gases only) to 3.2 GB (including the k-values for both gases and soot) while both accuracy and efficiency remain the same. Two scaled flames are used to validate the new table. It is shown that the new table gives results of excellent accuracy for those benchmark results together with cheap computational cost for both gas mixtures and gas-soot mixtures.

  17. Characterization of a GEM-based scintillation detector with He–CF4 gas mixture in clinical proton beams

    NASA Astrophysics Data System (ADS)

    Nichiporov, D.; Coutinho, L.; Klyachko, A. V.

    2016-04-01

    Accurate, high-spatial resolution dosimetry in proton therapy is a time consuming task, and may be challenging in the case of small fields, due to the lack of adequate instrumentation. The purpose of this work is to develop a novel dose imaging detector with high spatial resolution and tissue equivalent response to dose in the Bragg peak, suitable for beam commissioning and quality assurance measurements. A scintillation gas electron multiplier (GEM) detector based on a double GEM amplification structure with optical readout was filled with a He/CF4 gas mixture and evaluated in pristine and modulated proton beams of several penetration ranges. The detector’s performance was characterized in terms of linearity in dose rate, spatial resolution, short- and long-term stability and tissue-equivalence of response at different energies. Depth-dose profiles measured with the GEM detector in the 115–205 MeV energy range were compared with the profiles measured under similar conditions using the PinPoint 3D small-volume ion chamber. The GEM detector filled with a He-based mixture has a nearly tissue equivalent response in the proton beam and may become an attractive and efficient tool for high-resolution 2D and 3D dose imaging in proton dosimetry, and especially in small-field applications.

  18. Characterization of a GEM-based scintillation detector with He-CF4 gas mixture in clinical proton beams.

    PubMed

    Nichiporov, D; Coutinho, L; Klyachko, A V

    2016-04-21

    Accurate, high-spatial resolution dosimetry in proton therapy is a time consuming task, and may be challenging in the case of small fields, due to the lack of adequate instrumentation. The purpose of this work is to develop a novel dose imaging detector with high spatial resolution and tissue equivalent response to dose in the Bragg peak, suitable for beam commissioning and quality assurance measurements. A scintillation gas electron multiplier (GEM) detector based on a double GEM amplification structure with optical readout was filled with a He/CF4 gas mixture and evaluated in pristine and modulated proton beams of several penetration ranges. The detector's performance was characterized in terms of linearity in dose rate, spatial resolution, short- and long-term stability and tissue-equivalence of response at different energies. Depth-dose profiles measured with the GEM detector in the 115-205 MeV energy range were compared with the profiles measured under similar conditions using the PinPoint 3D small-volume ion chamber. The GEM detector filled with a He-based mixture has a nearly tissue equivalent response in the proton beam and may become an attractive and efficient tool for high-resolution 2D and 3D dose imaging in proton dosimetry, and especially in small-field applications. PMID:26992243

  19. Electrochemical separation and concentration of sulfur containing gases from gas mixtures

    DOEpatents

    Winnick, Jack

    1981-01-01

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  20. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  1. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  2. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  3. An experimental setup with ultrasonic gas analyzers and real time analysis of the composition of a binary gas mixture

    NASA Astrophysics Data System (ADS)

    Vacek, V.; Vítek, M.; Doubek, M.

    2013-04-01

    This paper describes an automated measuring apparatus with an ultrasonic gas analyzer and realtime analysis of the composition of the gas. The apparatus is designed for preparing binary gas mixtures and making measurements in a wide range of pressures (from 0.8 bara to 15 bara) and temperatures (between -15°C and 80°C). The apparatus was developed to determine the thermophysical properties of fluorocarbon mixtures for potential use in the cooling circuits of several Large Hadron Collider projects at CERN. The design of its control system took into account the safety and reliability o the gas analyzer, and the need to limit the presence of laboratory personnel. The control system was implemented in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The second part of the paper describes the implementation and verification of the algorithm for continuous real-time determination of the composition of the refrigerant mixture. The algorithm is based on minimizing the quadratic norm fromthe measured data and from the pre-generated look-up tables acquired from the NIST REFPROP software package.

  4. Bubbling behaviors induced by gas-liquid mixture permeating through a porous medium

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Li, Mingbo; Chen, Wenyu; Xie, Haibo; Fu, Xin

    2016-08-01

    This paper investigates the bubbling behaviors induced by gas-liquid mixture permeating through porous medium (PM), which was observed in developing immersion lithography system and was found having great differences with traditional bubbling behaviors injected with only gas phase through the PM. An experimental setup was built up to investigate the bubbling characteristics affected by the mixed liquid phase. Both the flow regimes of gas-liquid mixture in micro-channel (upstream of the PM) and the bubbling flow regimes in water tank (downstream of the PM) were recorded synchronously by high-speed camera. The transitions between the flow regimes are governed by gas and liquid Weber numbers. Based on the image analysis, the characteristic parameters of bubbling region, including the diameter of bubbling area on PM surface, gas-phase volume flux, and dispersion angle of bubbles in suspending liquid, were studied under different proportions of gas and liquid flow rate. Corresponding empirical correlations were developed to describe and predict these parameters. Then, the pertinent bubble characteristics in different bubbling flow regimes were systematically investigated. Specifically, the bubble size distribution and the Sauter mean diameter affected by increasing liquid flow rate were studied, and the corresponding analysis was given based on the hydrodynamics of bubble-bubble and bubble-liquid interactions. According to dimensionless analysis, the general prediction equation of Sauter mean diameter under different operating conditions was proposed and confirmed by experimental data. The study of this paper is helpful to improve the collection performance of immersion lithography and aims to reveal the differences between the bubbling behaviors on PM caused by only gas flow and gas-liquid mixture flow, respectively, for the researches of fluid flow.

  5. Flash pyrolysis of New Mexico sub-bituminous coal in helium-methane gas mixtures

    SciTech Connect

    Sundaram, M.S.; Fallon, P.T.; Steinberg, M.

    1986-04-01

    A New Mexico sub-bituminous coal was flash pyrolyzed in gas mixtures of helium and methane at 1000/sup 0/C and 50 psi in an 1-in. I.D. entrained down-flow tubular reactor. The mixture contained 0 to 40% helium in methane. Under tested experimental conditions, pyrolysis in gas mixtures resulted in higher yields of ethylene and BTX than in pure methane. For example, under a coal flow rate of 1.0 lb/hr and methane flow rate of 4.0 lb/hr, pyrolysis in pure methane produced 7.7% C/sub 2/H/sub 4/ and 9.0% BTX on the basis of carbon contained in coal; under similar coal and methane flow rates, as high as 14.8% C/sub 2/H/sub 4/ and 15.3% BTX were obtained on pyrolysis in 25% He + 75% CH/sub 4/ gas mixture. The data show that the coal flow rate and methane flow rate both independently effect the yields of C/sub 2/H/sub 4/ and BTS. At constant methane flow rate, increase in coal flow rate decreases the yields of C/sub 2/H/sub 4/ and BTX; at constant coal flow rate, increase in methane flow rate increases the yields of C/sub 2/H/sub 4/ and BTX. 6 refs., 2 tabs.

  6. Flash pyrolysis of New Mexico sub-bituminous coal in helium-methane gas mixtures

    SciTech Connect

    Sundaram, M.S.; Fallon, P.T.; Steinberg, M.

    1986-01-01

    A New Mexico sub-bituminous coal was flash pyrolyzed in gas mixtures of helium and methane at 1000/sup 0/C and 50 psi in an 1-in. I.D. entrained down-flow tubular reactor. The mixture contained 0 to 40% helium in methane. Under tested experimental conditions, pyrolysis in gas mixtures resulted in higher yields of ethylene and BTX than in pure methane. For example, under a coal flow rate of 1.0 lb/hr and methane flow rate of 4.0 lb/hr, pyrolysis in pure methane produced 7.7% C/sub 2/H/sub 4/ and 9.0% BTX on the basis of carbon contained in coal; under similar coal and methane flow rates, as high as 14.8% C/sub 2/H/sub 4/ and 15.3% BTX were obtained on pyrolysis in 25% He + 75% CH/sub 4/ gas mixture. The data show that the coal flow rate and methane flow rate both independently affect the yields of C/sub 2/H/sub 4/ and BTX. At constant methane flow rate, increase in coal flow rate decreases the yields of C/sub 2/H/sub 4/ and BTX; at constant coal flow rate, increase in methane flow rate increases the yields of C/sub 2/H/sub 4/ and BTX.

  7. Monte Carlo Simulation of Electron Swarm Parameters in the SF6/CF4 Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xueli; Xiao, Dengming

    2007-04-01

    We use a binary gas mixture Monte Carlo simulation model to calculate the electron transport parameters in SF6/CF4 mixtures in uniform electric fields. Electron collision cross section sets are assembled on the basis of the critical survey of Christophorou et al. [J. Phys. Chem. Ref. Data 25 (1996) 1341] for CF4 and Itoh et al. [J. Phys. D 21 (1988) 922] for SF6. The electron swarm parameters studied here are electron drift velocity, effective ionization coefficient and the ratio of longitudinal diffusion coefficient to mobility for the density-reduced electric field strength (E/N) in the range of 140≤ E/N≤ 600 Td (1 Td = 10-17 V cm2); the SF6 contents in the gas mixtures are 0, 20, 50, and 100%. The differences between the present calculated and measured values of Urquijo et al. [J. Phys. D 36 (2003) 3132] do not exceed the overall measured uncertainties for the parameters. To our knowledge, only Urquijo et al. [J. Phys. D 36 (2003) 3132] have measured the electron swarm parameters in SF6/CF4 gas mixtures by a pulsed Townsend technique; however, simulation results have scarcely been reported.

  8. The structure of variable property, compressible mixing layers in binary gas mixtures

    NASA Technical Reports Server (NTRS)

    Kozusko, F.; Grosch, C. E.; Jackson, T. L.; Kennedy, Christipher A.; Gatski, Thomas B.

    1996-01-01

    We present the results of a study of the structure of a parallel compressible mixing layer in a binary mixture of gases. The gases included in this study are hydrogen (H2), helium (He), nitrogen (N2), oxygen (02), neon (Ne) and argon (Ar). Profiles of the variation of the Lewis and Prandtl numbers across the mixing layer for all thirty combinations of gases are given. It is shown that the Lewis number can vary by as much as a factor of eight and the Prandtl number by a factor of two across the mixing layer. Thus assuming constant values for the Lewis and Prandtl numbers of a binary gas mixture in the shear layer, as is done in many theoretical studies, is a poor approximation. We also present profiles of the velocity, mass fraction, temperature and density for representative binary gas mixtures at zero and supersonic Mach numbers. We show that the shape of these profiles is strongly dependent on which gases are in the mixture as well as on whether the denser gas is in the fast stream or the slow stream.

  9. Systematic gas gain measurements and Penning energy transfer rates in Ne - CO2 mixtures

    NASA Astrophysics Data System (ADS)

    Şahin, Ö.; Kowalski, T. Z.; Veenhof, R.

    2016-01-01

    In Ne - CO2 mixtures, excitation energy of Ne atom can be used to ionize CO2 molecule by the mechanisms called Penning transfers. In the present work, we have measured the gas gain systematically in various Ne - CO2 mixtures (Ne + 0.6 - 60% CO2) at 0.4, 0.8, 1.2, 1.8 atm. The experimental data have been fitted to investigate the Penning energy transfer rates and the secondary processes playing a role in avalanche formations.

  10. Thermophysical properties of CF4/O2 and SF6/O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Hohm, U.; Balabanova, E.; Barton, D.

    2016-03-01

    Fitting formulae are presented for the calculation of the second interaction virial coefficients, mixture viscosities and binary diffusion coefficients for CF4/O2 and SF6/O2 gas mixtures in the temperature range between 200 K and 1000 K. The data recommended are obtained from the isotropic (n-6) Lennard-Jones intermolecular interaction potentials of the pure substances by using the Hohm-Zarkova-Damyanova mixing rules. In general, a good agreement is observed between our results and the experimental and theoretical data found in the literature.

  11. Reactive sputtering of titanium in Ar/CH4 gas mixture: Target poisoning and film characteristics

    SciTech Connect

    Fouad, O.A.; Rumaiz, A.; Shah, S.

    2009-03-01

    Reactive sputtering of titanium target in the presence of Ar/CH{sub 4} gas mixture has been investigated. With the addition of methane gas to above 1.5% of the process gas a transition from the metallic sputtering mode to the poison mode was observed as indicated by the change in cathode current. As the methane gas flow concentration increased up to 10%, the target was gradually poisoned. The hysteresis in the cathode current could be plotted by first increasing and then subsequently decreasing the methane concentration. X-ray diffraction and X-ray photoelectron spectroscopy analyses of the deposited films confirmed the formation of carbide phases and the transition of the process from the metallic to compound sputtering mode as the methane concentration in the sputtering gas is increased. The paper discusses a sputtering model that gives a rational explanation of the target poisoning phenomenon and shows an agreement between the experimental observations and calculated results.

  12. In-line calibration of Raman systems for analysis of gas mixtures of hydrogen isotopologues with sub-percent accuracy.

    PubMed

    Schlösser, Magnus; Seitz, Hendrik; Rupp, Simone; Herwig, Philipp; Alecu, Catalin Gabriel; Sturm, Michael; Bornschein, Beate

    2013-03-01

    Highly accurate, in-line, and real-time composition measurements of gases are mandatory in many processing applications. The quantitative analysis of mixtures of hydrogen isotopologues (H2, D2, T2, HD, HT, and DT) is of high importance in such fields as DT fusion, neutrino mass measurements using tritium β-decay or photonuclear experiments where HD targets are used. Raman spectroscopy is a favorable method for these tasks. In this publication we present a method for the in-line calibration of Raman systems for the nonradioactive hydrogen isotopologues. It is based on precise volumetric gas mixing of the homonuclear species H2/D2 and a controlled catalytic production of the heteronuclear species HD. Systematic effects like spurious exchange reactions with wall materials and others are considered with care during the procedure. A detailed discussion of statistical and systematic uncertainties is presented which finally yields a calibration accuracy of better than 0.4%. PMID:23320553

  13. Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions

    PubMed Central

    Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz

    2014-01-01

    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217

  14. Implementation of ultrasonic sensing for high resolution measurement of binary gas mixture fractions.

    PubMed

    Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Da Riva, Enrico; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz

    2014-01-01

    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10(-5) is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217

  15. Fundamental equations of a mixture of gas and small spherical solid particles from simple kinetic theory.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.

    1973-01-01

    The fundamental equations of a mixture of a gas and pseudofluid of small spherical solid particles are derived from the Boltzmann equation of two-fluid theory. The distribution function of the gas molecules is defined in the same manner as in the ordinary kinetic theory of gases, but the distribution function for the solid particles is different from that of the gas molecules, because it is necessary to take into account the different size and physical properties of solid particles. In the proposed simple kinetic theory, two additional parameters are introduced: one is the radius of the spheres and the other is the instantaneous temperature of the solid particles in the distribution of the solid particles. The Boltzmann equation for each species of the mixture is formally written, and the transfer equations of these Boltzmann equations are derived and compared to the well-known fundamental equations of the mixture of a gas and small solid particles from continuum theory. The equations obtained reveal some insight into various terms in the fundamental equations. For instance, the partial pressure of the pseudofluid of solid particles is not negligible if the volume fraction of solid particles is not negligible as in the case of lunar ash flow.

  16. Pulsative corona from free spherical conducting particles in SF{sub 6}/gas mixtures

    SciTech Connect

    Mufti, A.H.; Malik, N.H.

    1996-12-31

    Pulsative corona discharges from free spherical shaped conducting particles are investigated experimentally using SF{sub 6} and its mixtures with nitrogen N{sub 2}, perfluorocarbon C{sub 8}F{sub 16}O triethylamine (C{sub 2}H{sub 5}){sub 3}N and freon C{sub 2}Cl{sub 3}F{sub 3} gases. Corona inception, particle lift-off and breakdown voltages as well as charge-voltage (q-v) characteristics were determined in these mixtures. The results show that corona characteristics are affected by particle diameter and gas mixtures. Generally, small percentages of these additive gases results in reduced corona charge levels. The particle movement is also observed and reported in this paper.

  17. Cryotrapping assisted mass spectrometry for the analysis of complex gas mixtures

    SciTech Connect

    Ferreira, Jose A.; Tabares, Francisco L.

    2007-03-15

    A simple method is described for the unambiguous identification of the individual components in a gas mixture showing strong overlapping of their mass spectrometric cracking patterns. The method, herein referred to as cryotrapping assisted mass spectrometry, takes advantage of the different vapor pressure values of the individual components at low temperature (78 K for liquid nitrogen traps), and thus of the different depletion efficiencies and outgassing patterns during the fast cooling and slow warming up of the trap, respectively. Examples of the use of this technique for gas mixtures with application to plasma enhanced chemical vapor deposition of carbon and carbon-nitrogen hard films are shown. Detection of traces of specific C{sub 3} hydrocarbons (<50 ppm of initial methane) in methane/hydrogen plasmas and the possible trapping of thermally unstable C-N compounds in N{sub 2} containing deposition plasmas are addressed as representative examples of specific applications of the technique.

  18. Study of thermite mixtures consolidated by cold gas dynamic spray process

    NASA Astrophysics Data System (ADS)

    Bacciochini, Antoine; Maines, Geoffrey; Poupart, Christian; Radulescu, Matei; Jodoin, Bertrand; Lee, Julian

    2013-06-01

    The present study focused on the cold gas dynamic spray process for manufacturing finely structured energetic materials with high reactivity, vanishing porosity, as well as structural integrity and arbitrary shape. The experiments have focused the reaction between the aluminum and metal oxides, such as Al-CuO and Al-MoO3 systems. To increase the reactivity, an initial mechanical activation was achieved through interrupted ball milling. The consolidation of the materials used the supersonic cold gas spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact, forming activated nano-composites in arbitrary shapes with close to zero porosity. This technique permits to retain the feedstock powder micro-structure and prevents any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.

  19. Study of thermite mixture consolidated by the cold gas dynamic spray process

    NASA Astrophysics Data System (ADS)

    Bacciochini, A.; Maines, G.; Poupart, C.; Akbarnejad, H.; Radulescu, M.; Jodoin, B.; Zhang, F.; Lee, J. J.

    2014-05-01

    The present study focused on the cold gas dynamic spray process for manufacturing porosity free, finely structured energetic materials with high reactivity and structural integrity. The experiments have focused the reaction between the aluminium and metal oxide, such as Al-CuO system. The consolidation of the materials used the cold gas dynamic spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact. Reactive composites are formed in arbitrary shapes with close to zero porosity and without any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.

  20. Atomically detailed models of gas mixture diffusion through CuBTC membranes

    SciTech Connect

    Keskin S; Liu JC; Johnson JK.

    2009-10-01

    Metal–organic frameworks are intriguing crystalline nanoporous materials that have potential applications in adsorption-based and membrane-based gas separations. We describe atomically detailed simulations of gas adsorption and diffusion in CuBTC that have been used to predict the performance of CuBTC membranes for separation of H2/CH4, CO2/CH4 and CO2/H2 mixtures. CuBTC membranes are predicted to have higher selectivities for all three mixtures than MOF-5 membranes, the only other metal–organic framework material for which detailed predictions of membrane selectivities have been made. Our results give insight into the physical properties that will be desirable in tuning the pore structure of MOFs for specific membrane-based separations

  1. A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2006-01-01

    A method for calculating viscosity and thermal conductivity of a helium-xenon (He-Xe) gas mixture was employed, and results were compared to AiResearch (part of Honeywell) analytical data. The method of choice was that presented by Hirschfelder with Singh's third-order correction factor applied to thermal conductivity. Values for viscosity and thermal conductivity were calculated over a temperature range of 400 to 1200 K for He-Xe gas mixture molecular weights of 20.183, 39.94, and 83.8 kg/kmol. First-order values for both transport properties were in good agreement with AiResearch analytical data. Third-order-corrected thermal conductivity values were all greater than AiResearch data, but were considered to be a better approximation of thermal conductivity because higher-order effects of mass and temperature were taken into consideration. Viscosity, conductivity, and Prandtl number were then compared to experimental data presented by Taylor.

  2. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  3. Mixture of Tonks-Girardeau gas and Fermi gas in one-dimensional optical lattices

    SciTech Connect

    Chen Shu; Cao Junpeng; Gu Shijian

    2010-11-15

    We study the Bose-Fermi mixture with infinite boson-boson repulsion and finite boson-fermion repulsion. Using a generalized Jordan-Wigner transformation, we show that the system can be mapped to a repulsive Hubbard model and thus can be solved exactly for the case with equal boson and fermion masses. Using the Bethe-ansatz solutions, we investigate the ground-state properties of the mixture system. Our results indicate that the system with commensurate filling n=1 is a charge insulator but still a superfluid with nonvanishing superfluid density. We also briefly discuss the case with unequal boson and fermion masses.

  4. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  5. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  6. High rate concentration measurement of molecular gas mixtures using a spatial detection technique

    NASA Astrophysics Data System (ADS)

    Loriot, V.; Hertz, E.; Lavorel, B.; Faucher, O.

    2010-05-01

    Concentration measurement in molecular gas mixtures using a snapshot spatial imaging technique is reported. The approach consists of measuring the birefringence of the molecular sample when field-free alignment takes place, each molecular component producing a signal with an amplitude depending on the molecular density. The concentration measurement is obtained on a single-shot basis by probing the time-varying birefringence through femtosecond time-resolved optical polarigraphy (FTOP). The relevance of the method is assessed in air.

  7. Process and catalyst for converting synthesis gas to liquid hydrocarbon mixture

    DOEpatents

    Rao, V. Udaya S.; Gormley, Robert J.

    1987-01-01

    Synthesis gas containing CO and H.sub.2 is converted to a high-octane hydrocarbon liquid in the gasoline boiling point range by bringing the gas into contact with a heterogeneous catalyst including, in physical mixture, a zeolite molecular sieve, cobalt at 6-20% by weight, and thoria at 0.5-3.9% by weight. The contacting occurs at a temperature of 250.degree.-300.degree. C., and a pressure of 10-30 atmospheres. The conditions can be selected to form a major portion of the hydrocarbon product in the gasoline boiling range with a research octane of more than 80 and less than 10% by weight aromatics.

  8. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    DOEpatents

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  9. Comparison of primary standard gas mixtures: gravimetric production of carbon monoxide in nitrogen (3 μmol/mol)

    NASA Astrophysics Data System (ADS)

    Konopelko, L. A.; Kustikov, Y. A.; Kolobova, A. V.; Pankratov, V. V.; Pankov, A. A.; Efremova, O. V.; Augusto, Cristiane R.; Fioravante, Andreia L.; Ribeiro, Claudia C.; Teixeira, Denise C. G. S.; Elias, Elizandra C. S.; Oudwater, Rutger J.; Fagundes, Fátima A.; Silva, Marceli C.

    2016-01-01

    COOMET.QM-S3 is a supplementary comparison of primary standard gas mixtures—'Carbon monoxide in Nitrogen (3 μmol/mol)'. This is a bilateral comparison between VNIIM and INMETRO and it was conducted in 2013. Carbon monoxide is a toxic gas and in concentrations higher than 3-5 μmol/mol it is hazardous to human health. Therefore, it is important for NMIs to have the capability of an accurate carbon monoxide measurements. This comparison has shown that primary standard gas mixtures of carbon monoxide in nitrogen on the level of 3 μmol/mol, prepared in VNIIM and Inmetro, do not agree—the pair-wise degree of equivalence D (0.77%) is higher than the appropriate expanded uncertainty U(D) (0.29%). Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Plasma nitriding using high H2 content gas mixtures for a cavitation erosion resistant steel

    NASA Astrophysics Data System (ADS)

    Allenstein, A. N.; Lepienski, C. M.; Buschinelli, A. J. A.; Brunatto, S. F.

    2013-07-01

    Plasma nitriding using high H2 content gas mixtures in CA-6NM martensitic stainless steel was studied in the present work. Nitriding was performed in H2 + N2 gas mixtures for 5, 10 and 20% N2, in volume, at 773 K (500 °C), during 2 h. Changes in the surface morphology and nitrided layer constitution were characterized by SEM, XRD, roughness analysis, and nanoindentation technique. Cavitation erosion behavior of the nitrided samples was also investigated by means of a 20 kHz ultrasonic vibrator. The study was emphasized for the three first cavitation stages (incubation, acceleration, and maximum erosion rate stage) of the cumulative erosion-time curve. Results indicate that the gas mixture nitrogen content strongly influences the phases' formation and its distribution on the nitrided layer. Better cavitation erosion resistance which was attributed to the finer and more homogeneous distribution of the nitrided layer phases was verified for samples treated at 5% N2. Otherwise, worse cavitation erosion behavior for samples nitrided at 20% N2 is supposed to be due to the formation of multiphase compound layer constituted by Fe4N + Fe2-3N + CrN, which can infer residual stress in treated surface.

  11. Carbothermal Reduction of Quartz in Methane-Hydrogen-Argon Gas Mixture

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhang, Guangqing; Tang, Kai; Ostrovski, Oleg; Tronstad, Ragnar

    2015-10-01

    Synthesis of silicon carbide (SiC) by carbothermal reduction of quartz in a CH4-H2-Ar gas mixture was investigated in a laboratory fixed-bed reactor in the temperature range of 1573 K to 1823 K (1300 °C to 1550 °C). The reduction process was monitored by an infrared gas analyser, and the reduction products were characterized by LECO, XRD, and SEM. A mixture of quartz-graphite powders with C/SiO2 molar ratio of 2 was pressed into pellets and used for reduction experiments. The reduction was completed within 2 hours under the conditions of temperature at or above 1773 K (1500 °C), methane content of 0.5 to 2 vol pct, and hydrogen content ≥70 vol pct. Methane partially substituted carbon as a reductant in the SiC synthesis and enhanced the reduction kinetics significantly. An increase in the methane content above 2 vol pct caused excessive carbon deposition which had a detrimental effect on the reaction rate. Hydrogen content in the gas mixture above 70 vol pct effectively suppressed the cracking of methane.

  12. A general stagnation-point convective heating equation for arbitrary gas mixtures

    NASA Technical Reports Server (NTRS)

    Sutton, K.; Graves, R. A., Jr.

    1971-01-01

    The stagnation-point convective heat transfer to an axisymmetric blunt body for arbitrary gases in chemical equilibrium was investigated. The gases considered were base gases of nitrogen, oxygen, hydrogen, helium, neon, argon, carbon dioxide, ammonia, and methane and 22 gas mixtures composed of the base gases. Enthalpies ranged from 2.3 to 116.2 MJ/kg, pressures ranged from 0.001 to 100 atmospheres, and the wall temperatures were 300 and 1111 K. A general equation for the stagnation-point convective heat transfer in base gases and gas mixtures was derived and is a function of the mass fraction, the molecular weight, and a transport parameter of the base gases. The relation compares well with present boundary-layer computer results and with other analytical and experimental results. In addition, the analysis verified that the convective heat transfer in gas mixtures can be determined from a summation relation involving the heat transfer coefficients of the base gases. The basic technique developed for the prediction of stagnation-point convective heating to an axisymmetric blunt body could be applied to other heat transfer problems.

  13. Development of a coulometric method for assessing the concentration of ambient levels of CO2/air in compressed-gas mixtures

    SciTech Connect

    Mitchell, G.D.; Bell, A.A.

    1991-01-01

    The understanding of global 'greenhouse' issues as they relate to CO2 in the atmosphere is a current environmental concern. At the National Institute of Standards and Technology there is a continuous search for methods of analysis that yield results that are traceable to fundamental quantities. The coulometric method presented here is a reliable method for the direct analysis of CO2/air cylinder gas mixtures. It is based on Faraday's laws of electrolysis and therefore no external standardization is required. A series of CO2/air cylinder gas mixtures ranging in concentration from 300 to 375 micromol/mol (ppm) were analyzed and the results compared to those results obtained by non-dispersive infrared (NDIR) analysis with traceability to gravimetric standards. The coulometric method is rapid, sensitive, precise, and with the proper experimental controls, will yield accurate results.

  14. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  15. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  16. An Application of Space-Based Gas Mixtures for Joule-Thompson Cryocoolers

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. T.; Yevdokimova, O. V.; Lobko, M. P.; Yakuba, V. V.

    An extension of deepspace research, specifically, the work done on Alpha program, will inevitably require new and different cryostating systems. The primary differences will be in the areas of cooling power and temperature. One variant which can be used with J-T cryocoolers is the application of diverse gas mixtures which can work over a large temperature range. We have found that the J-T cycle is an efficient application of mixed gas working fluids, being very similar to a vapor-compression cycle utilized in household refrigerants. The simplicity and viability of a J-T design and the associated minimal heat losses compensate for theoretical efficiency ratio of Stirling-type machines. Simultaneously, the J-T machines are never restricted in terms of output power and contain no moving parts in the cold zone resulting in minimal vibration during operation. The effective cooling of these systems allows parallel cooling of multiple objects. Finally in long-life system designs these cryocooler systems are feasibly coupled with phase-transition thermal storage accumulators. The application of such J-T systems is especially efficient under space conditions, due to the fact that there is an option to use at low temperatures a radiation release unit for the outlet of compression heat and for preliminary cooling of the system. This is not possible for terrestrial applications. Particularly, obtaining the -10 to 100 (C temperature range is feasible through the use of low As/(( - coefficient coatings; shade screens; or radiator unit orientations. Computational and experimental research has provided us high efficiency gas-mixture J-T cryocooler results between 60 to 100K cooling temperatures. We have actual space systems which were tested and operated for 80-90 K with efficiencies of 20 to 25 W/W. The authors of this research have studied various gas mixtures as candidates for use with simple J-T single contour J-T systems. We have seen resultant reduction of energy consumption

  17. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as...

  18. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as...

  19. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability...

  20. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability...

  1. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability...

  2. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as...

  3. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability...

  4. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as...

  5. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability...

  6. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as...

  7. A fast iterative discrete velocity method for ternary gas mixtures flowing through long tubes

    NASA Astrophysics Data System (ADS)

    Szalmás, Lajos

    2016-03-01

    An accelerated discrete velocity method is presented for flows of three-component gas mixtures through long tubes. The gas is modeled by the McCormack linearized kinetic equation. Two diffusion equations are derived from the kinetic one. These equations are solved during the kinetic iteration by a linear algebraic approach. Test simulations are performed for flows of He-Ar-Xe mixture driven by pressure or temperature gradients in a wide range of the gas rarefaction. The accelerated method requires fewer number of iterations and smaller computational times than the non-accelerated one in the early transition, slip and near-hydrodynamic domains. The efficiency of the accelerated scheme compared to the standard one increases with increasing rarefaction parameter. The computational performance in terms of the iteration criterion is also analyzed. In typical simulations, the convergent results can be reached in approximately less than two minutes by using the new method in a wide range of the gas rarefaction on a present-day computer.

  8. Adiabatic temperature changes of magma-gas mixtures during ascent and eruption

    USGS Publications Warehouse

    Mastin, L.G.; Ghiorso, M.S.

    2001-01-01

    Most quantitative studies of flow dynamics in eruptive conduits during volcanic eruptions use a simplified energy equation that ignores either temperature changes, or the thermal effects of gas exsolution. In this paper we assess the effects of those simplifications by analyzing the influence of equilibrium gas exsolution and expansion on final temperatures, velocities, and liquid viscosities of magma-gas mixtures during adiabatic decompression. For a given initial pressure (p1), temperature (T1) and melt composition, the final temperature (Tf) and velocity (Umax) will vary depending on the degree to which friction and other irreversible processes reduce mechanical energy within the conduit. The final conditions range between two thermodynamic end members: (1) Constant enthalpy (dh=0), in which Tf is maximal and no energy goes into lifting or acceleration; and (2) constant entropy (ds=0), in which Tf is minimal and maximum energy goes into lifting and acceleration. For ds=0, T1=900 ??C and p1=200 MPa, a water-saturated albitic melt cools by ???200 ??C during decompression, but only about 250 ??C of this temperature decrease can be attributed to the energy of gas exsolution per se: The remainder results from expansion of gas that has already exsolved. For the same T1 and p1, and dh=0, Tf is 10-15 ??C hotter than T1 but is about 10-25 ??C cooler than Tf in similar calculations that ignore the energy of gas exsolution. For ds=0, p1=200 MPa and T1= 9,000 ??C, assuming that all the enthalpy change of decompression goes into kinetic energy, a water-saturated albitic mixture can theoretically accelerate to ???800 m/s. Similar calculations that ignore gas exsolution (but take into account gas expansion) give velocities about 10-15% higher. For the same T1, p1 = 200 MPa, and ds = 0, the cooling associated with gas expansion and exsolution increases final melt viscosity more than 2.5 orders of magnitude. For dh = 0, isenthalpic heating decreases final melt viscosity by about

  9. SF 6 quenched gas mixtures for streamer mode operation of RPCs at very low voltages

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Di Stante, L.; Liberti, B.; Paoloni, A.; Pastori, E.; Santonico, R.

    2002-11-01

    In the present paper we describe a search for gases that allow to reduce the energy of the electrical discharge produced in Resistive Plate Chambers (RPCs) operated in streamer mode, by reducing both the operating voltage and the released charge. This can be achieved, with current gas mixtures of argon, tetrafluoroethane (TFE) and isobutane, by reducing the total amount of quenching components (TFE+isobutane) down to 10-15% and compensating for the lower gas quenching power with the addition of small amounts of SF 6. We show here that SF 6, even for concentrations as low as 1% or less, has a strong effect in reducing the delivered charge in low quenched gases and allows to achieve a proper working mode of the RPC even at voltages as low as 4- 5 kV over a 2 mm gas gap.

  10. Intradiscal injection of oxygen-ozone gas mixture for the treatment of cervical disc herniations.

    PubMed

    Alexandre, A; Corò, L; Azuelos, A; Buric, J; Salgado, H; Murga, M; Marin, F; Giocoli, H

    2005-01-01

    For disc herniations the use of open surgical approaches is reduced since new percutaneous methods allowing shrinkage of the disc and improvement of the radicular function are gaining interest. Studies on the spontaneous disappearance of disc fragments have demonstrated autoimmune responses with a chronic inflammatory reaction. Also radicular pain has been shown to be mostly due to biochemical mechanisms. Researchers in different fields surprisingly noticed that a brief, calculated, oxidative stress by ozone administration may correct a persistent imbalance due to excessive, chronic oxidative injury. Oxygen-ozone gas injection in painful patients has a dramatic effect on clinical symptoms. On these bases the intradiscal injection of oxygen-ozone gas has been conceived. We report the treatment on a series of patients affected by cervical disc pathology, treated by intradiscal injection of oxygen-ozone gas mixture. The effects both on pain and on radicular dysfunction are impressive. The morphological effect of the treatment was also evaluated by pathological examination. PMID:15830973

  11. Electron Density Measurements in UV-Preionized XeCl and CO2 Laser Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Takagi, Shigeyuki; Sato, Saburo; Goto, Tatsumi

    1989-11-01

    A Langmuir probe technique has been used to measure electron densities and temperatures in UV-preionized XeCl excimer and CO2 laser gas mixtures in a laser tube. For this experiment, only pin electrodes (preionization sparks) were operated with no discharge between the main electrodes. The measured electron densities were about 108 cm-3 in both the excimer and CO2 laser gases, compared with 1010 cm-3 in pure He gas. The electron density was found to increase due to the proximity of the main electrodes. The coefficients of absorption for excimer and CO2 laser gas were obtained from the characteristics of the electron densities vs the distance from the UV source. Based on the absorption coefficient for XeCl, 0.9 cm-1 atm-1, we propose pin-electrode arrangements for spatially uniform preionization.

  12. Additional development of large diameter carbon monofilament. [from boron, hydrogen, and methane gas mixture

    NASA Technical Reports Server (NTRS)

    Jacob, B. A.; Veltri, R. D.

    1974-01-01

    The chemical vapor process for preparing a large diameter carbon-base monofilament from a BCl3, Ch4 and H2 gas mixture with a carbon substrate fiber was studied. The effect of reactor geometry, total gas flows and deposition temperature on the tensile strength of the monofilament were investigated. It was noted that consistent results could only be obtained when the carbon substrate fiber was cleaned. The strength of the monofilament was found to depend on the highest temperature and the temperature profile of the monofilament in the reactor. The strength of monofilament produced in the dc and RF reactors were found to be similar and similar alloy compositions in the monofilament were attained when the same gas ratios were used. The tensile strength of the monofilament at 500 C was found to be 60 to 70% of the room temperature tensile strength. No degradation was noted after exposure to molten aluminum.

  13. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    NASA Astrophysics Data System (ADS)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  14. Separation of Fischer-Tropsch catalyst/wax mixtures using dense gas extraction

    SciTech Connect

    Eyring, M.W.; Rohar, P.C.; Hickey, R.F.; White, C.M.; Quiring, M.S.

    1995-12-31

    The separation of a Fischer-Tropsch catalyst from wax products is an important issue when the synthesis is conducted in a slurry bubble column reactor. This paper describes a new technique based on dense gas extraction of the soluble hydrocarbon components from the insoluble catalyst particles using light hydrocarbons as propane, butane, and pentane an the solvent. The extractions were conducted in a continuous unit operated near the critical point of the extraction gas on a catalyst/wax mixture containing about 4.91 wt% catalyst. The catalyst-free wax was collected in the second stage collector while the catalyst and some insoluble wax components were collected in the first stage collector. The yield of catalyst-free wax was about 60 wt% of the food mixture. The catalyst content of the catalyst/wax mixture in the first stage was about 14.8 wt%. The catalyst content in the second stage collector was less than 1 part in 100,000.

  15. Separation of Fischer-Tropsch catalyst/wax mixtures using dense gas extraction

    SciTech Connect

    Eyring, M.W.; Rohar, P.C.; Hickey, R.F.

    1995-12-01

    The separation of a Fischer-Tropsch catalyst from wax products is an important issue when the synthesis is conducted in a slurry bubble column reactor. This paper describes a new technique based on dense gas extraction of the soluble hydrocarbon components from the insoluble catalyst particles using light hydrocarbons as propane, butane, and pentane as the solvent. The extractions were conducted in a continuous unit operated near the critical point of the extraction gas on a catalyst/wax mixture containing about 4.91 wt% catalyst. The catalyst-free wax was collected in the second stage collector while the catalyst and some insoluble wax components were collected in the first stage collector. The yield of catalyst-free wax was about 60 wt% of the feed mixture. The catalyst content of the catalyst/wax mixture in the first stage was about 14.8 wt%. The catalyst content in the second stage collector was less than 1 part in 100,000.

  16. Effect of hydrogen ratio on plasma parameters of N2-H2 gas mixture glow discharge

    NASA Astrophysics Data System (ADS)

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-01

    A dc plane glow discharge in a nitrogen-hydrogen (N2-H2) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H2 concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H2 concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H2 concentration.

  17. Kinetic model for the vibrational energy exchange in flowing molecular gas mixtures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Offenhaeuser, F.

    1987-01-01

    The present study is concerned with the development of a computational model for the description of the vibrational energy exchange in flowing gas mixtures, taking into account a given number of energy levels for each vibrational degree of freedom. It is possible to select an arbitrary number of energy levels. The presented model uses values in the range from 10 to approximately 40. The distribution of energy with respect to these levels can differ from the equilibrium distribution. The kinetic model developed can be employed for arbitrary gaseous mixtures with an arbitrary number of vibrational degrees of freedom for each type of gas. The application of the model to CO2-H2ON2-O2-He mixtures is discussed. The obtained relations can be utilized in a study of the suitability of radiation-related transitional processes, involving the CO2 molecule, for laser applications. It is found that the computational results provided by the model agree very well with experimental data obtained for a CO2 laser. Possibilities for the activation of a 16-micron and 14-micron laser are considered.

  18. Thermodynamic stability, spectroscopic identification, and gas storage capacity of CO2-CH4-N2 mixture gas hydrates: implications for landfill gas hydrates.

    PubMed

    Lee, Hyeong-Hoon; Ahn, Sook-Hyun; Nam, Byong-Uk; Kim, Byeong-Soo; Lee, Gang-Woo; Moon, Donghyun; Shin, Hyung Joon; Han, Kyu Won; Yoon, Ji-Ho

    2012-04-01

    Landfill gas (LFG), which is primarily composed of CH(4), CO(2), and N(2), is produced from the anaerobic digestion of organic materials. To investigate the feasibility of the storage and transportation of LFG via the formation of hydrate, we observed the phase equilibrium behavior of CO(2)-CH(4)-N(2) mixture hydrates. When the specific molar ratio of CO(2)/CH(4) was 40/55, the equilibrium dissociation pressures were gradually shifted to higher pressures and lower temperatures as the mole fraction of N(2) increased. X-ray diffraction revealed that the CO(2)-CH(4)-N(2) mixture hydrate prepared from the CO(2)/CH(4)/N(2) (40/55/5) gas mixture formed a structure I clathrate hydrate. A combination of Raman and solid-state (13)C NMR measurements provided detailed information regarding the cage occupancy of gas molecules trapped in the hydrate frameworks. The gas storage capacity of LFG hydrates was estimated from the experimental results for the hydrate formations under two-phase equilibrium conditions. We also confirmed that trace amounts of nonmethane organic compounds do not affect the cage occupancy of gas molecules or the thermodynamic stability of LFG hydrates. PMID:22380606

  19. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Packaging § 173.305 Charging of cylinders with a mixture of compressed gas and other material. (a) Detailed..., and packed in strong wooden or fiber boxes of such design as to protect valves from damage...

  20. Discrete velocity computations with stochastic variance reduction of the Boltzmann equation for gas mixtures

    SciTech Connect

    Clarke, Peter; Varghese, Philip; Goldstein, David

    2014-12-09

    We extend a variance reduced discrete velocity method developed at UT Austin [1, 2] to gas mixtures with large mass ratios and flows with trace species. The mixture is stored as a collection of independent velocity distribution functions, each with a unique grid in velocity space. Different collision types (A-A, A-B, B-B, etc.) are treated independently, and the variance reduction scheme is formulated with different equilibrium functions for each separate collision type. The individual treatment of species enables increased focus on species important to the physics of the flow, even if the important species are present in trace amounts. The method is verified through comparisons to Direct Simulation Monte Carlo computations and the computational workload per time step is investigated for the variance reduced method.

  1. The mechanism of small-gas detonation in mechanically activated low-density powder mixtures

    NASA Astrophysics Data System (ADS)

    Rashkovskii, S. A.; Dolgoborodov, A. Yu.

    2015-06-01

    A mechanism of supersonic propagation of the energy-release wave in mechanically activated small-gas explosive powder mixtures is proposed. It is shown that, under certain conditions, this process exhibits all the signs of detonation and should be recognized as a kind of thereof. On the other hand, this kind of detonation is fundamentally different from classical detonation, e.g., in gases. Instead of a shock wave, the powder mixture features propagation of a compression wave, in which the powder exhibits densification due to the mutual displacement of particles rather than contraction of the particle material. A chemical reaction is initiated by the mutual friction of particles in the compression wave.

  2. Suppression of gas detonation by a dust cloud at reduced mixture pressures

    NASA Astrophysics Data System (ADS)

    Pinaev, A. V.; Vasil'ev, A. A.; Pinaev, P. A.

    2015-05-01

    The decay of a detonation wave in a mixture propagating through a dust cloud is experimentally studied for three types of silica sand with particle sizes 250-600, 120-250, and 90-120 , mean volume densities 2.2-3.5 g/l, and initial pressure 0.1-0.01 MPa. A non-monotonic character of reduction of wave velocity in the dust cloud is observed, where a secondary detonation can arise behind the leading front of the wave in the course of its attenuation. This situation is induced by the dual role of sand particles in decelerating the flow and simultaneously generating hot spots that promote reaction excitation. As a result, the mechanism of ignition in the decaying detonation wave becomes different. Critical parameters of the dust cloud providing complete suppression of the detonation wave and the flame propagating behind the latter at a reduced initial pressure of the gas mixture are determined.

  3. Linked Gas Chromatography/Fourier Transform Infrared Spectrometry/Fourier Transform Mass Spectrometry For Mixture Analysis

    NASA Astrophysics Data System (ADS)

    Laude, David A., Jr.; Johlman, Carolyn; Wilkins, Charles L.

    1985-12-01

    During the past few years it has been demonstrated that linkage of multiple spectrometry systems with gas chromatography (GC) offers significant advantages for structural analysis of mixture components as they are sepa-rated. In the work to be described, a Fourier transform mass spectrometer (FTMS) has been linked in parallel with a Fourier transform infrared (FTIR) spectrometer for concurrent analysis of GC eluants from a fused silica capillary column. This system provides FTIR, electron impact, and chemical ionization mass spectral analysis of each mixture component as it emerges from the GC. Furthermore, mass measurement accuracy in the low ppm range in the absence of calibrant is made possible by the FTMS. Effective use of the com-plementary information obtained is shown to produce more reliable analytical performance than for any individual measurement.

  4. Pyrolysis of complex organics following high-energy proton irradiation of a simple inorganic gas mixture

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Marumo, Katsumi; Yabashi, Suguru; Kaneko, Takeo; Kobayashi, Kensei

    2004-08-01

    Complex organics formed by 3MeV proton irradiation of a simple inorganic gas mixture with a composition representative of the primitive earth atmosphere (carbon monoxide, nitrogen, and water) were characterized by application of Curie-point pyrolysis. Pyrolysis products consisted of a wide variety of organic compounds including amide compounds, heterocyclic, and polycyclic aromatic hydrocarbons. The present data showed that primary and primitive organic matter serving as "precursors" to fundamental building blocks associated with life might have been formed in a gaseous mixture of a similar composition to that of the primitive earth atmosphere. Large numbers of endogenous organic compounds and protocatalysis components produced by cosmic rays may have contributed significantly to the early stages of chemical evolution on the primitive earth.

  5. CO2 capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts.

    PubMed

    Park, Sungwon; Lee, Seungmin; Lee, Youngjun; Seo, Yongwon

    2013-07-01

    In order to investigate the feasibility of semiclathrate hydrate-based precombustion CO2 capture, thermodynamic, kinetic, and spectroscopic studies were undertaken on the semiclathrate hydrates formed from a fuel gas mixture of H2 (60%) + CO2 (40%) in the presence of quaternary ammonium salts (QASs) such as tetra-n-butylammonium bromide (TBAB) and fluoride (TBAF). The inclusion of QASs demonstrated significantly stabilized hydrate dissociation conditions. This effect was greater for TBAF than TBAB. However, due to the presence of dodecahedral cages that are partially filled with water molecules, TBAF showed a relatively lower gas uptake than TBAB. From the stability condition measurements and compositional analyses, it was found that with only one step of semiclathrate hydrate formation with the fuel gas mixture from the IGCC plants, 95% CO2 can be enriched in the semiclathrate hydrate phase at room temperature. The enclathration of both CO2 and H2 in the cages of the QAS semiclathrate hydrates and the structural transition that results from the inclusion of QASs were confirmed through Raman and (1)H NMR measurements. The experimental results obtained in this study provide the physicochemical background required for understanding selective partitioning and distributions of guest gases in the QAS semiclathrate hydrates and for investigating the feasibility of a semiclathrate hydrate-based precombustion CO2 capture process. PMID:23718261

  6. Precision measurement of timing RPC gas mixtures with laser-beam induced electrons

    NASA Astrophysics Data System (ADS)

    Naumann, L.; Siebold, M.; Kaspar, M.; Kämpfer, B.; Kotte, R.; Laso Garcia, A.; Löser, M.; Schramm, U.; Wüstenfeld, J.

    2014-10-01

    The main goals of a new test facility at Helmholtz-Zentrum Dresden-Rossendorf are precision measurements of the electron drift velocity and the Townsend coefficient of gases at atmospheric pressure in the strongest ever used homogenous electrical fields and the search for new RPC gas mixtures to substitute the climate harmful Freon. Picosecond UV laser pulses were focused into a sub-millimeter gas gap to initialize a defined tiny charge. These gaps are formed by electrodes of low-resistive ceramics or high-resistive float glass. The charge multiplication occurs in a strong homogeneous electric field of up to 100 kV/cm. Electron-ion pairs were generated in a cylindrical micro-volume by multi-photon ionization. The laser-pulse repetition rate ranges from 1 Hz to a few kHz. The RPC time resolution has been measured for different gases. First results of the Townsend coefficient at 100 kV/cm show a strong disagreement between the present measurement and Magboltz simulations for the typical timing RPC gas mixture C2F4H2/SF6/i-C4H10, while the measured electron drift velocities are in a good agreement with the model predictions.

  7. Implementing an Inexpensive and Accurate Introductory Gas Density Activity with High School Students

    ERIC Educational Resources Information Center

    Cunningham, W. Patrick; Joseph, Christopher; Morey, Samantha; Santos Romo, Ana; Shope, Cullen; Strang, Jonathan; Yang, Kevin

    2015-01-01

    A simplified activity examined gas density while employing cost-efficient syringes in place of traditional glass bulbs. The exercise measured the density of methane, with very good accuracy and precision, in both first-year high school and AP chemistry settings. The participating students were tasked with finding the density of a gas. The…

  8. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube

    SciTech Connect

    Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F.

    1995-09-01

    Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.

  9. [Quantitative Analysis of the Hydration Process of Mine Gas Mixture Based on Raman Spectroscopy].

    PubMed

    Zhang, Bao-yong; Yu, Yue; Wu, Qiang; Gao, Xia

    2015-07-01

    The research on micro crystal structure of mine gas hydrate is especially significant for the technology of gas hydrate separation. Using Raman spectroscopy to observe hydration process of 3 kinds of mine gas mixture on line which contains high concentration of carbon dioxide, this experiment obtained the information of the hydrate crystals including large and small cage occupancy. Meanwhile obtained the hydration number indirectly based on the statistical thermodynamic model of van der Waals and Platteeuw. The results show that cage occupancy and hydration number of mine gas hydrates change little during different growth stages. The large cages of hydrate phases are nearly full occupied by carbon dioxide and methane molecules together, with the occupancy ratios between 97.70% and 98.68%. Most of the guest molecules in large cages is carbon dioxide (78.58%-94.09%) and only a few (4.52%-19.12%) is filled with methane, it is because carbon dioxide concentration in the gas sample is higher than methane and there is competition between them. However the small cage occupancy ratios is generally low in the range from 17.93% to 82.41%, and the guest molecules are all methane. With the increase of methane concentration in gas sample, the cage occupancy both large and small which methane occupied has increased, meanwhile the large cage occupancy which methane occupied is lower than small cage. The hydration numbers of mine gas hydrate during different growth stages are between 6.13 and 7.33. Small cage occupancy has increased with the increase of methane concentration, this lead to hydration number decreases. Because of the uneven distribution of hydrate growth, the hydration numbers of 3 kinds of gas samples show irregular change during different growth stages. PMID:26717751

  10. Equation of State for thermodynamic equilibrium of gas mixtures and brines to allow simulation of the effects of impurities in CO2 storage

    NASA Astrophysics Data System (ADS)

    Ziabakhshganji, Z.; Kooi, H.

    2012-04-01

    Comprehensive understanding and prediction of chemical, reactive processes during and following injection of CO2 in depleted gas reservoirs and saline aquifers is important for the assessment of the performance and impacts of planned and existing Carbon Capture and Storage (CCS) projects. Over the last decade significant improvements have been made in numerical modelling of the complex, coupled processes involved. Among the many remaining issues where progress is still called for, is the consistent simulation of impacts of gas mixtures. In particular the presence of 'impurities' or 'co-contaminants' in the injected CO2 stream that are retained from the original flue-gases, such as H2S, SO2, have the potential, upon dissolution in the pore water, to alter aqueous and water-mineral reactions. Moreover, presence of these and other injected or in-situ (CH4) gases affect CO2 solubility and thermodynamic properties of the fluid and gas phases, which, in turn, impact transport processes. To be able to evaluate the impact of gas mixtures on these processes, a new non-iterative Equation of State (EOS) has been developed which allows accurate and efficient modelling of thermodynamic equilibrium of gas mixtures and brines over a large range of pressure, temperature and salinity conditions. Presently the model includes CO2, SO2, H2S, CH4 and N2. This model is based on equating the chemical potentials in the system, using the modified Redlich-Kwong EOS to calculate the fugacity of the gas phase. Preliminary analysis shows, for instance, that CO2 solubility is most sensitive to CH4 admixture and least sensitive to the presence of SO2 in the injected gas mixture. The model design/approach will be outlined. Furthermore, the model performance will be illustrated with respect to experimental data from literature and other EOS's. In further work we aim to use this EOS in coupled flow and chemical reactive-transport simulations to investigate the impact of gas mixtures for CO2 storage.

  11. Lasing characteristics of gas mixtures involving UFG: Application to nuclear pumping of lasers

    NASA Technical Reports Server (NTRS)

    Verdeyen, J. T.; Eden, J. G.

    1980-01-01

    Intense blue-green fluorescence from a structured band centered at lambda approximately 484 nm was observed from Ar, CF3I and NF3 gas mixtures excited by an electron beam. This emission was tentatively assigned to the E yields A transition of the iodine monofluoride (IF) molecule. The fluorescence efficiency of the IF(E yields A) band and the IF (E) state radiative lifetime were estimated to be approximately 6% and 15 ns, respectively. The emission band structure, the short IF(E) radiative lifetime and the Franck-Condon shift between the E and A states suggest that IF is an attractive candidate for a blue-green laser.

  12. Pion transfer from hydrogen to deuterium in H2+D2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Weber, P.; Armstrong, D. S.; Measday, D. F.; Noble, A. J.; Stanislaus, S.; Harston, M. R.; Aniol, K. A.; Horváth, D.

    1990-01-01

    The transfer of negative pions from pionic hydrogen to deuterium has been investigated in gas mixtures of H2 and D2 as a function of the D2 concentration (C). The concentration dependence of the transfer rate was fitted using a phenomenological model with two parameters. For C-->∞ (32+/-3)% of the pions undergo transfer. The fitted parameters reflect the ratio of pion capture to pion transfer in collisions of pionic hydrogen with protons or deuterons. No pressure dependence for pion transfer was found.

  13. Quenching of Particle-Gas Combustible Mixtures Using Electric Particulate Suspension (EPS) and Dispersion Methods

    NASA Technical Reports Server (NTRS)

    Colver, Gerald M.; Goroshin, Samuel; Lee, John H. S.

    2001-01-01

    A cooperative study is being carried out between Iowa State University and McGill University. The new study concerns wall and particle quenching effects in particle-gas mixtures. The primary objective is to measure and interpret flame quenching distances, flammability limits, and burning velocities in particulate suspensions. A secondary objective is to measure particle slip velocities and particle velocity distribution as these influence flame propagation. Two suspension techniques will be utilized and compared: (1) electric particle suspension/EPS; and (2) flow dispersion. Microgravity tests will permit testing of larger particles and higher and more uniform dust concentrations than is possible in normal gravity.

  14. A computer program for calculation of spectral radiative properties of gas mixtures

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1975-01-01

    A computer code is described whereby calculations of radiative properties of gas mixtures may be made. The program is arranged so that distinct radiative processes for each species are computed in individual subroutines. Provision is made for calculating radiative properties in nonequilibrium situations - separate rotational, vibrational, and electronic temperatures may be used. These features should provide a flexibility not currently available in such programs. The basic equations and the program listing in FORTRAN 4 language are presented. Sample calculations are given for high temperature air and carbon dioxide and are compared to calculations made with previously developed programs.

  15. Analytical performances of two liquid crystals and their mixture as stationary phases in capillary gas chromatography.

    PubMed

    Bélaïdi, D; Sebih, S; Boudah, S; Guermouche, M H; Bayle, J P

    2005-09-16

    Comparative gas chromatographic applications of two new liquid crystals called LCa and LCb and their equimolar mixture LC(a+b) were investigated. The thermal properties of LCa, LCb and LC(a+b) were established with differential scanning calorimetry (DSC) and polarizing microscopy. Differential scanning calorimetry of LC(a+b) showed that the melting or clearing temperature was intermediate between the corresponding temperatures of the pure compounds. Polarizing microscopy showed that the liquid crystal phase of A + B was nematic. The chromatographic separation abilities LCa, LCb and LC(a+b) were studied using fused silica capillary columns. Interesting analytical performances were obtained: isomeric separation of aromatics, polyaromatics, phenols. PMID:16130697

  16. Method of testing gas insulated systems for the presence of conducting particles utilizing a gas mixture of nitrogen and sulfur hexafluoride

    DOEpatents

    Wootton, Roy E.

    1979-01-01

    A method of testing a gas insulated system for the presence of conducting particles. The method includes inserting a gaseous mixture comprising about 98 volume percent nitrogen and about 2 volume percent sulfur hexafluoride into the gas insulated system at a pressure greater than 60 lb./sq. in. gauge, and then applying a test voltage to the system. If particles are present within the system, the gaseous mixture will break down, providing an indicator of the presence of the particles.

  17. High pressure and temperature optical flow cell for Near-Infra-Red spectroscopic analysis of gas mixtures

    NASA Astrophysics Data System (ADS)

    Norton, C. G.; Suedmeyer, J.; Oderkerk, B.; Fieback, T. M.

    2014-05-01

    A new optical flow cell with a new optical arrangement adapted for high pressures and temperatures using glass fibres to connect light source, cell, and spectrometer has been developed, as part of a larger project comprising new methods for in situ analysis of bio and hydrogen gas mixtures in high pressure and temperature applications. The analysis is based on measurements of optical, thermo-physical, and electromagnetic properties in gas mixtures with newly developed high pressure property sensors, which are mounted in a new apparatus which can generate gas mixtures with up to six components with an uncertainty of composition of as little as 0.1 mol. %. Measurements of several pure components of natural gases and biogases to a pressure of 20 MPa were performed on two isotherms, and with binary mixtures of the same pure gases at pressures to 17.5 MPa. Thereby a new method of analyzing the obtained spectra based on the partial density of methane was investigated.

  18. Richtmyer-Meshkov instability in dilute gas-particle mixtures with re-shock

    NASA Astrophysics Data System (ADS)

    Schulz, J. C.; Gottiparthi, K. C.; Menon, S.

    2013-11-01

    The Richtmyer-Meshkov instability (RMI) is investigated in a dilute gas-particle mixture using three-dimensional numerical simulations. This work extends an earlier two-dimensional study [S. Ukai, K. Balakrishnan, and S. Menon, "On Richtmyer-Meshkov instability in dilute gas-particle mixtures," Phys. Fluids 22, 104103 (2010)] to a larger parameter space consisting of variations in the mass loading and the particle size as well as considering both single-mode and multi-mode interface initializations. In addition, the effect of the presence of particles on re-shock RMI is also investigated. Single-phase numerical predictions of the mixing layer growth-rate are shown to compare well to both experimental and theoretical results. In a dilute gas-particle mixture, the initial growth-rate of RMI shows similar trends compared to previous work; however, the current numerical predictions show that there is an observable increase, not previously predicted, in the growth of the mixing layer at higher mass loadings. For the range of cases considered, an increase as much as 56% is observed. This increase is attributed to additional vorticity production in the mixing layer resulting from inter-phase momentum coupling. Moreover, the presence of particles introduces a continuous drag on the gas-phase resulting in a delay in the time at which re-shock occurs. This delay, which is observed to be as much as 6%, is largest for higher initial mass loadings and smaller particle radii and has a corresponding effect on both the growth-rate of the mixing-layer after re-shock and the final width of the mixing layer. A new semi-analytical correlation is developed and verified against the numerical data to predict the re-shocked RMI growth-rate in dilute gas-particle flows. The correlation shows that the re-shock RMI growth-rate is linearly proportional to the velocity jump at re-shock, the molecular mixing fraction, and the multi-phase Atwood number. Depending on the initial mass loading and

  19. Transport Properties of He-N{sub 2} Binary Gas Mixtures for CBC Space Applications

    SciTech Connect

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-21

    In order to reduce the size and mass of the single-shaft turbo-machines, with little impact on the size of the heat transfer components in the CBC loop, He-Xe binary mixture with a molecular weight of 40 g/mole has been the working fluid of choice in space nuclear reactor power systems with Close Brayton Cycle (CBC) for energy conversion. This working fluid is also a suitable coolant for the fission reactors heat source designed with fast neutron energy spectra. For space nuclear reactors with thermal neutron energy spectra, however, the high capture neutron cross-section of Xe will reduce the beginning-of-life excess reactivity of the reactor, decreasing its effective operation lifetime. In addition, the neutron activation of Xe in the reactor will introduce a radioactivity source term in the CBC loop. Alternative working fluids with no activation concerns and comparable performance are N{sub 2} and the binary mixtures of He-N{sub 2}. This paper calculates the transport properties of these working fluids and compares their values to those of noble gas binary mixtures at the temperatures and pressures expected in CBC space reactor power system applications. Also investigated is the impact of using these working fluids on the pressure losses, heat transfer coefficient, and the aerodynamic loading of the blades in the CBC turbo-machines.

  20. Effect of porosity on flow of miscible fluid mixture by a lattice gas Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cueva, Luis; Pandey, Ras; Stauffer, Dietrich; Seyfarth, Ray; Gettrust, Joe; Wood, Warren

    2002-03-01

    Using an interacting lattice gas model, flow of a fluid mixture through porous media is studied in three dimensions. The porous medium is generated by a random distribution of barriers (sediments) on a discrete lattice with porosity p above the percolation threshold p_c. The fluid mixture consists of constituents A and B with their mass ratios, 1, 1/2, 1/3, etc. We consider a set of interactions: AB attractive, AA and BB repulsive, A and B with pore attractive, and a hard-core interaction with the sediment barrier. A source of fluid mixture is connected to the bottom where the fluid constituents may enter the porous matrix but they can escape the system from bottom or top. The Metropolis algorithm is used to move fluid particles. While the sedimentation is caused by the gravity, the concentration gradient drives the fluid from bottom to top. The flow rate density is examined as a function of porosity and is found to scale with p-pc with a power-law exponent close to 2.

  1. Transport Properties of He-N2 Binary Gas Mixtures for CBC Space Applications

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-01

    In order to reduce the size and mass of the single-shaft turbo-machines, with little impact on the size of the heat transfer components in the CBC loop, He-Xe binary mixture with a molecular weight of 40 g/mole has been the working fluid of choice in space nuclear reactor power systems with Close Brayton Cycle (CBC) for energy conversion. This working fluid is also a suitable coolant for the fission reactors heat source designed with fast neutron energy spectra. For space nuclear reactors with thermal neutron energy spectra, however, the high capture neutron cross-section of Xe will reduce the beginning-of-life excess reactivity of the reactor, decreasing its effective operation lifetime. In addition, the neutron activation of Xe in the reactor will introduce a radioactivity source term in the CBC loop. Alternative working fluids with no activation concerns and comparable performance are N2 and the binary mixtures of He-N2. This paper calculates the transport properties of these working fluids and compares their values to those of noble gas binary mixtures at the temperatures and pressures expected in CBC space reactor power system applications. Also investigated is the impact of using these working fluids on the pressure losses, heat transfer coefficient, and the aerodynamic loading of the blades in the CBC turbo-machines.

  2. 78 FR 41768 - Chemical Substances and Mixtures Used in Oil and Gas Exploration or Production; TSCA Section 21...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... Significant Human Exposure; Final Statement of Policy. Federal Register (58 FR 28736, May 14, 1993) (FRL-4059... AGENCY 40 CFR Chapter I Chemical Substances and Mixtures Used in Oil and Gas Exploration or Production...(a) to require manufacturers and processors of oil and gas exploration and production (E&P)...

  3. Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas

    DOEpatents

    Morrow, Thomas B.; Kelner, Eric; Owen, Thomas E.

    2008-07-08

    A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

  4. Novel simulated moving-bed adsorber for the fractionation of gas mixtures.

    PubMed

    Rao, D P; Sivakumar, S V; Mandal, Susmita; Kota, Sridevi; Ramaprasad, B S G

    2005-03-25

    The separation of propylene-propane mixture is an energy intensive operation commercially practiced using cryogenic distillation. The separation by pressure swing adsorption has been studied as an alternative. A fixed-bed pressure swing adsorption yields the heavy component as a pure product. The product recovery and the productivity are not high. In a moving-bed process, because of the counter-current solid-gas contact, the separation achieved is similar to that of the fractionation by distillation. Although the moving-bed operation offers the upper limit for the performance of a cyclic adsorptive process, due to mechanical complexities in the handling of solids the 'simulated' moving-bed is preferred. By moving the inlet and outlet ports of streams located along the length of the bed, a moving-bed process can be realized in a fixed bed. We describe here a 'moving-port' system which permits injection or withdrawal of the fluid along the axial direction in a fixed bed. A fixed bed embedded with the moving-port systems emulates a simulated moving-bed adsorber. The proposed adsorber can fractionate a binary gas mixture into two product streams with high purities. It is similar to the Sorbex process of UOP but does not have the eluent as an additional separating agent. A parametric study indicates that high purity products and a higher productivity by an order of magnitude can be achieved with simulated moving-beds compared to the fixed beds. PMID:15844493

  5. Study of DC Circuit Breaker of H2-N2 Mixture Gas for High Voltage

    NASA Astrophysics Data System (ADS)

    Shiba, Yuji; Morishita, Yukinaga; Kaneko, Shuhei; Okabe, Shigemitsu; Mizoguchi, Hitoshi; Yanabu, Satoru

    Global warming caused by CO2 etc. is a field where the concern is very high. Especially, automobile emissions are problem for it. Therefore, the hybrid car is widely development and used recently. Hybrid car used electric power and gasoline. So, the car reduces CO2. Hybrid car has engine and motor. To rotate the motor, hybrid car has battery. This battery is large capacity. Therefore, the relay should interrupt high DC current for the switch of the motor and the engine. So, hybrid car used hydrogen gas filling relay We studied interruption test for the research of a basic characteristic of hydrogen gas. DC current has not current zero point. So, it is necessary to make the current zero by high arc voltage and forcible current zero point. The loss coefficient and arc voltage of hydrogen is high. Therefore, we studied interruption test for used high arc voltage. We studied interruption test and dielectric breakdown test of air, pure Hydrogen, and Hydrogen- nitrogen mixture gas. As a result, we realized H2-N2(80%-20%) is the best gas.

  6. Electrical properties of various gas mixtures for active target detector application

    NASA Astrophysics Data System (ADS)

    Yates, Daniel; Rogachev, Grigory; Koshchiy, Evgeniy; Uberseder, Ethan; Hooker, Josh

    2015-10-01

    Experiments with rare isotope beams (RIBs) open new opportunities to study properties of exotic nuclei and measure reaction cross sections relevant for nuclear astrophysics with radioactive ions. However, the low intensity of RIBs requires the development of new, more efficient detectors such as the Texas Active Target (TexAT) detector currently being developed at the Cyclotron Institute. With this detector, the target gas is also used as the active medium for tracking and energy loss measurements of charged recoils. Various gas mixtures will be used under different conditions and it is important that drift velocity and gas gain are well established. This study uses a time projection chamber with an applied electric field to measure drift velocity and electron gains of four gases to be used as targets in TexAT. The experimental values are then compared to simulation. Drift velocities of electrons were measured as a function of the electric field for each gas and pressure and then were compared to simulated values obtained from CERN's Garfield + + simulation package. The simulated and experimental drift velocities matched with root-mean-square deviations typically less than 10% for each pressure. These results provide important accuracy verification of the simulation programs and determine systematic uncertainties in track reconstructions with TexAT which rely on these simulations. Supported by NSF Grant No. 1263281.

  7. Particle size distribution effects in an irradiated turbulent gas-particle mixture

    NASA Astrophysics Data System (ADS)

    Rahmani, Mona; Geraci, Gianluca; Iaccarino, Gianluca; Mani, Ali

    2015-11-01

    The effects of particle size distribution on thermodynamic and hydrodynamic behavior of solid particle solar receivers, that involve a turbulent mixture of gas and particles in a radiation environment, are investigated, using DNS with point particles. The turbulent flow is seeded with monodisperse and polydisperse particles, where the mass loading and total frontal area of particles are matched between the two systems. The results show that the variability of the Stokes number for polydisperse particles can significantly influence the particle clustering, and consequently the thermal performance of the system. In all cases studied, the preferential concentration is less pronounced for polydisperse as opposed to monodisperse particles. This reduced preferential concentration results in less heating of the particles, but more efficient energy release to the gas phase. Due to their different clustering patterns, polydisperse particles influence the Taylor scale of the flow in the turbulent gas phase. Polydispersity also implies variable thermodynamic and hydrodynamic properties of the particles. Our results show that the thermal behavior of the system with polydisperse particles is set by the integral measures for particle and gas momentum and thermal relaxation times.

  8. Cs vapor microcells with Ne-He buffer gas mixture for high operation-temperature miniature atomic clocks.

    PubMed

    Kroemer, E; Abdel Hafiz, M; Maurice, V; Fouilland, B; Gorecki, C; Boudot, R

    2015-07-13

    We report on the characterization of Cs vapor microfabricated cells filled with a Ne-He buffer gas mixture using coherent population trapping (CPT) spectroscopy. The temperature dependence of the Cs clock frequency is found to be canceled at the first order around a so-called inversion temperature higher than 80°C whose value depends on the buffer gas partial pressure ratio. This buffer gas mixture could be well-adapted for the development of miniature atomic clocks devoted to be used in specific applications such as defense and avionic systems with high operating temperature environment (typically higher than 85°C). This solution suggests an alternative to buffer gas mixtures generally used in optically-pumped vapor cell atomic clocks. PMID:26191895

  9. Study of quantification and distribution of explosive mixture in a confined space as a result of natural gas leak

    NASA Astrophysics Data System (ADS)

    Tulach, Aleš; Mynarz, Miroslav; Kozubková, Milada

    2014-03-01

    The contribution deals with quantification of natural gas leak from a domestic low pressure pipe to a confined space in relation to formation of explosive concentration. Within the experiments, amount of leak gas was determined considering the character of pipe damage. Leakage coefficients, natural gas expansion and time before reaching the lower explosive limit of a gas-air mixture were taken. Conducted experiments were then modelled using CFD software and the results were verified. In numerical model, several models of flow were used and afterwards following issues were analysed: leakage velocity, spatial distribution of the mixture in a confined space, formation of concentration at the lower explosive limit etc. This work should contribute to better understanding of propagation and distribution of gaseous fuel mixtures in confined spaces and thereby significantly reduce the risk of fires or explosions or prevent them.

  10. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  11. Separation Analysis in a High-Speed Rotating Cylinder for a Binary Gas Mixture

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev; Kumaran, Viswanathan

    2015-11-01

    The solutions of the species balance equations linked with the generalized Onsager model for the secondary gas flow in a high-speed rotating cylinder are compared with the direct simulation Monte Carlo (DSMC) simulations for a binary gas mixture. The concentration fields are obtained three different types of driving mechanism. These are: (a) wall thermal forcing, (b) inflow/outflow of gas along the axis, and (c) momentum source/sink inside the flow domain, for the stratification parameter (A) in the range (0.707- 3.535), and Reynolds number (Re) in the range (102 - 106 with aspect ratio (length / diameter) = 2, 4, 8. Two different types of cases have been considered, (a) no mass difference (ɛa = (2 Δm/(m1 + m2)) = 0), and (b) with mass difference (ɛa = 0.2 and 0.5) while calculating the secondary flow field in the analytical solution. Here, the stratification prameter A = √((mavΩ2 R2)/(2 kB T)), and the Reynolds number Re = ρw Ω R2)/ μ, where m is the molecular mass, Ω and R are the angular velocity and radius of the cylinder, ρw is the wall density, μ is the gas viscosity and T is the gas temperature. The comparison between numerical and analytical solution reveals that the boundary conditions in the numerical simulations and analytical model have to be matched with care. The commonly used ``diffuse reflection'' boundary conditions at the solid walls in DSMC simulations result in a non-zero slip velocity as well as a ``temperature slip'' (gas temperature at the wall is different from wall temperature).

  12. Theoretical study of thermal conductivities of various gas mixtures through the generalized Lennard-Jones interaction potential for application in gas-discharge lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Slaveeva, S. I.; Fedchenko, Yu I.

    2016-03-01

    Thermal conductivities of helium, neon, bromine, and hydrogen are calculated on the basis of the (12-6) Lennard-Jones interaction approximation. Where necessary for a more precise approximation, a generalized (n-m) Lennard-Jones interaction potential is used. Thermal conductivities of binary gas systems are calculated and compared through two different empirical methods for the case of gas discharges in He, Ne, and Ne-He mixtures with small admixtures of bromine and hydrogen. A new simple method is proposed for the thermal conductivity determination for the 3- and 4-component gas mixtures of our interest.

  13. Understanding the amorphous-to-microcrystalline silicon transition in SiF4/H2/Ar gas mixtures

    NASA Astrophysics Data System (ADS)

    Dornstetter, Jean-Christophe; Bruneau, Bastien; Bulkin, Pavel; Johnson, Erik V.; Roca i Cabarrocas, Pere

    2014-06-01

    We report on the growth of microcrystalline silicon films from the dissociation of SiF4/H2/Ar gas mixtures. For this growth chemistry, the formation of HF molecules provides a clear signature of the amorphous to microcrystalline growth transition. Depositing films from silicon tetrafluoride requires the removal of F produced by SiF4 dissociation, and this removal is promoted by the addition of H2 which strongly reacts with F to form HF molecules. At low H2 flow rates, the films grow amorphous as all the available hydrogen is consumed to form HF. Above a critical flow rate, corresponding to the full removal of F, microcrystalline films are produced as there is an excess of atomic hydrogen in the plasma. A simple yet accurate phenomenological model is proposed to explain the SiF4/H2 plasma chemistry in accordance with experimental data. This model provides some rules of thumb to achieve high deposition rates for microcrystalline silicon, namely, that increased RF power must be balanced by an increased H2 flow rate.

  14. ACCURATE: Greenhouse Gas Profiles Retrieval from Combined IR-Laser and Microwave Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Proschek, Veronika; Kirchengast, Gottfried; Schweitzer, Susanne; Fritzer, Johannes

    2010-05-01

    The new climate satellite concept ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the already better studied LEO-LEO microwave occultation (LMO) technique. Resulting occultation events are evenly distributed around the world, have high vertical resolution and accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 μm for ACCURATE). These signals are absorbed by various trace species in the Earth's atmosphere. Profiles of the concentration of the absorbing species can be derived from signal transmission measurements. Accurately known temperature, pressure and humidity profiles derived from simultaneously measured LMO signals are essential pre-information for the retrieval of the trace species profiles. These LMO signals lie in the microwave band region from 17-23 GHz and, optionally, 178-195 GHz. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (GHG) (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O), with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction, and scintillation strength. We introduce the methodology to retrieve GHG profiles from quasi-realistic forward-simulated intensities of LIO signals and thermodynamic profiles retrieved in a preceding step from LMO signals. Key of the retrieval methodology is the differencing of two LIO transmission signals, one being GHG sensitive on a target

  15. Pulse Compression of CO2 laser in SF6 and it's Mixtures with Dymel Gas

    NASA Astrophysics Data System (ADS)

    Yi, Dechang; Mahajan, Satish

    2003-10-01

    Laser pulse compression using OFID in ammonia, and CH3F gases has been reported in the past. Recent work in dymel gas indicated a four times sharper pulse than that in vacuum [1]. In the present work, experiments were conducted in SF6 gas to investigate the possibility of an OFID effecting a compressed CO2 laser pulse. An average of fourty laser pulses was acquired at a typical gas pressure in the test cell. Pressure of SF6 was varied from 0 to 2.5 torr while that of dymel (in a mixture with SF6) was varied from 0 to 6 torr. Pressure of SF6 was limited to a maximum of 2.5 torr due to strong absorption leading to weakening of output pulse. Results indicate that the addition of SF6 to dymel led to a variation in sharpness (intensity divided by pulsewidth) of a pulse and also to a shift in pressure at which maximum compression in dymel normally occurs. [1]D. Yi, and S.Mahajan,"Pulse Compression of CO2 laser by Optical Free Induction decay (OFID) Effect, Bulletin of APS,Vol.47,No.7,October 2002,pp.27,

  16. On-farm euthanasia of broiler chickens: effects of different gas mixtures on behavior and brain activity.

    PubMed

    Gerritzen, M A; Lambooij, B; Reimert, H; Stegeman, A; Spruijt, B

    2004-08-01

    The purpose of this study was to investigate the suitability of gas mixtures for euthanasia of groups of broilers in their housing by increasing the percentage of CO2. The suitability was assessed by the level of discomfort before loss of consciousness, and the killing rate. The gas mixtures injected into the housing were 1) 100% CO2, 2) 50% N2 + 50% CO2, and 3) 30% O2 + 40% CO2 + 30% N2, followed by 100% CO2. At 2 and 6 wk of age, groups of 20 broiler chickens per trial were exposed to increasing CO2 percentages due to the injection of these gas mixtures. Behavior and killing rate were examined. At the same time, 2 broilers per trial equipped with brain electrodes were observed for behavior and brain activity. Ten percent of the 2-wk-old broilers survived the increasing CO2 percentage due to the injection of 30% O2 + 40% CO2 + 30% N2 mixture, therefore this mixture was excluded for further testing at 6 wk of age. At 6 wk of age, 30% of the broilers survived in the 50% N2 + 50% CO2 group. The highest level of CO2 in the breathing air (42%) was reached by the injection of the 100% CO2 mixture, vs. 25% for the other 2 mixtures. In all 3 gas mixtures, head shaking, gasping, and convulsions were observed before loss of posture. Loss of posture and suppression of electrical activity of the brain (n = 7) occurred almost simultaneously. The results of this experiment indicate that euthanasia of groups of 2- and 6-wk-old broilers by gradually increasing the percentage of CO2 in the breathing air up to 40% is possible. PMID:15339003

  17. Limiting field strength and electron swarm coefficients of the CF3I-SF6 gas mixture

    NASA Astrophysics Data System (ADS)

    de Urquijo, J.; Mitrani, A.; Ruíz-Vargas, G.; Basurto, E.

    2011-08-01

    We have measured the electron drift velocity, longitudinal diffusion, and the effective ionization coefficients in the gaseous mixture of CF3I-SF6 over the density-normalized electric field intensity E/N, from 375 to 500 Td (1 Td = 10-17 V cm2). A pulsed Townsend technique was used. Overall, the gas mixture compositions were varied from 50 to 90% CF3I. We have found that the limiting field strength E/Nlim of the CF3I-SF6 mixture is superior to that of CF3I-N2, and always higher than that of SF6. Moreover, over the whole mixture range, the range of the limiting field strength for the CF3I-SF6 mixture is 360-437 Td, these limits corresponding for pure SF6 and CF3I, respectively.

  18. Monitoring of the dielectric strength of the air/SF6-mixtures for application in gas insulated transmission lines

    NASA Astrophysics Data System (ADS)

    Moukengué Imano, A.

    2004-11-01

    This paper investigates the dielectric properties of various air/SF{6} gas mixtures based upon a cylindrical spacer model with adhering particle on the surface under homogeneous field conditions. The investigation involves a comparison with pure SF{6}. The flashover field strength for clean and particle contaminated spacer surface under lightning impulse (LI) and alternating voltage (AC) stress is determined. The results of the investigations show the sensitivity of air/SF{6} gas mixtures to conducting particles on spacer surfaces for gas pressure up to 1000 kPa. Moreover, the correspondence between pure SF{6} and air/SF{6} gas mixtures for AC and LI flashover field strength range from 50 to 178 kV/cm is determined. Conclusions are drawn about the ability of air/SF{6} gas mixtures to serve as technically efficient media for long Gas Insulated Transmission Lines (GITL). The results shed light on the issue of the SF{6} reduction and the particle detectability in GITL.

  19. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  20. Methodology for Predicting Flammable Gas Mixtures in Double Contained Receiver Tanks [SEC 1 THRU SEC 3

    SciTech Connect

    HEDENGREN, D.C.

    2000-01-31

    This methodology document provides an estimate of the maximum concentrations of flammable gases (ammonia, hydrogen, and methane) which could exist in the vapor space of a double-contained receiver tank (DCRT) from the simultaneous saltwell pumping of one or more single-shell tanks (SSTs). This document expands Calculation Note 118 (Hedengren et a1 1997) and removes some of the conservatism from it, especially in vapor phase ammonia predictions. The methodologies of Calculation Note 118 (Hedengren et a1 1997) are essentially identical for predicting flammable gas mixtures in DCRTs from saltwell pumping for low DCRT ventilation rates, 1e, < 1 cfm. The hydrogen generation model has also been updated in the methodology of this document.

  1. Physicochemical characterization of dilute n-alcohol/biodiesel mixtures by inverse gas chromatography.

    PubMed

    Bobbitt, N Scott; King, Jerry W

    2010-12-10

    Inverse gas chromatography (IGC) has been used to determine the physicochemical parameters that characterize solution thermodynamic interactions in biodiesel-n-alcohol solute systems. Such data is of value to chemical engineers and separation scientists in optimizing separation processes to separate alcoholic solutes at low concentrations in soybean oil methyl ester mixtures (biodiesel). The derived activity and Henry's Law coefficient data can be used to rationalize the interaction of four members of an n-alcoholic homologous series and the soya-based methyl ester solvent in terms of such esters as "green" renewable solvents. Sorption isotherm data confirm linear behavior in most cases between the solute (alcohol) vapor state concentrations and their uptake into the biodiesel phase. Overall, the experimentally determined activity coefficients agree well with those predicted by solution thermodynamic theories as well as correlative chemical engineering equations. PMID:21067759

  2. Recovering Navier–Stokes Equations from Asymptotic Limits of the Boltzmann Gas Mixture Equation

    NASA Astrophysics Data System (ADS)

    Carlo, Bianca; Christian, Dogbe

    2016-05-01

    This paper is devoted to the derivation of macroscopic fluid dynamics from the Boltzmann mesoscopic dynamics of a binary mixture of hard-sphere gas particles. Specifically the hydrodynamics limit is performed by employing different time and space scalings. The paper shows that, depending on the magnitude of the parameters which define the scaling, the macroscopic quantities (number density, mean velocity and local temperature) are solutions of the acoustic equation, the linear incompressible Euler equation and the incompressible Navier–Stokes equation. The derivation is formally tackled by the recent moment method proposed by [C. Bardos, et al., J. Stat. Phys. 63 (1991) 323] and the results generalize the analysis performed in [C. Bianca, et al., Commun. Nonlinear Sci. Numer. Simulat. 29 (2015) 240].

  3. An Improved Analytical Approach to Determine the Explosive Effects of Flammable Gas-Air Mixtures

    SciTech Connect

    Yang, J M

    2005-11-10

    The U.S. Department of Energy (DOE) Complex includes many sites and laboratories that store quantities of low-level, solid nuclear waste in drums and other types of shipping containers. The drums may be stored for long periods of time prior to being transported and final dispositioning. Based on the radioactivity (e.g., Pu{sup 239} equivalent), chemical nature (e.g. volatile organic compounds) and other characteristics of the stored waste, flammable gases may evolve. Documented safety analyses (DSAs) for storage of these drums must address storage and safety management issues to protect workers, the general public, and the environment. This paper discusses an improved analytical method for determining the explosion effects flammable gas-air mixtures as well as the subsequent accident phenomenology.

  4. The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.

    SciTech Connect

    Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard

    2005-07-01

    Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).

  5. Spontaneous symmetry breaking and inversion-line spectroscopy in gas mixtures

    NASA Astrophysics Data System (ADS)

    Presilla, Carlo; Jona-Lasinio, Giovanni

    2015-02-01

    According to quantum mechanics, chiral molecules, that is, molecules that rotate the polarization of light, should not exist. The simplest molecules which can be chiral have four or more atoms with two arrangements of minimal potential energy that are equivalent up to a parity operation. Chiral molecules correspond to states localized in one potential energy minimum and can not be stationary states of the Schrödinger equation. A possible solution of the paradox can be founded on the idea of spontaneous symmetry breaking. This idea was behind work we did previously involving a localization phase transition: at low pressure, the molecules are delocalized between the two minima of the potential energy while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. A previously proposed model gives a satisfactory account of the empirical results without free parameters. In this paper, we extend this model to gas mixtures. We find that also in these systems a phase transition takes place at a critical pressure which depends on the composition of the mixture. Moreover, we derive formulas giving the dependence of the inversion frequencies on the pressure. These predictions are susceptible to experimental test.

  6. Multiproperty empirical isotropic interatomic potentials for CH4-inert gas mixtures.

    PubMed

    El-Kader, M S A

    2013-11-01

    An approximate empirical isotropic interatomic potentials for CH4-inert gas mixtures are developed by simultaneously fitting the Exponential-Spline-Morse-Spline-van der Waals (ESMSV) potential form to viscosity, thermal conductivity, thermal diffusion factors, diffusion coefficient, interaction second pressure virial coefficient and scattering cross-section data. Quantum mechanical lineshapes of collision-induced absorption (CIA) at different temperatures for CH4-He and at T = 87 K for CH4-Ar are computed using theoretical values for overlap, octopole and hexadecapole mechanisms and interaction potential as input. Also, the quantum mechanical lineshapes of collision-induced light scattering (CILS) for the mixtures CH4-Ar and CH4-Xe at room temperature are calculated. The spectra of scattering consist essentially of an intense, purely translational component which includes scattering due to free pairs and bound dimers, and the other is due to the induced rotational scattering. These spectra have been interpreted by means of pair-polarizability terms, which arise from a long-range dipole-induced-dipole (DID) with small dispersion corrections and a short-range interaction mechanism involving higher-order dipole-quadrupole A and dipole-octopole E multipole polarizabilities. Good agreement between computed and experimental lineshapes of both absorption and scattering is obtained when the models of potential, interaction-induced dipole and polarizability components are used. PMID:25685458

  7. Phase transition dynamics of liquid phase precipitation from a supersaturated gas mixture.

    PubMed

    Pines, V; Zlatkowski, M; Chait, A

    2004-11-01

    This work presents a self-consistent description of phase transition dynamics of disperse liquid phase precipitating from a supersaturated gas mixture. The unified approach integrates the macroscale transport phenomena of cloud dynamics with the essential microphysical kinetic processes of droplet condensation, evaporation, and droplet collisions simultaneously taking place in stochastic population of liquid droplets. A complete set of governing equations with well-defined dissipative fluxes and kinetic rates is derived for phase transition dynamics from nucleation to postnucleation to coarsening stages. The local thermodynamics of precipitating system, which is considered as ternary mixture of disperse liquid phase and water vapor with dry air, is redefined to explicitly include on equal basis both the vapor content and liquid content into the fundamental thermodynamic relations and equation of state. The molecular kinetic flux regularization method for growth of submicron droplets is reexamined to include, among others, significant contribution of vapor molecular energy flux into total heat flux, resulting in new expressions for the droplet temperature, growth rate, and effective diffusion coefficients. The local kinetic rates are determined on the basis of microscale kinetic equation for the droplet distribution function. This is in contrast to commonly used semiempirical parametrization schemes for kinetic rates with adjustable parameters, wherein the probabilistic aspects of microphysical processes are not rigorously addressed. Stochastic diffusion interactions among droplets competing for the available water vapor and modifications in the kinetic equation for droplets growing in stochastic population with direct long-range diffusion interactions amongst them are discussed and formulated as well. PMID:15527359

  8. Multiproperty empirical isotropic interatomic potentials for CH4–inert gas mixtures

    PubMed Central

    El-Kader, M.S.A.

    2012-01-01

    An approximate empirical isotropic interatomic potentials for CH4–inert gas mixtures are developed by simultaneously fitting the Exponential-Spline-Morse-Spline-van der Waals (ESMSV) potential form to viscosity, thermal conductivity, thermal diffusion factors, diffusion coefficient, interaction second pressure virial coefficient and scattering cross-section data. Quantum mechanical lineshapes of collision-induced absorption (CIA) at different temperatures for CH4–He and at T = 87 K for CH4–Ar are computed using theoretical values for overlap, octopole and hexadecapole mechanisms and interaction potential as input. Also, the quantum mechanical lineshapes of collision-induced light scattering (CILS) for the mixtures CH4–Ar and CH4–Xe at room temperature are calculated. The spectra of scattering consist essentially of an intense, purely translational component which includes scattering due to free pairs and bound dimers, and the other is due to the induced rotational scattering. These spectra have been interpreted by means of pair-polarizability terms, which arise from a long-range dipole-induced-dipole (DID) with small dispersion corrections and a short-range interaction mechanism involving higher-order dipole–quadrupole A and dipole–octopole E multipole polarizabilities. Good agreement between computed and experimental lineshapes of both absorption and scattering is obtained when the models of potential, interaction-induced dipole and polarizability components are used. PMID:25685458

  9. Research of the DC discharge of He-Ne gas mixture in hollow core fiber

    NASA Astrophysics Data System (ADS)

    Wang, Xinbing; Duan, Lian

    2013-09-01

    Since the first waveguide 0.633 μm He-Ne laser from a 20 cm length of 430 μm glass capillary was reported in 1971, no smaller waveguide gas laser has ever been constructed. Recently as the development of low loss hollow core PBG fiber, it is possible to constract a He-Ne lasers based on hollow-core PBG fibers. For the small diameter of the air hole, it is necessary to do some research to obtain glow discharge in hollow core fibers. In this paper, the experimental research of DC discharge in 200 μm bore diameter hollow core fibers was reported. Stable glow discharge was obained at varioue He-Ne mixtures from 4 Torr to 18 Torr. In order to obtain the plasma parameter of the discharge, the trace gasses of N2 and H2 were added to the He-Ne mixtures, the optical emission spectroscopy of the discharge was recorded by a PI 2750 spectroscopy with a CCD camera. The gas temperature (Tg) could be obtained by matching the simulated rovibronic band of the N2 emission with the observed spectrum in the ultraviolet region. The spectral method was also used to obtained the electron density, which is based on the analysis of the wavelength profile of the 486.13 nm Hβ line, and the electron temperature was obtain by Boltzmann plot methods. Experimental results show that it is very difficult to achieve DC discharge in bore diameter less than 50 μm, and a RF discharge method was proposed. Project supported by the National Natural Science Foundation of China (61078033).

  10. Solutions to the Spatially Inhomogeneous Boltzmann Equation in Rare Gases and Rare Gas-Molecular Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Bailey, Wm. F.; Smithtro, C. G.

    1999-10-01

    A two-dimensional model of the electron kinetics within a glow discharge positive column has been developed, based on the formalism of Uhrlandt and Winkler(Uhrlandt, D. and Winkler, R. "Radially Inhomogeneous Electron Kinetics in the DC Column Plasma," J. Phys. D: App. Phys., 29:155-120 (1996).). The model establishes a steady state solution, such that the net ionization rate is exactly balanced by the wall loss. After summarizing the analytic development, we present the numerical techniques used to solve the resulting elliptic partial differential equation, discussing an efficient method to treat sparse banded matrices. The model is first validated against published results in rare gases, examined in the limits of the local and nonlocal kinetic approximations and also compared to a previous Monte Carlo treatment. Current flow within the solution area of a neon column is examined. The model is then extended to consider the influence of the addition of a molecular gas, nitrogen, to the rare gas, neon. Current flow and ranges of applicability of the local and nonlocal approximations in the mixture are contrasted with the pure neon results.

  11. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    PubMed

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-01

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases. PMID:20712330

  12. Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Z.; Urso, R. G.; Baratta, G. A.; Brucato, J. R.; Palumbo, M. E.; Strazzulla, G.

    2016-01-01

    Context. Formamide (NH2HCO) and isocyanic acid (HNCO) have been observed as gaseous species in several astronomical environments such as cometary comae and pre- and proto-stellar objects. A debate is open on the formation route of those molecules, in particular if they are formed by chemical reactions in the gas phase and/or on grains. In this latter case it is relevant to understand if the formation occurs through surface reactions or is induced by energetic processing. Aims: We present arguments that support the formation of formamide in the solid phase by cosmic-ion-induced energetic processing of ices present as mantles of interstellar grains and on comets. Formamides, along with other molecules, are expelled in the gas phase when the physical parameters are appropriate to induce the desorption of ices. Methods: We have performed several laboratory experiments in which ice mixtures (H2O:CH4:N2, H2O:CH4:NH3, and CH3OH:N2) were bombarded with energetic (30-200 keV) ions (H+ or He+). FTIR spectroscopy was performed before, during, and after ion bombardment. In particular, the formation of HNCO and NH2HCO was measured quantiatively. Results: Energetic processing of ice can quantitatively reproduce the amount of NH2HCO observed in cometary comae and in many circumstellar regions. HNCO is also formed, but additional formation mechanisms are requested to quantitatively account for the astronomical observations. Conclusions: We suggest that energetic processing of ices in the pre- and proto-stellar regions and in comets is the main mechanism to produce formamide, which, once it is released in the gas phase because of desorption of ices, is observed in the gas phase in these astrophysical environments.

  13. Accurate proton affinity and gas-phase basicity values for molecules important in biocatalysis

    PubMed Central

    Moser, Adam; Range, Kevin; York, Darrin M.

    2010-01-01

    Benchmark quantum calculations of proton affinities and gas phase basicities of molecules relevant to biochemical processes, particulsarly acid/base catalysis, are presented and compared for a variety of multi-level and density-functional quantum models. Included are nucleic acid bases in both keto and enol tautomeric forms, ribose in B-form and A-form sugar pucker conformations, amino acid side chains and backbone molecules, and various phosphates and phosphoranes including thio substitutions. This work presents a high-level thermodynamic characterization of biologically relevant protonation states, and provides a benchmark database for development of next-generation semiempirical and approximate density-functional quantum models, and parameterization of methods to predict pKa values and relative solvation energies. PMID:20942500

  14. Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography.

    PubMed

    Mutelet, Fabrice; Jaubert, Jean-Noël

    2006-01-13

    Activity coefficients at infinite dilution of 29 organic compounds in two room temperature ionic liquids were determined using inverse gas chromatography. The measurements were carried out at different temperatures between 323.15 and 343.15K. To establish the influence of concurrent retention mechanisms on the accuracy of activity coefficients at infinite dilution for 1-butyl-3-methylimidazolium octyl sulfate and 1-ethyl-3-methylimidazolium tosylate, phase loading studies of the net retention volume per gram of packing as a function of the percent phase loading were used. It is shown that most of the solutes are retained largely by partition with a small contribution from adsorption on 1-butyl-3-methylimidazolium octyl sulfate and that the n-alkanes are retained predominantly by interfacial adsorption on 1-ethyl-3-methylimidazolium tosylate. PMID:16310203

  15. Obtaining the cumulative k-distribution of a gas mixture from those of its components. [radiative transfer in stratosphere

    NASA Technical Reports Server (NTRS)

    Gerstell, M. F.

    1993-01-01

    A review of the convolution theorem for obtaining the cumulative k-distribution of a gas mixture proven in Goody et al. (1989) and a discussion of its application to natural spectra are presented. Computational optimizations for use in analyzing high-altitude gas mixtures are introduced. Comparisons of the results of the optimizations, and criteria for deciding what altitudes are 'high' in this context are given. A few relevant features of the testing support software are examined. Some spectrally integrated results, and the circumstances the might permit substituting the method of principal absorbers are examined.

  16. Fast gas heating in N2/O2 mixtures under nanosecond surface dielectric barrier discharge: the effects of gas pressure and composition

    PubMed Central

    Nudnova, M. M; Kindysheva, S. V; Aleksandrov, N. L; Starikovskii, A. Yu

    2015-01-01

    The fractional electron power quickly transferred to heat in non-equilibrium plasmas was studied experimentally and theoretically in N2/O2 mixtures subjected to high electric fields. Measurements were performed in and after a nanosecond surface dielectric barrier discharge at various (300–750 Torr) gas pressures and (50–100%) N2 percentages. Observations showed that the efficiency of fast gas heating is almost independent of pressure and becomes more profound when the fraction of O2 in N2/O2 mixtures increases. The processes that contribute towards the fast transfer of electron energy to thermal energy were numerically simulated under the conditions considered. Calculations were compared with measurements and the main channels of fast gas heating were analysed at the gas pressures, compositions and electric fields under study. It was shown that efficient fast gas heating in the mixtures with high fraction of O2 is due to a notable contribution of heat release during quenching of electronically excited N2 states in collisions with O2 molecules and to ion–ion recombination. The effect of hydrocarbon addition to air on fast gas heating was numerically estimated. It was concluded that the fractional electron power transferred to heat in air, as a first approximation, could be used to estimate this effect in lean and stoichiometric hydrocarbon–air mixtures. PMID:26170431

  17. Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.

  18. Kinetic and thermodynamic treatment for the Rayleigh flow problem of an inhomogeneous charged gas mixture

    NASA Astrophysics Data System (ADS)

    Abourabia, Aly Maher; Abdel Wahid, Taha Zakaraia

    2012-03-01

    The extension of our previous paper [Can. J. Phys., 88 (2010), 501-511] has been made for an inhomogeneous charged rarefied gas mixture (two components plasma) instead of a single electron gas. In the present work, the kinetic and the irreversible thermodynamic properties of the plasma are presented from the molecular point of view. Our study is based on the solution of the BGK (Bhatnager-Gross-Krook) model of the Boltzmann kinetic equation together with the Maxwell's equations for both positive ions and electrons in the vicinity of a moving rigid plane. The fundamental aim of this investigation is to illustrate the mutual effects caused by collisions on the distribution functions. The distinction and comparisons between the perturbed and the equilibrium velocity distribution functions are illustrated for both electrons and ions. The ratios between the different contributions of the internal energy changes are predicted via the Gibbs's equation for both diamagnetic and paramagnetic plasmas. The results are applied to a typical model of laboratory Argon plasma.

  19. Quantifying the impact of nitric oxide calibration gas mixture oxidation on reported nitrogen dioxide concentrations

    NASA Astrophysics Data System (ADS)

    Sweeney, Bryan P.; Quincey, Paul G.; Green, David; Fuller, Gary W.

    2015-03-01

    Chemiluminescent analysers for measuring nitric oxide (NO) and nitrogen dioxide (NO2) in ambient air are generally calibrated with certified gas standard cylinders of NO in nitrogen. Verification of the NOx and NO amount fractions has been carried out on many such 'on-site' calibration cylinders at air quality monitoring stations. These measurements indicate that significant numbers of these gas mixtures have become somewhat degraded, with several percent of the NO oxidised to NO2. The effect of not compensating for this degradation on reported concentrations is discussed. If such degradation is not quantified and corrected for, there will be a systematic under-reporting of NO2 concentrations, which, due to the non-linearity of the effect, could reduce high reported NO2 concentrations at kerbside sites by around 20%. This could significantly reduce the number of reported exceedances of the NO2 limit value at such sites, compared to results obtained where there is no degradation of the NO cylinder.

  20. Thermal preconditioning of coal/water mixtures for gas turbine applications

    SciTech Connect

    Roffe, G.; Miller, G.

    1985-03-01

    Thermal preconditioning of coal/water mixtures (CWM) is a process proposed for use with stationary gas turbine engines. The CWM is heated before delivery to the combustor to vaporize the water and to pyrolyze and devolatilize the coal prior to injection. The process offers a number of potential advantages. Engines can be started without the use of an auxiliary fuel system, atomizing nozzles are eliminated, flame stability is increased, and char burnout is accelerated as a result of increased initial flame intensity. This project was an initial examination of technical questions affecting the feasibility and utility of the process. Heat transfer rates were measured for high solids loadings CWM in tubular heaters, the influence of the boiling process was studied, devolatilization rates were measured for the conditions of interest in gas turbine applications, the potential for organic sulfur volatilization was assessed and the effect of the process on heat rate for a combined cycle power plant was examined. The results of this initial examination showed the process to be both technically and economically feasible. CWM was vaporized and devolatilized in a small heat exchanger and a clearly defined steam/char/volatile suspension was produced. Temperatures of 750K to 870K and residence times of less than 1 second were found to be adequate to complete the process.

  1. Electron bunching in a Penning trap and accelerating process for CO2 gas mixture active medium

    NASA Astrophysics Data System (ADS)

    Tian, Xiu-Fang; Wu, Cong-Feng; Jia, Qi-Ka

    2015-12-01

    In PASER (particle acceleration by stimulated emission of radiation), in the presence of an active medium incorporated in a Penning trap, moving electrons can become bunched, and as they get enough energy, they escape the trap forming an optical injector. These bunched electrons can enter the next PASER section filled with the same active medium to be accelerated. In this paper, electron dynamics in the presence of a gas mixture active medium incorporated in a Penning trap is analyzed by developing an idealized 1D model. We evaluate the energy exchange occurring as the train of electrons traverses into the next PASER section. The results show that the oscillating electrons can be bunched at the resonant frequency of the active medium. The influence of the trapped time and population inversion are analyzed, showing that the longer the electrons are trapped, the more energy from the medium the accelerated electrons get, and with the increase of population inversion, the decelerated electrons are virtually unchanged but the accelerated electrons more than double their peak energy values. The simulation results show that the gas active medium needs a lower population inversion to bunch the electrons compared to a solid active medium, so the experimental conditions can easily be achieved. Supported by National Natural Science Foundation of China (10675116) and Major State Basic Research Development Programme of China (2011CB808301)

  2. Enantiospecific Chemical Mixture Analysis via Microwave Spectroscopy of Buffer Gas Cooled Samples

    NASA Astrophysics Data System (ADS)

    Patterson, David; Schnell, Melanie; Doyle, John

    2013-05-01

    We present experimental results demonstrating a sensitive, highly specific chemical analyzer via Fourier transform microwave (FTMW) spectroscopy of molecular samples cooled via buffer gas cooling to about 7 K. Room temperature spectroscopic methods are routinely used to identify and quantify small and medium sized molecules. These methods fail for larger molecules, which at room temperature occupy hundreds of thousands of ro-vibrational states, leading to broad spectral features composed of a large number of weak, unresolved lines. In contrast, samples cooled to a few degrees K exhibit qualitatively simpler spectra, composed of many fewer and much stronger resolvable, narrow lines. Here we show that a continuous, cold buffer gas cooled source provides an attractive source for a spectroscopy based chemical mixture analyzer. In addition, we will present novel extensions to FTMW which render it sensitive to the chirality of the analyte. In this work, opposite enantiomers are distinguished via a change in the phase of the emitted microwave radiation. This technique provides a robust, general, chirally sensitive chemical analyzer, and is the first demonstration of microwave spectroscopy applied to chiral analysis.

  3. Density functional theory of gas-liquid phase separation in dilute binary mixtures.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-22

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas [Formula: see text] (the Gibbs energy of transfer) is considerably larger than the thermal energy [Formula: see text] for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by [Formula: see text], where [Formula: see text] is the solute density added in liquid. For [Formula: see text], phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor. PMID:27115676

  4. Development of a Binary Mixture Gas Composition Instrument for Use in a Confined High Temperature Environment

    NASA Astrophysics Data System (ADS)

    Cadell, Seth R.

    , or used to measure the purity of the coolant itself. This work details the efforts conducted to develop such an instrument. While the concept of designing a capacitance sensor to measure a gas mixture is not unique, the application of using a capacitance sensor within a nuclear reactor is a new application. This application requires the development of an instrument that will survive a high temperature nuclear reactor environment and operate at a sensitivity not found in current applications. To prove this technique, instrument prototypes were built and tested in confined environments and at high temperatures. This work discusses the proof of concept testing and outlines an application in the High Temperature Test Facility to increase the operational understanding of the instrument. This work is the first step toward the ultimate outcome of this work, which is to provide a new tool to the gas reactor community allowing real-time measurements of coolant properties within the core.

  5. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    NASA Astrophysics Data System (ADS)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum

  6. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas. PMID:23286690

  7. Separation of gas mixtures by supported complexes. Final report, 1 October 1982-30 September 1984

    SciTech Connect

    Nelson, D.A.; Hallen, R.T.; Lilga, M.A.

    1985-01-01

    This final report covers research performed to identify and demonstrate advantageous procedures for the chemical separation of gases, such as CO, CO/sub 2/, and H/sub 2/, from medium-Btu gas mixtures by use of supported complexes. Three complexes were chosen for rapid gas uptake and selectivity at 25/sup 0/C from among a group of 22 coordination complexes synthesized during this program. The three complexes showed considerable selectivity toward individual gases. For instance, Pd/sub 2/(dpm)/sub 2/Cl/sub 2/ or bis-..mu..-(bisdiphenylphosphinomethane)-dichlorodipalladium (Pd-Pd), rapidly bound carbon monoxide from solution. This complex could be regenerated, with the carbon monoxide reversibly removed, by warming to 40/sup 0/C. The presence of other gases, such as carbon dioxide, oxygen, nitrogen, hydrogen, ethylene, or acetylene, had no effect upon the rapid uptake of carbon monoxide or its removal. Such selectivity was also noted with Ru(CO)/sub 2/(PPh/sub 3/)/sub 3/, biscarbonyltris(triphenylphosphine)ruthenium. Although this complex bound hydrogen, carbon monoxide, and oxygen in solution, the hydrogen was taken up twice as fast as carbon monoxide and seven times faster than oxygen. These gases could be removed from the complex with mild heat or decreased pressure. Crystalline Rh(OH)(CO)(PPh/sub 3/)/sub 2/, hydroxocarbonylbis(triphenylphosphine)rhodium, rapidly bound carbon dioxide; the complex was regenerated at 50/sup 0/C under reduced pressure. The rapid uptake of carbon dioxide by this complex was not changed in the presence of oxygen. In general the three selected crystalline or solvent dissolved complexes performed well in the absence of polymeric support. The stability and favorable kinetics of the three complexes suggest that they could be utilized in a solution system for gas separation (Conceptual Analyses and Preliminary Economics). Further, these complexes appear to be superb candidates as transport agents for facilitated-transport, membrane systems

  8. DUSTYBOX and DUSTYWAVE: two test problems for numerical simulations of two-fluid astrophysical dust-gas mixtures

    NASA Astrophysics Data System (ADS)

    Laibe, Guillaume; Price, Daniel J.

    2011-12-01

    In this paper we present the analytic solutions for two test problems involving two-fluid mixtures of dust and gas in an astrophysical context. The solutions provide a means of benchmarking numerical codes designed to simulate the non-linear dynamics of dusty gas. The first problem, DUSTYBOX, consists of two interpenetrating homogeneous fluids moving with relative velocity difference. We provide exact solutions to the full non-linear problem for a range of drag formulations appropriate to astrophysical fluids (i.e. various prescriptions for Epstein and Stokes drag in different regimes). The second problem, DUSTYWAVE, consists of the propagation of linear acoustic waves in a two-fluid gas-dust mixture. We provide the analytic solution for the case when the two fluids are interacting via a linear drag term. Both test problems are simple to set up in any numerical code and can be run with periodic boundary conditions. The solutions we derive are completely general with respect to both the dust-to-gas ratio and the amplitude of the drag coefficient. A stability analysis of waves in a gas-dust system is also presented, showing that sound waves in an astrophysical dust-gas mixture are linearly stable.

  9. Effect of Alumina on the Gaseous Reduction of Magnetite in CO/CO2 Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Kapelyushin, Yury; Xing, Xing; Zhang, Jianqiang; Jeong, Sunkwang; Sasaki, Yasushi; Ostrovski, Oleg

    2015-03-01

    Reduction of magnetite doped with alumina (3, 6 and 12 mass pct Al2O3) was studied using CO/CO2 gas mixture (80 vol pct CO) at 1023 K and 1123 K (750 °C and 850 °C). The reduction rate and degree of reduction were evaluated from the weight loss of a sample with time. The reduction behavior was analyzed using the results of XRD and SEM-EDS measurements and thermodynamic analysis. Effect of alumina on the magnetite reduction depended on the alumina content and temperature. Magnetite reduction at 1023 K (750 °C) was accelerated by the addition of 3 mass pct Al2O3, however, the rate of reduction significantly decreased with the further increase in the alumina content to 6 and 12 mass pct. Different effect of alumina was observed in reduction at 1123 K (850 °C); the rate of reduction of the Fe3O4-Al2O3 mixture with 6 mass pct Al2O3 was the fastest. Reduction of un-doped magnetite was developed topochemically with the formation of a dense iron shell. However, reduction of alumina-doped magnetite to wüstite started along certain lattice planes with the formation of network-like structure. In the course of reduction, Al3+ ions diffused from wüstite to the Fe3O4-FeAl2O4 solution enriching hercynite content in the solution at the reaction interface. Further reduction of alumina-rich Fe3O4-FeAl2O4 solution resulted in the formation of micro-cracks which enhanced the rate of the reduction process.

  10. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    ERIC Educational Resources Information Center

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  11. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Charging of cylinders with a mixture of compressed gas and other material. 173.305 Section 173.305 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  12. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Charging of cylinders with a mixture of compressed gas and other material. 173.305 Section 173.305 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  13. Simulation of the transition radiation detection conditions in the ATLAS TRT detector filled with argon and krypton gas mixtures

    SciTech Connect

    Boldyrev, A. S.; Maevskiy, A. S.

    2015-12-15

    Performance of the Transition Radiation Tracker (TRT) at the ATLAS experiment with argon and krypton gas mixtures was simulated. The efficiency of transition radiation registration, which is necessary for electron identification, was estimated along with the electron identification capabilities under such conditions.

  14. Supersonic flow of chemically reacting gas-particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A numerical solution for chemically reacting supersonic gas-particle flows in rocket nozzles and exhaust plumes was described. The gas-particle flow solution is fully coupled in that the effects of particle drag and heat transfer between the gas and particle phases are treated. Gas and particles exchange momentum via the drag exerted on the gas by the particles. Energy is exchanged between the phases via heat transfer (convection and/or radiation). Thermochemistry calculations (chemical equilibrium, frozen or chemical kinetics) were shown to be uncoupled from the flow solution and, as such, can be solved separately. The solution to the set of governing equations is obtained by utilizing the method of characteristics. The equations cast in characteristic form are shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The particle distribution is represented in the numerical solution by a finite distribution of particle sizes.

  15. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... alternate power supply exists, as required under § 503.8 of these regulations. (b) Evidence required in... these regulations. (c) Solar mixtures. OFE will grant a permanent mixtures exemption for the use of a mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or...

  16. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... alternate power supply exists, as required under § 503.8 of these regulations. (b) Evidence required in... these regulations. (c) Solar mixtures. OFE will grant a permanent mixtures exemption for the use of a mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or...

  17. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... alternate power supply exists, as required under § 503.8 of these regulations. (b) Evidence required in... these regulations. (c) Solar mixtures. OFE will grant a permanent mixtures exemption for the use of a mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or...

  18. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... alternate power supply exists, as required under § 503.8 of these regulations. (b) Evidence required in... these regulations. (c) Solar mixtures. OFE will grant a permanent mixtures exemption for the use of a mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or...

  19. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... alternate power supply exists, as required under § 503.8 of these regulations. (b) Evidence required in... these regulations. (c) Solar mixtures. OFE will grant a permanent mixtures exemption for the use of a mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or...

  20. High-power gas-discharge excimer ArF, KrCl, KrF and XeCl lasers utilising two-component gas mixtures without a buffer gas

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Kargapol'tsev, E. S.; Churkin, D. S.

    2016-03-01

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an active medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%.

  1. Accurate ab initio potential for the krypton dimer and transport properties of the low-density krypton gas.

    PubMed

    Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo

    2015-05-28

    A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range. PMID:26026447

  2. Kinetic Equation for Two-Particle Distribution Function in Boltzmann Gas Mixtures and Equation of Motion for Quasiparticle Pairs

    NASA Astrophysics Data System (ADS)

    Saveliev, V. L.

    2011-05-01

    Pair collisions is the main interaction process in the Boltzmann gas dynamics. By making use of exactly the same physical assumptions as was used by Ludwig Boltzmann we write the kinetic equation for two-particle distribution function of molecules in the gas mixtures. Instead of the collision integral, there are the linear scattering operator and the chaos projector in the right part of this equation. Because the scattering operator is more simple then Boltzmann collision integral this equation opens new opportunities for mathematical description of the Boltzmann gas dynamics.

  3. Scaling laws for the atomic Xe laser in Ne/Ar/Xe and He/Ar/Xe gas mixtures

    SciTech Connect

    Vogel, M.S.; Jong, W.; Kushner, S.

    1992-12-01

    The atomic Xe laser oscillates on 6 transitions (1.73 {mu}m - 3.7 {mu}m) between the 5d and 6p manifolds. Ar/Xe gas mixtures usually produce the highest laser efficiencies at 1.73 {mu}m, however gas heating from energy loading can reduce or terminate laser output due to an increase in the electron density. One is therefore motivated to increase the gas pressure by adding a lighter rare gas (He or Ne). The scaling of the atomic Xe laser using Ne/Ar/Xe and He/Ar/Xe gas mixtures have been investigated using a computer model. Addition of Ne significantly alters the kinetic pathways leading to increased pumping of the 6p manifold by dissociative recombination of Xe{sub 2}{sup +} thereby decreasing laser power. Increasing the heat capacity of the mixture by adding Ne can regain some of this loss at high energy loading. He addition is less disruptive with respect to the ion chemistry, but preferential quenching of the lower laser levels causes osciallation to be dominantly at 2.03 {mu}m.

  4. Radiation-induced reactions of COH 2 gas mixtures over various solid catalysts

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Arai, H.; Hatada, M.

    Studies have been carried out of radiation-induced reactions of COH 2 gas mixtures in the presence of various solid catalysts in order to find possibilities of synthesizing organic raw materials from COH 2 by radiation for the future. The solid catalysts studied include Fischer-Tropsch catalyst (FeCu supported by diatomaceous earth), titania(TiO 2), and silica gel. Analysis of the reaction products over Fischer-Tropsch catalyst or semiconductors such as TiO 2 and ZnOCr 2O 3 reveals that these solid catalysts do not sensitize the radiation chemical reaction of COH 2 but show the secondary effects on the reaction so as to induce the hydrogenation of olefins produced by the catalytic reaction and of aldehydes produced in gas phase by radiation. On the other hand, silica gel and other insulators such as alumina have been found to exhibit high catalytic activity in the formation of hydrocarbons from COH 2 under electron beam irradiation at 300°C. It has been shown experimentally that secondary reactions between H 2 and carbonaceous solid produced from CO make a substantial contribution to the formation of hydrocarbons from COH 2 over silica gel. In an attempt to find the role of silica gel in the reaction to produce hydrocarbons, radiation-induced reactions have been studied of H 2 with the carbonaceous solid that had been produced by irradiation of CO in the absence of solid catalyst, over TiO 2, or over silica gel. The results indicate that silica gel not only enhances the yields of CO 2 and carbonaceous solid from CO but also promotes hydrogenation reactions of the carbonaceous solid under electron beam irradiation.

  5. Multiclass semi-volatile compounds determination in wine by gas chromatography accurate time-of-flight mass spectrometry.

    PubMed

    Rodríguez-Cabo, T; Rodríguez, I; Ramil, M; Silva, A; Cela, R

    2016-04-15

    The performance of gas chromatography (GC) with accurate, high resolution mass spectrometry (HRMS) for the determination of a group of 39 semi-volatile compounds related to wine quality (pesticide residues, phenolic off-flavours, phenolic pollutants and bioactive stilbenes) is investigated. Solid-phase extraction (SPE) was used as extraction technique, previously to acetylation (phenolic compounds) and dispersive liquid-liquid microextraction (DLLME) concentration. Compounds were determined by GC coupled to a quadrupole time-of-flight (QTOF) MS system through an electron ionization (EI) source. The final method attained limits of quantification (LOQs) at the very low ng mL(-1) level, covering the range of expected concentrations for target compounds in red and white wines. For 38 out of 39 compounds, performance of sample preparation and determination steps were hardly affected by the wine matrix; thus, accurate recoveries were achieved by using pseudo-external calibration. Levels of target compounds in a set of 25 wine samples are reported. The capabilities of the described approach for the post-run identification of species not considered during method development, without retention time information, are illustrated and discussed with selected examples of compounds from different classes. PMID:26971021

  6. Studies of Helium Based Gas Mixtures Using a Small Cell Drift Chamber

    SciTech Connect

    Heise, Jaret; /British Columbia U.

    2006-07-07

    An international collaboration is currently working on the construction and design of an asymmetric B Factory at the Stanford Linear Accelerator Center that will be ready to collect data in 1999. The main physics motivation for such a facility is to test the description and mechanism of CP violation in the Standard Model of particle physics and provide insight into the question of why more matter than antimatter is observed in the universe today. In particular, this experiment will measure CP violation in the decay of B mesons. In the early stages of this effort, the Canadian contingent proposed to build the central tracking chamber for the BaBar detector. Presently, a prototype drift chamber is in operation and studies are being performed to test some of the unique features of drift chamber design dictated by the conditions of the experiment. Using cosmic muons, it is possible to study tracking and pattern recognition in the prototype chamber, and therefore calculate the efficiency and spatial resolution of the prototype chamber cells. These performance features will be used to test whether or not the helium-based gas mixtures proposed for the BaBar drift chamber are a viable alternative to the more traditional argon-based gases.

  7. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 January--31 March 1995

    SciTech Connect

    Iglesia, E.

    1995-04-24

    The contract objectives are: to design a catalytic material for the synthesis of isobutanol with a productivity of 200 g isoalcohols/g-cat-h and a molar isobutanol/methanol ratio near unity; and to develop structure-function rules for the design of catalysts for the selective conversion of synthesis gas to isoalcohols. Several catalyst samples have been prepared by controlled co-precipitation from aqueous mixtures of metal nitrates. The composition of these materials is based on reports of best available catalysts for methanol synthesis, for isobutanol synthesis, and for methanol coupling reactions. The mechanical construction and pressure testing of the microreactor system has been completed. The in-situ infrared spectrophotometer equipped with a nitrogen purge is fully operational. The temperature-programmed surface reaction (TPSR) unit has been designed; construction will begin during the third quarter FY`95. Air Products and Chemicals has provided us with a sample of a BASF isobutanol synthesis catalyst and with catalytic data obtained on this catalyst in a LaPorte test run. This catalyst will serve as a benchmark for the certification of our new microreactor system.

  8. Hovering flight mechanics of neotropical flower bats (Phyllostomidae: Glossophaginae) in normodense and hypodense gas mixtures.

    PubMed

    Dudley, Robert; Winter, York

    2002-12-01

    Existing estimates of flight energetics in glossophagine flower bats, the heaviest hovering vertebrate taxon, suggest disproportionately high expenditure of mechanical power. We determined wingbeat kinematics and mechanical power expenditure for one of the largest flower bats (Leptonycteris curasoae Martinez and Villa) during hovering flight in normodense and hypodense gas mixtures. Additional experiments examined the effects of supplemental oxygen availability on maximum flight performance. Bats failed to sustain hovering flight at normoxic air densities averaging 63% that of normodense air. Kinematic responses to hypodense aerodynamic challenge involved increases in wing positional angles and in total stroke amplitude; wingbeat frequency was unchanged. At near-failure air densities, total power expenditure assuming perfect elastic energy storage was 17-42% greater than that for hovering in normodense air, depending on the assumed value for the profile drag coefficient. Assuming a flight muscle ratio of 26%, the associated muscle-mass-specific power output at the point of near-failure varied between 90.8 W kg(-1) (profile drag coefficient of 0.02) to 175.6 W kg(-1) (profile drag coefficient of 0.2). Hyperoxia did not enhance hovering performance in hypodense air, and, with the exception of a small increase (10%) in stroke plane angle, yielded no significant change in any of the kinematic parameters studied. Revised energetic estimates suggest that mechanical power expenditure of hovering glossophagines is comparable with that in slow forward flight. PMID:12409493

  9. Spectral Characteristics of Deuterium-, Helium- and Gas-Mixture-Discharges within PF-1000 Facility

    SciTech Connect

    Tsarenko, A.; Malinowski, K.; Skladnik-Sadowska, E.; Sadowski, M. J.; Scholz, M.; Paduch, M.; Tomaszewski, K.

    2006-01-15

    The paper reports on spectroscopic studies of high-current plasma discharges performed at different gas fillings within the large PF-1000 facility. To study visible radiation (VR) the use was made of a MECHELLE registered 900-spectrometer equipped with the CCD readout. The observations of a PF pinch column were performed at an angle of about 65 deg. to the z-axis, and the viewing field was at a distance of 40-50 mm from the electrode ends. Optical measurements were carried out at 0.5-{mu}s exposition synchronized with a chosen period of the investigated discharge. Differences in the optical spectra, recorded at various deuterium-helium mixtures, were analyzed. Intensities of HeI lines were computed for an assumed electron temperature and compared with the experiment. Estimated plasma concentration in pure-deuterium discharges amounted to 8x1018 cm-3, while that in pure helium shots was (4-7)x1017 cm-3 only. Estimates of the electron temperature, from the ratio of intensities of the chosen spectral lines and the continuum, gave values ranging from 5 eV to 50 eV. The paper presents also some spectra from 'weak shots', which show distinct impurity lines caused by different reasons.

  10. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas.

    PubMed

    Patel, Sanjay K S; Mardina, Primata; Kim, Dongwook; Kim, Sang-Yong; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2016-10-01

    Raw biogas can be an alternative feedstock to pure methane (CH4) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH4, carbon dioxide (CO2), and hydrogen (H2). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH4:CO2, CH4:H2, CH4:CO2:H2, CO2, and CO2:H2, respectively. Supplementation of H2 into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H2S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs. PMID:27371792

  11. Materials selection guidelines for membranes that remove CO 2 from gas mixtures

    NASA Astrophysics Data System (ADS)

    Lin, Haiqing; Freeman, Benny D.

    2005-04-01

    Membrane technology has been investigated for removing CO 2 from mixtures with light gases such as CH 4, N 2 and H 2, and optimal membranes with high CO 2 permeability and high CO 2/light gas selectivity are of great interest. This overview describes the material science approaches to achieve high CO 2 solubility and CO 2/light gas solubility selectivity by introducing polar groups in polymers. CO 2 solubility and CO 2/N 2 solubility selectivity in both liquid solvents and solid polymers containing a variety of polar groups are discussed. Optimum materials appear to have a solubility parameter of about 21.8 MPa 0.5 to achieve both high solubility and high solubility selectivity. However, the introduction of polar groups can decrease CO 2 diffusion coefficients and can make a material more size-selective, which is detrimental to, for example, CO 2/H 2 separation properties. So far, ether oxygens in ethylene oxide (EO) units appear to provide a good balance of CO 2 separation and permeation properties. One drawback of using pure poly(ethylene oxide) (PEO) is its strong tendency to crystallize. This report reviews strategies for incorporating high concentrations of EO units into polymers while suppressing crystallization. A simple model, based on free volume theory, is used to correlate a wide range of CO 2 permeability coefficients in PEO containing materials, and the results are satisfactory, particularly given the simplicity of the model. Crosslinked poly(ethylene glycol) acrylate (XLPEO) containing branches with methoxy end groups exhibit the highest CO 2 permeability (i.e. 570 Barrers) and highest CO 2/H 2 selectivity (i.e. 12) at 35 °C and infinite dilution among all PEO containing materials reported to date. Because such materials do not crystallize at typically accessible temperatures, CO 2/H 2 selectivity can be further improved by decreasing temperature. For example, at an upstream pressure of 4.4 atm, CO 2/H 2 pure gas selectivity reaches a value of 40 at

  12. Dose addition models based on biologically-relevant reductions in fetal testosterone accurately predict postnatal reproductive tract alterations by a phthalate mixture in rats

    EPA Science Inventory

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the curren...

  13. Emission characteristics and parameters of gas-discharge plasma in mixtures of heavy inert gases with chlorine

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Malinin, A. N.

    2009-04-01

    The ultraviolet (UV) radiation from longitudinal glow-discharge plasma in three- and four-component mixtures of argon, krypton, and xenon with chlorine has been investigated. The total radiation of Ar, Kr, and Xe monochlorides and chlorine molecules in the spectral range 170-310 nm has been optimized with respect to the composition and the pressure of gas mixtures, as well as the discharge current. The mean output power, the electric power of discharge, and the efficiency of a broadband low-pressure exciplex halogen lamp have been determined. Parameters of the glow discharge in Ar-Kr-Cl2 and Kr-Xe-Cl2 mixtures have been simulated numerically. The electron energy distribution functions have been determined through the solution of the Boltzmann kinetic equation. These functions have been used to calculate the plasma parameters, namely, electron transfer characteristics, specific losses of discharge power for electronic processes, and ionization and attachment coefficients.

  14. COOMET.QM-S5 (COOMET project No 576/RU/12) 'Supplementary comparison of national standards in the field of analysis of gas mixtures containing CO2, CO, C3H8 in nitrogen ("automotive" gas mixtures)'

    NASA Astrophysics Data System (ADS)

    Konopelko, L. A.; Kolobova, A. V.; Rozhnov, M. S.; Melnyk, D. M.; Petryshyn, P. V.; Shpilnyi, S. A.; Iakubov, S. E.; Bakovec, N. V.; Kluchits, A. S.; Kipphardt, H.; Aleksandrov, V. V.

    2016-01-01

    The relevance of the COOMET.QM-S5 comparison is founded on tightening of requirements to a control of automobile emissions (realization of environmental standards of EURO 4, EURO-5). Participating laboratories: VNIIM, BAM, BelGIM, Ukrmetrteststandart, KazInMetr. This comparison was carried out in 2013-2014. This supplementary comparison supports CMC claims for: CO2 in the range (4-16) . 10-2 mol/mol; CO in the range (0.5-5) . 10-2 mol/mol; C3H8 in the range (0.01-0.3) . 10-2 mol/mol. Results: Component CO: All laboratories identified the values of carbon monoxide mole fraction in the gas mixture within +/-0.9134%. Component CO2: All laboratories identified the values of carbon dioxide mole fraction in the gas mixture within +/-0.3042%. Component C3H8: All laboratories identified the values of propane mole fraction in the gas mixture within +/-0.443%. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Low-pressure equilibrium binary argon-methane gas mixture adsorption on exfoliated graphite: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Albesa, Alberto; Russell, Brice; Vicente, José Luis; Rafti, Matías

    2016-04-01

    Adsorption equilibrium measurements of pure methane, pure argon, and binary mixtures over exfoliated graphite were carried for different initial compositions, temperatures, and total pressures in the range of 0.1-1.5 Torr using the volumetric static method. Diagrams for gas and adsorbed phase compositions were constructed for the conditions explored, and isosteric heats of adsorption were calculated. Experimental results were compared with predictions obtained with Monte Carlo simulations and using the Ideal Adsorbed Solution Theory (IAST).

  16. Numerical Prediction of Radiation Measurements Taken in the X2 Facility for Mars and Titan Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Prabhu, Dinesh; Brandis, Aaron; McIntyre, Timothy J.

    2011-01-01

    Thermochemical relaxation behind a normal shock in Mars and Titan gas mixtures is simulated using a CFD solver, DPLR, for a hemisphere of 1 m radius; the thermochemical relaxation along the stagnation streamline is considered equivalent to the flow behind a normal shock. Flow simulations are performed for a Titan gas mixture (98% N2, 2% CH4 by volume) for shock speeds of 5.7 and 7.6 km/s and pressures ranging from 20 to 1000 Pa, and a Mars gas mixture (96% CO2, and 4% N2 by volume) for a shock speed of 8.6 km/s and freestream pressure of 13 Pa. For each case, the temperatures and number densities of chemical species obtained from the CFD flow predictions are used as an input to a line-by-line radiation code, NEQAIR. The NEQAIR code is then used to compute the spatial distribution of volumetric radiance starting from the shock front to the point where thermochemical equilibrium is nominally established. Computations of volumetric spectral radiance assume Boltzmann distributions over radiatively linked electronic states of atoms and molecules. The results of these simulations are compared against experimental data acquired in the X2 facility at the University of Queensland, Australia. The experimental measurements were taken over a spectral range of 310-450 nm where the dominant contributor to radiation is the CN violet band system. In almost all cases, the present approach of computing the spatial variation of post-shock volumetric radiance by applying NEQAIR along a stagnation line computed using a high-fidelity flow solver with good spatial resolution of the relaxation zone is shown to replicate trends in measured relaxation of radiance for both Mars and Titan gas mixtures.

  17. Dry etching of CdTe/GaAs epilayers using CH{sub 4}H{sub 2} gas mixtures

    SciTech Connect

    Neswal, M.; Gresslehner, K.H.; Lischka, K.

    1993-05-01

    A CH{sub 4}/H{sub 2} gas mixture has been used for the dry etching of (100) and (111) oriented CdTe epilayers in a barrel reactor. The effects of various process parameters on etch rate and surface morphology were studied with special attention paid to the gas composition and the total chamber pressure as well as the crystallographic orientation of the sample. Clear evidence is found for both isotropic and preferential etching along crystalolographic planes depending on the set of etch parameters used. 14 refs., 7 figs.

  18. Influence of gas temperature on self-sustained volume discharge characteristics in working mixtures of a repetitively pulsed COIL

    SciTech Connect

    Aksinin, V I; Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N; Antsiferov, S A; Velikanov, S D; Kalinovskii, V V; Konovalov, V V; Mikhalkin, V N; Sevryugin, I V

    2014-02-28

    The influence of gas temperature on the characteristics of a self-sustained volume discharge was studied in the working mixtures of a chemical oxygen – iodine laser with pulsed electricdischarge production of iodine atoms. In experiments, laser working mixtures were modelled by the mixture of air and iodide C{sub 2}H{sub 5}I. It was established that mixture heating is accompanied by an increase in the voltage across the discharge plasma and by a decrease in the discharge current. By varying the temperature of the mixture with the iodine content of ∼2.7% and initial pressure p=12 Torr from 22 °C to 96 °C, the current amplitude falls by ∼12%, and at the instant corresponding to a maximal current the voltage raises by ∼22%. Such a change in the discharge characteristics is explained by a higher rate of electron attachment to vibrationally excited iodide molecules at elevated temperatures. (active media)

  19. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward. PMID:21112151

  20. Effects of N2-O2 Gas Mixture Ratio on Microorganism Inactivation in Low-Pressure Surface Wave Plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Ogino, Akihisa; Nagatsu, Masaaki

    2011-08-01

    In this study, the effect of N2/O2 gas mixture ratio on low-pressure surface wave plasma inactivation of spore-forming bacteria was investigated. It was experimentally confirmed from the quadrupole mass spectrometry measurements that the spores were etched by atomic oxygen via converting the hydrogen atoms constituting microorganisms into H2O and the carbon into CO2. On the basis of results of plasma diagnostics by optical emission spectroscopy and the results of inactivation efficiency by colony-forming units and scanning electron microscope, we found that although there is the highest ultraviolet (UV) emission intensity in pure N2 plasma and the highest etching efficiency in 90% O2/10% N2 plasma, the inactivation rate of microorganisms was not so efficient. The best inactivation result was obtained in 30-80% O2 gas mixture ratios after 60 s plasma irradiation. The present results indicated that more efficient inactivation is achieved by the synergetic effects between atomic oxygen etching and the vacuum ultraviolet (VUV)/UV emission by combining both effects via optimizing N2/O2 gas mixture ratio.

  1. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    PubMed Central

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  2. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature.

    PubMed

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  3. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    NASA Astrophysics Data System (ADS)

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-02-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons.

  4. Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores.

    PubMed

    Huang, Pei-Hsing

    2015-09-21

    The separation of poisonous compounds from various process fluids has long been highly intractable, motivating the present study on the dynamic separation of H2S in acidic-gas-mixture-filled micropores. The molecular dynamics approach, coupled with the isothermal-isochoric ensemble, was used to model the molecular interactions and adsorption of H2S/CO2/CO/H2O mixtures inside metal-doped graphite slits. Due to the difference in the adsorption characteristics between the two distinct adsorbent materials, the metal dopant in the graphitic micropores leads to competitive adsorption, i.e. the Au and graphite walls compete to capture free adsorbates. The effects of competitive adsorption, coupled with changes in the gas temperature, concentration, constituent ratio and slit width on the constituent separation of mixtures were systematically studied. The molecule-wall binding energies calculated in this work (those of H2S, H2O and CO on Au walls and those of H2O, CO and CO2 on graphite walls) show good agreement with those obtained using density functional theory (DFT) and experimental results. The z-directional self-diffusivities (Dz) for adsorbates inside the slit ranged from 10(-9) to 10(-7) m(2) s(-1) as the temperature was increased from 10 to 500 K. The values are comparable with those for a typical microporous fluid (10(-8)-10(-9) m(2) s(-1) in a condensed phase and 10(-6)-10(-7) m(2) s(-1) in the gaseous state). The formation of H-bonding networks and hydrates of H2S is disadvantageous for the separation of mixtures. The results indicate that H2S can be efficiently separated from acidic gas mixtures onto the Au(111) surface by (i) reducing the mole fraction of H2S and H2O in the mixtures, (ii) raising the gas temperature to the high temperature limit (≥400 K), and (iii) lowering the slit width to below the threshold dimension (≤23.26 Å). PMID:26256825

  5. Analytical Modeling of Weld Bead Shape in Dry Hyperbaric GMAW Using Ar-He Chamber Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Azar, Amin S.; Ås, Sigmund K.; Akselsen, Odd M.

    2013-03-01

    Hyperbaric arc welding is a special application of joining the pipeline steels under seawater. In order to analyze the behavior of the arc under ambient pressure, a model is required to estimate the arc efficiency. A distributed point heat source model was employed. The simulated isotherms were calibrated iteratively to fit the actual bead cross section. Basic gas mixture rules and models were used to calculate the thermal properties of the low-temperature shielding gas under the ambient pressure of 10 bar. Nine bead-on-plate welds were deposited each of which under different Ar-He chamber gas compositions. The well-known correlation between arc efficiency (delivered heat) and the thermal conductivity was established for different gas mixtures. The arc efficiency was considered separately for the transverse and perpendicular heat sources. It was found that assigning single heat efficiency factor for the entire arc, which is usually below unity, causes a noticeable underestimation for the heat transfer in the perpendicular direction and a little overestimation in the transverse direction.

  6. Study of d E/ d x in a Drift Chamber with He-C 2H 6 Gas Mixture

    NASA Astrophysics Data System (ADS)

    Emi, Keiko; Tsukamoto, Toshifumi; Hirano, Hiroyuki; Mamada, Haruhiko; Sakai, Yoshihide; Uno, Shoji; Itami, Shunsuke; Kajikawa, Ryoichi; Nitoh, Osamu; Ohishi, Noritsugu; Sugiyama, Akira; Suzuki, Shiro; Takahashi, Kaoru; Tamagawa, Yoichi; Tomoto, Makoto; Yamaki, Tetsuji

    1996-03-01

    We studied dE/ dx in a small-celldrift chamber filled with a gas mixture of 50% He and 50% C2H6.The dE/ dx resolution, measured in terms of the 80% truncated meanof 41 layer samples, was 5.2% when the incident angle of the trackwith respect to the wire direction was 45°.The βγ dependence showed asmaller relativistic rise than in the case of P-10 gas.At an incident angle of 90°, we observed gas gain saturationdue to the space charge effect. Although thismakes the βγ dependence of dE/ dx weaker, the dE/ dx resolution was improved. As a result,a π-K separation of 2σ is achieved at all incident anglesfor 2 GeV/c tracks.

  7. Parameters, limits, attenuation, and suppression of detonation in mixtures of an explosive gas with chemically inert microparticles

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Fomin, P. A.; Tropin, D. A.; Chen, Z.-R.

    2012-03-01

    Chapman-Jouguet parameters and the cell size of a detonation wave in mixtures of an explosive gas with chemically inert particles have been calculated. The algorithm of calculation of the minimum mass and characteristic dimension of a particle cloud ensuring successful suppression of detonation in the gas has been proposed. The calculation results are in good agreement with the available experimental data. The influence of the initial composition of the gas on the efficiency of suppression of the detonation wave has been analyzed. The issue of the dependence of the concentration limits of detonation on the mass fraction of particles has been investigated. It has been established that the increase in the concentration of the condensed phase leads to a narrowing of the existence domain of detonation and that the propagation of the detonation wave becomes impossible when the concentration of the particles is fairly high.

  8. Effect of hydrogen ratio on plasma parameters of N{sub 2}-H{sub 2} gas mixture glow discharge

    SciTech Connect

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-15

    A dc plane glow discharge in a nitrogen-hydrogen (N{sub 2}-H{sub 2}) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H{sub 2} concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H{sub 2} concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H{sub 2} concentration.

  9. On a modified Monte-Carlo method and variable soft sphere model for rarefied binary gas mixture flow simulation

    NASA Astrophysics Data System (ADS)

    Nourazar, S. S.; Jahangiri, P.; Aboutalebi, A.; Ganjaei, A. A.; Nourazar, M.; Khadem, J.

    2011-06-01

    The effect of new terms in the improved algorithm, the modified direct simulation Monte-Carlo (MDSMC) method, is investigated by simulating a rarefied binary gas mixture flow inside a rotating cylinder. Dalton law for the partial pressures contributed by each species of the binary gas mixture is incorporated into our simulation using the MDSMC method and the direct simulation Monte-Carlo (DSMC) method. Moreover, the effect of the exponent of the cosine of deflection angle (α) in the inter-molecular collision models, the variable soft sphere (VSS) and the variable hard sphere (VHS), is investigated in our simulation. The improvement of the results of simulation is pronounced using the MDSMC method when compared with the results of the DSMC method. The results of simulation using the VSS model show some improvements on the result of simulation for the mixture temperature at radial distances close to the cylinder wall where the temperature reaches the maximum value when compared with the results using the VHS model.

  10. Slow flows of a vapor-gas mixture with large density and temperature variations in the near-continuum regime

    NASA Astrophysics Data System (ADS)

    Laneryd, Carl-Johan Tor; Aoki, Kazuo; Takata, Shigeru

    2007-10-01

    A binary mixture of a vapor and a noncondensable gas in contact with the boundary made of the condensed phase (liquid or solid) of the vapor is considered in the following situation: the amount of the noncondensable gas contained in the system is of the same order of magnitude as that of the vapor; the temperature variation along the boundary may be large; the boundary is at rest, and there is no flow at infinity when an infinite domain is considered; and the Knudsen number is small (i.e., near-continuum regime). Slow steady flows (with Mach number of the order of Knudsen number, or equivalently, with Reynolds number of the order of unity) of the mixture, mainly caused by evaporation and condensation of the vapor on the boundary, are investigated on the basis of kinetic theory. The basic system used in this work is the fluid-dynamic-type system that was derived systematically from the Boltzmann system in a previous paper [S. Takata and K. Aoki, Transp. Theor. Stat. Phys. 30, 205 (2001); erratum, Transp. Theor. Stat. Phys. 31, 289 (2002)] in connection with the ghost effect, and it is solved numerically by a finite-volume method. Some additional computation using the direct simulation Monte Carlo method, based on the original Boltzmann system, is also performed for comparison. The behavior of the mixture in the continuum limit in which the Knudsen number vanishes is discussed with special interest in the ghost effect.

  11. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    NASA Astrophysics Data System (ADS)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  12. Combustion of hydrogen-based mixtures in gas-fueled reciprocating engines

    NASA Astrophysics Data System (ADS)

    Smygalina, A. E.; Zaitchenko, V. M.; Ivanov, M. F.; Kiverin, A. D.

    2015-12-01

    The research is devoted to the possibility for application of hydrogen accumulated from renewable energy sources as a fuel for a reciprocating engine, which serves as an electrical generator drive. Hydrogen combustion in the chamber of a reciprocating engine, as a rule, occurs in a detonation mode. In order to obtain less hard modes, the present research proposes the usage of steam additions to hydrogen-air mixture or lean hydrogen-air mixtures. Mathematical simulation is used for investigation of combustion of mentioned mixtures in the combustion chamber of a reciprocating engine with a spark-plug ignition. The comparison of the usage of hydrogen-steam-air mixtures and lean hydrogen-air mixtures as fuels is given. The dependence of arising combustion modes and its quantitative characteristics on hydrogen content in combustible composition is investigated. The analysis of optimal combustion is presented, which is based on the consideration of two parameters: peak pressure in one cycle and the crankshaft angle corresponding to the achievement of the peak pressure.

  13. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    SciTech Connect

    Malinina, A. A. Malinin, A. N.

    2013-12-15

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10{sup −14} m{sup 3}/s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λ{sub max} = 502 nm) was observed in this experiment.

  14. Electron swarm parameters in SiH sub 4 -rare gas mixtures and collision cross sections for monosilane molecules

    SciTech Connect

    Kurachi, M.; Nakamura, Y. . Faculty of Science and Technology)

    1991-04-01

    Previously measured drift velocity and longitudinal diffusion coefficient in SiH{sub 4}-Ar mixtures were re-analyzed, and the new vibrational excitation cross sections for monosilane molecules were obtained. Not only were the new cross sections consistent with swarm parameters, but also the ratio of their magnitudes at the resonance peak agreed with recent measurements of the electron beam experiment. Having known the vibrational excitation cross sections, the analysis of the primary ionization coefficient measured in SiH{sub 4}-Kr mixtures led to a consistent inelastic cross section, which possibly corresponds to the total cross section for neutral dissociations for the molecule. In this paper it was confirmed that the derived set of the cross sections also gave good agreement with the electron swarm parameters measured in pure monosilane gas.

  15. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2013-12-01

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10-14 m3/s for a reduced electric field of E/ N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λmax = 502 nm) was observed in this experiment.

  16. Two-fluid dust and gas mixtures in smoothed particle hydrodynamics II: an improved semi-implicit approach

    NASA Astrophysics Data System (ADS)

    Lorén-Aguilar, Pablo; Bate, Matthew R.

    2015-12-01

    We present an improved version of the Lorén-Aguilar & Bate method to integrate the two-fluid dust/gas equations that correctly captures the limiting velocity of small grains in the presence of net differences (excluding the drag force) between the accelerations of the dust and the gas. A series of accelerated DUSTYBOX tests and a simulation of dust-settling in a protoplanetary disc are performed comparing the performance of the new and old methods. The modified method can accurately capture the correct limiting velocity while preserving all the conservation properties of the original method.

  17. Selective Adsorption of CO2 from Light Gas Mixtures Using a Structurally Dynamic Porous Coordination Polymer**

    SciTech Connect

    Kristi L. Kauffman, Jeffrey T. Culp, Andrew J. Allen, Laura Espinal, Winnie Wong-Ng, Thomas D. Brown, Angela Goodman, Mark P. Bernardo, Russel J. Pancoast, Danielle Chirdon, Christopher Matranga*

    2010-01-01

    The selective adsorption of CO{sub 2} from mixtures with N{sub 2}, CH{sub 4}, and N{sub 2}O in a dynamic porous coordination polymer (see monomer structure) was evaluated by ATR-FTIR spectroscopy, GC, and SANS. All three techniques indicate highly selective adsorption of CO{sub 2} from CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} mixtures at 30 C, with no selectivity observed for the CO{sub 2}/N{sub 2}O system.

  18. Analysis of the insulation characteristics of c-C4F8 and N2 gas mixtures by Boltzmann equation method

    NASA Astrophysics Data System (ADS)

    Deng, Y. K.; Xiao, D. M.

    2012-02-01

    The present paper concerns itself with the insulation characteristics of c-C4F8/N2 gas mixtures and studies the possibility of applying in the gas insulation of power equipments. We aim to use the theoretical framework of the Boltzmann equation to calculate the density-normalized effective ionization coefficients (α-ƞ)/N and transport parameters of c-C4F8/N2 gas mixtures for E/N values from 180 to 550 Td (1 Td = 10-17 V cm2) in the condition of steady-state Townsend (SST) experiment. From the variation curve of (α-ƞ)/N with the c-C4F8 mixture ratio k, the limiting field strength (E/N)lim of the gas mixtures at different gas content is determined. In order to confirm the validity of the results obtained, comparisons with Monte Carlo simulation and experimental data have been performed. It is found that the insulation properties of c-C4F8 and N2 gas mixtures are much better than those of SF6 and N2 mixtures for applying in the high voltage apparatus as an insulation medium, especially if we take the global warming potential into account.

  19. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders... from a pressure which does not exceed 250 p.s.i.g., and which is manufactured and sold in conformance... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Exemption of small low pressure gas...

  20. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders... from a pressure which does not exceed 250 p.s.i.g., and which is manufactured and sold in conformance... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Exemption of small low pressure gas...

  1. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders... from a pressure which does not exceed 250 p.s.i.g., and which is manufactured and sold in conformance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exemption of small low pressure gas...

  2. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders... from a pressure which does not exceed 250 p.s.i.g., and which is manufactured and sold in conformance... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Exemption of small low pressure gas...

  3. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders... from a pressure which does not exceed 250 p.s.i.g., and which is manufactured and sold in conformance... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Exemption of small low pressure gas...

  4. Mechanism of Hydrogenated Microcrystalline Si Film Deposition by Magnetron Sputtering Employing a Si Target and H2/Ar Gas Mixture

    NASA Astrophysics Data System (ADS)

    Fukaya, Kota; Tabata, Akimori; Sasaki, Koichi

    2009-03-01

    The mechanism of hydrogenated microcrystalline silicon (µc-Si:H) film deposition by magnetron sputtering employing a Si target and H2/Ar gas mixture has been investigated by measuring Si and H atom densities in the gas phase by laser-induced fluorescence spectroscopy. The crystalline volume fraction of the film correlated positively with H atom density. The variation in Si atom density indicated the increase in sputtering yield from the Si target in the H2/Ar discharge. The surface of the Si target immersed in the H2/Ar discharge was hydrogenated. Therefore, it is reasonable to expect the production of SiHx molecules (typically SiH4) from the hydrogenated Si target via reactive ion etching. Since SiHx molecules produced from the target may function as a deposition precursor, the mechanism of µc-Si:H film deposition is considered to be similar to that of plasma-enhanced chemical vapor deposition (PECVD) employing a SiH4/H2 gas mixture. The advantage of magnetron sputtering deposition over PECVD is the production of SiHx molecules without using toxic, explosive SiH4.

  5. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  6. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    SciTech Connect

    Vagin, Nikolai P; Ionin, Andrei A; Klimachev, Yu M; Kotkov, A A; Podmar'kov, Yu P; Seleznev, L V; Sinitsyn, D V; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P; Hager, G D

    2004-09-30

    The electrical and spectroscopic characteristics of electron-beam-sustained discharge (EBSD) in oxygen and oxygen-containing gas mixtures are studied experimentally under gas pressures up to 100 Torr in a large excitation volume ({approx}18 L). It is shown that the EBSD in pure oxygen and its mixtures with inert gases is unstable and is characterised by a small specific energy contribution. The addition of small amounts ({approx}1%-10%) of carbon monoxide or hydrogen to oxygen or its mixtures with inert gases considerably improves the stability of the discharge, while the specific energy contribution W increases by more then an order of magnitude, achieving {approx}6.5 kJ L{sup -1} atm{sup -1} per molecular component of the gas mixture. A part of the energy supplied to the EBSD is spent to excite vibrational levels of molecular additives. This was demonstrated experimentally by the initiation of a CO laser based on the O{sub 2} : Ar : CO = 1 : 1 : 0.1 mixture. Experimental results on spectroscopy of the excited electronic states O{sub 2}(a{sup 1{Delta}}{sub g}) and O{sub 2}(b{sup 1{Sigma}}{sub g}{sup +}), of oxygen formed in the EBSD are presented. A technique was worked out for measuring the concentration of singlet oxygen in the O{sub 2}(a{sup 1{Delta}}{sub g}) state in the afterglow of the pulsed EBSD by comparing with the radiation intensity of singlet oxygen of a given concentration produced in a chemical generator. Preliminary measurements of the singlet-oxygen yield in the EBSD show that its value {approx}3% for W {approx} 1.0 kJ L{sup -1} atm{sup -1} is in agreement with the theoretical estimate. Theoretical calculations performed for W {approx} 6.5 kJ L{sup -1} atm{sup -1} at a fixed temperature show that the singlet-oxygen yield may be {approx}20%, which is higher than the value required to achieve the lasing threshold in an oxygen-iodine laser at room temperature. (laser applications and other topics in quantum electronics)

  7. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures

    PubMed Central

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476

  8. Sputtering Yields for Mixtures of Organic Materials Using Argon Gas Cluster Ions.

    PubMed

    Seah, M P; Havelund, R; Shard, A G; Gilmore, I S

    2015-10-22

    The sputtering yield volumes of binary mixtures of Irganox 1010 with either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine (FMOC) have been measured for 5 keV Ar2000(+) ions incident at 45° to the surface normal. The sputtering yields are determined from the doses to sputter through various compositions of 100 nm thick, intimately mixed, layers. Because of matrix effects, the profiles for secondary ions are distorted, and profile shifts in depth of 15 nm are observed leading to errors above 20% in the deduced sputtering yield. Secondary ions are selected to avoid this. The sputtering yield volumes for the mixtures are shown to be lower than those deduced from a linear interpolation from the pure materials. This is shown to be consistent with a simple model involving the changing energy absorbed for the sputtering of intimate mixtures. Evidence to support this comes from the secondary ion data for pairs of the different molecules. Both binary mixtures behave similarly, but matrix effects are stronger for the Irganox 1010/FMOC system. PMID:26421437

  9. On the Equipartition of Kinetic Energy in an Ideal Gas Mixture

    ERIC Educational Resources Information Center

    Peliti, L.

    2007-01-01

    A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory. (Contains 1 figure.)

  10. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    NASA Astrophysics Data System (ADS)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-09-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21 cm emission line, without any need for inclination corrections. We measure a slope for the linewidth-based BTFR of α = 3.75 ± 0.11, a value that is somewhat steeper than (but in broad agreement with) previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of ± 0.1 dex from the best fit line. The low observational error budget for our sample enables us to establish that, despite its tightness, the measured linewidth-based BTFR has some small (i.e., non-zero) intrinsic scatter. We furthermore find a systematic difference in the BTFR of galaxies with "double-horned" 21 cm line profiles - suggestive of flat outer galactic rotation curves - and those with "peaked" profiles - suggestive of rising rotation curves. When we restrict our sample of galaxies to objects in the former category, we measure a slightly steeper slope of α = 4.13 ± 0.15. Overall, the high-accuracy measurement of the BTFR presented in this article is intended as a reliable observational benchmark against which to test theoretical expectations. Here we consider a representative set of semi-analytic models and hydrodynamic simulations in the lambda cold dark matter (ΛCDM) context, as well as modified Newtonian dynamics (MOND). In the near future, interferometric follow-up observations of several sample members will enable us to further refine the BTFR measurement, and

  11. Efficiency of excimer molecule formation in plasma jets of inert gas mixtures with SF6 and CCl4

    NASA Astrophysics Data System (ADS)

    Rogulich, V. S.; Starodub, V. P.; Shevera, V. S.

    1988-10-01

    The formation of krypton and xenon monofluorides and monochlorides in continuous plasma jets of inert gas mixtures with SF6 and CCl4 molecules is investigated experimentally. Absolute concentrations of KrF, XeF, KrCl, and XeCl excimer molecules in the jet are determined. The energy efficiency of specific input power conversion to the spontaneous B-X emission in the KrF band is estimated at 2-4 percent. Ways of increasing the concentration of excimer molecules in the plasma jet are analyzed.

  12. A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits

    USGS Publications Warehouse

    Mastin, Larry G.; Ghiorso, Mark S.

    2000-01-01

    This report presents a model that calculates flow properties (pressure, vesicularity, and some 35 other parameters) as a function of vertical position within a volcanic conduit during a steady-state eruption. The model idealizes the magma-gas mixture as a single homogeneousfluid and calculates gas exsolution under the assumption of equilibrium conditions. These are the same assumptions on which classic conduit models (e.g. Wilson and Head, 1981) have been based. They are most appropriate when applied to eruptions of rapidly ascending magma (basaltic lava-fountain eruptions, and Plinian or sub-Plinian eruptions of intermediate or silicic magmas) that contains abundant nucleation sites (microlites, for example) for bubble growth.

  13. Selective denitrification of flue gas by O3 and ethanol mixtures in a duct: Investigation of processes and mechanisms.

    PubMed

    Ding, Jie; Cai, Heruijing; Zhong, Qin; Lin, Jiandong; Xiao, Junjun; Zhang, Shule; Fan, Maohong

    2016-07-01

    A novel selective denitrification process, referred as O3-ethanol oxidation method, was developed by injecting O3 and ethanol mixtures into the simulated flue gas duct. The organic radicals, generated through the ethanol oxidation by O3, can oxidize NO into NO2, and finally into important industrial raw, namely, nitrate organics or aqueous nitrate acids. The residual ethanol in the tail can be recycled. The CO3(2-), HCO3(-) and SO2 in the flue gas hardly exhibit any effect on the NOX removal. Compared to the conventional O3 oxidation method, the present method shows higher selective oxidation of NO, higher NO(X) removal and less O3 consumption as well as proves lower initial investment and operating costs with more compact equipment. PMID:26989982

  14. Analysis of the explosion of gas mixtures with a shift in the chemical equilibrium of the products taken into account

    SciTech Connect

    Zhdan, S.A.

    1983-07-01

    Starting from a representation of the detonation products as a reacting medium with an equilibrium chemical composition at each point, a generalized formulation of the problem on the explosion of a reacting gas mixture in air is given. Methaneoxygen and hydrogen-oxygen systems are considered. It is seen that almost half the energy is in the chemical component of the total internal energy behind the detonation wave front. The results of computations by the mathematical model yield greater values of the excess pressures on the shock front. Experimental data and numerical solutions are compared for the dependence of the excess pressures on the shock front radius, and are found to be in good agreement for the hydrogen-oxygen system. The methane-oxygen system shows a systematic excess in the experimental data which is apparently associated with non-one-dimensional effects in formulation of the experiment. The magnitude of the efficiency of an explosion, defined as the energy transferred to the wave during maximal detonation product expansion and the total energy initially included in the mixture, is of interest. For oxygen mixtures, only a third of the total explosion energy performs work on the surrounding air.

  15. Cylindrical Couette flow of a vapor-gas mixture: Ghost effect and bifurcation in the continuum limit

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Aoki, Kazuo

    2006-08-01

    A binary mixture of gases is confined in a gap between two coaxial circular cylinders rotating at different angular velocities. One of the component gases is the vapor of the substance that forms the cylinders, so that evaporation or condensation (or sublimation) of the vapor may take place on the surfaces of the cylinders. The other component is a noncondensable gas that neither evaporates nor condenses on the surfaces. Axisymmetric and axially uniform flows (the cylindrical Couette flow) of such a mixture are investigated on the basis of kinetic theory with special interest in the continuum (or fluid-dynamic) limit in which the Knudsen number goes to zero. The fluid-dynamic system that describes the behavior of the mixture is derived by a formal but systematic asymptotic analysis of the Boltzmann system. The resulting system shows some nontrivial phenomena such as the ghost effect and the flow bifurcation. These phenomena are also demonstrated by a Monte Carlo simulation for small Knudsen numbers using the Boltzmann equation.

  16. Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry

    SciTech Connect

    Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Douglas R.; Goldstein, Allen H.

    2012-01-30

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography/mass spectrometry (GC/MS) techniques. In this study, we use vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally “unresolved complex mixture” by separating components by GC retention time, tR, and mass-to-charge ratio, m/z, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved on the basis of tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. Lastly, the classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  17. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    SciTech Connect

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that the contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.

  18. Combining Yb and Li: Rapid Quantum Degenerate Gas Production and Interacting Mixtures

    NASA Astrophysics Data System (ADS)

    Green, Alaina; Roy, Richard; Bowler, Ryan; Gupta, Subhadeep

    2016-05-01

    We detail a readily adaptable method for optimizing evaporative cooling efficiency in optical dipole traps (ODTs), reducing the production time of quantum degenerate gases. Utilizing the time-averaged 'painting' potential of a rapidly moving laser beam, we dynamically shape the trap over the course of evaporation to produce 174 Yb Bose-Einstein condensates of (0.5-1.0) × 105 atoms in (1.6-1.8) seconds. We also report on interaction studies in the quantum degenerate Bose-Fermi 174 Yb-6 Li mixture in the BEC-BCS crossover. Additionally, we present work on photoassociation spectroscopy on 6 Li-Yb mixtures and the production of YbLi* molecules in a dual magneto-optical trap, a first step toward coherent production of ultracold 2 Σ molecules.

  19. Generation of microwave-induced plasmas in automotive exhaust gas mixtures using pulsed microwave energy.

    PubMed

    Destefani, Carlos A; Siores, Elias; Murphy, Anthony B

    2003-01-01

    Microwave energy at 2.45 GHz was applied to a mixture of exhaust gases from a petrol engine at atmospheric pressure. It was found that by pulsing the microwave energy with a 50% duty cycle, the average power required to sustain a microwave-induced plasma discharge was decreased by about 40%. The ratio of absorbed to incident power was unaffected. These findings were confirmed for pulse frequencies from 10 to 300 Hz. PMID:15007864

  20. Analytical investigation of electrical breakdown properties in a nitrogen-SF6 mixture gas

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Byeon, Yong S.; Song, Ki B.; Choi, Eun H.; Ryu, Han-Yong; Lee, Jaimin

    2010-11-01

    The electrical breakdown properties in nitrogen gas mixed with SF6 are analytically investigated in this article by making use of the ionization and attachment coefficients of the mixed gas. The ionization coefficients of nitrogen and SF6 gas are obtained in terms of the electron temperature Te by assuming a Maxwellian distribution of the electron energy. The attachment coefficient of SF6 gas is also obtained in terms of the gas temperature Te. An algebraic equation is obtained, relating explicitly the electron breakdown temperature Tb in terms of the SF6 mole fraction χ. It was found from this equation that the breakdown temperature Tb increases from approximately 2 to 5.3 eV as the mole fraction χ increases from zero to unity. The breakdown temperature Tb of the electrons increases very rapidly from a small value and then approaches 5.3 eV slowly as the SF6 mole fraction increases from zero to unity. This indicates that even a small mole fraction of SF6 in the gas dominates the electron behavior in the breakdown system. The breakdown electric field Eb derived is almost linearly proportional to the breakdown electron temperature Tb. The experimental data agree remarkably well with the theoretical results. Therefore, it is concluded that even a small fraction of SF6 gas dominates nitrogen in determining the breakdown field. In this context, nearly 25% of the SF6 mole fraction provides a reasonable enhancement of the breakdown field for practical applications.

  1. Pulsed electron-beam sustained discharge CO laser on oxygen-containing gas mixtures

    SciTech Connect

    Ionin, A A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Seleznev, L V

    2008-02-28

    It is shown that the addition of molecular oxygen to the working mixture of a pulsed electron-beam sustained-discharge (EBSD) laser CO amplifier leads to the increase in the small-signal gain (SSG) at the fundamental vibrational v+1{yields}v transitions in a CO molecule for v=6-13, which is explained by the increase in the population of vibrational levels. In this case, the temporal parameters of the dynamics decrease at all probed transitions. Variations observed in the SSG dynamics are explained by analysing the kinetic processes of vibrational-vibrational exchange between molecules. The study of lasing parameters of a pulsed CO laser showed that the threshold energy input decreased with increasing the oxygen content in the working mixture. It is found that the CO laser efficiency at fundamental transitions increases with the addition of oxygen, the maximum efficiency being achieved at lower energy inputs. It is shown that the pulsed EBSD CO laser can operate on the air working mixture both at the fundamental transitions and the first vibrational overtone transitions v+2{yields}v. (lasers. amplifiers)

  2. Experimental and simulation studies of iron oxides for geochemical fixation of CO2-SO2 gas mixtures

    USGS Publications Warehouse

    Garcia, Susana; Rosenbauer, Robert J.; Palandri, James; Maroto-Valer, M. Mercedes

    2011-01-01

    Iron-bearing minerals are reactive phases of the subsurface environment and could potentially trap CO2–SO2gas mixtures derived from fossil fuel combustion processes by their conversion to siderite (FeCO3) and dissolved sulfate. Changes in fluid and mineral compositions resulting from reactions, involving the co-injection of SO2 with CO2 were observed both theoretically and experimentally. Experiments were conducted with a natural hematite (α-Fe2O3) sample. A high pressure-high temperature apparatus was used to simulate conditions in geologic formations deeper than 800 m, where CO2 is in the supercritical state. Solid samples were allowed to react with a NaCl–NaOH brine and SO2-bearing CO2-dominated gas mixtures. The predicted equilibrium mineral assemblage at 100 °C and 250 bar became hematite, dawsonite (NaAl(OH)2CO3), siderite (FeCO3) and quartz (SiO2). Experimentally, siderite and dawsonite, derived from the presence of kaolinite (Al2Si2O5(OH)4) in the parent material, were present in residual solids at longer reaction time intervals, which agreed well with results from the modelling work.

  3. The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas A.; Ferracci, Valerio; Cassidy, Nathan; Hoffnagle, John A.

    2016-08-01

    A correction for the undesirable effects of direct and indirect cross-interference from water vapour on ammonia (NH3) measurements was developed using an optical laser sensor based on cavity ring-down spectroscopy. This correction relied on new measurements of the collisional broadening due to water vapour of two NH3 spectral lines in the near infra-red (6548.6 and 6548.8 cm-1), and on the development of novel stable primary standard gas mixtures (PSMs) of ammonia prepared by gravimetry in passivated gas cylinders at 100 μmol mol-1. The PSMs were diluted dynamically to provide calibration mixtures of dry and humidified ammonia atmospheres of known composition in the nmol mol-1 range and were employed as part of establishing a metrological traceability chain to improve the reliability and accuracy of ambient ammonia measurements. The successful implementation of this correction will allow the extension of this rapid on-line spectroscopic technique to exposure chamber validation tests under controlled conditions and ambient monitoring in the field.

  4. Use of a solid mixture containing diethylenetriamine/nitric oxide (DETANO) to liberate nitric oxide gas in the presence of horticultural produce to extend postharvest life.

    PubMed

    Wills, R B H; Soegiarto, L; Bowyer, M C

    2007-08-01

    Postharvest treatment of fruit and vegetables with a low concentration of nitric oxide gas can extend postharvest life but application of nitric oxide by release from a gas cylinder is not feasible for many horticultural situations. This paper reports on development of a solid mixture to generate nitric oxide gas in the presence of horticultural produce. The solid NO-donor compound, diethylenetriamine/nitric oxide (DETANO) was found to quantitatively liberate nitric oxide in the presence of a range of acidic substances including citric acid. A solid mixture of DETANO and citric acid with wheat starch added as a filler and moisture absorbent in the ratio of 1:10:20 was found to be stable for at least six months when stored in dry air. However, in humid air, absorption of moisture from the atmosphere led to reaction of DETANO with citric acid and the evolution of nitric oxide gas. When the dry mixture was placed in a container with strawberry and mushroom, the moisture given off by produce activated the mixture and resulted in a similar extension in postharvest life as achieved by direct fumigation with nitric oxide gas. Commercial use of such a solid mixture could be through tablets or sachets which are more manageable in a farm or packing house than gas fumigation. PMID:17604663

  5. Developing flow of a gas-particle mixture in a vertical riser

    SciTech Connect

    Pita, J.A. ); Sundaresan, S. )

    1993-04-01

    The riser reactors used for the catalytic cracking of gas oil use a transported solid catalyst, and their performance can be predicted with confidence only if the physical mechanism that determines the cross-sectional distribution of the catalyst can be identified and modeled. A computational study of steady, developing flow of gas-particle suspensions in a vertical riser has been carried out, using a model based on kinetic theory of granular materials, to understand the role of inlet configuration on the pattern of flow development. Three inlet configurations - uniform inlet, core-annulus flow at the inlet and circumferential injection of secondary gas - were examined. It is found that the inlet configuration can have a profound impact on the rate of segregation of particles to the wall and the internal recirculation. Circumferential injection of gas has a favorable effect on the flow in the sense that it can decrease the extent of internal recirculation.

  6. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  7. Separation of gas mixtures using Co(II) carborane-based porous coordination polymers

    SciTech Connect

    Bae, Youn-Sang; Spokoyny, Alexander M.; Farha, Omar K.; Snurr, Randall Q.; Hupp, Joseph T.; Mirkin, Chad A.

    2010-01-01

    Separations of CO{sub 2}/CH{sub 4}, CO{sub 2}/N{sub 2}, and O{sub 2}/N{sub 2} mixtures were studied in three porous coordination polymers made of the same carborane ligand and Co(II) nodes. High selectivities for CO{sub 2} over CH{sub 4} (~47) and CO{sub 2} over N{sub 2} (~95) were obtained, especially in the material with coordinated pyridine. Unusual selectivity for O{sub 2} over N{sub 2} (as high as 6.5) was demonstrated in the materials with open Co(II) sites.

  8. Ignition delay of a gas mixture above a liquid fuel pool

    NASA Technical Reports Server (NTRS)

    Schiller, D. N.; Sirignano, W. A.

    1991-01-01

    A computational study has been made of transient heat transfer and fluid flow of an axisymmetric two-layer gas-and-liquid system heated from above by a small hot spot (e.g., a hot wire or pilot flame) located close to the liquid surface. The gas phase is unconfined above the liquid pool. The effects of varying gravity level (0.0001 to 1 gn), liquid pool height, and heater height are investigated. Thermocapillary convection induced by the nonuniform heating of the liquid surface combines with buoyancy forces to affect the heat transfer and the transport of fuel vapor toward the heat source. At reduced gravity, gas-phase conduction is comparable to the incident radiation at the liquid surface, whereas at 1 gn, buoyant convection carries the heat upward from the heat source and, therefore, the liquid is heated primarily by radiation.

  9. Device for two-dimensional gas-phase separation and characterization of ion mixtures

    DOEpatents

    Tang, Keqi; Shvartsburg, Alexandre A.; Smith, Richard D.

    2006-12-12

    The present invention relates to a device for separation and characterization of gas-phase ions. The device incorporates an ion source, a field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer, an ion mobility spectrometry (IMS) drift tube, and an ion detector. In one aspect of the invention, FAIMS operating voltages are electrically floated on top of the IMS drift voltage. In the other aspect, the FAIMS/IMS interface is implemented employing an electrodynamic ion funnel, including in particular an hourglass ion funnel. The present invention improves the efficiency (peak capacity) and sensitivity of gas-phase separations; the online FAIMS/IMS coupling creates a fundamentally novel two-dimensional gas-phase separation technology with high peak capacity, specificity, and exceptional throughput.

  10. Multilayer Resist Profile Control in Oxygen Reactive Ion Etching Using Ethanol Gas Mixture

    NASA Astrophysics Data System (ADS)

    Kimura, Yasuki; Aoyama, Ryouichi; Suzuki, Seki

    1994-07-01

    By adding ethanol gas to oxygen-based chemistry, the controllability of resist profile and the overetch characteristic, under the condition with nearly no areas of material to be etched (etchable area), are improved. A model for resist profile control in which the resist profile is determined by the ratio of the sum of the isotropic etching component and the isotropic deposition component to the anisotropic etching component, is examined by evaluating the dependence of the resist profile and the etching rate on gas composition, the product of ion energy and ion current density (ion impact), and line and space (L & S) width. Both the gas composition and L & S width affect the sum of isotropic components. Ion impact affects the anisotropic etching component. When the isotropic components are balanced, resist profile is independent of ion impact and L & S width.

  11. Properties of Gas Mixtures and Their Use in Mixed-Refrigerant Joule-Thomson Refrigerators

    NASA Astrophysics Data System (ADS)

    Luo, E.; Gong, M.; Wu, J.; Zhou, Y.

    2004-06-01

    The Joule-Thomson (J-T) effect has been widely used for achieving low temperatures. In the past few years, much progress has been made in better understanding the working mechanism of the refrigeration method and in developing prototypes for different applications. In this talk, there are three aspects of our research work to be discussed. First, some special thermal properties of the mixtures for achieving liquid nitrogen temperature range will be presented. Secondly, some important conclusions from the optimization of various mixed-refrigerant J-T cycles such as a simple J-T cycle and an auto-cascade mixed-refrigerant J-T cycle will be presented. Moreover, an auto-cascade, mixed-refrigerant J-T refrigerator with a special mixture capable of achieving about 50K will be mentioned. Finally, various prototypes based on the mixed-refrigerant refrigeration technology will be described. These applications include miniature J-T cryocoolers for cooling infrared detectors and high-temperature superconducting devices, cryosurgical knife for medical treatment, low-temperature refrigerators for biological storage and so forth. The on-going research work and unanswered questions for this technology will be also discussed.

  12. Fission-fragment excited xenon/rare gas mixtures. I. Laser parameters of the 1. 73 [mu]m xenon transition

    SciTech Connect

    Hebner, G.A.; Hays, G.N. )

    1993-04-15

    Laser parameters for the 1.73 [mu]m (5[ital d][3/2][sub 1][minus]6[ital p][5/2][sub 2]) xenon transition in fission-fragment excited Ar/Xe, He/Ar/Xe, Ne/Ar/Xe, and He/Ne/Ar/Xe gas mixtures are presented. Using a cw F center laser, time resolved small signal gain was probed as a function of total pressure, xenon concentration, pump power, He/Ne/Ar buffer ratio and impurity concentration. Small signal gains of up to 2%/cm were observed for pump rates of 30 W/cm[sup 3]. Addition of helium and/or neon to the argon buffer increased the width of the time resolved laser gain pulse and reduced the absorption observed under some experimental conditions. Experimentally determined gain scaling laws for several gas mixtures are presented. The measured small signal gain was coupled with the results of laser cavity measurements to calculate the saturation intensity for several gas mixtures. The addition of helium or neon increases the saturation intensity for several gas mixtures. Laser cavity measurements as well as the gain [times] saturation intensity product indicate that the 1.73 [mu]m power efficiency is approximately 2% for several gas mixtures.

  13. Inviscid behaviour of fines-rich pyroclastic flows inferred from experiments on gas-particle mixtures [rapid communication

    NASA Astrophysics Data System (ADS)

    Roche, O.; Gilbertson, M. A.; Phillips, J. C.; Sparks, R. S. J.

    2005-12-01

    Experiments were carried out on granular flows generated by instantaneous release of gas-fluidised, bidisperse mixtures and propagating into a horizontal channel. The mixture consists of fine (< 100 μm) and coarse (> 100 μm) particles of same density, with corresponding grain size ratios of ˜ 2 to 9. Initial fluidisation of the mixture destroys the interparticle frictional contacts, and the flow behaviour then depends on the initial bed packing and on the timescale required to re-establish strong frictional contacts. At a fines mass fraction ( α) below that of optimal packing (˜ 40%), the initial mixtures consist of a continuous network of coarse particles with fines in interstitial voids. Strong frictional contacts between the coarse particles are probably rapidly re-established and the flows steadily decelerate. Some internal friction reduction appears to occur as α and the grain size ratio increases, possibly due to particle rolling and the lower roughness of internal shear surfaces. Segregation only occurs at large grain size ratio due to dynamical sieving with fines concentrated at the flow base. In contrast, at α above that for optimal packing, the initial mixtures consist of coarse particles embedded in a matrix of fines. Flow velocities and run-outs are similar to that of the monodisperse fine end-member, thus showing that the coarse particles are transported passively within the matrix whatever their amount and grain size are. These flows propagate at constant height and velocity as inviscid fluid gravity currents, thus suggesting negligible interparticle friction. We have determined a Froude number of 2.61 ± 0.08 consistent with the dam-break model for fluid flows, and with no significant variation as a function of α, the grain size ratio, and the initial bed expansion. Very little segregation occurs, which suggests low intensity particle interactions during flow propagation and that active fluidisation is not taking place. Strong frictional

  14. Sound Absorption in Molecular Gas Mixtures: Master Equation for Rotational and Vibrational Excitation, Relaxation, and Energy Transfer

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.

    2008-12-01

    Laboratory sound absorption measurements provide much of what we know about the vibrational kinetics of air mixtures, forming the core basis for retrieving the altitude profile of water in the mesosphere from infrared emissions between 6.3 and 6.9 μm. Here we show that sound-absorption and laser-excitation experiments follow exactly the same kinetics, reflect the same underlying reaction rates, and can be vulnerable to similar ambiguities. This has not been obvious because the literature lacks a consistent prescription for calculating the sound absorption frequency spectrum from the reaction rate coefficients. We have developed the first general theoretical formalism for calculating the absolute magnitude of sound absorption per-unit-length, versus sound frequency, for any number of collisional excitation, relaxation, and energy transfer processes, for any mixture of atomic and molecular gases. This new formalism, and the computer code that implements it, provide the first systematic means for inferring collisional rate coefficients from sound absorption measurements in which more than one rotational or vibrational mode is active, such as N2/O2/H2O/CO2 gas mixtures in the laboratory and the atmosphere. When a sound wave travels through a gas, the alternating compression and expansion cycles heat and cool the gas. If the acoustic frequency roughly matches the rate of vibrational relaxation, then the effective vibrational temperature lags behind the translational temperature and the energy in the sound wave is attenuated. The measured frequency of maximum absorption is proportional to the vibrational relaxation rate. In the simplest laser-based experiment, we excite a single molecular level and record its exponential time decay, with the vibrational relaxation rate being proportional to the decay frequency. In both experiments we derive the relaxation rate coefficient from the linear graph versus gas pressure. The technical problem is that any mixture of molecular

  15. The influence of Bremsstrahlung induced photoionization for the streamer motion in various gas mixtures

    NASA Astrophysics Data System (ADS)

    Koehn, Christoph; Chanrion, Olivier; Neubert, Torsten

    2016-04-01

    Streamers, the beginning stages of electric discharges, evolve differently depending on their polarity and on the ambient gas composition. One of the well-known supporting mechanisms is "UVphotoionization" where, in air, excited nitrogen emits a UV photon subsequently ionizing oxygen. In pure nitrogen, however, this mechanism is suppressed because of the lack of oxygen; hence this mechanism strongly depends on the ambient gas medium. In this paper we introduce Bremsstrahlung induced photoionization: In the ambient electric field,electrons gain energy and produce Bremsstrahlung photons through the collision with the ambient gas molecules; similarly to "UV-photoionization", the Bremsstrahlung photons ionize the gas molecules and, as such, create electron populations detached from the initial electron patch. For the study of this process we implemented the electron-nucleus Bremsstrahlung process as well as the photoionization by individual photons into an already existing 2.5 D Monte Carlo particle code for the simulation of streamers. We initiated plasma patches of electrons and ions with varying initial electron energies and peak densities in different ambient fields in air and pure nitrogen. We will compare the temporal evolution of the electron densities as well as of the electric field with and without modelling Bremsstrahlung. In air we will test the influence of Bremsstrahlung induced photoionization against "UV-photoionization". We will show that the influence of Bremsstrahlung is negligible in air, but plays a significant role in pure nitrogen at standard temperature and pressure.

  16. Selective separation of fluorinated compounds from complex organic mixtures by pyrolysis-comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Nakajima, Yoji; Arinami, Yuko; Yamamoto, Kiyoshi

    2014-12-29

    The usefulness of comprehensive two-dimensional gas chromatography (GC×GC) was demonstrated for the selective separation of fluorinated compounds from organic mixtures, such as kerosene/perfluorokerosene mixtures, pyrolysis products derived from polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture and poly[2-(perfluorohexyl)ethyl acrylate]. Perfluorocarbons were completely separated from hydrocarbons in the two-dimensional chromatogram. Fluorohydrocarbons in the pyrolysis products of polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture were selectively isolated from their hydrocarbon counterparts and regularly arranged according to their chain length and fluorine content in the two-dimensional chromatogram. A reliable structural analysis of the fluorohydrocarbons was achieved by combining effective GC×GC positional information with accurate mass spectral data obtained by high-resolution time-of-flight mass spectrometry (HRTOF-MS). 2-(Perfluorohexyl)ethyl acrylate monomer, dimer, and trimer as well as 2-(perfluorohexyl)ethyl alcohol in poly[2-(perfluorohexyl)ethyl acrylate] pyrolysis products were detected in the bottommost part of the two-dimensional chromatogram with separation from hydrocarbons possessing terminal structure information about the polymer, such as α-methylstyrene. Pyrolysis-GC×GC/HRTOF-MS appeared particularly suitable for the characterization of fluorinated polymer microstructures, such as monomer sequences and terminal groups. PMID:25482852

  17. A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1972-01-01

    A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.

  18. Discharge stabilization studies of CO laser gas mixtures in quasi-steady supersonic flow

    NASA Technical Reports Server (NTRS)

    Srinivasan, G.; Smith, J. A.

    1976-01-01

    Experiments were conducted to study the applicability of a double discharge stabilization scheme in conditions appropriate for high energy CO lasers in supersonic flows. A Ludwieg tube impulse flow facility and a ballasted capacitor bank provided essentially steady flow and discharge conditions (d.c.) for times longer than ten electrode length-flow transit times. Steady, arc-free, volume discharges were produced in a Mach 3 test cavity using an auxiliary discharge to stabilize the main discharge in N2 and He/CO mixture. A signigicant result is the lack of observed plasma E/N changes in response to auxiliary discharge current changes. Also, where glow discharges were obtained, the energy loading achieved was very much less than the threshold level required for laser operation.

  19. A conservative multi-group approach to the Boltzmann equations for reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bisi, M.; Rossani, A.; Spiga, G.

    2015-11-01

    Starting from a simple kinetic model for a quaternary mixture of gases undergoing a bimolecular chemical reaction, multi-group integro-differential equations are derived for the particle distribution functions of all species. The procedure takes advantage of a suitable probabilistic formulation, based on the underlying collision frequencies and transition probabilities, of the relevant reactive kinetic equations of Boltzmann type. Owing to an appropriate choice of a sufficiently large number of weight functions, it is shown that the proposed multi-group equations are able to fulfil exactly, at any order of approximation, the correct conservation laws that must be inherited from the original kinetic equations, where speed was a continuous variable. Future developments are also discussed.

  20. Stability of hypersonic reacting stagnation flow of a detonatable gas mixture by dynamical systems analysis

    SciTech Connect

    Tivanov, G.; Rom, J.

    1995-12-01

    The stability characteristics of the reacting hypersonic flow of the fuel/oxidizer mixture in the stagnation region of a blunt body are studied. The conditions for oscillations of the combustion front are assumed to be determined mainly by the flow conditions at the stagnation region. The density at the stagnation region is assumed to be constant at hypersonic flow conditions. By assuming a simplified flow model, the time dependent flow equations, including the heat addition due to the chemical reactions, are reduced to a second-order nonlinear differential equation for the instantaneous temperature. The solutions are analyzed assuming a one-step chemical reaction with zero-order and first-order processes using dynamical systems methods. These methods are used to determine the stability boundaries in terms of the flow and chemical reaction parameters. It is shown that the zero-order reaction has nonperiodic solutions that may lead to explosion whereas the first-order and higher-order reactions may have periodic solutions indicating oscillations. The zero-order analysis also reaffirms the requirements for a minimum size blunt body for the establishment of a detonation (in agreement with classical detonation theory) and the first-order analysis indicates a minimum body size for establishment of oscillations. The oscillation frequencies are calculated using the small perturbation approximation for the temperature oscillations. These frequencies are compared with results from published data on spheres and hemisphere cylindrical bodies fired into hydrogen-oxygen and acetylene oxygen mixtures. Very good agreement is found between the measured and calculated results.

  1. Measurements of Speed of Sound in Lean and Rich Natural Gas Mixtures at Pressures up to 37 MPa Using a Specialized Rupture Tube

    NASA Astrophysics Data System (ADS)

    Botros, K. K.

    2010-12-01

    Measurements of the speed of sound in 42 different compositions of lean, medium, and rich natural-gas mixtures using a specialized high-pressure rupture tube have been conducted. The rupture tube is made of stainless steel (internal diameter = 38.1 mm and length = 42 m), and is instrumented with 13 high-frequency-response dynamic pressure transducers (Endevco) mounted very close to the rupture end and along the length of the tube to capture the pressure-time traces of the decompression wave. Tests were conducted for initial pressures ranging from 10 MPa to 37 MPa and a temperature range from -25°C to+68°C. Gas mixture compositions were controlled by mixing conventional natural-gas mixtures from an adjacent gas pipeline with richer components of alkanes. Temperature control is achieved by a heat tracer along the tube with a set point at the desired gas temperature of the particular test. Uncertainty analysis indicated that the uncertainty in the experimentally determined speed of sound in the undisturbed gas mixture at the initial pressure and temperature is on the order of 0.306 %. The measured speeds of sound were compared to predictions by five equations of state, namely; the Benedict-Webb-Rubin-Starling (BWRS), AGA-8, Peng-Robinson (PR), Redlich-Kwong-Soave (RK-Soave), and Groupe Européen de Recherches Gaziéres (GERG-2004) equations.

  2. [Hypoxic gas mixture delivery due to a defective vaporiser manifold: case report, review of the literature and suggested emergency management algorithm].

    PubMed

    Berlet, T

    2014-04-01

    A case of delivery of a hypoxic gas mixture to a patient during total intravenous anesthesia is described. A progressive fall in inspiratory oxygen concentration followed by a drop in oxygen saturation below 90 % occurred during the advanced stages of a hitherto uneventful general anesthesia of a female patient undergoing anterior cervical fusion surgery. A malfunctioning defective rubber seal of a vaporizer manifold was identified as the cause of the gas leak. The leak had not been detected during the preanesthesia leak test. The problem of hypoxic gas mixtures and uncommon leaks in modern anesthesia equipment is discussed. The importance of locating a leak in the high or low pressure circuits is explained. An algorithm for the management of an unexpected decrease of inspiratory oxygen concentration or any other manifestation of a gas leak along with a systematic approach to locating the source of a gas leak is presented. PMID:24584839

  3. High pressure laser plasma studies. [energy pathways in He-Ar gas mixtures at low pressure

    NASA Technical Reports Server (NTRS)

    Wells, W. E.

    1980-01-01

    The operation of a nuclear pumped laser, operating at a wavelength of 1.79 micron m on the 3d(1/2-4p(3/2) transition in argon with helium-3 as the majority gas is discussed. The energy pathways in He-Ar gas were investigated by observing the effects of varying partial pressures on the emissions of levels lying above the 4p level in argon during a pulsed afterglow. An attempt is made to determine the population mechanisms of the 3d level in pure argon by observing emission from the same transition in a high pressure plasma excited by a high energy electron beam. Both collisional radiative and dissociative recombination are discussed.

  4. Two-fluid dust and gas mixtures in smoothed particle hydrodynamics: a semi-implicit approach

    NASA Astrophysics Data System (ADS)

    Lorén-Aguilar, Pablo; Bate, Matthew R.

    2014-09-01

    A method to avoid the explicit time integration of small dust grains in the two-fluid gas/dust smoothed particle hydrodynamics (SPH) approach is proposed. By assuming a very simple exponential decay model for the relative velocity between the gas and dust components, all the effective characteristics of the drag force can be reproduced. A series of tests has been performed to compare the accuracy of the method with analytical and explicit integration results. We find that the method performs well on a wide range of tests, and can provide large speed-ups over explicit integration when the dust stopping time is small. We have also found that the method is much less dissipative than conventional explicit or implicit two-fluid SPH approaches when modelling dusty shocks.

  5. Survey of the response of standard limited streamer tubes over the complete range of three-component gas mixtures of isobutane, CO/sub 2/, argon

    SciTech Connect

    Calcaterra, A.; De Sangro, R.; De Simone, P.; Burrows, P.; Cartwright, S.L.; Gonzalez, S.; Lath, A.; Schneekloth, U.; Williams, D.C.; Yamartino, J.M.

    1989-07-01

    We present the results of a systematic study of three-component gas mixtures containing argon, isobutane, and carbon dioxide. The study used production-type chambers from the SLD Warm Iron Calorimeter (WIC), instrumented with standard pleastic streamert tubes, and triggered by cosmic-ray muons. Pulse height spectra are presented as a function of high voltage, over a wide range of mixtures of these three gases. Various features and similarities observed throughout this three-dimensional mixture space are important clues to understanding the underlying physics of discharge mechanisms in wire detectors. 15 refs., 17 figs.

  6. Controlling the Neutron Yield from a Small Dense Plasma Focus using Deuterium-Inert Gas Mixtures

    SciTech Connect

    Bures, B. L.; Krishnan, M.; Eshaq, Y.

    2009-01-21

    The dense plasma focus (DPF) is a well known source of neutrons when operating with deuterium. The DPF is demonstrated to scale from 10{sup 4} n/pulse at 40 kA to >10{sup 12} n/pulse at 2 MA by non-linear current scaling as described in [1], which is itself based on the simple yet elegant model developed by Lee [2]. In addition to the peak current, the gas pressure controls the neutron yield. Recent published results suggest that mixing 1-5% mass fractions of Krypton increase the neutron yield per pulse by more than 10x. In this paper we present results obtained by mixing deuterium with Helium, Neon and Argon in a 500 J dense plasma focus operating at 140 kA with a 600 ns rise time. The mass density was held constant in these experiments at the optimum (pure) deuterium mass density for producing neutrons. A typical neutron yield for a pure deuterium gas charge is 2x10{sup 6}{+-}15% n/pulse. Neutron yields in excess of 10{sup 7}{+-}10% n/pulse were observed with low mass fractions of inert gas. Time integrated optical images of the pinch, soft x-ray measurements and optical emission spectroscopy where used to examine the pinch in addition to the neutron yield monitor and the fast scintillation detector. Work supported by Domestic Nuclear Detection Office under contract HSHQDC-08-C-00020.

  7. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    SciTech Connect

    Yuann, R Y; Schrock, V E; Chen, Xiang

    1995-09-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.

  8. Detection of trace concentrations of helium and argon in gas mixtures by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    McNaghten, E. D.; Parkes, A. M.; Griffiths, B. C.; Whitehouse, A. I.; Palanco, S.

    2009-10-01

    We report what we believe to be the first demonstration of the detection of trace quantities of helium and argon in binary and ternary gas mixtures with nitrogen by laser-induced breakdown spectroscopy (LIBS). Although significant quenching of helium transitions due to collisional deactivation of excited species was observed, it was found that losses in analytical sensitivity could be minimized by increasing the laser irradiance and decreasing the pressure at which the analyses were performed. In consequence, limits of detection of parts-per-million and tens of parts-per-million and linear dynamic ranges of several orders of magnitude in analyte concentration were obtained. The results of this study suggest that LIBS may have potential applications in the detection of other noble gases at trace concentrations.

  9. Observations of columnal recombination in the ionization tracks of energetic heavy nuclei in an argon-methane gas mixture

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1990-01-01

    Measurements of ionization signals resulting from the passage of energetic heavy nuclei through a gas mixture consisting of 95 mol percent Ar plus 5 mol percent CH4, at an absolute pressure of 3 atm are presented. The measurements take place under a uniform electric field perpendicular to the ionization track. The signals were compared to the calculated energy losses, with an assumption of proportionality between energy loss rate and ionization rate. Significant deviations from proportionality are found for energy loss rate grater than about 3000 MeV sq cm/g, while fractional deviations are found to be proportional to the energy loss rate (dE/dx) exp m, where m is equal to about two. These results are attributed to the columnal recombination.

  10. Oxygen/ozone as a medical gas mixture. A critical evaluation of the various methods clarifies positive and negative aspects

    PubMed Central

    2011-01-01

    Besides oxygen, several other gases such as NO, CO, H2, H2S, Xe and O3 have come to age over the past few years. With regards to O3, its mechanisms of action in medicine have been clarified during the last two decades so that now a comprehensive framework for understanding and recommending ozone therapy in various pathologies is available. O3 used within the determined therapeutic window is absolutely safe and more effective than golden standard medications in numerous pathologies, like vascular diseases. However, ozone therapy is mostly in practitioners' hands and some recent developments for increasing cost effectiveness and speed of treatment are neither standardized, nor evaluated toxicologically. Hence, the aim of this article is to emphasize the need to objectively assess the pros and cons of oxygen/ozone as a medical gas mixture in the hope that ozone therapy will be accepted by orthodox medicine in the near future. PMID:22146387

  11. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. II. Molecular beam scattering and bulk gas phenomena in Ne-CO mixtures.

    PubMed

    Dham, Ashok K; McBane, George C; McCourt, Frederick R W; Meath, William J

    2010-01-14

    Four potential energy surfaces are of current interest for the Ne-CO interaction. Two are high-level fully ab initio surfaces obtained a decade ago using symmetry-adapted perturbation theory and supermolecule coupled-cluster methods. The other two are very recent exchange-Coulomb (XC) model potential energy surfaces constructed by using ab initio Heitler-London interaction energies and literature long range dispersion and induction energies, followed by the determination of a small number of adjustable parameters to reproduce a selected subset of pure rotational transition frequencies for the (20)Ne-(12)C(16)O van der Waals cluster. Testing of the four potential energy surfaces against a wide range of available experimental microwave, millimeter-wave, and mid-infrared Ne-CO transition frequencies indicated that the XC potential energy surfaces gave results that were generally far superior to the earlier fully ab initio surfaces. In this paper, two XC model surfaces and the two fully ab initio surfaces are tested for their abilities to reproduce experiment for a wide range of nonspectroscopic Ne-CO gas mixture properties. The properties considered here are relative integral cross sections and the angle dependence of rotational state-to-state differential cross sections, rotational relaxation rate constants for CO(v=2) in Ne-CO mixtures at T=296 K, pressure broadening of two pure rotational lines and of the rovibrational lines in the CO fundamental and first overtone transitions at 300 K, and the temperature and, where appropriate, mole fraction dependencies of the interaction second virial coefficient, the binary diffusion coefficient, the interaction viscosity, the mixture shear viscosity and thermal conductivity coefficients, and the thermal diffusion factor. The XC model potential energy surfaces give results that lie within or very nearly within the experimental uncertainties for all properties considered, while the coupled-cluster ab initio surface gives

  12. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    SciTech Connect

    Malinina, A. A. Malinin, A. N.

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  13. Evidence for double incoherent Raman scattering in binary gas mixtures: SF{sub 6}-N{sub 2}

    SciTech Connect

    Verzhbitskiy, I. A.; Chrysos, M.; Rachet, F.; Kouzov, A. P.

    2010-01-15

    We report a collision-induced Raman band by room temperature gas mixtures of sulfur hexafluoride and nitrogen. The band is centered at the sum of the frequencies of the symmetric-stretching nu{sub 1} transition of SF{sub 6} and the fundamental transition of N{sub 2}, and its intensity scales as the product of the partial densities of the gases. The observed process is evidence of double incoherent Raman scattering (DRS) by SF{sub 6}-N{sub 2}, in which both molecules simultaneously undergo two Raman-allowed transitions. The band was found to be almost fully depolarized, in agreement with previous observations in other systems and with theoretical predictions. Its integrated intensity is about one-third higher than the total area predicted by the leading-order dipole-induced dipole model. This discrepancy suggests that DRS is a practical means of assessing the quality of intermolecular potential models, which, in the case of SF{sub 6}-N{sub 2}, is still believed to be not good enough. Our work is expected to open the door to a multitude of studies involving complicated processes encountered in nonpolar gases and their mixtures, which are of direct relevance to atmospheric research.

  14. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2015-03-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λmax = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/ N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10-15 m3/s.

  15. Equivalence of energy, entropy, and thermodynamic potentials in relation to the thermodynamic equilibrium of multitemperature gas mixtures

    NASA Astrophysics Data System (ADS)

    Giordano, D.

    1998-09-01

    The central theme of this study is the thermodynamic equilibrium of multitemperature gas mixtures. The presented material is meant to complement and, for certain aspects, to complete a previous contribution of the author on the subject matter. The analysis begins with a brief introductory survey of the main theoretical approaches pursued to characterize quantitatively multitemperature equilibria with the intent to emphasize the discordant findings of these approaches and the diverging opinions they have originated in the literature. The equilibrium problem is then confronted within the framework of axiomatic thermodynamics. The general equilibrium principle in its axiomatic form is recalled and the importance of the physical constraints imposed on the gas mixture in connection with the application of the principle is recognized. A rigorous proof is given of the equivalence between energy minimization and entropy maximization for the purpose of determining the equilibrium conditions in multitemperature circumstances and regardless of the active internal constraints. Moreover, the influence of the kind of internal constraints in establishing the mathematical form of the equilibrium equations is pointed out and the divergence among the findings of other approaches is thus explained. The equivalence feature is also considered in relation to the thermodynamic potentials. Evidence is given that not all thermodynamic potentials possess the equivalence property, i.e., attainment of an extremum, in conditions of thermodynamic equilibrium. Consistently, mathematical properties relevant to the search of the extrema of the Legendre transforms are recalled and elaborated upon. A selection rule is formulated that permits the identification of the thermodynamic potentials possessing the equivalence property. The essential role played by the internal constraints in the selection procedure is described and fully evidenced in the subsequent application of the method to two

  16. The effective ionization coefficients and electron drift velocities in gas mixtures of CF3I with N2 and CO2 obtained from Boltzmann equation analysis

    NASA Astrophysics Data System (ADS)

    Deng, Yun-Kun; Xiao, Deng-Ming

    2013-03-01

    The electron swarm parameters including the density-normalized effective ionization coefficients (α-η)/N and the electron drift velocities Ve are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend (SST) experiment. The overall density-reduced electric field strength is from 100 Td to 1000 Td (1 Td = 10-17 V·cm2), while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%. From the variation of (α-η)/N with the CF3I mixture ratio k, the limiting field strength (E/N)lim for each CF3I concentration is derived. It is found that for the mixtures with 70% CF3I, the values of (E/N)lim are essentially the same as that for pure SF6. Additionally, the global warming potential (GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.

  17. Analysis of the insulation characteristics of CF3I gas mixtures with Ar, Xe, He, N2, and CO2 using Boltzmann equation method

    NASA Astrophysics Data System (ADS)

    Deng, Yunkun; Xiao, Dengming

    2014-09-01

    The present study is devoted to the calculation of electron swarm parameters, including the reduced effective ionization coefficient, electron mean energy, and electron drift velocity, for the gas mixtures of CF3I with Ar, Xe, He, N2, and CO2. These data are computed by employing the Boltzmann equation method with two-term approximation in the condition of steady-state Townsend (SST) discharge. For the purpose of evaluating the insulation strength of CF3I gas mixtures, values of the limiting field strength (E/N)lim for which the ionization exactly balances the electron attachment are determined from the variation curves of (α - η)/N. The results indicate that mixtures of CF3I-N2 present the greatest insulation strength among all the combinations for CF3I content varied from 20 to 90%. Furthermore, the gas mixture with 70% CF3I can achieve a very similar dielectric strength to that of SF6. The concerned liquefaction issues are also taken into account to fully assess the possibility of applying CF3I gas mixtures in power equipment as an insulation medium.

  18. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Wang, Shicong; Wendt, Amy E.; Culver, Cody; Radovanov, Svetlana; Persing, Harold

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  19. Approximate equations of state in two-temperature plasma mixtures

    SciTech Connect

    Ramshaw, John D.; Cook, Andrew W.

    2014-02-15

    Approximate thermodynamic state relations for multicomponent atomic and molecular gas mixtures are often constructed by artificially partitioning the mixture into its constituent materials and requiring the separated materials to be in temperature and pressure equilibrium. Iterative numerical algorithms have been employed to enforce this equilibration and compute the resulting approximate state relations in single-temperature mixtures. In partially ionized gas mixtures, there is both theoretical and empirical evidence that equilibrating the chemical potentials, number densities, or partial pressures of the free electrons is likely to produce more accurate results than equilibrating the total pressures. Moreover, in many situations of practical interest the free electrons and heavy particles have different temperatures. In this paper, we present a generalized algorithm for equilibrating the heavy-particle and electron temperatures and a third user-specified independent thermodynamic variable in a two-temperature plasma mixture. Test calculations based on the equilibration of total pressure vs. electron pressure are presented for three different mixtures.

  20. Torsional rheometer for granular materials slurries and gas-solid mixtures and related methods

    DOEpatents

    Rajagopal, Chandrika; Rajagopal, Kumbakonam R.; Yalamanchili, Rattaya C.

    1997-01-01

    A torsional rheometer apparatus for determining rheological properties of a specimen is provided. A stationary plate and a rotatable plate are in generally coaxial position and structured to receive a specimen therebetween. In one embodiment, at least one of the plates and preferably both have roughened specimen engaging surfaces to serve to reduce undesired slippage between the plate and the specimen. A motor is provided to rotate the rotatable plate and a transducer for monitoring forces applied to the stationary plate and generating output signals to a computer which determines the desired rheological properties are provided. In one embodiment, the roughened surfaces consist of projections extending toward the specimen. Where granular material is being evaluated, it is preferred that the roughness of the plate is generally equal to the average size of the granular material being processed. In another embodiment, an air-solid mixture is processed and the roughened portions are pore openings in the plates. Air flows through the region between the two pore containing plates to maintain the solid materials in suspension. In yet another embodiment, the base of the stationary plate is provided with a deformable capacitance sensor and associated electronic means.

  1. Torsional rheometer for granular materials slurries and gas-solid mixtures and related methods

    DOEpatents

    Rajagopal, C.; Rajagopal, K.R.; Yalamanchili, R.C.

    1997-03-11

    A torsional rheometer apparatus for determining rheological properties of a specimen is provided. A stationary plate and a rotatable plate are in generally coaxial position and structured to receive a specimen there between. In one embodiment, at least one of the plates and preferably both have roughened specimen engaging surfaces to serve to reduce undesired slippage between the plate and the specimen. A motor is provided to rotate the rotatable plate and a transducer for monitoring forces applied to the stationary plate and generating output signals to a computer which determines the desired rheological properties are provided. In one embodiment, the roughened surfaces consist of projections extending toward the specimen. Where granular material is being evaluated, it is preferred that the roughness of the plate is generally equal to the average size of the granular material being processed. In another embodiment, an air-solid mixture is processed and the roughened portions are pore openings in the plates. Air flows through the region between the two pore containing plates to maintain the solid materials in suspension. In yet another embodiment, the base of the stationary plate is provided with a deformable capacitance sensor and associated electronic means. 17 figs.

  2. Zeolite screening for the separation of gas mixtures containing SO2, CO2 and CO.

    PubMed

    Matito-Martos, I; Martin-Calvo, A; Gutiérrez-Sevillano, J J; Haranczyk, M; Doblare, M; Parra, J B; Ania, C O; Calero, S

    2014-10-01

    We used a combination of experiments and molecular simulations to investigate at the molecular level the effects of zeolite structure on the adsorption and diffusion of sulfur dioxide, carbon dioxide and carbon monoxide as well as separation processes of their mixtures. Our study involved different zeolite topologies and revealed numerous structure-property trends depending on the temperature and pressure conditions. Sulfur dioxide, which has the strongest interactions with zeolites due to its size and polarity, showed the largest adsorption across investigated temperatures and pressures. Our results indicate that structures with channel-type pore topology and low pore volume are the most promising for selective adsorption of sulfur dioxide over carbon dioxide and carbon monoxide under room conditions, while structures with higher pore volume exhibit better storage capacity at higher pressure. Our results emphasize the need for considering both adsorption and diffusion processes in the selection of the optimal structure for a given separation process. Our findings help to identify the best materials for effective separation processes under realistic operating conditions. PMID:24691937

  3. Modeling of the atomic Ne laser in He/Ne/Ar gas mixtures

    SciTech Connect

    Jong, W.; Kushner, S.; Kushner, M.J.

    1992-12-01

    The high pressure atomic Ne laser operates on 4 visible transitions between the 3p and 3s manifolds. There has been renewed interest in this laser due to demonstrated high efficiency lasing at 585 nm in e-beam and fission fragment excited plasmas. A comprehensive computer model for the Ne laser in He/Ne/Ar mixtures has been developed to examine excitation mechanisms. The authors found that direct excitation of the 3p manifold by dissociative recombination of Ne{sub 2}{sup +} is the likely pumping mechanism, while state-selective Penning reactions dominantly relax the lower levels. Comparisons to experiments performed on a short pulsed e-beam excited laser showed that the electron temperature in the afterglow is determined by a slow relaxation of excited states in Ar. Oscillation does not occur until these manifolds are depleted, and the electron temperature falls. Scaling laws for the Ne laser at low pump powers, as obtained using fission fragment excitation, will be discussed.

  4. Propagation of a cylindrical shock wave in a mixture of a non-ideal gas and small solid particles under the action of monochromatic radiation

    NASA Astrophysics Data System (ADS)

    Sahu, Praveen Kumar; Nath, Gorakh

    2016-07-01

    Cylindrical shock wave in a dusty gas is discussed under the action of monochromatic radiation into stellar atmosphere with a constant intensity on unit area. The gas is assumed to be grey and opaque and shock to be transparent. The dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. To obtain some essential features of the shock propagation, small solid particles are taken as pseudo-fluid and it is assumed that the equilibrium flow condition is maintained in the flow-field. The effects of variation of the parameters of the non-idealness of the gas, the mass concentration of solid particles in the mixture, the ratio of the density of solid particles to the initial density of the gas and the radiation parameter are investigated. It is shown that an increase in the parameters of the non-idealness of the gas and the radiation parameter have decaying effect on the shock waves; whereas with an increase in the ratio of the density of solid particles to the initial density of the gas the shock strength increases. It is found that an increase in the parameter non-idealness of the gas and the ratio of the density of solid particles to the initial density of the gas have opposite behaviour on fluid velocity, pressure and shock strength. Also, it is shown that an increase in the radiation parameter has effect to decrease the flow variables and the shock strength.

  5. Combustion of ultrafine coal/water mixtures and their application in gas turbines: Final report

    SciTech Connect

    Toqan, M.A.; Srinivasachar, S.; Staudt, J.; Varela, F.; Beer, J.M.

    1987-10-01

    The feasibility of using coal-water fuels (CWF) in gas turbine combustors has been demonstrated in recent pilot plant experiments. The demands of burning coal-water fuels with high flame stability, complete combustion, low NO/sub x/ emission and a resulting fly ash particle size that will not erode turbine blades represent a significant challenge to combustion scientists and engineers. The satisfactory solution of these problems requires that the variation of the structure of CWF flames, i.e., the fields of flow, temperature and chemical species concentration in the flame, with operating conditions is known. Detailed in-flame measurements are difficult at elevated pressures and it has been proposed to carry out such experiments at atmospheric pressure and interpret the data by means of models for gas turbine combustor conditions. The research was carried out in five sequential tasks: cold flow studies; studies of conventional fine-grind CWF; combustion studies with ultrafine CWF fuel; reduction of NO/sub x/ emission by staged combustion; and data interpretation-ignition and radiation aspects. 37 refs., 61 figs., 9 tabs.

  6. Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    SciTech Connect

    Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K.

    2011-10-01

    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to H{alpha} at 656.3 nm implied an electron density and gas temperature of 2 x 10{sup 14} cm{sup -3} and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and H{alpha} intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e{sup -}{yields} O + H + e{sup -}.

  7. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam.

    PubMed

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-01-01

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m³), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively. PMID:26402682

  8. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam

    PubMed Central

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-01-01

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m3), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively. PMID:26402682

  9. Abatement of SO2-NOx binary gas mixtures using a ferruginous active absorbent: Part I. Synergistic effects and mechanism.

    PubMed

    Han, Yinghui; Li, Xiaolei; Fan, Maohong; Russell, Armistead G; Zhao, Yi; Cao, Chunmei; Zhang, Ning; Jiang, Genshan

    2015-04-01

    A novel ferruginous active absorbent, prepared by fly ash, industrial lime and the additive Fe(VI), was introduced for synchronous abatement of binary mixtures of SO2-NOx from simulated coal-fired flue gas. The synergistic action of various factors on the absorption of SO2 and NOx was investigated. The results show that a strong synergistic effect exists between Fe(VI) dose and reaction temperature for the desulfurization. It was observed that in the denitration process, the synergy of Fe(VI) dose and Ca/(S+N) had the most significant impact on the removal of NO, followed by the synergy of Fe(VI) and reaction temperature, and then the synergy of reaction temperature and flue gas humidity. A scanning electron microscope (SEM) and an accessory X-ray energy spectrometer (EDS) were used to observe the surface characteristics of the raw and spent absorbent as well as fly ash. A reaction mechanism was proposed based on chemical analysis of sulfur and nitrogen species concentrations in the spent absorbent. The Gibbs free energy, equilibrium constants and partial pressures of the SO2-NOx binary system were determined by thermodynamics. PMID:25872709

  10. Investigation of dielectric properties of cold C3F8 mixtures and hot C3F8 gas as Substitutes for SF6

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Zhong, Linlin; Yan, Jing; Yang, Aijun; Han, Guohui; Han, Guiquan; Wu, Yi; Rong, Mingzhe

    2015-10-01

    In order to reduce the global warming potential resulting from SF6 widely used as an insulating and arc quenching medium, the substitutes need to be found. This paper focuses on different cold C3F8 mixtures (at room temperature) as an insulating gas and hot C3F8 gas (at temperatures of 300-3500 K) as an arc quenching medium, which seem to be a good replacement of SF6. Firstly, the dielectric properties, including the reduced ionization coefficient α / N, reduced electron attachment coefficient η / N and reduced critical electric field strength ( E / N)cr, of the cold C3F8-CF4, C3F8-CO2, C3F8-N2, C3F8-O2 and C3F8-Ar mixtures are calculated numerically using the two-term approximation of the Boltzmann equation. The dependence of such dielectric properties on the buffer gas proportion is investigated. Among the various C3F8 mixtures, the C3F8-N2 mixture has the lowest α / N and the C3F8-CF4 mixture has the largest η / N, and moreover, the C3F8-N2 mixture is the best insulator in terms of breakdown strength because it has the largest ( E / N)cr. Secondly, the ( E / N)cr of hot C3F8 at temperatures up to 3500 K and various pressures is determined and compared with that of hot SF6 gas. It is found that the hot C3F8 gas has much poorer dielectric performance than hot SF6 because the ( E / N)cr of C3F8 decreases significantly above room temperature.

  11. Polynomial approximations of thermodynamic properties of arbitrary gas mixtures over wide pressure and density ranges

    NASA Technical Reports Server (NTRS)

    Allison, D. O.

    1972-01-01

    Computer programs for flow fields around planetary entry vehicles require real-gas equilibrium thermodynamic properties in a simple form which can be evaluated quickly. To fill this need, polynomial approximations were found for thermodynamic properties of air and model planetary atmospheres. A coefficient-averaging technique was used for curve fitting in lieu of the usual least-squares method. The polynomials consist of terms up to the ninth degree in each of two variables (essentially pressure and density) including all cross terms. Four of these polynomials can be joined to cover, for example, a range of about 1000 to 11000 K and 0.00001 to 1 atmosphere (1 atm = 1.0133 x 100,000 N/m sq) for a given thermodynamic property. Relative errors of less than 1 percent are found over most of the applicable range.

  12. The inactivation of Chlorella spp. with dielectric barrier discharge in gas-liquid mixture

    NASA Astrophysics Data System (ADS)

    Song, Dan; Sun, Bing; Zhu, Xiaomei; Yan, Zhiyu; Liu, Hui; Liu, Yongjun

    2013-03-01

    The inactivation of Chlorella spp. with high voltage and frequency pulsed dielectric barrier discharge in hybrid gas-liquid reactor with a suspension electrode was studied experimentally. In the hybrid gas-liquid reactor, a steel plate was used as high voltage electrode while a quartz plate as a dielectric layer, another steel plate placing in the aqueous solution worked as a whole ground electrode. A suspension electrode is installed near the surface of solution between high voltage and ground electrode to make the dielectric barrier discharge uniform and stable, the discharge gap was between the quartz plate and the surface of the water. The effect of peak voltage, treatment time, the initial concentration of Chlorella spp. and conductivity of solution on the inactivation rate of Chlorella spp. was investigated, and the inactivation mechanism of Chlorella spp. preliminarily was studied. Utilizing this system inactivation of Chlorella spp., the inactivation rate increased with increasing of peak voltage, treatment time and electric conductivity. It was found that the inactivation rate of Chlorella spp. arrived at 100% when the initial concentration was 4 × 106 cells mL-1, and the optimum operation condition required a peak voltage of 20 kV, a treatment time of 10 min and a frequency of 7 kHz. Though the increasing of initial concentration of the Chlorella spp. contributed to the addition of interaction probability between the Chlorella spp. and O3, H2O2, high-energy electrons, UV radiation and other active substances, the total inactivation number raise, but the inactivation rate of the Chlorella spp. decreased.

  13. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  14. Emission of mercury monobromide exciplex in gas-discharge plasma based on mixture of mercury dibromide vapor with sulfur hexafluoride and helium

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Shuaibov, A. K.

    2011-02-01

    We present the results of investigations of an emission of a mercury monobromide exciplex in gas-discharge plasma of an atmospheric pressure barrier discharge based on a mixture of mercury dibromide vapor, sulfur hexafluoride, and helium. We optimized the emission power of mercury monobromide exciplexes with respect to the partial pressures of the working mixture. An average emission power of 0.42 W (λmax = 502 nm) is achieved in a cylindrical emission source with a small working volume (0.8 cm3) at a pumping pulse repetition rate of 6 kHz. We determined electron energy distribution functions, transport characteristics, specific discharge power losses for electron processes, electron concentration and temperature, as well as rate constants of elastic and inelastic scattering of electrons by components of the working mixture in relation to the ratio of the field strength to the total concentration of components of the working mixture. We discuss processes that increase the population of the mercury monobromide exciplex. Gas-discharge plasma created in a mixture of mercury dibromide vapor with sulfur hexafluoride and helium can be used as a working medium of an emission source in the blue-green spectral range for the use in scientific research in biotechnology, photonics, and medicine, as well as for creating indicator gas-discharge panels.

  15. Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Lin, C.; Gillespie, J.; Schuder, M. D.; Duberstein, W.; Beverland, I. J.; Heal, M. R.

    2015-01-01

    Low-power, and relatively low-cost, gas sensors have potential to improve understanding of intra-urban air pollution variation by enabling data capture over wider networks than is possible with 'traditional' reference analysers. We evaluated an Aeroqual Ltd. Series 500 semiconducting metal oxide O3 and an electrochemical NO2 sensor against UK national network reference analysers for more than 2 months at an urban background site in central Edinburgh. Hourly-average Aeroqual O3 sensor observations were highly correlated (R2 = 0.91) and of similar magnitude to observations from the UV-absorption reference O3 analyser. The Aeroqual NO2 sensor observations correlated poorly with the reference chemiluminescence NO2 analyser (R2 = 0.02), but the deviations between Aeroqual and reference analyser values ([NO2]Aeroq - [NO2]ref) were highly significantly correlated with concurrent Aeroqual O3 sensor observations [O3]Aeroq. This permitted effective linear calibration of the [NO2]Aeroq data, evaluated using 'hold out' subsets of the data (R2 ≥ 0.85). These field observations under temperate environmental conditions suggest that the Aeroqual Series 500 NO2 and O3 monitors have good potential to be useful ambient air monitoring instruments in urban environments provided that the O3 and NO2 gas sensors are calibrated against reference analysers and deployed in parallel.

  16. Effect of operating variables on the gas holdup in a large-scale slurry bubble column reactor operating with an organic liquid mixture

    SciTech Connect

    Inga, J.R.; Morsi, B.I.

    1999-03-01

    The effects of gas velocity, system pressure, and catalyst loading on gas holdup of H{sub 2}, N{sub 2}, CO, and CH{sub 4} in an organic mixture of hexanes were investigated in a 0.316 m diameter, 2.8 m height slurry bubble column reactor operating with a commercial Fischer-Tropsch iron-based catalyst. The data were obtained in the churn-turbulent flow regime with catalyst loading up to 50 wt % and a system pressure up to 8 bar. The hydrostatic pressure head method and the dynamic gas disengagement technique were employed to obtain the gas holdup profile and the values corresponding to different gas bubble sizes in the reactor. The experimental data showed that the gas holdup consists mainly of two classes of gas bubbles, small and large. The gas holdup data for the gases used were found to increase with pressure and superficial gas velocity due to the increase of the volume fraction of the small and large gas bubbles, respectively. The increase of catalyst loading, however, appeared to decrease the gas holdup values, due to the decrease of the volume fraction of the small gas bubbles. Statistical and empirical correlations for gas holdup data were proposed.

  17. Quasiparallel flow of a binary gas mixture: the Stefan tube revisited

    NASA Astrophysics Data System (ADS)

    Morris, S. J. S.

    2015-11-01

    Placed in the bottom of a vertical tube open at the top, volatile liquid (species 1) evaporates at a rate set by diffusion of vapour through the carrier gas (species 2). In the textbook solution, due to J. Stefan, species 2 is assumed to be stationary, but numerical solutions of the governing equations show that species 2, in fact, recirculates (Mills and Chang 2013; and references therein). But although Stefan's solution is based on an incorrect assumption, the same numerical solutions show that it predicts the evaporation rate to within a few percent (Mills and Chang, below eq.12). Assuming the ratio L / a of tube length to radius to be large, we use lubrication theory to give an elementary solution determining the velocity profiles for each species, including the effect of slip. It is shown that, in the limit as L / a --> ∞ , the Stefan solution correctly determines the total evaporation rate; this conclusion is independent of the precise form of the boundary condition placed on the species velocities at the tube wall.

  18. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Eglesia, E.

    1995-10-24

    Mechanistic and kinetic studies of methanol and ethanol coupling reactions on Cs/Cu/ZnO and Cu/ZnO/MnO catalysts using isotopically-labeled compounds have confirmed that coupling reactions proceed via intermediate dehydrogenation of alcohols to aldehydes. Ethanol coupling reactions are much faster than those of methanol because ethanol forms a more thermodynamically favored intermediate (acetaldehyde), with aldol condensation pathways kinetically available for chain growth. Cs decreases the rate of formation of aldehydes in alcohol dehydrogenation reaction and inhibits the undesired conversion of methanol and ethanol to synthesis gas (CO/H{sub 2}). Construction and start-up of the Catalytic Microreactor Unit (CMRU) for high pressure isobutanol synthesis studies have been completed. Initial certification runs have reproduced catalytic CO conversion rates on a standard APCI material (Cs/Cu/ZnO/Al{sub 2}O{sub 3}). Condensation of higher alcohols in the transfer lines appears to be responsible for the observed low apparent selectivity to higher alcohols. The design and construction of the Temperature-Programmed Surface Reaction (TPSR) Unit for the study of the adsorption and reaction properties of alcohols and other oxygenates on isobutanol, synthesis catalysts and components is complete. The reduction of CuO powder and of a Cs/Cu/ZnO catalyst were used to certify the apparatus before proceeding with alcohol adsorption and reaction studies.

  19. SEPARATION OF FLUID MIXTURES

    DOEpatents

    Lipscomb, R.; Craig, A.; Labrow, S.; Dunn, J.F.

    1958-10-28

    An apparatus is presented for separating gaseous mixtures by selectively freezing a constituent of the mixture and subsequently separating the frozen gas. The gas mixture is passed through a cylinder fltted with a cooling jacket, causing one gas to freeze on the walls of the cylinder. A set of scraper blades are provided in the interior of the cyllnder, and as the blades oscillate, the frozen gas is scraped to the bottom of the cylinder. Means are provided for the frozen material to pass into a heating chamber where it is vaporized and the product gas collected.

  20. NATURE OF UNRESOLVED COMPLEX MIXTURE IN SIZE-DISTRIBUTED EMISSIONS FROM RESIDENTIAL WOOD COMBUSTION AS MEASURED BY THERMAL DESORPTION-GAS CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...

  1. Mathematical simulation of gas-liquid mixture flow in a reservoir and a wellbore with allowance for the dynamical interactions in the reservoir-well system

    NASA Astrophysics Data System (ADS)

    Abbasov, E. M.; Feyzullayev, Kh. A.

    2016-01-01

    Fluid dynamic processes related to mature oil field development are simulated by applying a numerical algorithm based on the gas-liquid mixture flow equations in a reservoir and a wellbore with allowance for the dynamical interaction in the reservoir-well system. Numerical experiments are performed in which well production characteristics are determined from wellhead parameters.

  2. An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases.

    PubMed

    Wasim, Fatima; Mahmood, Tariq; Ayub, Khurshid

    2016-07-28

    Density functional theory (DFT) calculations have been performed to study the response of polypyrrole towards nitrate ions in gas and aqueous phases. First, an accurate estimate of interaction energies is obtained by methods calibrated against the gold standard CCSD(T) method. Then, a number of low cost DFT methods are also evaluated for their ability to accurately estimate the binding energies of polymer-nitrate complexes. The low cost methods evaluated here include dispersion corrected potential (DCP), Grimme's D3 correction, counterpoise correction of the B3LYP method, and Minnesota functionals (M05-2X). The interaction energies calculated using the counterpoise (CP) correction and DCP methods at the B3LYP level are in better agreement with the interaction energies calculated using the calibrated methods. The interaction energies of an infinite polymer (polypyrrole) with nitrate ions are calculated by a variety of low cost methods in order to find the associated errors. The electronic and spectroscopic properties of polypyrrole oligomers nPy (where n = 1-9) and nPy-NO3(-) complexes are calculated, and then extrapolated for an infinite polymer through a second degree polynomial fit. Charge analysis, frontier molecular orbital (FMO) analysis and density of state studies also reveal the sensing ability of polypyrrole towards nitrate ions. Interaction energies, charge analysis and density of states analyses illustrate that the response of polypyrrole towards nitrate ions is considerably reduced in the aqueous medium (compared to the gas phase). PMID:27375267

  3. Equation of state and ideal-gas heat capacity of a gaseous mixture of 1,1,1,2-tetrafluoroethane, pentafluoroethane, and difluoromethane

    SciTech Connect

    Hurly, J.J.; Schmidt, J.W.; Gillis, K.A.

    1997-05-01

    The authors present the gas-phase equation of state and ideal-gas heat capacity of a ternary mixture of 1,1,1,2-tetrafluoroethane (35%), pentafluoroethane (30%), and difluoromethane (35%) for temperatures between 260 and 453 K and pressures between 0.05 and 7.7 MPa. These results were based on two very different measurement techniques. The first technique measured the gas density of the mixture in a Burnett apparatus from 313 to 453 K and from 0.2 to 7.7 MPa. The second technique deduced the gas density and ideal-gas heat capacity from high-accuracy speed-of-sound measurements in the mixture at temperatures between 260 and 400 K and at pressures between 0.05 and 1.0 MPa. The data from the two techniques were analyzed together to obtain an equation of state that reproduced the densities from the Burnett technique with a fractional RMS deviation of 0.038%, and it also reproduced the sound speeds with a fractional RMS deviation of 0.003%. Finally, the results are compared to a predictive model based on the properties of the pure fluids.

  4. Accurate analysis of trace earthy-musty odorants in water by headspace solid phase microextraction gas chromatography-mass spectrometry.

    PubMed

    Ma, Kang; Zhang, Jin Na; Zhao, Min; He, Ya Juan

    2012-06-01

    A simple and sensitive method was developed for the simultaneous separation and determination of trace earthy-musty compounds including geosmin, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, and 2,3,6-trichloroanisole in water samples. This method combined headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry and used naphthalene-d(8) as internal standard. A divinylbenzene/carboxen/polydimethylsiloxane fiber exposing at 90°C for 30 min provided effective sample enrichment in HS-SPME. These compounds were separated by a DB-1701MS capillary column and detected in selected ion monitoring mode within 12 min. The method showed a good linearity from 1 to 100 ng L(-1) and detection limits within (0.25-0.61 ng L(-1)) for all compounds. Using naphthalene-d(8) as the internal standard, the intra-day relative standard deviation (RSD) was within (2.6-3.4%), while the inter-day RSD was (3.5-4.9%). Good recoveries were obtained for tap water (80.5-90.6%), river water (81.5-92.4%), and lake water (83.5-95.2%) spiked at 10 ng L(-1). Compared with other methods using HS-SPME for determination of odor compounds in water samples, this present method had more analytes, better precision, and recovery. This method was successfully applied for analysis of earthy-musty odors in water samples from different sources. PMID:22740259

  5. Wall-fluid and liquid-gas interfaces of model colloid-polymer mixtures by simulation and theory.

    PubMed

    Fortini, Andrea; Dijkstra, Marjolein; Schmidt, Matthias; Wessels, Paul P F

    2005-05-01

    We perform a study of the interfacial properties of a model suspension of hard sphere colloids with diameter sigma(c) and nonadsorbing ideal polymer coils with diameter sigma(p) . For the mixture in contact with a planar hard wall, we obtain from simulations the wall-fluid interfacial free energy, gamma(wf) , for size ratios q =sigma(p)/sigma(c) =0.6 and 1, using thermodynamic integration, and study the (excess) adsorption of colloids, Gamma(c) , and of polymers, Gamma(p) , at the hard wall. The interfacial tension of the free liquid-gas interface, gamma(lg) , is obtained following three different routes in simulations: (i) from studying the system size dependence of the interfacial width according to the predictions of capillary wave theory, (ii) from the probability distribution of the colloid density at coexistence in the grand canonical ensemble, and (iii) for state points where the colloidal liquid wets the wall completely, from Young's equation relating gamma(lg) to the difference of wall-liquid and wall-gas interfacial tensions, gamma(wl)-gamma(wg) . In addition, we calculate gamma(wf) ,Gamma(c) , and Gamma(p) using density functional theory and a scaled particle theory based on free volume theory. Good agreement is found between the simulation results and those from density functional theory, while the results from scaled particle theory quantitatively deviate but reproduce some essential features. Simulation results for gamma(lg) obtained from the three different routes are all in good agreement. Density functional theory predicts gamma(lg) with good accuracy for high polymer reservoir packing fractions, but yields deviations from the simulation results close to the critical point. PMID:16089531

  6. Silicon etch using SF{sub 6}/C{sub 4}F{sub 8}/Ar gas mixtures

    SciTech Connect

    Bates, Robert L.; Stephan Thamban, P. L.; Goeckner, Matthew J.; Overzet, Lawrence J.

    2014-07-01

    While plasmas using mixtures of SF{sub 6}, C{sub 4}F{sub 8}, and Ar are widely used in deep silicon etching, very few studies have linked the discharge parameters to etching results. The authors form such linkages in this report. The authors measured the optical emission intensities of lines from Ar, F, S, SF{sub x}, CF{sub 2}, C{sub 2}, C{sub 3}, and CS as a function of the percentage C{sub 4}F{sub 8} in the gas flow, the total gas flow rate, and the bias power. In addition, the ion current density and electron temperature were measured using a floating Langmuir probe. For comparison, trenches were etched of various widths and the trench profiles (etch depth, undercut) were measured. The addition of C{sub 4}F{sub 8} to an SF{sub 6}/Ar plasma acts to reduce the availability of F as well as increase the deposition of passivation film. Sulfur combines with carbon in the plasma efficiently to create a large optical emission of CS and suppress optical emissions from C{sub 2} and C{sub 3}. At low fractional flows of C{sub 4}F{sub 8}, the etch process appears to be controlled by the ion flux more so than by the F density. At large C{sub 4}F{sub 8} fractional flows, the etch process appears to be controlled more by the F density than by the ion flux or deposition rate of passivation film. CF{sub 2} and C{sub 2} do not appear to cause deposition from the plasma, but CS and other carbon containing molecules as well as ions do.

  7. Characterisation and fingerprinting of PCBs in flue gas and ash from waste incineration and in technical mixtures.

    PubMed

    Jansson, Stina; Lundin, Lisa; Grabic, Roman

    2011-10-01

    Congener patterns of mono- to deca-chlorinated biphenyls (PC1-10B) were evaluated in (a) waste incineration flue gases collected in the post-combustion zone of a laboratory-scale fluidized-bed reactor, (b) ashes from two different MSW incineration plants, and (c) published data of eight Aroclor formulations. The congener patterns of the flue gases, ashes, and Aroclor mixtures clearly differed from each other, likely reflecting differences in formation pathways. The flue gas congener patterns were largely dominated by the least chlorinated congeners, whereas the ashes displayed more evenly distributed patterns. The most abundant congeners indicated a preference for 3,3',4,4'-oriented substitution, which may be related to de novo-type formation involving perylene. Principal component analysis confirmed that congener patterns differed among the three matrices and also distinguished flue gases collected at 200 °C from those collected at 300 °C and 450 °C. This distinction could be partly explained by the degree of chlorination, although the substitution status of the ortho-position, and substitution in the 3,3',4,4'-positions also seemed to be influential. Injecting biphenyl into the post-combustion zone of the reactor did not alter the patterns, indicating that availability of the backbone structure is not a limiting factor for PCB formation. PMID:21885088

  8. Correction of aspect ratio dependency in deep silicon etch using SF6/C4F8/Ar gas mixture

    NASA Astrophysics Data System (ADS)

    Bates, Robert Lee

    The etch rate of deep features in silicon, such as trenches and vias, can vary significantly with the changing Aspect Ratio (AR) of the feature. Developing a better understanding of the complex volumetric and surface chemistry as well as the etching mechanisms controlling the Aspect Ratio Dependent Etch-rate (ARDE) continues to present research opportunities. Recall that ARDE is generally characterized by small AR features etching at faster rates than large AR features. The main causes of ARDE include Knudsen transport of neutrals into and out of the features as well as ion and neutral loss to the walls due to angular spread in the velocity distribution function and differential charging of insulating microstructures. This work focuses on using a continuous plasma process utilizing a gas mixture of SF6/C4F8/Ar to produce trenches of varying widths and depths. The experimental results were obtained using a Plasma-Therm Versaline processing system. Experiments were performed to show that the etch rate of low AR features can be reduced through the deposition of a passivation layer and thereby allow larger AR features to catch up. It is also possible to invert the ARDE in certain circumstances. We will present the insights we have gained into the ARDE process and the solutions we have tested.

  9. Two-dimensional simulation of the development of an inhomogeneous volume discharge in a Ne/Xe/HCl gas mixture

    SciTech Connect

    Bychkov, Yu. I. Yampolskaya, S. A.; Yastremskii, A. G.

    2013-05-15

    The kinetic processes accompanying plasma column formation in an inhomogeneous discharge in a Ne/Xe/HCl gas mixture at a pressure of 4 atm were investigated by using a two-dimensional model. Two cathode spots spaced by 0.7 cm were initiated by distorting the cathode surface at local points, which resulted in an increase in the field strength in the cathode region. Three regimes differing in the charging voltage, electric circuit inductance, and electric field strength at the local cathode points were considered. The spatiotemporal distributions of the discharge current; the electron density; and the densities of excited xenon atoms, HCl(v = 0) molecules in the ground state, and HCl(v > 0) molecules in vibrational levels were calculated. The development of the discharge with increasing the electron density from 10{sup 4} to 10{sup 16} cm{sup -3} was analyzed, and three characteristic stages in the evolution of the current distribution were demonstrated. The width of the plasma column was found to depend on the energy deposited in the discharge. The width of the plasma column was found to decrease in inverse proportion to the deposited energy due to spatiotemporal variations in the rates of electron production and loss. The calculated dependences of the cross-sectional area of the plasma column on the energy deposited in the discharge agree with the experimental results.

  10. Reduction mechanism of high-chromium vanadium-titanium magnetite pellets by H2-CO-CO2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Tang, Jue; Chu, Man-sheng; Li, Feng; Tang, Ya-ting; Liu, Zheng-gen; Xue, Xiang-xin

    2015-06-01

    The reduction of high-chromium vanadium-titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2-CO-CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction degree and reduction rate increase with increasing temperature and increasing hydrogen content. At a temperature of 1373 K, an H2/CO ratio of 5/2 by volume, and a reduction time of 40 min, the degree of reduction reaches 95%. The phase transformation during reduction is hypothesized to proceed as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9TiO15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeTiO3 → TiO2; (Cr0.15V0.85)2O3 → Fe2VO4; and Cr1.3Fe0.7O3 → FeCr2O4. The reduction is controlled by the mixed internal diffusion and interfacial reaction at the initial stage; however, the interfacial reaction is dominant. As the reduction proceeds, the internal diffusion becomes the controlling step.

  11. Vibrational-translational/rotational and vibrational-vibrational processes in methane/inert-gas mixtures: Optoacoustic phase measurements

    NASA Astrophysics Data System (ADS)

    Avramides, Elizabeth; Hunter, Tom F.

    1983-01-01

    V-R.T and V-V processes in methane-inert-gas mixtures are studied optoacoustically following excitation of the CH 4 ν 3 level with a HeNe laser at 2947.9 cm -1. The dominant route of deactivation, after fast equilibration of levels ν 3 and ν 1. is (ν 3. ν 1) → 2ν 4 → ν 4 + ν 4: the bending modes ν 4 and ν 2 then come to equilibrium and rela??? to the rotational, translational modes. Rate constants are reported with inert gases He, Ne and Xe, for (a) (ν 3. ν 1) → 2ν 4. (b) ν 2 → ν 4 and (c) the single-quantum step (ν 3. ν 1) → (ν 2. ν 4). In addition the intermolecular process in CH 4 collisions. 2ν 4 → ν 4 + ν 4. is shown to have a rate constant of 1.0±0.25 ns -1 atm -1.

  12. First fully-synthetic standard gas mixtures with atmospheric isotopic composition for global CO2 and CH4 monitoring

    NASA Astrophysics Data System (ADS)

    Brewer, Paul

    2014-05-01

    As the requirement for data that is comparable to the World Meteorological Organisation (WMO) scale increases, there is a corresponding increase in the demand for comparable reference standards. An infrastructure to disseminate gravimetric reference standards that are traceable to the International System of Units (SI) offers a means of broadening availability. These could overcome the cost and complexity of sampling air under global background conditions which can only be carried out at remote locations. It promises the possibility for the provision of standards from more than one source and would be enabled and supported by the global agreement under the International Committee for Weights and Measures (CIPM) Mutual Recognition Arrangement (MRA) to which the WMO became a signatory is 2010. We report the first fully- synthetic gaseous reference standards of CO2 and CH4 in a whole air matrix with an isotopic distribution matching that in the ambient atmosphere. The mixtures are accurately representative of the ambient atmosphere and were prepared gravimetrically. The isotopic distribution of the CO2 was matched to the abundance in the ambient atmosphere by blending 12C enriched CO2 with 13C enriched CO2 in order to avoid measurement biases, introduced by measurement instrumentation detecting only certain isotopologues. The reference standards demonstrate excellent comparability to the WMO scale. This work is a valuable step towards enabling the wider dissemination of traceability for these atmospheric components. Since these standards are prepared synthetically, they can be replicated and avoid the complexity of sampling whole air in global background locations. They are a significant step towards making suitable reference standards for global atmospheric monitoring available more widely.

  13. Kinetic boundary layers in gas mixtures: Systems described by nonlinearly coupled kinetic and hydrodynamic equations and applications to droplet condensation and evaporation

    SciTech Connect

    Widder, M.E.; Titulaer, U.M. )

    1993-03-01

    The authors consider a mixture of heavy vapor molecules and a light carrier gas surrounding a liquid droplet. The vapor is described by a variant of the Klein-Kramers equation; the gas is described by the Navier-Stokes equations; the droplet acts as a heat source due to the released heat of condensation. The exchange of momentum and energy between the constituents of the mixture is taken into account by force terms in the kinetic equation and source terms in the Navier-Stokes equations. These are chosen to obtain maximal agreement with the irreversible thermodynamics of a gas mixture. The structure of the kinetic boundary layer around the sphere is determined from the self-consistent solution of this set of coupled equations with appropriate boundary conditions at the surface of the sphere. The kinetic equation is rewritten as a set of coupled moment equations. A complete set of solutions of these moment equations is constructed by numerical integration inward from the region far away from the droplet, where the background inhomogeneities are small. A technique developed earlier is used to deal with the numerical instability of the moment equations. The solutions obtained for given temperature and pressure profiles in the gas are then combined linearly such that they obey the boundary conditions at the droplet surface; from this solution source terms for the Navier-Stokes equation of the gas are constructed and used to determine improved temperature and pressure profiles for the background gas. For not too large temperature differneces between the droplet and the gas at infinity, self-consistency is reached after a few iterations. The method is applied to the condensation of droplets from a supersaturated vapor as well as to strong evaporation of droplets under the influence of an external heat source, where corrections of up to 40% are obtained.

  14. A simple thermodynamic model useful for calculating gas solubilities in water/brine/hydrocarbon mixtures from 0 to 250 C and 1 to 150 bars

    NASA Astrophysics Data System (ADS)

    Perez, R. J.; Shevalier, M.; Hutcheon, I.

    2004-05-01

    Gas solubility is of considerable interest, not only for the theoretical understanding of vapor-liquid equilibria, but also due to extensive applications in combined geochemical, engineering, and environmental problems, such as greenhouse gas sequestration. Reliable models for gas solubility calculations in salt waters and hydrocarbons are also valuable when evaluating fluid inclusions saturated with gas components. We have modeled the solubility of methane, ethane, hydrogen, carbon dioxide, hydrogen sulfide, and five other gases in a water-brine-hydrocarbon system by solving a non-linear system of equations composed by modified Henry's Law Constants (HLC), gas fugacities, and assuming binary mixtures. HLCs are a function of pressure, temperature, brine salinity, and hydrocarbon density. Experimental data of vapor pressures and mutual solubilities of binary mixtures provide the basis for the calibration of the proposed model. It is demonstrated that, by using the Setchenow equation, only a relatively simple modification of the pure water model is required to assess the solubility of gases in brine solutions. Henry's Law constants for gases in hydrocarbons are derived using regular solution theory and Ostwald coefficients available from the literature. We present a set of two-parameter polynomial expressions, which allow simple computation and formulation of the model. Our calculations show that solubility predictions using modified HLCs are acceptable within 0 to 250 C, 1 to 150 bars, salinity up to 5 molar, and gas concentrations up to 4 molar. Our model is currently being used in the IEA Weyburn CO2 monitoring and storage project.

  15. Coupled gas flow/solid dynamics model for predicting the formation of fracture patterns in gas well simulation experiments. [Propellant mixture used instead of explosives to fracture rock surrounding borehole

    SciTech Connect

    Taylor, L.M.; Swenson, D.V.; Cooper, P.W.

    1984-07-01

    A two-dimensional finite element model for predicting fracture patterns obtained in high energy gas fracture experiments is presented. In these experiments, a mixture of propellants is used instead of explosives to fracture the rock surrounding the borehole. The propellant mixture is chosen to tailor the pressure pulse so that multiple fractures emanate from the borehole. The model allows the fracture pattern and pressure pulse to be calculated for different combinations of propellant mixture, in situ stress conditions, and rock properties. The model calculates the amount of gas generated by the burning propellants using a burn rate given by a power law in pressure. By assuming that the gas behaves as a perfect gas and that the flow down the fractures is isothermal, the loss of gas from the borehole due to flow down the cracks is accounted for. The flow of gas down the cracks is included in an approximate manner by assuming self-similar pressure profiles along the fractures. Numerical examples are presented and compared to three different full-scale experiments. Results show a good correlation with the experimental data over a wide variety of test parameters. 9 reference, 10 figures, 3 tables.

  16. Assessment of gas chromatography time-of-flight accurate mass spectrometry for identification of volatile and semi-volatile compounds in honey.

    PubMed

    Moniruzzaman, M; Rodríguez, I; Ramil, M; Cela, R; Sulaiman, S A; Gan, S H

    2014-11-01

    The performance of gas chromatography (GC) combined with a hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) system for the determination of volatile and semi-volatile compounds in honey samples is evaluated. After headspace (HS) solid-phase microextraction (SPME) of samples, the accurate mass capabilities of the above system were evaluated for compounds identification. Accurate scan electron impact (EI) MS spectra allowed discriminating compounds displaying the same nominal masses, but having different empirical formulae. Moreover, the use of a mass window with a width of 0.005 Da provided highly specific chromatograms for selected ions, avoiding the contribution of interferences to their peak areas. Additional information derived from positive chemical ionization (PCI) MS spectra and ion product scan MS/MS spectra permitted confirming the identity of novel compounds. The above possibilities are illustrated with examples of honey aroma compounds, belonging to different chemical classes and containing different elements in their molecules. Examples of compounds whose structures could not be described are also provided. Overall, 84 compounds, from a total of 89 species, could be identified in 19 honey samples from 3 different geographic areas in the world. The suitability of responses measured for selected ions, corresponding to above species, for authentication purposes is assessed through principal components analysis. PMID:25127626

  17. Carbon dioxide laser with an e-beam-initiated discharge produced in the working gas mixture at a pressure up to 5 atm

    SciTech Connect

    Orlovskii, Viktor M; Alekseev, S B; Tarasenko, Viktor F

    2011-11-30

    A high-pressure CO{sub 2} laser with a discharge initiated by an electron beam of sub-nanosecond duration in the laser gas mixture at a pressure up to 5 atm is fabricated. For the 20-ns pulses the energy from the active volume {approx} 4 cm{sup 3} amounted to 40 mJ. The laser operation at a pulse repetition rate up to 5 Hz is demonstrated. In the gas mixture CO{sub 2}:N{sub 2}:He = 1:1:6 at a pressure 5 atm, the specific energy deposition of {approx} 0.07 J cm{sup -3} atm{sup -1} is obtained in the process of a non-self-sustained discharge with ionisation amplification.

  18. Fission-fragment excited xenon/rare gas mixtures. II. Small signal gain of the 2. 03 [mu]m xenon transition

    SciTech Connect

    Hebner, G.A.; Hays, G.N. )

    1993-04-15

    The results of small signal gain measurements of the 2.03 [mu]m (5[ital d][3/2][sub 1][minus]6[ital p][3/2][sub 1]) xenon transition in fission-fragment excited Ar/Xe, He/Ar/Xe, Ne/Ar/Xe, and He/Ne/Ar/Xe gas mixtures is presented. Time resolved small signal gain was probed using a cw He/Xe discharge laser as a function of total pressure, xenon concentration, pump power, He/Ne/Ar buffer ratio, and impurity concentration. Small signal gains of up to 6%/cm were observed for pump rates of 15 W/cm[sup 3]. Addition of helium and/or neon to the argon buffer increased the width of the laser gain and reduced the absorption observed under some experimental conditions. Experimentally determined gain scaling laws for several gas mixtures are presented.

  19. Effective ionization coefficients, limiting electric fields, and electron energy distributions in CF3I + CF4 + Ar ternary gas mixtures

    NASA Astrophysics Data System (ADS)

    Tezcan, S. S.; Dincer, M. S.; Bektas, S.

    2016-07-01

    This paper reports on the effective ionization coefficients, limiting electric fields, electron energy distribution functions, and mean energies in ternary mixtures of (Trifluoroiodomethane) CF3I + CF4 + Ar in the E/N range of 100-700 Td employing a two-term solution of the Boltzmann equation. In the ternary mixture, CF3I component is increased while the CF4 component is reduced accordingly and the 40% Ar component is kept constant. It is seen that the electronegativity of the mixture increases with increased CF3I content and effective ionization coefficients decrease while the limiting electric field values increase. Synergism in the mixture is also evaluated in percentage using the limiting electric field values obtained. Furthermore, it is possible to control the mean electron energy in the ternary mixture by changing the content of CF3I component.

  20. Pressure dependence of the mixing rate for the free convection of a binary gas mixture in a two-flask apparatus

    NASA Astrophysics Data System (ADS)

    Aleksandrov, O. E.; Seleznev, V. D.

    2016-07-01

    A theoretical model of steady-state mixing is considered for a binary gas mixture under conditions of free gravitational convection in a vertical channel with impenetrable walls that connects two flasks. It is shown that the mixing rate in the supercritical regime has a peak and then deceases monotonically with increasing pressure. The experimental results are shown to be in good agreement with theoretical data.

  1. High altitude chemically reacting gas particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.

  2. A new portable generator to dynamically produce SI-traceable reference gas mixtures for VOCs and water vapour at atmospheric concentration

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Pascale, Céline; Ackermann, Andreas; Leuenberger, Daiana; Niederhauser, Bernhard

    2016-04-01

    In the framework of the KEY-VOCs and AtmoChem-ECV projects, we are currently developing new facilities to dynamically generate reference gas mixtures for a variety of reactive compounds, at concentrations measured in the atmosphere and in a SI-traceable way (i.e. the amount of substance fraction in mole per mole is traceable to SI-units). Here we present the realisation of such standards for water vapour in the range 1-10 μmol/mol and for volatile organic compounds (VOCs) such as limonene, alpha-pinene, MVK, MEK, in the nmol/mol range. The matrix gas can be nitrogen or synthetic air. Further development in gas purification techniques could make possible to use purified atmospheric air as carrier gas. The method is based on permeation and dynamic dilution: one permeator containing a pure substance (either water, limonene, MVK, MEK or α-pinene) is kept into a permeation chamber with a constant gas flow. The mass loss is precisely calibrated using a magnetic suspension balance. The carrier gas is purified beforehand from the compounds of interest to the required level, using commercially available purification cartridges. This primary mixture is then diluted to reach the required amount of substance fraction. All flows are piloted by mass flow controllers which makes the production process flexible and easily adaptable to generate the required concentration. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. Two setups are currently developed: one already built and fixed in our laboratory in Bern as well as a portable generator that is still under construction and that could be used anywhere in the field. The permeation chamber of the portable generator has multiple individual cells allowing the generation of mixtures up to 5 different components if needed. Moreover the presented technique can be adapted and applied to a large variety of molecules (e.g., NO2, BTEX, CFCs

  3. Effect of N{sub 2} + H{sub 2} gas mixtures in plasma nitriding on tribological properties of duplex surface treated steels

    SciTech Connect

    Taktak, Sukru Gunes, Ibrahim; Ulker, Sukru; Yalcin, Yilmaz

    2008-12-15

    Thermo-reactive diffusion chromizing followed by pulsed plasma nitriding were carried out on AISI 52100 and 8620 bearing steels. The chromized samples were pulse-plasma nitrided for 5 h at 500 deg. C in various N{sub 2}-H{sub 2} gas mixtures. The coated steels were characterized using scanning electron microscopy, X-ray diffraction and microhardness testing. The unlubricated wear behaviors of only chromized and duplex treated steels were investigated in ball-on-disc system tests at room temperature. X-ray diffraction patterns of the duplex treated samples containing H{sub 2} indicated the formation of dominant CrN and Cr{sub 2}N nitrides as well as the formation of Cr{sub 3}C{sub 2} and Cr{sub 7}C{sub 3} carbides. Gas mixtures in the plasma nitriding, which was performed after chromizing, have a significant influence on the wear rate of the duplex treated steels. The wear and friction tests showed that the lowest friction coefficient and wear rates were observed for the samples duplex treated in a 50%N{sub 2} +50%H{sub 2} plasma. Conversely, the lowest wear resistance was observed on the samples duplex treated in a gas mixture of 75%N{sub 2} + 25%H{sub 2}, probably due to formation of a hard and brittle layer.

  4. Monitoring of CO2/H2S gas mixture injection in basaltic rocks at Hellisheiði Geothermal Power Plant, Iceland

    NASA Astrophysics Data System (ADS)

    Clark, Deirdre E.; Gunnarsson, Ingvi; Aradóttir, Edda S.; Gunnlaugsson, Einar; Júlíusson, Bjarni M.; Matter, Juerg M.; Stute, Martin; Oelkers, Eric H.; Snæbjörnsdóttir, Sandra Ó.; Gíslason, Sigurður R.

    2016-04-01

    Hellisheiði geothermal power plant emits about 41,000 tonnes of CO2 and 10,000 tonnes of H2S per year as a by-product of geothermal energy production. Icelandic regulations, stricter than WHO guidelines, have been in effect in order to reduce H2S emissions of the geothermal industry, while carbon capture and storage (CCS) is one method recommended to minimise the amount of CO2 released into the atmosphere. The overall cost of CCS is dominated by that of capture and gas separation. This capture cost could be lowered by injecting gas mixtures into rocks as is now being tested at Hellisheiði geothermal power plant in SW-Iceland. There, a gas mixture of 60% CO2 and 40% H2S is dissolved in water from the plant and injected into the basaltic rocks. The CarbFix and SulFix pilot projects demonstrated solubility storage of the pure separate gases in a few minutes [1,2] and that more than 80% of the injected CO2 into basaltic rocks was mineralised within a year from its injection at 20-50°C [3]. The first phase of the gas mixture injection began on 3 June 2014, while tracer tests started three weeks later. By the end of the year 2015, approximately 6280 tonnes of CO2 and 3520 tonnes of H2S had been injected. The gases are dissolved in condensation water, mixed with waste water and injected to 750 m depth into a high temperature reservoir of 200-270°C. Water and gas samples were collected from four monitoring wells. There is a minor increase in CO2 (total dissolved carbon) and H2S (total dissolved sulphite), while the majority of major and minor elements are relatively stable. The data from monitoring wells therefore suggests that some of the injected gas mixture is already stored as minerals in the basaltic reservoir. [1] Sigfusson et al. (2015) Int. J. of Greenh. Gas Control 37, 213-219. [2] Gunnarsson et al. (2013) GRC Transactions 37, 785-789. [3] Matter et al. (2014) Energy Procedia 63, 4180-4185.

  5. Highly accurate nitrogen dioxide (NO2) in nitrogen standards based on permeation.

    PubMed

    Flores, Edgar; Viallon, Joële; Moussay, Philippe; Idrees, Faraz; Wielgosz, Robert Ian

    2012-12-01

    The development and operation of a highly accurate primary gas facility for the dynamic production of mixtures of nitrogen dioxide (NO(2)) in nitrogen (N(2)) based on continuous weighing of a permeation tube and accurate impurity quantification and correction of the gas mixtures using Fourier transform infrared spectroscopy (FT-IR) is described. NO(2) gas mixtures in the range of 5 μmol mol(-1) to 15 μmol mol(-1) with a standard relative uncertainty of 0.4% can be produced with this facility. To achieve an uncertainty at this level, significant efforts were made to reduce, identify and quantify potential impurities present in the gas mixtures, such as nitric acid (HNO(3)). A complete uncertainty budget, based on the analysis of the performance of the facility, including the use of a FT-IR spectrometer and a nondispersive UV analyzer as analytical techniques, is presented in this work. The mixtures produced by this facility were validated and then selected to provide reference values for an international comparison of the Consultative Committee for Amount of Substance (CCQM), number CCQM-K74, (1) which was designed to evaluate the consistency of primary NO(2) gas standards from 17 National Metrology Institutes. PMID:23148702

  6. Isotopic Ratio Outlier Analysis of the S. cerevisiae Metabolome Using Accurate Mass Gas Chromatography/Time-of-Flight Mass Spectrometry: A New Method for Discovery.

    PubMed

    Qiu, Yunping; Moir, Robyn; Willis, Ian; Beecher, Chris; Tsai, Yu-Hsuan; Garrett, Timothy J; Yost, Richard A; Kurland, Irwin J

    2016-03-01

    Isotopic ratio outlier analysis (IROA) is a (13)C metabolomics profiling method that eliminates sample to sample variance, discriminates against noise and artifacts, and improves identification of compounds, previously done with accurate mass liquid chromatography/mass spectrometry (LC/MS). This is the first report using IROA technology in combination with accurate mass gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS), here used to examine the S. cerevisiae metabolome. S. cerevisiae was grown in YNB media, containing randomized 95% (13)C, or 5%(13)C glucose as the single carbon source, in order that the isotopomer pattern of all metabolites would mirror the labeled glucose. When these IROA experiments are combined, the abundance of the heavy isotopologues in the 5%(13)C extracts, or light isotopologues in the 95%(13)C extracts, follows the binomial distribution, showing mirrored peak pairs for the molecular ion. The mass difference between the (12)C monoisotopic and the (13)C monoisotopic equals the number of carbons in the molecules. The IROA-GC/MS protocol developed, using both chemical and electron ionization, extends the information acquired from the isotopic peak patterns for formulas generation. The process that can be formulated as an algorithm, in which the number of carbons, as well as the number of methoximations and silylations are used as search constraints. In electron impact (EI/IROA) spectra, the artifactual peaks are identified and easily removed, which has the potential to generate "clean" EI libraries. The combination of chemical ionization (CI) IROA and EI/IROA affords a metabolite identification procedure that enables the identification of coeluting metabolites, and allowed us to characterize 126 metabolites in the current study. PMID:26820234

  7. Hessian Fly (Diptera: Cecidomyiidae) Mortality in Export Bale Compressors and Response to a Hydrogen Phosphide and Carbon Dioxide Gas Mixture.

    PubMed

    Yokoyama, Victoria Y; Cambron, Sue E; Muhareb, Jeannette

    2015-02-01

    Hessian fly, Mayetiola destructor (Say), puparial mortality was evaluated in three modern hay compressors that produce compressed standard and large-size bales for export to Asia-Pacific countries. Pressure on bales ranged from 93.4 to 139.4 kg/cm2, causing 90.0-99.9% mortality of 10,891-23,164 puparia. Puparial response to a cylinderized hydrogen phosphide (1.8-2%) and carbon dioxide (97.8-98%) gas mixture was evaluated as a potential quarantine treatment using 2-4 d-exposures to low, medium, and high doses of 0.73-0.86, 1.05-1.26, and 1.39-1.56 mg/liter, and temperatures of 5.87±1.14, 9.84±0.05, 16.14±0.14, and 20.35±0.11°C. Accumulative concentration multiplied by time products (mg h/liter) at all fumigation temperatures for low, medium, and high fumigant doses were 34.9-37.7, 52.2-54.3, and 67.9-73.1 for 2 d; 52.7-60.6, 77.9-89.2, and 102.1-110.7 for 3 d; and 69.9-82.0, 99.4-118.2, and 132.3-146.8 for 4 d, respectively. An increase in mortality was significantly related to an increase in fumigation duration at 5, 10, and 15°C, and an increase in fumigant dose at 10 and 15°C. Puparial mortality ranged from 97.2 to 100% at all doses and durations at 20°C with no survivors at the highest dose for 3 d and the mid- and highest dose for 4 d. Bale compression is currently used in the first phase of a multiple quarantine treatment to control potential Hessian fly contaminants in exported hay. The novel fumigant may have application as a single quarantine treatment for noncompressed, standard exported bales. PMID:26470109

  8. Toxicity of carbon monoxide-hydrogen cyanide gas mixtures: Expose concentration, time-to-incapacitation, carboxyhemoglobin, and blood cyanide parameters. Final report

    SciTech Connect

    Sanders, D.C.; Chaturvedi, A.K.; Endecott, B.R.; Ritter, R.M.; Vu, N.

    1994-04-01

    During aircraft interior fires, carbon monoxide (CO) and hydrogen cyanide (HCN) are produced in sufficient amounts to cause incapacitation and death. Time-to-incapacitation (ti) is a practical parameter for estimating escape time in fire environments. Exposures to CO-HCN mixtures have demonstrated that these gases have additive effects (producing shorter times to incapacitation), but the resulting concentrations of carboxyhemoglobin (COHb) and blood cyanide (CN-) at incapacitation are not well defined. These undefined relationships between COHb and blood CN- levels and the onset of incapacitation make the interpretation of postmortem levels difficult for medical accident investigators. To explore these relationships, ti was determined in laboratory rats exposed to two CO-HCN mixtures consisting of CO and HCN concentrations that produce 5- and 35-min ti in individual gas exposures; COHb and blood CN- concentrations were determined at incapacitation. In the high concentration CO-HCN mixture, the resultant ti was shortened from 5 min to 2.6 min; COHb dropped from 81% to 55% and CN- from 2.3 microns/mL to 1.1 microns/mL. At the lower concentration COHCN mixture, where the resultant ti was reduced from 35 min to 11.1 min, COHb dropped from 71% to 61% and blood CN- decreased from 4.2 microns/mL to 1.1 microns/mL. Comparison of the COHb and blood CN- values with the values from our signal gas exposure studies indicated that any alteration of the uptake of either gas in blood by the presence of the other was minimal. These findings suggest that changes in COHb and blood CN- may not be directly correlated with the onset of incapacitation and that postmortem blood levels should be carefully evaluated, particularly when both gases are present.

  9. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  10. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats.

    PubMed

    Hyldegaard, O; Kerem, D; Melamed, Y

    2011-09-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing. We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture while at 285 kPa or following immediate recompression to either 285 or 405 kPa, breathing 80:20 and 50:50 heliox mixtures. During the isobaric shifts, some bubbles in adipose tissue grew marginally for 10-30 min, subsequently they shrank and disappeared at a rate similar to or faster than during air breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent shrinkage of all air bubbles, until they disappeared from view. Deep tissue isobaric counterdiffusion may cause some air bubbles to grow transiently in adipose tissue. The effect is marginal and of no clinical consequence. Bubble disappearance rate is faster with heliox breathing mixtures as compared to air. We see no reason for reservations in the use of heliox breathing during treatment of air-diving-induced decompression sickness. PMID:21318313

  11. Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl4/O2/N2 Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Niu, Jinhai; Zhang, Zhihui; Fan, Hongyu; Yang, Qi; Liu, Dongping; Qiu, Jieshan

    2014-07-01

    Low-pressure dielectric barrier discharge (DBD) TiCl4/O2 and N2 plasmas have been used to deposit titanium oxide films at different power supply driving frequencies. A homemade large area low pressure DBD reactor was applied, characterized by the simplicity of the experimental set-up and a low consumption of feed gas and electric power, as well as being easy to operate. Atomic force microscopy, scanning electron microscopy, energy dispersive spectroscopy, and contact angle measurements have been used to characterize the deposited films. Experimental results show all deposited films are uniform and hydrophilic with a contact angle of about 15°. Compared to titanium oxide films deposited in TiCl4/O2 gas mixtures, those in TiCl4/O2/N2 gas mixtures are much more stable. The contact angle of titanium oxide films in TiCl4/O2/N2 gas mixtures with the addition of 50% N2 and 20% TiCl4 is still smaller than 20°, while that of undoped titanium oxide films is larger than 64° when they are measured after one week. The low-pressure TiCl4/O2 plasmas consist of pulsed glow-like discharges with peak widths of several microseconds, which leads to the uniform deposition of titanium oxide films. Increasing a film thickness over several hundreds of nm leads to the film's fragmentation due to the over-high film stress. Optical emission spectra (OES) of TiCl4/O2 DBD plasmas at various power supply driving frequencies are presented.

  12. Effects of Tropical High Tannin Non Legume and Low Tannin Legume Browse Mixtures on Fermentation Parameters and Methanogenesis Using Gas Production Technique

    PubMed Central

    Seresinhe, T.; Madushika, S. A. C.; Seresinhe, Y.; Lal, P. K.; Ørskov, E. R.

    2012-01-01

    In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima×Leucaena leucocephala (LL) (Trt 1), C. integerrima×Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana×LL (Trt 3), A. lindeliyana×GS (Trt 4), Ceiba perntandra×LL (Trt 5), C. perntandra×GS (Trt 6), Artocarpus heterophyllus×LL (Trt 7), A. heterophyllus×GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (p<0.05) were observed in in vitro gas production (IGVP) within treatments over a 48 h period dominated by C. perntandra×G. sepium (Trt 6). The net gas production (p<0.05) was also high with Trt6 followed by A. heterophyllus×L. leucocephala (Trt 7) and A. heterophyllus×G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus×G. sepium (Trt 8) mixture which may be attributed with it’s highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (p<0.05) was found in C. perntandra×G. sepium (Trt 6) followed by Artocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental

  13. Calculation of the thermal conductivity of low-density CH4-N2 gas mixtures using an improved kinetic theory approach

    NASA Astrophysics Data System (ADS)

    Hellmann, Robert; Bich, Eckard; Vesovic, Velisa

    2016-04-01

    The thermal conductivity of low-density CH4-N2 gas mixtures has been calculated by means of the classical trajectory method using state-of-the-art intermolecular potential energy surfaces for the CH4-CH4, N2-N2, and CH4-N2 interactions. Results are reported in the temperature range from 70 K to 1200 K. Since the thermal conductivity is influenced by the vibrational degrees of freedom of the molecules, which are not included in the rigid-rotor classical trajectory computations, a new correction scheme to account for vibrational degrees of freedom in a dilute gas mixture is presented. The calculations show that the vibrational contribution at the highest temperature studied amounts to 46% of the total thermal conductivity of an equimolar mixture compared to 13% for pure nitrogen and 58% for pure methane. The agreement with the available experimental thermal conductivity data at room temperature is good, within ±1.4%, whereas at higher temperatures, larger deviations up to 4.5% are observed, which can be tentatively attributed to deteriorating performance of the measuring technique employed. Results are also reported for the magnitude and temperature dependence of the rotational collision number, Zrot, for CH4 relaxing in collisions with N2 and for N2 relaxing in collisions with CH4. Both collision numbers increase with temperature, with the former being consistently about twice the value of the latter.

  14. Calculation of the thermal conductivity of low-density CH4-N2 gas mixtures using an improved kinetic theory approach.

    PubMed

    Hellmann, Robert; Bich, Eckard; Vesovic, Velisa

    2016-04-01

    The thermal conductivity of low-density CH4-N2 gas mixtures has been calculated by means of the classical trajectory method using state-of-the-art intermolecular potential energy surfaces for the CH4-CH4, N2-N2, and CH4-N2 interactions. Results are reported in the temperature range from 70 K to 1200 K. Since the thermal conductivity is influenced by the vibrational degrees of freedom of the molecules, which are not included in the rigid-rotor classical trajectory computations, a new correction scheme to account for vibrational degrees of freedom in a dilute gas mixture is presented. The calculations show that the vibrational contribution at the highest temperature studied amounts to 46% of the total thermal conductivity of an equimolar mixture compared to 13% for pure nitrogen and 58% for pure methane. The agreement with the available experimental thermal conductivity data at room temperature is good, within ±1.4%, whereas at higher temperatures, larger deviations up to 4.5% are observed, which can be tentatively attributed to deteriorating performance of the measuring technique employed. Results are also reported for the magnitude and temperature dependence of the rotational collision number, Z(rot), for CH4 relaxing in collisions with N2 and for N2 relaxing in collisions with CH4. Both collision numbers increase with temperature, with the former being consistently about twice the value of the latter. PMID:27059564

  15. Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures

    NASA Astrophysics Data System (ADS)

    Guivan, Mykola M.; Malinina, Antonina A.; Brablec, Antonin

    2011-06-01

    Emission spectra from an atmospheric-pressure dielectric barrier discharge (DBD) with HgBr2/He or HgBr2/Xe/Kr mixtures, as well as the electrical characteristics, were investigated at repetition frequencies of sinusoidal voltage pulses up to 125 kHz. In the spectra, the study revealed radiation from HgBr(B-X, C-X) exciplex molecules, atomic lines of mercury and rare gases, and in mixtures with xenon, radiation of XeBr(B-X, B-A) exciplex molecules. Regularities in the spectral characteristics of the radiation from the gas-discharge plasma were discussed. The electron energy distribution function, the specific energy lost in the processes involving electrons, the electron temperature and density, and the rate constants of elastic and inelastic electron scattering by the components of the working mixture were calculated as functions of the reduced field E/N. The high-frequency atmospheric-pressure barrier discharge in mixtures of mercury dibromide with gases can be used in multi-wavelength exciplex lamps, operating in the UV and visible regions.

  16. Gain dynamics in a pulsed laser amplifier on CO-He, CO-N{sub 2} and CO-O{sub 2} gas mixtures

    SciTech Connect

    Vetoshkin, S V; Ionin, Andrei A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Rulev, O A; Seleznev, L V; Sinitsyn, D V

    2007-02-28

    Small-signal gain (SSG) dynamics G(t) in the active medium of a pulsed laser amplifier operating on the v+1{yields}vP(J) vibrational-rotational transitions of the CO molecule, including high (v > 15) vibrational transitions, is studied experimentally. It is demonstrated that as the vibrational number increases from 7 to 31, G changes with time slower, while G{sub max} decreases in this case by three times. It is found that at a fixed value of v the rate of the SSG rise increases with increasing the rotational number J > 6. It is shown that in oxygen-containing gas mixtures (CO:O{sub 2} = 1:19) the value of G{sub max} at low vibrational levels (for v < 13) can substantially exceed G{sub max} in mixtures containing nitrogen (CO:N{sub 2} = 1:19) instead of oxygen. It is found that the efficiency (47%) of a CO laser on mixtures with a high concentration of oxygen considerably exceeds the efficiency (30%) of a CO laser operating on a nitrogen-containing mixture. (active media)

  17. ACTIVE MEDIA: Gain dynamics in a pulsed laser amplifier on CO-He, CO-N2 and CO-O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Vetoshkin, S. V.; Ionin, Andrei A.; Klimachev, Yu M.; Kozlov, A. Yu; Kotkov, A. A.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.

    2007-02-01

    Small-signal gain (SSG) dynamics G(t) in the active medium of a pulsed laser amplifier operating on the v+1→vP(J) vibrational-rotational transitions of the CO molecule, including high (v > 15) vibrational transitions, is studied experimentally. It is demonstrated that as the vibrational number increases from 7 to 31, G changes with time slower, while Gmax decreases in this case by three times. It is found that at a fixed value of v the rate of the SSG rise increases with increasing the rotational number J > 6. It is shown that in oxygen-containing gas mixtures (CO:O2 = 1:19) the value of Gmax at low vibrational levels (for v < 13) can substantially exceed Gmax in mixtures containing nitrogen (CO:N2 = 1:19) instead of oxygen. It is found that the efficiency (47%) of a CO laser on mixtures with a high concentration of oxygen considerably exceeds the efficiency (30%) of a CO laser operating on a nitrogen-containing mixture.

  18. Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry (GC-VUV-MS)

    SciTech Connect

    Aerosol Dynamics Inc; Aerodyne Research, Inc.,; Tofwerk AG, Thun; Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Doug R.; Goldstein, Allen H.

    2011-09-13

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography-mass spectrometry (GC-MS) techniques. This work uses vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally"unresolved complex mixture" by separating components by GC retention time, tR, and mass-to-charge ratio, m/Q, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved based on tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally-relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. The classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  19. A PROCEDURE FOR ESTABLISHING TRACEABILITY OF GAS MIXTURES TO CERTAIN NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIALS

    EPA Science Inventory

    This procedure includes the specifications and requirements that must be followed by gas manufacturers during the preparation of compressed cylinder gas Certified Reference Materials (CRM). A CRM is a certified gas standard prepared at a concentration that does not exceed + or - ...

  20. Sedimentation of a two-dimensional colloidal mixture exhibiting liquid-liquid and gas-liquid phase separation: a dynamical density functional theory study.

    PubMed

    Malijevský, Alexandr; Archer, Andrew J

    2013-10-14

    We present dynamical density functional theory results for the time evolution of the density distribution of a sedimenting model two-dimensional binary mixture of colloids. The interplay between the bulk phase behaviour of the mixture, its interfacial properties at the confining walls, and the gravitational field gives rise to a rich variety of equilibrium and non-equilibrium morphologies. In the fluid state, the system exhibits both liquid-liquid and gas-liquid phase separation. As the system sediments, the phase separation significantly affects the dynamics and we explore situations where the final state is a coexistence of up to three different phases. Solving the dynamical equations in two-dimensions, we find that in certain situations the final density profiles of the two species have a symmetry that is different from that of the external potentials, which is perhaps surprising, given the statistical mechanics origin of the theory. The paper concludes with a discussion on this. PMID:24116640

  1. The final LDRD report for the project entitled: {open_quotes}Enhanced analysis of complex gas mixtures by pattern recognition of microsensor array signals{close_quotes}

    SciTech Connect

    Hughes, R.C.; Osbourn, G.C.

    1996-09-01

    Microsensors do not have the selectivity to chemical species available in large laboratory instruments. This project employed arrays of catalytically gated silicon microsensors with different catalysts to create data streams which can be analyzed by pattern recognition programs. One of the most significant accomplishments of the program was the demonstration of that mixtures of H{sub 2} with the oxidants NO{sub x} and O{sub 2} could distinguished from one another by the use of different catalytic metals on the Sandia Robust Hydrogen (SRH) sensors and the newly developed pattern recognition algorithm. This sensor system could be used to identify explosive gas mixtures and analyze exhaust streams for pollution control.

  2. Solubilities of methane, nitrogen, carbon dioxide, and a natural gas mixture in aqueous sodium bicarbonate solutions under high pressure and elevated temperature

    SciTech Connect

    Gao, J.; Zheng, D.Q.; Guo, T.M.

    1997-01-01

    The solubility of natural gas mixtures in formation water (brine) plays an important role in estimating the natural gas reserve, the formation/dissociation conditions of methane hydrates in situ, and the interfacial tension of the hydrocarbon-formation water system. However, solubility data at high pressure and elevated temperature conditions for aqueous electrolyte systems are rare. Recently, in the reservoirs found at the South China Sea areas, the main salt species in the formation water is sodium bicarbonate, and the solubility data of gases in aqueous sodium bicarbonate solutions under reservoir conditions have not previously been reported. An apparatus for measuring the solubility of gases in aqueous electrolyte solutions under high pressure and elevated temperature conditions is described. The solubility of methane, carbon dioxide, nitrogen, and a natural gas mixture in aqueous sodium bicarbonate solutions were measured up to 58 MPa and 403 K. The modified Patel-Teja equation of state proposed by Zuo and Guo (1991) for aqueous electrolyte systems was applied to correlate the measured solubility data, and satisfactory results were obtained.

  3. Atomic-scale modeling of chemical vapor deposition processes from new complicated gas-phase mixtures for micro- and nanoelectronic applications

    NASA Astrophysics Data System (ADS)

    Makhviladze, T. M.; Sarychev, M. E.

    2009-01-01

    Low-pressure chemical vapor deposition (CVD) is one of the most important processes for obtaining thin films widely used in semiconductor and in IC technology. Because of the baffling complexity of deposition process the usually-used approaches in CVD modeling include a great number of empiric non-calculated parameters, and this drawback becomes a grave disadvantage if one needs to model the process with new reagents and materials which were not used before. So we place primary emphasis upon the development of non-empirical deposition models that rely on phenomenological theories and experimental data only to a minimal extent. We are presenting the atomistic-scale models and software package throughout the entire deposition process that are based mainly on the first principles and ab initio methods. The main modeling stages are studied and discussed in detail, namely: atomistic modeling of gas-phase and surface reactions, determination of the basic chemical and physical mechanisms for the considered gas mixtures, calculations of the reactions rates for elementary reactions and acts, Monte Carlo and/or molecular dynamics simulation of the thin film growth, and modeling of macrokinetic processes in realistic deposition flow-reactor chamber. The modeling results for thin films deposition from actual gas mixtures are given. The physical properties of films as well as their stoichiometric composition and structure in dependence of process conditions are discussed.

  4. Screening Metal-Organic Frameworks by Analysis of Transient Breakthrough of Gas Mixtures in a Fixed Bed Adsorber

    SciTech Connect

    Krishna, Rajamani; Long, Jeffrey R.

    2011-07-07

    Metal–organic frameworks (MOFs) offer considerable potential for separating a variety of mixtures that are important in applications such as CO₂ capture and H₂ purification. In view of the vast number of MOFs that have been synthesized, there is a need for a reliable procedure for comparing screening and ranking MOFs with regard to their anticipated performance in pressure swing adsorption (PSA) units. For this purpose, the most commonly used metrics are the adsorption selectivity and the working capacity. Here, we suggest an additional metric for comparing MOFs that is based on the analysis of the transient response of an adsorber to a step input of a gaseous mixture. For a chosen purity of the gaseous mixture exiting from the adsorber, a dimensionless breakthrough time τ{sub break} can be defined and determined; this metric determines the frequency of required regeneration and influences the productivity of a PSA unit. The values of τ{sub break} are dictated both by selectivity and by capacity metrics .By performing transient adsorber calculations for separation of CO₂/H₂, CO₂/CH₄, CH₄/H₂, and CO₂/CH₄/H₂ mixtures, we compare the values of τbreak to highlight some important advantages of MOFs over conventionally used adsorbents such as zeolite NaX. For a given separation duty, such comparisons provide a more realistic ranking of MOFs than afforded by either selectivity or capacity metrics alone. We conclude that breakthrough calculations can provide an essential tool for screening MOFs.

  5. Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor

    SciTech Connect

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang

    2010-08-10

    The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

  6. Accurate Analysis and Characterization of Silicon Field Effect Transistor-Based Terahertz Wave Detector with Quasi-Plasma Two-Dimensional Electron Gas.

    PubMed

    Kim, Kwan Sung; Ryu, Min Woo; Lee, Jeong Seop; Kim, Kyung Rok

    2016-05-01

    We report the nonresonant plasmonic terahertz (THz) wave detector based on the silicon (Si) field effect transistor (FET) with a technology computer-aided design (TCAD) platform. The plasma wave behavior has been modeled by a quasi-plasma electron box as a two-dimensional electron gas (2DEG) in the channel of the FET. The incoming alternating current (AC) signal as the THz wave radiation can induce the direct-current (DC) voltage difference between the source and drain, which is called the photoresponse. For accurate analysis of the modulation and propagation of the channel electron density as the plasma wave, we have characterized the quasi-plasma 2DEG model with two key parameters, such as quasi-plasma 2DEG length (I(QP)) and density (N(QP)). By using our normalization method, I(QP) and N(QP) is defined exactly as extracting the average point of the electron density. We also investigate the performance enhancement of the plasmonic terahertz wave detector based on Si FET by scaling down the gate oxide thickness (t(ox)), which is a significant parameter of FET-based plasmonic terahertz detector for the channel electron density modulation. According to scaling down t(ox), the responsivity (R(v)) and noise equivalent power (NEP), which are the important performance metrics of the THz wave detector, have been enhanced. The proposed methodologies will provide the advanced physical analysis and structural design platform for developing the plasmonic terahertz detectors operating in nonresonant regime. PMID:27483817

  7. First accurate experimental study of Mu reactivity from a state-selected reactant in the gas phase: the Mu + H2{1} reaction rate at 300 K

    NASA Astrophysics Data System (ADS)

    Bakule, Pavel; Sukhorukov, Oleksandr; Ishida, Katsuhiko; Pratt, Francis; Fleming, Donald; Momose, Takamasa; Matsuda, Yasuyuki; Torikai, Eiko

    2015-02-01

    This paper reports on the experimental background and methodology leading to recent results on the first accurate measurement of the reaction rate of the muonium (Mu) atom from a state-selected reactant in the gas phase: the Mu + H2\\{1\\}\\to MuH + H reaction at 300 K, and its comparison with rigorous quantum rate theory, Bakule et al (2012 J. Phys. Chem. Lett. 3 2755). Stimulated Raman pumping, induced by 532 nm light from the 2nd harmonic of a Nd:YAG laser, was used to produce H2 in its first vibrational (v = 1) state, H2\\{1\\}, in a single Raman/reaction cell. A pulsed muon beam (from ‘ISIS’, at 50 Hz) matched the 25 Hz repetition rate of the laser, allowing data taking in equal ‘Laser-On/Laser-Off’ modes of operation. The signal to noise was improved by over an order of magnitude in comparison with an earlier proof-of-principle experiment. The success of the present experiment also relied on optimizing the overlap of the laser profile with the extended stopping distribution of the muon beam at 50 bar H2 pressure, in which Monte Carlo simulations played a central role. The rate constant, found from the analysis of three separate measurements, which includes a correction for the loss of {{H}2}\\{1\\} concentration due to collisional relaxation with unpumped H2 during the time of each measurement, is {{k}Mu}\\{1\\} = 9.9[(-1.4)(+1.7)] × 10-13 cm3 s-1 at 300 K. This is in good to excellent agreement with rigorous quantum rate calculations on the complete configuration interaction/Born-Huang surface, as reported earlier by Bakule et al, and which are also briefly commented on herein.

  8. A generalized model for the thermodynamic properties of mixtures

    SciTech Connect

    Lemmon, E.W.; Jacobsen, R.T.

    1999-05-01

    A mixture model explicit in Helmholtz energy has been developed which is capable of predicting thermodynamic properties of mixtures containing nitrogen, argon, oxygen, carbon dioxide, methane, ethane, propane, n-butane, i-butane, R-32, R-125, R-134a, and R-152a within the estimated accuracy of available experimental data. The Helmholtz energy of the mixture is the sum of the ideal gas contribution, the compressibility for real gas contribution, and the contribution from mixing. The contribution from mixing is given by a single generalized equation which is applied to all mixtures studied in this work. The independent variables are the density, temperature, and composition. The model may be used to calculate the thermodynamic properties of mixtures at various compositions including dew and bubble point properties and critical points. It incorporates accurate published equations of state for each pure fluid. The estimated accuracy of calculated properties is {+-}0.2% in density, {+-}0.1% in the speed of sound at pressures below 10 MPa, {+-}0.5% in the speed of sound for pressures above 10 MPa, and {+-}1% in heat capacities. In the region from 250 to 350 K at pressures up to 30 MPa, calculated densities are within {+-}0.1% for most gaseous phase mixtures. For binary mixtures where the critical point temperatures of the pure fluid constituents are within 100 K of each other, calculated bubble point pressures are generally accurate to within {+-}1 to 2%. For mixtures with critical points further apart, calculated bubble point pressures are generally accurate to within {+-}5 to 10%.

  9. Initiation of ignition of a combustible gas mixture in a closed volume by the radiation of a high-power pulsed CO{sub 2} laser

    SciTech Connect

    Kazantsev, S Yu; Kononov, I G; Kossyi, I A; Popov, N A; Tarasova, N M; Firsov, K N

    2012-01-31

    The results of experiments on initiating the ignition of a CH{sub 4} - O{sub 2} - SF{sub 6} triple gas mixture in a closed volume by the radiation of a high-power CO{sub 2} laser are presented. It is shown that spatially nonuniform (in the direction of the laser beam) gas heating by the laser radiation leads to formation of a fast combustion wave, propagating along the chamber axis and giving rise to 'instantaneous' ignition. At the threshold value 16.5 J of the laser radiation energy the fast combustion wave is transformed into a detonation wave, which causes an explosion and destruction of the reaction chamber.

  10. CO{sub 2} laser welding of duplex and super-duplex stainless steels (the effect of argon-nitrogen assist-gas mixtures)

    SciTech Connect

    Robinson, J.M.; Reed, R.C.; Camyab, A.

    1996-12-31

    Continuous wave CO{sub 2} laser welds have been fabricated on duplex and super duplex stainless steel substrates at a power of 3.5 kW. The work has examined the influence of Ar-N{sub 2} assist-gas mixtures on weld metal composition and microstructure. Welding in pure argon leads to reduction in the Cr, Ni, Mo and N content of the weld metal and a significant decrease in austenite volume fraction relative to the baseplate. Relative to welding in Ar, the use of a N{sub 2} bearing assist-gas restores the Cr, Ni and Mo levels to those found in the baseplate at the welding speeds employed. Moreover, the N{sub 2} bearing assist-gases result in an increase in the weld metal N content and austenite volume fraction relative to welding in pure Ar.

  11. Design of oil-free simple turbo type 65 K/6 KW helium and neon mixture gas refrigerator for high temperature superconducting power cable cooling

    NASA Astrophysics Data System (ADS)

    Saji, N.; Asakura, H.; Yoshinaga, S.; Ishizawa, T.; Miyake, A.; Obata, M.; Nagaya, S.

    2002-05-01

    For the requirement of HTS facility cooling, we propose oil-free simple turbo-type refrigerator. The working gas is a helium and neon mixture. Two single-stage turbo compressors and two expansion turbines are applied to the cycle. The rotor consists of the compressor impeller, turbine impeller and driving motor, and is supported by foil type gas bearing. The refrigerator requires two rotating machines with excellent reliability and compactness, and the motor power required is 72.5 kW for a refrigeration load of 6 kW. For the cooling of power cable, sub-cooled pressurized liquid nitrogen and a circulation pump must be provided. If the estimated distance between inter-cooling stations is quite long, for example 5 km, plural refrigerators may be set up on one cooling station.

  12. The Combined Application of Impinger System and Permeation Tube for the Generation of Volatile Organic Compound Standard Gas Mixtures at Varying Diluent Flow Rates

    PubMed Central

    Kim, Ki-Hyun; Susaya, Janice; Cho, Jinwoo; Parker, David

    2012-01-01

    Commercial standard gas generators are often complex and expensive devices. The objective of this research was to assess the performance of a simplified glass impinger system for standard gas generation from a permeation tube (PT) device. The performance of the impinger standard gas generation system was assessed for four aromatic VOCs (benzene, toluene, ethylbenzene, and m-xylene; BTEX) at varying flow rates (FR) of 50 to 800 mL·min−1. Because actual permeation rate (APR) values deviated from those computed by the manufacturer's formula (MPR), new empirical relationships were developed to derive the predicted PR (PPR) of the target components. Experimental results corrected by such a formula indicate that the compatibility between the APR and MPR generally increased with low FR, while the reproducibility was generally reduced with decreasing flow rate. Although compatibility between different PRs is at a relatively small and narrow FR range, the use of correction formula is recommendable for the accurate use of PT. PMID:23112641

  13. Picosecond-TALIF and VUV absorption measurements of absolute atomic nitrogen densities from an RF atmospheric pressure plasma jet with He/O2/N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    West, Andrew; Niemi, Kari; Schröter, Sandra; Bredin, Jerome; Gans, Timo; Wagenaars, Erik

    2015-09-01

    Reactive Oxygen and Nitrogen species (RONS) from RF atmospheric pressure plasma jets (APPJs) are important in biomedical applications as well as industrial plasma processing such as surface modification. Atomic oxygen has been well studied, whereas, despite its importance in the plasma chemistry, atomic nitrogen has been somewhat neglected due to its difficulty of measurement. We present absolute densities of atomic nitrogen in APPJs operating with He/O2/N2 gas mixtures in open air, using picosecond Two-photon Absorption Laser Induced Fluorescence (ps-TALIF) and vacuum ultra-violet (VUV) absorption spectroscopy. In order to apply the TALIF technique in complex, He/O2/N2 mixtures, we needed to directly measure the collisional quenching effects using picosecond pulse widths (32ps). Traditional calculated quenching corrections, used in nanosecond TALIF, are inadequate due to a lack of quenching data for complex mixtures. Absolute values for the densities were found by calibrating against a known density of Krypton. The VUV absorption experiments were conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Atomic nitrogen densities were on the order of 1020 m-3 with good agreement between TALIF and VUV absorption. UK EPSRC grant EP/K018388/1.

  14. Gas mixture influence on the reactive ion etching of InSb in an inductively coupled methane-hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Abautret, J.; Evirgen, A.; Perez, J. P.; Laaroussi, Y.; Cordat, A.; Boulard, F.; Christol, P.

    2015-06-01

    In this paper, inductively coupled plasma etching of InSb material has been investigated using methane-hydrogen chemistry. Plasma conditions were first studied in terms of bias autopolarization, partial methane quantity in a CH4/H2 mixture and chamber pressure. The surface morphology of the etched samples was analyzed using an atomic force microscope, scanning electron microscope and x-ray photoelectron spectrometry (XPS) measurements. The results highlight the difficulties in removing etching products related to In, and the surface roughness is mainly correlated with the methane ratio in the mixture. The best surface stoichiometry, with a surface roughness of 7 nm and an etch rate of 110 nm min-1, was obtained with the addition of argon. To evaluate the feasibility of high performance infrared photodiodes, InSb monopixels were fabricated by dry etching, electrically characterized under illumination and compared with devices obtained by wet etching.

  15. Expiratory flow limitation and the response to breathing a helium-oxygen gas mixture in a canine model of pulmonary emphysema.

    PubMed Central

    Mink, S N

    1984-01-01

    The pathophysiology of reduced maximum expiratory flow in a canine model of pulmonary emphysema was studied, and the results interpreted in terms of the wave-speed theory of flow limitation. According to this theory, maximum expiratory flow is related both to the cross-sectional area and compliance at an airway site where a critical gas velocity is first reached ("choke-point") and to gas density. Pulmonary emphysema was produced by the repeated instillations of the enzyme papain into the airways of six dogs. In five control dogs, a saline solution was instilled. During forced vital capacity deflation, in an open-chest preparation, maximum expiratory flow, choke-point locations, and the response to breathing an 80:20 helium/oxygen gas mixture were determined at multiple lung volumes. To locate choke-points, a pressure measuring device was positioned in the airway to measure lateral and end-on intrabronchial pressures, from which the relevant wave-speed parameters were obtained. In general, the reduced maximum expiratory flow in emphysema can be explained by diminished lung elastic recoil pressure and by altered bronchial pressure-area behavior, which results in a more peripheral location of choke-points that have smaller cross-sectional areas than controls. With respect to the density dependence of maximum expiratory flow, this response did not differ from control values in four dogs with emphysema in which frictional pressure losses upstream from choke-points did not differ on the two gas mixtures. In two dogs with emphysema, however, upstream frictional pressure losses were greater on helium/oxygen than on air, which resulted in a smaller cross-sectional area on helium/oxygen; hence density dependence decreased. PMID:6715539

  16. Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures

    SciTech Connect

    Grimes, R.W.

    1994-06-01

    This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

  17. Inactivation factors of spore-forming bacteria using low-pressure microwave plasmas in an N2 and O2 gas mixture

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Ogino, A.; Nagatsu, M.

    2009-11-01

    In this study, we investigated the inactivation characteristics of Geobacillus stearothermophilus spores under different plasma exposure conditions using low-pressure microwave plasma in nitrogen, oxygen and an air-simulated (N2:O2=4:1) gas mixture. The microwave-excited surface-wave plasma discharges were produced at low pressure by a large volume device. The directly plasma-exposed spores, up to 106 populations, were successfully inactivated within 15, 10 and 5 min of surface-wave plasma treatment using nitrogen, oxygen and an air-simulated gas mixture, respectively, as working gases within the temperature of 75 °C. The contribution of different inactivation factors was evaluated by placing different filters (e.g. a LiF plate, a quartz plate and a Tyvek® sheet) as indirect exposure of spores to the plasma. It was observed that optical emissions (including vacuum UV (VUV)/UV) play an important role in the inactivation process. To further evaluate the effect of VUV/UV photons, we placed an evacuated isolated chamber, inside which spores were set, into the main plasma chamber. The experimental results show that the inactivation time by VUV/UV photons alone, without working gas in the immediate vicinity of the spores, is longer than that with working gas. This suggests that the VUV/UV emission is responsible not only for direct UV inactivation of spores but also for generation of reactive neutral species by photoexcitation. The scanning electron microscopy images revealed significant changes in the morphology of directly plasma-exposed spores but no change in the spores irradiated by VUV/UV photons only.

  18. Corrosion of 310 stainless steel in H2-H2O-H2S gas mixtures: Studies at constant temperature and fixed oxygen potential

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Jacob, K. T.; Nelson, H. G.

    1981-01-01

    Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 x 10 to the minus 13th power/cu Nm and sulfur potentials ranging from 0.19 x 10 to the minus 2nd power/cu Nm to 33 x 10 to the minus 2nd power/cu Nm. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (p sub S sub 2 less than or equal to 2.7 x 10 to the minus 2nd power/cu Nm) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfication. At low sulfur potentials (P sub S sub 2 less than or equal to 0.19 x 10 to the minus 2nd power/cu Nm) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases.

  19. Experimental determination of the retention time of reduced temperature of gas-vapor mixture in trace of water droplets moving in counterflow of combustion products

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-06-01

    We have experimentally studied temporal variation of the temperature of gas-vapor mixture in the trace of water droplets moving in the counterflow of high-temperature combustion products. The initial gas temperature was within 500-950 K. The water droplet radius in the aerosol flow varied from 40 to 400 μm. The motion of water droplets in the counterflow of combustion products in a 1-m-high hollow quartz cylinder with an internal diameter of 20 cm was visualized by optical flow imaging techniques (interferometric particle imaging, shadow photography, particle tracking velocimetry, and particle image velocimetry) with the aid of a cross-correlation complex setup. The scale of temperature decrease in the mixture of combustion products and water droplets was determined for a pulsed (within 1 s) and continuous supply of aerosol with various droplet sizes. Retention times of reduced temperature (relative to the initial level) in trace of water droplets (aerosol temperature trace) are determined. A hypothesis concerning factors responsible for the variation of temperature in the trace of droplets moving in the counterflow of combustion products is experimentally verified.

  20. The effect of gas mixture of post-oxidation on structure and corrosion behavior of plasma nitrided AISI 316 stainless steel

    NASA Astrophysics Data System (ADS)

    Karimzadeh, N.; Moghaddam, E. G.; Mirjani, M.; Raeissi, K.

    2013-10-01

    In this research, microstructure and corrosion properties of plasma nitriding and post-oxidation treated AISI 316 austenitic stainless steel have been studied. The plasma nitriding treatment was carried out at 450 °C for 5 h in a D.C. plasma setup with a gas mixture of 25% N2-75% H2 followed by post-oxidation in gas mixtures of O2/H2: 1/3, 1/5, 1/9 and 1/12 for 30 min. The treated samples were characterized by SEM, XRD and roughness testing. Potentiodynamic and cyclic polarization tests were also employed to evaluate the corrosion resistance of the samples. The results showed that plasma nitriding treatment decreases corrosion resistance of the steel substrate. However, post-oxidizing treatment improves both uniform and pitting corrosion resistances of the nitrided specimens. This effect was most pronounced by post-oxidizing at lower O2/H2 ratios due to the development of magnetite as a more dense oxide phase over the modified layer.