Science.gov

Sample records for accurate image segmentation

  1. Interacting with image hierarchies for fast and accurate object segmentation

    NASA Astrophysics Data System (ADS)

    Beard, David V.; Eberly, David H.; Hemminger, Bradley M.; Pizer, Stephen M.; Faith, R. E.; Kurak, Charles; Livingston, Mark

    1994-05-01

    Object definition is an increasingly important area of medical image research. Accurate and fairly rapid object definition is essential for measuring the size and, perhaps more importantly, the change in size of anatomical objects such as kidneys and tumors. Rapid and fairly accurate object definition is essential for 3D real-time visualization including both surgery planning and Radiation oncology treatment planning. One approach to object definition involves the use of 3D image hierarchies, such as Eberly's Ridge Flow. However, the image hierarchy segmentation approach requires user interaction in selecting regions and subtrees. Further, visualizing and comprehending the anatomy and the selected portions of the hierarchy can be problematic. In this paper we will describe the Magic Crayon tool which allows a user to define rapidly and accurately various anatomical objects by interacting with image hierarchies such as those generated with Eberly's Ridge Flow algorithm as well as other 3D image hierarchies. Preliminary results suggest that fairly complex anatomical objects can be segmented in under a minute with sufficient accuracy for 3D surgery planning, 3D radiation oncology treatment planning, and similar applications. Potential modifications to the approach for improved accuracy are summarized.

  2. MASCG: Multi-Atlas Segmentation Constrained Graph method for accurate segmentation of hip CT images.

    PubMed

    Chu, Chengwen; Bai, Junjie; Wu, Xiaodong; Zheng, Guoyan

    2015-12-01

    This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.

  3. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].

    PubMed

    Wu, Qian; Sun, Hong; Li, Min-zan; Song, Yuan-yuan; Zhang, Yan-e

    2015-01-01

    In order to rapidly acquire maize growing information in the field, a non-destructive method of maize chlorophyll content index measurement was conducted based on multi-spectral imaging technique and imaging processing technology. The experiment was conducted at Yangling in Shaanxi province of China and the crop was Zheng-dan 958 planted in about 1 000 m X 600 m experiment field. Firstly, a 2-CCD multi-spectral image monitoring system was available to acquire the canopy images. The system was based on a dichroic prism, allowing precise separation of the visible (Blue (B), Green (G), Red (R): 400-700 nm) and near-infrared (NIR, 760-1 000 nm) band. The multispectral images were output as RGB and NIR images via the system vertically fixed to the ground with vertical distance of 2 m and angular field of 50°. SPAD index of each sample was'measured synchronously to show the chlorophyll content index. Secondly, after the image smoothing using adaptive smooth filtering algorithm, the NIR maize image was selected to segment the maize leaves from background, because there was a big difference showed in gray histogram between plant and soil background. The NIR image segmentation algorithm was conducted following steps of preliminary and accuracy segmentation: (1) The results of OTSU image segmentation method and the variable threshold algorithm were discussed. It was revealed that the latter was better one in corn plant and weed segmentation. As a result, the variable threshold algorithm based on local statistics was selected for the preliminary image segmentation. The expansion and corrosion were used to optimize the segmented image. (2) The region labeling algorithm was used to segment corn plants from soil and weed background with an accuracy of 95. 59 %. And then, the multi-spectral image of maize canopy was accurately segmented in R, G and B band separately. Thirdly, the image parameters were abstracted based on the segmented visible and NIR images. The average gray

  4. Automatic lung segmentation in CT images with accurate handling of the hilar region.

    PubMed

    De Nunzio, Giorgio; Tommasi, Eleonora; Agrusti, Antonella; Cataldo, Rosella; De Mitri, Ivan; Favetta, Marco; Maglio, Silvio; Massafra, Andrea; Quarta, Maurizio; Torsello, Massimo; Zecca, Ilaria; Bellotti, Roberto; Tangaro, Sabina; Calvini, Piero; Camarlinghi, Niccolò; Falaschi, Fabio; Cerello, Piergiorgio; Oliva, Piernicola

    2011-02-01

    A fully automated and three-dimensional (3D) segmentation method for the identification of the pulmonary parenchyma in thorax X-ray computed tomography (CT) datasets is proposed. It is meant to be used as pre-processing step in the computer-assisted detection (CAD) system for malignant lung nodule detection that is being developed by the Medical Applications in a Grid Infrastructure Connection (MAGIC-5) Project. In this new approach the segmentation of the external airways (trachea and bronchi), is obtained by 3D region growing with wavefront simulation and suitable stop conditions, thus allowing an accurate handling of the hilar region, notoriously difficult to be segmented. Particular attention was also devoted to checking and solving the problem of the apparent 'fusion' between the lungs, caused by partial-volume effects, while 3D morphology operations ensure the accurate inclusion of all the nodules (internal, pleural, and vascular) in the segmented volume. The new algorithm was initially developed and tested on a dataset of 130 CT scans from the Italung-CT trial, and was then applied to the ANODE09-competition images (55 scans) and to the LIDC database (84 scans), giving very satisfactory results. In particular, the lung contour was adequately located in 96% of the CT scans, with incorrect segmentation of the external airways in the remaining cases. Segmentation metrics were calculated that quantitatively express the consistency between automatic and manual segmentations: the mean overlap degree of the segmentation masks is 0.96 ± 0.02, and the mean and the maximum distance between the mask borders (averaged on the whole dataset) are 0.74 ± 0.05 and 4.5 ± 1.5, respectively, which confirms that the automatic segmentations quite correctly reproduce the borders traced by the radiologist. Moreover, no tissue containing internal and pleural nodules was removed in the segmentation process, so that this method proved to be fit for the use in the

  5. Toward accurate tooth segmentation from computed tomography images using a hybrid level set model

    SciTech Connect

    Gan, Yangzhou; Zhao, Qunfei; Xia, Zeyang E-mail: jing.xiong@siat.ac.cn; Hu, Ying; Xiong, Jing E-mail: jing.xiong@siat.ac.cn; Zhang, Jianwei

    2015-01-15

    Purpose: A three-dimensional (3D) model of the teeth provides important information for orthodontic diagnosis and treatment planning. Tooth segmentation is an essential step in generating the 3D digital model from computed tomography (CT) images. The aim of this study is to develop an accurate and efficient tooth segmentation method from CT images. Methods: The 3D dental CT volumetric images are segmented slice by slice in a two-dimensional (2D) transverse plane. The 2D segmentation is composed of a manual initialization step and an automatic slice by slice segmentation step. In the manual initialization step, the user manually picks a starting slice and selects a seed point for each tooth in this slice. In the automatic slice segmentation step, a developed hybrid level set model is applied to segment tooth contours from each slice. Tooth contour propagation strategy is employed to initialize the level set function automatically. Cone beam CT (CBCT) images of two subjects were used to tune the parameters. Images of 16 additional subjects were used to validate the performance of the method. Volume overlap metrics and surface distance metrics were adopted to assess the segmentation accuracy quantitatively. The volume overlap metrics were volume difference (VD, mm{sup 3}) and Dice similarity coefficient (DSC, %). The surface distance metrics were average symmetric surface distance (ASSD, mm), RMS (root mean square) symmetric surface distance (RMSSSD, mm), and maximum symmetric surface distance (MSSD, mm). Computation time was recorded to assess the efficiency. The performance of the proposed method has been compared with two state-of-the-art methods. Results: For the tested CBCT images, the VD, DSC, ASSD, RMSSSD, and MSSD for the incisor were 38.16 ± 12.94 mm{sup 3}, 88.82 ± 2.14%, 0.29 ± 0.03 mm, 0.32 ± 0.08 mm, and 1.25 ± 0.58 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the canine were 49.12 ± 9.33 mm{sup 3}, 91.57 ± 0.82%, 0.27 ± 0.02 mm, 0

  6. Accurate and reliable segmentation of the optic disc in digital fundus images

    PubMed Central

    Giachetti, Andrea; Ballerini, Lucia; Trucco, Emanuele

    2014-01-01

    Abstract. We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE). PMID:26158034

  7. Fast and Accurate Semiautomatic Segmentation of Individual Teeth from Dental CT Images.

    PubMed

    Kang, Ho Chul; Choi, Chankyu; Shin, Juneseuk; Lee, Jeongjin; Shin, Yeong-Gil

    2015-01-01

    In this paper, we propose a fast and accurate semiautomatic method to effectively distinguish individual teeth from the sockets of teeth in dental CT images. Parameter values of thresholding and shapes of the teeth are propagated to the neighboring slice, based on the separated teeth from reference images. After the propagation of threshold values and shapes of the teeth, the histogram of the current slice was analyzed. The individual teeth are automatically separated and segmented by using seeded region growing. Then, the newly generated separation information is iteratively propagated to the neighboring slice. Our method was validated by ten sets of dental CT scans, and the results were compared with the manually segmented result and conventional methods. The average error of absolute value of volume measurement was 2.29 ± 0.56%, which was more accurate than conventional methods. Boosting up the speed with the multicore processors was shown to be 2.4 times faster than a single core processor. The proposed method identified the individual teeth accurately, demonstrating that it can give dentists substantial assistance during dental surgery.

  8. An efficient method for accurate segmentation of LV in contrast-enhanced cardiac MR images

    NASA Astrophysics Data System (ADS)

    Suryanarayana K., Venkata; Mitra, Abhishek; Srikrishnan, V.; Jo, Hyun Hee; Bidesi, Anup

    2016-03-01

    Segmentation of left ventricle (LV) in contrast-enhanced cardiac MR images is a challenging task because of high variability in the image intensity. This is due to a) wash-in and wash-out of the contrast agent over time and b) poor contrast around the epicardium (outer wall) region. Current approaches for segmentation of the endocardium (inner wall) usually involve application of a threshold within the region of interest, followed by refinement techniques like active contours. A limitation of this method is under-segmentation of the inner wall because of gradual loss of contrast at the wall boundary. On the other hand, the challenge in outer wall segmentation is the lack of reliable boundaries because of poor contrast. There are four main contributions in this paper to address the aforementioned issues. First, a seed image is selected using variance based approach on 4D time-frame images over which initial endocardium and epicardium is segmented. Secondly, we propose a patch based feature which overcomes the problem of gradual contrast loss for LV endocardium segmentation. Third, we propose a novel Iterative-Edge-Refinement (IER) technique for epicardium segmentation. Fourth, we propose a greedy search algorithm for propagating the initial contour segmented on seed-image across other time frame images. We have experimented our technique on five contrast-enhanced cardiac MR Datasets (4D) having a total of 1097 images. The segmentation results for all 1097 images have been visually inspected by a clinical expert and have shown good accuracy.

  9. Possibilistic-clustering-based MR brain image segmentation with accurate initialization

    NASA Astrophysics Data System (ADS)

    Liao, Qingmin; Deng, Yingying; Dou, Weibei; Ruan, Su; Bloyet, Daniel

    2004-01-01

    Magnetic resonance image analysis by computer is useful to aid diagnosis of malady. We present in this paper a automatic segmentation method for principal brain tissues. It is based on the possibilistic clustering approach, which is an improved fuzzy c-means clustering method. In order to improve the efficiency of clustering process, the initial value problem is discussed and solved by combining with a histogram analysis method. Our method can automatically determine number of classes to cluster and the initial values for each class. It has been tested on a set of forty MR brain images with or without the presence of tumor. The experimental results showed that it is simple, rapid and robust to segment the principal brain tissues.

  10. An automatic method for fast and accurate liver segmentation in CT images using a shape detection level set method

    NASA Astrophysics Data System (ADS)

    Lee, Jeongjin; Kim, Namkug; Lee, Ho; Seo, Joon Beom; Won, Hyung Jin; Shin, Yong Moon; Shin, Yeong Gil

    2007-03-01

    Automatic liver segmentation is still a challenging task due to the ambiguity of liver boundary and the complex context of nearby organs. In this paper, we propose a faster and more accurate way of liver segmentation in CT images with an enhanced level set method. The speed image for level-set propagation is smoothly generated by increasing number of iterations in anisotropic diffusion filtering. This prevents the level-set propagation from stopping in front of local minima, which prevails in liver CT images due to irregular intensity distributions of the interior liver region. The curvature term of shape modeling level-set method captures well the shape variations of the liver along the slice. Finally, rolling ball algorithm is applied for including enhanced vessels near the liver boundary. Our approach are tested and compared to manual segmentation results of eight CT scans with 5mm slice distance using the average distance and volume error. The average distance error between corresponding liver boundaries is 1.58 mm and the average volume error is 2.2%. The average processing time for the segmentation of each slice is 5.2 seconds, which is much faster than the conventional ones. Accurate and fast result of our method will expedite the next stage of liver volume quantification for liver transplantations.

  11. Accurate segmentation of leukocyte in blood cell images using Atanassov's intuitionistic fuzzy and interval Type II fuzzy set theory.

    PubMed

    Chaira, Tamalika

    2014-06-01

    In this paper automatic leukocyte segmentation in pathological blood cell images is proposed using intuitionistic fuzzy and interval Type II fuzzy set theory. This is done to count different types of leukocytes for disease detection. Also, the segmentation should be accurate so that the shape of the leukocytes is preserved. So, intuitionistic fuzzy set and interval Type II fuzzy set that consider either more number of uncertainties or a different type of uncertainty as compared to fuzzy set theory are used in this work. As the images are considered fuzzy due to imprecise gray levels, advanced fuzzy set theories may be expected to give better result. A modified Cauchy distribution is used to find the membership function. In intuitionistic fuzzy method, non-membership values are obtained using Yager's intuitionistic fuzzy generator. Optimal threshold is obtained by minimizing intuitionistic fuzzy divergence. In interval type II fuzzy set, a new membership function is generated that takes into account the two levels in Type II fuzzy set using probabilistic T co norm. Optimal threshold is selected by minimizing a proposed Type II fuzzy divergence. Though fuzzy techniques were applied earlier but these methods failed to threshold multiple leukocytes in images. Experimental results show that both interval Type II fuzzy and intuitionistic fuzzy methods perform better than the existing non-fuzzy/fuzzy methods but interval Type II fuzzy thresholding method performs little bit better than intuitionistic fuzzy method. Segmented leukocytes in the proposed interval Type II fuzzy method are observed to be distinct and clear.

  12. LSM: perceptually accurate line segment merging

    NASA Astrophysics Data System (ADS)

    Hamid, Naila; Khan, Nazar

    2016-11-01

    Existing line segment detectors tend to break up perceptually distinct line segments into multiple segments. We propose an algorithm for merging such broken segments to recover the original perceptually accurate line segments. The algorithm proceeds by grouping line segments on the basis of angular and spatial proximity. Then those line segment pairs within each group that satisfy unique, adaptive mergeability criteria are successively merged to form a single line segment. This process is repeated until no more line segments can be merged. We also propose a method for quantitative comparison of line segment detection algorithms. Results on the York Urban dataset show that our merged line segments are closer to human-marked ground-truth line segments compared to state-of-the-art line segment detection algorithms.

  13. Automated medical image segmentation techniques

    PubMed Central

    Sharma, Neeraj; Aggarwal, Lalit M.

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images. PMID:20177565

  14. A three-dimensional image processing program for accurate, rapid, and semi-automated segmentation of neuronal somata with dense neurite outgrowth

    PubMed Central

    Ross, James D.; Cullen, D. Kacy; Harris, James P.; LaPlaca, Michelle C.; DeWeerth, Stephen P.

    2015-01-01

    Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions. PMID

  15. Medical image segmentation by MDP model

    NASA Astrophysics Data System (ADS)

    Lu, Yisu; Chen, Wufan

    2011-11-01

    MDP (Dirichlet Process Mixtures) model is applied to segment medical images in this paper. Segmentation can been automatically done without initializing segmentation class numbers. The MDP model segmentation algorithm is used to segment natural images and MR (Magnetic Resonance) images in the paper. To demonstrate the accuracy of the MDP model segmentation algorithm, many compared experiments, such as EM (Expectation Maximization) image segmentation algorithm, K-means image segmentation algorithm and MRF (Markov Field) image segmentation algorithm, have been done to segment medical MR images. All the methods are also analyzed quantitatively by using DSC (Dice Similarity Coefficients). The experiments results show that DSC of MDP model segmentation algorithm of all slices exceed 90%, which show that the proposed method is robust and accurate.

  16. Method for Accurate Unsupervised Cell Nucleus Segmentation

    DTIC Science & Technology

    2007-11-02

    development of a cervical cancer screening ma- chine despite projects being initiated in the 1950’s is perhaps a good indication of the magnitude of the...classi- fication processes can only become more robust. REFERENCES [1] P. Bamford. The Segmentation of Cell Images with Applica- tion to Cervical Cancer Screening... Cervical Cancer : Algorithms and Implementation. PhD thesis, Uppsala University, 1989.

  17. Accurate colon residue detection algorithm with partial volume segmentation

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Liang, Zhengrong; Zhang, PengPeng; Kutcher, Gerald J.

    2004-05-01

    Colon cancer is the second leading cause of cancer-related death in the United States. Earlier detection and removal of polyps can dramatically reduce the chance of developing malignant tumor. Due to some limitations of optical colonoscopy used in clinic, many researchers have developed virtual colonoscopy as an alternative technique, in which accurate colon segmentation is crucial. However, partial volume effect and existence of residue make it very challenging. The electronic colon cleaning technique proposed by Chen et al is a very attractive method, which is also kind of hard segmentation method. As mentioned in their paper, some artifacts were produced, which might affect the accurate colon reconstruction. In our paper, instead of labeling each voxel with a unique label or tissue type, the percentage of different tissues within each voxel, which we call a mixture, was considered in establishing a maximum a posterior probability (MAP) image-segmentation framework. A Markov random field (MRF) model was developed to reflect the spatial information for the tissue mixtures. The spatial information based on hard segmentation was used to determine which tissue types are in the specific voxel. Parameters of each tissue class were estimated by the expectation-maximization (EM) algorithm during the MAP tissue-mixture segmentation. Real CT experimental results demonstrated that the partial volume effects between four tissue types have been precisely detected. Meanwhile, the residue has been electronically removed and very smooth and clean interface along the colon wall has been obtained.

  18. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  19. Unsupervised Segmentation Of Texture Images

    NASA Astrophysics Data System (ADS)

    Michel, Xavier; Leonardi, Riccardo; Gersho, Allen

    1988-10-01

    Past work on unsupervised segmentation of a texture image has been based on several restrictive assumptions to reduce the difficulty of this challenging segmentation task. Typically, a fixed number of different texture regions is assumed and each region is assumed to be generated by a simple model. Also, different first order statistics are used to facilitate discrimination between different textures. This paper introduces an approach to unsupervised segmentation that offers promise for handling unrestricted natural scenes containing textural regions. A simple but effective feature set and a novel measure of dissimilarity are used to accurately generate boundaries between an unknown number of regions without using first order statistics or texture models. A two stage approach is used to partition a texture image. In the first stage, a set of sliding windows scans the image to generate a sequence of feature vectors. The windowed regions providing the highest inhomo-geneity in their textural characteristics determine a crude first-stage boundary, separating textured areas that are unambiguously homogeneous from one another. These regions are used to estimate a set of prototype feature vectors. In the second stage, supervised segmentation is performed to obtain an accurate boundary between different textured regions by means of a constrained hierarchical clustering technique. Each inhomo-geneous window obtained in the first stage is split into four identical subwindows for which the feature vectors are estimated. Each of the subwindows is assigned to a homogeneous region to which it is connected. This region is chosen according to the closest prototype vector in the feature space. Any two adjacent subwindows that are assigned to different regions will in turn be considered as inhomogeneous windows and each is then split into four subwindows. The classification scheme is repeated in this hierarchical manner until the desired boundary resolution is achieved. The

  20. Robust, accurate and fast automatic segmentation of the spinal cord.

    PubMed

    De Leener, Benjamin; Kadoury, Samuel; Cohen-Adad, Julien

    2014-09-01

    Spinal cord segmentation provides measures of atrophy and facilitates group analysis via inter-subject correspondence. Automatizing this procedure enables studies with large throughput and minimizes user bias. Although several automatic segmentation methods exist, they are often restricted in terms of image contrast and field-of-view. This paper presents a new automatic segmentation method (PropSeg) optimized for robustness, accuracy and speed. The algorithm is based on the propagation of a deformable model and is divided into three parts: firstly, an initialization step detects the spinal cord position and orientation using a circular Hough transform on multiple axial slices rostral and caudal to the starting plane and builds an initial elliptical tubular mesh. Secondly, a low-resolution deformable model is propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a local contrast-to-noise adaptation at each iteration. Thirdly, a refinement process and a global deformation are applied on the propagated mesh to provide an accurate segmentation of the spinal cord. Validation was performed in 15 healthy subjects and two patients with spinal cord injury, using T1- and T2-weighted images of the entire spinal cord and on multiecho T2*-weighted images. Our method was compared against manual segmentation and against an active surface method. Results show high precision for all the MR sequences. Dice coefficients were 0.9 for the T1- and T2-weighted cohorts and 0.86 for the T2*-weighted images. The proposed method runs in less than 1min on a normal computer and can be used to quantify morphological features such as cross-sectional area along the whole spinal cord.

  1. Image Segmentation Using Hierarchical Merge Tree.

    PubMed

    Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2016-07-18

    This paper investigates one of the most fundamental computer vision problems: image segmentation. We propose a supervised hierarchical approach to object-independent image segmentation. Starting with over-segmenting superpixels, we use a tree structure to represent the hierarchy of region merging, by which we reduce the problem of segmenting image regions to finding a set of label assignment to tree nodes. We formulate the tree structure as a constrained conditional model to associate region merging with likelihoods predicted using an ensemble boundary classifier. Final segmentations can then be inferred by finding globally optimal solutions to the model efficiently. We also present an iterative training and testing algorithm that generates various tree structures and combines them to emphasize accurate boundaries by segmentation accumulation. Experiment results and comparisons with other recent methods on six public data sets demonstrate that our approach achieves state-of-the-art region accuracy and is competitive in image segmentation without semantic priors.

  2. An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis.

    PubMed

    Kafieh, Raheleh; Rabbani, Hossein; Hajizadeh, Fedra; Ommani, Mohammadreza

    2013-10-01

    This paper proposes a multimodal approach for vessel segmentation of macular optical coherence tomography (OCT) slices along with the fundus image. The method is comprised of two separate stages; the first step is 2-D segmentation of blood vessels in curvelet domain, enhanced by taking advantage of vessel information in crossing OCT slices (named feedback procedure), and improved by suppressing the false positives around the optic nerve head. The proposed method for vessel localization of OCT slices is also enhanced utilizing the fact that retinal nerve fiber layer becomes thicker in the presence of the blood vessels. The second stage of this method is axial localization of the vessels in OCT slices and 3-D reconstruction of the blood vessels. Twenty-four macular spectral 3-D OCT scans of 16 normal subjects were acquired using a Heidelberg HRA OCT scanner. Each dataset consisted of a scanning laser ophthalmoscopy (SLO) image and limited number of OCT scans with size of 496 × 512 (namely, for a data with 19 selected OCT slices, the whole data size was 496 × 512 × 19). The method is developed with least complicated algorithms and the results show considerable improvement in accuracy of vessel segmentation over similar methods to produce a local accuracy of 0.9632 in area of SLO, covered with OCT slices, and the overall accuracy of 0.9467 in the whole SLO image. The results are also demonstrative of a direct relation between the overall accuracy and percentage of SLO coverage by OCT slices.

  3. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.

  4. Cooperative processes in image segmentation

    NASA Technical Reports Server (NTRS)

    Davis, L. S.

    1982-01-01

    Research into the role of cooperative, or relaxation, processes in image segmentation is surveyed. Cooperative processes can be employed at several levels of the segmentation process as a preprocessing enhancement step, during supervised or unsupervised pixel classification and, finally, for the interpretation of image segments based on segment properties and relations.

  5. Bone image segmentation.

    PubMed

    Liu, Z Q; Liew, H L; Clement, J G; Thomas, C D

    1999-05-01

    Characteristics of microscopic structures in bone cross sections carry essential clues in age determination in forensic science and in the study of age-related bone developments and bone diseases. Analysis of bone cross sections represents a major area of research in bone biology. However, traditional approaches in bone biology have relied primarily on manual processes with very limited number of bone samples. As a consequence, it is difficult to reach reliable and consistent conclusions. In this paper we present an image processing system that uses microstructural and relational knowledge present in the bone cross section for bone image segmentation. This system automates the bone image analysis process and is able to produce reliable results based on quantitative measurements from a large number of bone images. As a result, using large databases of bone images to study the correlation between bone structural features and age-related bone developments becomes feasible.

  6. A robust and accurate approach to automatic blood vessel detection and segmentation from angiography x-ray images using multistage random forests

    NASA Astrophysics Data System (ADS)

    Gupta, Vipin; Kale, Amit; Sundar, Hari

    2012-03-01

    In this paper we propose a novel approach based on multi-stage random forests to address problems faced by traditional vessel segmentation algorithms on account of image artifacts such as stitches organ shadows etc.. Our approach consists of collecting a very large number of training data consisting of positive and negative examples of valid seed points. The method makes use of a 14x14 window around a putative seed point. For this window three types of feature vectors are computed viz. vesselness, eigenvalue and a novel effective margin feature. A random forest RF is trained for each of the feature vectors. At run time the three RFs are applied in succession to a putative seed point generated by a naiive vessel detection algorithm based on vesselness. Our approach will prune this set of putative seed points to correctly identify true seed points thereby avoiding false positives. We demonstrate the effectiveness of our algorithm on a large dataset of angio images.

  7. Review methods for image segmentation from computed tomography images

    SciTech Connect

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-12-04

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan.

  8. Accurate vessel segmentation with constrained B-snake.

    PubMed

    Yuanzhi Cheng; Xin Hu; Ji Wang; Yadong Wang; Tamura, Shinichi

    2015-08-01

    We describe an active contour framework with accurate shape and size constraints on the vessel cross-sectional planes to produce the vessel segmentation. It starts with a multiscale vessel axis tracing in a 3D computed tomography (CT) data, followed by vessel boundary delineation on the cross-sectional planes derived from the extracted axis. The vessel boundary surface is deformed under constrained movements on the cross sections and is voxelized to produce the final vascular segmentation. The novelty of this paper lies in the accurate contour point detection of thin vessels based on the CT scanning model, in the efficient implementation of missing contour points in the problematic regions and in the active contour model with accurate shape and size constraints. The main advantage of our framework is that it avoids disconnected and incomplete segmentation of the vessels in the problematic regions that contain touching vessels (vessels in close proximity to each other), diseased portions (pathologic structure attached to a vessel), and thin vessels. It is particularly suitable for accurate segmentation of thin and low contrast vessels. Our method is evaluated and demonstrated on CT data sets from our partner site, and its results are compared with three related methods. Our method is also tested on two publicly available databases and its results are compared with the recently published method. The applicability of the proposed method to some challenging clinical problems, the segmentation of the vessels in the problematic regions, is demonstrated with good results on both quantitative and qualitative experimentations; our segmentation algorithm can delineate vessel boundaries that have level of variability similar to those obtained manually.

  9. An interactive medical image segmentation framework using iterative refinement.

    PubMed

    Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay

    2017-02-13

    Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images.

  10. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation.

    PubMed

    Chiu, Stephanie J; Li, Xiao T; Nicholas, Peter; Toth, Cynthia A; Izatt, Joseph A; Farsiu, Sina

    2010-08-30

    Segmentation of anatomical and pathological structures in ophthalmic images is crucial for the diagnosis and study of ocular diseases. However, manual segmentation is often a time-consuming and subjective process. This paper presents an automatic approach for segmenting retinal layers in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Results show that this method accurately segments eight retinal layer boundaries in normal adult eyes more closely to an expert grader as compared to a second expert grader.

  11. Neural network for image segmentation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.; Prasad, Lakshman; Schlei, Bernd R.

    2000-10-01

    Image analysis is an important requirement of many artificial intelligence systems. Though great effort has been devoted to inventing efficient algorithms for image analysis, there is still much work to be done. It is natural to turn to mammalian vision systems for guidance because they are the best known performers of visual tasks. The pulse- coupled neural network (PCNN) model of the cat visual cortex has proven to have interesting properties for image processing. This article describes the PCNN application to the processing of images of heterogeneous materials; specifically PCNN is applied to image denoising and image segmentation. Our results show that PCNNs do well at segmentation if we perform image smoothing prior to segmentation. We use PCNN for obth smoothing and segmentation. Combining smoothing and segmentation enable us to eliminate PCNN sensitivity to the setting of the various PCNN parameters whose optimal selection can be difficult and can vary even for the same problem. This approach makes image processing based on PCNN more automatic in our application and also results in better segmentation.

  12. Simplified labeling process for medical image segmentation.

    PubMed

    Gao, Mingchen; Huang, Junzhou; Huang, Xiaolei; Zhang, Shaoting; Metaxas, Dimitris N

    2012-01-01

    Image segmentation plays a crucial role in many medical imaging applications by automatically locating the regions of interest. Typically supervised learning based segmentation methods require a large set of accurately labeled training data. However, thel labeling process is tedious, time consuming and sometimes not necessary. We propose a robust logistic regression algorithm to handle label outliers such that doctors do not need to waste time on precisely labeling images for training set. To validate its effectiveness and efficiency, we conduct carefully designed experiments on cervigram image segmentation while there exist label outliers. Experimental results show that the proposed robust logistic regression algorithms achieve superior performance compared to previous methods, which validates the benefits of the proposed algorithms.

  13. Robust and accurate star segmentation algorithm based on morphology

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Lei, Liu; Guangjun, Zhang

    2016-06-01

    Star tracker is an important instrument of measuring a spacecraft's attitude; it measures a spacecraft's attitude by matching the stars captured by a camera and those stored in a star database, the directions of which are known. Attitude accuracy of star tracker is mainly determined by star centroiding accuracy, which is guaranteed by complete star segmentation. Current algorithms of star segmentation cannot suppress different interferences in star images and cannot segment stars completely because of these interferences. To solve this problem, a new star target segmentation algorithm is proposed on the basis of mathematical morphology. The proposed algorithm utilizes the margin structuring element to detect small targets and the opening operation to suppress noises, and a modified top-hat transform is defined to extract stars. A combination of three different structuring elements is utilized to define a new star segmentation algorithm, and the influence of three different structural elements on the star segmentation results is analyzed. Experimental results show that the proposed algorithm can suppress different interferences and segment stars completely, thus providing high star centroiding accuracy.

  14. A Review on Segmentation of Positron Emission Tomography Images

    PubMed Central

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  15. Active Mask Segmentation of Fluorescence Microscope Images

    PubMed Central

    Srinivasa, Gowri; Fickus, Matthew C.; Guo, Yusong; Linstedt, Adam D.; Kovačević, Jelena

    2009-01-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the “contour” to that of “inside and outside”, or, masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well, and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively as well as quantitatively. PMID:19380268

  16. Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach

    PubMed Central

    Cheng, Wenjun; Ma, Luyao; Yang, Tiejun; Liang, Jiali

    2016-01-01

    Accurate lung CT image segmentation is of great clinical value, especially when it comes to delineate pathological regions including lung tumor. In this paper, we present a novel framework that jointly segments multiple lung computed tomography (CT) images via hierarchical Dirichlet process (HDP). In specifics, based on the assumption that lung CT images from different patients share similar image structure (organ sets and relative positioning), we derive a mathematical model to segment them simultaneously so that shared information across patients could be utilized to regularize each individual segmentation. Moreover, compared to many conventional models, the algorithm requires little manual involvement due to the nonparametric nature of Dirichlet process (DP). We validated proposed model upon clinical data consisting of healthy and abnormal (lung cancer) patients. We demonstrate that, because of the joint segmentation fashion, more accurate and consistent segmentations could be obtained. PMID:27611188

  17. Image Information Mining Utilizing Hierarchical Segmentation

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Marchisio, Giovanni; Koperski, Krzysztof; Datcu, Mihai

    2002-01-01

    The Hierarchical Segmentation (HSEG) algorithm is an approach for producing high quality, hierarchically related image segmentations. The VisiMine image information mining system utilizes clustering and segmentation algorithms for reducing visual information in multispectral images to a manageable size. The project discussed herein seeks to enhance the VisiMine system through incorporating hierarchical segmentations from HSEG into the VisiMine system.

  18. Colony image acquisition and segmentation

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2007-12-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems. The main problems are image acquisition and image segmentation. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. The developed colony image segmentation algorithm consists of the sub-algorithms: (1) image classification; (2) image processing; and (3) colony delineation. The colony delineation algorithm main contain: the procedures based on grey level similarity, on boundary tracing, on shape information and colony excluding. In addition, a number of algorithms are developed for colony analysis. The system has been tested and satisfactory.

  19. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  20. XRA image segmentation using regression

    NASA Astrophysics Data System (ADS)

    Jin, Jesse S.

    1996-04-01

    Segmentation is an important step in image analysis. Thresholding is one of the most important approaches. There are several difficulties in segmentation, such as automatic selecting threshold, dealing with intensity distortion and noise removal. We have developed an adaptive segmentation scheme by applying the Central Limit Theorem in regression. A Gaussian regression is used to separate the distribution of background from foreground in a single peak histogram. The separation will help to automatically determine the threshold. A small 3 by 3 widow is applied and the modal of the local histogram is used to overcome noise. Thresholding is based on local weighting, where regression is used again for parameter estimation. A connectivity test is applied to the final results to remove impulse noise. We have applied the algorithm to x-ray angiogram images to extract brain arteries. The algorithm works well for single peak distribution where there is no valley in the histogram. The regression provides a method to apply knowledge in clustering. Extending regression for multiple-level segmentation needs further investigation.

  1. An entropy-based objective evaluation method for image segmentation

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Fritts, Jason E.; Goldman, Sally A.

    2003-12-01

    Accurate image segmentation is important for many image, video and computer vision applications. Over the last few decades, many image segmentation methods have been proposed. However, the results of these segmentation methods are usually evaluated only visually, qualitatively, or indirectly by the effectiveness of the segmentation on the subsequent processing steps. Such methods are either subjective or tied to particular applications. They do not judge the performance of a segmentation method objectively, and cannot be used as a means to compare the performance of different segmentation techniques. A few quantitative evaluation methods have been proposed, but these early methods have been based entirely on empirical analysis and have no theoretical grounding. In this paper, we propose a novel objective segmentation evaluation method based on information theory. The new method uses entropy as the basis for measuring the uniformity of pixel characteristics (luminance is used in this paper) within a segmentation region. The evaluation method provides a relative quality score that can be used to compare different segmentations of the same image. This method can be used to compare both various parameterizations of one particular segmentation method as well as fundamentally different segmentation techniques. The results from this preliminary study indicate that the proposed evaluation method is superior to the prior quantitative segmentation evaluation techniques, and identify areas for future research in objective segmentation evaluation.

  2. Spectral clustering algorithms for ultrasound image segmentation.

    PubMed

    Archip, Neculai; Rohling, Robert; Cooperberg, Peter; Tahmasebpour, Hamid; Warfield, Simon K

    2005-01-01

    Image segmentation algorithms derived from spectral clustering analysis rely on the eigenvectors of the Laplacian of a weighted graph obtained from the image. The NCut criterion was previously used for image segmentation in supervised manner. We derive a new strategy for unsupervised image segmentation. This article describes an initial investigation to determine the suitability of such segmentation techniques for ultrasound images. The extension of the NCut technique to the unsupervised clustering is first described. The novel segmentation algorithm is then performed on simulated ultrasound images. Tests are also performed on abdominal and fetal images with the segmentation results compared to manual segmentation. Comparisons with the classical NCut algorithm are also presented. Finally, segmentation results on other types of medical images are shown.

  3. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation

    PubMed Central

    Chiu, Stephanie J.; Li, Xiao T.; Nicholas, Peter; Toth, Cynthia A.; Izatt, Joseph A.; Farsiu, Sina

    2010-01-01

    Segmentation of anatomical and pathological structures in ophthalmic images is crucial for the diagnosis and study of ocular diseases. However, manual segmentation is often a time-consuming and subjective process. This paper presents an automatic approach for segmenting retinal layers in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Results show that this method accurately segments eight retinal layer boundaries in normal adult eyes more closely to an expert grader as compared to a second expert grader. PMID:20940837

  4. Automated Tumor Volumetry Using Computer-Aided Image Segmentation

    PubMed Central

    Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A.; Ali, Zarina S.; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M.; Davatzikos, Christos

    2015-01-01

    Rationale and Objectives Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. Materials and Methods A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Results Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0–5 rating scale where 5 indicated perfect segmentation. Conclusions The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. PMID:25770633

  5. Metric Learning to Enhance Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Castano, Rebecca; Bue, Brian; Gilmore, Martha S.

    2013-01-01

    Unsupervised hyperspectral image segmentation can reveal spatial trends that show the physical structure of the scene to an analyst. They highlight borders and reveal areas of homogeneity and change. Segmentations are independently helpful for object recognition, and assist with automated production of symbolic maps. Additionally, a good segmentation can dramatically reduce the number of effective spectra in an image, enabling analyses that would otherwise be computationally prohibitive. Specifically, using an over-segmentation of the image instead of individual pixels can reduce noise and potentially improve the results of statistical post-analysis. In this innovation, a metric learning approach is presented to improve the performance of unsupervised hyperspectral image segmentation. The prototype demonstrations attempt a superpixel segmentation in which the image is conservatively over-segmented; that is, the single surface features may be split into multiple segments, but each individual segment, or superpixel, is ensured to have homogenous mineralogy.

  6. Robust model for segmenting images with/without intensity inhomogeneities.

    PubMed

    Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, David Dagan

    2013-08-01

    Intensity inhomogeneities and different types/levels of image noise are the two major obstacles to accurate image segmentation by region-based level set models. To provide a more general solution to these challenges, we propose a novel segmentation model that considers global and local image statistics to eliminate the influence of image noise and to compensate for intensity inhomogeneities. In our model, the global energy derived from a Gaussian model estimates the intensity distribution of the target object and background; the local energy derived from the mutual influences of neighboring pixels can eliminate the impact of image noise and intensity inhomogeneities. The robustness of our method is validated on segmenting synthetic images with/without intensity inhomogeneities, and with different types/levels of noise, including Gaussian noise, speckle noise, and salt and pepper noise, as well as images from different medical imaging modalities. Quantitative experimental comparisons demonstrate that our method is more robust and more accurate in segmenting the images with intensity inhomogeneities than the local binary fitting technique and its more recent systematic model. Our technique also outperformed the region-based Chan–Vese model when dealing with images without intensity inhomogeneities and produce better segmentation results than the graph-based algorithms including graph-cuts and random walker when segmenting noisy images.

  7. Interactive medical image segmentation using snake and multiscale curve editing.

    PubMed

    Zhou, Wu; Xie, Yaoqin

    2013-01-01

    Image segmentation is typically applied to locate objects and boundaries, and it is an essential process that supports medical diagnosis, surgical planning, and treatments in medical applications. Generally, this process is done by clinicians manually, which may be accurate but tedious and very time consuming. To facilitate the process, numerous interactive segmentation methods have been proposed that allow the user to intervene in the process of segmentation by incorporating prior knowledge, validating results and correcting errors. The accurate segmentation results can potentially be obtained by such user-interactive process. In this work, we propose a novel framework of interactive medical image segmentation for clinical applications, which combines digital curves and the active contour model to obtain promising results. It allows clinicians to quickly revise or improve contours by simple mouse actions. Meanwhile, the snake model becomes feasible and practical in clinical applications. Experimental results demonstrate the effectiveness of the proposed method for medical images in clinical applications.

  8. A generative model for image segmentation based on label fusion.

    PubMed

    Sabuncu, Mert R; Yeo, B T Thomas; Van Leemput, Koen; Fischl, Bruce; Golland, Polina

    2010-10-01

    We propose a nonparametric, probabilistic model for the automatic segmentation of medical images, given a training set of images and corresponding label maps. The resulting inference algorithms rely on pairwise registrations between the test image and individual training images. The training labels are then transferred to the test image and fused to compute the final segmentation of the test subject. Such label fusion methods have been shown to yield accurate segmentation, since the use of multiple registrations captures greater inter-subject anatomical variability and improves robustness against occasional registration failures. To the best of our knowledge, this manuscript presents the first comprehensive probabilistic framework that rigorously motivates label fusion as a segmentation approach. The proposed framework allows us to compare different label fusion algorithms theoretically and practically. In particular, recent label fusion or multiatlas segmentation algorithms are interpreted as special cases of our framework. We conduct two sets of experiments to validate the proposed methods. In the first set of experiments, we use 39 brain MRI scans-with manually segmented white matter, cerebral cortex, ventricles and subcortical structures-to compare different label fusion algorithms and the widely-used FreeSurfer whole-brain segmentation tool. Our results indicate that the proposed framework yields more accurate segmentation than FreeSurfer and previous label fusion algorithms. In a second experiment, we use brain MRI scans of 282 subjects to demonstrate that the proposed segmentation tool is sufficiently sensitive to robustly detect hippocampal volume changes in a study of aging and Alzheimer's Disease.

  9. Intelligent segmentation of industrial radiographic images using neural networks

    NASA Astrophysics Data System (ADS)

    Lawson, Shaun W.; Parker, Graham A.

    1994-10-01

    An application of machine vision, incorporating neural networks, which aims to fully automate real-time radiographic inspection in welding process is described. The current methodology adopted comprises two distinct stages - the segmentation of the weld from the background content of the radiographic image, and the segmentation of suspect defect areas inside the weld region itself. In the first stage, a back propagation neural network has been employed to adaptively and accurately segment the weld region from a given image. The training of the network is achieved with a single image showing a typical weld in the run which is to be inspected, coupled with a very simple schematic weld 'template'. The second processing stage utilizes a further backpropagation network which is trained on a test set of image data previously segmented by a conventional adaptive threshold method. It is shown that the two techniques can be combined to fully segment radiographic weld images.

  10. Cerebral microbleed segmentation from susceptibility weighted images

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Jog, Amod; Magrath, Elizabeth; Butman, John A.; Pham, Dzung L.

    2015-03-01

    Cerebral microbleeds (CMB) are a common marker of traumatic brain injury. Accurate detection and quantification of the CMBs are important for better understanding the progression and prognosis of the injury. Previous microbleed detection methods have suffered from a high rate of false positives, which is time consuming to manually correct. In this paper, we propose a fully automatic, example-based method to segment CMBs from susceptibility-weighted (SWI) scans, where examples from an already segmented template SWI image are used to detect CMBs in a new image. First, multiple radial symmetry transforms (RST) are performed on the template SWI to detect small ellipsoidal structures, which serve as potential microbleed candidates. Then 3D patches from the SWI and its RSTs are combined to form a feature vector at each voxel of the image. A random forest regression is trained using the feature vectors, where the dependent variable is the binary segmentation voxel of the template. Once the regression is learnt, it is applied to a new SWI scan, whose feature vectors contain patches from SWI and its RSTs. Experiments on 26 subjects with mild to severe brain injury show a CMB detection sensitivity of 85:7%, specificity 99:5%, and a false positive to true positive ratio of 1:73, which is competitive with published methods while providing a significant reduction in computation time.

  11. A Segmentation Framework of Pulmonary Nodules in Lung CT Images.

    PubMed

    Mukhopadhyay, Sudipta

    2016-02-01

    Accurate segmentation of pulmonary nodules is a prerequisite for acceptable performance of computer-aided detection (CAD) system designed for diagnosis of lung cancer from lung CT images. Accurate segmentation helps to improve the quality of machine level features which could improve the performance of the CAD system. The well-circumscribed solid nodules can be segmented using thresholding, but segmentation becomes difficult for part-solid, non-solid, and solid nodules attached with pleura or vessels. We proposed a segmentation framework for all types of pulmonary nodules based on internal texture (solid/part-solid and non-solid) and external attachment (juxta-pleural and juxta-vascular). In the proposed framework, first pulmonary nodules are categorized into solid/part-solid and non-solid category by analyzing intensity distribution in the core of the nodule. Two separate segmentation methods are developed for solid/part-solid and non-solid nodules, respectively. After determining the category of nodule, the particular algorithm is set to remove attached pleural surface and vessels from the nodule body. The result of segmentation is evaluated in terms of four contour-based metrics and six region-based metrics for 891 pulmonary nodules from Lung Image Database Consortium and Image Database Resource Initiative (LIDC/IDRI) public database. The experimental result shows that the proposed segmentation framework is reliable for segmentation of various types of pulmonary nodules with improved accuracy compared to existing segmentation methods.

  12. An entropy-based approach to automatic image segmentation of satellite images

    NASA Astrophysics Data System (ADS)

    Barbieri, Andre L.; de Arruda, G. F.; Rodrigues, Francisco A.; Bruno, Odemir M.; Costa, Luciano da Fontoura

    2011-02-01

    An entropy-based image segmentation approach is introduced and applied to color images obtained from Google Earth. Segmentation refers to the process of partitioning a digital image in order to locate different objects and regions of interest. The application to satellite images paves the way to automated monitoring of ecological catastrophes, urban growth, agricultural activity, maritime pollution, climate changing and general surveillance. Regions representing aquatic, rural and urban areas are identified and the accuracy of the proposed segmentation methodology is evaluated. The comparison with gray level images revealed that the color information is fundamental to obtain an accurate segmentation.

  13. Object density-based image segmentation and its applications in biomedical image analysis.

    PubMed

    Yu, Jinhua; Tan, Jinglu

    2009-12-01

    In many applications of medical image analysis, the density of an object is the most important feature for isolating an area of interest (image segmentation). In this research, an object density-based image segmentation methodology is developed, which incorporates intensity-based, edge-based and texture-based segmentation techniques. The proposed method consists of three main stages: preprocessing, object segmentation and final segmentation. Image enhancement, noise reduction and layer-of-interest extraction are several subtasks of preprocessing. Object segmentation utilizes a marker-controlled watershed technique to identify each object of interest (OI) from the background. A marker estimation method is proposed to minimize over-segmentation resulting from the watershed algorithm. Object segmentation provides an accurate density estimation of OI which is used to guide the subsequent segmentation steps. The final stage converts the distribution of OI into textural energy by using fractal dimension analysis. An energy-driven active contour procedure is designed to delineate the area with desired object density. Experimental results show that the proposed method is 98% accurate in segmenting synthetic images. Segmentation of microscopic images and ultrasound images shows the potential utility of the proposed method in different applications of medical image processing.

  14. Image segmentation using fuzzy LVQ clustering networks

    NASA Technical Reports Server (NTRS)

    Tsao, Eric Chen-Kuo; Bezdek, James C.; Pal, Nikhil R.

    1992-01-01

    In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation.

  15. Image Segmentation, Registration, Compression, and Matching

    NASA Technical Reports Server (NTRS)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity

  16. Hierarchical image segmentation for learning object priors

    SciTech Connect

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J; Li, Nan

    2010-11-10

    The proposed segmentation approach naturally combines experience based and image based information. The experience based information is obtained by training a classifier for each object class. For a given test image, the result of each classifier is represented as a probability map. The final segmentation is obtained with a hierarchial image segmentation algorithm that considers both the probability maps and the image features such as color and edge strength. We also utilize image region hierarchy to obtain not only local but also semi-global features as input to the classifiers. Moreover, to get robust probability maps, we take into account the region context information by averaging the probability maps over different levels of the hierarchical segmentation algorithm. The obtained segmentation results are superior to the state-of-the-art supervised image segmentation algorithms.

  17. Core Recursive Hierarchical Image Segmentation

    NASA Technical Reports Server (NTRS)

    Tilton, James

    2011-01-01

    The Recursive Hierarchical Image Segmentation (RHSEG) software has been repackaged to provide a version of the RHSEG software that is not subject to patent restrictions and that can be released to the general public through NASA GSFC's Open Source release process. Like the Core HSEG Software Package, this Core RHSEG Software Package also includes a visualization program called HSEGViewer along with a utility program HSEGReader. It also includes an additional utility program called HSEGExtract. The unique feature of the Core RHSEG package is that it is a repackaging of the RHSEG technology designed to specifically avoid the inclusion of the certain software technology. Unlike the Core HSEG package, it includes the recursive portions of the technology, but does not include processing window artifact elimination technology.

  18. A hybrid technique for medical image segmentation.

    PubMed

    Nyma, Alamgir; Kang, Myeongsu; Kwon, Yung-Keun; Kim, Cheol-Hong; Kim, Jong-Myon

    2012-01-01

    Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR) image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images.

  19. Livewire based single still image segmentation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Yang, Rong; Liu, Xiaomao; Yue, Hao; Zhu, Hao; Tian, Dandan; Chen, Shu; Li, Yiquan; Tian, Jinwen

    2011-11-01

    In the application of the video contactless measurement, the quality of the image taken from underwater is not very well. It is well known that automatic image segmental method cannot provide acceptable segmentation result with low quality single still image. Snake algorithm can provide better result in this case with the aiding of human. However, sometimes the segmental result of Snake may far from the initial segmental contour drawn by user. Livewire algorithm can keep the location of the seed points that user selected nailed from the beginning to the end. But the contour may have burrs when the image's noise is quite high and the contrast is low. In this paper, we modified the cost function of Livewire algorithm and proposed a new segmentation method that can be used for single still image segmentation with high noise and low contrast.

  20. Semiautomatic segmentation of liver metastases on volumetric CT images

    SciTech Connect

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-11-15

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  1. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  2. A new method of cardiographic image segmentation based on grammar

    NASA Astrophysics Data System (ADS)

    Hamdi, Salah; Ben Abdallah, Asma; Bedoui, Mohamed H.; Alimi, Adel M.

    2011-10-01

    The measurement of the most common ultrasound parameters, such as aortic area, mitral area and left ventricle (LV) volume, requires the delineation of the organ in order to estimate the area. In terms of medical image processing this translates into the need to segment the image and define the contours as accurately as possible. The aim of this work is to segment an image and make an automated area estimation based on grammar. The entity "language" will be projected to the entity "image" to perform structural analysis and parsing of the image. We will show how the idea of segmentation and grammar-based area estimation is applied to real problems of cardio-graphic image processing.

  3. Multispectral image segmentation of breast pathology

    NASA Astrophysics Data System (ADS)

    Hornak, Joseph P.; Blaakman, Andre; Rubens, Deborah; Totterman, Saara

    1991-06-01

    The signal intensity in a magnetic resonance image is not only a function of imaging parameters but also of several intrinsic tissue properties. Therefore, unlike other medical imaging modalities, magnetic resonance imaging (MRI) allows the imaging scientist to locate pathology using multispectral image segmentation. Multispectral image segmentation works best when orthogonal spectral regions are employed. In MRI, possible spectral regions are spin density (rho) , spin-lattice relaxation time T1, spin-spin relaxation time T2, and texture for each nucleus type and chemical shift. This study examines the ability of multispectral image segmentation to locate breast pathology using the total hydrogen T1, T2, and (rho) . The preliminary results indicate that our technique can locate cysts and fibroadenoma breast lesions with a minimum number of false-positives and false-negatives. Results, T1, T2, and (rho) algorithms, and segmentation techniques are presented.

  4. An improved level set method for vertebra CT image segmentation

    PubMed Central

    2013-01-01

    Background Clinical diagnosis and therapy for the lumbar disc herniation requires accurate vertebra segmentation. The complex anatomical structure and the degenerative deformations of the vertebrae makes its segmentation challenging. Methods An improved level set method, namely edge- and region-based level set method (ERBLS), is proposed for vertebra CT images segmentation. By considering the gradient information and local region characteristics of images, the proposed model can efficiently segment images with intensity inhomogeneity and blurry or discontinuous boundaries. To reduce the dependency on manual initialization in many active contour models and for an automatic segmentation, a simple initialization method for the level set function is built, which utilizes the Otsu threshold. In addition, the need of the costly re-initialization procedure is completely eliminated. Results Experimental results on both synthetic and real images demonstrated that the proposed ERBLS model is very robust and efficient. Compared with the well-known local binary fitting (LBF) model, our method is much more computationally efficient and much less sensitive to the initial contour. The proposed method has also applied to 56 patient data sets and produced very promising results. Conclusions An improved level set method suitable for vertebra CT images segmentation is proposed. It has the flexibility of segmenting the vertebra CT images with blurry or discontinuous edges, internal inhomogeneity and no need of re-initialization. PMID:23714300

  5. Metric Learning for Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  6. Iterative Vessel Segmentation of Fundus Images.

    PubMed

    Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K

    2015-07-01

    This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets.

  7. Segmentation by surface-to-image registration

    NASA Astrophysics Data System (ADS)

    Xie, Zhiyong; Tamez-Pena, Jose; Gieseg, Michael; Liachenko, Serguei; Dhamija, Shantanu; Chiao, Ping

    2006-03-01

    This paper presents a new image segmentation algorithm using surface-to-image registration. The algorithm employs multi-level transformations and multi-resolution image representations to progressively register atlas surfaces (modeling anatomical structures) to subject images based on weighted external forces in which weights and forces are determined by gradients and local intensity profiles obtained from images. The algorithm is designed to prevent atlas surfaces converging to unintended strong edges or leaking out of structures of interest through weak edges where the image contrast is low. Segmentation of bone structures on MR images of rat knees analyzed in this manner performs comparably to technical experts using a semi-automatic tool.

  8. Adaptive textural segmentation of medical images

    NASA Astrophysics Data System (ADS)

    Kuklinski, Walter S.; Frost, Gordon S.; MacLaughlin, Thomas

    1992-06-01

    A number of important problems in medical imaging can be described as segmentation problems. Previous fractal-based image segmentation algorithms have used either the local fractal dimension alone or the local fractal dimension and the corresponding image intensity as features for subsequent pattern recognition algorithms. An image segmentation algorithm that utilized the local fractal dimension, image intensity, and the correlation coefficient of the local fractal dimension regression analysis computation, to produce a three-dimension feature space that was partitioned to identify specific pixels of dental radiographs as being either bone, teeth, or a boundary between bone and teeth also has been reported. In this work we formulated the segmentation process as a configurational optimization problem and discuss the application of simulated annealing optimization methods to the solution of this specific optimization problem. The configurational optimization method allows information about both, the degree of correspondence between a candidate segment and an assumed textural model, and morphological information about the candidate segment to be used in the segmentation process. To apply this configurational optimization technique with a fractal textural model however, requires the estimation of the fractal dimension of an irregularly shaped candidate segment. The potential utility of a discrete Gerchberg-Papoulis bandlimited extrapolation algorithm to the estimation of the fractal dimension of an irregularly shaped candidate segment is also discussed.

  9. Robust Cell Segmentation for Histological Images of Glioblastoma

    PubMed Central

    Kong, Jun; Zhang, Pengyue; Liang, Yanhui; Teodoro, George; Brat, Daniel J.; Wang, Fusheng

    2016-01-01

    Glioblastoma (GBM) is a malignant brain tumor with uniformly dismal prognosis. Quantitative analysis of GBM cells is an important avenue to extract latent histologic disease signatures to correlate with molecular underpinnings and clinical outcomes. As a prerequisite, a robust and accurate cell segmentation is required. In this paper, we present an automated cell segmentation method that can satisfactorily address segmentation of overlapped cells commonly seen in GBM histology specimens. This method first detects cells with seed connectivity, distance constraints, image edge map, and a shape-based voting image. Initialized by identified seeds, cell boundaries are deformed with an improved variational level set method that can handle clumped cells. We test our method on 40 histological images of GBM with human annotations. The validation results suggest that our cell segmentation method is promising and represents an advance in quantitative cancer research.

  10. Improving image segmentation by learning region affinities

    SciTech Connect

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  11. Regression Segmentation for M³ Spinal Images.

    PubMed

    Wang, Zhijie; Zhen, Xiantong; Tay, KengYeow; Osman, Said; Romano, Walter; Li, Shuo

    2015-08-01

    Clinical routine often requires to analyze spinal images of multiple anatomic structures in multiple anatomic planes from multiple imaging modalities (M(3)). Unfortunately, existing methods for segmenting spinal images are still limited to one specific structure, in one specific plane or from one specific modality (S(3)). In this paper, we propose a novel approach, Regression Segmentation, that is for the first time able to segment M(3) spinal images in one single unified framework. This approach formulates the segmentation task innovatively as a boundary regression problem: modeling a highly nonlinear mapping function from substantially diverse M(3) images directly to desired object boundaries. Leveraging the advancement of sparse kernel machines, regression segmentation is fulfilled by a multi-dimensional support vector regressor (MSVR) which operates in an implicit, high dimensional feature space where M(3) diversity and specificity can be systematically categorized, extracted, and handled. The proposed regression segmentation approach was thoroughly tested on images from 113 clinical subjects including both disc and vertebral structures, in both sagittal and axial planes, and from both MRI and CT modalities. The overall result reaches a high dice similarity index (DSI) 0.912 and a low boundary distance (BD) 0.928 mm. With our unified and expendable framework, an efficient clinical tool for M(3) spinal image segmentation can be easily achieved, and will substantially benefit the diagnosis and treatment of spinal diseases.

  12. Medical image segmentation using level set and watershed transform

    NASA Astrophysics Data System (ADS)

    Zhu, Fuping; Tian, Jie

    2003-07-01

    One of the most popular level set algorithms is the so-called fast marching method. In this paper, a medical image segmentation algorithm is proposed based on the combination of fast marching method and watershed transformation. First, the original image is smoothed using nonlinear diffusion filter, then the smoothed image is over-segmented by the watershed algorithm. Last, the image is segmented automatically using the modified fast marching method. Due to introducing over-segmentation, the arrival time the seeded point to the boundary of region should be calculated. For other pixels inside the region of the seeded point, the arrival time is not calculated because of the region homogeneity. So the algorithm"s speed improves greatly. Moreover, the speed function is redefined based on the statistical similarity degree of the nearby regions. We also extend our algorithm to 3D circumstance and segment medical image series. Experiments show that the algorithm can fast and accurately obtain segmentation results of medical images.

  13. Fuzzy local Gaussian mixture model for brain MR image segmentation.

    PubMed

    Ji, Zexuan; Xia, Yong; Sun, Quansen; Chen, Qiang; Xia, Deshen; Feng, David Dagan

    2012-05-01

    Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited accuracy. In this paper, we assume that the local image data within each voxel's neighborhood satisfy the Gaussian mixture model (GMM), and thus propose the fuzzy local GMM (FLGMM) algorithm for automated brain MR image segmentation. This algorithm estimates the segmentation result that maximizes the posterior probability by minimizing an objective energy function, in which a truncated Gaussian kernel function is used to impose the spatial constraint and fuzzy memberships are employed to balance the contribution of each GMM. We compared our algorithm to state-of-the-art segmentation approaches in both synthetic and clinical data. Our results show that the proposed algorithm can largely overcome the difficulties raised by noise, low contrast, and bias field, and substantially improve the accuracy of brain MR image segmentation.

  14. Image segmentation based on kernel PCA and shape prior

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoping; Boukerroui, Djamal; Cocquerez, Jean-Pierre

    2011-06-01

    The introduction of shape priori in the segmentation model ameliorates effectively the poor segmentation result due to the using of the image information alone to segment the image including noise, occlusion, or missing parts. But the presentation of shape via Principal Component Analysis (PCA) brings on the limitation of the similarity between the objet and the prior shape. In this paper, we proposed using Kernel PCA (KPCA) to capture the shape information - the variability. KPCA can present better shape prior knowledge. The model based on KPCA allows segmenting the object with nonlinear transformation or a quite difference with the priori shape. Moreover, since the shape model is incorporated into the deformable model, our segmentation model includes the image term and the shape term to balance the influence of the global image information and the shape prior knowledge in proceed of segmentation. Our model and the model based on PCA both are applied to synthetic images and CT medical images. The comparative results show that KPCA can more accurately identify the object with large deformation or from the noised seriously background.

  15. Renal compartment segmentation in DCE-MRI images.

    PubMed

    Yang, Xin; Le Minh, Hung; Tim Cheng, Kwang-Ting; Sung, Kyung Hyun; Liu, Wenyu

    2016-08-01

    Renal compartment segmentation from Dynamic Contrast-Enhanced MRI (DCE-MRI) images is an important task for functional kidney evaluation. Despite advancement in segmentation methods, most of them focus on segmenting an entire kidney on CT images, there still lacks effective and automatic solutions for accurate segmentation of internal renal structures (i.e. cortex, medulla and renal pelvis) from DCE-MRI images. In this paper, we introduce a method for renal compartment segmentation which can robustly achieve high segmentation accuracy for a wide range of DCE-MRI data, and meanwhile requires little manual operations and parameter settings. The proposed method consists of five main steps. First, we pre-process the image time series to reduce the motion artifacts caused by the movement of the patients during the scans and enhance the kidney regions. Second, the kidney is segmented as a whole based on the concept of Maximally Stable Temporal Volume (MSTV). The proposed MSTV detects anatomical structures that are homogeneous in the spatial domain and stable in terms of temporal dynamics. MSTV-based kidney segmentation is robust to noises and does not require a training phase. It can well adapt to kidney shape variations caused by renal dysfunction. Third, voxels in the segmented kidney are described by principal components (PCs) to remove temporal redundancy and noises. And then k-means clustering of PCs is applied to separate voxels into multiple clusters. Fourth, the clusters are automatically labeled as cortex, medulla and pelvis based on voxels' geometric locations and intensity distribution. Finally, an iterative refinement method is introduced to further remove noises in each segmented compartment. Experiments on 14 real clinical kidney datasets and 12 synthetic dataset demonstrate that results produced by our method match very well with those segmented manually and the performance of our method is superior to the other five existing methods.

  16. A simple shape prior model for iris image segmentation

    NASA Astrophysics Data System (ADS)

    Bishop, Daniel A.; Yezzi, Anthony, Jr.

    2011-06-01

    In order to make biometric systems faster and more user-friendly, lower-quality images must be accepted. A major hurdle in this task is accurate segmentation of the boundaries of the iris in these images. Quite commonly, circle-fitting is used to approximate the boundaries of the inner (pupil) and outer (limbic) boundaries of the iris, but this assumption does not hold for off-axis or otherwise non-circular boundaries. In this paper we present a novel, foundational method for elliptical segmentation of off-axis iris images. This method uses active contours with constrained flow to achieve a simplified form of shape prior active contours. This is done by calculating a region-based contour evolution and projecting it upon a properly chosen set of vectors to confine it to a class of shapes. In this case, that class of shapes is ellipses. This serves to regularize the contour, simplifying the curve evolution and preventing the development of irregularities that present challenges in iris segmentation. The proposed method is tested using images from the UBIRIS v.1 and CASIA-IrisV3 image data sets, with both near-ideal and off-axis images. Additional testing has been performed using the WVU Off Axis/Angle Iris Dataset, Release 1. By avoiding many of the assumptions commonly used in iris segmentation methods, the proposed method is able to accurately fit elliptical boundaries to off-axis images.

  17. A Unified Framework for Brain Segmentation in MR Images

    PubMed Central

    Yazdani, S.; Yusof, R.; Karimian, A.; Riazi, A. H.; Bennamoun, M.

    2015-01-01

    Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI). We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM) method and the spatial information combined with support vector machine (SVM). The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR) and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets. PMID:26089978

  18. SAR Image Segmentation Using Morphological Attribute Profiles

    NASA Astrophysics Data System (ADS)

    Boldt, M.; Thiele, A.; Schulz, K.; Hinz, S.

    2014-08-01

    In the last years, the spatial resolution of remote sensing sensors and imagery has continuously improved. Focusing on spaceborne Synthetic Aperture Radar (SAR) sensors, the satellites of the current generation (TerraSAR-X, COSMO-SykMed) are able to acquire images with sub-meter resolution. Indeed, high resolution imagery is visually much better interpretable, but most of the established pixel-based analysis methods have become more or less impracticable since, in high resolution images, self-sufficient objects (vehicle, building) are represented by a large number of pixels. Methods dealing with Object-Based Image Analysis (OBIA) provide help. Objects (segments) are groupings of pixels resulting from image segmentation algorithms based on homogeneity criteria. The image set is represented by image segments, which allows the development of rule-based analysis schemes. For example, segments can be described or categorized by their local neighborhood in a context-based manner. In this paper, a novel method for the segmentation of high resolution SAR images is presented. It is based on the calculation of morphological differential attribute profiles (DAP) which are analyzed pixel-wise in a region growing procedure. The method distinguishes between heterogeneous and homogeneous image content and delivers a precise segmentation result.

  19. Contour detection and hierarchical image segmentation.

    PubMed

    Arbeláez, Pablo; Maire, Michael; Fowlkes, Charless; Malik, Jitendra

    2011-05-01

    This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming the output of any contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly outperform competing algorithms. The automatically generated hierarchical segmentations can be interactively refined by user-specified annotations. Computation at multiple image resolutions provides a means of coupling our system to recognition applications.

  20. Bacterial foraging based edge detection for cell image segmentation.

    PubMed

    Pan, Yongsheng; Zhou, Tao; Xia, Yong

    2015-01-01

    Edge detection is the most popular and common choices for cell image segmentation, in which local searching strategies are commonly used. In spite of their computational efficiency, traditional edge detectors, however, may either produce discontinued edges or rely heavily on initializations. In this paper, we propose a bacterial foraging based edge detection (BFED) algorithm for cell image segmentation. We model the gradients of intensities as the nutrient concentration and propel bacteria to forage along nutrient-rich locations via mimicking the behavior of Escherichia coli, including the chemotaxis, swarming, reproduction, elimination and dispersal. As a nature-inspired evolutionary technique, this algorithm can identify the desired edges and mark them as the tracks of bacteria. We have evaluated the proposed algorithm against the Canny, SUSAN, Verma's and an active contour model (ACM) based edge detectors on both synthetic and real cell images. Our results suggest that the BFED algorithm can identify boundaries more effectively and provide more accurate cell image segmentation.

  1. Shape-based interactive three-dimensional medical image segmentation

    NASA Astrophysics Data System (ADS)

    Hinshaw, Kevin P.; Brinkley, James F.

    1997-04-01

    Accurate image segmentation continues to be one of the biggest challenges in medical image analysis. Simple, low- level vision techniques have had limited success in this domain because of the visual complexity of medical images. This paper presents a 3-D shape model that uses prior knowledge of an object's structure to guide the search for its boundaries. The shape model has been incorporated into scanner, an interactive software package for image segmentation. We describe a graphical user interface that was developed for finding the surface of the brain and explain how the 3-D model assists with the segmentation process. Preliminary experiments show that with this shape- based approach, a low-resolution boundary for a surface can be found with two-thirds less work for the user than with a comparable manual method.

  2. Automatic labeling and segmentation of vertebrae in CT images

    NASA Astrophysics Data System (ADS)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  3. A Wavelet Neural Network for SAR Image Segmentation

    PubMed Central

    Wen, Xian-Bin; Zhang, Hua; Wang, Fa-Yu

    2009-01-01

    This paper proposes a wavelet neural network (WNN) for SAR image segmentation by combining the wavelet transform and an artificial neural network. The WNN combines the multiscale analysis ability of the wavelet transform and the classification capability of the artificial neural network by setting the wavelet function as the transfer function of the neural network. Several SAR images are segmented by the network whose transfer functions are the Morlet and Mexihat functions, respectively. The experimental results show the proposed method is very effective and accurate. PMID:22400005

  4. Convergent Coarseness Regulation for Segmented Images

    SciTech Connect

    Paglieroni, D W

    2004-05-27

    In segmentation of remotely sensed images, the number of pixel classes and their spectral representations are often unknown a priori. Even with prior knowledge, pixels with spectral components from multiple classes lead to classification errors and undesired small region artifacts. Coarseness regulation for segmented images is proposed as an efficient novel technique for handling these problems. Beginning with an over-segmented image, perceptually similar connected regions are iteratively merged using a method reminiscent of region growing, except the primitives are regions, not pixels. Interactive coarseness regulation is achieved by specifying the area {alpha} of the largest region eligible for merging. A region with area less than {alpha} is merged with the most spectrally similar connected region, unless the regions are perceived as spectrally dissimilar. In convergent coarseness regulation, which requires no user interaction, {alpha} is specified as the total number of pixels in the image, and the coarseness regulation output converges to a steady-state segmentation that remains unchanged as {alpha} is further increased. By applying convergent coarseness regulation to AVIRIS, IKONOS and DigitalGlobe images, and quantitatively comparing computer-generated segmentations to segmentations generated manually by a human analyst, it was found that the quality of the input segmentations was consistently and dramatically improved.

  5. A segmentation algorithm for noisy images

    SciTech Connect

    Xu, Y.; Olman, V.; Uberbacher, E.C.

    1996-12-31

    This paper presents a 2-D image segmentation algorithm and addresses issues related to its performance on noisy images. The algorithm segments an image by first constructing a minimum spanning tree representation of the image and then partitioning the spanning tree into sub-trees representing different homogeneous regions. The spanning tree is partitioned in such a way that the sum of gray-level variations over all partitioned subtrees is minimized under the constraints that each subtree has at least a specified number of pixels and two adjacent subtrees have significantly different ``average`` gray-levels. Two types of noise, transmission errors and Gaussian additive noise. are considered and their effects on the segmentation algorithm are studied. Evaluation results have shown that the segmentation algorithm is robust in the presence of these two types of noise.

  6. Medical image segmentation using genetic algorithms.

    PubMed

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  7. Laplacian forests: semantic image segmentation by guided bagging.

    PubMed

    Lombaert, Herve; Zikic, Darko; Criminisi, Antonio; Ayache, Nicholas

    2014-01-01

    This paper presents a new, efficient and accurate technique for the semantic segmentation of medical images. The paper builds upon the successful random decision forests model and improves on it by modifying the way in which randomness is injected into the tree training process. The contribution of this paper is two-fold. First, we replace the conventional bagging procedure (the uniform sampling of training images) with a guided bagging approach, which exploits the inherent structure and organization of the training image set. This allows the creation of decision trees that are specialized to a specific sub-type of images in the training set. Second, the segmentation of a previously unseen image happens via selection and application of only the trees that are relevant to the given test image. Tree selection is done automatically, via the learned image embedding, with more precisely a Laplacian eigenmap. We, therefore, call the proposed approach Laplacian Forests. We validate Laplacian Forests on a dataset of 256, manually segmented 3D CT scans of patients showing high variability in scanning protocols, resolution, body shape and anomalies. Compared with conventional decision forests, Laplacian Forests yield both higher training efficiency, due to the local analysis of the training image space, as well as higher segmentation accuracy, due to the specialization of the forest to image sub-types.

  8. A summary of image segmentation techniques

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    Machine vision systems are often considered to be composed of two subsystems: low-level vision and high-level vision. Low level vision consists primarily of image processing operations performed on the input image to produce another image with more favorable characteristics. These operations may yield images with reduced noise or cause certain features of the image to be emphasized (such as edges). High-level vision includes object recognition and, at the highest level, scene interpretation. The bridge between these two subsystems is the segmentation system. Through segmentation, the enhanced input image is mapped into a description involving regions with common features which can be used by the higher level vision tasks. There is no theory on image segmentation. Instead, image segmentation techniques are basically ad hoc and differ mostly in the way they emphasize one or more of the desired properties of an ideal segmenter and in the way they balance and compromise one desired property against another. These techniques can be categorized in a number of different groups including local vs. global, parallel vs. sequential, contextual vs. noncontextual, interactive vs. automatic. In this paper, we categorize the schemes into three main groups: pixel-based, edge-based, and region-based. Pixel-based segmentation schemes classify pixels based solely on their gray levels. Edge-based schemes first detect local discontinuities (edges) and then use that information to separate the image into regions. Finally, region-based schemes start with a seed pixel (or group of pixels) and then grow or split the seed until the original image is composed of only homogeneous regions. Because there are a number of survey papers available, we will not discuss all segmentation schemes. Rather than a survey, we take the approach of a detailed overview. We focus only on the more common approaches in order to give the reader a flavor for the variety of techniques available yet present enough

  9. Light Field Imaging Based Accurate Image Specular Highlight Removal

    PubMed Central

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  10. Tissue probability map constrained CLASSIC for increased accuracy and robustness in serial image segmentation

    NASA Astrophysics Data System (ADS)

    Xue, Zhong; Shen, Dinggang; Wong, Stephen T. C.

    2009-02-01

    Traditional fuzzy clustering algorithms have been successfully applied in MR image segmentation for quantitative morphological analysis. However, the clustering results might be biased due to the variability of tissue intensities and anatomical structures. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serialMR brain image segmentation for longitudinal study of human brains. The tissue probability maps consist of segmentation priors obtained from a population and reflect the probability of different tissue types. More accurate image segmentation can be achieved by using these segmentation priors in the clustering algorithm. Experimental results of both simulated longitudinal MR brain data and the Alzheimer's Disease Neuroimaging Initiative (ADNI) data using the new serial image segmentation algorithm in the framework of CLASSIC show more accurate and robust longitudinal measures.

  11. Active segmentation of 3D axonal images.

    PubMed

    Muralidhar, Gautam S; Gopinath, Ajay; Bovik, Alan C; Ben-Yakar, Adela

    2012-01-01

    We present an active contour framework for segmenting neuronal axons on 3D confocal microscopy data. Our work is motivated by the need to conduct high throughput experiments involving microfluidic devices and femtosecond lasers to study the genetic mechanisms behind nerve regeneration and repair. While most of the applications for active contours have focused on segmenting closed regions in 2D medical and natural images, there haven't been many applications that have focused on segmenting open-ended curvilinear structures in 2D or higher dimensions. The active contour framework we present here ties together a well known 2D active contour model [5] along with the physics of projection imaging geometry to yield a segmented axon in 3D. Qualitative results illustrate the promise of our approach for segmenting neruonal axons on 3D confocal microscopy data.

  12. Robust Prostate Segmentation Using Intrinsic Properties of TRUS Images.

    PubMed

    Wu, Pengfei; Liu, Yiguang; Li, Yongzhong; Liu, Bingbing

    2015-06-01

    Accurate segmentation is usually crucial in transrectal ultrasound (TRUS) image based prostate diagnosis; however, it is always hampered by heavy speckles. Contrary to the traditional view that speckles are adverse to segmentation, we exploit intrinsic properties induced by speckles to facilitate the task, based on the observations that sizes and orientations of speckles provide salient cues to determine the prostate boundary. Since the speckle orientation changes in accordance with a statistical prior rule, rotation-invariant texture feature is extracted along the orientations revealed by the rule. To address the problem of feature changes due to different speckle sizes, TRUS images are split into several arc-like strips. In each strip, every individual feature vector is sparsely represented, and representation residuals are obtained. The residuals, along with the spatial coherence inherited from biological tissues, are combined to segment the prostate preliminarily via graph cuts. After that, the segmentation is fine-tuned by a novel level sets model, which integrates (1) the prostate shape prior, (2) dark-to-light intensity transition near the prostate boundary, and (3) the texture feature just obtained. The proposed method is validated on two 2-D image datasets obtained from two different sonographic imaging systems, with the mean absolute distance on the mid gland images only 1.06±0.53 mm and 1.25±0.77 mm, respectively. The method is also extended to segment apex and base images, producing competitive results over the state of the art.

  13. Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming.

    PubMed

    Larocca, Francesco; Chiu, Stephanie J; McNabb, Ryan P; Kuo, Anthony N; Izatt, Joseph A; Farsiu, Sina

    2011-06-01

    Segmentation of anatomical structures in corneal images is crucial for the diagnosis and study of anterior segment diseases. However, manual segmentation is a time-consuming and subjective process. This paper presents an automatic approach for segmenting corneal layer boundaries in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Our approach is robust to the low-SNR and different artifact types that can appear in clinical corneal images. We show that our method segments three corneal layer boundaries in normal adult eyes more accurately compared to an expert grader than a second grader-even in the presence of significant imaging outliers.

  14. Automatic segmentation of the striatum and globus pallidus using MIST: Multimodal Image Segmentation Tool.

    PubMed

    Visser, Eelke; Keuken, Max C; Douaud, Gwenaëlle; Gaura, Veronique; Bachoud-Levi, Anne-Catherine; Remy, Philippe; Forstmann, Birte U; Jenkinson, Mark

    2016-01-15

    Accurate segmentation of the subcortical structures is frequently required in neuroimaging studies. Most existing methods use only a T1-weighted MRI volume to segment all supported structures and usually rely on a database of training data. We propose a new method that can use multiple image modalities simultaneously and a single reference segmentation for initialisation, without the need for a manually labelled training set. The method models intensity profiles in multiple images around the boundaries of the structure after nonlinear registration. It is trained using a set of unlabelled training data, which may be the same images that are to be segmented, and it can automatically infer the location of the physical boundary using user-specified priors. We show that the method produces high-quality segmentations of the striatum, which is clearly visible on T1-weighted scans, and the globus pallidus, which has poor contrast on such scans. The method compares favourably to existing methods, showing greater overlap with manual segmentations and better consistency.

  15. A watershed approach for improving medical image segmentation.

    PubMed

    Zanaty, E A; Afifi, Ashraf

    2013-01-01

    In this paper, a novel watershed approach based on seed region growing and image entropy is presented which could improve the medical image segmentation. The proposed algorithm enables the prior information of seed region growing and image entropy in its calculation. The algorithm starts by partitioning the image into several levels of intensity using watershed multi-degree immersion process. The levels of intensity are the input to a computationally efficient seed region segmentation process which produces the initial partitioning of the image regions. These regions are fed to entropy procedure to carry out a suitable merging which produces the final segmentation. The latter process uses a region-based similarity representation of the image regions to decide whether regions can be merged. The region is isolated from the level and the residual pixels are uploaded to the next level and so on, we recall this process as multi-level process and the watershed is called multi-level watershed. The proposed algorithm is applied to challenging applications: grey matter-white matter segmentation in magnetic resonance images (MRIs). The established methods and the proposed approach are experimented by these applications to a variety of simulating immersion, multi-degree, multi-level seed region growing and multi-level seed region growing with entropy. It is shown that the proposed method achieves more accurate results for medical image oversegmentation.

  16. Self imaging in segmented waveguide arrays

    NASA Astrophysics Data System (ADS)

    Heinrich, Matthias; Szameit, Alexander; Dreisow, Felix; Pertsch, Thomas; Nolte, Stefan; Tünnermann, Andreas; Suran, Eric; Louradour, Frédéric; Bathélémy, Alain; Longhi, Stefano

    2009-02-01

    Self-imaging in integrated optical devices is interesting for many applications including image transmission, optical collimation and even reshaping of ultrashort laser pulses. However, in general this relies on boundary-free light propagation, since interaction with boundaries results in a considerable distortion of the self-imaging effect. This problem can be overcome in waveguide arrays by segmentation of particular lattice sites, yielding phase shifts which result in image reconstruction in one- as well as two-dimensional configurations. Here, we demonstrate the first experimental realization of this concept. For the fabrication of the segmented waveguide arrays we used the femtosecond laser direct-writing technique. The total length of the arrays is 50mm with a waveguide spacing of 16 μm and 20μm in the one- and two-dimensional case, respectively. The length of the segmented area was 2.6mm, while the segmentation period was chosen to be 16 μm. This results in a complete inversion of the global phase of the travelling field inside the array, so that the evolution dynamics are reversed and the input field is imaged onto the sample output facet. Accordingly, segmented integrated optical devices provide a new and attractive opportunity for image transmission in finite systems.

  17. Image segmentation using neural tree networks

    NASA Astrophysics Data System (ADS)

    Samaddar, Sumitro; Mammone, Richard J.

    1993-06-01

    We present a technique for Image Segmentation using Neural Tree Networks (NTN). We also modify the NTN architecture to let is solve multi-class classification problems with only binary fan-out. We have used a realistic case study of segmenting the pole, coil and painted coil regions of light bulb filaments (LBF). The input to the network is a set of maximum, minimum and average of intensities in radial slices of a circular window around a pixel, taken from a front-lit and a back-lit image of an LBF. Training is done with a composite image drawn from images of many LBFs. Each node of the NTN is a multi-layer perceptron and has one output for each segment class. These outputs are treated as probabilities to compute a confidence value for the segmentation of that pixel. Segmentation results with high confidence values are deemed to be correct and not processed further, while those with moderate and low confidence values are deemed to be outliers by this node and passed down the tree to children nodes. These tend to be pixels in boundary of different regions. The results are favorably compared with a traditional segmentation technique applied to the LBF test case.

  18. Neural tree network method for image segmentation

    NASA Astrophysics Data System (ADS)

    Samaddar, Sumitro; Mammone, Richard J.

    1994-02-01

    We present an extension of the neural tree network (NTN) architecture to let it solve multi- class classification problems with only binary fan-out. We then demonstrate it's effectiveness by applying it in a method for image segmentation. Each node of the NTN is a multi-layer perceptron and has one output for each segment class. These outputs are treated as probabilities to compute a confidence value for the segmentation of that pixel. Segmentation results with high confidence values are deemed to be correct and not processed further, while those with moderate and low confidence values are deemed to be outliers by this node and passed down the tree to children nodes. These tend to be pixels in boundary of different regions. We have used a realistic case study of segmenting the pole, coil and painted coil regions of light bulb filaments (LBF). The input to the network is a set of maximum, minimum and average of intensities in radial slices of a circular window around a pixel, taken from a front-lit and a back-lit image of an LBF. Training is done with a composite image drawn from images of many LBFs. The results are favorably compared with a traditional segmentation technique applied to the LBF test case.

  19. Intuitionistic fuzzy segmentation of medical images.

    PubMed

    Chaira, Tamalika

    2010-06-01

    This paper proposes a novel and probably the first method, using Attanassov intuitionistic fuzzy set theory to segment blood vessels and also the blood cells in pathological images. This type of segmentation is very important in detecting different types of human diseases, e.g., an increase in the number of vessels may lead to cancer in prostates, mammary, etc. The medical images are not properly illuminated, and segmentation in that case becomes very difficult. A novel image segmentation approach using intuitionistic fuzzy set theory and a new membership function is proposed using restricted equivalence function from automorphisms, for finding the membership values of the pixels of the image. An intuitionistic fuzzy image is constructed using Sugeno type intuitionistic fuzzy generator. Local thresholding is applied to threshold medical images. The results showed a much better performance on poor contrast medical images, where almost all the blood vessels and blood cells are visible properly. There are several fuzzy and intuitionistic fuzzy thresholding methods, but these methods are not related to the medical images. To make a comparison with the proposed method with other thresholding methods, the method is compared with six nonfuzzy, fuzzy, and intuitionistic fuzzy methods.

  20. Active appearance model and deep learning for more accurate prostate segmentation on MRI

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Roth, Holger R.; Lu, Le; Wang, Shijun; Turkbey, Baris; Gandler, William; McCreedy, Evan S.; Agarwal, Harsh K.; Choyke, Peter; Summers, Ronald M.; McAuliffe, Matthew J.

    2016-03-01

    Prostate segmentation on 3D MR images is a challenging task due to image artifacts, large inter-patient prostate shape and texture variability, and lack of a clear prostate boundary specifically at apex and base levels. We propose a supervised machine learning model that combines atlas based Active Appearance Model (AAM) with a Deep Learning model to segment the prostate on MR images. The performance of the segmentation method is evaluated on 20 unseen MR image datasets. The proposed method combining AAM and Deep Learning achieves a mean Dice Similarity Coefficient (DSC) of 0.925 for whole 3D MR images of the prostate using axial cross-sections. The proposed model utilizes the adaptive atlas-based AAM model and Deep Learning to achieve significant segmentation accuracy.

  1. CONSTRAINED SPECTRAL CLUSTERING FOR IMAGE SEGMENTATION

    PubMed Central

    Sourati, Jamshid; Brooks, Dana H.; Dy, Jennifer G.; Erdogmus, Deniz

    2013-01-01

    Constrained spectral clustering with affinity propagation in its original form is not practical for large scale problems like image segmentation. In this paper we employ novelty selection sub-sampling strategy, besides using efficient numerical eigen-decomposition methods to make this algorithm work efficiently for images. In addition, entropy-based active learning is also employed to select the queries posed to the user more wisely in an interactive image segmentation framework. We evaluate the algorithm on general and medical images to show that the segmentation results will improve using constrained clustering even if one works with a subset of pixels. Furthermore, this happens more efficiently when pixels to be labeled are selected actively. PMID:24466500

  2. Residual Deconvolutional Networks for Brain Electron Microscopy Image Segmentation.

    PubMed

    Fakhry, Ahmed; Zeng, Tao; Ji, Shuiwang

    2017-02-01

    Accurate reconstruction of anatomical connections between neurons in the brain using electron microscopy (EM) images is considered to be the gold standard for circuit mapping. A key step in obtaining the reconstruction is the ability to automatically segment neurons with a precision close to human-level performance. Despite the recent technical advances in EM image segmentation, most of them rely on hand-crafted features to some extent that are specific to the data, limiting their ability to generalize. Here, we propose a simple yet powerful technique for EM image segmentation that is trained end-to-end and does not rely on prior knowledge of the data. Our proposed residual deconvolutional network consists of two information pathways that capture full-resolution features and contextual information, respectively. We showed that the proposed model is very effective in achieving the conflicting goals in dense output prediction; namely preserving full-resolution predictions and including sufficient contextual information. We applied our method to the ongoing open challenge of 3D neurite segmentation in EM images. Our method achieved one of the top results on this open challenge. We demonstrated the generality of our technique by evaluating it on the 2D neurite segmentation challenge dataset where consistently high performance was obtained. We thus expect our method to generalize well to other dense output prediction problems.

  3. Automatic segmentation of cerebral MR images using artificial neural networks

    SciTech Connect

    Alirezaie, J.; Jernigan, M.E.; Nahmias, C.

    1996-12-31

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the Self Organizing Feature Map (SOFM) artificial neural network for feature mapping and generates a set of codebook vectors. By extending the network with an additional layer the map will be classified and each tissue class will be labelled. An algorithm has been developed for extracting the cerebrum from the head scan prior to the segmentation. Extracting the cerebrum is performed by stripping away the skull pixels from the T2 image. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. To compare the results with other conventional approaches we applied the c-means algorithm to the problem.

  4. Video-based noncooperative iris image segmentation.

    PubMed

    Du, Yingzi; Arslanturk, Emrah; Zhou, Zhi; Belcher, Craig

    2011-02-01

    In this paper, we propose a video-based noncooperative iris image segmentation scheme that incorporates a quality filter to quickly eliminate images without an eye, employs a coarse-to-fine segmentation scheme to improve the overall efficiency, uses a direct least squares fitting of ellipses method to model the deformed pupil and limbic boundaries, and develops a window gradient-based method to remove noise in the iris region. A remote iris acquisition system is set up to collect noncooperative iris video images. An objective method is used to quantitatively evaluate the accuracy of the segmentation results. The experimental results demonstrate the effectiveness of this method. The proposed method would make noncooperative iris recognition or iris surveillance possible.

  5. A new distribution metric for image segmentation

    NASA Astrophysics Data System (ADS)

    Sandhu, Romeil; Georgiou, Tryphon; Tannenbaum, Allen

    2008-03-01

    In this paper, we present a new distribution metric for image segmentation that arises as a result in prediction theory. Forming a natural geodesic, our metric quantifies "distance" for two density functionals as the standard deviation of the difference between logarithms of those distributions. Using level set methods, we incorporate an energy model based on the metric into the Geometric Active Contour framework. Moreover, we briefly provide a theoretical comparison between the popular Fisher Information metric, from which the Bhattacharyya distance originates, with the newly proposed similarity metric. In doing so, we demonstrate that segmentation results are directly impacted by the type of metric used. Specifically, we qualitatively compare the Bhattacharyya distance and our algorithm on the Kaposi Sarcoma, a pathology that infects the skin. We also demonstrate the algorithm on several challenging medical images, which further ensure the viability of the metric in the context of image segmentation.

  6. Hierarchical Segmentation Enhances Diagnostic Imaging

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Bartron Medical Imaging LLC (BMI), of New Haven, Connecticut, gained a nonexclusive license from Goddard Space Flight Center to use the RHSEG software in medical imaging. To manage image data, BMI then licensed two pattern-matching software programs from NASA's Jet Propulsion Laboratory that were used in image analysis and three data-mining and edge-detection programs from Kennedy Space Center. More recently, BMI made NASA history by being the first company to partner with the Space Agency through a Cooperative Research and Development Agreement to develop a 3-D version of RHSEG. With U.S. Food and Drug Administration clearance, BMI will sell its Med-Seg imaging system with the 2-D version of the RHSEG software to analyze medical imagery from CAT and PET scans, MRI, ultrasound, digitized X-rays, digitized mammographies, dental X-rays, soft tissue analyses, moving object analyses, and soft-tissue slides such as Pap smears for the diagnoses and management of diseases. Extending the software's capabilities to three dimensions will eventually enable production of pixel-level views of a tumor or lesion, early identification of plaque build-up in arteries, and identification of density levels of microcalcification in mammographies.

  7. Performance evaluation of image segmentation algorithms on microscopic image data.

    PubMed

    Beneš, Miroslav; Zitová, Barbara

    2015-01-01

    In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and 'the best' method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus, the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behaviour of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms. In the end, the benefit of segmentation combination approach is studied and applicability of achieved results on another representatives of microscopic data category - biological samples - is shown.

  8. Segmenting Images for a Better Diagnosis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.

  9. Adaptive geodesic transform for segmentation of vertebrae on CT images

    NASA Astrophysics Data System (ADS)

    Gaonkar, Bilwaj; Shu, Liao; Hermosillo, Gerardo; Zhan, Yiqiang

    2014-03-01

    Vertebral segmentation is a critical first step in any quantitative evaluation of vertebral pathology using CT images. This is especially challenging because bone marrow tissue has the same intensity profile as the muscle surrounding the bone. Thus simple methods such as thresholding or adaptive k-means fail to accurately segment vertebrae. While several other algorithms such as level sets may be used for segmentation any algorithm that is clinically deployable has to work in under a few seconds. To address these dual challenges we present here, a new algorithm based on the geodesic distance transform that is capable of segmenting the spinal vertebrae in under one second. To achieve this we extend the theory of the geodesic distance transforms proposed in1 to incorporate high level anatomical knowledge through adaptive weighting of image gradients. Such knowledge may be provided by the user directly or may be automatically generated by another algorithm. We incorporate information 'learnt' using a previously published machine learning algorithm2 to segment the L1 to L5 vertebrae. While we present a particular application here, the adaptive geodesic transform is a generic concept which can be applied to segmentation of other organs as well.

  10. Segmentation of fluorescence microscopy cell images using unsupervised mining.

    PubMed

    Du, Xian; Dua, Sumeet

    2010-05-28

    The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

  11. Image segmentation for integrated multiphoton microscopy and reflectance confocal microscopy imaging of human skin in vivo

    PubMed Central

    Chen, Guannan; Lui, Harvey

    2015-01-01

    Background Non-invasive cellular imaging of the skin in vivo can be achieved in reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) modalities to yield complementary images of the skin based on different optical properties. One of the challenges of in vivo microscopy is the delineation (i.e., segmentation) of cellular and subcellular architectural features. Methods In this work we present a method for combining watershed and level-set models for segmentation of multimodality images obtained by an integrated MPM and RCM imaging system from human skin in vivo. Results Firstly, a segmentation model based on watershed is introduced for obtaining the accurate structure of cell borders from the RCM image. Secondly,, a global region based energy level-set model is constructed for extracting the nucleus of each cell from the MPM image. Thirdly, a local region-based Lagrange Continuous level-set approach is used for segmenting cytoplasm from the MPM image. Conclusions Experimental results demonstrated that cell borders from RCM image and boundaries of cytoplasm and nucleus from MPM image can be obtained by our segmentation method with better accuracy and effectiveness. We are planning to use this method to perform quantitative analysis of MPM and RCM images of in vivo human skin to study the variations of cellular parameters such as cell size, nucleus size and other mophormetric features with skin pathologies. PMID:25694949

  12. Color Image Segmentation in a Quaternion Framework

    PubMed Central

    Subakan, Özlem N.; Vemuri, Baba C.

    2010-01-01

    In this paper, we present a feature/detail preserving color image segmentation framework using Hamiltonian quaternions. First, we introduce a novel Quaternionic Gabor Filter (QGF) which can combine the color channels and the orientations in the image plane. Using the QGFs, we extract the local orientation information in the color images. Second, in order to model this derived orientation information, we propose a continuous mixture of appropriate hypercomplex exponential basis functions. We derive a closed form solution for this continuous mixture model. This analytic solution is in the form of a spatially varying kernel which, when convolved with the signed distance function of an evolving contour (placed in the color image), yields a detail preserving segmentation. PMID:21243101

  13. A Survey of Digital Image Segmentation Algorithms

    DTIC Science & Technology

    1995-01-01

    features. Thresholding techniques arc also useful in segmenting such binary images as printed documents, line drawings, and multispectral and x-ray...algorithms, pixel labeling and run-length connectivity analysis, arc discussed in the following sections. Therefore, in exammmg g(x, y), pixels that are...edge linking, graph searching, curve fitting, Hough transform, and others arc applicablc to image segmematio~. Difficulties with boundary-based methods

  14. Automatic segmentation of MR brain images in multiple sclerosis patients

    NASA Astrophysics Data System (ADS)

    Avula, Ramesh T. V.; Erickson, Bradley J.

    1996-04-01

    A totally automatic scheme for segmenting brain from extracranial tissues and to classify all intracranial voxels as CSF, gray matter (GM), white matter (WM), or abnormality such as multiple sclerosis (MS) lesions is presented in this paper. It is observed that in MR head images, if a tissue's intensity values are normalized, its relationship to the other tissues is essentially constant for a given type of image. Based on this approach, the subcutaneous fat surrounding the head is normalized to classify other tissues. Spatially registered 3 mm MR head image slices of T1 weighted, fast spin echo [dual echo T2 weighted and proton density (PD) weighted images] and fast fluid attenuated inversion recovery (FLAIR) sequences are used for segmentation. Subcutaneous fat surrounding the skull was identified based on intensity thresholding from T1 weighted images. A multiparametric space map was developed for CSF, GM and WM by normalizing each tissue with respect to the mean value of corresponding subcutaneous fat on each pulse sequence. To reduce the low frequency noise without blurring the fine morphological high frequency details an anisotropic diffusion filter was applied to all images before segmentation. An initial slice by slice classification was followed by morphological operations to delete any brides connecting extracranial segments. Finally 3-dimensional region growing of the segmented brain extracts GM, WM and pathology. The algorithm was tested on sequential scans of 10 patients with MS lesions. For well registered sequences, tissues and pathology have been accurately classified. This procedure does not require user input or image training data sets, and shows promise for automatic classification of brain and pathology.

  15. An active contour model for medical image segmentation with application to brain CT image

    PubMed Central

    Qian, Xiaohua; Wang, Jiahui; Guo, Shuxu; Li, Qiang

    2013-01-01

    Purpose: Cerebrospinal fluid (CSF) segmentation in computed tomography (CT) is a key step in computer-aided detection (CAD) of acute ischemic stroke. Because of image noise, low contrast and intensity inhomogeneity, CSF segmentation has been a challenging task. A region-based active contour model, which is insensitive to contour initialization and robust to intensity inhomogeneity, was developed for segmenting CSF in brain CT images. Methods: The energy function of the region-based active contour model is composed of a range domain kernel function, a space domain kernel function, and an edge indicator function. By minimizing the energy function, the region of edge elements of the target could be automatically identified in images with less dependence on initial contours. The energy function was optimized by means of the deepest descent method with a level set framework. An overlap rate between segmentation results and the reference standard was used to assess the segmentation accuracy. The authors evaluated the performance of the proposed method on both synthetic data and real brain CT images. They also compared the performance level of our method to those of region-scalable fitting (RSF) and global convex segment (GCS) models. Results: For the experiment of CSF segmentation in 67 brain CT images, their method achieved an average overlap rate of 66% compared to the average overlap rates of 16% and 46% from the RSF model and the GCS model, respectively. Conclusions: Their region-based active contour model has the ability to achieve accurate segmentation results in images with high noise level and intensity inhomogeneity. Therefore, their method has great potential in the segmentation of medical images and would be useful for developing CAD schemes for acute ischemic stroke in brain CT images. PMID:23387759

  16. Liver segmentation for CT images using GVF snake

    SciTech Connect

    Liu Fan; Zhao Binsheng; Kijewski, Peter K.; Wang Liang; Schwartz, Lawrence H.

    2005-12-15

    Accurate liver segmentation on computed tomography (CT) images is a challenging task especially at sites where surrounding tissues (e.g., stomach, kidney) have densities similar to that of the liver and lesions reside at the liver edges. We have developed a method for semiautomatic delineation of the liver contours on contrast-enhanced CT images. The method utilizes a snake algorithm with a gradient vector flow (GVF) field as its external force. To improve the performance of the GVF snake in the segmentation of the liver contour, an edge map was obtained with a Canny edge detector, followed by modifications using a liver template and a concavity removal algorithm. With the modified edge map, for which unwanted edges inside the liver were eliminated, the GVF field was computed and an initial liver contour was formed. The snake algorithm was then applied to obtain the actual liver contour. This algorithm was extended to segment the liver volume in a slice-by-slice fashion, where the result of the preceding slice constrained the segmentation of the adjacent slice. 551 two-dimensional liver images from 20 volumetric images with colorectal metastases spreading throughout the livers were delineated using this method, and also manually by a radiologist for evaluation. The difference ratio, which is defined as the percentage ratio of mismatching volume between the computer and the radiologist's results, ranged from 2.9% to 7.6% with a median value of 5.3%.

  17. A Scalable Framework For Segmenting Magnetic Resonance Images

    PubMed Central

    Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar

    2009-01-01

    A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893

  18. Segmentation of brain blood vessels using projections in 3-D CT angiography images.

    PubMed

    Babin, Danilo; Vansteenkiste, Ewout; Pizurica, Aleksandra; Philips, Wilfried

    2011-01-01

    Segmenting cerebral blood vessels is of great importance in diagnostic and clinical applications, especially in quantitative diagnostics and surgery on aneurysms and arteriovenous malformations (AVM). Segmentation of CT angiography images requires algorithms robust to high intensity noise, while being able to segment low-contrast vessels. Because of this, most of the existing methods require user intervention. In this work we propose an automatic algorithm for efficient segmentation of 3-D CT angiography images of cerebral blood vessels. Our method is robust to high intensity noise and is able to accurately segment blood vessels with high range of luminance values, as well as low-contrast vessels.

  19. Learning a cost function for microscope image segmentation.

    PubMed

    Nilufar, Sharmin; Perkins, Theodore J

    2014-01-01

    Quantitative analysis of microscopy images is increasingly important in clinical researchers' efforts to unravel the cellular and molecular determinants of disease, and for pathological analysis of tissue samples. Yet, manual segmentation and measurement of cells or other features in images remains the norm in many fields. We report on a new system that aims for robust and accurate semi-automated analysis of microscope images. A user interactively outlines one or more examples of a target object in a training image. We then learn a cost function for detecting more objects of the same type, either in the same or different images. The cost function is incorporated into an active contour model, which can efficiently determine optimal boundaries by dynamic programming. We validate our approach and compare it to some standard alternatives on three different types of microscopic images: light microscopy of blood cells, light microscopy of muscle tissue sections, and electron microscopy cross-sections of axons and their myelin sheaths.

  20. Image feature based GPS trace filtering for road network generation and road segmentation

    SciTech Connect

    Yuan, Jiangye; Cheriyadat, Anil M.

    2015-10-19

    We propose a new method to infer road networks from GPS trace data and accurately segment road regions in high-resolution aerial images. Unlike previous efforts that rely on GPS traces alone, we exploit image features to infer road networks from noisy trace data. The inferred road network is used to guide road segmentation. We show that the number of image segments spanned by the traces and the trace orientation validated with image features are important attributes for identifying GPS traces on road regions. Based on filtered traces , we construct road networks and integrate them with image features to segment road regions. Lastly, our experiments show that the proposed method produces more accurate road networks than the leading method that uses GPS traces alone, and also achieves high accuracy in segmenting road regions even with very noisy GPS data.

  1. Side scan sonar image segmentation based on neutrosophic set and quantum-behaved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhu; Wang, Xiao; Zhang, Hongmei; Hu, Jun; Jian, Xiaomin

    2016-09-01

    To fulfill side scan sonar (SSS) image segmentation accurately and efficiently, a novel segmentation algorithm based on neutrosophic set (NS) and quantum-behaved particle swarm optimization (QPSO) is proposed in this paper. Firstly, the neutrosophic subset images are obtained by transforming the input image into the NS domain. Then, a co-occurrence matrix is accurately constructed based on these subset images, and the entropy of the gray level image is described to serve as the fitness function of the QPSO algorithm. Moreover, the optimal two-dimensional segmentation threshold vector is quickly obtained by QPSO. Finally, the contours of the interested target are segmented with the threshold vector and extracted by the mathematic morphology operation. To further improve the segmentation efficiency, the single threshold segmentation, an alternative algorithm, is recommended for the shadow segmentation by considering the gray level characteristics of the shadow. The accuracy and efficiency of the proposed algorithm are assessed with experiments of SSS image segmentation.

  2. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  3. Automatic segmentation of trophectoderm in microscopic images of human blastocysts.

    PubMed

    Singh, Amarjot; Au, Jason; Saeedi, Parvaneh; Havelock, Jon

    2015-01-01

    Accurate assessment of embryos viability is an extremely important task in the optimization of in vitro fertilization treatment outcome. One of the common ways of assessing the quality of a human embryo is grading it on its fifth day of development based on morphological quality of its three main components (Trophectoderm, Inner Cell Mass, and the level of expansion or the thickness of its Zona Pellucida). In this study, we propose a fully automatic method for segmentation and measurement of TE region of blastocysts (day-5 human embryos). Here, we eliminate the inhomogeneities of the blastocysts surface using the Retinex theory and further apply a level-set algorithm to segment the TE regions. We have tested our method on a dataset of 85 images and have been able to achieve a segmentation accuracy of 84.6% for grade A, 89.0% for grade B, and 91.7% for grade C embryos.

  4. Hepatic lesions segmentation in ultrasound nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Kissi, Adelaide A.; Cormier, Stephane; Pourcelot, Leandre; Tranquart, Francois

    2005-04-01

    Doppler has been used for many years for cardiovascular exploration in order to visualize the vessels walls and anatomical or functional diseases. The use of ultrasound contrast agents makes it possible to improve ultrasonic information. Nonlinear ultrasound imaging highlights the detection of these agents within an organ and hence is a powerful technique to image perfusion of an organ in real-time. The visualization of flow and perfusion provides important information for the diagnosis of various diseases as well as for the detection of tumors. However, the images are buried in noise, the speckle, inherent in the image formation. Furthermore at portal phase, there is often an absence of clear contrast between lesions and surrounding tissues because the organ is filled with agents. In this context, we propose a new method of automatic liver lesions segmentation in nonlinear imaging sequences for the quantification of perfusion. Our method of segmentation is divided into two stages. Initially, we developed an anisotropic diffusion step which raised the structural characteristics to eliminate the speckle. Then, a fuzzy competitive clustering process allowed us to delineate liver lesions. This method has been used to detect focal hepatic lesions (metastasis, nodular hyperplasia, adenoma). Compared to medical expert"s report obtained on 15 varied lesions, the automatic segmentation allows us to identify and delineate focal liver lesions during the portal phase which high accuracy. Our results show that this method improves markedly the recognition of focal hepatic lesions and opens the way for future precise quantification of contrast enhancement.

  5. Mammographic images segmentation using texture descriptors.

    PubMed

    Mascaro, Angelica A; Mello, Carlos A B; Santos, Wellington P; Cavalcanti, George D C

    2009-01-01

    Tissue classification in mammography can help the diagnosis of breast cancer by separating healthy tissue from lesions. We present herein the use of three texture descriptors for breast tissue segmentation purposes: the Sum Histogram, the Gray Level Co-Occurrence Matrix (GLCM) and the Local Binary Pattern (LBP). A modification of the LBP is also proposed for a better distinction of the tissues. In order to segment the image into its tissues, these descriptors are compared using a fidelity index and two clustering algorithms: k-Means and SOM (Self-Organizing Maps).

  6. Image Segmentation With Cage Active Contours.

    PubMed

    Garrido, Lluís; Guerrieri, Marité; Igual, Laura

    2015-12-01

    In this paper, we present a framework for image segmentation based on parametrized active contours. The evolving contour is parametrized according to a reduced set of control points that form a closed polygon and have a clear visual interpretation. The parametrization, called mean value coordinates, stems from the techniques used in computer graphics to animate virtual models. Our framework allows to easily formulate region-based energies to segment an image. In particular, we present three different local region-based energy terms: 1) the mean model; 2) the Gaussian model; 3) and the histogram model. We show the behavior of our method on synthetic and real images and compare the performance with state-of-the-art level set methods.

  7. Graph cut and image intensity-based splitting improves nuclei segmentation in high-content screening

    NASA Astrophysics Data System (ADS)

    Farhan, Muhammad; Ruusuvuori, Pekka; Emmenlauer, Mario; Rämö, Pauli; Yli-Harja, Olli; Dehio, Christoph

    2013-02-01

    Quantification of phenotypes in high-content screening experiments depends on the accuracy of single cell analysis. In such analysis workflows, cell nuclei segmentation is typically the first step and is followed by cell body segmentation, feature extraction, and subsequent data analysis workflows. Therefore, it is of utmost importance that the first steps of high-content analysis are done accurately in order to guarantee correctness of the final analysis results. In this paper, we present a novel cell nuclei image segmentation framework which exploits robustness of graph cut to obtain initial segmentation for image intensity-based clump splitting method to deliver the accurate overall segmentation. By using quantitative benchmarks and qualitative comparison with real images from high-content screening experiments with complicated multinucleate cells, we show that our method outperforms other state-of-the-art nuclei segmentation methods. Moreover, we provide a modular and easy-to-use implementation of the method for a widely used platform.

  8. Automatic segmentation of medical images using image registration: diagnostic and simulation applications.

    PubMed

    Barber, D C; Hose, D R

    2005-01-01

    Automatic identification of the boundaries of significant structure (segmentation) within a medical image is an are of ongoing research. Various approaches have been proposed but only two methods have achieved widespread use: manual delineation of boundaries and segmentation using intensity values. In this paper we describe an approach based on image registration. A reference image is prepared and segmented, by hand or otherwise. A patient image is registered to the reference image and the mapping then applied to ther reference segmentation to map it back to the patient image. In general a high-resolution nonlinear mapping is required to achieve accurate segmentation. This paper describes an algorithm that can efficiently generate such mappings, and outlines the uses of this tool in two relevant applications. An important feature of the approach described in this paper is that the algorithm is independent of the segmentation problem being addresses. All knowledge about the problem at hand is contained in files of reference data. A secondary benefit is that the continuous three-dimensional mapping generated is well suited to the generation of patient-specific numerical models (e.g. finite element meshes) from the library models. Smoothness constraints in the morphing algorithm tend to maintain the geometric quality of the reference mesh.

  9. Lung tumor segmentation in PET images using graph cuts.

    PubMed

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill.

  10. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    SciTech Connect

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang; Chen, Ken Chung; Shen, Steve G. F.; Yan, Jin; Lee, Philip K. M.; Chow, Ben; Liu, Nancy X.; Xia, James J.; Shen, Dinggang

    2014-04-15

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  11. Image quality, compression and segmentation in medicine.

    PubMed

    Morgan, Pam; Frankish, Clive

    2002-12-01

    This review considers image quality in the context of the evolving technology of image compression, and the effects image compression has on perceived quality. The concepts of lossless, perceptually lossless, and diagnostically lossless but lossy compression are described, as well as the possibility of segmented images, combining lossy compression with perceptually lossless regions of interest. The different requirements for diagnostic and training images are also discussed. The lack of established methods for image quality evaluation is highlighted and available methods discussed in the light of the information that may be inferred from them. Confounding variables are also identified. Areas requiring further research are illustrated, including differences in perceptual quality requirements for different image modalities, image regions, diagnostic subtleties, and tasks. It is argued that existing tools for measuring image quality need to be refined and new methods developed. The ultimate aim should be the development of standards for image quality evaluation which take into consideration both the task requirements of the images and the acceptability of the images to the users.

  12. Robust integral image rectification framework using perspective transformation supported by statistical line segment clustering.

    PubMed

    Koufogiannis, E T; Sgouros, N P; Sangriotis, M S

    2011-12-01

    In most integral image analysis and processing tasks, accurate knowledge of the internal image structure is required. In this paper we present a robust framework for the accurate rectification of perspectively distorted integral images based on multiple line segment detection. The use of multiple line segments increases the overall fault tolerance of our framework providing strong statistical support for the rectification process. The proposed framework is used for the automatic rectification, metric correction, and rotation of distorted integral images. The performance of our framework is assessed over a number of integral images with varying scene complexity and noise levels.

  13. Magnetic resonance image segmentation using multifractal techniques

    NASA Astrophysics Data System (ADS)

    Yu, Yue-e.; Wang, Fang; Liu, Li-lin

    2015-11-01

    In order to delineate target region for magnetic resonance image (MRI) with diseases, the classical multifractal spectrum (MFS)-segmentation method and latest multifractal detrended fluctuation spectrum (MF-DFS)-based segmentation method are employed in our study. One of our main conclusions from experiments is that both of the two multifractal-based methods are workable for handling MRIs. The best result is obtained by MF-DFS-based method using Lh10 as local characteristic. The anti-noises experiments also suppot the conclusion. This interest finding shows that the features can be better represented by the strong fluctuations instead of the weak fluctuations for the MRIs. By comparing the multifractal nature between lesion and non-lesion area on the basis of the segmentation results, an interest finding is that the gray value's fluctuation in lesion area is much severer than that in non-lesion area.

  14. Adaptive fuzzy segmentation of magnetic resonance images.

    PubMed

    Pham, D L; Prince, J L

    1999-09-01

    An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the authors. This algorithm models the intensity inhomogeneities as a gain field that causes image intensities to smoothly and slowly vary through the image space. It iteratively adapts to the intensity inhomogeneities and is completely automated. In this paper, we fully generalize 2-D AFCM to three-dimensional (3-D) multispectral images. Because of the potential size of 3-D image data, we also describe a new faster multigrid-based algorithm for its implementation. We show, using simulated MR data, that 3-D AFCM yields lower error rates than both the standard fuzzy C-means (FCM) algorithm and two other competing methods, when segmenting corrupted images. Its efficacy is further demonstrated using real 3-D scalar and multispectral MR brain images.

  15. An accurate and efficient bayesian method for automatic segmentation of brain MRI.

    PubMed

    Marroquin, J L; Vemuri, B C; Botello, S; Calderon, F; Fernandez-Bouzas, A

    2002-08-01

    Automatic three-dimensional (3-D) segmentation of the brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of attention lately. Of the techniques reported in the literature, very few are fully automatic. In this paper, we present an efficient and accurate, fully automatic 3-D segmentation procedure for brain MR scans. It has several salient features; namely, the following. 1) Instead of a single multiplicative bias field that affects all tissue intensities, separate parametric smooth models are used for the intensity of each class. 2) A brain atlas is used in conjunction with a robust registration procedure to find a nonrigid transformation that maps the standard brain to the specimen to be segmented. This transformation is then used to: segment the brain from nonbrain tissue; compute prior probabilities for each class at each voxel location and find an appropriate automatic initialization. 3) Finally, a novel algorithm is presented which is a variant of the expectation-maximization procedure, that incorporates a fast and accurate way to find optimal segmentations, given the intensity models along with the spatial coherence assumption. Experimental results with both synthetic and real data are included, as well as comparisons of the performance of our algorithm with that of other published methods.

  16. Segmentation of left atrial intracardiac ultrasound images for image guided cardiac ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Stephens, T.; Holmes, D. R.; Linte, C.; Packer, D. L.; Robb, R. A.

    2013-03-01

    Intracardiac echocardiography (ICE), a technique in which structures of the heart are imaged using a catheter navigated inside the cardiac chambers, is an important imaging technique for guidance in cardiac ablation therapy. Automatic segmentation of these images is valuable for guidance and targeting of treatment sites. In this paper, we describe an approach to segment ICE images by generating an empirical model of blood pool and tissue intensities. Normal, Weibull, Gamma, and Generalized Extreme Value (GEV) distributions are fit to histograms of tissue and blood pool pixels from a series of ICE scans. A total of 40 images from 4 separate studies were evaluated. The model was trained and tested using two approaches. In the first approach, the model was trained on all images from 3 studies and subsequently tested on the 40 images from the 4th study. This procedure was repeated 4 times using a leave-one-out strategy. This is termed the between-subjects approach. In the second approach, the model was trained on 10 randomly selected images from a single study and tested on the remaining 30 images in that study. This is termed the within-subjects approach. For both approaches, the model was used to automatically segment ICE images into blood and tissue regions. Each pixel is classified using the Generalized Liklihood Ratio Test across neighborhood sizes ranging from 1 to 49. Automatic segmentation results were compared against manual segmentations for all images. In the between-subjects approach, the GEV distribution using a neighborhood size of 17 was found to be the most accurate with a misclassification rate of approximately 17%. In the within-subjects approach, the GEV distribution using a neighborhood size of 19 was found to be the most accurate with a misclassification rate of approximately 15%. As expected, the majority of misclassified pixels were located near the boundaries between tissue and blood pool regions for both methods.

  17. Deep convolutional networks for pancreas segmentation in CT imaging

    NASA Astrophysics Data System (ADS)

    Roth, Holger R.; Farag, Amal; Lu, Le; Turkbey, Evrim B.; Summers, Ronald M.

    2015-03-01

    Automatic organ segmentation is an important prerequisite for many computer-aided diagnosis systems. The high anatomical variability of organs in the abdomen, such as the pancreas, prevents many segmentation methods from achieving high accuracies when compared to state-of-the-art segmentation of organs like the liver, heart or kidneys. Recently, the availability of large annotated training sets and the accessibility of affordable parallel computing resources via GPUs have made it feasible for "deep learning" methods such as convolutional networks (ConvNets) to succeed in image classification tasks. These methods have the advantage that used classification features are trained directly from the imaging data. We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not. We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% +/- 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.

  18. Use of Model-Segmentation Criteria in Clustering and Segmentation of Time Series and Digital Images.

    DTIC Science & Technology

    1983-05-05

    DANS LAS REPARTITION? ET LA SEGMENTATION DES SERIES TEMPORELLES ET DES IMAGES NUMtRICALES Cet article traite le d~veloppement et l’utilisation des...multidimensionnelles et du no-bre des classes des segments dans la segmentation des series temporelles et des imaqes numericales. Les criteres comme ceux de Akaike...NATIONAL BURCAU OF STAND)AROS 1963 A USE OF MODEL-SEGMENTATION CRITERIA IN CLUSTERING AND SEGMENTATION OF TIME SERIES AND DIGITAL IMAGES by STANLEY L

  19. Automatic segmentation of mammogram and tomosynthesis images

    NASA Astrophysics Data System (ADS)

    Sargent, Dusty; Park, Sun Young

    2016-03-01

    Breast cancer is a one of the most common forms of cancer in terms of new cases and deaths both in the United States and worldwide. However, the survival rate with breast cancer is high if it is detected and treated before it spreads to other parts of the body. The most common screening methods for breast cancer are mammography and digital tomosynthesis, which involve acquiring X-ray images of the breasts that are interpreted by radiologists. The work described in this paper is aimed at optimizing the presentation of mammography and tomosynthesis images to the radiologist, thereby improving the early detection rate of breast cancer and the resulting patient outcomes. Breast cancer tissue has greater density than normal breast tissue, and appears as dense white image regions that are asymmetrical between the breasts. These irregularities are easily seen if the breast images are aligned and viewed side-by-side. However, since the breasts are imaged separately during mammography, the images may be poorly centered and aligned relative to each other, and may not properly focus on the tissue area. Similarly, although a full three dimensional reconstruction can be created from digital tomosynthesis images, the same centering and alignment issues can occur for digital tomosynthesis. Thus, a preprocessing algorithm that aligns the breasts for easy side-by-side comparison has the potential to greatly increase the speed and accuracy of mammogram reading. Likewise, the same preprocessing can improve the results of automatic tissue classification algorithms for mammography. In this paper, we present an automated segmentation algorithm for mammogram and tomosynthesis images that aims to improve the speed and accuracy of breast cancer screening by mitigating the above mentioned problems. Our algorithm uses information in the DICOM header to facilitate preprocessing, and incorporates anatomical region segmentation and contour analysis, along with a hidden Markov model (HMM) for

  20. Image segmentation via motion vector estimates

    NASA Astrophysics Data System (ADS)

    Abdel-Malek, Aiman A.; Hasekioglu, Orkun; Bloomer, John J.

    1990-07-01

    In the visual world moving edges in the periphery represent vital pieces of information that directs the human foveation mechanism to selectively gather information around these specific locations. This computationally efficient approach of allocating resources at key locations has inspired computer visionists to develop new target detection and hacking algorithms based on motion detection in image sequences. In this study we implemented a recursive algorithm for estimating motion vector fields for each pixel in a sequence of Digital Subtraction Angiography (DSA) images. Velocity information is used to segment the image and perform linear quadratic and acceleration-based frame interpolation to produce an apparent frame rate increase. Our results demonstrate the feasibility of low-rate digital fluoroscopy hence less exposure risks while preserving image quality. Furthermore the technique can be useful in the medical Picture Archival and Communication Systems (PACS) where image data can be compressed by storing and transmiting only the motion fields associated with the moving pixels. 1.

  1. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Duan, Jinming; Tench, Christopher; Gottlob, Irene; Proudlock, Frank; Bai, Li

    2015-11-01

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation.

  2. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images.

    PubMed

    Duan, Jinming; Tench, Christopher; Gottlob, Irene; Proudlock, Frank; Bai, Li

    2015-11-21

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation.

  3. Image segmentation with a unified graphical model.

    PubMed

    Zhang, Lei; Ji, Qiang

    2010-08-01

    We propose a unified graphical model that can represent both the causal and noncausal relationships among random variables and apply it to the image segmentation problem. Specifically, we first propose to employ Conditional Random Field (CRF) to model the spatial relationships among image superpixel regions and their measurements. We then introduce a multilayer Bayesian Network (BN) to model the causal dependencies that naturally exist among different image entities, including image regions, edges, and vertices. The CRF model and the BN model are then systematically and seamlessly combined through the theories of Factor Graph to form a unified probabilistic graphical model that captures the complex relationships among different image entities. Using the unified graphical model, image segmentation can be performed through a principled probabilistic inference. Experimental results on the Weizmann horse data set, on the VOC2006 cow data set, and on the MSRC2 multiclass data set demonstrate that our approach achieves favorable results compared to state-of-the-art approaches as well as those that use either the BN model or CRF model alone.

  4. Image Segmentation for Improvised Explosive Devices

    DTIC Science & Technology

    2012-12-01

    zj, αj) measuring the similarity between adjacent pixels zi and zj . The function V (zi, αi, zj, αj) results 22 in large values when similar pixels... value distribution. The second and the third rows show the histogram for the object and the background after they were segmented...Images B and C show the directly assembled gray- value histograms for the background (B) and the object (C) . . . . . . . . . . . . . . . . 22 Figure

  5. Image segmentation applied to atherosclerotic lesion

    NASA Astrophysics Data System (ADS)

    Morales, R. Rodríguez; Martínez, T. E. Alarcón; Cuello, L. Sánchez; Fernández-Britto, J. E.; Taylor, Charles

    2000-10-01

    The results obtained using two techniques: a supervised method and other unsupervised for image segmentation of atherosclerotic lesions of the thoracic aorta, are presented. Segmentation was used both with and without pre-processing. In this paper, the advantages of pre-processing prior to are shown for discriminating among the different atherosclerotic lesions (fatty streaks, fibrous plaque, complicated plaques and calcified plaques) and identifying them. The results using a supervised method were poor when searching vector consisted of two components, the mean and the variance. This digital image processing was done in order to use the automated atherometric system. This methodology has been considered to be suitable for the characterization of the atherosclerotic lesions in any artery and its organ-related damage in any vascular sector or group of patients. Final results were compared with manual segmentation realized by an expert, where difference errors less than 3% were observed. It is demonstrated by extensive experimentation, using real image data, that proposed strategy is fast and robust in the environment of a personal computer.

  6. Fast unsupervised Bayesian image segmentation with adaptive spatial regularisation.

    PubMed

    Pereyra, Marcelo; McLaughlin, Stephen

    2017-03-15

    This paper presents a new Bayesian estimation technique for hidden Potts-Markov random fields with unknown regularisation parameters, with application to fast unsupervised K-class image segmentation. The technique is derived by first removing the regularisation parameter from the Bayesian model by marginalisation, followed by a small-variance-asymptotic (SVA) analysis in which the spatial regularisation and the integer-constrained terms of the Potts model are decoupled. The evaluation of this SVA Bayesian estimator is then relaxed into a problem that can be computed efficiently by iteratively solving a convex total-variation denoising problem and a least-squares clustering (K-means) problem, both of which can be solved straightforwardly, even in high-dimensions, and with parallel computing techniques. This leads to a fast fully unsupervised Bayesian image segmentation methodology in which the strength of the spatial regularisation is adapted automatically to the observed image during the inference procedure, and that can be easily applied in large 2D and 3D scenarios or in applications requiring low computing times. Experimental results on synthetic and real images, as well as extensive comparisons with state-ofthe- art algorithms, confirm that the proposed methodology offer extremely fast convergence and produces accurate segmentation results, with the important additional advantage of self-adjusting regularisation parameters.

  7. Unsupervised Cardiac Image Segmentation via Multiswarm Active Contours with a Shape Prior

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Garcia-Hernandez, M. G.; Ibarra-Manzano, M. A.

    2013-01-01

    This paper presents a new unsupervised image segmentation method based on particle swarm optimization and scaled active contours with shape prior. The proposed method uses particle swarm optimization over a polar coordinate system to perform the segmentation task, increasing the searching capability on medical images with respect to different interactive segmentation techniques. This method is used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance images, where the shape prior is acquired by cardiologists, and it is utilized as the initial active contour. Moreover, to assess the performance of the cardiac medical image segmentations obtained by the proposed method and by the interactive techniques regarding the regions delineated by experts, a set of validation metrics has been adopted. The experimental results are promising and suggest that the proposed method is capable of segmenting human heart and ventricular areas accurately, which can significantly help cardiologists in clinical decision support. PMID:24198850

  8. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent.

    PubMed

    Browning, Sharon R; Browning, Brian L

    2015-09-03

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package.

  9. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent

    PubMed Central

    Browning, Sharon R.; Browning, Brian L.

    2015-01-01

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package. PMID:26299365

  10. Perceived visual speed constrained by image segmentation

    NASA Technical Reports Server (NTRS)

    Verghese, P.; Stone, L. S.

    1996-01-01

    Little is known about how or where the visual system parses the visual scene into objects or surfaces. However, it is generally assumed that the segmentation and grouping of pieces of the image into discrete entities is due to 'later' processing stages, after the 'early' processing of the visual image by local mechanisms selective for attributes such as colour, orientation, depth, and motion. Speed perception is also thought to be mediated by early mechanisms tuned for speed. Here we show that manipulating the way in which an image is parsed changes the way in which local speed information is processed. Manipulations that cause multiple stimuli to appear as parts of a single patch degrade speed discrimination, whereas manipulations that perceptually divide a single large stimulus into parts improve discrimination. These results indicate that processes as early as speed perception may be constrained by the parsing of the visual image into discrete entities.

  11. Image segmentation using association rule features.

    PubMed

    Rushing, John A; Ranganath, Heggere; Hinke, Thomas H; Graves, Sara J

    2002-01-01

    A new type of texture feature based on association rules is described. Association rules have been used in applications such as market basket analysis to capture relationships present among items in large data sets. It is shown that association rules can be adapted to capture frequently occurring local structures in images. The frequency of occurrence of these structures can be used to characterize texture. Methods for segmentation of textured images based on association rule features are described. Simulation results using images consisting of man made and natural textures show that association rule features perform well compared to other widely used texture features. Association rule features are used to detect cumulus cloud fields in GOES satellite images and are found to achieve higher accuracy than other statistical texture features for this problem.

  12. Image feature based GPS trace filtering for road network generation and road segmentation

    DOE PAGES

    Yuan, Jiangye; Cheriyadat, Anil M.

    2015-10-19

    We propose a new method to infer road networks from GPS trace data and accurately segment road regions in high-resolution aerial images. Unlike previous efforts that rely on GPS traces alone, we exploit image features to infer road networks from noisy trace data. The inferred road network is used to guide road segmentation. We show that the number of image segments spanned by the traces and the trace orientation validated with image features are important attributes for identifying GPS traces on road regions. Based on filtered traces , we construct road networks and integrate them with image features to segmentmore » road regions. Lastly, our experiments show that the proposed method produces more accurate road networks than the leading method that uses GPS traces alone, and also achieves high accuracy in segmenting road regions even with very noisy GPS data.« less

  13. An interactive method based on the live wire for segmentation of the breast in mammography images.

    PubMed

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  14. Initialisation of 3D level set for hippocampus segmentation from volumetric brain MR images

    NASA Astrophysics Data System (ADS)

    Hajiesmaeili, Maryam; Dehmeshki, Jamshid; Bagheri Nakhjavanlo, Bashir; Ellis, Tim

    2014-04-01

    Shrinkage of the hippocampus is a primary biomarker for Alzheimer's disease and can be measured through accurate segmentation of brain MR images. The paper will describe the problem of initialisation of a 3D level set algorithm for hippocampus segmentation that must cope with the some challenging characteristics, such as small size, wide range of intensities, narrow width, and shape variation. In addition, MR images require bias correction, to account for additional inhomogeneity associated with the scanner technology. Due to these inhomogeneities, using a single initialisation seed region inside the hippocampus is prone to failure. Alternative initialisation strategies are explored, such as using multiple initialisations in different sections (such as the head, body and tail) of the hippocampus. The Dice metric is used to validate our segmentation results with respect to ground truth for a dataset of 25 MR images. Experimental results indicate significant improvement in segmentation performance using the multiple initialisations techniques, yielding more accurate segmentation results for the hippocampus.

  15. Embedded Implementation of VHR Satellite Image Segmentation

    PubMed Central

    Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan

    2016-01-01

    Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage. PMID:27240370

  16. Embedded Implementation of VHR Satellite Image Segmentation.

    PubMed

    Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan

    2016-05-27

    Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage.

  17. Imaging segmentation along the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Allen, R. M.; Hawley, W. B.; Martin-Short, R.

    2015-12-01

    As we learn more about the Cascadia subduction zone, there is clear evidence for segmentation in the character of the many physical processes along its 1000 km length. There is segmentation in the arc magmas, in the seismicity, episodic tremor and slip, crustal structure and mantle structure all the way down to ~400 km depth. What is striking is the fact that the segment boundaries for these processes at depths of a few kilometers to hundreds of kilometers align. We must determine if this is coincidence, or if not, what the causative process is. The seismic deployments of the Cascadia Initiative onshore and offshore allow us to image the structure of the subduction zone, including the incoming Juan de Fuca plate, with unprecedented resolution. We use data from three one-year deployments of 70 ocean bottom seismometers across the Juan de Fuca plate, along with hundreds of onshore stations from the Pacific Northwest Seismic Network, the Berkeley Digital Seismic Network, the Earthscope Transportable Array, and smaller temporary seismic deployments. Our 3D tomographic models show significant variation in the structure of the subducting slab along its length. It extends deepest in the south (the Gorda section) where the plate is youngest, and shallows to the north across southern Oregon. There is a gap in the slab beneath northern Oregon, which appears to correlate with the geochemistry of the arc magmas. The slab is then visible again beneath Washington. We also constrain mantle flow paths using shear-wave splitting measurements at the offshore and onshore seismic stations. Beneath the Juan de Fuca plate the flow is sub-parallel to the motion of the plate. However, beneath the Gorda section of the Juan de Fuca place the flow is sub-parallel to the motion of the Pacific plate, not the Juan de Fuca plate. We are thus beginning to image a complex mantle flow pattern that may also play a role in the observed segmentation.

  18. Segmentation of polycystic kidneys from MR images

    NASA Astrophysics Data System (ADS)

    Racimora, Dimitri; Vivier, Pierre-Hugues; Chandarana, Hersh; Rusinek, Henry

    2010-03-01

    Polycystic kidney disease (PKD) is a disorder characterized by the growth of numerous fluid filled cysts in the kidneys. Measuring cystic kidney volume is thus crucial to monitoring the evolution of the disease. While T2-weighted MRI delineates the organ, automatic segmentation is very difficult due to highly variable shape and image contrast. The interactive stereology methods used currently involve a compromise between segmentation accuracy and time. We have investigated semi-automated methods: active contours and a sub-voxel morphology based algorithm. Coronal T2- weighted images of 17 patients were acquired in four breath-holds using the HASTE sequence on a 1.5 Tesla MRI unit. The segmentation results were compared to ground truth kidney masks obtained as a consensus of experts. Automatic active contour algorithm yielded an average 22% +/- 8.6% volume error. A recently developed method (Bridge Burner) based on thresholding and constrained morphology failed to separate PKD from the spleen, yielding 37.4% +/- 8.7% volume error. Manual post-editing reduced the volume error to 3.2% +/- 0.8% for active contours and 3.2% +/- 0.6% for Bridge Burner. The total time (automated algorithm plus editing) was 15 min +/- 5 min for active contours and 19 min +/- 11 min for Bridge Burner. The average volume errors for stereology method were 5.9%, 6.2%, 5.4% for mesh size 6.6, 11, 16.5 mm. The average processing times were 17, 7, 4 min. These results show that nearly two-fold improvement in PKD segmentation accuracy over stereology technique can be achieved with a combination of active contours and postediting.

  19. A combinatorial Bayesian and Dirichlet model for prostate MR image segmentation using probabilistic image features

    NASA Astrophysics Data System (ADS)

    Li, Ang; Li, Changyang; Wang, Xiuying; Eberl, Stefan; Feng, Dagan; Fulham, Michael

    2016-08-01

    Blurred boundaries and heterogeneous intensities make accurate prostate MR image segmentation problematic. To improve prostate MR image segmentation we suggest an approach that includes: (a) an image patch division method to partition the prostate into homogeneous segments for feature extraction; (b) an image feature formulation and classification method, using the relevance vector machine, to provide probabilistic prior knowledge for graph energy construction; (c) a graph energy formulation scheme with Bayesian priors and Dirichlet graph energy and (d) a non-iterative graph energy minimization scheme, based on matrix differentiation, to perform the probabilistic pixel membership optimization. The segmentation output was obtained by assigning pixels with foreground and background labels based on derived membership probabilities. We evaluated our approach on the PROMISE-12 dataset with 50 prostate MR image volumes. Our approach achieved a mean dice similarity coefficient (DSC) of 0.90  ±  0.02, which surpassed the five best prior-based methods in the PROMISE-12 segmentation challenge.

  20. A novel breast ultrasound image segmentation algorithm based on neutrosophic similarity score and level set.

    PubMed

    Guo, Yanhui; Şengür, Abdulkadir; Tian, Jia-Wei

    2016-01-01

    Breast ultrasound (BUS) image segmentation is a challenging task due to the speckle noise, poor quality of the ultrasound images and size and location of the breast lesions. In this paper, we propose a new BUS image segmentation algorithm based on neutrosophic similarity score (NSS) and level set algorithm. At first, the input BUS image is transferred to the NS domain via three membership subsets T, I and F, and then, a similarity score NSS is defined and employed to measure the belonging degree to the true tumor region. Finally, the level set method is used to segment the tumor from the background tissue region in the NSS image. Experiments have been conducted on a variety of clinical BUS images. Several measurements are used to evaluate and compare the proposed method's performance. The experimental results demonstrate that the proposed method is able to segment the BUS images effectively and accurately.

  1. Marker based watershed to segment dim infrared target through image enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Fugen; Bai, Xiangzhi; Xie, Yongchun; Jin, Ting

    2008-10-01

    A novel marker based watershed through image enhancement is proposed to segment the dim infrared target. The dim infrared target is firstly enhanced by CB top-hat transformation and image quantization. Then, the accurate marker of the target can be easily obtained through image binarisation and marker filtering. To calculate an efficient gradient image of the dim target for the watershed segmentation, the gradient image is firstly calculated through Sobel operator and then efficiently enhanced through pseudo top-hat transformation and gradient quantization. Because of the enhancement of the dim target and the gradient image, the watershed can efficiently segment the dim infrared image. Experimental results show that the proposed algorithm is much efficient for dim infrared target segmentation.

  2. Image segmentation for stone-size inspection

    NASA Astrophysics Data System (ADS)

    Hsu, Jui-Pin; Fuh, Chiou-Shann

    1995-04-01

    Object size inspection is an important task and has various applications in computer vision, for example, automatic control stone-breaking machines. In this paper, an algorithm is proposed for image segmentation on size inspection of almost round stones with strong textures or almost no textures. We use one camera and multiple light sources at difference positions to take one image when each of the light sources is on. Then we compute the image differences and threshold them to extract edges. We will explain, step by step, picture taking, edge extraction, noise removal, and edge gap filling. Experimental results will be presented. Through various experiments, we find our algorithm robust on various stones and under noise.

  3. Underwater color image segmentation method via RGB channel fusion

    NASA Astrophysics Data System (ADS)

    Xuan, Li; Mingjun, Zhang

    2017-02-01

    Aiming at the problem of low segmentation accuracy and high computation time by applying existing segmentation methods for underwater color images, this paper has proposed an underwater color image segmentation method via RGB color channel fusion. Based on thresholding segmentation methods to conduct fast segmentation, the proposed method relies on dynamic estimation of the optimal weights for RGB channel fusion to obtain the grayscale image with high foreground-background contrast and reaches high segmentation accuracy. To verify the segmentation accuracy of the proposed method, the authors have conducted various underwater comparative experiments. The experimental results demonstrate that the proposed method is robust to illumination, and it is superior to existing methods in terms of both segmentation accuracy and computation time. Moreover, a segmentation technique is proposed for image sequences for real-time autonomous underwater vehicle operations.

  4. Perceived image quality with simulated segmented bifocal corrections

    PubMed Central

    Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; de Gracia, Pablo; Sawides, Lucie; Marcos, Susana

    2016-01-01

    Bifocal contact or intraocular lenses use the principle of simultaneous vision to correct for presbyopia. A modified two-channel simultaneous vision simulator provided with an amplitude transmission spatial light modulator was used to optically simulate 14 segmented bifocal patterns (+ 3 diopters addition) with different far/near pupillary distributions of equal energy. Five subjects with paralyzed accommodation evaluated image quality and subjective preference through the segmented bifocal corrections. There are strong and systematic perceptual differences across the patterns, subjects and observation distances: 48% of the conditions evaluated were significantly preferred or rejected. Optical simulations (in terms of through-focus Strehl ratio from Hartmann-Shack aberrometry) accurately predicted the pattern producing the highest perceived quality in 4 out of 5 patients, both for far and near vision. These perceptual differences found arise primarily from optical grounds, but have an important neural component. PMID:27895981

  5. Robust vessel segmentation in fundus images.

    PubMed

    Budai, A; Bock, R; Maier, A; Hornegger, J; Michelson, G

    2013-01-01

    One of the most common modalities to examine the human eye is the eye-fundus photograph. The evaluation of fundus photographs is carried out by medical experts during time-consuming visual inspection. Our aim is to accelerate this process using computer aided diagnosis. As a first step, it is necessary to segment structures in the images for tissue differentiation. As the eye is the only organ, where the vasculature can be imaged in an in vivo and noninterventional way without using expensive scanners, the vessel tree is one of the most interesting and important structures to analyze. The quality and resolution of fundus images are rapidly increasing. Thus, segmentation methods need to be adapted to the new challenges of high resolutions. In this paper, we present a method to reduce calculation time, achieve high accuracy, and increase sensitivity compared to the original Frangi method. This method contains approaches to avoid potential problems like specular reflexes of thick vessels. The proposed method is evaluated using the STARE and DRIVE databases and we propose a new high resolution fundus database to compare it to the state-of-the-art algorithms. The results show an average accuracy above 94% and low computational needs. This outperforms state-of-the-art methods.

  6. Segmentation and Classification of Burn Color Images

    DTIC Science & Technology

    2007-11-02

    SEGMENTATION AND CLASSIFICATION OF BURN COLOR IMAGES Begoña Acha1, Carmen Serrano1, Laura Roa2 1Área de Teoría de la Señal y Comunicaciones ...2Grupo de Ingeniería Biomédica. Escuela Superior de Ingenieros. Universidad de Sevilla. Spain. e -mail: bacha@viento.us.es, cserrano@viento.us.es...IEEE Trans. on Biomedical Engineering, vol. 43, no. 10, pp. 1011-1020, Oct. 1996. [10] G. A. Hance, S. E . Umbaugh, R. H. Moss, W. V. Stoecker

  7. a Minimum Spanning Tree Based Method for Uav Image Segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Wei, Zheng; Cui, Weihong; Lin, Zhiyong

    2016-06-01

    This paper proposes a Minimum Span Tree (MST) based image segmentation method for UAV images in coastal area. An edge weight based optimal criterion (merging predicate) is defined, which based on statistical learning theory (SLT). And we used a scale control parameter to control the segmentation scale. Experiments based on the high resolution UAV images in coastal area show that the proposed merging predicate can keep the integrity of the objects and prevent results from over segmentation. The segmentation results proves its efficiency in segmenting the rich texture images with good boundary of objects.

  8. Semisupervised synthetic aperture radar image segmentation with multilayer superpixels

    NASA Astrophysics Data System (ADS)

    Wang, Can; Su, Weimin; Gu, Hong; Gong, Dachen

    2015-01-01

    Image segmentation plays a significant role in synthetic aperture radar (SAR) image processing. However, SAR image segmentation is challenging due to speckle. We propose a semisupervised bipartite graph method for segmentation of an SAR image. First, the multilayer over-segmentation of the SAR image, referred to as superpixels, is computed using existing segmentation algorithms. Second, an unbalanced bipartite graph is constructed in which the correlation between pixels is replaced by the texture similarity between superpixels, to reduce the dimension of the edge matrix. To also improve efficiency, we define a new method, called the combination of the Manhattan distance and symmetric Kullback-Leibler divergence, to measure texture similarity. Third, by the Moore-Penrose inverse matrix and semisupervised learning, we construct an across-affinity matrix. A quantitative evaluation using SAR images shows that the new algorithm produces significantly high-quality segmentations as compared with state-of-the-art segmentation algorithms.

  9. Towards Automatic Image Segmentation Using Optimised Region Growing Technique

    NASA Astrophysics Data System (ADS)

    Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi

    Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.

  10. Monitoring Change Through Hierarchical Segmentation of Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Lawrence, William T.

    2005-01-01

    NASA's Goddard Space Flight Center has developed a fast and effective method for generating image segmentation hierarchies. These segmentation hierarchies organize image data in a manner that makes their information content more accessible for analysis. Image segmentation enables analysis through the examination of image regions rather than individual image pixels. In addition, the segmentation hierarchy provides additional analysis clues through the tracing of the behavior of image region characteristics at several levels of segmentation detail. The potential for extracting the information content from imagery data based on segmentation hierarchies has not been fully explored for the benefit of the Earth and space science communities. This paper explores the potential of exploiting these segmentation hierarchies for the analysis of multi-date data sets, and for the particular application of change monitoring.

  11. Stratified Decision Forests for Accurate Anatomical Landmark Localization in Cardiac Images.

    PubMed

    Oktay, Ozan; Bai, Wenjia; Guerrero, Ricardo; Rajchl, Martin; de Marvao, Antonio; O'Regan, Declan P; Cook, Stuart A; Heinrich, Mattias P; Glocker, Ben; Rueckert, Daniel

    2017-01-01

    Accurate localization of anatomical landmarks is an important step in medical imaging, as it provides useful prior information for subsequent image analysis and acquisition methods. It is particularly useful for initialization of automatic image analysis tools (e.g. segmentation and registration) and detection of scan planes for automated image acquisition. Landmark localization has been commonly performed using learning based approaches, such as classifier and/or regressor models. However, trained models may not generalize well in heterogeneous datasets when the images contain large differences due to size, pose and shape variations of organs. To learn more data-adaptive and patient specific models, we propose a novel stratification based training model, and demonstrate its use in a decision forest. The proposed approach does not require any additional training information compared to the standard model training procedure and can be easily integrated into any decision tree framework. The proposed method is evaluated on 1080 3D high-resolution and 90 multi-stack 2D cardiac cine MR images. The experiments show that the proposed method achieves state-of-the-art landmark localization accuracy and outperforms standard regression and classification based approaches. Additionally, the proposed method is used in a multi-atlas segmentation to create a fully automatic segmentation pipeline, and the results show that it achieves state-of-the-art segmentation accuracy.

  12. Neonatal brain image segmentation in longitudinal MRI studies.

    PubMed

    Shi, Feng; Fan, Yong; Tang, Songyuan; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2010-01-01

    In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images.

  13. Segmentation of the liver from abdominal MR images: a level-set approach

    NASA Astrophysics Data System (ADS)

    Abdalbari, Anwar; Huang, Xishi; Ren, Jing

    2015-03-01

    The usage of prior knowledge in segmentation of abdominal MR images enables more accurate and comprehensive interpretation about the organ to segment. Prior knowledge about abdominal organ like liver vessels can be employed to get an accurate segmentation of the liver that leads to accurate diagnosis or treatment plan. In this paper, a new method for segmenting the liver from abdominal MR images using liver vessels as prior knowledge is proposed. This paper employs the technique of level set method to segment the liver from MR abdominal images. The speed image used in the level set method is responsible for propagating and stopping region growing at boundaries. As a result of the poor contrast of the MR images between the liver and the surrounding organs i.e. stomach, kidneys, and heart causes leak of the segmented liver to those organs that lead to inaccurate or incorrect segmentation. For that reason, a second speed image is developed, as an extra term to the level set, to control the front propagation at weak edges with the help of the original speed image. The basic idea of the proposed approach is to use the second speed image as a boundary surface which is approximately orthogonal to the area of the leak. The aim of the new speed image is to slow down the level set propagation and prevent the leak in the regions close to liver boundary. The new speed image is a surface created by filling holes to reconstruct the liver surface. These holes are formed as a result of the exit and the entry of the liver vessels, and are considered the main cause of the segmentation leak. The result of the proposed method shows superior outcome than other methods in the literature.

  14. Automatic segmentation of pulmonary nodules on CT images by use of NCI lung image database consortium

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Kido, Shoji

    2006-03-01

    Accurate segmentation of small pulmonary nodules (SPNs) on thoracic CT images is an important technique for volumetric doubling time estimation and feature characterization for the diagnosis of SPNs. Most of the nodule segmentation algorithms that have been previously presented were designed to handle solid pulmonary nodules. However, SPNs with ground-glass opacity (GGO) also affects a diagnosis. Therefore, we have developed an automated volumetric segmentation algorithm of SPNs with GGO on thoracic CT images. This paper presents our segmentation algorithm with multiple fixed-thresholds, template-matching method, a distance-transformation method, and a watershed method. For quantitative evaluation of the performance of our algorithm, we used the first dataset provided by NCI Lung Image Database Consortium (LIDC). In the evaluation, we employed the coincident rate which was calculated with both the computerized segmented region of a SPN and the matching probability map (pmap) images provided by LIDC. As the result of 23 cases, the mean of the total coincident rate was 0.507 +/- 0.219. From these results, we concluded that our algorithm is useful for extracting SPNs with GGO and solid pattern as well as wide variety of SPNs in size.

  15. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  16. [Medical image segmentation based on guided filtering and multi-atlas].

    PubMed

    Wen, Rui; Chen, Hongwen; Zhang, Lei; Lu, Zhentai

    2015-08-01

    A novel medical automatic image segmentation strategy based on guided filtering and multi-atlas is proposed to achieve accurate, smooth, robust, and reliable segmentation. This framework consists of 4 elements: the multi-atlas registration, which uses the atlas prior information; the label fusion, in which the similarity measure of the registration is used as the weight to fuse the warped label; the guided filtering, which uses the local information of the target image to correct the registration errors; and the threshold approaches used to obtain the segment result. The experimental results showed part among the 15 brain MRI images used to segment the hippocampus region, the proposed method achieved a median Dice coefficient of 86% on the left hippocampus and 87.4% on the right hippocampus. Compared with the traditional label fusion algorithm, the proposed algorithm outperforms the common brain image segmentation methods with a good efficiency and accuracy.

  17. A Hybrid Approach for Improving Image Segmentation: Application to Phenotyping of Wheat Leaves

    PubMed Central

    Chopin, Joshua; Laga, Hamid; Miklavcic, Stanley J.

    2016-01-01

    In this article we propose a novel tool that takes an initial segmented image and returns a more accurate segmentation that accurately captures sharp features such as leaf tips, twists and axils. Our algorithm utilizes basic a-priori information about the shape of plant leaves and local image orientations to fit active contour models to important plant features that have been missed during the initial segmentation. We compare the performance of our approach with three state-of-the-art segmentation techniques, using three error metrics. The results show that leaf tips are detected with roughly one half of the original error, segmentation accuracy is almost always improved and more than half of the leaf breakages are corrected. PMID:27992594

  18. Interactive natural image segmentation via spline regression.

    PubMed

    Xiang, Shiming; Nie, Feiping; Zhang, Chunxia; Zhang, Changshui

    2009-07-01

    This paper presents an interactive algorithm for segmentation of natural images. The task is formulated as a problem of spline regression, in which the spline is derived in Sobolev space and has a form of a combination of linear and Green's functions. Besides its nonlinear representation capability, one advantage of this spline in usage is that, once it has been constructed, no parameters need to be tuned to data. We define this spline on the user specified foreground and background pixels, and solve its parameters (the combination coefficients of functions) from a group of linear equations. To speed up spline construction, K-means clustering algorithm is employed to cluster the user specified pixels. By taking the cluster centers as representatives, this spline can be easily constructed. The foreground object is finally cut out from its background via spline interpolation. The computational complexity of the proposed algorithm is linear in the number of the pixels to be segmented. Experiments on diverse natural images, with comparison to existing algorithms, illustrate the validity of our method.

  19. Accurate segmentation of partially overlapping cervical cells based on dynamic sparse contour searching and GVF snake model.

    PubMed

    Guan, Tao; Zhou, Dongxiang; Liu, Yunhui

    2015-07-01

    Overlapping cells segmentation is one of the challenging topics in medical image processing. In this paper, we propose to approximately represent the cell contour as a set of sparse contour points, which can be further partitioned into two parts: the strong contour points and the weak contour points. We consider the cell contour extraction as a contour points locating problem and propose an effective and robust framework for segmentation of partially overlapping cells in cervical smear images. First, the cell nucleus and the background are extracted by a morphological filtering-based K-means clustering algorithm. Second, a gradient decomposition-based edge enhancement method is developed for enhancing the true edges belonging to the center cell. Then, a dynamic sparse contour searching algorithm is proposed to gradually locate the weak contour points in the cell overlapping regions based on the strong contour points. This algorithm involves the least squares estimation and a dynamic searching principle, and is thus effective to cope with the cell overlapping problem. Using the located contour points, the Gradient Vector Flow Snake model is finally employed to extract the accurate cell contour. Experiments have been performed on two cervical smear image datasets containing both single cells and partially overlapping cells. The high accuracy of the cell contour extraction result validates the effectiveness of the proposed method.

  20. Microscopy image segmentation tool: Robust image data analysis

    SciTech Connect

    Valmianski, Ilya Monton, Carlos; Schuller, Ivan K.

    2014-03-15

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  1. Microscopy image segmentation tool: robust image data analysis.

    PubMed

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  2. Replica inference approach to unsupervised multiscale image segmentation.

    PubMed

    Hu, Dandan; Ronhovde, Peter; Nussinov, Zohar

    2012-01-01

    We apply a replica-inference-based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of "community detection" and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters ("communities" or "solutes") against a background or "solvent." Within our multiresolution approach, we compute information-theory-based correlations among multiple solutions ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by replica correlations manifest by information theory overlaps. We further employ such information theory measures (such as normalized mutual information and variation of information), thermodynamic quantities such as the system entropy and energy, and dynamic measures monitoring the convergence time to viable solutions as metrics for transitions between various solvable and unsolvable phases. Within the solvable phase, transitions between contending solutions (such as those corresponding to segmentations on different scales) may also appear. With the aid of these correlations as well as thermodynamic measures, the phase diagram of the corresponding Potts model is analyzed at both zero and finite temperatures. Optimal parameters corresponding to a sensible unsupervised segmentations appear within the "easy phase" of the Potts model. Our algorithm is fast and shown to be at least as accurate as the best algorithms to date and to be especially suited to the detection of camouflaged images.

  3. Segmentation of interstitial lung disease patterns in HRCT images

    NASA Astrophysics Data System (ADS)

    Dash, Jatindra K.; Madhavi, Vaddepalli; Mukhopadhyay, Sudipta; Khandelwal, Niranjan; Kumar, Prafulla

    2015-03-01

    Automated segmentation of pathological bearing region is the first step towards the development of lung CAD. Most of the work reported in the literature related to automated analysis of lung tissue aims towards classification of fixed sized block into one of the classes. This block level classification of lung tissues in the image never results in accurate or smooth boundaries between different regions. In this work, effort is taken to investigate the performance of three automated image segmentation algorithms those results in smooth boundaries among lung tissue patterns commonly encountered in HRCT images of the thorax. A public database that consists of HRCT images taken from patients affected with Interstitial Lung Diseases (ILDs) is used for the evaluation. The algorithms considered are Markov Random Field (MRF), Gaussian Mixture Model (GMM) and Mean Shift (MS). 2-fold cross validation approach is followed for the selection of the best parameter value for individual algorithm as well as to evaluate the performance of all the algorithms. Mean shift algorithm is observed as the best performer in terms of Jaccard Index, Modified Hausdorff Distance, accuracy, Dice Similarity Coefficient and execution speed.

  4. An improved FCM medical image segmentation algorithm based on MMTD.

    PubMed

    Zhou, Ningning; Yang, Tingting; Zhang, Shaobai

    2014-01-01

    Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD) and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  5. Learning Image Context for Segmentation of Prostate in CT-Guided Radiotherapy

    PubMed Central

    Li, Wei; Liao, Shu; Feng, Qianjin; Chen, Wufan; Shen, Dinggang

    2012-01-01

    Accurate segmentation of prostate is the key to the success of external beam radiotherapy of prostate cancer. However, accurate segmentation of prostate in computer tomography (CT) images remains challenging mainly due to three factors: (1) low image contrast between the prostate and its surrounding tissues, (2) unpredictable prostate motion across different treatment days, and (3) large variations of intensities and shapes of bladder and rectum around the prostate. In this paper, an online-learning and patient-specific classification method based on the location-adaptive image context is presented to deal with all these challenging issues and achieve the precise segmentation of prostate in CT images. Specifically, two sets of location-adaptive classifiers are placed, respectively, along the two coordinate directions of the planning image space of a patient, and further trained with the planning image and also the previous-segmented treatment images of the same patient to jointly perform prostate segmentation for a new treatment image (of the same patient). In particular, each location-adaptive classifier, which itself consists of a set of sequential sub-classifiers, is recursively trained with both the static image appearance features and the iteratively-updated image context features (extracted at different scales and orientations) for better identification of each prostate region. The proposed learning-based prostate segmentation method has been extensively evaluated on 161 images of 11 patients, each with more than 9 daily treatment 3D CT images. Our method achieves the mean Dice value 0.908 and the mean ± SD of average surface distance (ASD) value 1.40 ± 0.57 mm. Its performance is also compared with three prostate segmentation methods, indicating the best segmentation accuracy by the proposed method among all methods under comparison. PMID:22343071

  6. Learning image context for segmentation of the prostate in CT-guided radiotherapy.

    PubMed

    Li, Wei; Liao, Shu; Feng, Qianjin; Chen, Wufan; Shen, Dinggang

    2012-03-07

    Accurate segmentation of the prostate is the key to the success of external beam radiotherapy of prostate cancer. However, accurate segmentation of the prostate in computer tomography (CT) images remains challenging mainly due to three factors: (1) low image contrast between the prostate and its surrounding tissues, (2) unpredictable prostate motion across different treatment days and (3) large variations of intensities and shapes of the bladder and rectum around the prostate. In this paper, an online-learning and patient-specific classification method based on the location-adaptive image context is presented to deal with all these challenging issues and achieve the precise segmentation of the prostate in CT images. Specifically, two sets of location-adaptive classifiers are placed, respectively, along the two coordinate directions of the planning image space of a patient, and further trained with the planning image and also the previous-segmented treatment images of the same patient to jointly perform prostate segmentation for a new treatment image (of the same patient). In particular, each location-adaptive classifier, which itself consists of a set of sequential sub-classifiers, is recursively trained with both the static image appearance features and the iteratively updated image context features (extracted at different scales and orientations) for better identification of each prostate region. The proposed learning-based prostate segmentation method has been extensively evaluated on 161 images of 11 patients, each with more than nine daily treatment three-dimensional CT images. Our method achieves the mean Dice value 0.908 and the mean ± SD of average surface distance value 1.40 ± 0.57 mm. Its performance is also compared with three prostate segmentation methods, indicating the best segmentation accuracy by the proposed method among all methods under comparison.

  7. Automatic and hierarchical segmentation of the human skeleton in CT images.

    PubMed

    Fu, Yabo; Liu, Shi; Li, Harold; Yang, Deshan

    2017-04-07

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic

  8. Automatic and hierarchical segmentation of the human skeleton in CT images

    NASA Astrophysics Data System (ADS)

    Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan

    2017-04-01

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic

  9. Automated segmentation of dental CBCT image with prior-guided sequential random forests

    SciTech Connect

    Wang, Li; Gao, Yaozong; Shi, Feng; Li, Gang; Chen, Ken-Chung; Tang, Zhen; Xia, James J. E-mail: JXia@HoustonMethodist.org; Shen, Dinggang E-mail: JXia@HoustonMethodist.org

    2016-01-15

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate 3D models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the image artifacts caused by beam hardening, imaging noise, inhomogeneity, truncation, and maximal intercuspation, it is difficult to segment the CBCT. Methods: In this paper, the authors present a new automatic segmentation method to address these problems. Specifically, the authors first employ a majority voting method to estimate the initial segmentation probability maps of both mandible and maxilla based on multiple aligned expert-segmented CBCT images. These probability maps provide an important prior guidance for CBCT segmentation. The authors then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of random forest classifier that can select discriminative features for segmentation. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of random forest classifier. By iteratively training the subsequent random forest classifier using both the original CBCT features and the updated segmentation probability maps, a sequence of classifiers can be derived for accurate segmentation of CBCT images. Results: Segmentation results on CBCTs of 30 subjects were both quantitatively and qualitatively validated based on manually labeled ground truth. The average Dice ratios of mandible and maxilla by the authors’ method were 0.94 and 0.91, respectively, which are significantly better than the state-of-the-art method based on sparse representation (p-value < 0.001). Conclusions: The authors have developed and validated a novel fully automated method

  10. Image segmentation using trainable fuzzy set classifiers

    NASA Astrophysics Data System (ADS)

    Schalkoff, Robert J.; Carver, Albrecht E.; Gurbuz, Sabri

    1999-07-01

    A general image analysis and segmentation method using fuzzy set classification and learning is described. The method uses a learned fuzzy representation of pixel region characteristics, based upon the conjunction and disjunction of extracted and derived fuzzy color and texture features. Both positive and negative exemplars of some visually apparent characteristic which forms the basis of the inspection, input by a human operator, are used together with a clustering algorithm to construct positive similarity membership functions and negative similarity membership functions. Using these composite fuzzified images, P and N, are produced using fuzzy union. Classification is accomplished via image defuzzification, whereby linguistic meaning is assigned to each pixel in the fuzzy set using a fuzzy inference operation. The technique permits: (1) strict color and texture discrimination, (2) machine learning of color and texture characteristics of regions, (3) and judicious labeling of each pixel based upon leaned fuzzy representation and fuzzy classification. This approach appears ideal for applications involving visual inspection and allows the development of image-based inspection systems which may be trained and used by relatively unskilled workers. We show three different examples involving the visual inspection of mixed waste drums, lumber and woven fabric.

  11. Image Segmentation for Connectomics Using Machine Learning

    SciTech Connect

    Tasdizen, Tolga; Seyedhosseini, Mojtaba; Liu, TIng; Jones, Cory; Jurrus, Elizabeth R.

    2014-12-01

    Reconstruction of neural circuits at the microscopic scale of individual neurons and synapses, also known as connectomics, is an important challenge for neuroscience. While an important motivation of connectomics is providing anatomical ground truth for neural circuit models, the ability to decipher neural wiring maps at the individual cell level is also important in studies of many neurodegenerative diseases. Reconstruction of a neural circuit at the individual neuron level requires the use of electron microscopy images due to their extremely high resolution. Computational challenges include pixel-by-pixel annotation of these images into classes such as cell membrane, mitochondria and synaptic vesicles and the segmentation of individual neurons. State-of-the-art image analysis solutions are still far from the accuracy and robustness of human vision and biologists are still limited to studying small neural circuits using mostly manual analysis. In this chapter, we describe our image analysis pipeline that makes use of novel supervised machine learning techniques to tackle this problem.

  12. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

    PubMed

    Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui

    2014-09-01

    Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results.

  13. Automatic segmentation of radiographic fiducial and seeds from X-ray images in prostate brachytherapy.

    PubMed

    Kuo, Nathanael; Deguet, Anton; Song, Danny Y; Burdette, Everette C; Prince, Jerry L; Lee, Junghoon

    2012-01-01

    Prostate brachytherapy guided by transrectal ultrasound is a common treatment option for early stage prostate cancer. Prostate cancer accounts for 28% of cancer cases and 11% of cancer deaths in men with 217,730 estimated new cases and 32,050 estimated deaths in 2010 in the United States alone. The major current limitation is the inability to reliably localize implanted radiation seeds spatially in relation to the prostate. Multimodality approaches that incorporate X-ray for seed localization have been proposed, but they require both accurate tracking of the imaging device and segmentation of the seeds. Some use image-based radiographic fiducials to track the X-ray device, but manual intervention is needed to select proper regions of interest for segmenting both the tracking fiducial and the seeds, to evaluate the segmentation results, and to correct the segmentations in the case of segmentation failure, thus requiring a significant amount of extra time in the operating room. In this paper, we present an automatic segmentation algorithm that simultaneously segments the tracking fiducial and brachytherapy seeds, thereby minimizing the need for manual intervention. In addition, through the innovative use of image processing techniques such as mathematical morphology, Hough transforms, and RANSAC, our method can detect and separate overlapping seeds that are common in brachytherapy implant images. Our algorithm was validated on 55 phantom and 206 patient images, successfully segmenting both the fiducial and seeds with a mean seed segmentation rate of 96% and sub-millimeter accuracy.

  14. Automatic segmentation of radiographic fiducial and seeds from X-ray images in prostate brachytherapy

    PubMed Central

    Kuo, Nathanael; Deguet, Anton; Song, Danny Y.; Burdette, Everette C.; Prince, Jerry L.; Lee, Junghoon

    2011-01-01

    Prostate brachytherapy guided by transrectal ultrasound is a common treatment option for early stage prostate cancer. Prostate cancer accounts for 28% of cancer cases and 11% of cancer deaths in men with 217,730 estimated new cases and 32,050 estimated deaths in 2010 in the United States alone. The major current limitation is the inability to reliably localize implanted radiation seeds spatially in relation to the prostate. Multimodality approaches that incorporate X-ray for seed localization have been proposed, but they require both accurate tracking of the imaging device and segmentation of the seeds. Some use image-based radiographic fiducials to track the X-ray device, but manual intervention is needed to select proper regions of interest for segmenting both the tracking fiducial and the seeds, to evaluate the segmentation results, and to correct the segmentations in the case of segmentation failure, thus requiring a significant amount of extra time in the operating room. In this paper, we present an automatic segmentation algorithm that simultaneously segments the tracking fiducial and brachytherapy seeds, thereby minimizing the need for manual intervention. In addition, through the innovative use of image processing techniques such as mathematical morphology, Hough transforms, and RANSAC, our method can detect and separate overlapping seeds that are common in brachytherapy implant images. Our algorithm was validated on 55 phantom and 206 patient images, successfully segmenting both the fiducial and seeds with a mean seed segmentation rate of 96% and sub-millimeter accuracy. PMID:21802975

  15. Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information.

    PubMed

    Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan

    2012-01-01

    Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images.

  16. An Interactive Image Segmentation Method in Hand Gesture Recognition

    PubMed Central

    Chen, Disi; Li, Gongfa; Sun, Ying; Kong, Jianyi; Jiang, Guozhang; Tang, Heng; Ju, Zhaojie; Yu, Hui; Liu, Honghai

    2017-01-01

    In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy. PMID:28134818

  17. An Interactive Image Segmentation Method in Hand Gesture Recognition.

    PubMed

    Chen, Disi; Li, Gongfa; Sun, Ying; Kong, Jianyi; Jiang, Guozhang; Tang, Heng; Ju, Zhaojie; Yu, Hui; Liu, Honghai

    2017-01-27

    In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy.

  18. Segmentation of range images using morphological operations: review and examples

    NASA Astrophysics Data System (ADS)

    Gee, Linda A.; Abidi, Mongi A.

    1995-10-01

    Image segmentation involves calculating the position of object boundaries. For scene analysis, the intent is to differentiate objects from clutter by means of preprocessing. The object of this paper is to examine and discuss two morphological techniques for preprocessing and segmenting range images. A Morphological Watershed Algorithm has been studied in detail for segmenting range images. This algorithm uses a unique approach for defining the boundaries of objects from a morphological gradient. Several sets of range images are used as input to the algorithm to demonstrate the flexibility of the watershed technique and the experimental results support this approach as an effective method for segmenting range images. Morphological image operators present another means for segmenting range images. In particular, the results from implementing gray-scale morphological techniques indicate that these operators are useful for segmentation. This is made possible by converting a range image of a scene to a gray-scale image representation. The result represents the umbra of the surface of the objects within the scene. By applying morphological operations to the gray values of the image, the operations are applied to the umbra. Each pixel represents a point of the object's umbra, thereby yielding scene segmentation. The techniques that are discussed are found to be useful for preprocessing and segmenting range images which are direct extensions to object recognition, scene analysis, and image understanding.

  19. Segmentation of thermographic images of hands using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ghosh, Payel; Mitchell, Melanie; Gold, Judith

    2010-01-01

    This paper presents a new technique for segmenting thermographic images using a genetic algorithm (GA). The individuals of the GA also known as chromosomes consist of a sequence of parameters of a level set function. Each chromosome represents a unique segmenting contour. An initial population of segmenting contours is generated based on the learned variation of the level set parameters from training images. Each segmenting contour (an individual) is evaluated for its fitness based on the texture of the region it encloses. The fittest individuals are allowed to propagate to future generations of the GA run using selection, crossover and mutation. The dataset consists of thermographic images of hands of patients suffering from upper extremity musculo-skeletal disorders (UEMSD). Thermographic images are acquired to study the skin temperature as a surrogate for the amount of blood flow in the hands of these patients. Since entire hands are not visible on these images, segmentation of the outline of the hands on these images is typically performed by a human. In this paper several different methods have been tried for segmenting thermographic images: Gabor-wavelet-based texture segmentation method, the level set method of segmentation and our GA which we termed LSGA because it combines level sets with genetic algorithms. The results show a comparative evaluation of the segmentation performed by all the methods. We conclude that LSGA successfully segments entire hands on images in which hands are only partially visible.

  20. Placental fetal stem segmentation in a sequence of histology images

    NASA Astrophysics Data System (ADS)

    Athavale, Prashant; Vese, Luminita A.

    2012-02-01

    Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental fetal stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local non-affine registration and a novel 'dynamic' version of the active contours model without edges. We first use global affine image registration of all the images based on displacement, scaling and rotation. This gives us approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the affine registration algorithm "locally" near this location. At this point, we use a fast non-affine registration based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of the active contours model without edges where the coefficients of the fitting terms are computed iteratively to ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as an

  1. 3D Materials image segmentation by 2D propagation: a graph-cut approach considering homomorphism.

    PubMed

    Waggoner, Jarrell; Zhou, Youjie; Simmons, Jeff; De Graef, Marc; Wang, Song

    2013-12-01

    Segmentation propagation, similar to tracking, is the problem of transferring a segmentation of an image to a neighboring image in a sequence. This problem is of particular importance to materials science, where the accurate segmentation of a series of 2D serial-sectioned images of multiple, contiguous 3D structures has important applications. Such structures may have distinct shape, appearance, and topology, which can be considered to improve segmentation accuracy. For example, some materials images may have structures with a specific shape or appearance in each serial section slice, which only changes minimally from slice to slice, and some materials may exhibit specific inter-structure topology that constrains their neighboring relations. Some of these properties have been individually incorporated to segment specific materials images in prior work. In this paper, we develop a propagation framework for materials image segmentation where each propagation is formulated as an optimal labeling problem that can be efficiently solved using the graph-cut algorithm. Our framework makes three key contributions: 1) a homomorphic propagation approach, which considers the consistency of region adjacency in the propagation; 2) incorporation of shape and appearance consistency in the propagation; and 3) a local non-homomorphism strategy to handle newly appearing and disappearing substructures during this propagation. To show the effectiveness of our framework, we conduct experiments on various 3D materials images, and compare the performance against several existing image segmentation methods.

  2. Automatic co-segmentation of lung tumor based on random forest in PET-CT images

    NASA Astrophysics Data System (ADS)

    Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian

    2016-03-01

    In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.

  3. Segmentation of x-ray images using Probabilistic Relaxation Labeling

    SciTech Connect

    Thai, T.Q.

    1991-01-01

    Segmentation is a process of separating objects of interest from their background or from other objects in an image. Without a suitable segmentation scheme, it is very difficult to detect contraband in X-rays images. In this paper, a Probabilistic Relaxation Labeling (PRL) segmentation scheme is presented and compared with other segmentation methods. PRL segmentation is an interative algorithm that labels each pixel in an image by cooperative use of two information sources: the pixel probability and the degree of certainty of its probability supported by the neighboring pixels. The practical implementation and results of the PRL segmentation on X-ray baggage images are also discussed and compared with other segmentation methods. 13 refs., 12 figs.

  4. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    PubMed

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  5. An Interactive Java Statistical Image Segmentation System: GemIdent.

    PubMed

    Holmes, Susan; Kapelner, Adam; Lee, Peter P

    2009-06-01

    Supervised learning can be used to segment/identify regions of interest in images using both color and morphological information. A novel object identification algorithm was developed in Java to locate immune and cancer cells in images of immunohistochemically-stained lymph node tissue from a recent study published by Kohrt et al. (2005). The algorithms are also showing promise in other domains. The success of the method depends heavily on the use of color, the relative homogeneity of object appearance and on interactivity. As is often the case in segmentation, an algorithm specifically tailored to the application works better than using broader methods that work passably well on any problem. Our main innovation is the interactive feature extraction from color images. We also enable the user to improve the classification with an interactive visualization system. This is then coupled with the statistical learning algorithms and intensive feedback from the user over many classification-correction iterations, resulting in a highly accurate and user-friendly solution. The system ultimately provides the locations of every cell recognized in the entire tissue in a text file tailored to be easily imported into R (Ihaka and Gentleman 1996; R Development Core Team 2009) for further statistical analyses. This data is invaluable in the study of spatial and multidimensional relationships between cell populations and tumor structure. This system is available at http://www.GemIdent.com/ together with three demonstration videos and a manual.

  6. Segmentation of neuroanatomy in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  7. Applications of magnetic resonance image segmentation in neurology

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu

    1999-05-01

    After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.

  8. Medical Image Watermarking Technique for Accurate Tamper Detection in ROI and Exact Recovery of ROI.

    PubMed

    Eswaraiah, R; Sreenivasa Reddy, E

    2014-01-01

    In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss.

  9. Segmentation of solid nodules in ultrasonographic breast image based on wavelet transform.

    PubMed

    Park, Sangyun; Kong, Hyoun-Joong; Moon, Woo Kyoung; Kim, Hee Chan

    2007-01-01

    An accurate segmentation of solid nodules in ultrasonographic (US) breast image is presented. 1-level 2-dimensional Discrete Wavelet Transform (DWT) is used to create features reflecting the texture information of the original image. Using these features, the texture classification is achieved. Finally, solid nodule region is segmented from the classified texture region. Proper threshold for texture classification is automatically decided. Empirically acquired information about the relationship between the texture characteristic of the original image and the optimal threshold is examined and used. Presented algorithm is applied to 284 malignant solid nodules and 300 benign solid nodules and the resulting images are presented.

  10. Automatic bone segmentation in knee MR images using a coarse-to-fine strategy

    NASA Astrophysics Data System (ADS)

    Park, Sang Hyun; Lee, Soochahn; Yun, Il Dong; Lee, Sang Uk

    2012-02-01

    Segmentation of bone and cartilage from a three dimensional knee magnetic resonance (MR) image is a crucial element in monitoring and understanding of development and progress of osteoarthritis. Until now, various segmentation methods have been proposed to separate the bone from other tissues, but it still remains challenging problem due to different modality of MR images, low contrast between bone and tissues, and shape irregularity. In this paper, we present a new fully-automatic segmentation method of bone compartments using relevant bone atlases from a training set. To find the relevant bone atlases and obtain the segmentation, a coarse-to-fine strategy is proposed. In the coarse step, the best atlas among the training set and an initial segmentation are simultaneously detected using branch and bound tree search. Since the best atlas in the coarse step is not accurately aligned, all atlases from the training set are aligned to the initial segmentation, and the best aligned atlas is selected in the middle step. Finally, in the fine step, segmentation is conducted as adaptively integrating shape of the best aligned atlas and appearance prior based on characteristics of local regions. For experiment, femur and tibia bones of forty test MR images are segmented by the proposed method using sixty training MR images. Experimental results show that a performance of the segmentation and the registration becomes better as going near the fine step, and the proposed method obtain the comparable performance with the state-of-the-art methods.

  11. Sequential Registration-Based Segmentation of the Prostate Gland in MR Image Volumes.

    PubMed

    Khalvati, Farzad; Salmanpour, Aryan; Rahnamayan, Shahryar; Haider, Masoom A; Tizhoosh, H R

    2016-04-01

    Accurate and fast segmentation and volume estimation of the prostate gland in magnetic resonance (MR) images are necessary steps in the diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semi-automated segmentation of individual slices in T2-weighted MR image sequences. The proposed sequential registration-based segmentation (SRS) algorithm, which was inspired by the clinical workflow during medical image contouring, relies on inter-slice image registration and user interaction/correction to segment the prostate gland without the use of an anatomical atlas. It automatically generates contours for each slice using a registration algorithm, provided that the user edits and approves the marking in some previous slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid). Five radiation oncologists participated in the study where they contoured the prostate MR (T2-weighted) images of 15 patients both manually and using the SRS algorithm. Compared to the manual segmentation, on average, the SRS algorithm reduced the contouring time by 62% (a speedup factor of 2.64×) while maintaining the segmentation accuracy at the same level as the intra-user agreement level (i.e., Dice similarity coefficient of 91 versus 90%). The proposed algorithm exploits the inter-slice similarity of volumetric MR image series to achieve highly accurate results while significantly reducing the contouring time.

  12. A wrapper-based approach to image segmentation and classification.

    PubMed

    Farmer, Michael E; Jain, Anil K

    2005-12-01

    The traditional processing flow of segmentation followed by classification in computer vision assumes that the segmentation is able to successfully extract the object of interest from the background image. It is extremely difficult to obtain a reliable segmentation without any prior knowledge about the object that is being extracted from the scene. This is further complicated by the lack of any clearly defined metrics for evaluating the quality of segmentation or for comparing segmentation algorithms. We propose a method of segmentation that addresses both of these issues, by using the object classification subsystem as an integral part of the segmentation. This will provide contextual information regarding the objects to be segmented, as well as allow us to use the probability of correct classification as a metric to determine the quality of the segmentation. We view traditional segmentation as a filter operating on the image that is independent of the classifier, much like the filter methods for feature selection. We propose a new paradigm for segmentation and classification that follows the wrapper methods of feature selection. Our method wraps the segmentation and classification together, and uses the classification accuracy as the metric to determine the best segmentation. By using shape as the classification feature, we are able to develop a segmentation algorithm that relaxes the requirement that the object of interest to be segmented must be homogeneous in some low-level image parameter, such as texture, color, or grayscale. This represents an improvement over other segmentation methods that have used classification information only to modify the segmenter parameters, since these algorithms still require an underlying homogeneity in some parameter space. Rather than considering our method as, yet, another segmentation algorithm, we propose that our wrapper method can be considered as an image segmentation framework, within which existing image segmentation

  13. TIN based image segmentation for man-made feature extraction

    NASA Astrophysics Data System (ADS)

    Jiang, Wanshou; Xie, Junfeng

    2005-10-01

    Traditionally, the splitting and merging algorithm of image segmentation is based on quad tree data structure, which is not convenient to express the topography of regions, the line segments and other information. A new framework is discussed in this paper. It is "TIN based image segmentation and grouping", in which edge information and region information are integrated directly. Firstly, the constrained triangle mesh is constructed with edge segments extracted by EDISON or other algorithm. And then, region growing based on triangles is processed to generate a coarse segmentation. At last, the regions are combined further with perceptual organization rule.

  14. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  15. A statistical multi-vertebrae shape+pose model for segmentation of CT images

    NASA Astrophysics Data System (ADS)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2013-03-01

    Segmentation of the spinal column from CT images is a pre-processing step for a range of image guided interventions. Current techniques focus on identification and separate segmentation of each vertebra. Recently, statistical multi-object shape models have been introduced to extract common statistical characteristics between several anatomies. These models are also used for segmentation purposes and are shown to be robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae shape+pose model and propose a novel technique to register such a model to CT images. We validate our technique in terms of accuracy of the multi-vertebrae segmentation of CT images acquired from 16 subjects. The mean distance error achieved for all vertebrae is 1.17 mm with standard deviation of 0.38 mm.

  16. Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: A review.

    PubMed

    Tohka, Jussi

    2014-11-28

    Quantitative analysis of magnetic resonance (MR) brain images are facilitated by the development of automated segmentation algorithms. A single image voxel may contain of several types of tissues due to the finite spatial resolution of the imaging device. This phenomenon, termed partial volume effect (PVE), complicates the segmentation process, and, due to the complexity of human brain anatomy, the PVE is an important factor for accurate brain structure quantification. Partial volume estimation refers to a generalized segmentation task where the amount of each tissue type within each voxel is solved. This review aims to provide a systematic, tutorial-like overview and categorization of methods for partial volume estimation in brain MRI. The review concentrates on the statistically based approaches for partial volume estimation and also explains differences to other, similar image segmentation approaches.

  17. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation

    PubMed Central

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  18. Dual-wavelength retinal image registration based on vessel segmentation and optic disc detection

    NASA Astrophysics Data System (ADS)

    Xian, Yong-li; Dai, Yun; Gao, Chun-ming; Du, Rui

    2016-09-01

    The dual-wavelength retinal image registration is one of the critical steps in the spectrophotometric measurements of oxygen saturation in the retinal vasculature. The dual-wavelength images (570 nm and 600 nm) are simultaneously captured by dual-wavelength retinal oximeter based on commercial fundus camera. The retinal oxygen saturation is finally measured after vessel segmentation, image registration and calculation of optical density ratio of the two images. Because the dual-wavelength images are acquired from different optical path, it is necessary to go through image registration before they are used to analyze the oxygen saturation. This paper presents a new approach to dual-wavelength retinal image registration based on vessel segmentation and optic disc detection. Firstly, the multi-scale segmentation algorithm based on the Hessian matrix is used to realize vessel segmentation. Secondly, after optic disc is detected by convergence index filter and the center of the optic disc is obtained by centriod algorithm, the translational difference between the images can be determined. The center of the optic disc is used as the center of rotation, and the registration based on mutual information can be achieved using contour and gray information of vessels through segmented image. So the rotational difference between the images can be determined too. The result shows that the algorithm can provide an accurate registration for the dual-wavelength retinal image.

  19. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  20. Segmentation and learning in the quantitative analysis of microscopy images

    NASA Astrophysics Data System (ADS)

    Ruggiero, Christy; Ross, Amy; Porter, Reid

    2015-02-01

    In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.

  1. Segmentation of knee injury swelling on infrared images

    NASA Astrophysics Data System (ADS)

    Puentes, John; Langet, Hélène; Herry, Christophe; Frize, Monique

    2011-03-01

    Interpretation of medical infrared images is complex due to thermal noise, absence of texture, and small temperature differences in pathological zones. Acute inflammatory response is a characteristic symptom of some knee injuries like anterior cruciate ligament sprains, muscle or tendons strains, and meniscus tear. Whereas artificial coloring of the original grey level images may allow to visually assess the extent inflammation in the area, their automated segmentation remains a challenging problem. This paper presents a hybrid segmentation algorithm to evaluate the extent of inflammation after knee injury, in terms of temperature variations and surface shape. It is based on the intersection of rapid color segmentation and homogeneous region segmentation, to which a Laplacian of a Gaussian filter is applied. While rapid color segmentation enables to properly detect the observed core of swollen area, homogeneous region segmentation identifies possible inflammation zones, combining homogeneous grey level and hue area segmentation. The hybrid segmentation algorithm compares the potential inflammation regions partially detected by each method to identify overlapping areas. Noise filtering and edge segmentation are then applied to common zones in order to segment the swelling surfaces of the injury. Experimental results on images of a patient with anterior cruciate ligament sprain show the improved performance of the hybrid algorithm with respect to its separated components. The main contribution of this work is a meaningful automatic segmentation of abnormal skin temperature variations on infrared thermography images of knee injury swelling.

  2. Automated image segmentation using support vector machines

    NASA Astrophysics Data System (ADS)

    Powell, Stephanie; Magnotta, Vincent A.; Andreasen, Nancy C.

    2007-03-01

    Neurodegenerative and neurodevelopmental diseases demonstrate problems associated with brain maturation and aging. Automated methods to delineate brain structures of interest are required to analyze large amounts of imaging data like that being collected in several on going multi-center studies. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures including the thalamus (0.88), caudate (0.85) and the putamen (0.81). In this work, apriori probability information was generated using Thirion's demons registration algorithm. The input vector consisted of apriori probability, spherical coordinates, and an iris of surrounding signal intensity values. We have applied the support vector machine (SVM) machine learning algorithm to automatically segment subcortical and cerebellar regions using the same input vector information. SVM architecture was derived from the ANN framework. Training was completed using a radial-basis function kernel with gamma equal to 5.5. Training was performed using 15,000 vectors collected from 15 training images in approximately 10 minutes. The resulting support vectors were applied to delineate 10 images not part of the training set. Relative overlap calculated for the subcortical structures was 0.87 for the thalamus, 0.84 for the caudate, 0.84 for the putamen, and 0.72 for the hippocampus. Relative overlap for the cerebellar lobes ranged from 0.76 to 0.86. The reliability of the SVM based algorithm was similar to the inter-rater reliability between manual raters and can be achieved without rater intervention.

  3. Magnetic resonance imaging segmentation techniques using batch-type learning vector quantization algorithms.

    PubMed

    Yang, Miin-Shen; Lin, Karen Chia-Ren; Liu, Hsiu-Chih; Lirng, Jiing-Feng

    2007-02-01

    In this article, we propose batch-type learning vector quantization (LVQ) segmentation techniques for the magnetic resonance (MR) images. Magnetic resonance imaging (MRI) segmentation is an important technique to differentiate abnormal and normal tissues in MR image data. The proposed LVQ segmentation techniques are compared with the generalized Kohonen's competitive learning (GKCL) methods, which were proposed by Lin et al. [Magn Reson Imaging 21 (2003) 863-870]. Three MRI data sets of real cases are used in this article. The first case is from a 2-year-old girl who was diagnosed with retinoblastoma in her left eye. The second case is from a 55-year-old woman who developed complete left side oculomotor palsy immediately after a motor vehicle accident. The third case is from an 84-year-old man who was diagnosed with Alzheimer disease (AD). Our comparisons are based on sensitivity of algorithm parameters, the quality of MRI segmentation with the contrast-to-noise ratio and the accuracy of the region of interest tissue. Overall, the segmentation results from batch-type LVQ algorithms present good accuracy and quality of the segmentation images, and also flexibility of algorithm parameters in all the comparison consequences. The results support that the proposed batch-type LVQ algorithms are better than the previous GKCL algorithms. Specifically, the proposed fuzzy-soft LVQ algorithm works well in segmenting AD MRI data set to accurately measure the hippocampus volume in AD MR images.

  4. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  5. Automatic segmentation of nerve structures in ultrasound images using Graph Cuts and Gaussian processes.

    PubMed

    Gil González, Julián; Álvarez, Mauricio A; Orozco, Álvaro A

    2015-01-01

    Peripheral Nerve Blocking (PNB), is a procedure used for performing regional anesthesia, that comprises the administration of anesthetic in the proximity of a nerve. Several techniques have been used with the purpose of locating nerve structures when the PNB procedure is performed: anatomical surface landmarks, elicitation of paresthesia, nerve stimulation and ultrasound imaging. Among those, ultrasound imaging has gained great attention because it is not invasive and offers an accurate location of the nerve and the structures around it. However, the segmentation of nerve structures in ultrasound images is a difficult task for the specialist, since such images are affected by echo perturbations and speckle noise. The development of systems for the automatic segmentation of nerve structures can aid the specialist for locating nerve structures accurately. In this paper we present a methodology for the automatic segmentation of nerve structures in ultrasound images. An initial step is carried out using Graph Cut segmentation in order to generate regions of interest; we then use machine learning techniques with the aim of segmenting the nerve structure; here, a specific non-linear Wavelet transform is used for the feature extraction stage, and Gaussian processes for the classification step. The methodology performance is measured in terms of accuracy and the dice coefficient. Results show that the implemented methodology can be used for automatically segmenting nerve structures.

  6. Adaptive image segmentation applied to plant reproduction by tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico; Zapata, Jose L.

    1997-04-01

    This paper presents that experimental results obtained on indoor tissue culture using the adaptive image segmentation system. The performance of the adaptive technique is contrasted with different non-adaptive techniques commonly used in the computer vision field to demonstrate the improvement provided by the adaptive image segmentation system.

  7. A fast and efficient segmentation scheme for cell microscopic image.

    PubMed

    Lebrun, G; Charrier, C; Lezoray, O; Meurie, C; Cardot, H

    2007-04-27

    Microscopic cellular image segmentation schemes must be efficient for reliable analysis and fast to process huge quantity of images. Recent studies have focused on improving segmentation quality. Several segmentation schemes have good quality but processing time is too expensive to deal with a great number of images per day. For segmentation schemes based on pixel classification, the classifier design is crucial since it is the one which requires most of the processing time necessary to segment an image. The main contribution of this work is focused on how to reduce the complexity of decision functions produced by support vector machines (SVM) while preserving recognition rate. Vector quantization is used in order to reduce the inherent redundancy present in huge pixel databases (i.e. images with expert pixel segmentation). Hybrid color space design is also used in order to improve data set size reduction rate and recognition rate. A new decision function quality criterion is defined to select good trade-off between recognition rate and processing time of pixel decision function. The first results of this study show that fast and efficient pixel classification with SVM is possible. Moreover posterior class pixel probability estimation is easy to compute with Platt method. Then a new segmentation scheme using probabilistic pixel classification has been developed. This one has several free parameters and an automatic selection must dealt with, but criteria for evaluate segmentation quality are not well adapted for cell segmentation, especially when comparison with expert pixel segmentation must be achieved. Another important contribution in this paper is the definition of a new quality criterion for evaluation of cell segmentation. The results presented here show that the selection of free parameters of the segmentation scheme by optimisation of the new quality cell segmentation criterion produces efficient cell segmentation.

  8. Multi-atlas segmentation with augmented features for cardiac MR images.

    PubMed

    Bai, Wenjia; Shi, Wenzhe; Ledig, Christian; Rueckert, Daniel

    2015-01-01

    Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods only utilise the intensity information within a small patch during the label fusion process and may neglect other useful information such as gradient and contextual information (the appearance of surrounding regions). This paper proposes to combine the intensity, gradient and contextual information into an augmented feature vector and incorporate it into multi-atlas segmentation. Also, it explores the alternative to the K nearest neighbour (KNN) classifier in performing multi-atlas label fusion, by using the support vector machine (SVM) for label fusion instead. Experimental results on a short-axis cardiac MR data set of 83 subjects have demonstrated that the accuracy of multi-atlas segmentation can be significantly improved by using the augmented feature vector. The mean Dice metric of the proposed segmentation framework is 0.81 for the left ventricular myocardium on this data set, compared to 0.79 given by the conventional multi-atlas patch-based segmentation (Coupé et al., 2011; Rousseau et al., 2011). A major contribution of this paper is that it demonstrates that the performance of non-local patch-based segmentation can be improved by using augmented features.

  9. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    PubMed

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-21

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians' manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  10. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    NASA Astrophysics Data System (ADS)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  11. GPU accelerated fuzzy connected image segmentation by using CUDA.

    PubMed

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  12. Analysis of image thresholding segmentation algorithms based on swarm intelligence

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo

    2013-03-01

    Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.

  13. Segmentation algorithms for ear image data towards biomechanical studies.

    PubMed

    Ferreira, Ana; Gentil, Fernanda; Tavares, João Manuel R S

    2014-01-01

    In recent years, the segmentation, i.e. the identification, of ear structures in video-otoscopy, computerised tomography (CT) and magnetic resonance (MR) image data, has gained significant importance in the medical imaging area, particularly those in CT and MR imaging. Segmentation is the fundamental step of any automated technique for supporting the medical diagnosis and, in particular, in biomechanics studies, for building realistic geometric models of ear structures. In this paper, a review of the algorithms used in ear segmentation is presented. The review includes an introduction to the usually biomechanical modelling approaches and also to the common imaging modalities. Afterwards, several segmentation algorithms for ear image data are described, and their specificities and difficulties as well as their advantages and disadvantages are identified and analysed using experimental examples. Finally, the conclusions are presented as well as a discussion about possible trends for future research concerning the ear segmentation.

  14. Cellular image segmentation using n-agent cooperative game theory

    NASA Astrophysics Data System (ADS)

    Dimock, Ian B.; Wan, Justin W. L.

    2016-03-01

    Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.

  15. Segmentation of stochastic images with a stochastic random walker method.

    PubMed

    Pätz, Torben; Preusser, Tobias

    2012-05-01

    We present an extension of the random walker segmentation to images with uncertain gray values. Such gray-value uncertainty may result from noise or other imaging artifacts or more general from measurement errors in the image acquisition process. The purpose is to quantify the influence of the gray-value uncertainty onto the result when using random walker segmentation. In random walker segmentation, a weighted graph is built from the image, where the edge weights depend on the image gradient between the pixels. For given seed regions, the probability is evaluated for a random walk on this graph starting at a pixel to end in one of the seed regions. Here, we extend this method to images with uncertain gray values. To this end, we consider the pixel values to be random variables (RVs), thus introducing the notion of stochastic images. We end up with stochastic weights for the graph in random walker segmentation and a stochastic partial differential equation (PDE) that has to be solved. We discretize the RVs and the stochastic PDE by the method of generalized polynomial chaos, combining the recent developments in numerical methods for the discretization of stochastic PDEs and an interactive segmentation algorithm. The resulting algorithm allows for the detection of regions where the segmentation result is highly influenced by the uncertain pixel values. Thus, it gives a reliability estimate for the resulting segmentation, and it furthermore allows determining the probability density function of the segmented object volume.

  16. Example-based segmentation for breast mass images

    NASA Astrophysics Data System (ADS)

    Huang, Qingying; Xu, Songhua; Luo, Xiaonan

    2013-03-01

    A new example-based mass segmentation algorithm is proposed for breast mass images. The training examples used in the new algorithm are prepared by three medical imaging professionals who manually outlined mass contours of 45 sample breast mass images. These manually segmented mass images are then partitioned into small regular grid cells, which are used as reference samples by the algorithm. Each time when the algorithm is applied to segment a previously unseen breast mass image, it first detects grid cell regions in the image that likely overlap with the underlying mass region. Upon identifying such candidate regions, the algorithm then locates the exact mass contour through an example based segmentation procedure where the algorithm retrieves, transfers, and re-applies the human expert knowledge regarding mass segmentation as encoded in the reference samples. The key advantage of our approach lies in its adaptability in tailoring to the skills and preferences of multiple experts through simply switching to a different corpus of human segmentation samples. To explore the effectiveness of the new approach, we comparatively evaluated the accuracy of the algorithm for mass segmentation against segmentation results both manually produced by several medical imaging professionals and automatically by a state-of-the-art level set based method. The comparison results demonstrate that the new algorithm achieves a higher accuracy than the level set based peer method with statistical significance.2

  17. Automatic atlas-based three-label cartilage segmentation from MR knee images.

    PubMed

    Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc

    2014-10-01

    Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces - for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset.

  18. Automating the segmentation of medical images for the production of voxel tomographic computational models.

    PubMed

    Caon, M; Mohyla, J

    2001-12-01

    Radiation dosimetry for the diagnostic medical imaging procedures performed on humans requires anatomically accurate, computational models. These may be constructed from medical images as voxel-based tomographic models. However, they are time consuming to produce and as a consequence, there are few available. This paper discusses the emergence of semi-automatic segmentation techniques and describes an application (iRAD) written in Microsoft Visual Basic that allows the bitmap of a medical image to be segmented interactively and semi-automatically while displayed in Microsoft Excel. iRAD will decrease the time required to construct voxel models.

  19. Robust image modeling technique with a bioluminescence image segmentation application

    NASA Astrophysics Data System (ADS)

    Zhong, Jianghong; Wang, Ruiping; Tian, Jie

    2009-02-01

    A robust pattern classifier algorithm for the variable symmetric plane model, where the driving noise is a mixture of a Gaussian and an outlier process, is developed. The veracity and high-speed performance of the pattern recognition algorithm is proved. Bioluminescence tomography (BLT) has recently gained wide acceptance in the field of in vivo small animal molecular imaging. So that it is very important for BLT to how to acquire the highprecision region of interest in a bioluminescence image (BLI) in order to decrease loss of the customers because of inaccuracy in quantitative analysis. An algorithm in the mode is developed to improve operation speed, which estimates parameters and original image intensity simultaneously from the noise corrupted image derived from the BLT optical hardware system. The focus pixel value is obtained from the symmetric plane according to a more realistic assumption for the noise sequence in the restored image. The size of neighborhood is adaptive and small. What's more, the classifier function is base on the statistic features. If the qualifications for the classifier are satisfied, the focus pixel intensity is setup as the largest value in the neighborhood.Otherwise, it will be zeros.Finally,pseudo-color is added up to the result of the bioluminescence segmented image. The whole process has been implemented in our 2D BLT optical system platform and the model is proved.

  20. Dental x-ray image segmentation

    NASA Astrophysics Data System (ADS)

    Said, Eyad; Fahmy, Gamal F.; Nassar, Diaa; Ammar, Hany

    2004-08-01

    Law enforcement agencies have been exploiting biometric identifiers for decades as key tools in forensic identification. With the evolution in information technology and the huge volume of cases that need to be investigated by forensic specialists, it has become important to automate forensic identification systems. While, ante mortem (AM) identification, that is identification prior to death, is usually possible through comparison of many biometric identifiers, postmortem (PM) identification, that is identification after death, is impossible using behavioral biometrics (e.g. speech, gait). Moreover, under severe circumstances, such as those encountered in mass disasters (e.g. airplane crashers) or if identification is being attempted more than a couple of weeks postmortem, under such circumstances, most physiological biometrics may not be employed for identification, because of the decay of soft tissues of the body to unidentifiable states. Therefore, a postmortem biometric identifier has to resist the early decay that affects body tissues. Because of their survivability and diversity, the best candidates for postmortem biometric identification are the dental features. In this paper we present an over view about an automated dental identification system for Missing and Unidentified Persons. This dental identification system can be used by both law enforcement and security agencies in both forensic and biometric identification. We will also present techniques for dental segmentation of X-ray images. These techniques address the problem of identifying each individual tooth and how the contours of each tooth are extracted.

  1. A Latent Source Model for Patch-Based Image Segmentation.

    PubMed

    Chen, George H; Shah, Devavrat; Golland, Polina

    2015-10-01

    Despite the popularity and empirical success of patch-based nearest-neighbor and weighted majority voting approaches to medical image segmentation, there has been no theoretical development on when, why, and how well these nonparametric methods work. We bridge this gap by providing a theoretical performance guarantee for nearest-neighbor and weighted majority voting segmentation under a new probabilistic model for patch-based image segmentation. Our analysis relies on a new local property for how similar nearby patches are, and fuses existing lines of work on modeling natural imagery patches and theory for nonparametric classification. We use the model to derive a new patch-based segmentation algorithm that iterates between inferring local label patches and merging these local segmentations to produce a globally consistent image segmentation. Many existing patch-based algorithms arise as special cases of the new algorithm.

  2. Anterior segment imaging in glaucoma: An updated review

    PubMed Central

    Maslin, Jessica S; Barkana, Yaniv; Dorairaj, Syril K

    2015-01-01

    Anterior segment imaging allows for an objective method of visualizing the anterior segment angle. Two of the most commonly used devices for anterior segment imaging include the anterior segment optical coherence tomography (AS-OCT) and the ultrasound biomicroscopy (UBM). AS-OCT technology has several types, including time-domain, swept-source, and spectral-domain-based configurations. We performed a literature search on PubMed for articles containing the text “anterior segment OCT,” “ultrasound biomicroscopy,” and “anterior segment imaging” since 2004, with some pertinent references before 2004 included for completeness. This review compares the advantages and disadvantages of AS-OCT and UBM, and summarizes the most recent literature regarding the importance of these devices in glaucoma diagnosis and management. These devices not only aid in visualization of the angle, but also have important postsurgical applications in bleb and tube imaging. PMID:26576519

  3. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy.

    PubMed

    Aljabar, P; Heckemann, R A; Hammers, A; Hajnal, J V; Rueckert, D

    2009-07-01

    Quantitative research in neuroimaging often relies on anatomical segmentation of human brain MR images. Recent multi-atlas based approaches provide highly accurate structural segmentations of the brain by propagating manual delineations from multiple atlases in a database to a query subject and combining them. The atlas databases which can be used for these purposes are growing steadily. We present a framework to address the consequent problems of scale in multi-atlas segmentation. We show that selecting a custom subset of atlases for each query subject provides more accurate subcortical segmentations than those given by non-selective combination of random atlas subsets. Using a database of 275 atlases, we tested an image-based similarity criterion as well as a demographic criterion (age) in a leave-one-out cross-validation study. Using a custom ranking of the database for each subject, we combined a varying number n of atlases from the top of the ranked list. The resulting segmentations were compared with manual reference segmentations using Dice overlap. Image-based selection provided better segmentations than random subsets (mean Dice overlap 0.854 vs. 0.811 for the estimated optimal subset size, n=20). Age-based selection resulted in a similar marked improvement. We conclude that selecting atlases from large databases for atlas-based brain image segmentation improves the accuracy of the segmentations achieved. We show that image similarity is a suitable selection criterion and give results based on selecting atlases by age that demonstrate the value of meta-information for selection.

  4. Computed Tomographic Image Analysis Based on FEM Performance Comparison of Segmentation on Knee Joint Reconstruction

    PubMed Central

    Jang, Seong-Wook; Seo, Young-Jin; Yoo, Yon-Sik

    2014-01-01

    The demand for an accurate and accessible image segmentation to generate 3D models from CT scan data has been increasing as such models are required in many areas of orthopedics. In this paper, to find the optimal image segmentation to create a 3D model of the knee CT data, we compared and validated segmentation algorithms based on both objective comparisons and finite element (FE) analysis. For comparison purposes, we used 1 model reconstructed in accordance with the instructions of a clinical professional and 3 models reconstructed using image processing algorithms (Sobel operator, Laplacian of Gaussian operator, and Canny edge detection). Comparison was performed by inspecting intermodel morphological deviations with the iterative closest point (ICP) algorithm, and FE analysis was performed to examine the effects of the segmentation algorithm on the results of the knee joint movement analysis. PMID:25538950

  5. Computed tomographic image analysis based on FEM performance comparison of segmentation on knee joint reconstruction.

    PubMed

    Jang, Seong-Wook; Seo, Young-Jin; Yoo, Yon-Sik; Kim, Yoon Sang

    2014-01-01

    The demand for an accurate and accessible image segmentation to generate 3D models from CT scan data has been increasing as such models are required in many areas of orthopedics. In this paper, to find the optimal image segmentation to create a 3D model of the knee CT data, we compared and validated segmentation algorithms based on both objective comparisons and finite element (FE) analysis. For comparison purposes, we used 1 model reconstructed in accordance with the instructions of a clinical professional and 3 models reconstructed using image processing algorithms (Sobel operator, Laplacian of Gaussian operator, and Canny edge detection). Comparison was performed by inspecting intermodel morphological deviations with the iterative closest point (ICP) algorithm, and FE analysis was performed to examine the effects of the segmentation algorithm on the results of the knee joint movement analysis.

  6. On the Performance of Stochastic Model-Based Image Segmentation

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Sewchand, Wilfred

    1989-11-01

    A new stochastic model-based image segmentation technique for X-ray CT image has been developed and has been extended to the more general nondiffraction CT images which include MRI, SPELT, and certain type of ultrasound images [1,2]. The nondiffraction CT image is modeled by a Finite Normal Mixture. The technique utilizes the information theoretic criterion to detect the number of the region images, uses the Expectation-Maximization algorithm to estimate the parameters of the image, and uses the Bayesian classifier to segment the observed image. How does this technique over/under-estimate the number of the region images? What is the probability of errors in the segmentation of this technique? This paper addresses these two problems and is a continuation of [1,2].

  7. Improved document image segmentation algorithm using multiresolution morphology

    NASA Astrophysics Data System (ADS)

    Bukhari, Syed Saqib; Shafait, Faisal; Breuel, Thomas M.

    2011-01-01

    Page segmentation into text and non-text elements is an essential preprocessing step before optical character recognition (OCR) operation. In case of poor segmentation, an OCR classification engine produces garbage characters due to the presence of non-text elements. This paper describes modifications to the text/non-text segmentation algorithm presented by Bloomberg,1 which is also available in his open-source Leptonica library.2The modifications result in significant improvements and achieved better segmentation accuracy than the original algorithm for UW-III, UNLV, ICDAR 2009 page segmentation competition test images and circuit diagram datasets.

  8. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

    PubMed

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin

    2013-03-01

    Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

  9. Automatic segmentation and classification of outdoor images using neural networks.

    PubMed

    Campbell, N W; Thomas, B T; Troscianko, T

    1997-02-01

    The paper describes how neural networks may be used to segment and label objects in images. A self-organising feature map is used for the segmentation phase, and we quantify the quality of the segmentations produced as well as the contribution made by colour and texture features. A multi-layer perception is trained to label the regions produced by the segmentation process. It is shown that 91.1% of the image area is correctly classified into one of eleven categories which include cars, houses, fences, roads, vegetation and sky.

  10. Image segmentation on adaptive edge-preserving smoothing

    NASA Astrophysics Data System (ADS)

    He, Kun; Wang, Dan; Zheng, Xiuqing

    2016-09-01

    Nowadays, typical active contour models are widely applied in image segmentation. However, they perform badly on real images with inhomogeneous subregions. In order to overcome the drawback, this paper proposes an edge-preserving smoothing image segmentation algorithm. At first, this paper analyzes the edge-preserving smoothing conditions for image segmentation and constructs an edge-preserving smoothing model inspired by total variation. The proposed model has the ability to smooth inhomogeneous subregions and preserve edges. Then, a kind of clustering algorithm, which reasonably trades off edge-preserving and subregion-smoothing according to the local information, is employed to learn the edge-preserving parameter adaptively. At last, according to the confidence level of segmentation subregions, this paper constructs a smoothing convergence condition to avoid oversmoothing. Experiments indicate that the proposed algorithm has superior performance in precision, recall, and F-measure compared with other segmentation algorithms, and it is insensitive to noise and inhomogeneous-regions.

  11. Analyzing training information from random forests for improved image segmentation.

    PubMed

    Mahapatra, Dwarikanath

    2014-04-01

    Labeled training data are used for challenging medical image segmentation problems to learn different characteristics of the relevant domain. In this paper, we examine random forest (RF) classifiers, their learned knowledge during training and ways to exploit it for improved image segmentation. Apart from learning discriminative features, RFs also quantify their importance in classification. Feature importance is used to design a feature selection strategy critical for high segmentation and classification accuracy, and also to design a smoothness cost in a second-order MRF framework for graph cut segmentation. The cost function combines the contribution of different image features like intensity, texture, and curvature information. Experimental results on medical images show that this strategy leads to better segmentation accuracy than conventional graph cut algorithms that use only intensity information in the smoothness cost.

  12. Fast spectral color image segmentation based on filtering and clustering

    NASA Astrophysics Data System (ADS)

    Xing, Min; Li, Hongyu; Jia, Jinyuan; Parkkinen, Jussi

    2009-10-01

    This paper proposes a fast approach to spectral image segmentation. In the algorithm, two popular techniques are extended and applied to spectral color images: the mean-shift filtering and the kernel-based clustering. We claim that segmentation should be completed under illuminant F11 rather than directly using the original spectral reflectance, because such illumination can reduce data variability and expedite the following filtering. The modes obtained in the mean-shift filtering represent the local features of spectral images, and will be applied to segmentation in place of pixels. Since the modes are generally small in number, the eigendecomposition of kernel matrices, the crucial step in the kernelbased clustering, becomes much easier. The combination of these two techniques can efficiently enhance the performance of segmentation. Experiments show that the proposed segmentation method is feasible and very promising for spectral color images.

  13. Segmenting images analytically in shape space

    NASA Astrophysics Data System (ADS)

    Rathi, Yogesh; Dambreville, Samuel; Niethammer, Marc; Malcolm, James; Levitt, James; Shenton, Martha E.; Tannenbaum, Allen

    2008-03-01

    This paper presents a novel analytic technique to perform shape-driven segmentation. In our approach, shapes are represented using binary maps, and linear PCA is utilized to provide shape priors for segmentation. Intensity based probability distributions are then employed to convert a given test volume into a binary map representation, and a novel energy functional is proposed whose minimum can be analytically computed to obtain the desired segmentation in the shape space. We compare the proposed method with the log-likelihood based energy to elucidate some key differences. Our algorithm is applied to the segmentation of brain caudate nucleus and hippocampus from MRI data, which is of interest in the study of schizophrenia and Alzheimer's disease. Our validation (we compute the Hausdorff distance and the DICE coefficient between the automatic segmentation and ground-truth) shows that the proposed algorithm is very fast, requires no initialization and outperforms the log-likelihood based energy.

  14. Real-time planar segmentation of depth images: from three-dimensional edges to segmented planes

    NASA Astrophysics Data System (ADS)

    Javan Hemmat, Hani; Bondarev, Egor; de With, Peter H. N.

    2015-09-01

    Real-time execution of processing algorithms for handling depth images in a three-dimensional (3-D) data framework is a major challenge. More specifically, considering depth images as point clouds and performing planar segmentation requires heavy computation, because available planar segmentation algorithms are mostly based on surface normals and/or curvatures, and, consequently, do not provide real-time performance. Aiming at the reconstruction of indoor environments, the spaces mainly consist of planar surfaces, so that a possible 3-D application would strongly benefit from a real-time algorithm. We introduce a real-time planar segmentation method for depth images avoiding any surface normal calculation. First, we detect 3-D edges in a depth image and generate line segments between the identified edges. Second, we fuse all the points on each pair of intersecting line segments into a plane candidate. Third and finally, we implement a validation phase to select planes from the candidates. Furthermore, various enhancements are applied to improve the segmentation quality. The GPU implementation of the proposed algorithm segments depth images into planes at the rate of 58 fps. Our pipeline-interleaving technique increases this rate up to 100 fps. With this throughput rate improvement, the application benefit of our algorithm may be further exploited in terms of quality and enhancing the localization.

  15. Live minimal path for interactive segmentation of medical images

    NASA Astrophysics Data System (ADS)

    Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.

    2015-03-01

    Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..

  16. A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.

    PubMed

    Mignotte, Max

    2010-06-01

    This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.

  17. Pixel classification based color image segmentation using quaternion exponent moments.

    PubMed

    Wang, Xiang-Yang; Wu, Zhi-Fang; Chen, Liang; Zheng, Hong-Liang; Yang, Hong-Ying

    2016-02-01

    Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. In recent years, many image segmentation algorithms have been developed, but they are often very complex and some undesired results occur frequently. In this paper, we propose a pixel classification based color image segmentation using quaternion exponent moments. Firstly, the pixel-level image feature is extracted based on quaternion exponent moments (QEMs), which can capture effectively the image pixel content by considering the correlation between different color channels. Then, the pixel-level image feature is used as input of twin support vector machines (TSVM) classifier, and the TSVM model is trained by selecting the training samples with Arimoto entropy thresholding. Finally, the color image is segmented with the trained TSVM model. The proposed scheme has the following advantages: (1) the effective QEMs is introduced to describe color image pixel content, which considers the correlation between different color channels, (2) the excellent TSVM classifier is utilized, which has lower computation time and higher classification accuracy. Experimental results show that our proposed method has very promising segmentation performance compared with the state-of-the-art segmentation approaches recently proposed in the literature.

  18. Efficient hyperspectral image segmentation using geometric active contour formulation

    NASA Astrophysics Data System (ADS)

    Albalooshi, Fatema A.; Sidike, Paheding; Asari, Vijayan K.

    2014-10-01

    In this paper, we present a new formulation of geometric active contours that embeds the local hyperspectral image information for an accurate object region and boundary extraction. We exploit self-organizing map (SOM) unsupervised neural network to train our model. The segmentation process is achieved by the construction of a level set cost functional, in which, the dynamic variable is the best matching unit (BMU) coming from SOM map. In addition, we use Gaussian filtering to discipline the deviation of the level set functional from a signed distance function and this actually helps to get rid of the re-initialization step that is computationally expensive. By using the properties of the collective computational ability and energy convergence capability of the active control models (ACM) energy functional, our method optimizes the geometric ACM energy functional with lower computational time and smoother level set function. The proposed algorithm starts with feature extraction from raw hyperspectral images. In this step, the principal component analysis (PCA) transformation is employed, and this actually helps in reducing dimensionality and selecting best sets of the significant spectral bands. Then the modified geometric level set functional based ACM is applied on the optimal number of spectral bands determined by the PCA. By introducing local significant spectral band information, our proposed method is capable to force the level set functional to be close to a signed distance function, and therefore considerably remove the need of the expensive re-initialization procedure. To verify the effectiveness of the proposed technique, we use real-life hyperspectral images and test our algorithm in varying textural regions. This framework can be easily adapted to different applications for object segmentation in aerial hyperspectral imagery.

  19. Locally-constrained Boundary Regression for Segmentation of Prostate and Rectum in the Planning CT Images

    PubMed Central

    Shao, Yeqin; Gao, Yaozong; Wang, Qian; Yang, Xin; Shen, Dinggang

    2015-01-01

    Automatic and accurate segmentation of the prostate and rectum in planning CT images is a challenging task due to low image contrast, unpredictable organ (relative) position, and uncertain existence of bowel gas across different patients. Recently, regression forest was adopted for organ deformable segmentation on 2D medical images by training one landmark detector for each point on the shape model. However, it seems impractical for regression forest to guide 3D deformable segmentation as a landmark detector, due to large number of vertices in the 3D shape model as well as the difficulty in building accurate 3D vertex correspondence for each landmark detector. In this paper, we propose a novel boundary detection method by exploiting the power of regression forest for prostate and rectum segmentation. The contributions of this paper are as follows: 1) we introduce regression forest as a local boundary regressor to vote the entire boundary of a target organ, which avoids training a large number of landmark detectors and building an accurate 3D vertex correspondence for each landmark detector; 2) an auto-context model is integrated with regression forest to improve the accuracy of the boundary regression; 3) we further combine a deformable segmentation method with the proposed local boundary regressor for the final organ segmentation by integrating organ shape priors. Our method is evaluated on a planning CT image dataset with 70 images from 70 different patients. The experimental results show that our proposed boundary regression method outperforms the conventional boundary classification method in guiding the deformable model for prostate and rectum segmentations. Compared with other state-of-the-art methods, our method also shows a competitive performance. PMID:26439938

  20. Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.

    PubMed

    Shao, Yeqin; Gao, Yaozong; Wang, Qian; Yang, Xin; Shen, Dinggang

    2015-12-01

    Automatic and accurate segmentation of the prostate and rectum in planning CT images is a challenging task due to low image contrast, unpredictable organ (relative) position, and uncertain existence of bowel gas across different patients. Recently, regression forest was adopted for organ deformable segmentation on 2D medical images by training one landmark detector for each point on the shape model. However, it seems impractical for regression forest to guide 3D deformable segmentation as a landmark detector, due to large number of vertices in the 3D shape model as well as the difficulty in building accurate 3D vertex correspondence for each landmark detector. In this paper, we propose a novel boundary detection method by exploiting the power of regression forest for prostate and rectum segmentation. The contributions of this paper are as follows: (1) we introduce regression forest as a local boundary regressor to vote the entire boundary of a target organ, which avoids training a large number of landmark detectors and building an accurate 3D vertex correspondence for each landmark detector; (2) an auto-context model is integrated with regression forest to improve the accuracy of the boundary regression; (3) we further combine a deformable segmentation method with the proposed local boundary regressor for the final organ segmentation by integrating organ shape priors. Our method is evaluated on a planning CT image dataset with 70 images from 70 different patients. The experimental results show that our proposed boundary regression method outperforms the conventional boundary classification method in guiding the deformable model for prostate and rectum segmentations. Compared with other state-of-the-art methods, our method also shows a competitive performance.

  1. Graph run-length matrices for histopathological image segmentation.

    PubMed

    Tosun, Akif Burak; Gunduz-Demir, Cigdem

    2011-03-01

    The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.

  2. Unsupervised texture image segmentation using multilayer data condensation spectral clustering

    NASA Astrophysics Data System (ADS)

    Liu, Hanqiang; Jiao, Licheng; Zhao, Feng

    2010-07-01

    A novel unsupervised texture image segmentation using a multilayer data condensation spectral clustering algorithm is presented. First, the texture features of each image pixel are extracted by the stationary wavelet transform and a multilayer data condensation method is performed on this texture features data set to obtain a condensation subset. Second, the spectral clustering algorithm based on the manifold similarity measure is used to cluster the condensation subset. Finally, according to the clustering result of the condensation subset, the nearest-neighbor method is adopted to obtain the original image-segmentation result. In the experiments, we apply our method to solve the texture and synthetic aperture radar image segmentation and take self-tuning k-nearest-neighbor spectral clustering and Nyström methods for baseline comparisons. The experimental results show that the proposed method is more robust and effective for texture image segmentation.

  3. Image segmentation by iterative parallel region growing with application to data compression and image analysis

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    1988-01-01

    Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image.

  4. Objective measurements to evaluate glottal space segmentation from laryngeal images.

    PubMed

    Gutiérrez-Arriola, J M; Osma-Ruiz, V; Sáenz-Lechón, N; Godino-Llorente, J I; Fraile, R; Arias-Londoño, J D

    2012-01-01

    Objective evaluation of the results of medical image segmentation is a known problem. Applied to the task of automatically detecting the glottal area from laryngeal images, this paper proposes a new objective measurement to evaluate the quality of a segmentation algorithm by comparing with the results given by a human expert. The new figure of merit is called Area Index, and its effectiveness is compared with one of the most used figures of merit found in the literature: the Pratt Index. Results over 110 laryngeal images presented high correlations between both indexes, demonstrating that the proposed measure is comparable to the Pratt Index and it is a good indicator of the segmentation quality.

  5. Integrating Non-Semantic Knowledge into Image Segmentation Processes.

    DTIC Science & Technology

    1984-03-01

    D-A149 571 INTEGRATING NON-SEMANTIC KNOWLEDGE INTO IMAGE 1/2 SEGMENTATION PROCESSES(U) MRSSACHUSETTS UNIV AMHERST DEPT OF COMPUTER AND INFORMATION S... IMAGE SEGMENTATION PROCESSES Ralf R. Kohler COINS Technical Report 84-04 SJAN 1 7 1985) This work was supported in part by the Office of Naval Rearch...RR07048-16. DITPI~rN STTM!4 j~pwvq jx public 7le" Dwtnutlfl nlmited . .. Teatn Non-SanatIC Knowledge into Image Segmentation Proces A Dissertation

  6. Segmentation of whole cells and cell nuclei from 3-D optical microscope images using dynamic programming.

    PubMed

    McCullough, D P; Gudla, P R; Harris, B S; Collins, J A; Meaburn, K J; Nakaya, M A; Yamaguchi, T P; Misteli, T; Lockett, S J

    2008-05-01

    Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection.

  7. DATASET OF MAGNETIC RESONANCE IMAGES OF NONEPILEPTIC SUBJECTS AND TEMPORAL LOBE EPILEPSY PATIENTS FOR VALIDATION OF HIPPOCAMPAL SEGMENTATION TECHNIQUES

    PubMed Central

    Jafari-Khouzani, Kourosh; Elisevich, Kost V.; Patel, Suresh; Soltanian-Zadeh, Hamid

    2013-01-01

    Summary The hippocampus has become the focus of research in several neurodegenerative disorders. Automatic segmentation of this structure from magnetic resonance (MR) imaging scans of the brain facilitates this work. Segmentation techniques must be evaluated using a dataset of MR images with accurate hippocampal outlines generated manually. Manual segmentation is not a trivial task. Lack of a unique segmentation protocol and poor image quality are only two factors that have confounded the consistency required for comparative study. We have developed a publicly available dataset of T1-weighted (T1W) MR images of epileptic and nonepileptic subjects along with their hippocampal outlines to provide a means of evaluation of segmentation techniques. This dataset contains 50 T1W MR images, 40 epileptic and 10 nonepileptic. All images were manually segmented by a widely used protocol. Twenty five images were selected for training and were provided with hippocampal labels. Twenty five other images were provided without labels for testing algorithms. The users are allowed to evaluate their generated labels for the test images using 11 segmentation similarity metrics. Using this dataset, we evaluated two segmentation algorithms, Brain Parser and Classifier Fusion and Labeling (CFL), trained by the training set. For Brain Parser, an average Dice coefficient of 0.64 was obtained with the testing set. For CFL, this value was 0.75. Such findings indicate a need for further improvement of segmentation algorithms in order to enhance reliability. PMID:21286946

  8. Image segmentation on adaptive sub-region smoothing

    NASA Astrophysics Data System (ADS)

    Gao, Junruo; Liu, Xin; He, Kun

    2017-01-01

    To improve the performance of the active contour segmentation on real images, a new segmentation method is proposed. In this model, we construct a function about Gaussian variance according to sub-regions intensity. Further, to avoid the curve vanishing, we design the convergence condition based on the confidence level of segmentation sub-regions. Experimental results show that the proposed method is less sensitive to noise and can suppress inhomogeneous intensity regions efficiently.

  9. Accurate color images: from expensive luxury to essential resource

    NASA Astrophysics Data System (ADS)

    Saunders, David R.; Cupitt, John

    2002-06-01

    Over ten years ago the National Gallery in London began a program to make digital images of paintings in the collection using a colorimetric imaging system. This was to provide a permanent record of the state of paintings against which future images could be compared to determine if any changes had occurred. It quickly became apparent that such images could be used not only for scientific purposes, but also in applications where transparencies were then being used, for example as source materials for printed books and catalogues or for computer-based information systems. During the 1990s we were involved in the development of a series of digital cameras that have combined the high color accuracy of the original 'scientific' imaging system with the familiarity and portability of a medium format camera. This has culminated in the program of digitization now in progress at the National Gallery. By the middle of 2001 we will have digitized all the major paintings in the collection at a resolution of 10,000 pixels along their longest dimension and with calibrated color; we are on target to digitize the whole collection by the end of 2002. The images are available on-line within the museum for consultation and so that Gallery departments can use the images in printed publications and on the Gallery's web- site. We describe the development of the imaging systems used at National Gallery and how the research we have conducted into high-resolution accurate color imaging has developed from being a peripheral, if harmless, research activity to becoming a central part of the Gallery's information and publication strategy. Finally, we discuss some outstanding issues, such as interfacing our color management procedures with the systems used by external organizations.

  10. A Bayesian Approach for Image Segmentation with Shape Priors

    SciTech Connect

    Chang, Hang; Yang, Qing; Parvin, Bahram

    2008-06-20

    Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentation through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.

  11. iCut: an Integrative Cut Algorithm Enables Accurate Segmentation of Touching Cells.

    PubMed

    He, Yong; Gong, Hui; Xiong, Benyi; Xu, Xiaofeng; Li, Anan; Jiang, Tao; Sun, Qingtao; Wang, Simin; Luo, Qingming; Chen, Shangbin

    2015-07-14

    Individual cells play essential roles in the biological processes of the brain. The number of neurons changes during both normal development and disease progression. High-resolution imaging has made it possible to directly count cells. However, the automatic and precise segmentation of touching cells continues to be a major challenge for massive and highly complex datasets. Thus, an integrative cut (iCut) algorithm, which combines information regarding spatial location and intervening and concave contours with the established normalized cut, has been developed. iCut involves two key steps: (1) a weighting matrix is first constructed with the abovementioned information regarding the touching cells and (2) a normalized cut algorithm that uses the weighting matrix is implemented to separate the touching cells into isolated cells. This novel algorithm was evaluated using two types of data: the open SIMCEP benchmark dataset and our micro-optical imaging dataset from a Nissl-stained mouse brain. It has achieved a promising recall/precision of 91.2 ± 2.1%/94.1 ± 1.8% and 86.8 ± 4.1%/87.5 ± 5.7%, respectively, for the two datasets. As quantified using the harmonic mean of recall and precision, the accuracy of iCut is higher than that of some state-of-the-art algorithms. The better performance of this fully automated algorithm can benefit studies of brain cytoarchitecture.

  12. iCut: an Integrative Cut Algorithm Enables Accurate Segmentation of Touching Cells

    PubMed Central

    He, Yong; Gong, Hui; Xiong, Benyi; Xu, Xiaofeng; Li, Anan; Jiang, Tao; Sun, Qingtao; Wang, Simin; Luo, Qingming; Chen, Shangbin

    2015-01-01

    Individual cells play essential roles in the biological processes of the brain. The number of neurons changes during both normal development and disease progression. High-resolution imaging has made it possible to directly count cells. However, the automatic and precise segmentation of touching cells continues to be a major challenge for massive and highly complex datasets. Thus, an integrative cut (iCut) algorithm, which combines information regarding spatial location and intervening and concave contours with the established normalized cut, has been developed. iCut involves two key steps: (1) a weighting matrix is first constructed with the abovementioned information regarding the touching cells and (2) a normalized cut algorithm that uses the weighting matrix is implemented to separate the touching cells into isolated cells. This novel algorithm was evaluated using two types of data: the open SIMCEP benchmark dataset and our micro-optical imaging dataset from a Nissl-stained mouse brain. It has achieved a promising recall/precision of 91.2 ± 2.1%/94.1 ± 1.8% and 86.8 ± 4.1%/87.5 ± 5.7%, respectively, for the two datasets. As quantified using the harmonic mean of recall and precision, the accuracy of iCut is higher than that of some state-of-the-art algorithms. The better performance of this fully automated algorithm can benefit studies of brain cytoarchitecture. PMID:26168908

  13. A robust medical image segmentation method using KL distance and local neighborhood information.

    PubMed

    Zheng, Qian; Lu, Zhentai; Yang, Wei; Zhang, Minghui; Feng, Qianjin; Chen, Wufan

    2013-06-01

    In this paper, we propose an improved Chan-Vese (CV) model that uses Kullback-Leibler (KL) distances and local neighborhood information (LNI). Due to the effects of heterogeneity and complex constructions, the performance of level set segmentation is subject to confounding by the presence of nearby structures of similar intensity, preventing it from discerning the exact boundary of the object. Moreover, the CV model cannot usually obtain accurate results in medical image segmentation in cases of optimal configuration of controlling parameters, which requires substantial manual intervention. To overcome the above deficiency, we improve the segmentation accuracy by the usage of KL distance and LNI, thereby introducing the image local characteristics. Performance evaluation of the present method was achieved through experiments on the synthetic images and a series of real medical images. The extensive experimental results showed the superior performance of the proposed method over the state-of-the-art methods, in terms of both robustness and efficiency.

  14. A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier.

    PubMed

    Nanthagopal, A Padma; Rajamony, R Sukanesh

    2012-07-01

    The proposed system provides new textural information for segmenting tumours, efficiently and accurately and with less computational time, from benign and malignant tumour images, especially in smaller dimensions of tumour regions of computed tomography (CT) images. Region-based segmentation of tumour from brain CT image data is an important but time-consuming task performed manually by medical experts. The objective of this work is to segment brain tumour from CT images using combined grey and texture features with new edge features and nonlinear support vector machine (SVM) classifier. The selected optimal features are used to model and train the nonlinear SVM classifier to segment the tumour from computed tomography images and the segmentation accuracies are evaluated for each slice of the tumour image. The method is applied on real data of 80 benign, malignant tumour images. The results are compared with the radiologist labelled ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and the overlap similarity measure dice metric. From the analysis and performance measures such as segmentation accuracy and dice metric, it is inferred that better segmentation accuracy and higher dice metric are achieved with the normalized cut segmentation method than with the fuzzy c-means clustering method.

  15. A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons.

    PubMed

    Eiber, Calvin D; Dokos, Socrates; Lovell, Nigel H; Suaning, Gregg J

    2016-08-19

    The capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind. The activating function formalism is extended to arbitrary neuron geometries, and a segmentation method to guarantee an appropriate choice of collocation points is presented. Differential quadrature may then be applied to efficiently solve the resulting cable equations. The capacity for this model to simulate action potentials propagating through branching structures and to predict minimum extracellular stimulation thresholds for individual neurons is demonstrated. The presented model is validated against published values for extracellular stimulation threshold and conduction velocity for realistic physiological parameter values. This model suggests that convoluted axon geometries are more readily activated by extracellular stimulation than linear axon geometries, which may have ramifications for the design of neural prostheses.

  16. The segmentation of the CT image based on k clustering and graph-cut

    NASA Astrophysics Data System (ADS)

    Chen, Yuke; Wu, Xiaoming; Yang, Rongqian; Ou, Shanxin; Cai, Ken; Chen, Hai

    2011-11-01

    Computed tomography angiography (CTA) is widely used to assess heart disease, like coronary artery disease. In order to complete the auto-segmentation of cardiac image of dual-source CT (DSCT) and extract the structure of heart accurately, this paper proposes a hybrid segmentation method based on k clustering and Graph-Cuts (GC). It identifies the initial label of pixels by this method. Based on this, it creates the energy function of the label with the knowledge of anatomic construction of heart and constructs the network diagram. Finally, it minimizes the energy function by the method of max-flow/min-cut theorem and picks up region of interest. The experiment results indicate that the robust, accurate segmentation of the cardiac DSCT image can be realized by combining Graph-Cut and k clustering algorithm.

  17. A translational registration system for LANDSAT image segments

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Erthal, G. J.; Velasco, F. R. D.; Mascarenhas, N. D. D.

    1983-01-01

    The use of satellite images obtained from various dates is essential for crop forecast systems. In order to make possible a multitemporal analysis, it is necessary that images belonging to each acquisition have pixel-wise correspondence. A system developed to obtain, register and record image segments from LANDSAT images in computer compatible tapes is described. The translational registration of the segments is performed by correlating image edges in different acquisitions. The system was constructed for the Burroughs B6800 computer in ALGOL language.

  18. Three-dimensional segmentation of bone structures in CT images

    NASA Astrophysics Data System (ADS)

    Boehm, Guenther; Knoll, Christian J.; Grau Colomer, Vincente; Alcaniz-Raya, Mariano L.; Albalat, Salvador E.

    1999-05-01

    This work is concerned with the implementation of a fully 3D-consistent, automatic segmentation of bone structures in CT images. The morphological watersheds algorithm has been chosen as the base of the low-level segmentation. The over- segmentation, a phenomenon normally involved with this transformation, has been sorted out successfully by inserting modifying modules that act already within the algorithm. When dealing with a maxillofacial image, this approach also includes the possibility to provide two different divisions of the image: a fine-grained tessellation geared to the following high-level segmentation and a more coarse-grained one for the segmentation of the teeth. In the knowledge-based high-level segmentation, probabilistic considerations make use of specific properties of the 3D low-level regions to find the most probable tissue for each region. Low-level regions that cannot be classified with the necessary certainty are passed to a second stage, where--embedded in their respective environment--they are compared with structural patterns deduced from anatomical knowledge. The tooth segmentation takes the coarse-grained tessellation as its starting point. The few regions making up each tooth are grouped to 3D envelopes--one envelope per tooth. Matched filtering detects the bases of these envelopes. After a refinement they are fitted into the fine- grained, high-level segmented image.

  19. Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing

    PubMed Central

    Sarrafzadeh, Omid; Dehnavi, Alireza Mehri

    2015-01-01

    Background: Segmentation of leukocytes acts as the foundation for all automated image-based hematological disease recognition systems. Most of the time, hematologists are interested in evaluation of white blood cells only. Digital image processing techniques can help them in their analysis and diagnosis. Materials and Methods: The main objective of this paper is to detect leukocytes from a blood smear microscopic image and segment them into their two dominant elements, nucleus and cytoplasm. The segmentation is conducted using two stages of applying K-means clustering. First, the nuclei are segmented using K-means clustering. Then, a proposed method based on region growing is applied to separate the connected nuclei. Next, the nuclei are subtracted from the original image. Finally, the cytoplasm is segmented using the second stage of K-means clustering. Results: The results indicate that the proposed method is able to extract the nucleus and cytoplasm regions accurately and works well even though there is no significant contrast between the components in the image. Conclusions: In this paper, a method based on K-means clustering and region growing is proposed in order to detect leukocytes from a blood smear microscopic image and segment its components, the nucleus and the cytoplasm. As region growing step of the algorithm relies on the information of edges, it will not able to separate the connected nuclei more accurately in poor edges and it requires at least a weak edge to exist between the nuclei. The nucleus and cytoplasm segments of a leukocyte can be used for feature extraction and classification which leads to automated leukemia detection. PMID:26605213

  20. Data-driven interactive 3D medical image segmentation based on structured patch model.

    PubMed

    Park, Sang Hyun; Yun, Il Dong; Lee, Sang Uk

    2013-01-01

    In this paper, we present a novel three dimensional interactive medical image segmentation method based on high level knowledge of training set. Since the interactive system should provide intermediate results to an user quickly, insufficient low level models are used for most of previous methods. To exploit the high level knowledge within a short time, we construct a structured patch model that consists of multiple corresponding patch sets. The structured patch model includes the spatial relationships between neighboring patch sets and the prior knowledge of the corresponding patch set on each local region. The spatial relationships accelerate the search of corresponding patch in test time, while the prior knowledge improves the segmentation accuracy. The proposed framework provides not only fast editing tool, but the incremental learning system through adding the segmentation result to the training set. Experiments demonstrate that the proposed method is useful for fast and accurate segmentation of target objects from the multiple medical images.

  1. Inhomogeneity compensation for MR brain image segmentation using a multi-stage FCM-based approach.

    PubMed

    Szilágyi, László; Szilágyi, Sándor M; Dávid, László; Benyó, Zoltán

    2008-01-01

    Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for MR image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into clustering algorithms. This paper proposes a multiple stage fuzzy c-means (FCM) based algorithm for the estimation and compensation of the slowly varying additive or multiplicative noise, supported by a pre-filtering technique for Gaussian and impulse noise elimination. The slowly varying behavior of the bias or gain field is assured by a smoothening filter that performs a context dependent averaging, based on a morphological criterion. The experiments using 2-D synthetic phantoms and real MR images show, that the proposed method provides accurate segmentation. The produced segmentation and fuzzy membership values can serve as excellent support for 3-D registration and segmentation techniques.

  2. Comparison of automated and manual segmentation of hippocampus MR images

    NASA Astrophysics Data System (ADS)

    Haller, John W.; Christensen, Gary E.; Miller, Michael I.; Joshi, Sarang C.; Gado, Mokhtar; Csernansky, John G.; Vannier, Michael W.

    1995-05-01

    The precision and accuracy of area estimates from magnetic resonance (MR) brain images and using manual and automated segmentation methods are determined. Areas of the human hippocampus were measured to compare a new automatic method of segmentation with regions of interest drawn by an expert. MR images of nine normal subjects and nine schizophrenic patients were acquired with a 1.5-T unit (Siemens Medical Systems, Inc., Iselin, New Jersey). From each individual MPRAGE 3D volume image a single comparable 2-D slice (matrix equals 256 X 256) was chosen which corresponds to the same coronal slice of the hippocampus. The hippocampus was first manually segmented, then segmented using high dimensional transformations of a digital brain atlas to individual brain MR images. The repeatability of a trained rater was assessed by comparing two measurements from each individual subject. Variability was also compared within and between subject groups of schizophrenics and normal subjects. Finally, the precision and accuracy of automated segmentation of hippocampal areas were determined by comparing automated measurements to manual segmentation measurements made by the trained rater on MR and brain slice images. The results demonstrate the high repeatability of area measurement from MR images of the human hippocampus. Automated segmentation using high dimensional transformations from a digital brain atlas provides repeatability superior to that of manual segmentation. Furthermore, the validity of automated measurements was demonstrated by a high correlation with manual segmentation measurements made by a trained rater. Quantitative morphometry of brain substructures (e.g. hippocampus) is feasible by use of a high dimensional transformation of a digital brain atlas to an individual MR image. This method automates the search for neuromorphological correlates of schizophrenia by a new mathematically robust method with unprecedented sensitivity to small local and regional differences.

  3. A hybrid framework for 3D medical image segmentation.

    PubMed

    Chen, Ting; Metaxas, Dimitris

    2005-12-01

    In this paper we propose a novel hybrid 3D segmentation framework which combines Gibbs models, marching cubes and deformable models. In the framework, first we construct a new Gibbs model whose energy function is defined on a high order clique system. The new model includes both region and boundary information during segmentation. Next we improve the original marching cubes method to construct 3D meshes from Gibbs models' output. The 3D mesh serves as the initial geometry of the deformable model. Then we deform the deformable model using external image forces so that the model converges to the object surface. We run the Gibbs model and the deformable model recursively by updating the Gibbs model's parameters using the region and boundary information in the deformable model segmentation result. In our approach, the hybrid combination of region-based methods and boundary-based methods results in improved segmentations of complex structures. The benefit of the methodology is that it produces high quality segmentations of 3D structures using little prior information and minimal user intervention. The modules in this segmentation methodology are developed within the context of the Insight ToolKit (ITK). We present experimental segmentation results of brain tumors and evaluate our method by comparing experimental results with expert manual segmentations. The evaluation results show that the methodology achieves high quality segmentation results with computational efficiency. We also present segmentation results of other clinical objects to illustrate the strength of the methodology as a generic segmentation framework.

  4. Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images.

    PubMed

    Qi, Li; Huang, Shenghai; Heidari, Andrew E; Dai, Cuixia; Zhu, Jiang; Zhang, Xuping; Chen, Zhongping

    2015-12-28

    We present an automatic segmentation method for the delineation and quantitative thickness measurement of multiple layers in endoscopic airway optical coherence tomography (OCT) images. The boundaries of the mucosa and the sub-mucosa layers are accurately extracted using a graph-theory-based dynamic programming algorithm. The algorithm was tested with sheep airway OCT images. Quantitative thicknesses of the mucosal layers are obtained automatically for smoke inhalation injury experiments.

  5. Spatially-Coherent Non-Linear Dimensionality Reduction and Segmentation of Hyper-Spectral Images (PREPRINT)

    DTIC Science & Technology

    2006-06-01

    projection methods such as Principal Component Analysis ( PCA ) [16]. Methods like PCA , Factor analysis, and multidimensional scaling, assume that the...underlying data manifold is linear, which is not necessarily true in the case of hyper-spectral data and most imaging modalities. PCA has been shown not to...accurate classification and segmentation. This spatial coherence is introduced following recent results in the literature of image denoising and texture

  6. In Situ Casting and Imaging of the Rat Airway Tree for Accurate 3D Reconstruction

    PubMed Central

    Jacob, Richard E.; Colby, Sean M.; Kabilan, Senthil; Einstein, Daniel R.; Carson, James P.

    2014-01-01

    The use of anatomically accurate, animal-specific airway geometries is important for understanding and modeling the physiology of the respiratory system. One approach for acquiring detailed airway architecture is to create a bronchial cast of the conducting airways. However, typical casting procedures either do not faithfully preserve the in vivo branching angles or produce rigid casts that when removed for imaging are fragile and thus easily damaged. We address these problems by creating an in situ bronchial cast of the conducting airways in rats that can be subsequently imaged in situ using 3D micro-CT imaging. We also demonstrate that deformations in airway branch angles resulting from the casting procedure are small, and that these angle deformations can be reversed through an interactive adjustment of the segmented cast geometry. Animal work was approved by the Institutional Animal Care and Use Committee of Pacific Northwest National Laboratory. PMID:23786464

  7. Intelligent Segmentation of Medical Images Using Fuzzy Bitplane Thresholding

    NASA Astrophysics Data System (ADS)

    Khan, Z. Faizal; Kannan, A.

    2014-04-01

    The performance of assessment in medical image segmentation is highly correlated with the extraction of anatomic structures from them, and the major task is how to separate the regions of interests from the background and soft tissues successfully. This paper proposes a fuzzy logic based bitplane method to automatically segment the background of images and to locate the region of interest of medical images. This segmentation algorithm consists of three steps, namely identification, rule firing, and inference. In the first step, we begin by identifying the bitplanes that represent the lungs clearly. For this purpose, the intensity value of a pixel is separated into bitplanes. In the second step, the triple signum function assigns an optimum threshold based on the grayscale values for the anatomical structure present in the medical images. Fuzzy rules are formed based on the available bitplanes to form the membership table and are stored in a knowledge base. Finally, rules are fired to assign final segmentation values through the inference process. The proposed new metrics are used to measure the accuracy of the segmentation method. From the analysis, it is observed that the proposed metrics are more suitable for the estimation of segmentation accuracy. The results obtained from this work show that the proposed method performs segmentation effectively for the different classes of medical images.

  8. Spectral segmentation of polygonized images with normalized cuts

    SciTech Connect

    Matsekh, Anna; Skurikhin, Alexei; Rosten, Edward

    2009-01-01

    We analyze numerical behavior of the eigenvectors corresponding to the lowest eigenvalues of the generalized graph Laplacians arising in the Normalized Cuts formulations of the image segmentation problem on coarse polygonal grids.

  9. Automatic segmentation of kidneys from non-contrast CT images using efficient belief propagation

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Linguraru, Marius George; Wang, Shijun; Summers, Ronald M.

    2013-03-01

    CT colonography (CTC) can increase the chance of detecting high-risk lesions not only within the colon but anywhere in the abdomen with a low cost. Extracolonic findings such as calculi and masses are frequently found in the kidneys on CTC. Accurate kidney segmentation is an important step to detect extracolonic findings in the kidneys. However, noncontrast CTC images make the task of kidney segmentation substantially challenging because the intensity values of kidney parenchyma are similar to those of adjacent structures. In this paper, we present a fully automatic kidney segmentation algorithm to support extracolonic diagnosis from CTC data. It is built upon three major contributions: 1) localize kidney search regions by exploiting the segmented liver and spleen as well as body symmetry; 2) construct a probabilistic shape prior handling the issue of kidney touching other organs; 3) employ efficient belief propagation on the shape prior to extract the kidneys. We evaluated the accuracy of our algorithm on five non-contrast CTC datasets with manual kidney segmentation as the ground-truth. The Dice volume overlaps were 88%/89%, the root-mean-squared errors were 3.4 mm/2.8 mm, and the average surface distances were 2.1 mm/1.9 mm for the left/right kidney respectively. We also validated the robustness on 27 additional CTC cases, and 23 datasets were successfully segmented. In four problematic cases, the segmentation of the left kidney failed due to problems with the spleen segmentation. The results demonstrated that the proposed algorithm could automatically and accurately segment kidneys from CTC images, given the prior correct segmentation of the liver and spleen.

  10. A Robust and Fast Method for Sidescan Sonar Image Segmentation Using Nonlocal Despeckling and Active Contour Model.

    PubMed

    Huo, Guanying; Yang, Simon X; Li, Qingwu; Zhou, Yan

    2017-04-01

    Sidescan sonar image segmentation is a very important issue in underwater object detection and recognition. In this paper, a robust and fast method for sidescan sonar image segmentation is proposed, which deals with both speckle noise and intensity inhomogeneity that may cause considerable difficulties in image segmentation. The proposed method integrates the nonlocal means-based speckle filtering (NLMSF), coarse segmentation using k -means clustering, and fine segmentation using an improved region-scalable fitting (RSF) model. The NLMSF is used before the segmentation to effectively remove speckle noise while preserving meaningful details such as edges and fine features, which can make the segmentation easier and more accurate. After despeckling, a coarse segmentation is obtained by using k -means clustering, which can reduce the number of iterations. In the fine segmentation, to better deal with possible intensity inhomogeneity, an edge-driven constraint is combined with the RSF model, which can not only accelerate the convergence speed but also avoid trapping into local minima. The proposed method has been successfully applied to both noisy and inhomogeneous sonar images. Experimental and comparative results on real and synthetic sonar images demonstrate that the proposed method is robust against noise and intensity inhomogeneity, and is also fast and accurate.

  11. 3D cerebral MR image segmentation using multiple-classifier system.

    PubMed

    Amiri, Saba; Movahedi, Mohammad Mehdi; Kazemi, Kamran; Parsaei, Hossein

    2017-03-01

    The three soft brain tissues white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) identified in a magnetic resonance (MR) image via image segmentation techniques can aid in structural and functional brain analysis, brain's anatomical structures measurement and visualization, neurodegenerative disorders diagnosis, and surgical planning and image-guided interventions, but only if obtained segmentation results are correct. This paper presents a multiple-classifier-based system for automatic brain tissue segmentation from cerebral MR images. The developed system categorizes each voxel of a given MR image as GM, WM, and CSF. The algorithm consists of preprocessing, feature extraction, and supervised classification steps. In the first step, intensity non-uniformity in a given MR image is corrected and then non-brain tissues such as skull, eyeballs, and skin are removed from the image. For each voxel, statistical features and non-statistical features were computed and used a feature vector representing the voxel. Three multilayer perceptron (MLP) neural networks trained using three different datasets were used as the base classifiers of the multiple-classifier system. The output of the base classifiers was fused using majority voting scheme. Evaluation of the proposed system was performed using Brainweb simulated MR images with different noise and intensity non-uniformity and internet brain segmentation repository (IBSR) real MR images. The quantitative assessment of the proposed method using Dice, Jaccard, and conformity coefficient metrics demonstrates improvement (around 5 % for CSF) in terms of accuracy as compared to single MLP classifier and the existing methods and tools such FSL-FAST and SPM. As accurately segmenting a MR image is of paramount importance for successfully promoting the clinical application of MR image segmentation techniques, the improvement obtained by using multiple-classifier-based system is encouraging.

  12. Fat segmentation on chest CT images via fuzzy models

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Wu, Caiyun; Pednekar, Gargi; Subramanian, Janani Rajan; Lederer, David J.; Christie, Jason; Torigian, Drew A.

    2016-03-01

    Quantification of fat throughout the body is vital for the study of many diseases. In the thorax, it is important for lung transplant candidates since obesity and being underweight are contraindications to lung transplantation given their associations with increased mortality. Common approaches for thoracic fat segmentation are all interactive in nature, requiring significant manual effort to draw the interfaces between fat and muscle with low efficiency and questionable repeatability. The goal of this paper is to explore a practical way for the segmentation of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) components of chest fat based on a recently developed body-wide automatic anatomy recognition (AAR) methodology. The AAR approach involves 3 main steps: building a fuzzy anatomy model of the body region involving all its major representative objects, recognizing objects in any given test image, and delineating the objects. We made several modifications to these steps to develop an effective solution to delineate SAT/VAT components of fat. Two new objects representing interfaces of SAT and VAT regions with other tissues, SatIn and VatIn are defined, rather than using directly the SAT and VAT components as objects for constructing the models. A hierarchical arrangement of these new and other reference objects is built to facilitate their recognition in the hierarchical order. Subsequently, accurate delineations of the SAT/VAT components are derived from these objects. Unenhanced CT images from 40 lung transplant candidates were utilized in experimentally evaluating this new strategy. Mean object location error achieved was about 2 voxels and delineation error in terms of false positive and false negative volume fractions were, respectively, 0.07 and 0.1 for SAT and 0.04 and 0.2 for VAT.

  13. 3D ultrasound image segmentation using multiple incomplete feature sets

    NASA Astrophysics Data System (ADS)

    Fan, Liexiang; Herrington, David M.; Santago, Peter, II

    1999-05-01

    We use three features, the intensity, texture and motion to obtain robust results for segmentation of intracoronary ultrasound images. Using a parameterized equation to describe the lumen-plaque and media-adventitia boundaries, we formulate the segmentation as a parameter estimation through a cost functional based on the posterior probability, which can handle the incompleteness of the features in ultrasound images by employing outlier detection.

  14. An improved K-means clustering algorithm in agricultural image segmentation

    NASA Astrophysics Data System (ADS)

    Cheng, Huifeng; Peng, Hui; Liu, Shanmei

    Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.

  15. Gaussian mixtures on tensor fields for segmentation: applications to medical imaging.

    PubMed

    de Luis-García, Rodrigo; Westin, Carl-Fredrik; Alberola-López, Carlos

    2011-01-01

    In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results.

  16. Image segmentation in treatment planning for prostate cancer using the region growing technique.

    PubMed

    Mazonakis, M; Damilakis, J; Varveris, H; Prassopoulos, P; Gourtsoyiannis, N

    2001-03-01

    The purpose of this study was to evaluate the performance of a region growing technique for segmenting prostate, bladder and rectum in CT images of prostate cancer patients. Prostate, bladder and rectum were segmented in all CT images of 10 patients using the region growing technique and manual tracing. Volumes of the above organs computed with the region growing technique were compared with those from manually traced images on a slice-by-slice basis. Measurement reproducibility of both segmentation techniques was evaluated using the data obtained from four independent observers. The region growing technique was 1.5 times faster than manual tracing. There was no statistical difference between the slice volumes of prostate, bladder and rectum obtained by the two segmentation techniques (p > 0.05, paired Student's t-test). Correlation between slice volumes of all organs of interest provided both by region growing and by manual tracing was very good (prostate r2 = 0.84; bladder r2 = 0.93; rectum r2 = 0.85). An overall reasonable agreement was found between the two segmentation techniques. The intraobserver and interobserver variations for prostate, bladder and rectum volume segmentation were found to be lower with the region growing technique than with manual tracing. The suggested semi-automatic technique allows the possibility of generating accurate and reproducible segmentation of prostate, bladder and rectum from CT data with great saving in labour.

  17. Gaussian Mixtures on Tensor Fields for Segmentation: Applications to Medical Imaging

    PubMed Central

    de Luis-García, Rodrigo; Westin, Carl-Fredrik; Alberola-López, Carlos

    2012-01-01

    In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results. PMID:20932717

  18. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    PubMed

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-08

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual con-tours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (< 1 ms) with a satisfying accuracy (Dice = 0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of

  19. An enhanced fast scanning algorithm for image segmentation

    NASA Astrophysics Data System (ADS)

    Ismael, Ahmed Naser; Yusof, Yuhanis binti

    2015-12-01

    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.

  20. Watershed Merge Tree Classification for Electron Microscopy Image Segmentation

    SciTech Connect

    Liu, TIng; Jurrus, Elizabeth R.; Seyedhosseini, Mojtaba; Ellisman, Mark; Tasdizen, Tolga

    2012-11-11

    Automated segmentation of electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that utilizes a hierarchical structure and boundary classification for 2D neuron segmentation. With a membrane detection probability map, a watershed merge tree is built for the representation of hierarchical region merging from the watershed algorithm. A boundary classifier is learned with non-local image features to predict each potential merge in the tree, upon which merge decisions are made with consistency constraints in the sense of optimization to acquire the final segmentation. Independent of classifiers and decision strategies, our approach proposes a general framework for efficient hierarchical segmentation with statistical learning. We demonstrate that our method leads to a substantial improvement in segmentation accuracy.

  1. Unsupervised fuzzy segmentation of 3D magnetic resonance brain images

    NASA Astrophysics Data System (ADS)

    Velthuizen, Robert P.; Hall, Lawrence O.; Clarke, Laurence P.; Bensaid, Amine M.; Arrington, J. A.; Silbiger, Martin L.

    1993-07-01

    Unsupervised fuzzy methods are proposed for segmentation of 3D Magnetic Resonance images of the brain. Fuzzy c-means (FCM) has shown promising results for segmentation of single slices. FCM has been investigated for volume segmentations, both by combining results of single slices and by segmenting the full volume. Different strategies and initializations have been tried. In particular, two approaches have been used: (1) a method by which, iteratively, the furthest sample is split off to form a new cluster center, and (2) the traditional FCM in which the membership grade matrix is initialized in some way. Results have been compared with volume segmentations by k-means and with two supervised methods, k-nearest neighbors and region growing. Results of individual segmentations are presented as well as comparisons on the application of the different methods to a number of tumor patient data sets.

  2. Biomedical image segmentation using geometric deformable models and metaheuristics.

    PubMed

    Mesejo, Pablo; Valsecchi, Andrea; Marrakchi-Kacem, Linda; Cagnoni, Stefano; Damas, Sergio

    2015-07-01

    This paper describes a hybrid level set approach for medical image segmentation. This new geometric deformable model combines region- and edge-based information with the prior shape knowledge introduced using deformable registration. Our proposal consists of two phases: training and test. The former implies the learning of the level set parameters by means of a Genetic Algorithm, while the latter is the proper segmentation, where another metaheuristic, in this case Scatter Search, derives the shape prior. In an experimental comparison, this approach has shown a better performance than a number of state-of-the-art methods when segmenting anatomical structures from different biomedical image modalities.

  3. Overlapping image segmentation for context-dependent anomaly detection

    NASA Astrophysics Data System (ADS)

    Theiler, James; Prasad, Lakshman

    2011-06-01

    The challenge of finding small targets in big images lies in the characterization of the background clutter. The more homogeneous the background, the more distinguishable a typical target will be from its background. One way to homogenize the background is to segment the image into distinct regions, each of which is individually homogeneous, and then to treat each region separately. In this paper we will report on experiments in which the target is unspecified (it is an anomaly), and various segmentation strategies are employed, including an adaptive hierarchical tree-based scheme. We find that segmentations that employ overlap achieve better performance in the low false alarm rate regime.

  4. Segmentation and image navigation in digitized spine x rays

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Thoma, George R.

    2000-06-01

    The National Library of Medicine has archived a collection of 17,000 digitized x-rays of the cervical and lumbar spines. Extensive health information has been collected on the subjects of these x-rays, but no information has been derived from the image contents themselves. We are researching algorithms to segment anatomy in these images and to derive from the segmented data measurements useful for indexing this image set for characteristics important to researchers in rheumatology, bone morphometry, and related areas. Active Shape Modeling is currently being investigated for use in location and boundary definition for the vertebrae in these images.

  5. Image Segmentation Using Parametric Contours With Free Endpoints.

    PubMed

    Benninghoff, Heike; Garcke, Harald

    2016-04-01

    In this paper, we introduce a novel approach for active contours with free endpoints. A scheme for image segmentation is presented based on a discrete version of the Mumford-Shah functional where the contours can be both closed and open curves. Additional to a flow of the curves in normal direction, evolution laws for the tangential flow of the endpoints are derived. Using a parametric approach to describe the evolving contours together with an edge-preserving denoising, we obtain a fast method for image segmentation and restoration. The analytical and numerical schemes are presented followed by numerical experiments with artificial test images and with a real medical image.

  6. Image Segmentation Using Parametric Contours With Free Endpoints

    NASA Astrophysics Data System (ADS)

    Benninghoff, Heike; Garcke, Harald

    2016-04-01

    In this paper, we introduce a novel approach for active contours with free endpoints. A scheme is presented for image segmentation and restoration based on a discrete version of the Mumford-Shah functional where the contours can be both closed and open curves. Additional to a flow of the curves in normal direction, evolution laws for the tangential flow of the endpoints are derived. Using a parametric approach to describe the evolving contours together with an edge-preserving denoising, we obtain a fast method for image segmentation and restoration. The analytical and numerical schemes are presented followed by numerical experiments with artificial test images and with a real medical image.

  7. Image segmentation using common techniques and illumination applied to tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico

    1998-03-01

    This paper present the comparation and performance on no adaptive image segmentation techniques using illumination and adaptive image segmentation techniques. Results obtained on indoor plant reproduction by tissue culture, show the improve in time process, simplify the image segmentation process, experimental results are presented using common techniques in image processing and illumination, contrasted with adaptive image segmentation.

  8. Coadding Techniques for Image-based Wavefront Sensing for Segmented-mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Aronstein, David; Dean, Bruce; Acton, Scott

    2007-01-01

    Image-based wavefront sensing algorithms are being used to characterize optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be coadded in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on every set of PSFs individually and average the resulting wavefronts. The choice of coadd methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using data collected on and simulations of the James Webb Space Telescope Testbed Telescope (TBT) commissioned at Ball Aerospace, we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the coadd method. Of particular interest, segment piston is more accurately recovered in "image-plane space" coadding, while segment tip/tilt is recovered in "pupil-plane space" coadding.

  9. Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.

    2007-09-01

    Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.

  10. Fully automated segmentation of left ventricle using dual dynamic programming in cardiac cine MR images

    NASA Astrophysics Data System (ADS)

    Jiang, Luan; Ling, Shan; Li, Qiang

    2016-03-01

    Cardiovascular diseases are becoming a leading cause of death all over the world. The cardiac function could be evaluated by global and regional parameters of left ventricle (LV) of the heart. The purpose of this study is to develop and evaluate a fully automated scheme for segmentation of LV in short axis cardiac cine MR images. Our fully automated method consists of three major steps, i.e., LV localization, LV segmentation at end-diastolic phase, and LV segmentation propagation to the other phases. First, the maximum intensity projection image along the time phases of the midventricular slice, located at the center of the image, was calculated to locate the region of interest of LV. Based on the mean intensity of the roughly segmented blood pool in the midventricular slice at each phase, end-diastolic (ED) and end-systolic (ES) phases were determined. Second, the endocardial and epicardial boundaries of LV of each slice at ED phase were synchronously delineated by use of a dual dynamic programming technique. The external costs of the endocardial and epicardial boundaries were defined with the gradient values obtained from the original and enhanced images, respectively. Finally, with the advantages of the continuity of the boundaries of LV across adjacent phases, we propagated the LV segmentation from the ED phase to the other phases by use of dual dynamic programming technique. The preliminary results on 9 clinical cardiac cine MR cases show that the proposed method can obtain accurate segmentation of LV based on subjective evaluation.

  11. Accurate detection of blood vessels improves the detection of exudates in color fundus images.

    PubMed

    Youssef, Doaa; Solouma, Nahed H

    2012-12-01

    Exudates are one of the earliest and most prevalent symptoms of diseases leading to blindness such as diabetic retinopathy and macular degeneration. Certain areas of the retina with such conditions are to be photocoagulated by laser to stop the disease progress and prevent blindness. Outlining these areas is dependent on outlining the lesions and the anatomic structures of the retina. In this paper, we provide a new method for the detection of blood vessels that improves the detection of exudates in fundus photographs. The method starts with an edge detection algorithm which results in a over segmented image. Then the new feature-based algorithm can be used to accurately detect the blood vessels. This algorithm considers the characteristics of a retinal blood vessel such as its width range, intensities and orientations for the purpose of selective segmentation. Because of its bulb shape and its color similarity with exudates, the optic disc can be detected using the common Hough transform technique. The extracted blood vessel tree and optic disc could be subtracted from the over segmented image to get an initial estimate of exudates. The final estimation of exudates can then be obtained by morphological reconstruction based on the appearance of exudates. This method is shown to be promising since it increases the sensitivity and specificity of exudates detection to 80% and 100% respectively.

  12. DCAN: Deep contour-aware networks for object instance segmentation from histology images.

    PubMed

    Chen, Hao; Qi, Xiaojuan; Yu, Lequan; Dou, Qi; Qin, Jing; Heng, Pheng-Ann

    2017-02-01

    In histopathological image analysis, the morphology of histological structures, such as glands and nuclei, has been routinely adopted by pathologists to assess the malignancy degree of adenocarcinomas. Accurate detection and segmentation of these objects of interest from histology images is an essential prerequisite to obtain reliable morphological statistics for quantitative diagnosis. While manual annotation is error-prone, time-consuming and operator-dependant, automated detection and segmentation of objects of interest from histology images can be very challenging due to the large appearance variation, existence of strong mimics, and serious degeneration of histological structures. In order to meet these challenges, we propose a novel deep contour-aware network (DCAN) under a unified multi-task learning framework for more accurate detection and segmentation. In the proposed network, multi-level contextual features are explored based on an end-to-end fully convolutional network (FCN) to deal with the large appearance variation. We further propose to employ an auxiliary supervision mechanism to overcome the problem of vanishing gradients when training such a deep network. More importantly, our network can not only output accurate probability maps of histological objects, but also depict clear contours simultaneously for separating clustered object instances, which further boosts the segmentation performance. Our method ranked the first in two histological object segmentation challenges, including 2015 MICCAI Gland Segmentation Challenge and 2015 MICCAI Nuclei Segmentation Challenge. Extensive experiments on these two challenging datasets demonstrate the superior performance of our method, surpassing all the other methods by a significant margin.

  13. Automatic segmentation of MR images using self-organizing feature mapping and neural networks

    NASA Astrophysics Data System (ADS)

    Alirezaie, Javad; Jernigan, M. Ed; Nahmias, Claude

    1997-04-01

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the self-organizing feature map (SOFM) artificial neural network (ANN) for feature mapping and generates a set of codebook vectors for each tissue class. Features are selected from three image spectra: T1, T2 and proton density (PD) weighted images. An algorithm has been developed for isolating the cerebrum from the head scan prior to the segmentation. To classify the map, we extend the network by adding an associative layer. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. Any unclassified tissues were remained as unknown tissue class.

  14. SAR image segmentation using skeleton-based fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Cao, Yun Yi; Chen, Yan Qiu

    2003-06-01

    SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.

  15. SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES

    PubMed Central

    Seyedhosseini, Mojtaba; Ellisman, Mark H.; Tasdizen, Tolga

    2014-01-01

    High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images. PMID:25132915

  16. A Multiple Object Geometric Deformable Model for Image Segmentation

    PubMed Central

    Bogovic, John A.; Prince, Jerry L.; Bazin, Pierre-Louis

    2012-01-01

    Deformable models are widely used for image segmentation, most commonly to find single objects within an image. Although several methods have been proposed to segment multiple objects using deformable models, substantial limitations in their utility remain. This paper presents a multiple object segmentation method using a novel and efficient object representation for both two and three dimensions. The new framework guarantees object relationships and topology, prevents overlaps and gaps, enables boundary-specific speeds, and has a computationally efficient evolution scheme that is largely independent of the number of objects. Maintaining object relationships and straightforward use of object-specific and boundary-specific smoothing and advection forces enables the segmentation of objects with multiple compartments, a critical capability in the parcellation of organs in medical imaging. Comparing the new framework with previous approaches shows its superior performance and scalability. PMID:23316110

  17. Superresolution border segmentation and measurement in remote sensing images

    NASA Astrophysics Data System (ADS)

    Cipolletti, Marina P.; Delrieux, Claudio A.; Perillo, Gerardo M. E.; Cintia Piccolo, M.

    2012-03-01

    Segmentation and measurement of linear characteristics in remote sensing imagery are among the first stages in several geomorphologic studies, including the length estimation of geographic features such as perimeters, coastal lines, and borders. However, unlike area measurement algorithms, widely used methods for perimeter estimation in digital images have high systematic errors. No precision improvement can be achieved with finer spatial resolution images because of the inherent geometrical inaccuracies they commit. In this work, a superresolution border segmentation and measurement algorithm is presented. The method is based on minimum distance segmentation over the initial image, followed by contour tracking using a superresolution enhancement of the marching squares algorithm. Thorough testing with synthetic and validated field images shows that this algorithm outperforms traditional border measuring methods, regardless of the image resolution or the orientation, size, and shape of the object to be analyzed.

  18. A feature-based learning framework for accurate prostate localization in CT images.

    PubMed

    Liao, Shu; Shen, Dinggang

    2012-08-01

    Automatic segmentation of prostate in CT images plays an important role in medical image analysis and image guided radiation therapy. It remains as a challenging problem mainly due to three issues: First, the image contrast between the prostate and its surrounding tissues is low in prostate CT images and no obvious boundaries can be observed. Second, the unpredictable prostate motion causes large position variations of the prostate in the treatment images scanned at different treatment days. Third, the uncertainty of the existence of bowel gas in treatment images significantly changes the image appearance even for images taken from the same patient. To address these issues, in this paper we are motivated to propose a feature based learning framework for accurate prostate localization in CT images. The main contributions of the proposed method lie in the following aspects: (1) Anatomical features are extracted from input images and adopted as signatures for each voxel. The most robust and informative features are identified by the feature selection process to help localize the prostate. (2) Regions with salient features but irrelevant to the localization of prostate, such as regions filled with bowel gas are automatically filtered out by the proposed method. (3) An online update mechanism is adopted in this paper to adaptively combine both population information and patient-specific information to localize the prostate. The proposed method is evaluated on a CT prostate dataset of 24 patients to localize the prostate, where each patient has more than 10 longitudinal images scanned at different treatment times. It is also compared with several state-of- the-art prostate localization algorithms in CT images, and the experimental results demonstrate that the proposed method achieves the highest localization accuracy among all the methods under comparison.

  19. Performance benchmarking of liver CT image segmentation and volume estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Zhou, Jiayin; Tian, Qi; Liu, Jimmy J.; Qi, Yingyi; Leow, Wee Kheng; Han, Thazin; Wang, Shih-chang

    2008-03-01

    In recent years more and more computer aided diagnosis (CAD) systems are being used routinely in hospitals. Image-based knowledge discovery plays important roles in many CAD applications, which have great potential to be integrated into the next-generation picture archiving and communication systems (PACS). Robust medical image segmentation tools are essentials for such discovery in many CAD applications. In this paper we present a platform with necessary tools for performance benchmarking for algorithms of liver segmentation and volume estimation used for liver transplantation planning. It includes an abdominal computer tomography (CT) image database (DB), annotation tools, a ground truth DB, and performance measure protocols. The proposed architecture is generic and can be used for other organs and imaging modalities. In the current study, approximately 70 sets of abdominal CT images with normal livers have been collected and a user-friendly annotation tool is developed to generate ground truth data for a variety of organs, including 2D contours of liver, two kidneys, spleen, aorta and spinal canal. Abdominal organ segmentation algorithms using 2D atlases and 3D probabilistic atlases can be evaluated on the platform. Preliminary benchmark results from the liver segmentation algorithms which make use of statistical knowledge extracted from the abdominal CT image DB are also reported. We target to increase the CT scans to about 300 sets in the near future and plan to make the DBs built available to medical imaging research community for performance benchmarking of liver segmentation algorithms.

  20. An efficient neural network based method for medical image segmentation.

    PubMed

    Torbati, Nima; Ayatollahi, Ahmad; Kermani, Ali

    2014-01-01

    The aim of this research is to propose a new neural network based method for medical image segmentation. Firstly, a modified self-organizing map (SOM) network, named moving average SOM (MA-SOM), is utilized to segment medical images. After the initial segmentation stage, a merging process is designed to connect the objects of a joint cluster together. A two-dimensional (2D) discrete wavelet transform (DWT) is used to build the input feature space of the network. The experimental results show that MA-SOM is robust to noise and it determines the input image pattern properly. The segmentation results of breast ultrasound images (BUS) demonstrate that there is a significant correlation between the tumor region selected by a physician and the tumor region segmented by our proposed method. In addition, the proposed method segments X-ray computerized tomography (CT) and magnetic resonance (MR) head images much better than the incremental supervised neural network (ISNN) and SOM-based methods.

  1. Vectorized image segmentation via trixel agglomeration

    DOEpatents

    Prasad, Lakshman; Skourikhine, Alexei N.

    2006-10-24

    A computer implemented method transforms an image comprised of pixels into a vectorized image specified by a plurality of polygons that can be subsequently used to aid in image processing and understanding. The pixelated image is processed to extract edge pixels that separate different colors and a constrained Delaunay triangulation of the edge pixels forms a plurality of triangles having edges that cover the pixelated image. A color for each one of the plurality of triangles is determined from the color pixels within each triangle. A filter is formed with a set of grouping rules related to features of the pixelated image and applied to the plurality of triangle edges to merge adjacent triangles consistent with the filter into polygons having a plurality of vertices. The pixelated image may be then reformed into an array of the polygons, that can be represented collectively and efficiently by standard vector image.

  2. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging.

    PubMed

    García-Lorenzo, Daniel; Francis, Simon; Narayanan, Sridar; Arnold, Douglas L; Collins, D Louis

    2013-01-01

    Magnetic resonance (MR) imaging is often used to characterize and quantify multiple sclerosis (MS) lesions in the brain and spinal cord. The number and volume of lesions have been used to evaluate MS disease burden, to track the progression of the disease and to evaluate the effect of new pharmaceuticals in clinical trials. Accurate identification of MS lesions in MR images is extremely difficult due to variability in lesion location, size and shape in addition to anatomical variability between subjects. Since manual segmentation requires expert knowledge, is time consuming and is subject to intra- and inter-expert variability, many methods have been proposed to automatically segment lesions. The objective of this study was to carry out a systematic review of the literature to evaluate the state of the art in automated multiple sclerosis lesion segmentation. From 1240 hits found initially with PubMed and Google scholar, our selection criteria identified 80 papers that described an automatic lesion segmentation procedure applied to MS. Only 47 of these included quantitative validation with at least one realistic image. In this paper, we describe the complexity of lesion segmentation, classify the automatic MS lesion segmentation methods found, and review the validation methods applied in each of the papers reviewed. Although many segmentation solutions have been proposed, including some with promising results using MRI data obtained on small groups of patients, no single method is widely employed due to performance issues related to the high variability of MS lesion appearance and differences in image acquisition. The challenge remains to provide segmentation techniques that work in all cases regardless of the type of MS, duration of the disease, or MRI protocol, and this within a comprehensive, standardized validation framework. MS lesion segmentation remains an open problem.

  3. Generalized method for partial volume estimation and tissue segmentation in cerebral magnetic resonance images

    PubMed Central

    Khademi, April; Venetsanopoulos, Anastasios; Moody, Alan R.

    2014-01-01

    Abstract. An artifact found in magnetic resonance images (MRI) called partial volume averaging (PVA) has received much attention since accurate segmentation of cerebral anatomy and pathology is impeded by this artifact. Traditional neurological segmentation techniques rely on Gaussian mixture models to handle noise and PVA, or high-dimensional feature sets that exploit redundancy in multispectral datasets. Unfortunately, model-based techniques may not be optimal for images with non-Gaussian noise distributions and/or pathology, and multispectral techniques model probabilities instead of the partial volume (PV) fraction. For robust segmentation, a PV fraction estimation approach is developed for cerebral MRI that does not depend on predetermined intensity distribution models or multispectral scans. Instead, the PV fraction is estimated directly from each image using an adaptively defined global edge map constructed by exploiting a relationship between edge content and PVA. The final PVA map is used to segment anatomy and pathology with subvoxel accuracy. Validation on simulated and real, pathology-free T1 MRI (Gaussian noise), as well as pathological fluid attenuation inversion recovery MRI (non-Gaussian noise), demonstrate that the PV fraction is accurately estimated and the resultant segmentation is robust. Comparison to model-based methods further highlight the benefits of the current approach. PMID:26158022

  4. Liver Ultrasound Image Segmentation Using Region-Difference Filters.

    PubMed

    Jain, Nishant; Kumar, Vinod

    2016-12-26

    In this paper, region-difference filters for the segmentation of liver ultrasound (US) images are proposed. Region-difference filters evaluate maximum difference of the average of two regions of the window around the center pixel. Implementing the filters on the whole image gives region-difference image. This image is then converted into binary image and morphologically operated for segmenting the desired lesion from the ultrasound image. The proposed method is compared with the maximum a posteriori-Markov random field (MAP-MRF), Chan-Vese active contour method (CV-ACM), and active contour region-scalable fitting energy (RSFE) methods. MATLAB code available online for the RSFE method is used for comparison whereas MAP-MRF and CV-ACM methods are coded in MATLAB by authors. Since no comparison is available on common database for the performance of the three methods, therefore, performance comparison of the three methods and proposed method was done on liver US images obtained from PGIMER, Chandigarh, India and from online resource. A radiologist blindly analyzed segmentation results of the 4 methods implemented on 56 images and had selected the segmentation result obtained from the proposed method as best for 46 test US images. For the remaining 10 US images, the proposed method performance was very near to the other three segmentation methods. The proposed segmentation method obtained the overall accuracy of 99.32% in comparison to the overall accuracy of 85.9, 98.71, and 68.21% obtained by MAP-MRF, CV-ACM, and RSFE methods, respectively. Computational time taken by the proposed method is 5.05 s compared to the time of 26.44, 24.82, and 28.36 s taken by MAP-MRF, CV-ACM, and RSFE methods, respectively.

  5. Monochrome Image Presentation and Segmentation Based on the Pseudo-Color and PCT Transformations

    DTIC Science & Technology

    2001-10-25

    image classification and pattern recognition, and has received extensive attention in medical image such as MRI brain image segmentation [6]. FCM is...in pseudo color image segmentation, and comparisons were made using mammograph and MRI brain images. Finally, an image edge detection has also been...methods. (a) MRI T1 image; (b) MRI T2 image; (c) PCT- guided segmentation; (d) FCM -based segmentation (NK=4, NC=2). D. Edge detection in MRI image It

  6. Detecting and segmenting cell nuclei in two-dimensional microscopy images

    PubMed Central

    Liu, Chi; Shang, Fei; Ozolek, John A.; Rohde, Gustavo K.

    2016-01-01

    Introduction: Cell nuclei are important indicators of cellular processes and diseases. Segmentation is an essential stage in systems for quantitative analysis of nuclei extracted from microscopy images. Given the wide variety of nuclei appearance in different organs and staining procedures, a plethora of methods have been described in the literature to improve the segmentation accuracy and robustness. Materials and Methods: In this paper, we propose an unsupervised method for cell nuclei detection and segmentation in two-dimensional microscopy images. The nuclei in the image are detected automatically using a matching-based method. Next, edge maps are generated at multiple image blurring levels followed by edge selection performed in polar space. The nuclei contours are refined iteratively in the constructed edge pyramid. The validation study was conducted over two cell nuclei datasets with manual labeling, including 25 hematoxylin and eosin-stained liver histopathology images and 35 Papanicolaou-stained thyroid images. Results: The nuclei detection accuracy was measured by miss rate, and the segmentation accuracy was evaluated by two types of error metrics. Overall, the nuclei detection efficiency of the proposed method is similar to the supervised template matching method. In comparison to four existing state-of-the-art segmentation methods, the proposed method performed the best with average segmentation error 10.34% and 0.33 measured by area error rate and normalized sum of distances (×10). Conclusion: Quantitative analysis showed that the method is automatic and accurate when segmenting cell nuclei from microscopy images with noisy background and has the potential to be used in clinic settings. PMID:28066682

  7. Colony image acquisition and genetic segmentation algorithm and colony analyses

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2012-01-01

    Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.

  8. An Active Contour Model for the Segmentation of Images with Intensity Inhomogeneities and Bias Field Estimation

    PubMed Central

    Huang, Chencheng; Zeng, Li

    2015-01-01

    Intensity inhomogeneity causes many difficulties in image segmentation and the understanding of magnetic resonance (MR) images. Bias correction is an important method for addressing the intensity inhomogeneity of MR images before quantitative analysis. In this paper, a modified model is developed for segmenting images with intensity inhomogeneity and estimating the bias field simultaneously. In the modified model, a clustering criterion energy function is defined by considering the difference between the measured image and estimated image in local region. By using this difference in local region, the modified method can obtain accurate segmentation results and an accurate estimation of the bias field. The energy function is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. The proposed model first appeared as a two-phase model and then extended to a multi-phase one. The experimental results demonstrate the advantages of our model in terms of accuracy and insensitivity to the location of the initial contours. In particular, our method has been applied to various synthetic and real images with desirable results. PMID:25837416

  9. Image segmentation for automated dental identification

    NASA Astrophysics Data System (ADS)

    Haj Said, Eyad; Nassar, Diaa Eldin M.; Ammar, Hany H.

    2006-02-01

    Dental features are one of few biometric identifiers that qualify for postmortem identification; therefore, creation of an Automated Dental Identification System (ADIS) with goals and objectives similar to the Automated Fingerprint Identification System (AFIS) has received increased attention. As a part of ADIS, teeth segmentation from dental radiographs films is an essential step in the identification process. In this paper, we introduce a fully automated approach for teeth segmentation with goal to extract at least one tooth from the dental radiograph film. We evaluate our approach based on theoretical and empirical basis, and we compare its performance with the performance of other approaches introduced in the literature. The results show that our approach exhibits the lowest failure rate and the highest optimality among all full automated approaches introduced in the literature.

  10. Learning evaluation of ultrasound image segmentation using combined measures

    NASA Astrophysics Data System (ADS)

    Fang, Mengjie; Luo, Yongkang; Ding, Mingyue

    2016-03-01

    Objective evaluation of medical image segmentation is one of the important steps for proving its validity and clinical applicability. Although there are many researches presenting segmentation methods on medical image, while with few studying the evaluation methods on their results, this paper presents a learning evaluation method with combined measures to make it as close as possible to the clinicians' judgment. This evaluation method is more quantitative and precise for the clinical diagnose. In our experiment, the same data sets include 120 segmentation results of lumen-intima boundary (LIB) and media-adventitia boundary (MAB) of carotid ultrasound images respectively. And the 15 measures of goodness method and discrepancy method are used to evaluate the different segmentation results alone. Furthermore, the experimental results showed that compared with the discrepancy method, the accuracy with the measures of goodness method is poor. Then, by combining with the measures of two methods, the average accuracy and the area under the receiver operating characteristic (ROC) curve of 2 segmentation groups are higher than 93% and 0.9 respectively. And the results of MAB are better than LIB, which proved that this novel method can effectively evaluate the segmentation results. Moreover, it lays the foundation for the non-supervised segmentation evaluation system.

  11. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  12. Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.

  13. A Rough Set Bounded Spatially Constrained Asymmetric Gaussian Mixture Model for Image Segmentation

    PubMed Central

    Ji, Zexuan; Huang, Yubo; Sun, Quansen; Cao, Guo; Zheng, Yuhui

    2017-01-01

    Accurate image segmentation is an important issue in image processing, where Gaussian mixture models play an important part and have been proven effective. However, most Gaussian mixture model (GMM) based methods suffer from one or more limitations, such as limited noise robustness, over-smoothness for segmentations, and lack of flexibility to fit data. In order to address these issues, in this paper, we propose a rough set bounded asymmetric Gaussian mixture model with spatial constraint for image segmentation. First, based on our previous work where each cluster is characterized by three automatically determined rough-fuzzy regions, we partition the target image into three rough regions with two adaptively computed thresholds. Second, a new bounded indicator function is proposed to determine the bounded support regions of the observed data. The bounded indicator and posterior probability of a pixel that belongs to each sub-region is estimated with respect to the rough region where the pixel lies. Third, to further reduce over-smoothness for segmentations, two novel prior factors are proposed that incorporate the spatial information among neighborhood pixels, which are constructed based on the prior and posterior probabilities of the within- and between-clusters, and considers the spatial direction. We compare our algorithm to state-of-the-art segmentation approaches in both synthetic and real images to demonstrate the superior performance of the proposed algorithm. PMID:28045950

  14. Fast segmentation of industrial quality pavement images using Laws texture energy measures and k -means clustering

    NASA Astrophysics Data System (ADS)

    Mathavan, Senthan; Kumar, Akash; Kamal, Khurram; Nieminen, Michael; Shah, Hitesh; Rahman, Mujib

    2016-09-01

    Thousands of pavement images are collected by road authorities daily for condition monitoring surveys. These images typically have intensity variations and texture nonuniformities that make their segmentation challenging. The automated segmentation of such pavement images is crucial for accurate, thorough, and expedited health monitoring of roads. In the pavement monitoring area, well-known texture descriptors, such as gray-level co-occurrence matrices and local binary patterns, are often used for surface segmentation and identification. These, despite being the established methods for texture discrimination, are inherently slow. This work evaluates Laws texture energy measures as a viable alternative for pavement images for the first time. k-means clustering is used to partition the feature space, limiting the human subjectivity in the process. Data classification, hence image segmentation, is performed by the k-nearest neighbor method. Laws texture energy masks are shown to perform well with resulting accuracy and precision values of more than 80%. The implementations of the algorithm, in both MATLAB® and OpenCV/C++, are extensively compared against the state of the art for execution speed, clearly showing the advantages of the proposed method. Furthermore, the OpenCV-based segmentation shows a 100% increase in processing speed when compared to the fastest algorithm available in literature.

  15. Tissue segmentation of computed tomography images using a Random Forest algorithm: a feasibility study

    NASA Astrophysics Data System (ADS)

    Polan, Daniel F.; Brady, Samuel L.; Kaufman, Robert A.

    2016-09-01

    patient image sections, were analyzed. The automated algorithm produced segmentation of seven material classes with a median DSC of 0.86  ±  0.03 for pediatric patient protocols, and 0.85  ±  0.04 for adult patient protocols. Additionally, 100 randomly selected patient examinations were segmented and analyzed, and a mean sensitivity of 0.91 (range: 0.82-0.98), specificity of 0.89 (range: 0.70-0.98), and accuracy of 0.90 (range: 0.76-0.98) were demonstrated. In this study, we demonstrate that this fully automated segmentation tool was able to produce fast and accurate segmentation of the neck and trunk of the body over a wide range of patient habitus and scan parameters.

  16. Image segmentation by hierarchial agglomeration of polygons using ecological statistics

    DOEpatents

    Prasad, Lakshman; Swaminarayan, Sriram

    2013-04-23

    A method for rapid hierarchical image segmentation based on perceptually driven contour completion and scene statistics is disclosed. The method begins with an initial fine-scale segmentation of an image, such as obtained by perceptual completion of partial contours into polygonal regions using region-contour correspondences established by Delaunay triangulation of edge pixels as implemented in VISTA. The resulting polygons are analyzed with respect to their size and color/intensity distributions and the structural properties of their boundaries. Statistical estimates of granularity of size, similarity of color, texture, and saliency of intervening boundaries are computed and formulated into logical (Boolean) predicates. The combined satisfiability of these Boolean predicates by a pair of adjacent polygons at a given segmentation level qualifies them for merging into a larger polygon representing a coarser, larger-scale feature of the pixel image and collectively obtains the next level of polygonal segments in a hierarchy of fine-to-coarse segmentations. The iterative application of this process precipitates textured regions as polygons with highly convolved boundaries and helps distinguish them from objects which typically have more regular boundaries. The method yields a multiscale decomposition of an image into constituent features that enjoy a hierarchical relationship with features at finer and coarser scales. This provides a traversable graph structure from which feature content and context in terms of other features can be derived, aiding in automated image understanding tasks. The method disclosed is highly efficient and can be used to decompose and analyze large images.

  17. Computer-aided kidney segmentation on abdominal CT images.

    PubMed

    Lin, Daw-Tung; Lei, Chung-Chih; Hung, Siu-Wan

    2006-01-01

    In this paper, an effective model-based approach for computer-aided kidney segmentation of abdominal CT images with anatomic structure consideration is presented. This automatic segmentation system is expected to assist physicians in both clinical diagnosis and educational training. The proposed method is a coarse to fine segmentation approach divided into two stages. First, the candidate kidney region is extracted according to the statistical geometric location of kidney within the abdomen. This approach is applicable to images of different sizes by using the relative distance of the kidney region to the spine. The second stage identifies the kidney by a series of image processing operations. The main elements of the proposed system are: 1) the location of the spine is used as the landmark for coordinate references; 2) elliptic candidate kidney region extraction with progressive positioning on the consecutive CT images; 3) novel directional model for a more reliable kidney region seed point identification; and 4) adaptive region growing controlled by the properties of image homogeneity. In addition, in order to provide different views for the physicians, we have implemented a visualization tool that will automatically show the renal contour through the method of second-order neighborhood edge detection. We considered segmentation of kidney regions from CT scans that contain pathologies in clinical practice. The results of a series of tests on 358 images from 30 patients indicate an average correlation coefficient of up to 88% between automatic and manual segmentation.

  18. The use of the Kalman filter in the automated segmentation of EIT lung images.

    PubMed

    Zifan, A; Liatsis, P; Chapman, B E

    2013-06-01

    In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging.

  19. Segmentation of Concealed Objects in Passive Millimeter-Wave Images Based on the Gaussian Mixture Model

    NASA Astrophysics Data System (ADS)

    Yu, Wangyang; Chen, Xiangguang; Wu, Lei

    2015-04-01

    Passive millimeter wave (PMMW) imaging has become one of the most effective means to detect the objects concealed under clothing. Due to the limitations of the available hardware and the inherent physical properties of PMMW imaging systems, images often exhibit poor contrast and low signal-to-noise ratios. Thus, it is difficult to achieve ideal results by using a general segmentation algorithm. In this paper, an advanced Gaussian Mixture Model (GMM) algorithm for the segmentation of concealed objects in PMMW images is presented. Our work is concerned with the fact that the GMM is a parametric statistical model, which is often used to characterize the statistical behavior of images. Our approach is three-fold: First, we remove the noise from the image using both a notch reject filter and a total variation filter. Next, we use an adaptive parameter initialization GMM algorithm (APIGMM) for simulating the histogram of images. The APIGMM provides an initial number of Gaussian components and start with more appropriate parameter. Bayesian decision is employed to separate the pixels of concealed objects from other areas. At last, the confidence interval (CI) method, alongside local gradient information, is used to extract the concealed objects. The proposed hybrid segmentation approach detects the concealed objects more accurately, even compared to two other state-of-the-art segmentation methods.

  20. Automatic bone segmentation and alignment from MR knee images

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Zach, Christopher; Styner, Martin; Charles, Cecil; Niethammer, Marc

    2010-03-01

    Automatic image analysis of magnetic resonance (MR) images of the knee is simplified by bringing the knee into a reference position. While the knee is typically put into a reference position during image acquisition, this alignment will generally not be perfect. To correct for imperfections, we propose a two-step process of bone segmentation followed by elastic tissue deformation. The approach makes use of a fully-automatic segmentation of femur and tibia from T1 and T2* images. The segmentation algorithm is based on a continuous convex optimization problem, incorporating regional, and shape information. The regional terms are included from a probabilistic viewpoint, which readily allows the inclusion of shape information. Segmentation of the outer boundary of the cortical bone is encouraged by adding simple appearance-based information to the optimization problem. The resulting segmentation without the shape alignment step is globally optimal. Standard registration is problematic for knee alignment due to the distinct physical properties of the tissues constituting the knee (bone, muscle, etc.). We therefore develop an alternative alignment approach based on a simple elastic deformation model combined with strict enforcement of similarity transforms for femur and tibia based on the obtained segmentations.

  1. Accurate measurement of the pulse wave delay with imaging photoplethysmography

    PubMed Central

    Kamshilin, Alexei A.; Sidorov, Igor S.; Babayan, Laura; Volynsky, Maxim A.; Giniatullin, Rashid; Mamontov, Oleg V.

    2016-01-01

    Assessment of the cardiovascular parameters using noncontact video-based or imaging photoplethysmography (IPPG) is usually considered as inaccurate because of strong influence of motion artefacts. To optimize this technique we performed a simultaneous recording of electrocardiogram and video frames of the face for 36 healthy volunteers. We found that signal disturbances originate mainly from the stochastically enhanced dichroic notch caused by endogenous cardiovascular mechanisms, with smaller contribution of the motion artefacts. Our properly designed algorithm allowed us to increase accuracy of the pulse-transit-time measurement and visualize propagation of the pulse wave in the facial region. Thus, the accurate measurement of the pulse wave parameters with this technique suggests a sensitive approach to assess local regulation of microcirculation in various physiological and pathological states. PMID:28018731

  2. Segmentation of MR Image Based on Maximum A Posterior

    DTIC Science & Technology

    2007-11-02

    The application of competitive Hopfield neural network to medical image segmentation,” IEEE Trans. Med. Imag., vol.15, no.4, pp.560-567, 1996 [11...found in many literatures recently. Various techniques have been adopted, including fuzzy [9], neural networks , genetic methods [10][11], statistical

  3. Weakly supervised histopathology cancer image segmentation and classification.

    PubMed

    Xu, Yan; Zhu, Jun-Yan; Chang, Eric I-Chao; Lai, Maode; Tu, Zhuowen

    2014-04-01

    Labeling a histopathology image as having cancerous regions or not is a critical task in cancer diagnosis; it is also clinically important to segment the cancer tissues and cluster them into various classes. Existing supervised approaches for image classification and segmentation require detailed manual annotations for the cancer pixels, which are time-consuming to obtain. In this paper, we propose a new learning method, multiple clustered instance learning (MCIL) (along the line of weakly supervised learning) for histopathology image segmentation. The proposed MCIL method simultaneously performs image-level classification (cancer vs. non-cancer image), medical image segmentation (cancer vs. non-cancer tissue), and patch-level clustering (different classes). We embed the clustering concept into the multiple instance learning (MIL) setting and derive a principled solution to performing the above three tasks in an integrated framework. In addition, we introduce contextual constraints as a prior for MCIL, which further reduces the ambiguity in MIL. Experimental results on histopathology colon cancer images and cytology images demonstrate the great advantage of MCIL over the competing methods.

  4. Infrared digital imaging of the equine anterior segment.

    PubMed

    McMullen, Richard J; Clode, Alison B; Gilger, Brian C

    2009-01-01

    Ocular photographs are an increasingly important method of documenting lesions for inclusion in medical records, teaching purposes, and research. Availability of affordable high-quality digital imaging equipment has allowed for enhanced capture of desired images because of immediate on-camera viewing and editing. Conversion of the standard digital camera sensor to one that is sensitive to infrared light (i.e. > 760 nm < 1 mm wavelength) can be done inexpensively. In the equine eye, advantages of infrared digital photography include increased contrast of anterior segment images, identification and monitoring of pigmentary changes, and increased visualization of the anterior segment through a cloudy or edematous cornea.

  5. Interactive image segmentation by constrained spectral graph partitioning

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; He, Jin; Zhang, Hong; Huang, Zhanhua

    2010-11-01

    This paper proposed an interactive image segmentation algorithm that can tolerate slightly incorrect user constraints. Interactive image segmentation was formulated as a constrained spectral graph partitioning problem. Furthermore, it was proven to equal to a supervised classification problem, where the feature space was formed by rows of the eigenvector matrix that was computed by spectral graph analysis. ν-SVM (support vector machine) was preferred as the classifier. Some incorrect labels in user constraints were tolerated by being identified as margin errors in ν-SVM. Comparison with other algorithms on real color images was reported.

  6. Segmentation and artifact removal in microwave-induced thermoacoustic imaging.

    PubMed

    Nan, Hao; Chou, Tzu-Chieh; Arbabian, Amin

    2014-01-01

    Microwave-induced thermoacoustic (TA) imaging combines the soft-tissue dielectric contrast of microwave excitation with the resolution of ultrasound for the goal of a safe, high resolution, and possibly portable imaging technique. However, the hybrid nature of this method introduces new image-reconstruction challenges in enabling sufficient accuracy and segmentation. In this paper, we propose a segmentation technique based on the polarity characteristic of TA signals. A wavelet analysis based method is proposed to identify reflection artifacts as well. The time-frequency feature of the signal is used to assist differentiating artifacts. Ex vivo verification with experimental data is also provided.

  7. A flexible image segmentation prior to parametric estimation.

    PubMed

    Bentourkia, M

    2001-01-01

    A flexible method based on spatial and temporal pixel variance to compute parametric images in positron emission tomography (PET) is reported. For [(18)F]fluorodeoxyglucose and [(15)O]water brain studies, images were segmented based on coefficients of variation and correlation coefficients of neighboring pixels, and kinetic parameters were estimated by dynamic (DYN) and autoradiographic (ARG) fitting. For comparison, regional glucose metabolism (rCMRGlc) and blood flow (rCBF) in both DYN and ARG were estimated from segmented and usual images. The maximal relative error was found to be 4, 10 and 17% for ARG and DYN rCMRGlc and DYN rCBF, respectively.

  8. Automated segmentation of breast lesions in ultrasound images.

    PubMed

    Liu, Xu; Huo, Zhimin; Zhang, Jiwu

    2005-01-01

    Breast cancer is one of the leading causes of death in women. As a convenient and safe diagnosis method, ultrasound is most commonly used second to mammography for early detection and diagnosis of breast cancer. Here we proposed an automatic method to segment lesions in ultrasound images. The images are first filtered with anisotropic diffusion algorithm to remove speckle noise. The edge is enhanced to emphasize the lesion regions. Normalized cut is a graph theoretic that admits combination of different features for image segmentation, and has been successfully used in object parsing and grouping. In this paper we combine normalized cut with region merging method for the segmentation. The merging criteria are derived from the empirical rules used by radiologists when they interpret breast images. In the performance evaluation, we compared the computer-detected lesion boundaries with manually delineated borders. The experimental results show that the algorithm has efficient and robust performance for different kinds of lesions.

  9. Dynamic Programming Based Segmentation in Biomedical Imaging.

    PubMed

    Ungru, Kathrin; Jiang, Xiaoyi

    2017-01-01

    Many applications in biomedical imaging have a demand on automatic detection of lines, contours, or boundaries of bones, organs, vessels, and cells. Aim is to support expert decisions in interactive applications or to include it as part of a processing pipeline for automatic image analysis. Biomedical images often suffer from noisy data and fuzzy edges. Therefore, there is a need for robust methods for contour and line detection. Dynamic programming is a popular technique that satisfies these requirements in many ways. This work gives a brief overview over approaches and applications that utilize dynamic programming to solve problems in the challenging field of biomedical imaging.

  10. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.

    PubMed

    Liu, Qing; Zou, Beiji; Chen, Jie; Ke, Wei; Yue, Kejuan; Chen, Zailiang; Zhao, Guoying

    2017-01-01

    The automatic exudate segmentation in colour retinal fundus images is an important task in computer aided diagnosis and screening systems for diabetic retinopathy. In this paper, we present a location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images, which includes three stages: anatomic structure removal, exudate location and exudate segmentation. In anatomic structure removal stage, matched filters based main vessels segmentation method and a saliency based optic disk segmentation method are proposed. The main vessel and optic disk are then removed to eliminate the adverse affects that they bring to the second stage. In the location stage, we learn a random forest classifier to classify patches into two classes: exudate patches and exudate-free patches, in which the histograms of completed local binary patterns are extracted to describe the texture structures of the patches. Finally, the local variance, the size prior about the exudate regions and the local contrast prior are used to segment the exudate regions out from patches which are classified as exudate patches in the location stage. We evaluate our method both at exudate-level and image-level. For exudate-level evaluation, we test our method on e-ophtha EX dataset, which provides pixel level annotation from the specialists. The experimental results show that our method achieves 76% in sensitivity and 75% in positive prediction value (PPV), which both outperform the state of the art methods significantly. For image-level evaluation, we test our method on DiaRetDB1, and achieve competitive performance compared to the state of the art methods.

  11. From MIP image to MRA segmentation using fuzzy set theory.

    PubMed

    Vermandel, Maximilien; Betrouni, Nacim; Taschner, Christian; Vasseur, Christian; Rousseau, Jean

    2007-04-01

    The aim of this paper is to describe a semi-automatic method of segmentation in magnetic resonance angiography (MRA). This method, based on fuzzy set theory, uses the information (gray levels) contained in the maximum intensity projection (MIP) image to segment the 3D vascular structure from slices. Tests have been carried out on vascular phantom and on clinical MRA images. This 3D segmentation method has proved to be satisfactory for the detection of vascular structures even for very complex shapes. Finally, this MIP-based approach is semi-automatic and produces a robust segmentation thanks to the contrast-to-noise ratio and to the slice profile which are taken into account to determine the membership of a voxel to the vascular structure.

  12. Sparse representation-based spectral clustering for SAR image segmentation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangrong; Wei, Zhengli; Feng, Jie; Jiao, Licheng

    2011-12-01

    A new method, sparse representation based spectral clustering (SC) with Nyström method, is proposed for synthetic aperture radar (SAR) image segmentation. Different from the conventional SC, this proposed technique is developed by using the sparse coefficients which obtained by solving l1 minimization problem to construct the affinity matrix and the Nyström method is applied to alleviate the segmentation process. The advantage of our proposed method is that we do not need to select the scaling parameter in the Gaussian kernel function artificially. We apply the proposed method, k-means and the classic spectral clustering algorithm with Nyström method to SAR image segmentation. The results show that compared with the other two methods, the proposed method can obtain much better segmentation results.

  13. Segmentation Based Fuzzy Classification of High Resolution Images

    NASA Astrophysics Data System (ADS)

    Rao, Mukund; Rao, Suryaprakash; Masser, Ian; Kasturirangan, K.

    Information extraction from satellite images is the process of delineation of entities in the image which pertain to some feature on the earth and to which on associating an attribute, a classification of the image is obtained. Classification is a common technique to extract information from remote sensing data and, by and large, the common classification techniques mainly exploit the spectral characteristics of remote sensing images and attempt to detect patterns in spectral information to classify images. These are based on a per-pixel analysis of the spectral information, "clustering" or "grouping" of pixels is done to generate meaningful thematic information. Most of the classification techniques apply statistical pattern recognition of image spectral vectors to "label" each pixel with appropriate class information from a set of training information. On the other hand, Segmentation is not new, but it is yet seldom used in image processing of remotely sensed data. Although there has been a lot of development in segmentation of grey tone images in this field and other fields, like robotic vision, there has been little progress in segmentation of colour or multi-band imagery. Especially within the last two years many new segmentation algorithms as well as applications were developed, but not all of them lead to qualitatively convincing results while being robust and operational. One reason is that the segmentation of an image into a given number of regions is a problem with a huge number of possible solutions. Newer algorithms based on fractal approach could eventually revolutionize image processing of remotely sensed data. The paper looks at applying spatial concepts to image processing, paving the way to algorithmically formulate some more advanced aspects of cognition and inference. In GIS-based spatial analysis, vector-based tools already have been able to support advanced tasks generating new knowledge. By identifying objects (as segmentation results) from

  14. Breast image pre-processing for mammographic tissue segmentation.

    PubMed

    He, Wenda; Hogg, Peter; Juette, Arne; Denton, Erika R E; Zwiggelaar, Reyer

    2015-12-01

    During mammographic image acquisition, a compression paddle is used to even the breast thickness in order to obtain optimal image quality. Clinical observation has indicated that some mammograms may exhibit abrupt intensity change and low visibility of tissue structures in the breast peripheral areas. Such appearance discrepancies can affect image interpretation and may not be desirable for computer aided mammography, leading to incorrect diagnosis and/or detection which can have a negative impact on sensitivity and specificity of screening mammography. This paper describes a novel mammographic image pre-processing method to improve image quality for analysis. An image selection process is incorporated to better target problematic images. The processed images show improved mammographic appearances not only in the breast periphery but also across the mammograms. Mammographic segmentation and risk/density classification were performed to facilitate a quantitative and qualitative evaluation. When using the processed images, the results indicated more anatomically correct segmentation in tissue specific areas, and subsequently better classification accuracies were achieved. Visual assessments were conducted in a clinical environment to determine the quality of the processed images and the resultant segmentation. The developed method has shown promising results. It is expected to be useful in early breast cancer detection, risk-stratified screening, and aiding radiologists in the process of decision making prior to surgery and/or treatment.

  15. Iterative feature refinement for accurate undersampled MR image reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Liu, Jianbo; Liu, Qiegen; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong

    2016-05-01

    Accelerating MR scan is of great significance for clinical, research and advanced applications, and one main effort to achieve this is the utilization of compressed sensing (CS) theory. Nevertheless, the existing CSMRI approaches still have limitations such as fine structure loss or high computational complexity. This paper proposes a novel iterative feature refinement (IFR) module for accurate MR image reconstruction from undersampled K-space data. Integrating IFR with CSMRI which is equipped with fixed transforms, we develop an IFR-CS method to restore meaningful structures and details that are originally discarded without introducing too much additional complexity. Specifically, the proposed IFR-CS is realized with three iterative steps, namely sparsity-promoting denoising, feature refinement and Tikhonov regularization. Experimental results on both simulated and in vivo MR datasets have shown that the proposed module has a strong capability to capture image details, and that IFR-CS is comparable and even superior to other state-of-the-art reconstruction approaches.

  16. Dynamic Programming Using Polar Variance for Image Segmentation.

    PubMed

    Rosado-Toro, Jose A; Altbach, Maria I; Rodriguez, Jeffrey J

    2016-10-06

    When using polar dynamic programming (PDP) for image segmentation, the object size is one of the main features used. This is because if size is left unconstrained the final segmentation may include high-gradient regions that are not associated with the object. In this paper, we propose a new feature, polar variance, which allows the algorithm to segment objects of different sizes without the need for training data. The polar variance is the variance in a polar region between a user-selected origin and a pixel we want to analyze. We also incorporate a new technique that allows PDP to segment complex shapes by finding low-gradient regions and growing them. The experimental analysis consisted on comparing our technique with different active contour segmentation techniques on a series of tests. The tests consisted on robustness to additive Gaussian noise, segmentation accuracy with different grayscale images and finally robustness to algorithm-specific parameters. Experimental results show that our technique performs favorably when compared to other segmentation techniques.

  17. Interactive Image Segmentation Framework Based On Control Theory.

    PubMed

    Zhu, Liangjia; Kolesov, Ivan; Karasev, Peter; Tannenbaum, Allen

    2015-02-21

    Segmentation of anatomical structures in medical imagery is a key step in a variety of clinical applications. Designing a generic, automated method that works for various structures and imaging modalities is a daunting task. Instead of proposing a new specific segmentation algorithm, in this paper, we present a general design principle on how to integrate user interactions from the perspective of control theory. In this formulation, Lyapunov stability analysis is employed to design and analyze an interactive segmentation system. The effectiveness and robustness of the proposed method are demonstrated.

  18. Interactive image segmentation framework based on control theory

    NASA Astrophysics Data System (ADS)

    Zhu, Liangjia; Kolesov, Ivan; Ratner, Vadim; Karasev, Peter; Tannenbaum, Allen

    2015-03-01

    Segmentation of anatomical structures in medical imagery is a key step in a variety of clinical applications. Designing a generic, automated method that works for various structures and imaging modalities is a daunting task. Instead of proposing a new specific segmentation algorithm, in this paper, we present a general design principle on how to integrate user interactions from the perspective of control theory. In this formulation, Lyapunov stability analysis is employed to design an interactive segmentation system. The effectiveness and robustness of the proposed method are demonstrated.

  19. Development of image segmentation methods for intracranial aneurysms.

    PubMed

    Sen, Yuka; Qian, Yi; Avolio, Alberto; Morgan, Michael

    2013-01-01

    Though providing vital means for the visualization, diagnosis, and quantification of decision-making processes for the treatment of vascular pathologies, vascular segmentation remains a process that continues to be marred by numerous challenges. In this study, we validate eight aneurysms via the use of two existing segmentation methods; the Region Growing Threshold and Chan-Vese model. These methods were evaluated by comparison of the results obtained with a manual segmentation performed. Based upon this validation study, we propose a new Threshold-Based Level Set (TLS) method in order to overcome the existing problems. With divergent methods of segmentation, we discovered that the volumes of the aneurysm models reached a maximum difference of 24%. The local artery anatomical shapes of the aneurysms were likewise found to significantly influence the results of these simulations. In contrast, however, the volume differences calculated via use of the TLS method remained at a relatively low figure, at only around 5%, thereby revealing the existence of inherent limitations in the application of cerebrovascular segmentation. The proposed TLS method holds the potential for utilisation in automatic aneurysm segmentation without the setting of a seed point or intensity threshold. This technique will further enable the segmentation of anatomically complex cerebrovascular shapes, thereby allowing for more accurate and efficient simulations of medical imagery.

  20. Fast, Accurate and Precise Mid-Sagittal Plane Location in 3D MR Images of the Brain

    NASA Astrophysics Data System (ADS)

    Bergo, Felipe P. G.; Falcão, Alexandre X.; Yasuda, Clarissa L.; Ruppert, Guilherme C. S.

    Extraction of the mid-sagittal plane (MSP) is a key step for brain image registration and asymmetry analysis. We present a fast MSP extraction method for 3D MR images, based on automatic segmentation of the brain and on heuristic maximization of the cerebro-spinal fluid within the MSP. The method is robust to severe anatomical asymmetries between the hemispheres, caused by surgical procedures and lesions. The method is also accurate with respect to MSP delineations done by a specialist. The method was evaluated on 64 MR images (36 pathological, 20 healthy, 8 synthetic), and it found a precise and accurate approximation of the MSP in all of them with a mean time of 60.0 seconds per image, mean angular variation within a same image (precision) of 1.26o and mean angular difference from specialist delineations (accuracy) of 1.64o.

  1. A Bottom-up Approach for Pancreas Segmentation using Cascaded Superpixels and (Deep) Image Patch Labeling.

    PubMed

    Farag, Amal; Lu, Le; Roth, Holger R; Liu, Jiamin; Turkbey, Evrim; Summers, Ronald M

    2016-11-01

    Robust organ segmentation is a prerequisite for computer-aided diagnosis (CAD), quantitative imaging analysis, pathology detection and surgical assistance. For organs with high anatomical variability (e.g., the pancreas), previous segmentation approaches report low accuracies, compared to well studied organs, such as the liver or heart.We present an automated bottomup approach for pancreas segmentation in abdominal computed tomography (CT) scans. The method generates a hierarchical cascade of information propagation by classifying image patches at different resolutions and cascading (segments) superpixels. The system contains four steps: 1) decomposition of CT slice images into a set of disjoint boundary-preserving superpixels; 2) computation of pancreas class probability maps via dense patch labeling; 3) superpixel classification by pooling both intensity and probability features to form empirical statistics in cascaded random forest frameworks; and 4) simple connectivity based post-processing. Dense image patch labeling is conducted using two methods: efficient random forest classification on image histogram, location and texture features; and more expensive (but more accurate) deep convolutional neural network classification, on larger image windows (i.e., with more spatial contexts). Oversegmented 2D CT slices by the Simple Linear Iterative Clustering (SLIC) approach are adopted through model/parameter calibration and labeled at the superpixel level for positive (pancreas) or negative (non-pancreas or background) classes.

  2. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning

    SciTech Connect

    El Naqa, Issam; Yang Deshan; Apte, Aditya; Khullar, Divya; Mutic, Sasa; Zheng Jie; Bradley, Jeffrey D.; Grigsby, Perry; Deasy, Joseph O.

    2007-12-15

    Multimodality imaging information is regularly used now in radiotherapy treatment planning for cancer patients. The authors are investigating methods to take advantage of all the imaging information available for joint target registration and segmentation, including multimodality images or multiple image sets from the same modality. In particular, the authors have developed variational methods based on multivalued level set deformable models for simultaneous 2D or 3D segmentation of multimodality images consisting of combinations of coregistered PET, CT, or MR data sets. The combined information is integrated to define the overall biophysical structure volume. The authors demonstrate the methods on three patient data sets, including a nonsmall cell lung cancer case with PET/CT, a cervix cancer case with PET/CT, and a prostate patient case with CT and MRI. CT, PET, and MR phantom data were also used for quantitative validation of the proposed multimodality segmentation approach. The corresponding Dice similarity coefficient (DSC) was 0.90{+-}0.02 (p<0.0001) with an estimated target volume error of 1.28{+-}1.23% volume. Preliminary results indicate that concurrent multimodality segmentation methods can provide a feasible and accurate framework for combining imaging data from different modalities and are potentially useful tools for the delineation of biophysical structure volumes in radiotherapy treatment planning.

  3. Improvement and Extension of Shape Evaluation Criteria in Multi-Scale Image Segmentation

    NASA Astrophysics Data System (ADS)

    Sakamoto, M.; Honda, Y.; Kondo, A.

    2016-06-01

    From the last decade, the multi-scale image segmentation is getting a particular interest and practically being used for object-based image analysis. In this study, we have addressed the issues on multi-scale image segmentation, especially, in improving the performances for validity of merging and variety of derived region's shape. Firstly, we have introduced constraints on the application of spectral criterion which could suppress excessive merging between dissimilar regions. Secondly, we have extended the evaluation for smoothness criterion by modifying the definition on the extent of the object, which was brought for controlling the shape's diversity. Thirdly, we have developed new shape criterion called aspect ratio. This criterion helps to improve the reproducibility on the shape of object to be matched to the actual objectives of interest. This criterion provides constraint on the aspect ratio in the bounding box of object by keeping properties controlled with conventional shape criteria. These improvements and extensions lead to more accurate, flexible, and diverse segmentation results according to the shape characteristics of the target of interest. Furthermore, we also investigated a technique for quantitative and automatic parameterization in multi-scale image segmentation. This approach is achieved by comparing segmentation result with training area specified in advance by considering the maximization of the average area in derived objects or satisfying the evaluation index called F-measure. Thus, it has been possible to automate the parameterization that suited the objectives especially in the view point of shape's reproducibility.

  4. Segmentation Method of Time-Lapse Microscopy Images with the Focus on Biocompatibility Assessment.

    PubMed

    Soukup, Jindřich; Císař, Petr; Šroubek, Filip

    2016-06-01

    Biocompatibility testing of new materials is often performed in vitro by measuring the growth rate of mammalian cancer cells in time-lapse images acquired by phase contrast microscopes. The growth rate is measured by tracking cell coverage, which requires an accurate automatic segmentation method. However, cancer cells have irregular shapes that change over time, the mottled background pattern is partially visible through the cells and the images contain artifacts such as halos. We developed a novel algorithm for cell segmentation that copes with the mentioned challenges. It is based on temporal differences of consecutive images and a combination of thresholding, blurring, and morphological operations. We tested the algorithm on images of four cell types acquired by two different microscopes, evaluated the precision of segmentation against manual segmentation performed by a human operator, and finally provided comparison with other freely available methods. We propose a new, fully automated method for measuring the cell growth rate based on fitting a coverage curve with the Verhulst population model. The algorithm is fast and shows accuracy comparable with manual segmentation. Most notably it can correctly separate live from dead cells.

  5. Segmentation of PET Images for Computer-Aided Functional Quantification of Tuberculosis in Small Animal Models

    PubMed Central

    Foster, Brent; Bagci, Ulas; Xu, Ziyue; Dey, Bappaditya; Luna, Brian; Bishai, William; Jain, Sanjay; Mollura, Daniel J.

    2014-01-01

    Pulmonary infections often cause spatially diffuse and multi-focal radiotracer uptake in positron emission tomography (PET) images, which makes accurate quantification of the disease extent challenging. Image segmentation plays a vital role in quantifying uptake due to the distributed nature of immuno-pathology and associated metabolic activities in pulmonary infection, specifically tuberculosis (TB). For this task, thresholding-based segmentation methods may be better suited over other methods; however, performance of the thresholding-based methods depend on the selection of thresholding parameters, which are often suboptimal. Several optimal thresholding techniques have been proposed in the literature, but there is currently no consensus on how to determine the optimal threshold for precise identification of spatially diffuse and multi-focal radiotracer uptake. In this study, we propose a method to select optimal thresholding levels by utilizing a novel intensity affinity metric within the affinity propagation clustering framework. We tested the proposed method against 70 longitudinal PET images of rabbits infected with TB. The overall dice similarity coefficient between the segmentation from the proposed method and two expert segmentations was found to be 91.25 ± 8.01% with a sensitivity of 88.80 ± 12.59% and a specificity of 96.01 ± 9.20%. High accuracy and heightened efficiency of our proposed method, as compared to other PET image segmentation methods, were reported with various quantification metrics. PMID:24235292

  6. Medical image segmentation on GPUs--a comprehensive review.

    PubMed

    Smistad, Erik; Falch, Thomas L; Bozorgi, Mohammadmehdi; Elster, Anne C; Lindseth, Frank

    2015-02-01

    Segmentation of anatomical structures, from modalities like computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound, is a key enabling technology for medical applications such as diagnostics, planning and guidance. More efficient implementations are necessary, as most segmentation methods are computationally expensive, and the amount of medical imaging data is growing. The increased programmability of graphic processing units (GPUs) in recent years have enabled their use in several areas. GPUs can solve large data parallel problems at a higher speed than the traditional CPU, while being more affordable and energy efficient than distributed systems. Furthermore, using a GPU enables concurrent visualization and interactive segmentation, where the user can help the algorithm to achieve a satisfactory result. This review investigates the use of GPUs to accelerate medical image segmentation methods. A set of criteria for efficient use of GPUs are defined and each segmentation method is rated accordingly. In addition, references to relevant GPU implementations and insight into GPU optimization are provided and discussed. The review concludes that most segmentation methods may benefit from GPU processing due to the methods' data parallel structure and high thread count. However, factors such as synchronization, branch divergence and memory usage can limit the speedup.

  7. Joint contrast optimization and object segmentation in active polarimetric images.

    PubMed

    Anna, Guillaume; Bertaux, Nicolas; Galland, Frédéric; Goudail, François; Dolfi, Daniel

    2012-08-15

    We present a method for automatic target detection based on the iterative interplay between an active polarimetric imager with adaptive capabilities and a snake-based image segmentation algorithm. It successfully addresses the difficult situations where the target and the background differ only by their polarimetric properties. This method illustrates the benefits of integrating digital processing algorithms at the heart of the image acquisition process rather than using them only for postprocessing.

  8. Segmentation of bone pixels from EROI Image using clustering method for bone age assessment

    NASA Astrophysics Data System (ADS)

    Bakthula, Rajitha; Agarwal, Suneeta

    2016-03-01

    The bone age of a human can be identified using carpal and epiphysis bones ossification, which is limited to teen age. The accurate age estimation depends on best separation of bone pixels and soft tissue pixels in the ROI image. The traditional approaches like canny, sobel, clustering, region growing and watershed can be applied, but these methods requires proper pre-processing and accurate initial seed point estimation to provide accurate results. Therefore this paper proposes new approach to segment the bone from soft tissue and background pixels. First pixels are enhanced using BPE and the edges are identified by HIPI. Later a K-Means clustering is applied for segmentation. The performance of the proposed approach has been evaluated and compared with the existing methods.

  9. Cross entropy: a new solver for Markov random field modeling and applications to medical image segmentation.

    PubMed

    Wu, Jue; Chung, Albert C S

    2005-01-01

    This paper introduces a novel solver, namely cross entropy (CE), into the MRF theory for medical image segmentation. The solver, which is based on the theory of rare event simulation, is general and stochastic. Unlike some popular optimization methods such as belief propagation and graph cuts, CE makes no assumption on the form of objective functions and thus can be applied to any type of MRF models. Furthermore, it achieves higher performance of finding more global optima because of its stochastic property. In addition, it is more efficient than other stochastic methods like simulated annealing. We tested the new solver in 4 series of segmentation experiments on synthetic and clinical, vascular and cerebral images. The experiments show that CE can give more accurate segmentation results.

  10. Phase contrast image segmentation using a Laue analyser crystal

    NASA Astrophysics Data System (ADS)

    Kitchen, Marcus J.; Paganin, David M.; Uesugi, Kentaro; Allison, Beth J.; Lewis, Robert A.; Hooper, Stuart B.; Pavlov, Konstantin M.

    2011-02-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  11. Classifying and segmenting microscopy images with deep multiple instance learning

    PubMed Central

    Kraus, Oren Z.; Ba, Jimmy Lei; Frey, Brendan J.

    2016-01-01

    Motivation: High-content screening (HCS) technologies have enabled large scale imaging experiments for studying cell biology and for drug screening. These systems produce hundreds of thousands of microscopy images per day and their utility depends on automated image analysis. Recently, deep learning approaches that learn feature representations directly from pixel intensity values have dominated object recognition challenges. These tasks typically have a single centered object per image and existing models are not directly applicable to microscopy datasets. Here we develop an approach that combines deep convolutional neural networks (CNNs) with multiple instance learning (MIL) in order to classify and segment microscopy images using only whole image level annotations. Results: We introduce a new neural network architecture that uses MIL to simultaneously classify and segment microscopy images with populations of cells. We base our approach on the similarity between the aggregation function used in MIL and pooling layers used in CNNs. To facilitate aggregating across large numbers of instances in CNN feature maps we present the Noisy-AND pooling function, a new MIL operator that is robust to outliers. Combining CNNs with MIL enables training CNNs using whole microscopy images with image level labels. We show that training end-to-end MIL CNNs outperforms several previous methods on both mammalian and yeast datasets without requiring any segmentation steps. Availability and implementation: Torch7 implementation available upon request. Contact: oren.kraus@mail.utoronto.ca PMID:27307644

  12. Bladder segmentation in MR images with watershed segmentation and graph cut algorithm

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael

    2014-03-01

    Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.

  13. Gap-free segmentation of vascular networks with automatic image processing pipeline.

    PubMed

    Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas

    2017-03-01

    Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes.

  14. Sub-Markov Random Walk for Image Segmentation.

    PubMed

    Dong, Xingping; Shen, Jianbing; Shao, Ling; Van Gool, Luc

    2016-02-01

    A novel sub-Markov random walk (subRW) algorithm with label prior is proposed for seeded image segmentation, which can be interpreted as a traditional random walker on a graph with added auxiliary nodes. Under this explanation, we unify the proposed subRW and other popular random walk (RW) algorithms. This unifying view will make it possible for transferring intrinsic findings between different RW algorithms, and offer new ideas for designing novel RW algorithms by adding or changing auxiliary nodes. To verify the second benefit, we design a new subRW algorithm with label prior to solve the segmentation problem of objects with thin and elongated parts. The experimental results on both synthetic and natural images with twigs demonstrate that the proposed subRW method outperforms previous RW algorithms for seeded image segmentation.

  15. Segmentation of the mouse hippocampal formation in magnetic resonance images.

    PubMed

    Richards, Kay; Watson, Charles; Buckley, Rachel F; Kurniawan, Nyoman D; Yang, Zhengyi; Keller, Marianne D; Beare, Richard; Bartlett, Perry F; Egan, Gary F; Galloway, Graham J; Paxinos, George; Petrou, Steven; Reutens, David C

    2011-10-01

    The hippocampal formation plays an important role in cognition, spatial navigation, learning, and memory. High resolution magnetic resonance (MR) imaging makes it possible to study in vivo changes in the hippocampus over time and is useful for comparing hippocampal volume and structure in wild type and mutant mice. Such comparisons demand a reliable way to segment the hippocampal formation. We have developed a method for the systematic segmentation of the hippocampal formation using the perfusion-fixed C57BL/6 mouse brain for application in longitudinal and comparative studies. Our aim was to develop a guide for segmenting over 40 structures in an adult mouse brain using 30 μm isotropic resolution images acquired with a 16.4 T MR imaging system and combined using super-resolution reconstruction.

  16. Anterior Segment Imaging in Ocular Surface Squamous Neoplasia

    PubMed Central

    Vora, Gargi K.

    2016-01-01

    Recent advances in anterior segment imaging have transformed the way ocular surface squamous neoplasia (OSSN) is diagnosed and monitored. Ultrasound biomicroscopy (UBM) has been reported to be useful primarily in the assessment of intraocular invasion and metastasis. In vivo confocal microscopy (IVCM) shows enlarged and irregular nuclei with hyperreflective cells in OSSN lesions and this has been found to correlate with histopathology findings. Anterior segment optical coherence tomography (AS-OCT) demonstrates thickened hyperreflective epithelium with an abrupt transition between abnormal and normal epithelium in OSSN lesions and this has also been shown to mimic histopathology findings. Although there are limitations to each of these imaging modalities, they can be useful adjunctive tools in the diagnosis of OSSN and could greatly assist the clinician in the management of OSSN patients. Nevertheless, anterior segment imaging has not replaced histopathology's role as the gold standard in confirming diagnosis. PMID:27800176

  17. Image Segmentation of Historical Handwriting from Palm Leaf Manuscripts

    NASA Astrophysics Data System (ADS)

    Surinta, Olarik; Chamchong, Rapeeporn

    Palm leaf manuscripts were one of the earliest forms of written media and were used in Southeast Asia to store early written knowledge about subjects such as medicine, Buddhist doctrine and astrology. Therefore, historical handwritten palm leaf manuscripts are important for people who like to learn about historical documents, because we can learn more experience from them. This paper presents an image segmentation of historical handwriting from palm leaf manuscripts. The process is composed of three steps: 1) background elimination to separate text and background by Otsu's algorithm 2) line segmentation and 3) character segmentation by histogram of image. The end result is the character's image. The results from this research may be applied to optical character recognition (OCR) in the future.

  18. Novel technique in the segmentation of magnetic resonance image

    NASA Astrophysics Data System (ADS)

    Chan, Kwok-Leung

    1996-04-01

    In this investigation, automatic image segmentation is carried out on magnetic resonance image (MRI). A novel technique based on the maximum minimum measure is devised. The measure is improved by combining the smoothing and counting processes, and then normalizing the number of maximum and minimum positions over the region of interest (ROI). Two parameters (MM_H and MM_V) are generated and used for the segmentation. The technique is tested on some brain MRIs of a human male from the Visible Human Project of the National Library of Medicine, National Institutes of Health, USA. Preliminary results indicate that the maximum minimum measure can provide effective parameters for human tissue characterization and image segmentation with an added advantage of faster computation.

  19. An adaptive multi-feature segmentation model for infrared image

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  20. Texture descriptor approaches to level set segmentation in medical images

    NASA Astrophysics Data System (ADS)

    Olveres, Jimena; Nava, Rodrigo; Moya-Albor, Ernesto; Escalante-Ramírez, Boris; Brieva, Jorge; Cristóbal, Gabriel; Vallejo, Enrique

    2014-05-01

    Medical image analysis has become an important tool for improving medical diagnosis and planning treatments. It involves volume or still image segmentation that plays a critical role in understanding image content by facilitating extraction of the anatomical organ or region-of-interest. It also may help towards the construction of reliable computer-aided diagnosis systems. Specifically, level set methods have emerged as a general framework for image segmentation; such methods are mainly based on gradient information and provide satisfactory results. However, the noise inherent to images and the lack of contrast information between adjacent regions hamper the performance of the algorithms, thus, others proposals have been suggested in the literature. For instance, characterization of regions as statistical parametric models to handle level set evolution. In this paper, we study the influence of texture on a level-set-based segmentation and propose the use of Hermite features that are incorporated into the level set model to improve organ segmentation that may be useful for quantifying left ventricular blood flow. The proposal was also compared against other texture descriptors such as local binary patterns, Image derivatives, and Hounsfield low attenuation values.

  1. SAR image segmentation using MSER and improved spectral clustering

    NASA Astrophysics Data System (ADS)

    Gui, Yang; Zhang, Xiaohu; Shang, Yang

    2012-12-01

    A novel approach is presented for synthetic aperture radar (SAR) image segmentation. By incorporating the advantages of maximally stable extremal regions (MSER) algorithm and spectral clustering (SC) method, the proposed approach provides effective and robust segmentation. First, the input image is transformed from a pixel-based to a region-based model by using the MSER algorithm. The input image after MSER procedure is composed of some disjoint regions. Then the regions are treated as nodes in the image plane, and a graph structure is applied to represent them. Finally, the improved SC is used to perform globally optimal clustering, by which the result of image segmentation can be generated. To avoid some incorrect partitioning when considering each region as one graph node, we assign different numbers of nodes to represent the regions according to area ratios among the regions. In addition, K-harmonic means instead of K-means is applied in the improved SC procedure in order to raise its stability and performance. Experimental results show that the proposed approach is effective on SAR image segmentation and has the advantage of calculating quickly.

  2. Refinement of ground reference data with segmented image data

    NASA Technical Reports Server (NTRS)

    Robinson, Jon W.; Tilton, James C.

    1991-01-01

    One of the ways to determine ground reference data (GRD) for satellite remote sensing data is to photo-interpret low altitude aerial photographs and then digitize the cover types on a digitized tablet and register them to 7.5 minute U.S.G.S. maps (that were themselves digitized). The resulting GRD can be registered to the satellite image or, vice versa. Unfortunately, there are many opportunities for error when using digitizing tablet and the resolution of the edges for the GRD depends on the spacing of the points selected on the digitizing tablet. One of the consequences of this is that when overlaid on the image, errors and missed detail in the GRD become evident. An approach is discussed for correcting these errors and adding detail to the GRD through the use of a highly interactive, visually oriented process. This process involves the use of overlaid visual displays of the satellite image data, the GRD, and a segmentation of the satellite image data. Several prototype programs were implemented which provide means of taking a segmented image and using the edges from the reference data to mask out these segment edges that are beyond a certain distance from the reference data edges. Then using the reference data edges as a guide, those segment edges that remain and that are judged not to be image versions of the reference edges are manually marked and removed. The prototype programs that were developed and the algorithmic refinements that facilitate execution of this task are described.

  3. Computer Based Melanocytic and Nevus Image Enhancement and Segmentation

    PubMed Central

    Jamil, Uzma; Khalid, Shehzad; Abbas, Sarmad; Saleem, Kashif

    2016-01-01

    Digital dermoscopy aids dermatologists in monitoring potentially cancerous skin lesions. Melanoma is the 5th common form of skin cancer that is rare but the most dangerous. Melanoma is curable if it is detected at an early stage. Automated segmentation of cancerous lesion from normal skin is the most critical yet tricky part in computerized lesion detection and classification. The effectiveness and accuracy of lesion classification are critically dependent on the quality of lesion segmentation. In this paper, we have proposed a novel approach that can automatically preprocess the image and then segment the lesion. The system filters unwanted artifacts including hairs, gel, bubbles, and specular reflection. A novel approach is presented using the concept of wavelets for detection and inpainting the hairs present in the cancer images. The contrast of lesion with the skin is enhanced using adaptive sigmoidal function that takes care of the localized intensity distribution within a given lesion's images. We then present a segmentation approach to precisely segment the lesion from the background. The proposed approach is tested on the European database of dermoscopic images. Results are compared with the competitors to demonstrate the superiority of the suggested approach. PMID:27774454

  4. Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation.

    PubMed

    Mehmood, Irfan; Ejaz, Naveed; Sajjad, Muhammad; Baik, Sung Wook

    2013-10-01

    The objective of the present study is to explore prioritization methods in diagnostic imaging modalities to automatically determine the contents of medical images. In this paper, we propose an efficient prioritization of brain MRI. First, the visual perception of the radiologists is adapted to identify salient regions. Then this saliency information is used as an automatic label for accurate segmentation of brain lesion to determine the scientific value of that image. The qualitative and quantitative results prove that the rankings generated by the proposed method are closer to the rankings created by radiologists.

  5. Automated segmentation of the lungs from high resolution CT images for quantitative study of chronic obstructive pulmonary diseases

    NASA Astrophysics Data System (ADS)

    Garg, Ishita; Karwoski, Ronald A.; Camp, Jon J.; Bartholmai, Brian J.; Robb, Richard A.

    2005-04-01

    Chronic obstructive pulmonary diseases (COPD) are debilitating conditions of the lung and are the fourth leading cause of death in the United States. Early diagnosis is critical for timely intervention and effective treatment. The ability to quantify particular imaging features of specific pathology and accurately assess progression or response to treatment with current imaging tools is relatively poor. The goal of this project was to develop automated segmentation techniques that would be clinically useful as computer assisted diagnostic tools for COPD. The lungs were segmented using an optimized segmentation threshold and the trachea was segmented using a fixed threshold characteristic of air. The segmented images were smoothed by a morphological close operation using spherical elements of different sizes. The results were compared to other segmentation approaches using an optimized threshold to segment the trachea. Comparison of the segmentation results from 10 datasets showed that the method of trachea segmentation using a fixed air threshold followed by morphological closing with spherical element of size 23x23x5 yielded the best results. Inclusion of greater number of pulmonary vessels in the lung volume is important for the development of computer assisted diagnostic tools because the physiological changes of COPD can result in quantifiable anatomic changes in pulmonary vessels. Using a fixed threshold to segment the trachea removed airways from the lungs to a better extent as compared to using an optimized threshold. Preliminary measurements gathered from patient"s CT scans suggest that segmented images can be used for accurate analysis of total lung volume and volumes of regional lung parenchyma. Additionally, reproducible segmentation allows for quantification of specific pathologic features, such as lower intensity pixels, which are characteristic of abnormal air spaces in diseases like emphysema.

  6. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  7. Generalized rough fuzzy c-means algorithm for brain MR image segmentation.

    PubMed

    Ji, Zexuan; Sun, Quansen; Xia, Yong; Chen, Qiang; Xia, Deshen; Feng, Dagan

    2012-11-01

    Fuzzy sets and rough sets have been widely used in many clustering algorithms for medical image segmentation, and have recently been combined together to better deal with the uncertainty implied in observed image data. Despite of their wide spread applications, traditional hybrid approaches are sensitive to the empirical weighting parameters and random initialization, and hence may produce less accurate results. In this paper, a novel hybrid clustering approach, namely the generalized rough fuzzy c-means (GRFCM) algorithm is proposed for brain MR image segmentation. In this algorithm, each cluster is characterized by three automatically determined rough-fuzzy regions, and accordingly the membership of each pixel is estimated with respect to the region it locates. The importance of each region is balanced by a weighting parameter, and the bias field in MR images is modeled by a linear combination of orthogonal polynomials. The weighting parameter estimation and bias field correction have been incorporated into the iterative clustering process. Our algorithm has been compared to the existing rough c-means and hybrid clustering algorithms in both synthetic and clinical brain MR images. Experimental results demonstrate that the proposed algorithm is more robust to the initialization, noise, and bias field, and can produce more accurate and reliable segmentations.

  8. A dendritic lattice neural network for color image segmentation

    NASA Astrophysics Data System (ADS)

    Urcid, Gonzalo; Lara-Rodríguez, Luis David; López-Meléndez, Elizabeth

    2015-09-01

    A two-layer dendritic lattice neural network is proposed to segment color images in the Red-Green-Blue (RGB) color space. The two layer neural network is a fully interconnected feed forward net consisting of an input layer that receives color pixel values, an intermediate layer that computes pixel interdistances, and an output layer used to classify colors by hetero-association. The two-layer net is first initialized with a finite small subset of the colors present in the input image. These colors are obtained by means of an automatic clustering procedure such as k-means or fuzzy c-means. In the second stage, the color image is scanned on a pixel by pixel basis where each picture element is treated as a vector and feeded into the network. For illustration purposes we use public domain color images to show the performance of our proposed image segmentation technique.

  9. Optimal feature extraction for segmentation of Diesel spray images.

    PubMed

    Payri, Francisco; Pastor, José V; Palomares, Alberto; Juliá, J Enrique

    2004-04-01

    A one-dimensional simplification, based on optimal feature extraction, of the algorithm based on the likelihood-ratio test method (LRT) for segmentation in colored Diesel spray images is presented. If the pixel values of the Diesel spray and the combustion images are represented in RGB space, in most cases they are distributed in an area with a given so-called privileged direction. It is demonstrated that this direction permits optimal feature extraction for one-dimensional segmentation in the Diesel spray images, and some of its advantages compared with more-conventional one-dimensional simplification methods, including considerably reduced computational cost while accuracy is maintained within more than reasonable limits, are presented. The method has been successfully applied to images of Diesel sprays injected at room temperature as well as to images of sprays with evaporation and combustion. It has proved to be valid for several cameras and experimental arrangements.

  10. Image mosaicking using SURF features of line segments

    PubMed Central

    Shen, Dinggang; Yap, Pew-Thian

    2017-01-01

    In this paper, we present a novel image mosaicking method that is based on Speeded-Up Robust Features (SURF) of line segments, aiming to achieve robustness to incident scaling, rotation, change in illumination, and significant affine distortion between images in a panoramic series. Our method involves 1) using a SURF detection operator to locate feature points; 2) rough matching using SURF features of directed line segments constructed via the feature points; and 3) eliminating incorrectly matched pairs using RANSAC (RANdom SAmple Consensus). Experimental results confirm that our method results in high-quality panoramic mosaics that are superior to state-of-the-art methods. PMID:28296919

  11. Semi-Huber potential function for image segmentation.

    PubMed

    Gutiérrez, Osvaldo; de la Rosa, Ismael; Villa, Jesús; González, Efrén; Escalante, Nivia

    2012-03-12

    In this work, a novel model of Markov Random Field (MRF) is introduced. Such a model is based on a proposed Semi-Huber potential function and it is applied successfully to image segmentation in presence of noise. The main difference with respect to other half-quadratic models that have been taken as a reference is, that the number of parameters to be tuned in the proposed model is smaller and simpler. The idea is then, to choose adequate parameter values heuristically for a good segmentation of the image. In that sense, some experimental results show that the proposed model allows an easier parameter adjustment with reasonable computation times.

  12. Segmentation of virus particle candidates in transmission electron microscopy images.

    PubMed

    Kylberg, G; Uppström, M; Hedlund, K-O; Borgefors, G; Sintorn, I-M

    2012-02-01

    In this paper, we present an automatic segmentation method that detects virus particles of various shapes in transmission electron microscopy images. The method is based on a statistical analysis of local neighbourhoods of all the pixels in the image followed by an object width discrimination and finally, for elongated objects, a border refinement step. It requires only one input parameter, the approximate width of the virus particles searched for. The proposed method is evaluated on a large number of viruses. It successfully segments viruses regardless of shape, from polyhedral to highly pleomorphic.

  13. Automatic segmentation applied to obstetric images

    NASA Astrophysics Data System (ADS)

    Vuwong, Vanee; Hiller, John B.; Jin, Jesse S.

    1998-06-01

    This paper presents a shape-based approach for searching and extracting fetal skull boundaries from an obstetric image. The proposed method relies on two major steps. Firstly, we apply the reference axes to scan the image for all potential skull boundaries. The possible skull boundaries are determined whether they are candidates. The candidate with the highest confident value will be selected as the expected head boundary. Then, the position of the expected head boundary is initialized. Secondly, we refine the initial skull boundary using the fuzzy contour model modified from the active contour basis. This results the continuous and smooth fetal skull boundary that we can use for the medical parameter measurement.

  14. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    PubMed

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  15. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

    PubMed Central

    Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496

  16. Automatic multiscale enhancement and segmentation of pulmonary vessels in CT pulmonary angiography images for CAD applications

    SciTech Connect

    Zhou Chuan; Chan, H.-P.; Sahiner, Berkman; Hadjiiski, Lubomir M.; Chughtai, Aamer; Patel, Smita; Wei Jun; Ge Jun; Cascade, Philip N.; Kazerooni, Ella A.

    2007-12-15

    The authors are developing a computerized pulmonary vessel segmentation method for a computer-aided pulmonary embolism (PE) detection system on computed tomographic pulmonary angiography (CTPA) images. Because PE only occurs inside pulmonary arteries, an automatic and accurate segmentation of the pulmonary vessels in 3D CTPA images is an essential step for the PE CAD system. To segment the pulmonary vessels within the lung, the lung regions are first extracted using expectation-maximization (EM) analysis and morphological operations. The authors developed a 3D multiscale filtering technique to enhance the pulmonary vascular structures based on the analysis of eigenvalues of the Hessian matrix at multiple scales. A new response function of the filter was designed to enhance all vascular structures including the vessel bifurcations and suppress nonvessel structures such as the lymphoid tissues surrounding the vessels. An EM estimation is then used to segment the vascular structures by extracting the high response voxels at each scale. The vessel tree is finally reconstructed by integrating the segmented vessels at all scales based on a 'connected component' analysis. Two CTPA cases containing PEs were used to evaluate the performance of the system. One of these two cases also contained pleural effusion disease. Two experienced thoracic radiologists provided the gold standard of pulmonary vessels including both arteries and veins by manually tracking the arterial tree and marking the center of the vessels using a computer graphical user interface. The accuracy of vessel tree segmentation was evaluated by the percentage of the 'gold standard' vessel center points overlapping with the segmented vessels. The results show that 96.2% (2398/2494) and 96.3% (1910/1984) of the manually marked center points in the arteries overlapped with segmented vessels for the case without and with other lung diseases. For the manually marked center points in all vessels including arteries

  17. Automatic layer segmentation of H&E microscopic images of mice skin

    NASA Astrophysics Data System (ADS)

    Hussein, Saif; Selway, Joanne; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    Mammalian skin is a complex organ composed of a variety of cells and tissue types. The automatic detection and quantification of changes in skin structures has a wide range of applications for biological research. To accurately segment and quantify nuclei, sebaceous gland, hair follicles, and other skin structures, there is a need for a reliable segmentation of different skin layers. This paper presents an efficient segmentation algorithm to segment the three main layers of mice skin, namely epidermis, dermis, and subcutaneous layers. It also segments the epidermis layer into two sub layers, basal and cornified layers. The proposed algorithm uses adaptive colour deconvolution technique on H&E stain images to separate different tissue structures, inter-modes and Otsu thresholding techniques were effectively combined to segment the layers. It then uses a set of morphological and logical operations on each layer to removing unwanted objects. A dataset of 7000 H&E microscopic images of mutant and wild type mice were used to evaluate the effectiveness of the algorithm. Experimental results examined by domain experts have confirmed the viability of the proposed algorithms.

  18. Image Segmentation Analysis for NASA Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2010-01-01

    NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.

  19. A game-theoretic framework for landmark-based image segmentation.

    PubMed

    Ibragimov, Bulat; Likar, Boštjan; Pernus, Franjo; Vrtovec, Tomaz

    2012-09-01

    A novel game-theoretic framework for landmark-based image segmentation is presented. Landmark detection is formulated as a game, in which landmarks are players, landmark candidate points are strategies, and likelihoods that candidate points represent landmarks are payoffs, determined according to the similarity of image intensities and spatial relationships between the candidate points in the target image and their corresponding landmarks in images from the training set. The solution of the formulated game-theoretic problem is the equilibrium of candidate points that represent landmarks in the target image and is obtained by a novel iterative scheme that solves the segmentation problem in polynomial time. The object boundaries are finally extracted by applying dynamic programming to the optimal path searching problem between the obtained adjacent landmarks. The performance of the proposed framework was evaluated for segmentation of lung fields from chest radiographs and heart ventricles from cardiac magnetic resonance cross sections. The comparison to other landmark-based segmentation techniques shows that the results obtained by the proposed game-theoretic framework are highly accurate and precise in terms of mean boundary distance and area overlap. Moreover, the framework overcomes several shortcomings of the existing techniques, such as sensitivity to initialization and convergence to local optima.

  20. On a methodology for robust segmentation of nonideal iris images.

    PubMed

    Schmid, Natalia A; Zuo, Jinyu

    2010-06-01

    Iris biometric is one of the most reliable biometrics with respect to performance. However, this reliability is a function of the ideality of the data. One of the most important steps in processing nonideal data is reliable and precise segmentation of the iris pattern from remaining background. In this paper, a segmentation methodology that aims at compensating various nonidealities contained in iris images during segmentation is proposed. The virtue of this methodology lies in its capability to reliably segment nonideal imagery that is simultaneously affected with such factors as specular reflection, blur, lighting variation, occlusion, and off-angle images. We demonstrate the robustness of our segmentation methodology by evaluating ideal and nonideal data sets, namely, the Chinese Academy of Sciences iris data version 3 interval subdirectory, the iris challenge evaluation data, the West Virginia University (WVU) data, and the WVU off-angle data. Furthermore, we compare our performance to that of our implementation of Camus and Wildes's algorithm and Masek's algorithm. We demonstrate considerable improvement in segmentation performance over the formerly mentioned algorithms.

  1. Image segmentation using hidden Markov Gauss mixture models.

    PubMed

    Pyun, Kyungsuk; Lim, Johan; Won, Chee Sun; Gray, Robert M

    2007-07-01

    Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.

  2. Evaluation of segmentation using lung nodule phantom CT images

    NASA Astrophysics Data System (ADS)

    Judy, Philip F.; Jacobson, Francine L.

    2001-07-01

    Segmentation of chest CT images has several purposes. In lung-cancer screening programs, for nodules below 5mm, growth measured from sequential CT scans is the primary indication of malignancy. Automatic segmentation procedures have been used as a means to insure a reliable measurement of lung nodule size. A lung nodule phantom was developed to evaluate the validity and reliability of size measurements using CT images. Thirty acrylic spheres and cubes (2-8 mm) were placed in a 15cm diameter disk of uniform-material that simulated the lung. To demonstrate the use of the phantom, it was scanned using out hospital's lung-cancer screening protocol. A simple, yet objective threshold technique was used to segment all of the images in which the objects were visible. All the pixels above a common threshold (the mean of the lung material and the acrylic CT numbers) were considered within the nodule. The relative bias did not depend on the shape of the objects and ranged from -18% for the 2 mm objects to -2.5% for 8-mm objects. DICOM image files of the phantom are available for investigators with an interest in using the images to evaluate and compare segmentation procedures.

  3. Automatic comic page image understanding based on edge segment analysis

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai

    2013-12-01

    Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.

  4. Remote sensing images segmentation by Deriche's filter and neural network

    NASA Astrophysics Data System (ADS)

    Koffi, Raphael K.; Solaiman, Basel; Mouchot, Marie-Catherine

    1994-12-01

    An image segmentation method for remote sensing data using hybride techniques is proposed. Edge detection approach for segmentation is considered in our study. Our aim is to integrate segmentation results in further processing namely classification. Images of the land from satellite are often corrupted by noise. On one hand, optimal edge detectors insure good noise immunity. On the other hand, the multi-layer perceptron (MLP) neural network has been found to be suited for classification. So we propose to combine these two techniques to improve segmentation process. Satellites for remote sensing provide several images for the same area, coded differently according to spectral bands. In order to bear in mind spectral and spatial information, neighborhood relation of pixels and different bands are taken into consideration during the classification realized by the neural network. Samples which constituate the training set for the MLP are selected from the third, fourth and fifth band and represent edge and non-edge patterns. Each sample vector is composed of the value of a current pixel in the local maxima image (enhancement image obtained by Deriche's filter) and its 8 nearest neighbors. The proposed method provides satisfactory results for our application and compared to other similar methods.

  5. Fabric Pilling Image Segmentation Based on Mean Shift

    NASA Astrophysics Data System (ADS)

    Jing, Junfeng; Kang, Xuejuan

    Fabric appearance is always considered to be one of the most important aspects of fabric quality. Testing for fabric appearance is the process of inspecting, measuring and evaluating characteristics and properties of a fabric surface. Fabric Pilling is a key step in fabric pilling objective evaluation,which is the important component of textile performance test digitization.Image analysis has been widely accepted as an objetive mothod for evaluating fabric appearance.This study presents the principles of new method of fabric pilling image segmenttation based on mean shift.The principle of mean shift was demonstrated, and the extend principle of mean shift was educed. The extended mean shift algorithm was used to try to solve the segmentation of fabric pilling image.In this issue, two main steps were introduced: the filting of image and the segmentation of image. The influences of three parameters to the segmentation effect were analysised. The laboratory result shows that the proposed algorithm can get excellent segmentation after chosen three better parameters.

  6. An improved differential box-counting method of image segmentation

    NASA Astrophysics Data System (ADS)

    Li, Cancan; Cheng, Longfei; He, Tao; Chen, Lang; Yu, Fei; Yang, Liangen

    2016-01-01

    Fractal dimension is an important quantitative characteristic of a image, which can be widely used in image analysis. Differential box-counting method which is one of many calculation methods of a fractal dimension has been frequently used due to its simple calculation . In differential box-counting method, a window size M is limited in the integer power of 2. It leads to inaccurate calculation results of a fractal dimension. Aiming at solving the issues , in this paper, an improved algorithm is discussed that the window size M has been improved to be able to accommodate non-integer power of 2, and making the calculated fractal dimension error smaller. In order to verify superiority of the improved algorithm, the values of fractal dimension are regarded as parameters, and are applied for image segmentation combined with Ostu algorithm . Both traditional and improved differential box-counting methods are respectively used to estimate fractal dimensions and do threshold segmentation for a thread image . The experimental results show that image segmentation details by improved differential box-counting method are more obvious than that by traditional differential box-counting method, with less impurities, clearer target outline and better segmentation effect.

  7. Quantitative measure in image segmentation for skin lesion images: A preliminary study

    NASA Astrophysics Data System (ADS)

    Azmi, Nurulhuda Firdaus Mohd; Ibrahim, Mohd Hakimi Aiman; Keng, Lau Hui; Ibrahim, Nuzulha Khilwani; Sarkan, Haslina Md

    2014-12-01

    Automatic Skin Lesion Diagnosis (ASLD) allows skin lesion diagnosis by using a computer or mobile devices. The idea of using a computer to assist in diagnosis of skin lesions was first proposed in the literature around 1985. Images of skin lesions are analyzed by the computer to capture certain features thought to be characteristic of skin diseases. These features (expressed as numeric values) are then used to classify the image and report a diagnosis. Image segmentation is often a critical step in image analysis and it may use statistical classification, thresholding, edge detection, region detection, or any combination of these techniques. Nevertheless, image segmentation of skin lesion images is yet limited to superficial evaluations which merely display images of the segmentation results and appeal to the reader's intuition for evaluation. There is a consistent lack of quantitative measure, thus, it is difficult to know which segmentation present useful results and in which situations they do so. If segmentation is done well, then, all other stages in image analysis are made simpler. If significant features (that are crucial for diagnosis) are not extracted from images, it will affect the accuracy of the automated diagnosis. This paper explore the existing quantitative measure in image segmentation ranging in the application of pattern recognition for example hand writing, plat number, and colour. Selecting the most suitable segmentation measure is highly important so that as much relevant features can be identified and extracted.

  8. Segmented images and 3D images for studying the anatomical structures in MRIs

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  9. Atlas-based automatic mouse brain image segmentation revisited: model complexity vs. image registration.

    PubMed

    Bai, Jordan; Trinh, Thi Lan Huong; Chuang, Kai-Hsiang; Qiu, Anqi

    2012-07-01

    Although many atlas-based segmentation methods have been developed and validated for the human brain, limited work has been done for the mouse brain. This paper investigated roles of image registration and segmentation model complexity in the mouse brain segmentation. We employed four segmentation models [single atlas, multiatlas, simultaneous truth and performance level estimation (STAPLE) and Markov random field (MRF) via four different image registration algorithms (affine, B-spline free-form deformation (FFD), Demons and large deformation diffeomorphic metric mapping (LDDMM)] for delineating 19 structures from in vivo magnetic resonance microscopy images. We validated their accuracies against manual segmentation. Our results revealed that LDDMM outperformed Demons, FFD and affine in any of the segmentation models. Under the same registration, increasing segmentation model complexity from single atlas to multiatlas, STAPLE or MRF significantly improved the segmentation accuracy. Interestingly, the multiatlas-based segmentation using nonlinear registrations (FFD, Demons and LDDMM) had similar performance to their STAPLE counterparts, while they both outperformed their MRF counterparts. Furthermore, when the single-atlas affine segmentation was used as reference, the improvement due to nonlinear registrations (FFD, Demons and LDDMM) in the single-atlas segmentation model was greater than that due to increasing model complexity (multiatlas, STAPLE and MRF affine segmentation). Hence, we concluded that image registration plays a more crucial role in the atlas-based automatic mouse brain segmentation as compared to model complexity. Multiple atlases with LDDMM can best improve the segmentation accuracy in the mouse brain among all segmentation models tested in this study.

  10. Statistical Segmentation of Regions of Interest on a Mammographic Image

    NASA Astrophysics Data System (ADS)

    Adel, Mouloud; Rasigni, Monique; Bourennane, Salah; Juhan, Valerie

    2007-12-01

    This paper deals with segmentation of breast anatomical regions, pectoral muscle, fatty and fibroglandular regions, using a Bayesian approach. This work is a part of a computer aided diagnosis project aiming at evaluating breast cancer risk and its association with characteristics (density, texture, etc.) of regions of interest on digitized mammograms. Novelty in this paper consists in applying and adapting Markov random field for detecting breast anatomical regions on digitized mammograms whereas most of previous works were focused on masses and microcalcifications. The developed method was tested on 50 digitized mammograms of the mini-MIAS database. Computer segmentation is compared to manual one made by a radiologist. A good agreement is obtained on 68% of the mini-MIAS mammographic image database used in this study. Given obtained segmentation results, the proposed method could be considered as a satisfying first approach for segmenting regions of interest in a breast.

  11. Interactive medical image segmentation using PDE control of active contours.

    PubMed

    Karasev, Peter; Kolesov, Ivan; Fritscher, Karl; Vela, Patricio; Mitchell, Phillip; Tannenbaum, Allen

    2013-11-01

    Segmentation of injured or unusual anatomic structures in medical imagery is a problem that has continued to elude fully automated solutions. In this paper, the goal of easy-to-use and consistent interactive segmentation is transformed into a control synthesis problem. A nominal level set partial differential equation (PDE) is assumed to be given; this open-loop system achieves correct segmentation under ideal conditions, but does not agree with a human expert's ideal boundary for real image data. Perturbing the state and dynamics of a level set PDE via the accumulated user input and an observer-like system leads to desirable closed-loop behavior. The input structure is designed such that a user can stabilize the boundary in some desired state without needing to understand any mathematical parameters. Effectiveness of the technique is illustrated with applications to the challenging segmentations of a patellar tendon in magnetic resonance and a shattered femur in computed tomography.

  12. Interactive Medical Image Segmentation using PDE Control of Active Contours

    PubMed Central

    Karasev, Peter; Kolesov, Ivan; Fritscher, Karl; Vela, Patricio; Mitchell, Phillip; Tannenbaum, Allen

    2014-01-01

    Segmentation of injured or unusual anatomic structures in medical imagery is a problem that has continued to elude fully automated solutions. In this paper, the goal of easy-to-use and consistent interactive segmentation is transformed into a control synthesis problem. A nominal level set PDE is assumed to be given; this open-loop system achieves correct segmentation under ideal conditions, but does not agree with a human expert's ideal boundary for real image data. Perturbing the state and dynamics of a level set PDE via the accumulated user input and an observer-like system leads to desirable closed-loop behavior. The input structure is designed such that a user can stabilize the boundary in some desired state without needing to understand any mathematical parameters. Effectiveness of the technique is illustrated with applications to the challenging segmentations of a patellar tendon in MR and a shattered femur in CT. PMID:23893712

  13. On the use of coupled shape priors for segmentation of magnetic resonance images of the knee

    PubMed Central

    Pang, Jincheng; Driban, Jeffrey B.; McAlindon, Timothy E.; Tamez-Peña, José G.; Fripp, Jurgen; Miller, Eric L.

    2015-01-01

    Active contour techniques have been widely employed for medical image segmentation. Significant effort has been focused on the use of training data to build prior statistical models applicable specifically to problems where the objects of interest are embedded in cluttered background. Usually the training data consists of whole shapes of certain organs or structures obtained manually by clinical experts. The resulting prior models enforce segmentation accuracy uniformly over the entire structure or structures to be identified. In this paper, we consider a new coupled prior shape model which is demonstrated to provide high accuracy, specifically in the region of the interest where precision is most needed for the application of the segmentation of the femur and tibia in magnetic resonance (MR) images. Experimental results for the segmentation of MR images of human knees demonstrate that the combination of the new coupled prior shape and a directional edge force provides the improved segmentation performance. Moreover, the new approach allows for equivalent accurate identification of bone marrow lesions (BMLs), a promising biomarker related to osteoarthritis (OA), to the current state of the art but requires significantly less manual interaction. PMID:25014973

  14. Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching.

    PubMed

    Xia, Ying; Chandra, Shekhar S; Engstrom, Craig; Strudwick, Mark W; Crozier, Stuart; Fripp, Jurgen

    2014-12-07

    Accurate segmentation of hip joint cartilage from magnetic resonance (MR) images offers opportunities for quantitative investigations of pathoanatomical conditions such as osteoarthritis. In this paper, we present a fully automatic scheme for the segmentation of the individual femoral and acetabular cartilage plates in the human hip joint from high-resolution 3D MR images. The developed scheme uses an improved optimal multi-object multi-surface graph search framework with an arc-weighted graph representation that incorporates prior morphological knowledge as a basis for segmentation of the individual femoral and acetabular cartilage plates despite weak or incomplete boundary interfaces. This automated scheme was validated against manual segmentations from 3D true fast imaging with steady-state precession (TrueFISP) MR examinations of the right hip joints in 52 asymptomatic volunteers. Compared with expert manual segmentations of the combined, femoral and acetabular cartilage volumes, the automatic scheme obtained mean (± standard deviation) Dice's similarity coefficients of 0.81 (± 0.03), 0.79 (± 0.03) and 0.72 (± 0.05). The corresponding mean absolute volume difference errors were 8.44% (± 6.36), 9.44% (± 7.19) and 9.05% (± 8.02). The mean absolute differences between manual and automated measures of cartilage thickness for femoral and acetabular cartilage plates were 0.13 mm (± 0.12) and 0.11 mm (± 0.11), respectively.

  15. A fully automatic framework for cell segmentation on non-confocal adaptive optics images

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Dubra, Alfredo; Tam, Johnny

    2016-03-01

    By the time most retinal diseases are diagnosed, macroscopic irreversible cellular loss has already occurred. Earlier detection of subtle structural changes at the single photoreceptor level is now possible, using the adaptive optics scanning light ophthalmoscope (AOSLO). This work aims to develop a fully automatic segmentation framework to extract cell boundaries from non-confocal split-detection AOSLO images of the cone photoreceptor mosaic in the living human eye. Significant challenges include anisotropy, heterogeneous cell regions arising from shading effects, and low contrast between cells and background. To overcome these challenges, we propose the use of: 1) multi-scale Hessian response to detect heterogeneous cell regions, 2) convex hulls to create boundary templates, and 3) circularlyconstrained geodesic active contours to refine cell boundaries. We acquired images from three healthy subjects at eccentric retinal regions and manually contoured cells to generate ground-truth for evaluating segmentation accuracy. Dice coefficient, relative absolute area difference, and average contour distance were 82±2%, 11±6%, and 2.0±0.2 pixels (Mean±SD), respectively. We find that strong shading effects from vessels are a main factor that causes cell oversegmentation and false segmentation of non-cell regions. Our segmentation algorithm can automatically and accurately segment photoreceptor cells on non-confocal AOSLO images, which is the first step in longitudinal tracking of cellular changes in the individual eye over the time course of disease progression.

  16. Filter Design and Performance Evaluation for Fingerprint Image Segmentation

    PubMed Central

    Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten

    2016-01-01

    Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: ‘true’ foreground can be labeled as background and features like minutiae can be lost, or conversely ‘true’ background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available. PMID:27171150

  17. Remote sensing image segmentation using local sparse structure constrained latent low rank representation

    NASA Astrophysics Data System (ADS)

    Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping

    2016-09-01

    Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  18. Automatic segmentation and classification of seven-segment display digits on auroral images

    NASA Astrophysics Data System (ADS)

    Savolainen, Tuomas; Whiter, Daniel Keith; Partamies, Noora

    2016-07-01

    In this paper we describe a new and fully automatic method for segmenting and classifying digits in seven-segment displays. The method is applied to a dataset consisting of about 7 million auroral all-sky images taken during the time period of 1973-1997 at camera stations centred around Sodankylä observatory in northern Finland. In each image there is a clock display for the date and time together with the reflection of the whole night sky through a spherical mirror. The digitised film images of the night sky contain valuable scientific information but are impractical to use without an automatic method for extracting the date-time from the display. We describe the implementation and the results of such a method in detail in this paper.

  19. Effect of image scaling and segmentation in digital rock characterisation

    NASA Astrophysics Data System (ADS)

    Jones, B. D.; Feng, Y. T.

    2016-04-01

    Digital material characterisation from microstructural geometry is an emerging field in computer simulation. For permeability characterisation, a variety of studies exist where the lattice Boltzmann method (LBM) has been used in conjunction with computed tomography (CT) imaging to simulate fluid flow through microscopic rock pores. While these previous works show that the technique is applicable, the use of binary image segmentation and the bounceback boundary condition results in a loss of grain surface definition when the modelled geometry is compared to the original CT image. We apply the immersed moving boundary (IMB) condition of Noble and Torczynski as a partial bounceback boundary condition which may be used to better represent the geometric definition provided by a CT image. The IMB condition is validated against published work on idealised porous geometries in both 2D and 3D. Following this, greyscale image segmentation is applied to a CT image of Diemelstadt sandstone. By varying the mapping of CT voxel densities to lattice sites, it is shown that binary image segmentation may underestimate the true permeability of the sample. A CUDA-C-based code, LBM-C, was developed specifically for this work and leverages GPU hardware in order to carry out computations.

  20. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-05-01

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.

  1. Brain Tumor Segmentation using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-03-04

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic Resonance Imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 33 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0:88, 0:83, 0:77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0:78, 0:65, and 0:75 for the complete, core, and enhancing regions, respectively.

  2. Segmentation and separation of venous vasculatures in liver CT images

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Hansen, Christian; Zidowitz, Stephan; Hahn, Horst K.

    2014-03-01

    Computer-aided analysis of venous vasculatures including hepatic veins and portal veins is important in liver surgery planning. The analysis normally consists of two important pre-processing tasks: segmenting both vasculatures and separating them from each other by assigning different labels. During the acquisition of multi-phase CT images, both of the venous vessels are enhanced by injected contrast agent and acquired either in a common phase or in two individual phases. The enhanced signals established by contrast agent are often not stably acquired due to non-optimal acquisition time. Inadequate contrast and the presence of large lesions in oncological patients, make the segmentation task quite challenging. To overcome these diffculties, we propose a framework with minimal user interactions to analyze venous vasculatures in multi-phase CT images. Firstly, presented vasculatures are automatically segmented adopting an efficient multi-scale Hessian-based vesselness filter. The initially segmented vessel trees are then converted to a graph representation, on which a series of graph filters are applied in post-processing steps to rule out irrelevant structures. Eventually, we develop a semi-automatic workow to refine the segmentation in the areas of inferior vena cava and entrance of portal veins, and to simultaneously separate hepatic veins from portal veins. Segmentation quality was evaluated with intensive tests enclosing 60 CT images from both healthy liver donors and oncological patients. To quantitatively measure the similarities between segmented and reference vessel trees, we propose three additional metrics: skeleton distance, branch coverage, and boundary surface distance, which are dedicated to quantifying the misalignment induced by both branching patterns and radii of two vessel trees.

  3. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  4. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    PubMed

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis

  5. Segmentation of MR images using multiple-feature vectors

    NASA Astrophysics Data System (ADS)

    Cole, Orlean I. B.; Daemi, Mohammad F.

    1996-04-01

    Segmentation is an important step in the analysis of MR images (MRI). Considerable progress has been made in this area, and numerous reports on 3D segmentation, volume measurement and visualization have been published in recent years. The main purpose of our study is to investigate the power and use of fractal techniques in extraction of features from MR images of the human brain. These features which are supplemented by other features are used for segmentation, and ultimately for the extraction of a known pathology, in our case multiple- sclerosis (MS) lesions. We are particularly interested in the progress of the lesions and occurrence of new lesions which in a typical case are scattered within the image and are sometimes difficult to identify visually. We propose a technique for multi-channel segmentation of MR images using multiple feature vectors. The channels are proton density, T1-weighted and T2-weighted images containing multiple-sclerosis (MS) lesions at various stages of development. We first represent each image as a set of feature vectors which are estimated using fractal techniques, and supplemented by micro-texture features and features from the gray-level co-occurrence matrix (GLCM). These feature vectors are then used in a feature selection algorithm to reduce the dimension of the feature space. The next stage is segmentation and clustering. The selected feature vectors now form the input to the segmentation and clustering routines and are used as the initial clustering parameters. For this purpose, we have used the classical K-means as the initial clustering method. The clustered image is then passed into a probabilistic classifier to further classify and validate each region, taking into account the spatial properties of the image. Initially, segmentation results were obtained using the fractal dimension features alone. Subsequently, a combination of the fractal dimension features and the supplementary features mentioned above were also obtained

  6. Joint image reconstruction and segmentation using the Potts model

    NASA Astrophysics Data System (ADS)

    Storath, Martin; Weinmann, Andreas; Frikel, Jürgen; Unser, Michael

    2015-02-01

    We propose a new algorithmic approach to the non-smooth and non-convex Potts problem (also called piecewise-constant Mumford-Shah problem) for inverse imaging problems. We derive a suitable splitting into specific subproblems that can all be solved efficiently. Our method does not require a priori knowledge on the gray levels nor on the number of segments of the reconstruction. Further, it avoids anisotropic artifacts such as geometric staircasing. We demonstrate the suitability of our method for joint image reconstruction and segmentation. We focus on Radon data, where we in particular consider limited data situations. For instance, our method is able to recover all segments of the Shepp-Logan phantom from seven angular views only. We illustrate the practical applicability on a real positron emission tomography dataset. As further applications, we consider spherical Radon data as well as blurred data.

  7. Medical image segmentation using object atlas versus object cloud models

    NASA Astrophysics Data System (ADS)

    Phellan, Renzo; Falcão, Alexandre X.; Udupa, Jayaram K.

    2015-03-01

    Medical image segmentation is crucial for quantitative organ analysis and surgical planning. Since interactive segmentation is not practical in a production-mode clinical setting, automatic methods based on 3D object appearance models have been proposed. Among them, approaches based on object atlas are the most actively investigated. A key drawback of these approaches is that they require a time-costly image registration process to build and deploy the atlas. Object cloud models (OCM) have been introduced to avoid registration, considerably speeding up the whole process, but they have not been compared to object atlas models (OAM). The present paper fills this gap by presenting a comparative analysis of the two approaches in the task of individually segmenting nine anatomical structures of the human body. Our results indicate that OCM achieve a statistically significant better accuracy for seven anatomical structures, in terms of Dice Similarity Coefficient and Average Symmetric Surface Distance.

  8. Blood vessel segmentation methodologies in retinal images--a survey.

    PubMed

    Fraz, M M; Remagnino, P; Hoppe, A; Uyyanonvara, B; Rudnicka, A R; Owen, C G; Barman, S A

    2012-10-01

    Retinal vessel segmentation algorithms are a fundamental component of automatic retinal disease screening systems. This work examines the blood vessel segmentation methodologies in two dimensional retinal images acquired from a fundus camera and a survey of techniques is presented. The aim of this paper is to review, analyze and categorize the retinal vessel extraction algorithms, techniques and methodologies, giving a brief description, highlighting the key points and the performance measures. We intend to give the reader a framework for the existing research; to introduce the range of retinal vessel segmentation algorithms; to discuss the current trends and future directions and summarize the open problems. The performance of algorithms is compared and analyzed on two publicly available databases (DRIVE and STARE) of retinal images using a number of measures which include accuracy, true positive rate, false positive rate, sensitivity, specificity and area under receiver operating characteristic (ROC) curve.

  9. Statistical Characterization and Segmentation of Drusen in Fundus Images

    SciTech Connect

    Santos-Villalobos, Hector J; Karnowski, Thomas Paul; Aykac, Deniz; Giancardo, Luca; Li, Yaquin; Nichols, Trent L; Tobin Jr, Kenneth William; Chaum, Edward

    2011-01-01

    Age related Macular Degeneration (AMD) is a disease of the retina associated with aging. AMD progression in patients is characterized by drusen, pigmentation changes, and geographic atrophy, which can be seen using fundus imagery. The level of AMD is characterized by standard scaling methods, which can be somewhat subjective in practice. In this work we propose a statistical image processing approach to segment drusen with the ultimate goal of characterizing the AMD progression in a data set of longitudinal images. The method characterizes retinal structures with a statistical model of the colors in the retina image. When comparing the segmentation results of the method between longitudinal images with known AMD progression and those without, the method detects progression in our longitudinal data set with an area under the receiver operating characteristics curve of 0.99.

  10. Segmentation of mosaicism in cervicographic images using support vector machines

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Long, L. Rodney; Antani, Sameer; Jeronimo, Jose; Thoma, George R.

    2009-02-01

    The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating a large digital repository of cervicographic images for the study of uterine cervix cancer prevention. One of the research goals is to automatically detect diagnostic bio-markers in these images. Reliable bio-marker segmentation in large biomedical image collections is a challenging task due to the large variation in image appearance. Methods described in this paper focus on segmenting mosaicism, which is an important vascular feature used to visually assess the degree of cervical intraepithelial neoplasia. The proposed approach uses support vector machines (SVM) trained on a ground truth dataset annotated by medical experts (which circumvents the need for vascular structure extraction). We have evaluated the performance of the proposed algorithm and experimentally demonstrated its feasibility.

  11. Statistical characterization and segmentation of drusen in fundus images.

    PubMed

    Santos-Villalobos, H; Karnowski, T P; Aykac, D; Giancardo, L; Li, Y; Nichols, T; Tobin, K W; Chaum, E

    2011-01-01

    Age related Macular Degeneration (AMD) is a disease of the retina associated with aging. AMD progression in patients is characterized by drusen, pigmentation changes, and geographic atrophy, which can be seen using fundus imagery. The level of AMD is characterized by standard scaling methods, which can be somewhat subjective in practice. In this work we propose a statistical image processing approach to segment drusen with the ultimate goal of characterizing the AMD progression in a data set of longitudinal images. The method characterizes retinal structures with a statistical model of the colors in the retina image. When comparing the segmentation results of the method between longitudinal images with known AMD progression and those without, the method detects progression in our longitudinal data set with an area under the receiver operating characteristics curve of 0.99.

  12. An Investigation of Implicit Active Contours for Scientific Image Segmentation

    SciTech Connect

    Weeratunga, S K; Kamath, C

    2003-10-29

    The use of partial differential equations in image processing has become an active area of research in the last few years. In particular, active contours are being used for image segmentation, either explicitly as snakes, or implicitly through the level set approach. In this paper, we consider the use of the implicit active contour approach for segmenting scientific images of pollen grains obtained using a scanning electron microscope. Our goal is to better understand the pros and cons of these techniques and to compare them with the traditional approaches such as the Canny and SUSAN edge detectors. The preliminary results of our study show that the level set method is computationally expensive and requires the setting of several different parameters. However, it results in closed contours, which may be useful in separating objects from the background in an image.

  13. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.

    PubMed

    Roychowdhury, Sohini; Koozekanani, Dara D; Kuchinka, Sam N; Parhi, Keshab K

    2016-11-01

    This paper presents a novel classification-based optic disc (OD) segmentation algorithm that detects the OD boundary and the location of vessel origin (VO) pixel. First, the green plane of each fundus image is resized and morphologically reconstructed using a circular structuring element. Bright regions are then extracted from the morphologically reconstructed image that lie in close vicinity of the major blood vessels. Next, the bright regions are classified as bright probable OD regions and non-OD regions using six region-based features and a Gaussian mixture model classifier. The classified bright probable OD region with maximum Vessel-Sum and Solidity is detected as the best candidate region for the OD. Other bright probable OD regions within 1-disc diameter from the centroid of the best candidate OD region are then detected as remaining candidate regions for the OD. A convex hull containing all the candidate OD regions is then estimated, and a best-fit ellipse across the convex hull becomes the segmented OD boundary. Finally, the centroid of major blood vessels within the segmented OD boundary is detected as the VO pixel location. The proposed algorithm has low computation time complexity and it is robust to variations in image illumination, imaging angles, and retinal abnormalities. This algorithm achieves 98.8%-100% OD segmentation success and OD segmentation overlap score in the range of 72%-84% on images from the six public datasets of DRIVE, DIARETDB1, DIARETDB0, CHASE_DB1, MESSIDOR, and STARE in less than 2.14 s per image. Thus, the proposed algorithm can be used for automated detection of retinal pathologies, such as glaucoma, diabetic retinopathy, and maculopathy.

  14. Hierarchical nucleus segmentation in digital pathology images

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Ratner, Vadim; Zhu, Liangjia; Diprima, Tammy; Kurc, Tahsin; Tannenbaum, Allen; Saltz, Joel

    2016-03-01

    Extracting nuclei is one of the most actively studied topic in the digital pathology researches. Most of the studies directly search the nuclei (or seeds for the nuclei) from the finest resolution available. While the richest information has been utilized by such approaches, it is sometimes difficult to address the heterogeneity of nuclei in different tissues. In this work, we propose a hierarchical approach which starts from the lower resolution level and adaptively adjusts the parameters while progressing into finer and finer resolution. The algorithm is tested on brain and lung cancers images from The Cancer Genome Atlas data set.

  15. Hierarchical nucleus segmentation in digital pathology images

    PubMed Central

    Gao, Yi; Ratner, Vadim; Zhu, Liangjia; Diprima, Tammy; Kurc, Tahsin; Tannenbaum, Allen; Saltz, Joel

    2016-01-01

    Extracting nuclei is one of the most actively studied topic in the digital pathology researches. Most of the studies directly search the nuclei (or seeds for the nuclei) from the finest resolution available. While the richest information has been utilized by such approaches, it is sometimes difficult to address the heterogeneity of nuclei in different tissues. In this work, we propose a hierarchical approach which starts from the lower resolution level and adaptively adjusts the parameters while progressing into finer and finer resolution. The algorithm is tested on brain and lung cancers images from The Cancer Genome Atlas data set. PMID:27375315

  16. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm

    PubMed Central

    Yang, Zhang; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428

  17. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.

    PubMed

    Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method.

  18. Application of scan line filling to leaf image segmentation of sugarcane red rot disease

    NASA Astrophysics Data System (ADS)

    Zhao, Jinhui; Liu, Muhua; Yao, Mingyin

    2009-07-01

    Red rot disease is a common disease at the seedling stage of sugarcane. In order to identify red rot disease effectively, a segmentation algorithm for leaf images of sugarcane red rot disease using scan line filling is proposed. The proposed algorithm has six stages. During the first stage, the class of green plants is separated from the class of non-green plants using the color feature of 2G-R-B. At the second stage, connected regions of the class of green plants are labeled. At the third stage, outer contours are extracted. At the fourth stage, the regions surrounded by outer contours are filled using scan line filling. At the fifth stage, the images are colorized. At the sixth stage, red rot diseased spots are extracted using the color feature. The experimental results show that this algorithm can extract red rot diseased spots effectively, and the accurate rate of image segmentation for red rot diseases is 96%.

  19. Automatic tissue segmentation of breast biopsies imaged by QPI

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Nguyen, Tan; Kandel, Mikhail; Marcias, Virgilia; Do, Minh; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2016-03-01

    The current tissue evaluation method for breast cancer would greatly benefit from higher throughput and less inter-observer variation. Since quantitative phase imaging (QPI) measures physical parameters of tissue, it can be used to find quantitative markers, eliminating observer subjectivity. Furthermore, since the pixel values in QPI remain the same regardless of the instrument used, classifiers can be built to segment various tissue components without need for color calibration. In this work we use a texton-based approach to segment QPI images of breast tissue into various tissue components (epithelium, stroma or lumen). A tissue microarray comprising of 900 unstained cores from 400 different patients was imaged using Spatial Light Interference Microscopy. The training data were generated by manually segmenting the images for 36 cores and labelling each pixel (epithelium, stroma or lumen.). For each pixel in the data, a response vector was generated by the Leung-Malik (LM) filter bank and these responses were clustered using the k-means algorithm to find the centers (called textons). A random forest classifier was then trained to find the relationship between a pixel's label and the histogram of these textons in that pixel's neighborhood. The segmentation was carried out on the validation set by calculating the texton histogram in a pixel's neighborhood and generating a label based on the model learnt during training. Segmentation of the tissue into various components is an important step toward efficiently computing parameters that are markers of disease. Automated segmentation, followed by diagnosis, can improve the accuracy and speed of analysis leading to better health outcomes.

  20. Segmentation and interpretation of 3D protein images

    SciTech Connect

    Leherte, L.; Baxter, K.; Glasgow, J.; Fortier, S.

    1994-12-31

    The segmentation and interpretation of three-dimensional images of proteins is considered. A topological approach is used to represent a protein structure as a spanning tree of critical points, where each critical point corresponds to a residue or the connectivity between residues. The critical points are subsequently analyzed to recognize secondary structure motifs within the protein. Results of applying the approach to ideal and experimental images of proteins at medium resolution are presented.

  1. A geometric deformable model for echocardiographic image segmentation

    NASA Technical Reports Server (NTRS)

    Hang, X.; Greenberg, N. L.; Thomas, J. D.

    2002-01-01

    Gradient vector flow (GVF), an elegant external force for parametric deformable models, can capture object boundaries from both sides. A new geometric deformable model is proposed that combines GVF and the geodesic active contour model. The level set method is used as the numerical method of this model. The model is applied for echocardiographic image segmentation.

  2. Segmentation of textured images using a multiresolution Gaussian autoregressive model.

    PubMed

    Comer, M L; Delp, E J

    1999-01-01

    We present a new algorithm for segmentation of textured images using a multiresolution Bayesian approach. The new algorithm uses a multiresolution Gaussian autoregressive (MGAR) model for the pyramid representation of the observed image, and assumes a multiscale Markov random field model for the class label pyramid. The models used in this paper incorporate correlations between different levels of both the observed image pyramid and the class label pyramid. The criterion used for segmentation is the minimization of the expected value of the number of misclassified nodes in the multiresolution lattice. The estimate which satisfies this criterion is referred to as the "multiresolution maximization of the posterior marginals" (MMPM) estimate, and is a natural extension of the single-resolution "maximization of the posterior marginals" (MPM) estimate. Previous multiresolution segmentation techniques have been based on the maximum a posterior (MAP) estimation criterion, which has been shown to be less appropriate for segmentation than the MPM criterion. It is assumed that the number of distinct textures in the observed image is known. The parameters of the MGAR model-the means, prediction coefficients, and prediction error variances of the different textures-are unknown. A modified version of the expectation-maximization (EM) algorithm is used to estimate these parameters. The parameters of the Gibbs distribution for the label pyramid are assumed to be known. Experimental results demonstrating the performance of the algorithm are presented.

  3. Shape “Break-and-Repair” Strategy and Its Application to Automated Medical Image Segmentation

    PubMed Central

    Pu, Jiantao; Paik, David S.; Meng, Xin; Roos, Justus E.; Rubin, Geoffrey D.

    2011-01-01

    In three-dimensional medical imaging, segmentation of specific anatomy structure is often a preprocessing step for computer-aided detection/diagnosis (CAD) purposes, and its performance has a significant impact on diagnosis of diseases as well as objective quantitative assessment of therapeutic efficacy. However, the existence of various diseases, image noise or artifacts, and individual anatomical variety generally impose a challenge for accurate segmentation of specific structures. To address these problems, a shape analysis strategy termed “break-and-repair” is presented in this study to facilitate automated medical image segmentation. Similar to surface approximation using a limited number of control points, the basic idea is to remove problematic regions and then estimate a smooth and complete surface shape by representing the remaining regions with high fidelity as an implicit function. The innovation of this shape analysis strategy is the capability of solving challenging medical image segmentation problems in a unified framework, regardless of the variability of anatomical structures in question. In our implementation, principal curvature analysis is used to identify and remove the problematic regions and radial basis function (RBF) based implicit surface fitting is used to achieve a closed (or complete) surface boundary. The feasibility and performance of this strategy are demonstrated by applying it to automated segmentation of two completely different anatomical structures depicted on CT examinations, namely human lungs and pulmonary nodules. Our quantitative experiments on a large number of clinical CT examinations collected from different sources demonstrate the accuracy, robustness, and generality of the shape “break-and-repair” strategy in medical image segmentation. PMID:21071791

  4. Shape "break-and-repair" strategy and its application to automated medical image segmentation.

    PubMed

    Pu, Jiantao; Paik, David S; Meng, Xin; Roos, Justus E; Rubin, Geoffrey D

    2011-01-01

    In three-dimensional medical imaging, segmentation of specific anatomy structure is often a preprocessing step for computer-aided detection/diagnosis (CAD) purposes, and its performance has a significant impact on diagnosis of diseases as well as objective quantitative assessment of therapeutic efficacy. However, the existence of various diseases, image noise or artifacts, and individual anatomical variety generally impose a challenge for accurate segmentation of specific structures. To address these problems, a shape analysis strategy termed "break-and-repair" is presented in this study to facilitate automated medical image segmentation. Similar to surface approximation using a limited number of control points, the basic idea is to remove problematic regions and then estimate a smooth and complete surface shape by representing the remaining regions with high fidelity as an implicit function. The innovation of this shape analysis strategy is the capability of solving challenging medical image segmentation problems in a unified framework, regardless of the variability of anatomical structures in question. In our implementation, principal curvature analysis is used to identify and remove the problematic regions and radial basis function (RBF) based implicit surface fitting is used to achieve a closed (or complete) surface boundary. The feasibility and performance of this strategy are demonstrated by applying it to automated segmentation of two completely different anatomical structures depicted on CT examinations, namely human lungs and pulmonary nodules. Our quantitative experiments on a large number of clinical CT examinations collected from different sources demonstrate the accuracy, robustness, and generality of the shape "break-and-repair" strategy in medical image segmentation.

  5. Automated vessel shadow segmentation of fovea-centered spectral-domain images from multiple OCT devices

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Gerendas, Bianca S.; Waldstein, Sebastian M.; Simader, Christian; Schmidt-Erfurth, Ursula

    2014-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high reso- lution, three-dimensional (3D) cross sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD) and glaucoma.1 Disease diagnosis, assessment, and treatment requires a patient to undergo multiple OCT scans, possibly using different scanning devices, to accurately and precisely gauge disease activity, progression and treatment success. However, the use of OCT imaging devices from different vendors, combined with patient movement may result in poor scan spatial correlation, potentially leading to incorrect patient diagnosis or treatment analysis. Image registration can be used to precisely compare disease states by registering differing 3D scans to one another. In order to align 3D scans from different time- points and vendors using registration, landmarks are required, the most obvious being the retinal vasculature. Presented here is a fully automated cross-vendor method to acquire retina vessel locations for OCT registration from fovea centred 3D SD-OCT scans based on vessel shadows. Noise filtered OCT scans are flattened based on vendor retinal layer segmentation, to extract the retinal pigment epithelium (RPE) layer of the retina. Voxel based layer profile analysis and k-means clustering is used to extract candidate vessel shadow regions from the RPE layer. In conjunction, the extracted RPE layers are combined to generate a projection image featuring all candidate vessel shadows. Image processing methods for vessel segmentation of the OCT constructed projection image are then applied to optimize the accuracy of OCT vessel shadow segmentation through the removal of false positive shadow regions such as those caused by exudates and cysts. Validation of segmented vessel shadows uses

  6. Automatic cytoplasm and nuclei segmentation for color cervical smear image using an efficient gap-search MRF.

    PubMed

    Zhao, Lili; Li, Kuan; Wang, Mao; Yin, Jianping; Zhu, En; Wu, Chengkun; Wang, Siqi; Zhu, Chengzhang

    2016-04-01

    Accurate and effective cervical smear image segmentation is required for automated cervical cell analysis systems. Thus, we proposed a novel superpixel-based Markov random field (MRF) segmentation framework to acquire the nucleus, cytoplasm and image background of cell images. We seek to classify color non-overlapping superpixel-patches on one image for image segmentation. This model describes the whole image as an undirected probabilistic graphical model and was developed using an automatic label-map mechanism for determining nuclear, cytoplasmic and background regions. A gap-search algorithm was designed to enhance the model efficiency. Data show that the algorithms of our framework provide better accuracy for both real-world and the public Herlev datasets. Furthermore, the proposed gap-search algorithm of this model is much more faster than pixel-based and superpixel-based algorithms.

  7. Lung vessel segmentation in CT images using graph-cuts

    NASA Astrophysics Data System (ADS)

    Zhai, Zhiwei; Staring, Marius; Stoel, Berend C.

    2016-03-01

    Accurate lung vessel segmentation is an important operation for lung CT analysis. Filters that are based on analyzing the eigenvalues of the Hessian matrix are popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work, we propose a new graph-cuts cost function combining appearance and shape, where CT intensity represents appearance and vesselness from a Hessian-based filter represents shape. Due to the amount of voxels in high resolution CT scans, the memory requirement and time consumption for building a graph structure is very high. In order to make the graph representation computationally tractable, those voxels that are considered clearly background are removed from the graph nodes, using a threshold on the vesselness map. The graph structure is then established based on the remaining voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining voxels. Vessels are segmented by minimizing the energy cost function with the graph-cuts optimization framework. We optimized the parameters used in the graph-cuts cost function and evaluated the proposed method with two manually labeled sub-volumes. For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The evaluation results of the sub-volume data show that the proposed method produced a more accurate vessel segmentation compared to the previous methods, with F1 score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive performance with an area under the ROC curve of 0.975, especially among the binary submissions.

  8. Hierarchical stochastic image grammars for classification and segmentation.

    PubMed

    Wang, Wiley; Pollak, Ilya; Wong, Tak-Shing; Bouman, Charles A; Harper, Mary P; Siskind, Jeffrey M

    2006-10-01

    We develop a new class of hierarchical stochastic image models called spatial random trees (SRTs) which admit polynomial-complexity exact inference algorithms. Our framework of multitree dictionaries is the starting point for this construction. SRTs are stochastic hidden tree models whose leaves are associated with image data. The states at the tree nodes are random variables, and, in addition, the structure of the tree is random and is generated by a probabilistic grammar. We describe an efficient recursive algorithm for obtaining the maximum a posteriori estimate of both the tree structure and the tree states given an image. We also develop an efficient procedure for performing one iteration of the expectation-maximization algorithm and use it to estimate the model parameters from a set of training images. We address other inference problems arising in applications such as maximization of posterior marginals and hypothesis testing. Our models and algorithms are illustrated through several image classification and segmentation experiments, ranging from the segmentation of synthetic images to the classification of natural photographs and the segmentation of scanned documents. In each case, we show that our method substantially improves accuracy over a variety of existing methods.

  9. Imaging tests for accurate diagnosis of acute biliary pancreatitis.

    PubMed

    Şurlin, Valeriu; Săftoiu, Adrian; Dumitrescu, Daniela

    2014-11-28

    Gallstones represent the most frequent aetiology of acute pancreatitis in many statistics all over the world, estimated between 40%-60%. Accurate diagnosis of acute biliary pancreatitis (ABP) is of outmost importance because clearance of lithiasis [gallbladder and common bile duct (CBD)] rules out recurrences. Confirmation of biliary lithiasis is done by imaging. The sensitivity of the ultrasonography (US) in the detection of gallstones is over 95% in uncomplicated cases, but in ABP, sensitivity for gallstone detection is lower, being less than 80% due to the ileus and bowel distension. Sensitivity of transabdominal ultrasonography (TUS) for choledocolithiasis varies between 50%-80%, but the specificity is high, reaching 95%. Diameter of the bile duct may be orientative for diagnosis. Endoscopic ultrasonography (EUS) seems to be a more effective tool to diagnose ABP rather than endoscopic retrograde cholangiopancreatography (ERCP), which should be performed only for therapeutic purposes. As the sensitivity and specificity of computerized tomography are lower as compared to state-of-the-art magnetic resonance cholangiopancreatography (MRCP) or EUS, especially for small stones and small diameter of CBD, the later techniques are nowadays preferred for the evaluation of ABP patients. ERCP has the highest accuracy for the diagnosis of choledocholithiasis and is used as a reference standard in many studies, especially after sphincterotomy and balloon extraction of CBD stones. Laparoscopic ultrasonography is a useful tool for the intraoperative diagnosis of choledocholithiasis. Routine exploration of the CBD in cases of patients scheduled for cholecystectomy after an attack of ABP was not proven useful. A significant rate of the so-called idiopathic pancreatitis is actually caused by microlithiasis and/or biliary sludge. In conclusion, the general algorithm for CBD stone detection starts with anamnesis, serum biochemistry and then TUS, followed by EUS or MRCP. In the end

  10. DCS-SVM: a novel semi-automated method for human brain MR image segmentation.

    PubMed

    Ahmadvand, Ali; Daliri, Mohammad Reza; Hajiali, Mohammadtaghi

    2016-12-08

    In this paper, a novel method is proposed which appropriately segments magnetic resonance (MR) brain images into three main tissues. This paper proposes an extension of our previous work in which we suggested a combination of multiple classifiers (CMC)-based methods named dynamic classifier selection-dynamic local training local Tanimoto index (DCS-DLTLTI) for MR brain image segmentation into three main cerebral tissues. This idea is used here and a novel method is developed that tries to use more complex and accurate classifiers like support vector machine (SVM) in the ensemble. This work is challenging because the CMC-based methods are time consuming, especially on huge datasets like three-dimensional (3D) brain MR images. Moreover, SVM is a powerful method that is used for modeling datasets with complex feature space, but it also has huge computational cost for big datasets, especially those with strong interclass variability problems and with more than two classes such as 3D brain images; therefore, we cannot use SVM in DCS-DLTLTI. Therefore, we propose a novel approach named "DCS-SVM" to use SVM in DCS-DLTLTI to improve the accuracy of segmentation results. The proposed method is applied on well-known datasets of the Internet Brain Segmentation Repository (IBSR) and promising results are obtained.

  11. Graph cut based co-segmentation of lung tumor in PET-CT images

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Xiang, Dehui; Zhang, Bin; Chen, Xinjian

    2015-03-01

    Accurate segmentation of pulmonary tumor is important for clinicians to make appropriate diagnosis and treatment. Positron Emission Tomography (PET) and Computed Tomography (CT) are two commonly used imaging technologies for image-guided radiation therapy. In this study, we present a graph-based method to integrate the two modalities to segment the tumor simultaneously on PET and CT images. The co-segmentation problem is formulated as an energy minimization problem. Two weighted sub-graphs are constructed for PET and CT. The characteristic information of the two modalities is encoded on the edges of the graph. A context cost is enforced by adding context arcs to achieve consistent results between the two modalities. An optimal solution can be achieved by solving a maximum flow problem. The proposed segmentation method was validated on 18 sets of PET-CT images from different patients with non-small cell lung cancer (NSCLC). The quantitative results show significant improvement of our method with a mean DSC value 0.82.

  12. Oscillatory network with self-organized dynamical connections for synchronization-based image segmentation.

    PubMed

    Kuzmina, Margarita; Manykin, Eduard; Surina, Irina

    2004-01-01

    An oscillatory network of columnar architecture located in 3D spatial lattice was recently designed by the authors as oscillatory model of the brain visual cortex. Single network oscillator is a relaxational neural oscillator with internal dynamics tunable by visual image characteristics - local brightness and elementary bar orientation. It is able to demonstrate either activity state (stable undamped oscillations) or "silence" (quickly damped oscillations). Self-organized nonlocal dynamical connections of oscillators depend on oscillator activity levels and orientations of cortical receptive fields. Network performance consists in transfer into a state of clusterized synchronization. At current stage grey-level image segmentation tasks are carried out by 2D oscillatory network, obtained as a limit version of the source model. Due to supplemented network coupling strength control the 2D reduced network provides synchronization-based image segmentation. New results on segmentation of brightness and texture images presented in the paper demonstrate accurate network performance and informative visualization of segmentation results, inherent in the model.

  13. Performance evaluation of an automatic segmentation method of cerebral arteries in MRA images by use of a large image database

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yoshikazu; Asano, Tatsunori; Hara, Takeshi; Fujita, Hiroshi; Kinosada, Yasutomi; Asano, Takahiko; Kato, Hiroki; Kanematsu, Masayuki; Hoshi, Hiroaki; Iwama, Toru

    2009-02-01

    The detection of cerebrovascular diseases such as unruptured aneurysm, stenosis, and occlusion is a major application of magnetic resonance angiography (MRA). However, their accurate detection is often difficult for radiologists. Therefore, several computer-aided diagnosis (CAD) schemes have been developed in order to assist radiologists with image interpretation. The purpose of this study was to develop a computerized method for segmenting cerebral arteries, which is an essential component of CAD schemes. For the segmentation of vessel regions, we first used a gray level transformation to calibrate voxel values. To adjust for variations in the positioning of patients, registration was subsequently employed to maximize the overlapping of the vessel regions in the target image and reference image. The vessel regions were then segmented from the background using gray-level thresholding and region growing techniques. Finally, rule-based schemes with features such as size, shape, and anatomical location were employed to distinguish between vessel regions and false positives. Our method was applied to 854 clinical cases obtained from two different hospitals. The segmentation of cerebral arteries in 97.1%(829/854) of the MRA studies was attained as an acceptable result. Therefore, our computerized method would be useful in CAD schemes for the detection of cerebrovascular diseases in MRA images.

  14. Level Set Based Hippocampus Segmentation in MR Images with Improved Initialization Using Region Growing

    PubMed Central

    Zhou, Zhaozhong; Ding, Xiaokang; Deng, Xiaolei; Zou, Ling; Li, Bailin

    2017-01-01

    The hippocampus has been known as one of the most important structures referred to as Alzheimer's disease and other neurological disorders. However, segmentation of the hippocampus from MR images is still a challenging task due to its small size, complex shape, low contrast, and discontinuous boundaries. For the accurate and efficient detection of the hippocampus, a new image segmentation method based on adaptive region growing and level set algorithm is proposed. Firstly, adaptive region growing and morphological operations are performed in the target regions and its output is used for the initial contour of level set evolution method. Then, an improved edge-based level set method utilizing global Gaussian distributions with different means and variances is developed to implement the accurate segmentation. Finally, gradient descent method is adopted to get the minimization of the energy equation. As proved by experiment results, the proposed method can ideally extract the contours of the hippocampus that are very close to manual segmentation drawn by specialists. PMID:28191031

  15. The algorithm study for using the back propagation neural network in CT image segmentation

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Liu, Jie; Chen, Chen; Li, Ying Qi

    2017-01-01

    Back propagation neural network(BP neural network) is a type of multi-layer feed forward network which spread positively, while the error spread backwardly. Since BP network has advantages in learning and storing the mapping between a large number of input and output layers without complex mathematical equations to describe the mapping relationship, it is most widely used. BP can iteratively compute the weight coefficients and thresholds of the network based on the training and back propagation of samples, which can minimize the error sum of squares of the network. Since the boundary of the computed tomography (CT) heart images is usually discontinuous, and it exist large changes in the volume and boundary of heart images, The conventional segmentation such as region growing and watershed algorithm can't achieve satisfactory results. Meanwhile, there are large differences between the diastolic and systolic images. The conventional methods can't accurately classify the two cases. In this paper, we introduced BP to handle the segmentation of heart images. We segmented a large amount of CT images artificially to obtain the samples, and the BP network was trained based on these samples. To acquire the appropriate BP network for the segmentation of heart images, we normalized the heart images, and extract the gray-level information of the heart. Then the boundary of the images was input into the network to compare the differences between the theoretical output and the actual output, and we reinput the errors into the BP network to modify the weight coefficients of layers. Through a large amount of training, the BP network tend to be stable, and the weight coefficients of layers can be determined, which means the relationship between the CT images and the boundary of heart.

  16. Correlation-based discrimination between cardiac tissue and blood for segmentation of 3D echocardiographic images

    NASA Astrophysics Data System (ADS)

    Saris, Anne E. C. M.; Nillesen, Maartje M.; Lopata, Richard G. P.; de Korte, Chris L.

    2013-03-01

    Automated segmentation of 3D echocardiographic images in patients with congenital heart disease is challenging, because the boundary between blood and cardiac tissue is poorly defined in some regions. Cardiologists mentally incorporate movement of the heart, using temporal coherence of structures to resolve ambiguities. Therefore, we investigated the merit of temporal cross-correlation for automated segmentation over the entire cardiac cycle. Optimal settings for maximum cross-correlation (MCC) calculation, based on a 3D cross-correlation based displacement estimation algorithm, were determined to obtain the best contrast between blood and myocardial tissue over the entire cardiac cycle. Resulting envelope-based as well as RF-based MCC values were used as additional external force in a deformable model approach, to segment the left-ventricular cavity in entire systolic phase. MCC values were tested against, and combined with, adaptive filtered, demodulated RF-data. Segmentation results were compared with manually segmented volumes using a 3D Dice Similarity Index (3DSI). Results in 3D pediatric echocardiographic images sequences (n = 4) demonstrate that incorporation of temporal information improves segmentation. The use of MCC values, either alone or in combination with adaptive filtered, demodulated RF-data, resulted in an increase of the 3DSI in 75% of the cases (average 3DSI increase: 0.71 to 0.82). Results might be further improved by optimizing MCC-contrast locally, in regions with low blood-tissue contrast. Reducing underestimation of the endocardial volume due to MCC processing scheme (choice of window size) and consequential border-misalignment, could also lead to more accurate segmentations. Furthermore, increasing the frame rate will also increase MCC-contrast and thus improve segmentation.

  17. A general approach to liver lesion segmentation in CT images

    NASA Astrophysics Data System (ADS)

    Cao, Li; Udupa, Jayaram K.; Odhner, Dewey; Huang, Lidong; Tong, Yubing; Torigian, Drew A.

    2016-03-01

    Lesion segmentation has remained a challenge in different body regions. Generalizability is lacking in published methods as variability in results is common, even for a given organ and modality, such that it becomes difficult to establish standardized methods of disease quantification and reporting. This paper makes an attempt at a generalizable method based on classifying lesions along with their background into groups using clinically used visual attributes. Using an Iterative Relative Fuzzy Connectedness (IRFC) delineation engine, the ideas are implemented for the task of liver lesion segmentation in computed tomography (CT) images. For lesion groups with the same background properties, a few subjects are chosen as the training set to obtain the optimal IRFC parameters for the background tissue components. For lesion groups with similar foreground properties, optimal foreground parameters for IRFC are set as the median intensity value of the training lesion subset. To segment liver lesions belonging to a certain group, the devised method requires manual loading of the corresponding parameters, and correct setting of the foreground and background seeds. The segmentation is then completed in seconds. Segmentation accuracy and repeatability with respect to seed specification are evaluated. Accuracy is assessed by the assignment of a delineation quality score (DQS) to each case. Inter-operator repeatability is assessed by the difference between segmentations carried out independently by two operators. Experiments on 80 liver lesion cases show that the proposed method achieves a mean DQS score of 4.03 and inter-operator repeatability of 92.3%.

  18. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  19. Unsupervised segmentation of the prostate using MR images based on level set with a shape prior.

    PubMed

    Liu, Xin; Langer, D L; Haider, M A; Van der Kwast, T H; Evans, A J; Wernick, M N; Yetik, I S

    2009-01-01

    Prostate cancer is the second leading cause of cancer death in American men. Current prostate MRI can benefit from automated tumor localization to help guide biopsy, radiotherapy and surgical planning. An important step of automated prostate cancer localization is the segmentation of the prostate. In this paper, we propose a fully automatic method for the segmentation of the prostate. We firstly apply a deformable ellipse model to find an ellipse that best fits the prostate shape. Then, this ellipse is used to initiate the level set and constrain the level set evolution with a shape penalty term. Finally, certain post processing methods are applied to refine the prostate boundaries. We apply the proposed method to real diffusion-weighted (DWI) MRI images data to test the performance. Our results show that accurate segmentation can be obtained with the proposed method compared to human readers.

  20. Syntactic Algorithms for Image Segmentation and a Special Computer Architecture for Image Processing

    DTIC Science & Technology

    1977-12-01

    Experimental Results of image Segmentation from FLIR ( Forword Looking Infrared) Images . ...... . . . . . . . 1115 4.3.1 Data Acquisition System of...of a picture. Concerning the computer processing time in- volved In image segmentation, the grey level histogram thresholding approach is quite fast ...computer storage and the CPU time for each matching operation. The syntax- controlled method has the advantage of fast computer processing time for

  1. Comparison of three image segmentation techniques for target volume delineation in positron emission tomography.

    PubMed

    Drever, Laura A; Roa, Wilson; McEwan, Alexander; Robinson, Don

    2007-03-09

    Incorporation of positron emission tomography (PET) data into radiotherapy planning is currently under investigation for numerous sites including lung, brain, head and neck, breast, and prostate. Accurate tumor-volume quantification is essential to the proper utilization of the unique information provided by PET. Unfortunately,target delineation within PET currently remains a largely unaddressed problem. We therefore examined the ability of three segmentation methods-thresholding, Sobel edge detection, and the watershed approach-to yield accurate delineation of PET target cross-sections. A phantom study employing well-defined cylindrical and spherical volumes and activity distributions provided an opportunity to assess the relative efficacy with which the three approaches could yield accurate target delineation in PET. Results revealed that threshold segmentation can accurately delineate target cross-sections, but that the Sobel and watershed techniques both consistently fail to correctly identify the size of experimental volumes. The usefulness of threshold-based segmentation is limited, however, by the dependence of the correct threshold (that which returns the correct area at each image slice) on target size.

  2. Superpixel Cut for Figure-Ground Image Segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Michael Ying; Rosenhahn, Bodo

    2016-06-01

    Figure-ground image segmentation has been a challenging problem in computer vision. Apart from the difficulties in establishing an effective framework to divide the image pixels into meaningful groups, the notions of figure and ground often need to be properly defined by providing either user inputs or object models. In this paper, we propose a novel graph-based segmentation framework, called superpixel cut. The key idea is to formulate foreground segmentation as finding a subset of superpixels that partitions a graph over superpixels. The problem is formulated as Min-Cut. Therefore, we propose a novel cost function that simultaneously minimizes the inter-class similarity while maximizing the intra-class similarity. This cost function is optimized using parametric programming. After a small learning step, our approach is fully automatic and fully bottom-up, which requires no high-level knowledge such as shape priors and scene content. It recovers coherent components of images, providing a set of multiscale hypotheses for high-level reasoning. We evaluate our proposed framework by comparing it to other generic figure-ground segmentation approaches. Our method achieves improved performance on state-of-the-art benchmark databases.

  3. Unsupervised segmentation of MRI knees using image partition forests

    NASA Astrophysics Data System (ADS)

    Marčan, Marija; Voiculescu, Irina

    2016-03-01

    Nowadays many people are affected by arthritis, a condition of the joints with limited prevention measures, but with various options of treatment the most radical of which is surgical. In order for surgery to be successful, it can make use of careful analysis of patient-based models generated from medical images, usually by manual segmentation. In this work we show how to automate the segmentation of a crucial and complex joint -- the knee. To achieve this goal we rely on our novel way of representing a 3D voxel volume as a hierarchical structure of partitions which we have named Image Partition Forest (IPF). The IPF contains several partition layers of increasing coarseness, with partitions nested across layers in the form of adjacency graphs. On the basis of a set of properties (size, mean intensity, coordinates) of each node in the IPF we classify nodes into different features. Values indicating whether or not any particular node belongs to the femur or tibia are assigned through node filtering and node-based region growing. So far we have evaluated our method on 15 MRI knee images. Our unsupervised segmentation compared against a hand-segmented gold standard has achieved an average Dice similarity coefficient of 0.95 for femur and 0.93 for tibia, and an average symmetric surface distance of 0.98 mm for femur and 0.73 mm for tibia. The paper also discusses ways to introduce stricter morphological and spatial conditioning in the bone labelling process.

  4. Segmentation of color images based on the gravitational clustering concept

    NASA Astrophysics Data System (ADS)

    Lai, Andrew H.; Yung, H. C.

    1998-03-01

    A new clustering algorithm derived from the Markovian model of the gravitational clustering concept is proposed that works in the RGB measurement space for color image. To enable the model to be applicable in image segmentation, the new algorithm imposes a clustering constraint at each clustering iteration to control and determine the formation of multiple clusters. Using such constraint to limit the attraction between clusters, a termination condition can be easily defined. The new clustering algorithm is evaluated objectively and subjectively on three different images against the K-means clustering algorithm, the recursive histogram clustering algorithm for color, the Hedley-Yan algorithm, and the widely used seed-based region growing algorithm. From the evaluation, it is observed that the new algorithm exhibits the following characteristics: (1) its objective measurement figures are comparable with the best in this group of segmentation algorithms; (2) it generates smoother region boundaries; (3) the segmented boundaries align closely with the original boundaries; and (4) it forms a meaningful number of segmented regions.

  5. Comparison of perceptual color spaces for natural image segmentation tasks

    NASA Astrophysics Data System (ADS)

    Correa-Tome, Fernando E.; Sanchez-Yanez, Raul E.; Ayala-Ramirez, Victor

    2011-11-01

    Color image segmentation largely depends on the color space chosen. Furthermore, spaces that show perceptual uniformity seem to outperform others due to their emulation of the human perception of color. We evaluate three perceptual color spaces, CIELAB, CIELUV, and RLAB, in order to determine their contribution to natural image segmentation and to identify the space that obtains the best results over a test set of images. The nonperceptual color space RGB is also included for reference purposes. In order to quantify the quality of resulting segmentations, an empirical discrepancy evaluation methodology is discussed. The Berkeley Segmentation Dataset and Benchmark is used in test series, and two approaches are taken to perform the experiments: supervised pixelwise classification using reference colors, and unsupervised clustering using k-means. A majority filter is used as a postprocessing stage, in order to determine its contribution to the result. Furthermore, a comparison of elapsed times taken by the required transformations is included. The main finding of our study is that the CIELUV color space outperforms the other color spaces in both discriminatory performance and computational speed, for the average case.

  6. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    PubMed Central

    Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2016-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501

  7. Interactive segmentation for geographic atrophy in retinal fundus images.

    PubMed

    Lee, Noah; Smith, R Theodore; Laine, Andrew F

    2008-10-01

    Fundus auto-fluorescence (FAF) imaging is a non-invasive technique for in vivo ophthalmoscopic inspection of age-related macular degeneration (AMD), the most common cause of blindness in developed countries. Geographic atrophy (GA) is an advanced form of AMD and accounts for 12-21% of severe visual loss in this disorder [3]. Automatic quantification of GA is important for determining disease progression and facilitating clinical diagnosis of AMD. The problem of automatic segmentation of pathological