Science.gov

Sample records for accurate land surface

  1. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Haverd, Vanessa

    2014-05-01

    Transfer of energy and moisture in frozen soil, and hence the active layer depth, are strongly influenced by the soil freezing curve which specifies liquid moisture content as a function of temperature. However, the curve is typically not represented in global land surface models, with less physically-based approximations being used instead. In this work, we develop a physically accurate model of soil freeze-thaw processes, suitable for use in a global land surface scheme. We incorporated soil freeze-thaw processes into an existing detailed model for the transfer of heat, liquid water and water vapor in soils, including isotope diagnostics - Soil-Litter-Iso (SLI, Haverd & Cuntz 2010), which has been used successfully for water and carbon balances of the Australian continent (Haverd et al. 2013). A unique feature of SLI is that fluxes of energy and moisture are coupled using a single system of linear equations. The extension to include freeze-thaw processes and snow maintains this elegant coupling, requiring only coefficients in the linear equations to be modified. No impedance factor for hydraulic conductivity is needed because of the formulation by matric flux potential rather than pressure head. Iterations are avoided which results in the same computational speed as without freezing. The extended model is evaluated extensively in stand-alone mode (against theoretical predictions, lab experiments and field data) and as part of the CABLE global land surface scheme. SLI accurately solves the classical Stefan problem of a homogeneous medium undergoing a phase change. The model also accurately reproduces the freezing front, which is observed in laboratory experiments (Hansson et al. 2004). SLI was further tested against observations at a permafrost site in Tibet (Weismüller et al. 2011). It reproduces seasonal thawing and freezing of the active layer to within 3 K of the observed soil temperature and to within 10% of the observed volumetric liquid soil moisture

  2. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Cuntz, M.; Haverd, V.

    2013-12-01

    Transfer of energy and moisture in frozen soil, and hence the active layer depth, are strongly influenced by the soil freezing curve which specifies liquid moisture content as a function of temperature. However, the curve is typically not represented in global land surface models, with less physically-based approximations being used instead. In this work, we develop a physically accurate model of soil freeze-thaw processes, suitable for use in a global land surface scheme. We incorporated soil freeze-thaw processes into an existing detailed model for the transfer of heat, liquid water and water vapor in soils, including isotope diagnostics - Soil-Litter-Iso (SLI, Haverd & Cuntz 2010), which has been used successfully for water and carbon balances of the Australian continent (Haverd et al. 2013). A unique feature of SLI is that fluxes of energy and moisture are coupled using a single system of linear equations. The extension to include freeze-thaw processes and snow maintains this elegant coupling, requiring only coefficients in the linear equations to be modified. No impedance factor for hydraulic conductivity is needed because of the formulation by matric flux potential rather than pressure head. Iterations are avoided which results in the same computational speed as without freezing. The extended model is evaluated extensively in stand-alone mode (against theoretical predictions, lab experiments and field data) and as part of the CABLE global land surface scheme. SLI accurately solves the classical Stefan problem of a homogeneous medium undergoing a phase change. The model also accurately reproduces the freezing front, which is observed in laboratory experiments (Hansson et al. 2004). SLI was further tested against observations at a permafrost site in Tibet (Weismüller et al. 2011). It reproduces seasonal thawing and freezing of the active layer to within 3 K of the observed soil temperature and to within 10% of the observed volumetric liquid soil moisture

  3. Accurate Inventories Of Irrigated Land

    NASA Technical Reports Server (NTRS)

    Wall, S.; Thomas, R.; Brown, C.

    1992-01-01

    System for taking land-use inventories overcomes two problems in estimating extent of irrigated land: only small portion of large state surveyed in given year, and aerial photographs made on 1 day out of year do not provide adequate picture of areas growing more than one crop per year. Developed for state of California as guide to controlling, protecting, conserving, and distributing water within state. Adapted to any large area in which large amounts of irrigation water needed for agriculture. Combination of satellite images, aerial photography, and ground surveys yields data for computer analysis. Analyst also consults agricultural statistics, current farm reports, weather reports, and maps. These information sources aid in interpreting patterns, colors, textures, and shapes on Landsat-images.

  4. You Can Accurately Predict Land Acquisition Costs.

    ERIC Educational Resources Information Center

    Garrigan, Richard

    1967-01-01

    Land acquisition costs were tested for predictability based upon the 1962 assessed valuations of privately held land acquired for campus expansion by the University of Wisconsin from 1963-1965. By correlating the land acquisition costs of 108 properties acquired during the 3 year period with--(1) the assessed value of the land, (2) the assessed…

  5. Anticipating land surface change

    PubMed Central

    Streeter, Richard; Dugmore, Andrew J.

    2013-01-01

    The interplay of human actions and natural processes over varied spatial and temporal scales can result in abrupt transitions between contrasting land surface states. Understanding these transitions is a key goal of sustainability science because they can represent abrupt losses of natural capital. This paper recognizes flickering between alternate land surface states in advance of threshold change and critical slowing down in advance of both threshold changes and noncritical transformation. The early warning signals we observe are rises in autocorrelation, variance, and skewness within millimeter-resolution thickness measurements of tephra layers deposited in A.D. 2010 and A.D. 2011. These signals reflect changing patterns of surface vegetation, which are known to provide early warning signals of critical transformations. They were observed toward migrating soil erosion fronts, cryoturbation limits, and expanding deflation zones, thus providing potential early warning signals of land surface change. The record of the spatial patterning of vegetation contained in contemporary tephra layers shows how proximity to land surface change could be assessed in the widespread regions affected by shallow layers of volcanic fallout (those that can be subsumed within the existing vegetation cover). This insight shows how we could use tephra layers in the stratigraphic record to identify “near misses,” close encounters with thresholds that did not lead to tipping points, and thus provide additional tools for archaeology, sustainability science, and contemporary land management. PMID:23530230

  6. DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  7. Land surface interaction

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1992-01-01

    The topics covered include the following: land and climate modeling; sensitivity studies; the process of a land model; model-specific parameterizations; water stress; within-canopy resistances; partial vegetation; canopy temperature; and present experience with a land model coupled to a general circulation model.

  8. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1999-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red-Arkansas basin in the Southwestern United States (31 degs 50 sec N - 36 degrees N, 94 degrees 30 seconds W - 104 degrees 3 seconds W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  9. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1997-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red- Arkansas basin in the Southwestern United States (31 deg 50 min N - 36 deg N, 94 deg 30 min W - 104 deg 30 min W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  10. DISAGGREGATION OF GOES-LAND SURFACE TEMPERATURES USING MODIS OBSERVATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  11. ERA-Interim/Land: A global land surface reanalysis dataset

    NASA Astrophysics Data System (ADS)

    Balsamo, Gianpaolo; Albergel, Clement; Beljaars, Anton; Boussetta, Souhail; Brun, Eric; Cloke, Hannah; Dee, Dick; Dutra, Emanuel; Muñoz-Sabater, Joaquín; Pappenberger, Florian; De Rosnay, Patricia; Stockdale, Tim; Vitart, Frederic

    2015-04-01

    ERA-Interim/Land is a global land-surface reanalysis dataset covering the period 1979-2010 recently made publicly available from ECMWF. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land is the result of a single 32-year simulation with the latest ECMWF land surface model driven by meteorological forcing from the ERA-Interim atmospheric reanalysis and precipitation adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). The horizontal resolution is about 80km and the time frequency is 3-hourly. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim dataset, which makes it more suitable for climate studies involving land water resources. The quality of ERA-Interim/Land is assessed by comparing with ground-based and remote sensing observations. In particular, estimates of soil moisture, snow depth, surface albedo, turbulent latent and sensible fluxes, and river discharges are verified against a large number of site measurements. ERA-Interim/Land provides a global integrated and coherent estimate of soil moisture and snow water equivalent, which can also be used for the initialization of numerical weather prediction and climate models. Current plans for the extension and improvements of ERA-Interim/Land in the framework of future reanalyses will be briefly presented. References and dataset download information at: http://www.ecmwf.int/en/research/climate-reanalysis/era-interim/land

  12. Dynamic Land Surface Classifcations using Microwave Frequencies

    NASA Astrophysics Data System (ADS)

    Jackson, H.; Tian, Y.; Peters-Lidard, C. D.; Harrison, K. W.

    2014-12-01

    Land surface emissivity in microwave frequencies is critical to the remote sensing of soil moisture, precipitation, and vegetation. Different land surfaces have different spectral signatures in the microwave portions of the electromagnetic spectrum. Their spatial and temporal behaviors are also highly variable. These properties are yet not well understood in microwave frequencies, despite their capability in detecting water-related variables in the atmosphere and land surface. A classification scheme was developed to stratify the Earth's land surfaces based on their seasonally dynamic microwave signatures. An unsupervised clustering approach was used identify and distinguish data groupings along two microwave based indicies. Land surface data clusters were mapped to determine their spatial relationships to known land cover groupings. Differences in land surface clusters were analyzed in their spatial consistency and their direction and magnitude of land surface change. It was found that vegetation and topography were the predominant contributors to change between seasons. Land surface extremes of sandy desert and closed canopy tropical forest displayed minimal intra-annual variability while transitional zones, such as the Sahel and North American temperate forests, exhibited the most variability. Distinct microwave signatures varied between seasons along a latittudinal gradient. Overall variability in land surface types increased at high lattitudes. This classification will help inform research studies maniputlating the microwave frequencies of the electromagnetic spectrum to better characterize land surface dynamics, and will be very useful in the validation of radiative transfer models and quantification of uncertainty in global precipitation monitoring.

  13. The Land Surface Temperature Impact to Land Cover Types

    NASA Astrophysics Data System (ADS)

    Ibrahim, I.; Abu Samah, A.; Fauzi, R.; Noor, N. M.

    2016-06-01

    Land cover type is an important signature that is usually used to understand the interaction between the ground surfaces with the local temperature. Various land cover types such as high density built up areas, vegetation, bare land and water bodies are areas where heat signature are measured using remote sensing image. The aim of this study is to analyse the impact of land surface temperature on land cover types. The objectives are 1) to analyse the mean temperature for each land cover types and 2) to analyse the relationship of temperature variation within land cover types: built up area, green area, forest, water bodies and bare land. The method used in this research was supervised classification for land cover map and mono window algorithm for land surface temperature (LST) extraction. The statistical analysis of post hoc Tukey test was used on an image captured on five available images. A pixel-based change detection was applied to the temperature and land cover images. The result of post hoc Tukey test for the images showed that these land cover types: built up-green, built up-forest, built up-water bodies have caused significant difference in the temperature variation. However, built up-bare land did not show significant impact at p<0.05. These findings show that green areas appears to have a lower temperature difference, which is between 2° to 3° Celsius compared to urban areas. The findings also show that the average temperature and the built up percentage has a moderate correlation with R2 = 0.53. The environmental implications of these interactions can provide some insights for future land use planning in the region.

  14. Correcting for Atmospheric Spatial Variability When Estimating Surface Fluxes from Remotely Sensed Land Surface Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to monitor the terrestrial water cycle require accurate estimates of evapotranspiration over the global land area. Flux towers provide valuable site-level data, but their collective footprints cover only a very small fraction of the land surface. Satellite remote sensing instruments, on th...

  15. USGS releases comprehensive land surface data

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    The U.S. Geological Survey (USGS) has released the latest edition of its National Land Cover Database (NLCD 2011), the nation's most comprehensive look at land surface conditions. The database divides the lower 48 states into 9 billion geographic cells, providing consistent information about land conditions on regional and nationwide scales.

  16. Comparison of adaptive filtering techniques for land surface data assimilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accurate specification of modeling and observational error information required by data assimilation algorithms is a major obstacle to the successful application of a land surface data assimilation system. The source and statistical structure of these errors are often unknown and poor assumptio...

  17. Land surface hydrology in the cloud land surface interaction campaign (CLASIC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fundamental objective of the Cloud Land Surface Interaction Campaign (CLASIC) was to contribute to our understanding of the interactions between the atmosphere and the land surface. It has been observed that land surface characteristics influence the timing and evolution of cumulus convection. The...

  18. Instrument accurately measures small temperature changes on test surface

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Miller, H. B.

    1966-01-01

    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material.

  19. Improving land surface emissivty parameter for land surface models using portable FTIR and remote sensing observation in Taklimakan Desert

    NASA Astrophysics Data System (ADS)

    Liu, Yongqiang; Mamtimin, Ali; He, Qing

    2014-05-01

    Because land surface emissivity (ɛ) has not been reliably measured, global climate model (GCM) land surface schemes conventionally set this parameter as simply assumption, for example, 1 as in the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) model, 0.96 for soil and wetland in the Global and Regional Assimilation and Prediction System (GRAPES) Common Land Model (CoLM). This is the so-called emissivity assumption. Accurate broadband emissivity data are needed as model inputs to better simulate the land surface climate. It is demonstrated in this paper that the assumption of the emissivity induces errors in modeling the surface energy budget over Taklimakan Desert where ɛ is far smaller than original value. One feasible solution to this problem is to apply the accurate broadband emissivity into land surface models. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has routinely measured spectral emissivities in six thermal infrared bands. The empirical regression equations have been developed in this study to convert these spectral emissivities to broadband emissivity required by land surface models. In order to calibrate the regression equations, using a portable Fourier Transform infrared (FTIR) spectrometer instrument, crossing Taklimakan Desert along with highway from north to south, to measure the accurate broadband emissivity. The observed emissivity data show broadband ɛ around 0.89-0.92. To examine the impact of improved ɛ to radiative energy redistribution, simulation studies were conducted using offline CoLM. The results illustrate that large impacts of surface ɛ occur over desert, with changes up in surface skin temperature, as well as evident changes in sensible heat fluxes. Keywords: Taklimakan Desert, surface broadband emissivity, Fourier Transform infrared spectrometer, MODIS, CoLM

  20. Conceptual Problems in Land Surface Data Assimilation

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf

    2012-01-01

    A land data assimilation system (LDAS) merges observations (or satellite retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, several conceptual problems can interfere with realizing the potential improvements from data assimilation. Of particular concern is the frequent mismatch between the assimilated observations and the land surface model variables of interest. The seminar will discuss recent research with the ensemble-based NASA GEOS-S LDAS to address various aspects of this mismatch. These aspects include (i) the assimilation of coarse-scale observations into higher-resolution land surface models, (ii) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (iii) the forward modeling of microwave brightness temperatures over land for radiance-based land surface data aSSimilation, and (iv) the selection of the most relevant types of observations for the analysis of a specific water cycle variable (such as root zone soil moisture). At its core, the solution to the above challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.

  1. Turbulent flow over an interactive alternating land-water surface

    NASA Astrophysics Data System (ADS)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  2. Real Time Land-Surface Hydrologic Modeling Over Continental US

    NASA Technical Reports Server (NTRS)

    Houser, Paul R.

    1998-01-01

    The land surface component of the hydrological cycle is fundamental to the overall functioning of the atmospheric and climate processes. Spatially and temporally variable rainfall and available energy, combined with land surface heterogeneity cause complex variations in all processes related to surface hydrology. The characterization of the spatial and temporal variability of water and energy cycles are critical to improve our understanding of land surface-atmosphere interaction and the impact of land surface processes on climate extremes. Because the accurate knowledge of these processes and their variability is important for climate predictions, most Numerical Weather Prediction (NWP) centers have incorporated land surface schemes in their models. However, errors in the NWP forcing accumulate in the surface and energy stores, leading to incorrect surface water and energy partitioning and related processes. This has motivated the NWP to impose ad hoc corrections to the land surface states to prevent this drift. A proposed methodology is to develop Land Data Assimilation schemes (LDAS), which are uncoupled models forced with observations, and not affected by NWP forcing biases. The proposed research is being implemented as a real time operation using an existing Surface Vegetation Atmosphere Transfer Scheme (SVATS) model at a 40 km degree resolution across the United States to evaluate these critical science questions. The model will be forced with real time output from numerical prediction models, satellite data, and radar precipitation measurements. Model parameters will be derived from the existing GIS vegetation and soil coverages. The model results will be aggregated to various scales to assess water and energy balances and these will be validated with various in-situ observations.

  3. Accurate Prediction of Binding Thermodynamics for DNA on Surfaces

    PubMed Central

    Vainrub, Arnold; Pettitt, B. Montgomery

    2011-01-01

    For DNA mounted on surfaces for microarrays, microbeads and nanoparticles, the nature of the random attachment of oligonucleotide probes to an amorphous surface gives rise to a locally inhomogeneous probe density. These fluctuations of the probe surface density are inherent to all common surface or bead platforms, regardless if they exploit either an attachment of pre-synthesized probes or probes synthesized in situ on the surface. Here, we demonstrate for the first time the crucial role of the probe surface density fluctuations in performance of DNA arrays. We account for the density fluctuations with a disordered two-dimensional surface model and derive the corresponding array hybridization isotherm that includes a counter-ion screened electrostatic repulsion between the assayed DNA and probe array. The calculated melting curves are in excellent agreement with published experimental results for arrays with both pre-synthesized and in-situ synthesized oligonucleotide probes. The approach developed allows one to accurately predict the melting curves of DNA arrays using only the known sequence dependent hybridization enthalpy and entropy in solution and the experimental macroscopic surface density of probes. This opens the way to high precision theoretical design and optimization of probes and primers in widely used DNA array-based high-throughput technologies for gene expression, genotyping, next-generation sequencing, and surface polymerase extension. PMID:21972932

  4. Mycorrhizal fungi and global land surface models?

    NASA Astrophysics Data System (ADS)

    Brzostek, E. R.; Fisher, J. B.; Shi, M.; Phillips, R.

    2013-12-01

    In the current generation of Land Surface Models (LSMs), the representation of coupled carbon (C) and nutrient cycles does not account for allocation of C by plants to mycorrhizal fungi in exchange for limiting nutrients. Given that the amount of C transferred to mycorrhizae can exceed 20% of net primary production (NPP), mycorrhizae can supply over half of the nitrogen (N) needed to support NPP, and that large majority of plants form associations with mycorrhizae; integrating these mechanisms into LSMs may significantly alter our understanding of the role of the terrestrial biosphere in mitigating climate change. Here, we present results from the integration of a mycorrhizal framework into a cutting-edge global plant nitrogen model -- Fixation & Uptake of Nitrogen (FUN; Fisher et al., 2010) -- that can be coupled into existing LSMs. In this mycorrhizal framework, the C cost of N acquisition varies as a function of mycorrhizal type with: (1) plants that support arbuscular mycorrhizae (AM) benefiting when N is plentiful and (2) plants that support ectomycorrhizae (ECM) benefiting when N is limiting. At the plot scale (15 x 15m), the My-FUN model improved predictions of retranslocation, N uptake, and the amount of C transferred into the soil relative to the base model across 45 plots that vary in mycorrhizal type in Indiana, USA. At the ecosystem scale, when we coupled this new framework into the Community Land Model (CLM-CN), the model estimated lower C uptake than the base model and more accurately predicted C uptake at the Morgan Monroe State Forest AmeriFlux site. These results suggest that the inclusion of a mycorrhizal framework into LSMs will enhance our ability to predict feedbacks between global change and the terrestrial biosphere.

  5. The CEOS constellation for land surface imaging

    NASA Astrophysics Data System (ADS)

    Bailey, G. Bryan; Berger, Michael; Jeanjean, Hervé; Gallo, Kevin P.

    2007-10-01

    A constellation of satellites that routinely and frequently images the Earth's land surface in consistently calibrated wavelengths from the visible through the microwave and in spatial detail that ranges from submeter to hundreds of meters would offer enormous potential benefits to society. A well-designed and effectively operated land surface imaging satellite constellation could have great positive impact not only on the quality of life for citizens of all nations, but also on mankind's very ability to sustain life as we know it on this planet long into the future. The primary objective of the Committee on Earth Observation Satellites (CEOS) Land Surface Imaging (LSI) Constellation is to define standards (or guidelines) that describe optimal future LSI Constellation capabilities, characteristics, and practices. Standards defined for a LSI Constellation will be based on a thorough understanding of user requirements, and they will address at least three fundamental areas of the systems comprising a Land Surface Imaging Constellation: the space segments, the ground segments, and relevant policies and plans. Studies conducted by the LSI Constellation Study Team also will address current and shorter-term problems and issues facing the land remote sensing community today, such as seeking ways to work more cooperatively in the operation of existing land surface imaging systems and helping to accomplish tangible benefits to society through application of land surface image data acquired by existing systems. 2007 LSI Constellation studies are designed to establish initial international agreements, develop preliminary standards for a mid-resolution land surface imaging constellation, and contribute data to a global forest assessment.

  6. The CEOS constellation for land surface imaging

    USGS Publications Warehouse

    Bailey, G.B.; Berger, M.; Jeanjean, H.; Gallo, K.P.

    2007-01-01

    A constellation of satellites that routinely and frequently images the Earth's land surface in consistently calibrated wavelengths from the visible through the microwave and in spatial detail that ranges from sub-meter to hundreds of meters would offer enormous potential benefits to society. A well-designed and effectively operated land surface imaging satellite constellation could have great positive impact not only on the quality of life for citizens of all nations, but also on mankind's very ability to sustain life as we know it on this planet long into the future. The primary objective of the Committee on Earth Observation Satellites (CEOS) Land Surface Imaging (LSI) Constellation is to define standards (or guidelines) that describe optimal future LSI Constellation capabilities, characteristics, and practices. Standards defined for a LSI Constellation will be based on a thorough understanding of user requirements, and they will address at least three fundamental areas of the systems comprising a Land Surface Imaging Constellation: the space segments, the ground segments, and relevant policies and plans. Studies conducted by the LSI Constellation Study Team also will address current and shorter-term problems and issues facing the land remote sensing community today, such as seeking ways to work more cooperatively in the operation of existing land surface imaging systems and helping to accomplish tangible benefits to society through application of land surface image data acquired by existing systems. 2007 LSI Constellation studies are designed to establish initial international agreements, develop preliminary standards for a mid-resolution land surface imaging constellation, and contribute data to a global forest assessment.

  7. Data fusion for accurate microscopic rough surface metrology.

    PubMed

    Chen, Yuhang

    2016-06-01

    Data fusion for rough surface measurement and evaluation was analyzed on simulated datasets, one with higher density (HD) but lower accuracy and the other with lower density (LD) but higher accuracy. Experimental verifications were then performed on laser scanning microscopy (LSM) and atomic force microscopy (AFM) characterizations of surface areal roughness artifacts. The results demonstrated that the fusion based on Gaussian process models is effective and robust under different measurement biases and noise strengths. All the amplitude, height distribution, and spatial characteristics of the original sample structure can be precisely recovered, with better metrological performance than any individual measurements. As for the influencing factors, the HD noise has a relatively weaker effect as compared with the LD noise. Furthermore, to enable an accurate fusion, the ratio of LD sampling interval to surface autocorrelation length should be smaller than a critical threshold. In general, data fusion is capable of enhancing the nanometrology of rough surfaces by combining efficient LSM measurement and down-sampled fast AFM scan. The accuracy, resolution, spatial coverage and efficiency can all be significantly improved. It is thus expected to have potential applications in development of hybrid microscopy and in surface metrology. PMID:27058888

  8. Spatial assessment of land surface temperature and land use/land cover in Langkawi Island

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Suzana Binti; Pradhan, Biswajeet; Salihu Lay, Usman; Abdullahi, Saleh

    2016-06-01

    This study investigates the relationship between Land Surface Temperature and Land Use/Land Cover in Langkawi Island by using Normalized Difference Vegetation Index (NDVI), Normalized Difference Build-Up Index (NDBI) and Modified Normalized Difference Water Index (MNDWI) qualitatively by using Landsat 7 ETM+ and Landsat 8 (OLI/TIRS) over the period 2002 and 2015. Pixel-based classifiers Maximum Likelihood (MLC) and Support Vector Machine (SVM), has been performed to prepare the Land Use/ Land Cover map (LU/LC) and the result shows that Support Vector Machine (SVM) achieved maximum accuracy with 90% and 90.46% compared to Maximum Likelihood (MLC) classifier with 86.62% and 86.98% respectively. The result revealed that as the impervious surface (built-up /roads) increases, the surface temperature of the area increased. However, land surface temperature decreased in the vegetated areas. Based from the linear regression between LST and NDVI, NDBI and MNDWI, these indices can be used as an indicator to monitor the impact of Land Use/Land Cover on Land Surface Temperature.

  9. Evaluation of a photosyntheses-based canopy resistance formulation in the Noah Land-surface model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurately representing complex land-surface processes balancing complexity and realism remains one challenge that the weather modelling community is facing nowadays. In this study, a photosynthesis-based Gas-exchange Evapotranspiration Model (GEM) is integrated into the Noah land-surface model repl...

  10. Upscaling and downscaling of land surface fluxes with surface temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) is a key surface boundary condition that is significantly correlated to surface flux partitioning between latent and sensible heat. The spatial and temporal variation in LST is driven by radiation, wind, vegetation cover and roughness as well as soil moisture status ...

  11. Land Surface Hydrology during the Cloud Land Surface Interaction Campaign (CLASIC) in 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fundamental to the objectives of Cloud Land Surface Interaction Campaign (CLASIC) is the understanding of the interactions between the atmosphere and the land surface. In addition, CLASIC observations and monitoring will be used to validate the multiple remote sensing products retrieved during the s...

  12. The Continuing Evolution of Land Surface Parameterizations

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Houser, Paul (Technical Monitor)

    2001-01-01

    Land surface models (LSMs) play a critical role in the simulation of climate, for they determine the character of a large fraction of the atmosphere's lower boundary. The LSM partitions the net radiative energy at the land surface into sensible heat, latent heat, and energy storage, and it partitions incident precipitation water into evaporation, runoff, and water storage. Numerous modeling experiments and the existing (though very scant) observational evidence suggest that variations in these partitionings can feed back on the atmospheric processes that induce them. This land-atmosphere feedback can in turn have a significant impact on the generation of continental precipitation. For this and other reasons (including the role of the land surface in converting various atmospheric quantities, such as precipitation, into quantities of perhaps higher societal relevance, such as runoff), many modeling groups are placing a high emphasis on improving the treatment of land surface processes in their models. LSMs have evolved substantially from the original bucket model of Manabe et al. This evolution, which is still ongoing, has been documented considerably. The present paper also takes a look at the evolution of LSMs. The perspective here, though, is different - the evolution is considered strictly in terms of the 'balance' between the formulations of evaporation and runoff processes. The paper will argue that a proper balance is currently missing, largely due to difficulties in treating subgrid variability in soil moisture and its impact on the generation of runoff.

  13. Advanced microwave forward model for the land surface data assimilation

    NASA Astrophysics Data System (ADS)

    Park, Chang-Hwan; Pause, Marion; Gayler, Sebastian; Wollschlaeger, Ute; Jackson, Thomas J.; LeDrew, Ellsworth; Behrendt, Andreas; Wulfmeyer, Volker

    2015-04-01

    From local to global scales, microwave remote-sensing techniques can provide temporally and spatially highly resolved observations of land surface properties including soil moisture and temperature as well as the state of vegetation. These variables are critical for agricultural productivity and water resource management. Furthermore, having accurate information of these variables allows us to improve the performances of numerical weather forecasts and climate prediction models. However, it is challenging to translate a measured brightness temperature into the multiple land surface properties because of the inherent inversion problem. In this study, we introduce a novel forward model for microwave remote sensing to resolve this inversion problem and to close the gap between land surface modeling and observations. It is composed of the Noah-MP land surface model as well as new models for the dielectric mixing and the radiative transfer. For developing a realistic forward operator, the land surface model must simulate soil and vegetation processes properly. The Noah-MP land surface model provides an excellent starting point because it contains already a sophisticated soil texture and land cover data set. Soil moisture transport is derived using the Richards equation in combination with a set of soil hydraulic parameters. Vegetation properties are considered using several photosynthesis models with different complexity. The energy balance is closed for the top soil and the vegetation layers. The energy flux becomes more realistic due to including not only the volumetric ratio of land surface properties but also their surface fraction as sub-grid scale information (semitile approach). Dielectric constant is the fundamental link to quantify the land surface properties. Our physical based new dielectric-mixing model is superior to previous calibration and semi-empirical approaches. Furthermore, owing to the consideration of the oversaturated surface dielectric behaviour

  14. Economic consequences of land surface subsidence

    SciTech Connect

    Fowler, L.C.

    1981-06-01

    Overdraft in the Santa Clara Valley, Calif., groundwater basin caused land surface subsidence over an area of 63,000 ha with a maximum depression of 3.6 m from 1912-67. Since cessation of overdraft and replenishment of groundwater levels in 1969, there has been no significant land surface subsidence. During the period of active subsidence, water well casings buckled, sewers lost capacity as a result of changes in slope, and roads and railroads had to be raised. These damages are estimated at over $130 million. (1 graph, 1 map, 6 photos, 2 references, 1 table)

  15. Remote sensing of land surface phenology

    USGS Publications Warehouse

    Meier, G.A.; Brown, J.F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  16. Accurate 12D dipole moment surfaces of ethylene

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Nikitin, Andrei V.; Rey, Michael; Szalay, Péter G.; Tyuterev, Vladimir G.

    2015-10-01

    Accurate ab initio full-dimensional dipole moment surfaces of ethylene are computed using coupled-cluster approach and its explicitly correlated counterpart CCSD(T)-F12 combined respectively with cc-pVQZ and cc-pVTZ-F12 basis sets. Their analytical representations are provided through 4th order normal mode expansions. First-principles prediction of the line intensities using variational method up to J = 30 are in excellent agreement with the experimental data in the range of 0-3200 cm-1. Errors of 0.25-6.75% in integrated intensities for fundamental bands are comparable with experimental uncertainties. Overall calculated C2H4 opacity in 600-3300 cm-1 range agrees with experimental determination better than to 0.5%.

  17. Soft Landing of Complex Molecules on Surfaces *

    NASA Astrophysics Data System (ADS)

    Johnson, Grant E.; Hu, Qichi; Laskin, Julia

    2011-07-01

    Soft and reactive landing of mass-selected ions onto surfaces has become a topic of substantial interest due to its promising potential for the highly controlled preparation of materials. For example, there are possible applications in the production of peptide and protein microarrays for use in high-throughput screening, protein separation and conformational enrichment of peptides, redox protein characterization, thin-film production, and the preparation of catalysts through deposition of clusters and organometallic complexes. Soft landing overcomes many of the limitations associated with conventional thin-film production techniques and offers unprecedented selectivity and specificity of preparation of deposited species. This review discusses the fundamental aspects of soft and reactive landing of mass-selected ions on surfaces that pertain to applications of these techniques in biomaterials, molecular electronics, catalysis, and interfacial chemistry.

  18. Accurate source location from P waves scattered by surface topography

    NASA Astrophysics Data System (ADS)

    Wang, N.; Shen, Y.

    2015-12-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (> 100 m). In this study, we explore the use of P-coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example. The grid search method is combined with the 3D strain Green's tensor database type method to improve the search efficiency as well as the quality of hypocenter solution. The strain Green's tensor is calculated by the 3D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are then obtained based on the least-square misfit between the 'observed' and predicted P and P-coda waves. A 95% confidence interval of the solution is also provided as a posterior error estimation. We find that the scattered waves are mainly due to topography in comparison with random velocity heterogeneity characterized by the von Kάrmάn-type power spectral density function. When only P wave data is used, the 'best' solution is offset from the real source location mostly in the vertical direction. The incorporation of P coda significantly improves solution accuracy and reduces its uncertainty. The solution remains robust with a range of random noises in data, un-modeled random velocity heterogeneities, and uncertainties in moment tensors that we tested.

  19. Accurate source location from waves scattered by surface topography

    NASA Astrophysics Data System (ADS)

    Wang, Nian; Shen, Yang; Flinders, Ashton; Zhang, Wei

    2016-06-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (>100 m). In this study, we explore the use of P coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example to provide realistic topography. A grid search algorithm is combined with the 3-D strain Green's tensor database to improve search efficiency as well as the quality of hypocenter solutions. The strain Green's tensor is calculated using a 3-D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are obtained based on the least squares misfit between the "observed" and predicted P and P coda waves. The 95% confidence interval of the solution is provided as an a posteriori error estimation. For shallow events tested in the study, scattering is mainly due to topography in comparison with stochastic lateral velocity heterogeneity. The incorporation of P coda significantly improves solution accuracy and reduces solution uncertainty. The solution remains robust with wide ranges of random noises in data, unmodeled random velocity heterogeneities, and uncertainties in moment tensors. The method can be extended to locate pairs of sources in close proximity by differential waveforms using source-receiver reciprocity, further reducing errors caused by unmodeled velocity structures.

  20. Monitoring urban land cover change by updating the national land cover database impervious surface products

    USGS Publications Warehouse

    Xian, G.; Homer, C.

    2009-01-01

    The U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 is widely used as a baseline for national land cover and impervious conditions. To ensure timely and relevant data, it is important to update this base to a more recent time period. A prototype method was developed to update the land cover and impervious surface by individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season from both 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, impervious surface was estimated for areas of change by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain a variety of metropolitan areas. Results from the five study areas show that the vast majority of impervious surface changes associated with urban developments were accurately captured and updated. The approach optimizes mapping efficiency and can provide users a flexible method to generate updated impervious surface at national and regional scales. ?? 2009 IEEE.

  1. 25 CFR 214.14 - Use of surface lands.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... land to any point of prospecting or mining operations, but such use of the surface shall be permissible... 25 Indians 1 2010-04-01 2010-04-01 false Use of surface lands. 214.14 Section 214.14 Indians... LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.14 Use of surface lands. (a) Lessees may use...

  2. Upscaling and Downscaling of Land Surface Fluxes with Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kustas, W. P.; Anderson, M. C.; Hain, C.; Albertson, J. D.; Gao, F.; Yang, Y.

    2015-12-01

    Land surface temperature (LST) is a key surface boundary condition that is significantly correlated to surface flux partitioning between latent and sensible heat. The spatial and temporal variation in LST is driven by radiation, wind, vegetation cover and roughness as well as soil moisture status in the surface and root zone. Data from airborne and satellite-based platforms provide LST from ~10 km to sub meter resolutions. A land surface scheme called the Two-Source Energy Balance (TSEB) model has been incorporated into a multi-scale regional modeling system ALEXI (Atmosphere Land Exchange Inverse) and a disaggregation scheme (DisALEXI) using higher resolution LST. Results with this modeling system indicates that it can be applied over heterogeneous land surfaces and estimate reliable surface fluxes with minimal in situ information. Consequently, this modeling system allows for scaling energy fluxes from subfield to regional scales in regions with little ground data. In addition, the TSEB scheme has been incorporated into a large Eddy Simulation (LES) model for investigating dynamic interactions between variations in the land surface state reflected in the spatial pattern in LST and the lower atmospheric air properties affecting energy exchange. An overview of research results on scaling of fluxes and interactions with the lower atmosphere from the subfield level to regional scales using the TSEB, ALEX/DisALEX and the LES-TSEB approaches will be presented. Some unresolved issues in the use of LST at different spatial resolutions for estimating surface energy balance and upscaling fluxes, particularly evapotranspiration, will be discussed.

  3. Assimilation of land surface temperature into the land surface model JULES with an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Kaduk, J.; Remedios, J.; Ardö, J.; Balzter, H.

    2010-10-01

    Land surface models have uncertainties due to their approximation of physical processes and the heterogeneity of the land surface. These can be compounded when key variables are inadequately represented. Land surface temperature (LST) is critical as it forms an integral component in the surface energy budget, water stress evaluation, fuel moisture derivation, and soil moisture-climate feedbacks. A reduction in the uncertainty of surface energy fluxes, and moisture quantification, is assumed to be achievable by constraining simulations of LST with observation data. This technique is known as data assimilation and involves the adjustment of the model state at observation times with measurements of a predictable uncertainty. In this paper, the validity of LST simulations in a regionalized parameterization of the land surface model Joint UK Land Environment Simulator (JULES) for Africa is assessed by way of a multitemporal intercomparison study with the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Along Track Scanning Radiometer (AATSR), and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) thermal products, with a two-thirds reduction in model bias found when soil properties are reparameterized. A data assimilation experiment of SEVIRI LST into the JULES model via an ensemble Kalman filter shows an improvement in the modeled LST, soil moisture, and latent and sensible heat fluxes. This paper presents the first investigation into reducing the uncertainty in modeling energy and water fluxes with the United Kingdom's most important land surface model, JULES, by means of data assimilation of LST.

  4. Giant African pouched rats (Cricetomys gambianus) that work on tilled soil accurately detect land mines.

    PubMed

    Edwards, Timothy L; Cox, Christophe; Weetjens, Bart; Tewelde, Tesfazghi; Poling, Alan

    2015-09-01

    Pouched rats were employed as mine-detection animals in a quality-control application where they searched for mines in areas previously processed by a mechanical tiller. The rats located 58 mines and fragments in this 28,050-m(2) area with a false indication rate of 0.4 responses per 100 m(2) . Humans with metal detectors found no mines that were not located by the rats. These findings indicate that pouched rats can accurately detect land mines in disturbed soil and suggest that they can play multiple roles in humanitarian demining. PMID:25962550

  5. Land surface processes and Sahel climate

    NASA Astrophysics Data System (ADS)

    Nicholson, Sharon

    2000-02-01

    This paper examines the question of land surface-atmosphere interactions in the West African Sahel and their role in the interannual variability of rainfall. In the Sahel, mean rainfall decreased by 25-40% between 1931-1960 and 1968-1997; every year in the 1950s was wet, and nearly every year since 1970 has been anomalously dry. Thus the intensity and multiyear persistence of drought conditions are unusual and perhaps unique features of Sahel climate. This article presents arguments for the role of land surface feedback in producing these features and reviews research relevant to land surface processes in the region, such as results from the 1992 Hydrologic Atmospheric Pilot Experiment (HAPEX)-Sahel experiment and recent studies on aerosols and on the issue of desertification in the region, a factor implicated by some as a cause of the changes in rainfall. Included also is a summary of evidence of feedback on meteorological processes, presented from both model results and observations. The reviewed studies demonstrate numerous ways in which the state of the land surface can influence interactions with the atmosphere. Surface hydrology essentially acts to delay and prolong the effects of meteorological drought. Each evaporative component of the surface water balance has its own timescale, with the presence of vegetation affecting the process both by delaying and prolonging the return of soil moisture to the atmosphere but at the same time accelerating the process through the evaporation of canopy-intercepted water. Hence the vegetation structure, including rooting depth, can modulate the land-atmosphere interaction. Such processes take on particular significance in the Sahel, where there is a high degree of recycling of atmospheric moisture and where the meteorological processes from the scale of boundary layer development to mesoscale disturbance generation are strongly influenced by moisture. Simple models of these feedback processes and their various timescales

  6. Erosion thresholds and land surface morphology

    NASA Astrophysics Data System (ADS)

    Dietrich, William E.; Wilson, Cathy J.; Montgomery, David R.; McKean, James; Bauer, Romy

    1992-08-01

    We propose a graphical technique to analyze the entirety of landforms in a catchment to define quantitatively the spatial variation in the dominance of different erosion processes. High-resolution digital elevation data of a 1.2 km2 hilly area where the channel network had been mapped in the field were used in the digital terrain model, TOPOG, to test threshold theories for erosion. The land surface was divided into ˜20 m2 elements whose shapes were then classified as convergent, planar, or divergent. The entire landscape plotted on a graph of area per unit contour length against surface gradient shows each planform plotting as a separate field. A simple steady-state hydrologic model was used to predict zones of saturation and areas of high pore pressure to mimic the extreme hydrologic events responsible for erosive instability of the land surface. The field observation that saturation overland flow is rare outside convergent zones provided a significant constraint on the hydrologic parameter in the model. This model was used in threshold theories to predict areas of slope instability and areas subject to erosion by saturation overland flow, both of which can contribute to channel initiation. The proportion of convergent elements predicted to exceed the threshold varies greatly with relatively small changes in surface resistance, demonstrating a high sensitivity to land use such as cattle grazing. Overall, the landscape can be divided, using erosion threshold lines, into areas prone to channel instability due to runoff and stable areas where diffusive transport predominates.

  7. Research on the Rapid and Accurate Positioning and Orientation Approach for Land Missile-Launching Vehicle

    PubMed Central

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-01-01

    Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249

  8. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    PubMed

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-01-01

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249

  9. Towards the development of an on-line model error identification system for land surface models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the complexity of potential error sources in land surface models, the accurate specification of model error parameters has emerged as a major challenge in the development of effective land data assimilation systems for hydrologic and hydro-climatic applications. While several on-line procedur...

  10. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  11. Mapping land surface emissivity in the Teide volcanic system

    NASA Astrophysics Data System (ADS)

    Barreto, Africa; Arbelo, Manuel; Hernandez-Leal, Pedro A.; Nunez-Casillas, Laia; González-Calvo, Alejandro

    In light the greatly improvement introduced by satellite remote sensing for Earth sciences ap-plications, increasing notably the quality of the surface parameters inferred, climate studies and models developed from them have experienced a significant progress. Even so, it is important to make sure the accuracy of the remote products by means of in situ observations. Although there are some natural surfaces in which a constant emissivity assumption could be assumed, as surfaces highly vegetated, in general, land surface emissivity (LSE) varies sig-nificantly with many factors, as physical constituents, surface moisture content, roughness or particle size. This lack of accurate surface emissivity information makes us to compile a spec-tral emissivity library in a suitable site in the Teide National Park, Tenerife Island (Spain), to be used in land surface temperature validation experiences, as well as to be incorporated in geological and climate studies. The zone is a highly-elevated volcanic site composed of different types of lava formed as a part of the volcanic activity of Tenerife Island. To this end, emissivity measurements of several volcanic rocks from the Teide National Park have been developed using the box method. They include both in situ and laboratory mea-surements. The results have been compared with LSE extracted by means of high spatial resolution information from the Advanced Spaceborne Thermal Emission and Reflectance Ra-diometer (ASTER) sensor and the Temperature and Emissivity Separation algorithm provided by the ASTER Standard Product AST-05.

  12. Oscillations in land surface hydrological cycle

    NASA Astrophysics Data System (ADS)

    Labat, D.

    2006-02-01

    Hydrological cycle is the perpetual movement of water throughout the various component of the global Earth's system. Focusing on the land surface component of this cycle, the determination of the succession of dry and humid periods is of high importance with respect to water resources management but also with respect to global geochemical cycles. This knowledge requires a specified estimation of recent fluctuations of the land surface cycle at continental and global scales. Our approach leans towards a new estimation of freshwater discharge to oceans from 1875 to 1994 as recently proposed by Labat et al. [Labat, D., Goddéris, Y., Probst, JL, Guyot, JL, 2004. Evidence for global runoff increase related to climate warming. Advances in Water Resources, 631-642]. Wavelet analyses of the annual freshwater discharge time series reveal an intermittent multiannual variability (4- to 8-y, 14- to 16-y and 20- to 25-y fluctuations) and a persistent multidecadal 30- to 40-y variability. Continent by continent, reasonable relationships between land-water cycle oscillations and climate forcing (such as ENSO, NAO or sea surface temperature) are proposed even though if such relationships or correlations remain very complex. The high intermittency of interannual oscillations and the existence of persistent multidecadal fluctuations make prediction difficult for medium-term variability of droughts and high-flows, but lead to a more optimistic diagnostic for long-term fluctuations prediction.

  13. Photosynthesis sensitivity to climate change in land surface models

    NASA Astrophysics Data System (ADS)

    Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo

    2016-04-01

    Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.

  14. Lakes representation in a land surface model

    NASA Astrophysics Data System (ADS)

    Dutra, E.; Stepanenko, V. M.; Balsamo, G.; Viterbo, P.; Miranda, P. M. A.; Mironov, D.

    2009-04-01

    Lakes and other inland water bodies can, in certain areas, compose a large fraction of the land surface. Inland waters have an important role in determining local and regional climates, primarily because of large differences in albedo, heat capacity, roughness, and energy exchange compared to vegetated land surfaces. Despite the radically different physical characteristics of inland waters when compared to their surrounding, most land surface models put more emphasis on the comparatively weaker differences within continental surface types (such as various types of vegetation and bare soil). Thus so far sub-grid lakes have been largely neglected. The present work describes the incorporation of the lake model FLAKE (Mironov 2008, http://lakemodel.net) into the ECMWF land surface scheme HTESSEL (Balsamo 2008). Results from global offline simulations are presented in order to (i) evaluate the model's performance in different climates and (ii) assess the impact of lakes representation in the surface energy balance. The model was forced by new ECMWF reanalysis product ERA-INTERIM (1989-present) near surface meteorology and surface fluxes (radiation and precipitation) for the entire globe. Model validation includes lake surface temperatures (global) and lake ice duration (Northern Hemisphere). Lake surface temperatures, derived from the TERRA-MODIS satellite (http://oceancolor.gsfc.nasa.gov/), are compared against simulations for the period 2001-2008, while lake ice duration is validated using data from the Global Lake and River Ice Phenology (Benson and Magnunson, 2007). The impact of the snow insulator effect on lake ice cover duration is also discussed and compared with frozen soil duration in neighbouring areas. The sensitivity of the present analysis to the lake depth, which is important and often unknown lake parameter, is also addressed. In addition, the implementation of the lake model within the land surface model allows for sub-grid cover variability. The impact

  15. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1994-01-01

    A generalized split-window method for retrieving land-surface temperature (LST) from AVHRR and MODIS data has been developed. Accurate radiative transfer simulations show that the coefficients in the split-window algorithm for LST must depend on the viewing angle, if we are to achieve a LST accuracy of about 1 K for the whole scan swath range (+/-55.4 deg and +/-55 deg from nadir for AVHRR and MODIS, respectively) and for the ranges of surface temperature and atmospheric conditions over land, which are much wider than those over oceans. We obtain these coefficients from regression analysis of radiative transfer simulations, and we analyze sensitivity and error by using results from systematic radiative transfer simulations over wide ranges of surface temperatures and emissivities, and atmospheric water vapor abundance and temperatures. Simulations indicated that as atmospheric column water vapor increases and viewing angle is larger than 45 deg it is necessary to optimize the split-window method by separating the ranges of the atmospheric column water vapor and lower boundary temperature, and the surface temperature into tractable sub-ranges. The atmospheric lower boundary temperature and (vertical) column water vapor values retrieved from HIRS/2 or MODIS atmospheric sounding channels can be used to determine the range where the optimum coefficients of the split-window method are given. This new LST algorithm not only retrieves LST more accurately but also is less sensitive than viewing-angle independent LST algorithms to the uncertainty in the band emissivities of the land-surface in the split-window and to the instrument noise.

  16. Coupled land surface/hydrologic/atmospheric models

    NASA Technical Reports Server (NTRS)

    Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers

    1993-01-01

    The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.

  17. Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph; Harrison, Ken; Liu, Yuqiong; Shaw, Michael

    2011-01-01

    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.

  18. Determining Land Surface Temperature Relations with Land Use-Land Cover and Air Pollution

    NASA Astrophysics Data System (ADS)

    Kahya, Ceyhan; Bektas Balcik, Filiz; Burak Oztaner, Yasar; Guney, Burcu

    2016-04-01

    Rapid population growth in conjunction with unplanned urbanization, expansion, and encroachment into the limited agricultural fields and green areas have negative impacts on vegetated areas. Land Surface Temperature (LST), Urban Heat Islands (UHI) and air pollution are the most important environmental problems that the extensive part of the world suffers from. The main objective of this research is to investigate the relationship between LST, air pollution and Land Use-Land Cover (LULC) in Istanbul, using Landsat 8 OLI satellite image. Mono-window algorithm is used to compute LST from Landsat 8 TIR data. In order to determine the air pollution, in-situ measurements of particulate matter (PM10) of the same day as the Landsat 8 OLI satellite image are obtained. The results of this data are interpolated using the Inverse Distance Weighted (IDW) method and LULC categories of Istanbul were determined by using remote sensing indices. Error matrix was created for accuracy assessment. The relationship between LST, air pollution and LULC categories are determined by using regression analysis method. Keywords: Land Surface Temperature (LST), air pollution, Land Use-Land Cover (LULC), Istanbul

  19. Timescales of Land Surface Evapotranspiration Response

    NASA Technical Reports Server (NTRS)

    Scott, Russell; Entekhabi, Dara; Koster, Randal; Suarez, Max

    1997-01-01

    Soil and vegetation exert strong control over the evapotranspiration rate, which couples the land surface water and energy balances. A method is presented to quantify the timescale of this surface control using daily general circulation model (GCM) simulation values of evapotranspiration and precipitation. By equating the time history of evaporation efficiency (ratio of actual to potential evapotranspiration) to the convolution of precipitation and a unit kernel (temporal weighting function), response functions are generated that can be used to characterize the timescales of evapotranspiration response for the land surface model (LSM) component of GCMS. The technique is applied to the output of two multiyear simulations of a GCM, one using a Surface-Vegetation-Atmosphere-Transfer (SVAT) scheme and the other a Bucket LSM. The derived response functions show that the Bucket LSM's response is significantly slower than that of the SVAT across the globe. The analysis also shows how the timescales of interception reservoir evaporation, bare soil evaporation, and vegetation transpiration differ within the SVAT LSM.

  20. Offline land surface temperature assimilation in mumerical weather prediction output

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature plays an important role in land surface processes, and it is a key input to physically-based retrieval algorithms of important hydrological states and fluxes, such as soil moisture and evaporation. For this reason there are many independent estimates of land surface temperat...

  1. Complex land surface phenologies of moisture status

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Doubkova, M.

    2006-12-01

    Making cross-scale linkages from experimental plots or flux tower footprints to regional and continental extents is made difficult by disparate spatial and temporal scales between process and observation. While exchanges between the vegetated land surface and the atmospheric boundary layer are continual, sampling and observations are typically intermittent in time and limited across space. Remote sensing of reflected sunlight has proven useful to track ecological dynamics. These observations are, however, restricted to daytime and often obscured by cloud cover, necessitating production of multi-date composites. The current generation of passive microwave radiometers can observe the land surface both day and night regardless of cloudiness, albeit at a spatial resolution coarser than typically used in ecological remote sensing. Datastreams from the AMSR-E (Advanced Microwave Scanning Radiometer-EOS) onboard NASA's Aqua platform are processed daily at the National Snow and Ice Data Center (NSIDC) into various products, including global retrievals of surficial soil moisture and vegetation water content based on microwave brightness temperatures observed at multiple frequencies. Due to sensor orbit and swath width, gaps occur at the lower latitudes in daily products. We have further processed the product-streams from the descending (01:30) and ascending (13:30) orbits into separate smoothed daily composites using an 8-day retrospective moving average. Of particular interest for synoptic ecology is the diel difference in vegetation water content. When the difference between the pre-dawn and the early afternoon values is positive, it suggests that the supply of moisture from the root zone is not able to keep pace with evapotranspiration during the day, but the soil and canopy moisture equalize overnight. Time series of the diel difference show rapid changes in moisture status in response to precipitation events and dry spells. What constitutes the appropriate baseline

  2. How Accurate is Land/Ocean Moisture Transport Variability in Reanalyses?

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Bosilovich, M. G.

    2014-01-01

    Quantifying the global hydrological cycle and its variability across various time scales remains a challenge to the climate community. Direct measurements of evaporation (E), evapotranspiration (ET), and precipitation (P) are not feasible on a global scale, nor is the transport of water vapor over the global oceans and sparsely populated land areas. Expanding satellite data streams have enabled development of various water (and energy) flux products, complementing reanalyses and facilitating observationally constrained modeling. But the evolution of the global observing system has produced additional complications--improvements in satellite sensor resolution and accuracy have resulted in "epochs" of observational quasi-uniformity that can adversely affect reanalysis trends. In this work we focus on vertically integrated moisture flux convergence (VMFC) variations within the period 1979 - present integrated over global land. We show that VMFC in recent reanalyses (e.g. ERA-I, NASA MERRA, NOAA CFSR and JRA55) suffers from observing system changes, though differently in each product. Land Surface Models (LSMs) forced with observations-based precipitation, radiation and near-surface meteorology share closely the interannual P-ET variations of the reanalyses associated with ENSO events. (VMFC over land and P-ET estimates are equivalent quantities since atmospheric storage changes are small on these scales.) But the long-term LSM trend over the period since 1979 is approximately one-fourth that of the reanalyses. Additional reduced observation reanalyses assimilating only surface pressure and /or specifying seasurface temperature also have a much smaller trend in P-ET like the LSMs. We explore the regional manifestation of the reanalysis P-ET / VMFC problems, particularly over land. Both principal component analysis and a simple time series changepoint analysis highlight problems associated with data poor regions such as Equatorial Africa and, for one reanalysis, the

  3. High resolution land surface response of inland moving Indian monsoon depressions over Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Rajesh, P. V.; Pattnaik, S.

    2016-05-01

    During Indian summer monsoon (ISM) season, nearly about half of the monsoonal rainfall is brought inland by the low pressure systems called as Monsoon Depressions (MDs). These systems bear large amount of rainfall and frequently give copious amount of rainfall over land regions, therefore accurate forecast of these synoptic scale systems at short time scale can help in disaster management, flood relief, food safety. The goal of this study is to investigate, whether an accurate moisture-rainfall feedback from land surface can improve the prediction of inland moving MDs. High Resolution Land Data Assimilation System (HRLDAS) is used to generate improved land state .i.e. soil moisture and soil temperature profiles by means of NOAH-MP land-surface model. Validation of the model simulated basic atmospheric parameters at surface layer and troposphere reveals that the incursion of high resolution land state yields least Root Mean Squared Error (RMSE) with a higher correlation coefficient and facilitates accurate depiction of MDs. Rainfall verification shows that HRLDAS simulations are spatially and quantitatively in more agreement with the observations and the improved surface characteristics could result in the realistic reproduction of the storm spatial structure, movement as well as intensity. These results signify the necessity of investigating more into the land surface-rainfall feedbacks through modifications in moisture flux convergence within the storm.

  4. A blended land emissivity product from the Inter-Comparison of different Land Surface Emissivity Estimates

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2012-12-01

    Passive microwave observations are routinely used to estimate rain rate, cloud liquid water, and total precipitable water. In order to have accurate estimations from microwave, the contribution of the surface should be accounted for. Over land, due to the complex interaction between the microwave signal and the soil surface, retrieval of land surface emissivity and other surface and subsurface parameters is not straightforward. Several microwave emissivity products from various microwave sensors have been proposed. However, lack of ground truth measurements makes the validation of these products difficult. This study aims to inter-compare several available emissivity products over land and ultimately proposes a unique blended product that overcomes the flaws of each individual product. The selected products are based on observations from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Special Sensor Microwave Imager (SSM/I), the Advanced Microwave Sounding unit (AMSU), and the Special Sensor Microwave Imager/Sounder (SSMIS). In retrieval of emissivities from these sensors different methods and ancillary data have been used. Some inherent discrepancies between the selected products can be introduced by as the difference in geometry in terms of incident angle, spectral response, and the foot print size which can affect the estimations. Moreover, ancillary data especially skin temperature and cloud mask cover can cause significant discrepancies between various estimations. The time series and correlation between emissivity maps are explored to assess the consistency of emissivity variations with geophysical variable such as snow, precipitation and drought. Preliminary results reveal that inconsistency between products varies based on land cover type due to penetration depth effect and ancillary data. Six years of estimations are employed in this research study, and a global blended emissivity estimations based on all product with minimal discrepancies

  5. Land surface temperature inversion of bare soil and vegetation cover based on MODIS data

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Zhou, Song; Wang, Zhezhen; Lv, Nan; Jiang, Jianwu; Wang, Ke

    2015-12-01

    Land surface temperature is one of the most important parameters in hydrology and agricultural production research . Split-window algorithm based on MODIS data was briefly introduced in this paper and applied in Hetao Irrigation District. Comparison between data retrieval and field collected data showed that data retrieval could reflect land surface temperature basic accurately .Linear fitting of different time series data can improve retrieval precision effectively. The results provide support for drought forecast, soil moisture monitoring etc. in the future.

  6. 25 CFR 226.19 - Use of surface of land.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Use of surface of land. 226.19 Section 226.19 Indians... LANDS FOR OIL AND GAS MINING Operations § 226.19 Use of surface of land. (a) Lessee or his/her authorized representative shall have the right to use so much of the surface of the land within the...

  7. 25 CFR 226.19 - Use of surface of land.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Use of surface of land. 226.19 Section 226.19 Indians... LANDS FOR OIL AND GAS MINING Operations § 226.19 Use of surface of land. (a) Lessee or his/her authorized representative shall have the right to use so much of the surface of the land within the...

  8. 25 CFR 226.19 - Use of surface of land.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Use of surface of land. 226.19 Section 226.19 Indians... LANDS FOR OIL AND GAS MINING Operations § 226.19 Use of surface of land. (a) Lessee or his/her authorized representative shall have the right to use so much of the surface of the land within the...

  9. 25 CFR 226.19 - Use of surface of land.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Use of surface of land. 226.19 Section 226.19 Indians... LANDS FOR OIL AND GAS MINING Operations § 226.19 Use of surface of land. (a) Lessee or his/her authorized representative shall have the right to use so much of the surface of the land within the...

  10. Land Surface Process and Air Quality Research and Applications at MSFC

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  11. Toward Transfer Functions for Land Surface Phenologies

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.

    2010-12-01

    A key problem in projecting future landscapes is simulating the associated land surface phenologies (or LSPs). A recent study of land surface models concluded that the representations of crop phenologies among the models diverged sufficiently to impede a useful intercomparison of simulation results from their associated climate models. Grassland phenologies are far more complicated than cropland phenologies due to multiple forcing factors, photosynthetic pathways (C3 vs C4), and spatial heterogeneities in both resource availabilities and land management practices. Furthermore, many tallgrass species (such as switchgrass) are widely distributed across temperature, but not moisture, gradients, resulting in significant ecotypic variation across the species' geographic range. Thus, how feasible is "transplanting" tallgrass LSPs across isotherms—but along isohyets—to simulate a shift in cultivation from maize-soy to switchgrass? Prior work has shown a quadratic model can provide a parsimonious link between a Normalized Difference Vegetation Index (or NDVI) time series and thermal time, measured in terms of accumulated growing degree-days (or AGDD). Moreover, the thermal time to peak NDVI (or TTP) is a simple function of the parameter coefficients of fitted model. I fitted quadratic models to MODIS NDVI and weather station data at multiple sites across the Northern Great Plains over ten growing seasons, 2000-2009. There is a strong latitudinal gradient in TTP that results in part from a quasi-linear gradient in accumulated daylight hours (or ADH) between 30 and 50 degrees north. However, AGDD improves upon ADH by providing sensitivity to the variability of growing season weather. In the quadratic parameter coefficients there is a geographic pattern apparent as a function of TTP, although it is more variable at shorter TTPs. Using these patterns, an LSP transfer function was implemented along a latitudinal transect to simulate switchgrass cultivation in areas now

  12. A new MRI land surface model HAL

    NASA Astrophysics Data System (ADS)

    Hosaka, M.

    2011-12-01

    A land surface model HAL is newly developed for MRI-ESM1. It is used for the CMIP simulations. HAL consists of three submodels: SiByl (vegetation), SNOWA (snow) and SOILA (soil) in the current version. It also contains a land coupler LCUP which connects some submodels and an atmospheric model. The vegetation submodel SiByl has surface vegetation processes similar to JMA/SiB (Sato et al. 1987, Hirai et al. 2007). SiByl has 2 vegetation layers (canopy and grass) and calculates heat, moisture, and momentum fluxes between the land surface and the atmosphere. The snow submodel SNOWA can have any number of snow layers and the maximum value is set to 8 for the CMIP5 experiments. Temperature, SWE, density, grain size and the aerosol deposition contents of each layer are predicted. The snow properties including the grain size are predicted due to snow metamorphism processes (Niwano et al., 2011), and the snow albedo is diagnosed from the aerosol mixing ratio, the snow properties and the temperature (Aoki et al., 2011). The soil submodel SOILA can also have any number of soil layers, and is composed of 14 soil layers in the CMIP5 experiments. The temperature of each layer is predicted by solving heat conduction equations. The soil moisture is predicted by solving the Darcy equation, in which hydraulic conductivity depends on the soil moisture. The land coupler LCUP is designed to enable the complicated constructions of the submidels. HAL can include some competing submodels (precise and detailed ones, and simpler ones), and they can run at the same simulations. LCUP enables a 2-step model validation, in which we compare the results of the detailed submodels with the in-situ observation directly at the 1st step, and follows the comparison between them and those of the simpler ones at the 2nd step. When the performances of the detailed ones are good, we can improve the simpler ones by using the detailed ones as reference models.

  13. ENVISAT Land Surface Processes. Phase 2

    NASA Technical Reports Server (NTRS)

    vandenHurk, B. J. J. M.; Su, Z.; Verhoef, W.; Menenti, M.; Li, Z.-L.; Wan, Z.; Moene, A. F.; Roerink, G.; Jia, I.

    2002-01-01

    This is a progress report of the 2nd phase of the project ENVISAT- Land Surface Processes, which has a 3-year scope. In this project, preparative research is carried out aiming at the retrieval of land surface characteristics from the ENVISAT sensors MERIS and AATSR, for assimilation into a system for Numerical Weather Prediction (NWP). Where in the 1st phase a number of first shot experiments were carried out (aiming at gaining experience with the retrievals and data assimilation procedures), the current 2nd phase has put more emphasis on the assessment and improvement of the quality of the retrieved products. The forthcoming phase will be devoted mainly to the data assimilation experiments and the assessment of the added value of the future ENVISAT products for NWP forecast skill. Referring to the retrieval of albedo, leaf area index and atmospheric corrections, preliminary radiative transfer calculations have been carried out that should enable the retrieval of these parameters once AATSR and MERIS data become available. However, much of this work is still to be carried out. An essential part of work in this area is the design and implementation of software that enables an efficient use of MODTRAN(sub 4) radiative transfer code, and during the current project phase familiarization with these new components has been achieved. Significant progress has been made with the retrieval of component temperatures from directional ATSR-images, and the calculation of surface turbulent heat fluxes from these data. The impact of vegetation cover on the retrieved component temperatures appears manageable, and preliminary comparison of foliage temperature to air temperatures were encouraging. The calculation of surface fluxes using the SEBI concept,which includes a detailed model of the surface roughness ratio, appeared to give results that were in reasonable agreement with local measurements with scintillometer devices. The specification of the atmospheric boundary conditions

  14. Towards Monitoring Satellite Land Surface Temperature Production

    NASA Astrophysics Data System (ADS)

    Yu, P.; Yu, Y.; Liu, Y.; Wang, Z.; Zhang, X.

    2014-12-01

    Land surface temperature (LST) is of fundamental importance to the net radiation budget at the Earth surface and to monitoring the state of crops and vegetation, as well as an important indicator of both the greenhouse effect and the energy flux between the atmosphere and the land. Since its launch on October 28, 2011, the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been continuously providing data for LST production; intensive validation and calibration of the LST data have been conducted since then. To better monitor the performance of the S-NPP LST product and evaluate different retrieval algorithms for potential improvement, a near-real-time monitoring system has been developed and implemented. The system serves as a tool for both the routine monitoring and the deep-dive researches. It currently consists of two major components: the global cross-satellite LST comparisons between S-NPP/VIIRS and MODIS/AQUA, and the LST validation with respect to in-situ observations from SURFRAD network. Results about cross-satellite comparisons, satellite-in situ LST validation, and evaluation of different retrieval algorithms are routinely generated and published through an FTP server of the system ftp. The results indicate that LST from the S-NPP is comparable to that from MODIS. A few case studies using this tool will be analyzed and presented.

  15. Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna

    2016-07-01

    Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after

  16. 25 CFR 214.14 - Use of surface lands.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Use of surface lands. 214.14 Section 214.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.14 Use of surface lands. (a) Lessees may use...

  17. 25 CFR 214.14 - Use of surface lands.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Use of surface lands. 214.14 Section 214.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.14 Use of surface lands. (a) Lessees may use...

  18. 25 CFR 214.14 - Use of surface lands.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Use of surface lands. 214.14 Section 214.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.14 Use of surface lands. (a) Lessees may use...

  19. 25 CFR 214.14 - Use of surface lands.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Use of surface lands. 214.14 Section 214.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.14 Use of surface lands. (a) Lessees may use so much of...

  20. 25 CFR 226.19 - Use of surface of land.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... LANDS FOR OIL AND GAS MINING Operations § 226.19 Use of surface of land. (a) Lessee or his/her... originally drilled under the currently lease. A drilling site shall be held to the minimum area essential...

  1. Land Surface Emission Modeling to Support Physical Precipitation Retrievals

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christina D.; Harrison, Kenneth; Kumar, Sujay; Ferraro, Ralph; Skofronick-Jackson, Gail

    2010-01-01

    Land surface modeling and data assimilation can provide dynamic land surface state variables necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in the Global Precipitation Measurement Mission (GPM), is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. In order to investigate the robustness of both the land surface model states and the microwave emissivity and forward radiative transfer models, we have undertaken a multi-site investigation as part of the NASA Precipitation Measurement Missions (PMM) Land Surface Characterization. Working Group.

  2. Passive microwave retrieval of land surface properties

    NASA Astrophysics Data System (ADS)

    Owe, Manfred; de Jeu, Richard A. M.; Holmes, Thomas R. H.

    2006-05-01

    A methodology for retrieving land surface properties from passive microwave observations is presented. Dual polarization microwave brightness temperature data, together with a simple radiative transfer model are used to derive surface soil moisture and vegetation optical depth simultaneously, in a non linear optimization procedure using a forward modeling approach. Soil temperature is derived off-line with a common heat flow model, driven by high frequency vertical polarization microwave data and remotely sensed observations of net radiation. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is independent of wavelength. Remote sensing provides an excellent opportunity to monitor and gather environmental data in regions that have little or no instrumentation. Moreover, microwave technology provides a more all-weather capability than is typically afforded with visible and near infrared wavelengths. The model was developed for regional- to global-scale monitoring and related environmental applications such as surface energy balance modelling, numerical weather prediction, flood and drought forecasting, and climate change studies. However, at higher spatial resolutions, which would be possible with aircraft, especially unmanned vehicles, tactical applications may be realized as well. Retrieval results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  3. Assimilation of Surface Temperature in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1998-01-01

    Hydrological models have been calibrated and validated using catchment streamflows. However, using a point measurement does not guarantee correct spatial distribution of model computed heat fluxes, soil moisture and surface temperatures. With the advent of satellites in the late 70s, surface temperature is being measured two to four times a day from various satellite sensors and different platforms. The purpose of this paper is to demonstrate use of satellite surface temperature in (a) validation of model computed surface temperatures and (b) assimilation of satellite surface temperatures into a hydrological model in order to improve the prediction accuracy of soil moistures and heat fluxes. The assimilation is carried out by comparing the satellite and the model produced surface temperatures and setting the "true"temperature midway between the two values. Based on this "true" surface temperature, the physical relationships of water and energy balance are used to reset the other variables. This is a case of nudging the water and energy balance variables so that they are consistent with each other and the true" surface temperature. The potential of this assimilation scheme is demonstrated in the form of various experiments that highlight the various aspects. This study is carried over the Red-Arkansas basin in the southern United States (a 5 deg X 10 deg area) over a time period of a year (August 1987 - July 1988). The land surface hydrological model is run on an hourly time step. The results show that satellite surface temperature assimilation improves the accuracy of the computed surface soil moisture remarkably.

  4. The Effect of Land Use Change on Land Surface Temperature in the Netherlands

    NASA Astrophysics Data System (ADS)

    Youneszadeh, S.; Amiri, N.; Pilesjo, P.

    2015-12-01

    The Netherlands is a small country with a relatively large population which experienced a rapid rate of land use changes from 2000 to 2008 years due to the industrialization and population increase. Land use change is especially related to the urban expansion and open agriculture reduction due to the enhanced economic growth. This research reports an investigation into the application of remote sensing and geographical information system (GIS) in combination with statistical methods to provide a quantitative information on the effect of land use change on the land surface temperature. In this study, remote sensing techniques were used to retrieve the land surface temperature (LST) by using the MODIS Terra (MOD11A2) Satellite imagery product. As land use change alters the thermal environment, the land surface temperature (LST) could be a proper change indicator to show the thermal changes in relation with land use changes. The Geographical information system was further applied to extract the mean yearly land surface temperature (LST) for each land use type and each province in the 2003, 2006 and 2008 years, by using the zonal statistic techniques. The results show that, the inland water and offshore area has the highest night land surface temperature (LST). Furthermore, the Zued (South)-Holland province has the highest night LST value in the 2003, 2006 and 2008 years. The result of this research will be helpful tool for urban planners and environmental scientists by providing the critical information about the land surface temperature.

  5. The Development of a Deflectometer for Accurate Surface Figure Metrology

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Eberhardt, Andrew; Ramsey, Brian; Atkins, Carolyn

    2015-01-01

    Marshall Space Flight Center is developing the method of direct fabrication for high resolution full-shell x-ray optics. In this technique the x-ray optics axial profiles are figured and polished using a computer-controlled ZeekoIRP600X polishing machine. Based on the Chandra optics fabrication history about one third of the manufacturing time is spent on moving a mirror between fabrication and metrology sites, reinstallation and alignment with either the metrology or fabrication instruments. Also, the accuracy of the alignment significantly affects the ultimate accuracy of the resulting mirrors. In order to achieve higher convergence rate it is highly desirable to have a metrology technique capable of in situ surface figure measurements of the optics under fabrication, so the overall fabrication costs would be greatly reduced while removing the surface errors due to the re-alignment necessary after each metrology cycle during the fabrication. The goal of this feasibility study is to demonstrate if the Phase Measuring Deflectometry can be applied for in situ metrology of full shell x-ray optics. Examples of the full-shell mirror substrates suitable for the direct fabrication

  6. Hydrologic Remote Sensing and Land Surface Data Assimilation

    PubMed Central

    Moradkhani, Hamid

    2008-01-01

    Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface–atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear

  7. Towards an improved land surface scheme for prairie landscapes

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. A.; Wheater, H. S.; Ireson, A. M.; Spence, C.; Davison, B.; Pietroniro, A.

    2014-04-01

    The prairie region of Canada and the United States is characterized by millions of small depressions of glacial origin called prairie potholes. The transfer of surface runoff in this landscape is mainly through a “fill and spill” mechanism among neighboring potholes. While non-contributing areas, that is small internally drained basins, are common on this landscape, during wet periods these areas can become hydrologically connected to larger regional drainage systems. Accurate prediction of prairie surface runoff generation and streamflow thus requires realistic representation of the dynamic threshold-mediated nature of these contributing areas. This paper presents a new prairie surface runoff generation algorithm for land surface schemes and large scale hydrological models that conceptualizes a hydrologic unit as a combination of variable and interacting storage elements. The proposed surface runoff generation algorithm uses a probability density function to represent the spatial variation of pothole storages and assumes a unique relationship between storage and the fractional contributing area for runoff (and hence amount of direct runoff generated) within a grid cell. In this paper the parameters that define this relationship are obtained by calibration against streamflow. The model was compared to an existing hydrology-land surface scheme (HLSS) applied to a typical Canadian prairie catchment, the Assiniboine River. The existing configuration is based on the Canadian Land Surface Scheme (CLASS) and WATROF (a physically-based overland and interflow scheme). The new configuration consists of CLASS coupled with the new PDMROF model. Results showed that the proposed surface runoff generation algorithm performed better at simulating streamflow, and appears to capture the dynamic nature of contributing areas in an effective and parsimonious manner. A pilot evaluation based on 1 m LiDAR data from a small (10 km2) experimental area suggests that the shape of the

  8. Cross comparisons of land surface process descriptions in land surface models using multiple sources of data

    NASA Astrophysics Data System (ADS)

    Park, Gi Hyeon

    2006-12-01

    Land surface-atmospheric interactions influence climate and weather varying spatial scales from local to mesoscale, and even to global. This dissertation deals with several topics: (1) evaluation of various sources of incoming solar radiations, (2) evaluation of land surface process descriptions in the land surface models in both basin-scale and point scale offline model simulations, and (3) inverse estimation of radiation components using net radiation and other meteorological variables. Incoming solar radiations from various sources were evaluated. This study identified the two sources of errors in the North American Data Assimilation system (NLDAS) solar radiation: One is related to bias inherited from the ETA Data Assimilation System (EDAS) during 2001 and 2003, and the other is software error at NESDIS operational system during 2002. Land surface processes are treated quite differently in the land surface models used in this study. Over the state of Oklahoma, Common Land Model 2.1 (CLM2.1) estimates more evaporation but less transpiration than the Variable Infiltration Capacity (VIC3L) model. This is due to the difference in the runoff algorithm, which results in more infiltration down to the soil layer and then providing more available water to plant roots in VIC3L. CLM2.1 overestimates ground heat flux in Point scale simulation. CoLM, which employs two stream radiative transfer scheme, shows better agreements to adjusted ground observations (using Bowen-ration closure method) in offline simulations than CLM2.1. CoLM, in addition, shows various model behaviors depending on vegetation cover types. Inverse radiation estimation methods were developed and evaluated at four AmeriFlux sites. Analysis of observed radiations showed a triangle shape relationship among net radiation, net solar radiation and cloud factor (defined in this study). Clear-sky downward longwave radiation is needed to be calibrated for each site. SCE-UA method was used to calibrate an

  9. Enhancing the Representation of Subgrid Land Surface Characteristics in Land Surface Models

    SciTech Connect

    Ke, Yinghai; Leung, Lai-Yung R.; Huang, Maoyi; Li, Hongyi

    2013-09-27

    Land surface heterogeneity has long been recognized and increasingly incorporated in the land surface modelling. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types. In this study, we developed a new subgrid classification method (SGC) that accounts for the topographic variability of the vegetation cover. Each model grid cell was represented with a number of elevation classes and each elevation class was further described by a number of vegetation types. The numbers of elevation classes and vegetation types were variable and optimized for each model grid so that the spatial variability of both elevation and vegetation can be reasonably explained given a pre-determined total number of classes. The subgrid structure of the Community Land Model (CLM) was used as an example to illustrate the newly developed method in this study. With similar computational burden as the current subgrid vegetation representation in CLM, the new method is able to explain at least 80% of the total subgrid PFTs and greatly reduced the variations of elevation within each subgrid class compared to the baseline method where a single elevation class is assigned to each subgrid PFT. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2) that assigned fixed numbers of elevation and vegetation classes for each model grid with different perspectives of surface cover classification. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0° and 2.0°) with three maximum-allowed total number of classes N_class of 24, 18 and 12 representing different computational burdens over the North America (NA) continent, the new method showed variable performances compared to the SGC1 and SGC2 methods. However, the advantage of the SGC method over the other two methods clearly emerged at coarser model resolutions and with moderate computational intensity (N_class = 18) as it

  10. The Greenhouse Effect - Determination From Accurate Surface Longwave Radiation Measurements

    NASA Astrophysics Data System (ADS)

    Philipona, R.

    Longwave radiation measurements have been drastically improved in recent years. Uncertainty levels down to s2 Wm-2 are realistic and achieved during long-term ´ longwave irradiance measurements. Longwave downward irradiance measurements together with temperature and humidity measurements at the station are used to sepa- rate clear-sky from cloudy-sky situations. Longwave net radiation separated between clear-sky and all-sky situations allows to determine the longwave cloud radiative forc- ing at the station. For clear-sky situations radiative transfer models demonstrate a lin- ear relation between longwave downward radiation and the greenhouse radiative flux. Clear-sky longwave radiation, temperature and humidity for different atmospheres and different altitudes were modeled with the MODTRAN radiative transfer code and compared to longwave radiation, temperature and humidity measured at 4 radiation stations of the Alpine Surface Radiation Budget (ASRB) network at similar altitude and with corresponding atmospheres. At the 11 ASRB stations the clear-sky green- house effect was determined by using clear-sky longwave downward measurements and MODTRAN model calculations. The all-sky greenhouse effect was determined by adding the longwave cloud radiative forcing to the clear-sky greenhouse radiative flux. The altitude dependence of annual and seasonal mean values of the greenhouse effect will be shown for the altitude range of 400 to 3600 meter a.s.l. in the Alps.

  11. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  12. Improved in-situ methods for determining land surface emissivity

    NASA Astrophysics Data System (ADS)

    Göttsche, Frank; Olesen, Folke; Hulley, Glynn

    2014-05-01

    The accurate validation of LST satellite products, such as the operational LST retrieved by the Land Surface Analysis - Satellite Application Facility (LSA-SAF), requires accurate knowledge of emissivity for the areas observed by the ground radiometers as well as for the area observed by the satellite sensor. Especially over arid regions, the relatively high uncertainty in land surface emissivity (LSE) limits the accuracy with which land surface temperature (LST) can be retrieved from thermal infrared (TIR) radiance measurements. LSE uncertainty affects LST obtained from satellite measurements and in-situ radiance measurements alike. Furthermore, direct comparisons between satellite sensors and ground based sensors are complicated by spatial scale mismatch: ground radiometers usually observe some 10 m2, whereas satellite sensors typically observe between 1 km2 and 100 km2. Therefore, validation sites have to be carefully selected and need to be characterised on the scale of the ground radiometer as well as on the scale of the satellite pixel. The permanent stations near Gobabeb (Namibia; hyper-arid desert climate) and Dahra (Senegal; hot-arid steppe-prairie climate) are two of KIT's four dedicated LST validation stations. Gobabeb station is located on vast and flat gravel plains (several 100 km2), which are mainly covered by coarse gravel, sand, and desiccated grass. The gravel plains are highly homogeneous in space and time, which makes them ideal for validating a broad range of satellite-derived products. Dahra station is located in so called 'tiger bush' and is covered by strongly seasonal grass (95%) and sparse, evergreen trees (dominantly acacia trees) with a background of reddish sand. The strong seasonality is caused by a pronounced rainy season, during which LST retrieval is highly challenging. Outside the rainy season, both sites have relatively large fractions of bare ground and desiccated vegetation: therefore, they are particularly prone to be

  13. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1993-01-01

    The task objectives of this reporting phase included: (1) completing the draft of the LST Algorithms Theoretical Basic Document by July 30, 1993; (2) making a detailed characterization of the thermal infrared measurement system including spectrometer, blackbody, and radiation sources; (3) making TIR spectral measurements of water and snow-cover surfaces with the MIDAC M2401 spectrometer; and (4) making conceptual and engineering design of an accessory system for spectrometric measurements at variable angles. These objectives are based on the requirements by the MODIS Science Team and the unique challenge in the development of MODIS LST algorithms: to acquire accurate spectral emissivity data of land covers in the near-term and to make ground validations of the LST product in the long-term with a TIR measurement system.

  14. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2003-10-30

    The 2002-2003 Department of Energy plantings amounted to 164 acres containing 111,520 tree seedlings in eastern and western Kentucky. Data gathered on these trees included an inventory to determine survival of all planted species. A sub-sample of seedlings was selected to assess the height and diameter of individual species of seedlings established. Additional efforts involved collection of soil sample and litter samples, analysis of herbaceous ground cover from vegetation clip plots and leaf area on each tree species, and development of tissue collections. All areas were sampled for penetration resistance, penetration depth (or depth to refusal), and bulk density at various depths. Rain fall events and flow rates were recorded. The water quality of runoff samples involved the determination of total and settleable solids and particle size distribution. A study was initiated that will focus on the colonization of small mammals from forest edges to various areas located on reclaimed surface mines. This effort will provide a better understanding of the role small mammals and birds have in the establishment of plant communities on mine lands that will be useful in developing and improving reclamation techniques.

  15. Ground surface temperature simulation for different land covers

    NASA Astrophysics Data System (ADS)

    Herb, William R.; Janke, Ben; Mohseni, Omid; Stefan, Heinz G.

    2008-07-01

    SummaryA model for predicting temperature time series for dry and wet land surfaces is described, as part of a larger project to assess the impact of urban development on the temperature of surface runoff and coldwater streams. Surface heat transfer processes on impervious and pervious land surfaces were investigated for both dry and wet weather periods. The surface heat transfer equations were combined with a numerical approximation of the 1-D unsteady heat diffusion equation to calculate pavement and soil temperature profiles to a depth of 10 m. Equations to predict the magnitude of the radiative, convective, conductive and evaporative heat fluxes at a dry or wet surface, using standard climate data as input, were developed. A model for the effect of plant canopies on surface heat transfer was included for vegetated land surfaces. Given suitable climate data, the model can simulate the land surface and sub-surface temperatures continuously throughout a six month time period or for a single rainfall event. Land surface temperatures have been successfully simulated for pavements, bare soil, short and tall grass, a forest, and two agricultural crops (corn and soybeans). The simulations were run for three different locations in US, and different years as imposed by the availability of measured soil temperature and climate data. To clarify the effect of land use on surface temperatures, the calibrated coefficients for each land use and the same soil coefficients were used to simulate surface temperatures for a six year climate data set from Albertville, MN. Asphalt and concrete give the highest surface temperatures, as expected, while vegetated surfaces gave the lowest. Bare soil gives surface temperatures that lie between those for pavements and plant-covered surfaces. The soil temperature model predicts hourly surface temperatures of bare soil and pavement with root-mean-square errors (RMSEs) of 1-2 °C, and hourly surface temperatures of vegetation-covered surfaces

  16. Climate and the equilibrium state of land surface hydrology parameterizations

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    For given climatic rates of precipitation and potential evaporation, the land surface hydrology parameterizations of atmospheric general circulation models will maintain soil-water storage conditions that balance the moisture input and output. The surface relative soil saturation for such climatic conditions serves as a measure of the land surface parameterization state under a given forcing. The equilibrium value of this variable for alternate parameterizations of land surface hydrology are determined as a function of climate and the sensitivity of the surface to shifts and changes in climatic forcing are estimated.

  17. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    NASA Astrophysics Data System (ADS)

    Manakos, Ioannis; Chatzopoulos-Vouzoglanis, Konstantinos; Petrou, Zisis I.; Filchev, Lachezar; Apostolakis, Antonis

    2015-01-01

    The National Geomatics Center of China (NGCC) produced Global Land Cover (GlobalLand30) maps with 30 m spatial resolution for the years 2000 and 2009-2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009-2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m) orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well.

  18. Accurate thermal imaging of low-emissivity surfaces using approximate blackbody cavities

    NASA Astrophysics Data System (ADS)

    Turner, S. Fiona; Metcalfe, Stuart F.; Mellor, Andrew; Willmott, Jon; Drögmöller, Peter

    2012-06-01

    Remote temperature sensing and thermal imaging can be invaluable tools for process control and optimization. Their utilization is limited within the metal processing industries, however, as bright metal surfaces are highly reflective, with low emissivity that can vary critically with oxide thickness and alloy composition. Any infrared temperature measurement is vulnerable to background reflection and limited to the uncertainty in the emissivity. An enclosure or cavity made of any material offers an approximation to blackbody radiation, as both emitted and reflected radiation are collected within the cavity, and background radiation is excluded by the geometry. By exploiting natural cavities formed during processing, emissivity-independent measurements can be made. This paper presents thermal imaging data from an aluminum rolling application. Data was gathered using Land's FTI-E imaging system. Based on an uncooled amorphous silicon array, the system provides measurement in the range 200°C to 600°C to an accuracy of +/-1°C. The 320 x 240 pixels each have field of view 570:1, providing a total viewing angle of 32° by 24°. Data was processed by Land's LIPS ASPS software, which features a patented algorithm for identifying the area of true temperature measurement within the cavity. The software automatically locates the wedge as the strip is coiled, and tracks its position as the coil increases in size. Successive profile graphs are collated to form a '2D map' of the whole strip. The results demonstrate that accurate, emissivity-independent temperature measurements can be obtained from the wedge-shaped cavity formed where the sheet aluminum joins the roll.

  19. Surface Characterization for Land-Atmosphere Studies of CLASIC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cloud and Land Surface Interaction Campaign will focus on interactions between the land surface, convective boundary layer, and cumulus clouds. It will take place in the Southern Great Plains (SGP) area of the U.S, specifically within the US DOE ARM Climate Research Facility. The intensive obser...

  20. A NEW LAND-SURFACE MODEL IN MM5

    EPA Science Inventory

    There has recently been a general realization that more sophisticated modeling of land-surface processes can be important for mesoscale meteorology models. Land-surface models (LSMs) have long been important components in global-scale climate models because of their more compl...

  1. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  2. Carbon Sequestration on Surface Mine Lands

    SciTech Connect

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    Since the implementation of the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA) in May of 1978, many opportunities have been lost for the reforestation of surface mines in the eastern United States. Research has shown that excessive compaction of spoil material in the backfilling and grading process is the biggest impediment to the establishment of productive forests as a post-mining land use (Ashby, 1998, Burger et al., 1994, Graves et al., 2000). Stability of mine sites was a prominent concern among regulators and mine operators in the years immediately following the implementation of SMCRA. These concerns resulted in the highly compacted, flatly graded, and consequently unproductive spoils of the early post-SMCRA era. However, there is nothing in the regulations that requires mine sites to be overly compacted as long as stability is achieved. It has been cultural barriers and not regulatory barriers that have contributed to the failure of reforestation efforts under the federal law over the past 27 years. Efforts to change the perception that the federal law and regulations impede effective reforestation techniques and interfere with bond release must be implemented. Demonstration of techniques that lead to the successful reforestation of surface mines is one such method that can be used to change perceptions and protect the forest ecosystems that were indigenous to these areas prior to mining. The University of Kentucky initiated a large-scale reforestation effort to address regulatory and cultural impediments to forest reclamation in 2003. During the three years of this project 383,000 trees were planted on over 556 acres in different physiographic areas of Kentucky (Table 1, Figure 1). Species used for the project were similar to those that existed on the sites before mining was initiated (Table 2). A monitoring program was undertaken to evaluate growth and survival of the planted species as a function of spoil characteristics and

  3. Development of high resolution land surface parameters for the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Leung, L. R.; Huang, M.; Coleman, A. M.; Li, H.; Wigmosta, M. S.

    2012-06-01

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the model from the National Center for Atmospheric Research (NCAR). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely-sensed datasets retrieved in late 1990's and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western US to demonstrate their use in high-resolution modeling. Future work will include global offline CLMsimulations to examine the impacts of source data resolution and subsequent land parameter changes on simulated land surface processes.

  4. Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model

    NASA Technical Reports Server (NTRS)

    Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.

    1997-01-01

    The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface

  5. Precipitation and global land surface hydrology in the MERRA-Land and MERRA-2 reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Reichle, Rolf; Liu, Qing

    2015-04-01

    Multi-decadal reanalysis datasets have been widely used to study the global terrestrial water cycle. Examples include atmospheric reanalysis datasets (e.g., MERRA and ERA-Interim), coupled atmosphere-ocean reanalysis datasets (e.g., CFSR), and land-surface only reanalysis datasets (e.g., MERRA-Land and ERA-Interim/Land). The driving component of the land surface water budget is the incoming precipitation forcing. Traditionally, e.g. in ERA-Interim and MERRA, the reanalysis precipitation over land is generated by the atmospheric general circulation model component of the reanalysis system. By contrast, MERRA-Land, ERA-Interim/Land, CSFR, and the forthcoming MERRA-2 atmospheric reanalysis essentially use precipitation observations from satellites and/or gauges to force the land surface, which typically results in improved estimates of large-scale hydrological conditions. This presentation first reviews the approach by which the precipitation observations are introduced in MERRA-Land and MERRA-2. Precipitation in MERRA-Land relies on a global, daily, 0.5 degree gauge product from the NOAA Climate Prediction Center (CPC). But this product is based on a very limited number of measurements at high latitudes and over Africa. Therefore, MERRA-2 relies on a mix of (i) model-generated precipitation at high-latitudes, (ii) a pentad, 2.5 degree satellite product from CPC over Africa, and (iii) the daily, 0.5 degree gauge-based precipitation product elsewhere. Next, the precipitation climatologies and the resulting land surface hydrological conditions are compared regionally and for the reanalysis time period (1980-present). The more sophisticated approach of MERRA-2 precipitation results in generally improved land surface conditions. But MERRA-2 also suffers from adverse spin-up effects in soil moisture conditions at high latitudes.

  6. GLDAS Land Surface Models based Aridity Indices

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ghazanfari, S.

    2011-12-01

    Identification of dryland areas is crucial to guide policy aimed at intervening in water stressed areas and addressing its perennial livelihood or food insecurity. Aridity indices based on spatially relative soil moisture conditions such as NCEP aridity index allow cross comparison of dry conditions between sites. NCEP aridity index is based on the ratio of annual precipitation (supply) to annual potential evaporation (demand). Such an index ignores subannual scale competition between evaporation and drainage functions well as rainfall and temperature regimes. This determines partitioning of annual supply of precipitation into two competing (but met) evaporation and runoff demands. We here introduce aridity indices based on these additional considerations by using soil moisture time series for the past 3 decades from three Land Surface Models (LSM) models and compare it with NCEP index. We analyze global monthly soil moisture time series (385 months) at 1 x 1 degree spatial resolution as modeled by three GLDAS LSMs - VIC, MOSAIC and NOAH. The first eigen vector from Empirical Orthogonal Function (EOF) analysis, as it is the most dominant spatial template of global soil moisture conditions, is extracted. Frequency of nonexceedences of this dominant soil moisture mode for a location by other locations is calculated and is used as our proposed aridity index. An area is indexed drier (relative to other areas in the world) if its frequency of nonexceedence is lower. The EOF analysis reveals that their first eigen vector explains approximately 32%, 43% and 47% of variance explained by first 385 eigen vectors for VIC, MOSAIC and NOAH respectively. The temporal coefficients associated with it for all three LSMS show seasonality with a jump in trend around the year 1999 for NOAH and MOSAIC. The VIC aridity index displays a pattern most closely resembling that of NCEP though all LSM based indices isolate dominant dryland areas. However, all three LSMs identify some parts of

  7. The global land surface energy balance and its representation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Hakuba, Maria; Schär, Christoph; Seneviratne, Sonia; Kato, Seiji; Rutan, David; Ammann, Christof; Wood, Eric; König-Langlo, Gert

    2015-04-01

    (ERA-Interim) and satellite-derived products (surface CERES EBAF). This remarkable consistency enhances confidence in the determined flux magnitudes, which so far caused large uncertainties in the energy budgets and often hampered an accurate simulation of surface climates in models. Using in addition a land mean surface albedo estimate of 0.26, we determine an average absorbed solar radiation at land surfaces of 136 Wm-2. Our best estimate for the upward thermal radiation at land surfaces (essentially based on the Stefan Boltzmann law) is 372 Wm-2, and combined with the above best estimate of 306 Wm-2 for the downward thermal radiation, this results in a net thermal radiation of -66 Wm-2 averaged over global land surfaces. Adding the absorbed solar and net thermal radiation, our best estimate of the land mean surface net radiation amounts to 70 Wm-2, which is the energy available for the sensible and latent heat fluxes. Latest estimates of terrestrial latent heat fluxes indicate a land mean value slightly below 40 Wm-2. In our best estimate of the global land mean energy balance we thus adopt a land mean latent heat flux of 38 Wm-2, leaving a land mean sensible heat flux of 32 Wm-2 as residual to close the energy balance over terrestrial surfaces. A diagram of the global land mean energy balance including these new estimates and the related discussion has recently been published in Climate Dynamics (Wild et al. 2015). Related reference: Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood E.F. ·and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models, Climate Dynamics, DOI 10.1007/s00382-014-2430-z

  8. Improving arable land heterogeneity information in available land cover products for land surface modelling using MERIS NDVI data

    NASA Astrophysics Data System (ADS)

    Zabel, F.; Hank, T. B.; Mauser, W.

    2010-07-01

    Regionalization of physical land surface models requires the supply of detailed land cover information. Numerous global and regional land cover maps already exist, but generally they do not resolve arable land into different crop types. However, the characteristic phenological behaviour of different crops affects the mass and energy fluxes on the land surface and thus its hydrology. The objective of this study is the generation of a land cover map for Central Europe based on CORINE Land Cover 2000, merged with CORINE Switzerland, but distinguishing different crop types. Accordingly, an approach was developed, subdividing the land cover class arable land into the regionally most relevant subclasses for Central Europe using statistical data from EUROSTAT. This database was analysed concerning the acreage of different crop types, taking a multiseasonal series of MERIS Normalized Difference Vegetation Index (NDVI) into account. The satellite data were used for the separation of spring and summer crops. The hydrological impact of the improved land cover map was modelled exemplarily for the Upper Danube catchment.

  9. Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija

    2012-01-01

    Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  10. Estimation of Arctic Land Surface Conditions and Fluxes via a Suite of Land Surface Models

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Slater, A. G.; Lettenmaier, D. P.; Serreze, M. C.

    2004-12-01

    River runoff from the Arctic terrestrial drainage system is thought to exert a significant influence over global climate, contributing to the global thermohaline circulation via its effects on salinity, sea ice, and surface freshening in the North Atlantic. Changes in these freshwater fluxes, as well as other components of the Arctic terrestrial hydrologic cycle such as snow cover and albedo, have the potential to amplify the Arctic's response to global climate change. However, the extent to which the Arctic terrestrial hydrological cycle is changing or may contribute to change through feedback processes is still not well understood, in part due to the sparseness of observations of such variables as stream flow, soil moisture, soil temperature, snow water equivalent, and energy fluxes. The objective of this project is to assemble the best possible time series (covering a 20+ year period) of these and other prognostic variables for the Arctic terrestrial drainage basin. While these variables can be estimated with a single land surface model (LSM), the predictions are often subject to biases and errors in the input atmospheric forcings and limited by the accuracy of the model physics. To reduce these errors, we have implemented an ensemble of five LSMs: VIC, CLM, ECMWF, NOAH and CHASM, all of which have been used previously to simulate Arctic hydrology under the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Experiment 2e. Model predictions of land surface state variables (snow water content, soil moisture, permafrost active layer depth) and fluxes (latent, sensible, and ground heat fluxes; runoff) are averaged both across the ensemble and over multiple runs, using the best available atmospheric forcing data with and without added random perturbations. Here we evaluate the multi-model ensemble averages in comparison with individual model simulations of variables including snow water equivalent, evaporation, total runoff, and soil thaw

  11. Accurate analytical approximation of the OTFTs surface potential by means of the Lagrange Reversion Theorem

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi; Ghittorelli, Matteo; Torricelli, Fabrizio; Kovács-Vajna, Zsolt Miklos

    2015-12-01

    Surface-potential-based mathematical models are among the most accurate and physically based compact models of Thin-Film Transistors (TFTs) and, in turn, of Organic Thin-Film Transistors (OTFTs), available today. However, the need for iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not enough accurate to model OTFTs and, in particular, transconductances and transcapacitances. In this paper we present an accurate and computationally efficient closed-form approximation of the surface potential, based on the Lagrange Reversion Theorem, that can be exploited in advanced surface-potential-based OTFTs and TFTs device models.

  12. Understanding land surface evapotranspiration with satellite multispectral measurements

    NASA Technical Reports Server (NTRS)

    Menenti, M.

    1993-01-01

    Quantitative use of remote multispectral measurements to study and map land surface evapotranspiration has been a challenging issue for the past 20 years. Past work is reviewed against process physics. A simple two-layer combination-type model is used which is applicable to both vegetation and bare soil. The theoretic analysis is done to show which land surface properties are implicitly defined by such evaporation models and to assess whether they are measurable as a matter of principle. Conceptual implications of the spatial correlation of land surface properties, as observed by means of remote multispectral measurements, are illustrated with results of work done in arid zones. A normalization of spatial variability of land surface evaporation is proposed by defining a location-dependent potential evaporation and surface temperature range. Examples of the application of remote based estimates of evaporation to hydrological modeling studies in Egypt and Argentina are presented.

  13. Classes of land-surface form in the United States

    USGS Publications Warehouse

    Hammond, Edwin

    1964-01-01

    This digital dataset describes classes of land-surface form in the conterminous United States. The source of the data is the map of land-surface form in the 1970 National Atlas of the United States, pages 62-63, which was adapted from Edwin H. Hammond, "Classes of land surface form in the forty-eight states, U.S.A," Annals of the Assoc. of Am. Geographers, v.54, no. 1, 1964, map supp. no. 1, 1:5,000,000.

  14. improved vegetation phenology in the JULES land-surface model

    NASA Astrophysics Data System (ADS)

    Los, S. O.

    2013-12-01

    Sietse Los, Steven Hancock, Peter North, Jose Gomez-Dans Introduction: Land-surface properties such as albedo, soil moisture and vegetation biophysical parameters affect water, energy and carbon fluxes from the land to the atmosphere an this can alter weather patterns. Here we use globally consistent satellite observations to improve modelling of the vegetation seasonal cycle in the JULES land-surface model (LSM) to better represent these fluxes. JULES model: The JULES LSM is the land surface component of the suite of UK MetOffice general circulation models. JULES is used both in operational weather forecasting and for simulations of future climate. Within JULES, seasonal changes in surface albedo are controlled by snow (not covered here) and vegetation dynamics (phenology). Vegetation phenology is controlled by temperature and water availability, with timings and rates set by a number of trigger thresholds and leaf growth/death rates. Satellite data: The ability of JULES to represent vegetation, in terms of its seasonal cycle as well as the interannual variation, was tested on normalised difference vegetation index (NDVI = (near-infrared - red) / (near-infrared + red)) data. JULES uses a 1D radiative transfer model to predict hemispheric surface albedo for a given leaf area whilst satellites measure reflectance from a single view direction and this may not match the hemispheric albedo. To test this, JULES predictions were compared to the FLIGHT (a 3D radiative transfer model) simulations for different view directions. This revealed that either NDVI profiles need to be normalised to allow a direct comparison (as done here) or else the JULES 1D model must be replaced by a full 3D radiative transfer model, which is computationally expensive. Experiments: The original phenology module in JULES was optimised against NDVI observations using a Monte-Carlo Markov chain method. This optimisation was unsuccessful; and we therefore concluded that the JULES phenology cannot

  15. Improving arable land heterogeneity information in available land cover products for land surface modelling using MERIS NDVI data

    NASA Astrophysics Data System (ADS)

    Zabel, F.; Hank, T. B.; Mauser, W.

    2010-10-01

    Regionalization of physical land surface models requires the supply of detailed land cover information. Numerous global and regional land cover maps already exist but generally, they do not resolve arable land into different crop types. However, arable land comprises a huge variety of different crops with characteristic phenological behaviour, demonstrated in this paper with Leaf Area Index (LAI) measurements exemplarily for maize and winter wheat. This affects the mass and energy fluxes on the land surface and thus its hydrology. The objective of this study is the generation of a land cover map for central Europe based on CORINE Land Cover (CLC) 2000, merged with CORINE Switzerland, but distinguishing different crop types. Accordingly, an approach was developed, subdividing the land cover class arable land into the regionally most relevant subclasses for central Europe using multiseasonal MERIS Normalized Difference Vegetation Index (NDVI) data. The satellite data were used for the separation of spring and summer crops due to their different phenological behaviour. Subsequently, the generated phenological classes were subdivided following statistical data from EUROSTAT. This database was analysed concerning the acreage of different crop types. The impact of the improved land use/cover map on evapotranspiration was modelled exemplarily for the Upper Danube catchment with the hydrological model PROMET. Simulations based on the newly developed land cover approach showed a more detailed evapotranspiration pattern compared to model results using the traditional CLC map, which is ignorant of most arable subdivisions. Due to the improved temporal behaviour and spatial allocation of evapotranspiration processes in the new land cover approach, the simulated water balance more closely matches the measured gauge.

  16. Using ground-based geophysics to rapidly and accurately map sub-surface acidity

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa; Triantafilis, John; Johnston, Scott; Nhan, Terence; Page, Donald; Wege, Richard; Hirst, Phillip; Slavich, Peter

    2013-04-01

    sulfuric and sulfidic layers (oxidised and reduced ASS), acidic shallow groundwater, and features of the infilled palaeovalley (Triantafilis et al. 2012). Accurate soil maps with high spatial resolution are required to develop appropriate management strategies for ASS and other soil types associated with low-lying coastal floodplains. The classes identified in this study form sensible soil management zones across the study area related to defined geomorphic units. EM data can then be used to build below-ground 3D models to inform practical targeted management strategies on coastal floodplains to improve land and water quality outcomes. References Triantafilis J, Wong V, Santos FAM, Page D, Wege R (2012) Modeling the electrical conductivity of hydrogeological strata using joint-inversion of loop-loop electromagnetic data. Geophysics 77(4): WB99-WB107

  17. Assimilation of Satellite Remote Sensing Retrievals into Land Surface Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For at least two decades, remote sensing observations have been used to define static model parameters and/or forcing inputs for a range of land surface models. However, recent advances in remote sensing theory have also enabled the satellite-based retrieval of dynamic land model states (e.g. leaf ...

  18. A Land Surface Data Assimilation Framework Using the Land Information System: Description and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Land Information System (LIS) is a hydrologic modeling framework that integrates various community land surface models, ground and satellite-based observations, and high performance computing and data management tools to enable assessment and prediction of hydrologic conditions at various spatia...

  19. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    NASA Astrophysics Data System (ADS)

    Singh, Chandan; Saini, Jaswinder Singh

    2016-07-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  20. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    NASA Astrophysics Data System (ADS)

    Singh, Chandan; Saini, Jaswinder Singh

    2016-05-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  1. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  2. The role of land cover in high latitude land surface temperature heterogeneity

    NASA Astrophysics Data System (ADS)

    Wang, D.; Nagol, J. R.; Morton, D. C.; Masek, J. G.

    2011-12-01

    Near-surface air temperature governs a range of land surface processes, such as photosynthesis, respiration, and evapotranspiration. However, the spatiotemporal patterns of near-surface air temperature are complex. Meteorological stations provide a detailed account of temporal variations in air temperature, but fail to capture spatial heterogeneity in surface temperature, especially over remote regions with sparse station networks. Gridded climate datasets (0.5° - 2.0° spatial resolution) produced from the meteorological station observations therefore inherit these same shortcomings, since current algorithms use only latitude, longitude, and elevation to interpolate between station locations. Here, we explored the use of MODIS-based estimates of land surface temperature (LST) and land cover to estimate fine-scale heterogeneity in land surface temperature during summer months over boreal North America. We combined nighttime MODIS LST with meteorological station and gridded climate data records. Our analysis quantified the contribution from station distance (latitude and longitude) and land cover type for differences between MODIS and station-based estimates of nighttime temperatures. Finally, we estimated the impact of sub-grid cell heterogeneity in LST for ecosystem processes by comparing seasonal respiration fluxes from an ecosystem model driven by gridded climate data and MODIS LST. Our study suggests that downscaling coarse resolution temperature data using MODIS LST and land cover information can improve estimates of spatial variability in surface temperature data and related ecosystem processes.

  3. Using water isotopes in the evaluation of land surface models

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Risi, Camille; Ottlé, Catherine; Bastrikov, Vladislav; Valdayskikh, Victor; Cattani, Olivier; Jouzel, Jean; Gribanov, Konstantin; Nekrasova, Olga; Zacharov, Vyacheslav; Ogée, Jérôme; Wingate, Lisa; Raz-Yaseef, Naama

    2013-04-01

    Several studies show that uncertainties in the representation of land surface processes contribute significantly to the spread in projections for the hydrological cycle. Improvements in the evaluation of land surface models would therefore translate into more reliable predictions of future changes. The isotopic composition of water is affected by phase transitions and, for this reason, is a good tracer for the hydrological cycle. Particularly relevant for the assessment of land surface processes is the fact that bare soil evaporation and transpiration bear different isotopic signatures. Water isotopic measurement could thus be employed in the evaluation of the land surface hydrological budget. With this objective, isotopes have been implemented in the most recent version of the land surface model ORCHIDEE. This model has undergone considerable development in the past few years. In particular, a newly discretised (11 layers) hydrology aims at a more realistic representation of the soil water budget. In addition, biogeophysical processes, as, for instance, the dynamics of permafrost and of its interaction with snow and vegetation, have been included. This model version will allow us to better resolve vertical profiles of soil water isotopic composition and to more realistically simulate the land surface hydrological and isotopic budget in a broader range of climate zones. Model results have been evaluated against temperature profiles and isotopes measurements in soil and stem water at sites located in semi-arid (Yatir), temperate (Le Bray) and boreal (Labytnangi) regions. Seasonal cycles are reasonably well reproduced. Furthermore, a sensitivity analysis investigates to what extent water isotopic measurements in soil water can help constrain the representation of land surface processes, with a focus on the partitioning between evaporation and transpiration. In turn, improvements in the description of this partitioning may help reduce the uncertainties in the land

  4. Impact of land use changes on surface warming in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyong; Dong, Wenjie; Wu, Lingyun; Wei, Jiangfeng; Chen, Peiyan; Lee, Dong-Kyou

    2005-06-01

    Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12°C (10yr)-1 increase for daily mean surface temperature, and the 0.20°C (10yr)-1 and 0.03°C (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes may also play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity. The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.

  5. Assimilating SMOS data into land surface emissivity models

    NASA Astrophysics Data System (ADS)

    Mira, M.; Caselles, V.; Valor, E.; Coll, C.

    2009-04-01

    Surface emissivity is an important parameter for determining the long-wave surface energy balance, which is strongly affected by the difference between the land surface temperature (LST) and the sky brightness temperature. This difference is small outside the atmospheric window region (7-14 μm) and any changes in the emitted radiation by emissivity variability are mostly compensated for changes in the reflected sky brightness. However, the difference is the greatest in the atmospheric window, where it is possible to estimate the broadband land surface emissivity from multi-spectral thermal infrared (TIR) remote sensing. Furthermore, if the emissivity is known, the LST can be accurately estimated from TIR radiance measurements. For this reason, it is necessary to study the factors that influence emissivity, since it must be estimated with the highest possible accuracy. The soil type influence on emissivity is well known from experimental studies. However, the analysis of the variation of TIR emissivity with soil moisture (SM) is one of the pending issues in thermal remote sensing. The SM dependence should be taken into account in emissivity retrievals from satellite data observations, since the SM variation may cause a high systematic error in this parameter, e.g., about +0.1 in emissivity for an increase from 0.04 to 0.10 g/cm3 in SM for sandy soils. This is why a variety of emissivity-soil moisture quadratic relationships have been obtained from a laboratory experiment for a set of bare soils of different texture (see also Mira et al., 2007). The idea behind these relationships is to use them together with soil moisture estimates from remotely sense data in order to improve the TIR emissivity estimations an thus, the LST determination. Therefore, the next step in our analysis is to explore the feasibility of this approach using Soil Moisture and Ocean Salinity (SMOS) data. The main idea is to apply and validate the relationships, as well as to compare the

  6. Land surface temperature shaped by urban fractions in megacity region

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxuan; Hu, Yonghong; Jia, Gensuo; Hou, Meiting; Fan, Yanguo; Sun, Zhongchang; Zhu, Yuxiang

    2015-11-01

    Large areas of cropland and natural vegetation have been replaced by impervious surfaces during the recent rapid urbanization in China, which has resulted in intensified urban heat island effects and modified local or regional warming trends. However, it is unclear how urban expansion contributes to local temperature change. In this study, we investigated the relationship between land surface temperature (LST) change and the increase of urban land signals. The megacity of Tianjin was chosen for the case study because it is representative of the urbanization process in northern China. A combined analysis of LST and urban land information was conducted based on an urban-rural transect derived from Landsat 8 Thermal Infrared Sensor (TIRS), Terra Moderate Resolution Imaging Spectrometer (MODIS), and QuickBird images. The results indicated that the density of urban land signals has intensified within a 1-km2 grid in the urban center with an impervious land fraction >60 %. However, the construction on urban land is quite different with low-/mid-rise buildings outnumbering high-rise buildings in the urban-rural transect. Based on a statistical moving window analysis, positive correlation (R 2 > 0.9) is found between LST and urban land signals. Surface temperature change (ΔLST) increases by 0.062 °C, which was probably caused by the 1 % increase of urbanized land (ΔIF) in this case region.

  7. The ``coming of age'' of land surface climatology

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.

    1990-08-01

    Land surface climates have never been more crucial that at the present. Scenarios of climatic change, say due to greenhouse warming, require successful prediction of the land surface characteristics since this is the locus of mankind's activities. Evaluation of the state-of-the-art land surface parameterization schemes has only just begun. Here we consider the performance of the Biosphere Atmosphere Transfer Scheme (BATS) when coupled to the National Center for Atmospheric Research's Community Climate Model (CCM). The land surface climatology generated by averaging the results of a three year model integration on a monthly basis is evaluated for the continent of Australia by comparison with published descriptions of a wide range of parameters. Proposals are outlined for improved methods of validation and testing the predictions of such complex biospheric submodels at least at continental scale. Future requirements for an interactive vegetation submodel are examined by assessing the generalized life zones predicted by the CCM as compared with the life zone types currently specified in the model and those predicted by the same GCM but using a simpler land-surface scheme. It is concluded that the climate community is now poised for the next crucial step towards a fully interactive land-surface climatic model.

  8. COMETARY SCIENCE. The landing(s) of Philae and inferences about comet surface mechanical properties.

    PubMed

    Biele, Jens; Ulamec, Stephan; Maibaum, Michael; Roll, Reinhard; Witte, Lars; Jurado, Eric; Muñoz, Pablo; Arnold, Walter; Auster, Hans-Ulrich; Casas, Carlos; Faber, Claudia; Fantinati, Cinzia; Finke, Felix; Fischer, Hans-Herbert; Geurts, Koen; Güttler, Carsten; Heinisch, Philip; Herique, Alain; Hviid, Stubbe; Kargl, Günter; Knapmeyer, Martin; Knollenberg, Jörg; Kofman, Wlodek; Kömle, Norbert; Kührt, Ekkehard; Lommatsch, Valentina; Mottola, Stefano; Pardo de Santayana, Ramon; Remetean, Emile; Scholten, Frank; Seidensticker, Klaus J; Sierks, Holger; Spohn, Tilman

    2015-07-31

    The Philae lander, part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko, was delivered to the cometary surface in November 2014. Here we report the precise circumstances of the multiple landings of Philae, including the bouncing trajectory and rebound parameters, based on engineering data in conjunction with operational instrument data. These data also provide information on the mechanical properties (strength and layering) of the comet surface. The first touchdown site, Agilkia, appears to have a granular soft surface (with a compressive strength of 1 kilopascal) at least ~20 cm thick, possibly on top of a more rigid layer. The final landing site, Abydos, has a hard surface. PMID:26228158

  9. Development of High Resolution Land Surface Parameters for the Community Land Model

    SciTech Connect

    Ke, Yinghai; Leung, Lai-Yung R.; Huang, Maoyi; Coleman, Andre M.; Li, Hongyi; Wigmosta, Mark S.

    2012-11-06

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the Community Earth System Model (CESM). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely sensed datasets retrieved in late 1990’s and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. Advantages and disadvantages of each dataset were discussed in order to provide guidance on the use of the data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western U.S. to demonstrate their use in high-resolution modeling. A remapping method from the latitude/longitude grid of the CLM data to the WRF grids with map projection was also demonstrated. Future work will include global offline CLM simulations to examine the impacts of source data resolution and subsequent land parameter

  10. Development of high resolution land surface parameters for the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Leung, L. R.; Huang, M.; Coleman, A. M.; Li, H.; Wigmosta, M. S.

    2012-11-01

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the Community Earth System Model (CESM). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely sensed datasets retrieved in late 1990's and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. Advantages and disadvantages of each dataset were discussed in order to provide guidance on the use of the data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western US to demonstrate their use in high-resolution modeling. A remapping method from the latitude/longitude grid of the CLM data to the WRF grids with map projection was also demonstrated. Future work will include global offline CLM simulations to examine the impacts of source data resolution and subsequent land parameter

  11. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-06-22

    An area planted in 2004 on Bent Mountain in Pike County was shifted to the Department of Energy project to centralize an area to become a demonstration site. An additional 98.3 acres were planted on Peabody lands in western Kentucky and Bent Mountain to bring the total area under study by this project to 556.5 acres as indicated in Table 2. Major efforts this quarter include the implementation of new plots that will examine the influence of differing geologic material on tree growth and survival, water quality and quantity and carbon sequestration. Normal monitoring and maintenance was conducted and additional instrumentation was installed to monitor the new areas planted.

  12. On The Reproducibility of Seasonal Land-surface Climate

    SciTech Connect

    Phillips, T J

    2004-10-22

    The sensitivity of the continental seasonal climate to initial conditions is estimated from an ensemble of decadal simulations of an atmospheric general circulation model with the same specifications of radiative forcings and monthly ocean boundary conditions, but with different initial states of atmosphere and land. As measures of the ''reproducibility'' of continental climate for different initial conditions, spatio-temporal correlations are computed across paired realizations of eleven model land-surface variables in which the seasonal cycle is either included or excluded--the former case being pertinent to climate simulation, and the latter to seasonal anomaly prediction. It is found that the land-surface variables which include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land-surface anomaly is generally low, although it is substantially higher in the Tropics; its spatial reproducibility also markedly fluctuates in tandem with warm and cold phases of the El Nino/Southern Oscillation. However, the overall degree of reproducibility depends strongly on the particular land-surface anomaly considered. It is also shown that the predictability of a land-surface anomaly implied by its reproducibility statistics is consistent with what is inferred from more conventional predictability metrics. Implications of these results for climate model intercomparison projects and for operational forecasts of seasonal continental climate also are elaborated.

  13. Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.

  14. CARBON SEQUESTRATION OF SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2004-05-19

    The January-March 2004 Quarter was dedicated to tree planting activities in two locations in Kentucky. During year one of this project there was no available mine land to plant in the Hazard area so 107 acres were planted in the Martin county mine location. This year 120 acres was planted in the Hazard area to compensate for the prior year and an additional 57 acres was planted on Peabody properties in western Kentucky. An additional set of special plots were established on each of these areas that contained 4800 seedlings each for special carbon sequestration determinations. Plantings were also conducted to continue compaction and water quality studies on two newly established areas as well as confirmed measurements on the first years plantings. Total plantings on this project now amount to 357 acres containing 245,960 tree seedlings.

  15. Surface Characterization for Land-Atmosphere Studies of CLASIC

    NASA Astrophysics Data System (ADS)

    Jackson, T. J.; Kustas, W.; Torn, M. S.; Meyers, T.; Prueger, J.; Fischer, M. L.; Avissar, R.; Yueh, S.; Anderson, M.; Miller, M.

    2006-12-01

    The Cloud and Land Surface Interaction Campaign will focus on interactions between the land surface, convective boundary layer, and cumulus clouds. It will take place in the Southern Great Plains (SGP) area of the U.S, specifically within the US DOE ARM Climate Research Facility. The intensive observing period will be June of 2007, which typically covers the winter wheat harvest in the region. This region has been the focus of several related experiments that include SGP97, SGP99, and SMEX03. For the land surface, some of the specific science questions include 1) how do spatial variations in land cover along this trajectory modulate the cloud structure and the low-level water vapor budget, 2) what are the relationships between land surface characteristics (i.e., soil texture, vegetation type and fractional cover) and states (particularly soil moisture and surface temperature) and the resulting impact of the surface energy balance on boundary layer and cloud structure and dynamics and aerosol loading; and 3) what is the interplay between cumulus cloud development and surface energy balance partitioning between latent and sensible heat, and implications for the carbon flux? Most of these objectives will require flux and state measurements throughout the dominant land covers and distributed over the geographic domain. These observations would allow determining the level of up- scaling/aggregation required in order to understand the impact of landscape changes affecting energy balance/flux partitioning and impact on cloud/atmospheric dynamics. Specific contributions that are planned to be added to CLASIC include continuous tower-based monitoring of surface fluxes for key land cover types prior to, during, and post-IOP, replicate towers to quantify flux variance within each land cover, boundary layer properties and fluxes from a helicopter-based system, airplane- and satellite-based flux products throughout the region, aircraft- and tower-based concentration data for

  16. Microwave Brightness Of Land Surfaces From Outer Space

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Njoku, Eni G.

    1991-01-01

    Mathematical model approximates microwave radiation emitted by land surfaces traveling to microwave radiometer in outer space. Applied to measurements made by Scanning Multichannel Microwave Radiometer (SMMR). Developed for interpretation of microwave imagery of Earth to obtain distributions of various chemical, physical, and biological characteristics across its surface. Intended primarily for use in mapping moisture content of soil and fraction of Earth covered by vegetation. Advanced Very-High-Resolution Radiometer (AVHRR), provides additional information on vegetative cover, thereby making possible retrieval of soil-moisture values from SMMR measurements. Possible to monitor changes of land surface during intervals of 5 to 10 years, providing significant data for mathematical models of evolution of climate.

  17. Results From Global Land-surface Data Assimilation Methods

    NASA Astrophysics Data System (ADS)

    Radakovich, J. D.; Houser, P. R.; da Silva, A.; Bosilovich, M. G.

    2001-05-01

    Realistic representation of the land surface is crucial in global climate modeling (GCM). Recently, the Mosaic land-surface Model (LSM) has been driven off-line using GEOS DAS (Goddard Earth Observing System Data Assimilation System) atmospheric forcing, forming the Off-line Land-surface Global Assimilation (OLGA) system. This system provides a computationally efficient test bed for land surface data assimilation. Here, we validate the OLGA simulation of surface processes and the assimilation of ISCCP surface temperatures. Another component of this study was the incorporation of the Physical-space Statistical Analysis System (PSAS) into OLGA, in order to assimilate surface temperature observations from the International Satellite Cloud Climatology Project (ISCCP). To counteract the subsequent forcing of the analyzed skin temperature back to the initial state following the analysis, incremental bias correction (IBC) was included in the assimilation. The IBC scheme effectively removed the time mean bias, but did not remove bias in the mean diurnal cycle. Therefore, a diurnal bias correction (DBC) scheme was developed, where the time-dependent bias was modeled with a sine wave parameterization. In addition, quality control of the ISCCP data and anisotropic temperature correction were implemented in PSAS. Preliminary results showed a substantial impact from the inclusion of PSAS and DBC that was visible in the surface meteorology fields and energy budget. Also, the monthly mean diurnal cycle from the experiment closely matched the diurnal cycle from the observations.

  18. Results from Global Land-Surface Data Assimilation Methods

    NASA Technical Reports Server (NTRS)

    Radakovich, Jon D.; Houser, Paul R.; daSilva, Arlindo; Bosilovich, Michael G.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Realistic representation of the land surface is crucial in global climate modeling (GCM). Recently, the Mosaic land-surface Model (LSM) has been driven off-line using GEOS DAS (Goddard Earth Observing System Data Assimilation System) atmospheric forcing, forming the Off-line Land-surface Global Assimilation (OLGA) system. This system provides a computationally efficient test bed for land surface data assimilation. Here, we validate the OLGA simulation of surface processes and the assimilation of ISCCP surface temperatures. Another component of this study as the incorporation of the Physical-space Statistical Analysis System (PSAS) into OLGA, in order to assimilate surface temperature observations from the International Satellite Cloud Climatology Project (ISCCP). To counteract the subsequent forcing of the analyzed skin temperature back to the initial state following the analysis. incremental bias correction (IBC) was included in the assimilation. The IBC scheme effectively removed the time mean bias, but did not remove him in the mean diurnal cycle. Therefore, a diurnal him correction (DBC) scheme was developed, where the time-dependent bias was modeled with a sine wave parameterization. In addition, quality control of the ISCCP data and anisotropic temperature correction were implemented in PSAS. Preliminary results showed a substantial impact from the inclusion of PSAS and DBC that was visible in the surface meteorology fields and energy budget. Also, the monthly mean diurnal cycle from the experiment closely matched the diurnal cycle from the observations.

  19. Automation of SimSphere Land Surface Model Use as a Standalone Application and Integration With EO Data for Deriving Key Land Surface Parameters

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Konstas, Ioannis; Carlson, Toby N.

    2013-04-01

    Use of simulation process models has played a key role in extending our abilities to study Earth system processes and enhancing our understanding on how different components of it interplay. Use of such models combined with Earth Observation (EO) data provides a promising direction towards deriving accurately spatiotemporal estimates of key parameters characterising land surface interactions, by combining the horizontal coverage and spectral resolution of remote sensing data with the vertical coverage and fine temporal continuity of those models. SimSphere is such a software toolkit written in Java for simulating the interactions of soil, vegetation and atmosphere layers of the Earth's land surface. Its use is at present continually expanding worldwide both as an educational and as a research tool for scientific investigations. It is being used either as a stand-alone application or synergistically with EO data. Herein we present recent advancements introduced to SimSphere in different aspects of the model aiming to make its use more robust when used both as a standalone application and synergistically with EO data. We have extensively tested and updated the model code, as well as enhanced it with new functionalities. These included for example taking into account the thermal inertia variation in soil moisture, simulating additional parameters characterising land surface interactions, automating the model use when integrating it with EO data via the "triangle" method and developing batch processing operations. Use of these recently introduced to the model functionalities are illustrated herein using a variety of examples. Our work is significant to the users' community of the model and very timely, given the potential use of SimSphere in an EO-based method being under development for deriving operationally regional estimates of energy fluxes and soil moisture from EO data provided by non-commercial vendors. KEYWORDS: land surface interactions, land surface process

  20. Global Land Cover Classification Using Modis Surface Reflectance Prosucts

    NASA Astrophysics Data System (ADS)

    Fukue, Kiyonari; Shimoda, Haruhisa

    2016-06-01

    The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year) SR(Surface Reflectance) and NBAR(Nadir BRDF-Adjusted Reflectance) products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  1. Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California

    NASA Astrophysics Data System (ADS)

    Zhao, Chun; Huang, Maoyi; Fast, Jerome D.; Berg, Larry K.; Qian, Yun; Guenther, Alex; Gu, Dasa; Shrivastava, Manish; Liu, Ying; Walters, Stacy; Pfister, Gabriele; Jin, Jiming; Shilling, John E.; Warneke, Carsten

    2016-05-01

    Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.

  2. Carbon Sequestration on Surface Mine Lands

    SciTech Connect

    Donald H. Graves; Christopher Barton; Bon Jun Koo; Richard Sweigard; Richard Warner

    2004-11-30

    The first quarter of 2004 was dedicated to tree planting activities in two locations in Kentucky. During the first year of this project there was not available mine land to plant in the Hazard area, so 107 acres were planted in the Martin County mine location. This year 120 acres were planted in the Hazard area to compensate for the prior year and an additional 57 acres were planted on Peabody properties in western Kentucky. Additional sets of special plots were established on each of these areas that contained 4800 seedlings each for carbon sequestration demonstrations. Plantings were also conducted to continue compaction and water quality studies on the newly established areas as well as continual measurements of the first year's plantings. Total plantings on this project now amount to 357 acres containing 245,960 seedlings. During the second quarter of this year monitoring systems were established for all the new research areas. Weather data pertinent to the research as well as hydrology and water quality monitoring continues to be conducted on all areas. Studies established to assess specific questions pertaining to carbon flux and the invasion of the vegetation by small mammals are being quantified. Experimental practices initiated with this research project will eventually allow for the planting on long steep slopes with loose grading systems and allow mountain top removal areas to be constructed with loose spoil with no grading of the final layers of rooting material when establishing trees for the final land use designation. Monitoring systems have been installed to measure treatment effects on both above and below ground carbon and nitrogen pools in the planting areas. Soil and tissue samples were collected from both years planting and analyses were conducted in the laboratory. Examination of decomposition and heterotropic respiration on carbon cycling in the reforestation plots continued during the reporting period. Entire planted trees were extracted

  3. Imbalanced land surface water budgets in a numerical weather prediction system

    NASA Astrophysics Data System (ADS)

    Kauffeldt, Anna; Halldin, Sven; Pappenberger, Florian; Wetterhall, Fredrik; Xu, Chong-Yu; Cloke, Hannah L.

    2015-06-01

    There has been a significant increase in the skill and resolution of numerical weather prediction models (NWPs) in recent decades, extending the time scales of useful weather predictions. The land surface models (LSMs) of NWPs are often employed in hydrological applications, which raises the question of how hydrologically representative LSMs really are. In this paper, precipitation (P), evaporation (E), and runoff (R) from the European Centre for Medium-Range Weather Forecasts global models were evaluated against observational products. The forecasts differ substantially from observed data for key hydrological variables. In addition, imbalanced surface water budgets, mostly caused by data assimilation, were found on both global (P-E) and basin scales (P-E-R), with the latter being more important. Modeled surface fluxes should be used with care in hydrological applications, and further improvement in LSMs in terms of process descriptions, resolution, and estimation of uncertainties is needed to accurately describe the land surface water budgets.

  4. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2001-01-30

    The October-December 2003 Quarter was dedicated to analyzing the first years tree planting activities and evaluation of the results. This included the analyses of the species success at each of the sites and quantifying the baseline data for future year determination of research levels of mixes. The small mammal colonization study of revegetated surface mines was also initiated and sampling systems initiated.

  5. Impact of Assimilating GOES-Derived Land Surface Variables into the PSU/NCAR MM5

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; Jedlovec, Gary; McNider, Richard T.

    1999-01-01

    Land surface processes are known to have a profound impact on the overlying atmosphere over a wide range of spatial and temporal scales. Many atmospheric numerical models include special parameterizations to improve the specification and partitioning of surface fluxes which are critical to the accurate prediction of warm season boundary layer behavior, organized mesoscale circulations, and convective precipitation. However, the added degrees of freedom resulting from the inclusion of vegetation and soil schemes require the specification of additional surface parameters such as vegetative resistances, green vegetation fraction, leaf area index, soil physical and hydraulic characteristics, and the vertical distribution of soil moisture. As satellite data have become more readily available in recent years, many investigations have attempted to use these new measurements to infer missing components of the surface energy budget. Sensitivity studies have shown land-skin temperature (LST) tendencies during the mid-morning hours are strongly sensitive to the surface moisture availability (a function of soil wetness and vegetation) and less sensitive to other parameters such as surface roughness. Based upon results from these and other studies, developed a simple technique that dynamically assimilates Geostationary Operational Environmental Satellite (GOES) derived land-surface products into the surface energy budget of a mesoscale model. The purpose of this paper is to demonstrate that assimilating the GOES satellite data has the potential to improve the representation of land surface characteristics within the model without prior knowledge of the land surface characteristics. The assimilation technique is presented in Section 2 and the numerical experiments are detailed in Section 3. Preliminary results and conclusions are presented in Sections 4 and 5, respectively.

  6. Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe

    NASA Astrophysics Data System (ADS)

    Prodhomme, Chloé; Doblas-Reyes, Francisco; Bellprat, Omar; Dutra, Emanuel

    2016-08-01

    Land surfaces and soil conditions are key sources of climate predictability at the seasonal time scale. In order to estimate how the initialization of the land surface affects the predictability at seasonal time scale, we run two sets of seasonal hindcasts with the general circulation model EC-Earth2.3. The initialization of those hindcasts is done either with climatological or realistic land initialization in May using the ERA-Land re-analysis. Results show significant improvements in the initialized run occurring up to the last forecast month. The prediction of near-surface summer temperatures and precipitation at the global scale and over Europe are improved, as well as the warm extremes prediction. As an illustration, we show that the 2010 Russian heat wave is only predicted when soil moisture is initialized. No significant improvement is found for the retrospective prediction of the 2003 European heat wave, suggesting this event to be mainly large-scale driven. Thus, we confirm that late-spring soil moisture conditions can be decisive in triggering high-impact events in the following summer in Europe. Accordingly, accurate land-surface initial conditions are essential for seasonal predictions.

  7. Influence of atmospheric forcing parameters on land surface simulation

    NASA Astrophysics Data System (ADS)

    Nayak, H. P.; Mandal, M.; Bhattacharya, A.

    2015-12-01

    The quality of atmospheric forcing plays important role on land surface simulation using decoupled land surface modeling system. In the present study, the influence of the various atmospheric forcing parameters on land surface simulation is assessed through sensitivity experiments. Numerical experiments are conducted towards preparation of land surface analysis for the period Jan-2011 - Dec-2013 using offline 2D-Noah land surface model (LSM) based land data assimilation system (LDAS) over Indian region (5 - 39N, 60 - 100E) hereafter referred as LDASI. The surface temperature, specific humidity, horizontal winds and pressure as atmospheric forcing parameters are derived from Modern-Era Retrospective Analysis for Research and Applications (MERRA). The downward (solar and thermal) radiation and precipitation is obtained from European Centre for Medium Range Forecast (ECMWF) and Tropical Rainfall Measuring Mission (TRMM) respectively. The sensitivity experiments are conducted by introducing perturbation in one atmospheric forcing parameter at a time keeping the other parameters unchanged. Influence of temperature, specific humidity, downward (shortwave and long wave) radiation, rain-rate and wind speed is investigated by conducted 13 numerical experiments. It is observed that the land surface analysis from LDASI is most sensitive to the downward longwave radiation and least sensitive to wind speed. The analysis is also substantially influenced by the surface air temperature. The annual mean soil moisture at 5 cm is decreased by 12-15% if the downward long-wave radiation is increased by 20% and it is increased by 15% if the downward long-wave radiation is decreased by 20%. The influence is even more in the Himalayan region but the increase in long-wave radiation leads to increase in soil moisture and similar influence on decrease because downward long-wave radiation leads glacier melting. The annual mean soil temperature in the analysis is increased by 2.2 K if surface

  8. Radiative Properties of Smoke and Aerosol Over Land Surfaces

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    This talk discusses smoke and aerosol's radiative properties with particular attention to distinguishing the measurement over clear sky from clouds over land, sea, snow, etc. surfaces, using MODIS Airborne Simulator data from (Brazil, arctic sea ice and tundra and southern Africa, west Africa, and other ecosystems. This talk also discusses the surface bidirectional reflectance using Cloud Absorption Radiometer, BRDF measurements of Saudi Arabian desert, Persian Gulf, cerrado and rain forests in Brazil, sea ice, tundra, Atlantic Ocean, Great Dismal Swamp, Kuwait oil fire smoke. Recent upgrades to instrument (new TOMS UVA channels at 340 and 380 planned use in Africa (SAFARI 2000) and possibly for MEIDEX will also be discussed. This talk also plans to discuss the spectral variation of surface reflectance over land and the sensitivity of off-nadir view angles to correlation between visible near-infrared reflectance for use in remote sensing of aerosol over land.

  9. Generation of accurate integral surfaces in time-dependent vector fields.

    PubMed

    Garth, Christoph; Krishnan, Han; Tricoche, Xavier; Bobach, Tom; Joy, Kenneth I

    2008-01-01

    We present a novel approach for the direct computation of integral surfaces in time-dependent vector fields. As opposed to previous work, which we analyze in detail, our approach is based on a separation of integral surface computation into two stages: surface approximation and generation of a graphical representation. This allows us to overcome several limitations of existing techniques. We first describe an algorithm for surface integration that approximates a series of time lines using iterative refinement and computes a skeleton of the integral surface. In a second step, we generate a well-conditioned triangulation. Our approach allows a highly accurate treatment of very large time-varying vector fields in an efficient, streaming fashion. We examine the properties of the presented methods on several example datasets and perform a numerical study of its correctness and accuracy. Finally, we investigate some visualization aspects of integral surfaces. PMID:18988990

  10. Land-surface temperature measurement from space - Physical principles and inverse modeling

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming; Dozier, Jeff

    1989-01-01

    To apply the multiple-wavelength (split-window) method used for satellite measurement of sea-surface temperature from thermal-infrared data to land-surface temperatures, the authors statistically analyze simulations using an atmospheric radiative transfer model. The range of atmospheric conditions and surface temperatures simulated is wide enough to cover variations in clear atmospheric properties and surface temperatures, both of which are larger over land than over sea. Surface elevation is also included in the simulation as the most important topographic effect. Land covers characterized by measured or modeled spectral emissivities include snow, clay, sands, and tree leaf samples. The empirical inverse model can estimate the surface temperature with a standard deviation less than 0.3 K and a maximum error less than 1 K, for viewing angles up to 40 degrees from nadir under cloud-free conditions, given satellite measurements in three infrared channels. A band in the region from 10.2 to 11.0 microns will usually give the most reliable single-band estimate of surface temperature. In addition, a band in either the 3.5-4.0-micron region or in the 11.5-12.6-micron region must be included for accurate atmospheric correction, and a band below the ozone absorption feature at 9.6 microns (e.g., 8.2-8.8 microns) will increase the accuracy of the estimate of surface temperature.

  11. Digitalized accurate modeling of SPCB with multi-spiral surface based on CPC algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Yanhua; Gu, Lizhi

    2015-09-01

    The main methods of the existing multi-spiral surface geometry modeling include spatial analytic geometry algorithms, graphical method, interpolation and approximation algorithms. However, there are some shortcomings in these modeling methods, such as large amount of calculation, complex process, visible errors, and so on. The above methods have, to some extent, restricted the design and manufacture of the premium and high-precision products with spiral surface considerably. This paper introduces the concepts of the spatially parallel coupling with multi-spiral surface and spatially parallel coupling body. The typical geometry and topological features of each spiral surface forming the multi-spiral surface body are determined, by using the extraction principle of datum point cluster, the algorithm of coupling point cluster by removing singular point, and the "spatially parallel coupling" principle based on the non-uniform B-spline for each spiral surface. The orientation and quantitative relationships of datum point cluster and coupling point cluster in Euclidean space are determined accurately and in digital description and expression, coupling coalescence of the surfaces with multi-coupling point clusters under the Pro/E environment. The digitally accurate modeling of spatially parallel coupling body with multi-spiral surface is realized. The smooth and fairing processing is done to the three-blade end-milling cutter's end section area by applying the principle of spatially parallel coupling with multi-spiral surface, and the alternative entity model is processed in the four axis machining center after the end mill is disposed. And the algorithm is verified and then applied effectively to the transition area among the multi-spiral surface. The proposed model and algorithms may be used in design and manufacture of the multi-spiral surface body products, as well as in solving essentially the problems of considerable modeling errors in computer graphics and

  12. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  13. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  14. United States Land Cover Land Use Change, Albedo and Surface Radiative Forcing 1973 to 2000

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Roy, D. P.

    2007-12-01

    This research responds to the recent recommendations made by the U.S. National Research Council for regional forcing studies to better understand climatic responses to land cover land use change. Surface albedo affects the earth's radiative energy balance, by controlling how much incoming solar radiation is absorbed and reflected. It is well established that Land Cover Land Use (LCLU) change results in changes in the surface albedo which has a radiative forcing effect, however, to date, studies have been limited due to data uncertainties. New spatially explicit satellite derived LCLU change and albedo data for the conterminous U.S. are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing. The methodology and preliminary results for 42% of the U.S. processed to date are presented as spatially explicit maps and summary statistics. The results indicate a negative (cooling) radiative forcing effect due to U.S. LCLU change over the last three decades. Data used include USGS Landsat based decadal land cover maps of the conterminous U.S. located using a stratified sampling methodology across 84 ecoregions, mean 2000-2002 MODIS broadband albedo values extracted in each ecoregion for the 10 mapped LCLU classes, and monthly mean surface incoming solar radiation from the recent European Center for Medium Range Weather Forecast 40 year Reanalysis (ERA40) product.

  15. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    SciTech Connect

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  16. Surface electron density models for accurate ab initio molecular dynamics with electronic friction

    NASA Astrophysics Data System (ADS)

    Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.

    2016-06-01

    Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.

  17. Land, Ocean and Ice sheet surface elevation retrieval from CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Lu, X.; Hu, Y.

    2013-12-01

    Since launching in April 2006 the main objective of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been studying the climate impact of clouds and aerosols in the atmosphere. However, CALIPSO also collects information about other components of the Earth's ecosystem, such as lands, oceans and polar ice sheets. The objective of this study is to propose a Super-Resolution Altimetry (SRA) technique to provide high resolution of land, ocean and polar ice sheet surface elevation from CALIPSO single shot lidar measurements (70 m spot size). The land surface results by the new technique agree with the United States Geological Survey (USGS) National Elevation Database (NED) high-resolution elevation maps, and the ice sheet surface results in the region of Greenland and Antarctic compare very well with the Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry measurements. The comparisons suggest that the obtained CALIPSO surface elevation information by the new technique is accurate to within 1 m. The effects of error sources on the retrieved surface elevation are discussed. Based on the new technique, the preliminary data products of along-track topography retrieved from the CALIPSO lidar measurements is available to the altimetry community for evaluation.

  18. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2004-08-02

    The April-June 2004 quarter was dedicated to the establishment of monitoring systems for all the new research areas. Hydrology and water quality monitoring continues to be conducted on all areas as does weather data pertinent to the research. Studies assessing specific questions pertaining to carbon flux has been established and the invasion of the vegetation by small mammals is being quantified. The approval of two experimental practices associated with this research by the United States Office of Surface Mining was a major accomplishment during this period of time. These experimental practices will eventually allow for tree planting on long steep slopes with loose grading systems and for the use of loose dumped spoil on mountain top removal areas with no grading in the final layer of rooting material for tree establishment.

  19. Tangent linear analysis of the Mosaic land surface model

    NASA Astrophysics Data System (ADS)

    Yang, Runhua; Cohn, Stephen E.; da Silva, Arlindo; Joiner, Joanna; Houser, Paul R.

    2003-01-01

    In this study, a tangent linear eigenanalysis is applied to the Mosaic land surface model (LSM) [, 1992] to examine the impacts of the model internal dynamics and physics on the land surface state variability. The tangent linear model (TLM) of the Mosaic LSM is derived numerically for two sets of basic states and two tile types of land condition, grass and bare soil. An additional TLM, for the soil moisture subsystem of this LSM, is derived analytically for the same cases to obtain explicit expressions for the eigenvalues. An eigenvalue of the TLM determines a characteristic timescale, and the corresponding eigenvector, or mode, describes a particular coupling among the perturbed states. The results show that (1) errors in initial conditions tend to decay with e-folding times given by the characteristic timescales; (2) the LSM exhibits a wide range of internal variability, modes mainly representing surface temperature and surface moisture perturbations exhibit short timescales, whereas modes mainly representing deep soil temperature perturbations and moisture transfer throughout the entire soil column exhibit much longer timescales; (3) the modes of soil moisture tend to be weakly coupled with other perturbed variables, and the mode representing the deep soil temperature perturbation has a consistent e-folding time across the experiments; (4) the key parameters include soil moisture, soil layer depth, and soil hydraulic parameters. The results agree qualitatively with previous findings. However, tangent linear eigenanalysis provides a new approach to the quantitative substantiation of those findings. Also, it reveals the evolution and the coupling of the perturbed land states that are useful for the development of land surface data assimilation schemes. One must be careful when generalizing the quantitative results since they are obtained with respect to two specific basic states and two simple land conditions. Also, the methodology employed here does not apply

  20. Queen Maud Land Traverses: Surface Glaciology (Invited)

    NASA Astrophysics Data System (ADS)

    Cameron, R. L.

    2009-12-01

    One of the main tasks of a glaciologist is to determine the mass budget of a glacier; and snow accumulation is the first part of the equation. To do this, a great number of snow pits must be dug to analyze the stratigraphy. A. P. Crary once said “to be a glaciologist one should first of all love to dig snow pits.” Seventy-five snow pits were dug on the SPQMLT traverses. Several experienced glaciologists had difficulty in interpreting the stratigraphic sequences in these pits. Irregular layering, caused by uneven deposition and subsequent erosion, suggested that some of the layers could be missing. However, the fallout of artificial radioactive nuclides released by the first large thermonuclear bomb test, on March 1, 1954, at Castle Bravo on Bikini Atoll, Marshall Islands, produced a datum horizon over the Antarctic ice sheet. This horizon is the summer of 1954-55 and provides the basis for measuring the average accumulation since 1955. Accumulation varied from 6.7 ± 0.2 g cm-2 yr-1 at South Pole Station to a low of 0.6 ± 0.2 g cm-2 yr-1 in a pit on the second leg of SPQMLT 2. The average accumulation along the entire traverse route was 3.7 g cm-2 yr-1. Temperatures at ten meters (considered an approximate mean annual air temperature) varied from -58.4 degrees Centigrade at Plateau Station (elevation 3620 meters) to -38 degrees Centigrade at the terminus of SPQMLT 3 (elevation 2310 meters). The condition of the ice sheet surface varied considerably. Some surface was quite hard and easy to traverse; while other areas that were smooth and soft were troublesome enough to bog down vehicles and sleds. Sastrugi were sporadic with some as high as a meter. A large crevasse field forced a slight change in course toward the end of the first leg of SPQMLT 2. There the ice thickness changed dramatically from 3060 meters to 1852 meters. At the time the geophysicist said, “The ‘bottom’ came up so fast I thought we would hit a nunatak.”

  1. Carbon Sequestration on Surface Mine Lands

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-10-02

    During this quarter a general forest monitoring program was conducted to measure treatment effects on above ground and below ground carbon C and Nitrogen (N) pools for the tree planting areas. Detailed studies to address specific questions pertaining to Carbon cycling was initiated with the development of plots to examine the influence of mycorrhizae, spoil chemical and mineralogical properties, and use of amendment on forest establishment and carbon sequestration. Efforts continued during this period to examine decomposition and heterotrophic respiration on C cycling in the reforestation plots. Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies to sequester carbon in various terrestrial ecosystems. Reclaimed surface mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. New plantings required the modification and design and installation on monitoring equipment. Maintenance and data monitoring on past and present installations are a continuing operation. The Department of Mining Engineering continued the collection of penetration resistance, penetration depth, and bulk density on both old and new treatment areas. Data processing and analysis is in process for these variables. Project scientists and graduate students continue to present results at scientific meetings, tours and field days presentations of the research areas are being conducted on a request basis.

  2. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William; Boone, Arron; Mechoso, Carlos

    2015-04-01

    Yongkang Xue, F. De Sales, B. Lau, A. Boone, C. R. Mechoso Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass there. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. The LSP affects the monsoon evolution through different mechanisms at different scales. It affects the surface energy balance and energy partitioning in latent and sensible heat, the atmospheric heating rate, and general circulation. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation

  3. Novel electromagnetic surface integral equations for highly accurate computations of dielectric bodies with arbitrarily low contrasts

    SciTech Connect

    Erguel, Ozguer; Guerel, Levent

    2008-12-01

    We present a novel stabilization procedure for accurate surface formulations of electromagnetic scattering problems involving three-dimensional dielectric objects with arbitrarily low contrasts. Conventional surface integral equations provide inaccurate results for the scattered fields when the contrast of the object is low, i.e., when the electromagnetic material parameters of the scatterer and the host medium are close to each other. We propose a stabilization procedure involving the extraction of nonradiating currents and rearrangement of the right-hand side of the equations using fictitious incident fields. Then, only the radiating currents are solved to calculate the scattered fields accurately. This technique can easily be applied to the existing implementations of conventional formulations, it requires negligible extra computational cost, and it is also appropriate for the solution of large problems with the multilevel fast multipole algorithm. We show that the stabilization leads to robust formulations that are valid even for the solutions of extremely low-contrast objects.

  4. Influence of land-surface evapotranspiration on the earth's climate

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Mintz, Y.

    1982-01-01

    Land-surface evapotranspiration is shown to strongly influence global fields of rainfall, temperature and motion by calculations using a numerical model of the atmosphere, confirming the general belief in the importance of evapotranspiration-producing surface vegetation for the earth's climate. The current version of the Goddard Laboratory atmospheric general circulation model is used in the present experiment, in which conservation equations for mass, momentum, moisture and energy are expressed in finite-difference form for a spherical grid to calculate (1) surface pressure field evolution, and (2) the wind, temperature, and water vapor fields at nine levels between the surface and a 20 km height.

  5. Using a straightness reference in obtaining more accurate surface profiles from a Long Trace Profiler

    SciTech Connect

    Irick, S.C.; McKinney, W.R.; Lunt, D.L.J.; Takacs, P.Z.

    1991-07-15

    The Long Trace Profiler has found significant applications in measuring the surfaces of synchrotron optics. However, requirements of small slope errors at all spatial wavelengths of the synchrotron optics mandate more accurate slope measurements. A straightness reference for the Long Trace Profiler greatly increases the accuracy of the instrument. Methods of using the straightness reference by interpreting the sequential interference patterns are discussed and results of measurements are presented.

  6. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Department

    NASA Technical Reports Server (NTRS)

    Case. Jonathan; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Department (KMD). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the boundary layer of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-end events over east Africa. KMD currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Nonhydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over eastern Africa. Two organizations at the National Aeronautics and Space Administration Marshall Space Flight Center in Huntsville, AL, SERVIR and the Short-term Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMD for enhancing its regional modeling capabilities. To accomplish this goal, SPoRT and SERVIR will provide experimental land surface initialization datasets and model verification capabilities to KMD. To produce a land-surface initialization more consistent with the resolution of the KMD-WRF runs, the NASA Land Information System (LIS

  7. Modeling the relationship between land use and surface water quality.

    PubMed

    Tong, Susanna T Y; Chen, Wenli

    2002-12-01

    It is widely known that watershed hydrology is dependent on many factors, including land use, climate, and soil conditions. But the relative impacts of different types of land use on the surface water are yet to be ascertained and quantified. This research attempted to use a comprehensive approach to examine the hydrologic effects of land use at both a regional and a local scale. Statistical and spatial analyses were employed to examine the statistical and spatial relationships of land use and the flow and water quality in receiving waters on a regional scale in the State of Ohio. Besides, a widely accepted watershed-based water quality assessment tool, the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), was adopted to model the plausible effects of land use on water quality in a local watershed in the East Fork Little Miami River Basin. The results from the statistical analyses revealed that there was a significant relationship between land use and in-stream water quality, especially for nitrogen, phosphorus and Fecal coliform. The geographic information systems (GIS) spatial analyses identified the watersheds that have high levels of contaminants and percentages of agricultural and urban lands. Furthermore, the hydrologic and water quality modeling showed that agricultural and impervious urban lands produced a much higher level of nitrogen and phosphorus than other land surfaces. From this research, it seems that the approach adopted in this study is comprehensive, covering both the regional and local scales. It also reveals that BASINS is a very useful and reliable tool, capable of characterizing the flow and water quality conditions for the study area under different watershed scales. With little modification, these models should be able to adapt to other watersheds or to simulate other contaminants. They also can be used to study the plausible impacts of global environmental change. In addition, the information on the hydrologic

  8. RESUSPENSION OF PLUTONIUM FROM CONTAMINATED LAND SURFACES: METEOROLOGICAL FACTORS

    EPA Science Inventory

    A literature review is presented in a discussion of the relevance of meteorological factors on the resuspension of plutonium from contaminated land surfaces. The physical processes of resuspension based on soil erosion work are described. Some of the models developed to simulate ...

  9. Advances in Thermal Infrared Remote Sensing for Land Surface Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 10 years ago, John Norman and co-authors proposed a thermal-based land surface modeling strategy that treated the energy exchange and kinetic temperatures of the soil and vegetated components in a unique “Two-Source Model” (TSM) approach. The TSM formulation addresses key factors affecting the...

  10. Applications of Land Surface Temperature from Microwave Observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) is a key input for physically-based retrieval algorithms of hydrological states and fluxes. Yet, it remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observation...

  11. Land-surface influences on weather and climate

    NASA Technical Reports Server (NTRS)

    Baer, F.; Mintz, Y.

    1984-01-01

    Land-surface influences on weather and climate are reviewed. The interrelationship of vegetation, evapotranspiration, atmospheric circulation, and climate is discussed. Global precipitation, soil moisture, the seasonal water cycle, heat transfer, and atmospheric temperature are among the parameters considered in the context of a general biosphere model.

  12. Analyzing the sensitivity of drought recovery forecasts to land surface initial conditions

    NASA Astrophysics Data System (ADS)

    DeChant, Caleb M.; Moradkhani, Hamid

    2015-07-01

    Droughts are complex hydro-meteorological phenomena, which are challenging to both quantify and predict. From the perspective of drought quantification, knowledge of the land surface conditions is vital for determining the impacts a drought event is having on both the environment and society. Although such land surface information is essential for quantifying drought in real-time, the precise effect of land surface moisture deficits on future drought conditions is unknown. Forecasting of recovery from drought events is undoubtedly reliant on its intensity, yet the lead time at which a drought can be expected to recover is poorly understood. Due to this gap in knowledge, this study attempts to quantify the expected lead time for drought recovery, and the rate of drought recovery, by examining the loss of sensitivity to initial conditions within a climatological forecast. From this perspective, the expected recovery time from a specific drought event is quantified, based on a case study in the Upper Colorado River Basin in Southwestern USA for two initialization dates in years 2003 through 2008. This study has ramifications for understanding the time of drought recovery, and highlights the importance of accurate land surface state estimation. With respect to recent studies, the experiments presented here suggest that forecasts can be sensitive to initial conditions at greater lead-times, and therefore drought conditions are potentially more persistent than previously thought.

  13. Construction of an accurate potential energy surface by interpolation with Cartesian weighting coordinates

    NASA Astrophysics Data System (ADS)

    Rhee, Young Min

    2000-10-01

    A modified method to construct an accurate potential energy surface by interpolation is presented. The modification is based on the use of Cartesian coordinates in the weighting function. The translational and rotational invariance of the potential is incorporated by a proper definition of the distance between two Cartesian configurations. A numerical algorithm to find the distance is developed. It is shown that the present method is more exact in describing a planar system compared to the previous methods with weightings in internal coordinates. The applicability of the method to reactive systems is also demonstrated by performing classical trajectory simulations on the surface.

  14. Determining the Impacts of Land Cover/use Categories on Land Surface Temperature Using LANDSAT8-OLI

    NASA Astrophysics Data System (ADS)

    Bektas Balcik, F.; Ergene, E. M.

    2016-06-01

    Due to unplanned and uncontrolled expansion of urban areas, rural land cover types have been replaced with artificial materials. As a result of these replacements, a wide range of negative environmental impacts seriously impacting human health, natural areas, ecosystems, climate, energy efficiency, and quality of living in town center. In this study, the impact of land surface temperature with respect to land cover and land use categories is investigated and evaluated for Istanbul, Turkey. Land surface temperature data was extracted from 21 October 2014 dated Landsat 8 OLI data using mono-window algorithm. In order to extract land use/cover information from remotely sensed data wetness, greenness and brightness components were derived using Tasseled Cap Transformation. The statistical relationship between land surface temperature and Tasseled Cap Transformation components in Istanbul was analyzed using the regression methods. Correlation between Land Surface Temperature and Meteorological Stations Temperature calculated %74.49.

  15. Impacts of Climate Change and Land use Changes on Land Surface Radiation and Energy Budgets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface radiation and energy budgets are critical to address a variety of scientific and application issues related to climate trends, weather predictions, hydrologic and biogeophysical modeling, and the monitoring of ecosystem health and agricultural crops. This is an introductory paper to t...

  16. Interannual Variability of the Mosaic Land-Surface Model

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Houser, Paul R.; Schubert, Siegfried

    1999-01-01

    Recently, NASA Goddard Earth Observing System (GEOS-1) reanalysis data has been used to provide forcing for the Koster and Suarez Mosaic Land-surface Model (LSM). The LSM was integrated off-line at all global land points for the period of 1983 - 1995 by the Off-line Land- surface GEOS Assimilation system (OLGA). Here, we compare the interannual variability of OLGA, GEOS-1 and surface observing stations temperature and moisture. Particular attention is given to the United States because of the extreme seasons of 1988 and 1993. Furthermore, the comparison of OLGA is extended to include the analysis of data on the'tiles' (different surface types) in the Mosaic LSM. Results indicate that the GEOS-1 near-surface temperature and moisture reasonably represents the interannual variability in more normal years. However, OLGA also simulates the extreme drought and floods years well. The analysis of the tile information shows that the "Bare soil" surface type is most sensitive to the climate extremes. Off-line testing has provided valuable information on the performance of the Mosaic LSM prior to its incorporation into the new version of the GEOS Data Assimilation System and the integration of a new long reanalysis.

  17. Regional scale hydrology with a new land surface processes model

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Crosson, William

    1995-01-01

    Through the CaPE Hydrometeorology Project, we have developed an understanding of some of the unique data quality issues involved in assimilating data of disparate types for regional-scale hydrologic modeling within a GIS framework. Among others, the issues addressed here include the development of adequate validation of the surface water budget, implementation of the STATSGO soil data set, and implementation of a remote sensing-derived landcover data set to account for surface heterogeneity. A model of land surface processes has been developed and used in studies of the sensitivity of surface fluxes and runoff to soil and landcover characterization. Results of these experiments have raised many questions about how to treat the scale-dependence of land surface-atmosphere interactions on spatial and temporal variability. In light of these questions, additional modifications are being considered for the Marshall Land Surface Processes Model. It is anticipated that these techniques can be tested and applied in conjunction with GCIP activities over regional scales.

  18. Accuracy assessment of NLCD 2006 land cover and impervious surface

    USGS Publications Warehouse

    Wickham, James D.; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Fry, Joyce A.; Wade, Timothy G.

    2013-01-01

    Release of NLCD 2006 provides the first wall-to-wall land-cover change database for the conterminous United States from Landsat Thematic Mapper (TM) data. Accuracy assessment of NLCD 2006 focused on four primary products: 2001 land cover, 2006 land cover, land-cover change between 2001 and 2006, and impervious surface change between 2001 and 2006. The accuracy assessment was conducted by selecting a stratified random sample of pixels with the reference classification interpreted from multi-temporal high resolution digital imagery. The NLCD Level II (16 classes) overall accuracies for the 2001 and 2006 land cover were 79% and 78%, respectively, with Level II user's accuracies exceeding 80% for water, high density urban, all upland forest classes, shrubland, and cropland for both dates. Level I (8 classes) accuracies were 85% for NLCD 2001 and 84% for NLCD 2006. The high overall and user's accuracies for the individual dates translated into high user's accuracies for the 2001–2006 change reporting themes water gain and loss, forest loss, urban gain, and the no-change reporting themes for water, urban, forest, and agriculture. The main factor limiting higher accuracies for the change reporting themes appeared to be difficulty in distinguishing the context of grass. We discuss the need for more research on land-cover change accuracy assessment.

  19. The impact of land use on microbial surface water pollution.

    PubMed

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. PMID:25456147

  20. The North American ASTER Land Surface Emissivity Database (NAALSED) V2.0

    NASA Astrophysics Data System (ADS)

    Hulley, G. C.; Hook, S. J.

    2009-12-01

    One of the key Earth Science Data Records identified by NASA is Land Surface Temperature and Emissivity (LST&E). LST&E data are important parameters in global climate change studies that involve climate modeling, ice dynamic analyses, surface-atmosphere interactions and land use, land cover change. Accurate knowledge of the Land Surface Emissivity (LSE) in the Thermal Infrared (TIR: 8-12 um) part of the electromagnetic spectrum is essential to derive accurate Land Surface Temperatures (LSTs) from spaceborne TIR measurements. TIR data are supplied by instruments on several satellite platforms including the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), which was launched on NASA's Terra satellite in 1999. ASTER has five bands in the TIR and a spatial resolution of 90 m. A mean seasonal, gridded, LST&E database has been produced at 100 m spatial resolution using all the ASTER scenes acquired for the months of Jan-Mar (winter) and Jul-Sep (summer) over North America. Version 2.0 of the North American ASTER Land Surface Database (NAALSED) (http://emissivity.jpl.nasa.gov) has now been released and includes two key refinements designed to improve the accuracy of LSE's over water bodies and account for the effects of fractional vegetation cover. The water adjustment replaces ASTER LSE values over inland water bodies with a measured library emissivity spectrum of distilled water, and then re-calculates the surface temperatures using a split-window algorithm. The accuracy of ASTER LSE over vegetated surfaces is improved by applying a fractional vegetation cover adjustment (TES_Pv) to the ASTER Temperature Emissivity Separation (TES) calibration curve. The NAALSED LSE product was validated over bare surfaces with laboratory measurements of sand samples collected at nine pseudo-invariant sand dune sites located in the western/southwestern USA. The nine sand dune sites cover a broad range of LSE's in the TIR. Results show that the absolute mean LSE

  1. Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.; Wolfe, Robert E.; Tilton, James C.

    2013-01-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  2. Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data

    NASA Astrophysics Data System (ADS)

    Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.

    2013-12-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  3. Use of Sharpened Land Surface Temperature for Daily Evapotranspiration Estimation over Irrigated Crops in Arid Lands

    NASA Astrophysics Data System (ADS)

    Rosas Aguilar, J.; McCabe, M. F.; Houborg, R.; Gao, F.

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  4. Accurate computation of surface stresses and forces with immersed boundary methods

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim

    2016-09-01

    Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.

  5. South American Monsoon and the Land Surface Processes

    NASA Astrophysics Data System (ADS)

    Xue, Y.; de Sales, F. H.; Li, W.; Mechoso, C. R.; Nobre, C. A.; Juang, H. H.

    2002-12-01

    In this numerical modeling study, the NCEP GCM is applied to investigate the interactions between land surface processes and climate, particularly the effects of land processes on the South American monsoon system (SAMS). A model version with spectral triangular 42 truncation (T42) is used. The corresponding Gaussian grid for T42 is 128 by 64, which is roughly equivalent to 2.8 degrees in latitude and longitude. Two land surface parameterizations are used. One is the Simplified Simple Biosphere Model (SSiB), which includes explicit vegetation representation. The other parameterization is a surface model with two-soil layers (SOIL) and no explicit vegetation scheme. Two 12-month long simulations were performed with the two parameterizations from initial conditions corresponding to May 1, 1987 and identical distributions of soil moisture and surface albedo. The simulations will be referred to as NCEP GCM/SOIL and NCEP GCM/SSiB. The simulations, therefore, differ in the land surface parameterizations and land cover conditions: one with vegetation and the other with only soil layers (but monthly mean vegetation albedo). This experiment aims to test the role of explicit description of vegetation process in the climate model and hence the role of vegetation in the South American hydrometeorology. SAMS starts developing in Central America and then moves southeast towards the Amazons in South America. Afterwards, largest precipitation moves northward and eventually retreats northwest. NCEP GCM/SOIL and NCEP GCM/SSiB produce substantially different evolution and spatial distributions of SAMS. In the NCEP GCM/SOIL, the development of SAMS is too fast and too strong with no clear indication of the southward movement. Rainfall magnitudes are much stronger than in the observation. The NCEP/SSiB, on the other hand, correctly simulates SAMS evolution. To understand the mechanisms that contributed to the differences in the simulations, the surface energy and water balances are

  6. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2014-12-01

    Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. It has also been suggested that LSP contribute to the abrupt jump in latitude of the East Asian monsoon as well as general circulation turning in some monsoon regions in its early stages. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. More comprehensive studies with multi-models are imperatively necessary.

  7. Mapping carbon, water and energy land-surface fluxes using remotely sensed indicators of canopy light-use efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed data allow for indirect estimates of key biophysical and biochemical parameters needed for accurate and reliable assessments of land-surface carbon, energy and water fluxes. Biophysical parameters such as Leaf Area Index (LAI), which provides information useful for determining varia...

  8. Mapping carbon, water, and energy land-surface fluxes using remotely indicators of canopy light use efficiency from hyperspectral data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed data allow for indirect estimates of key biophysical and biochemical parameters needed for accurate and reliable assessments of land-surface carbon, energy and water fluxes. Biophysical parameters such as Leaf Area Index (LAI), which provides information useful for determining varia...

  9. Regional mapping of carbon, water, and energy land-surface fluxes using remotely sensed indicators of canopy light use efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed data allow for indirect estimates of key biophysical and biochemical parameters needed for accurate and reliable assessments of land-surface carbon, energy and water fluxes. Biophysical parameters such as Leaf Area Index (LAI), which provides information useful for determining vari...

  10. Impacts of land use and land cover on surface and air temperature in urban landscapes

    NASA Astrophysics Data System (ADS)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern

  11. Land Surface Processes Simulation Over Thar Desert in Northwest India

    NASA Astrophysics Data System (ADS)

    Raja, P.; Srinivas, C. V.; Hari Prasad, K. B. R. R.; Singh, Nilendu

    2016-06-01

    Land surface processes in data scarce arid northwestern India and their influence on the regional climate including monsoon are now gaining enhanced scientific attention. In this work the seasonal variation of land surface parameters and surface-energy flux components over Lasiurus sindicus grassland system in Thar Desert, western India were simulated using the mesoscale WRF model. The data on surface fluxes from a micrometeorological station, and basic surface level weather data from the Central Arid Zone Research Institute's experimental field station (26o59'41″N; 71o29'10″E), Jaisalmer, were used for comparison. Simulations were made for typical fair weather days in three seasons [12-14 January (peak winter); 29-31 May (peak summer), 19-21 August (monsoon)] during 2012. Sensitivity experiments conducted using a 5-layer soil thermal diffusion (5TD) scheme and a comprehensive land surface physics scheme (Noah) revealed the 5TD scheme gives large biases in surface fluxes and other land surface parameters. Simulations show large variations in surface fluxes and meteorological parameters in different seasons with high friction velocities, sensible heat fluxes, deep boundary layers in summer and monsoon season as compared to winter. The shortwave radiation is underestimated during the monsoon season, and is overestimated in winter and summer. In general, the model simulated a cold bias in soil temperature in summer and monsoon season and a warm bias in winter; the simulated surface fluxes and air temperature followed these trends. These biases could be due to a negative bias in net radiation resulting from a high bias in downward shortwave radiation in various seasons. The Noah LSM simulated various parameters more realistically in all seasons than the 5TD soil scheme due to inclusion of explicit vegetation processes in the former. The differences in the simulated fluxes with the two LSMs are small in winter and large in summer. The deep mixed layers are

  12. Land Surface Processes Simulation Over Thar Desert in Northwest India

    NASA Astrophysics Data System (ADS)

    Raja, P.; Srinivas, C. V.; Hari Prasad, K. B. R. R.; Singh, Nilendu

    2016-02-01

    Land surface processes in data scarce arid northwestern India and their influence on the regional climate including monsoon are now gaining enhanced scientific attention. In this work the seasonal variation of land surface parameters and surface-energy flux components over Lasiurus sindicus grassland system in Thar Desert, western India were simulated using the mesoscale WRF model. The data on surface fluxes from a micrometeorological station, and basic surface level weather data from the Central Arid Zone Research Institute's experimental field station (26o59'41″N; 71o29'10″E), Jaisalmer, were used for comparison. Simulations were made for typical fair weather days in three seasons [12-14 January (peak winter); 29-31 May (peak summer), 19-21 August (monsoon)] during 2012. Sensitivity experiments conducted using a 5-layer soil thermal diffusion (5TD) scheme and a comprehensive land surface physics scheme (Noah) revealed the 5TD scheme gives large biases in surface fluxes and other land surface parameters. Simulations show large variations in surface fluxes and meteorological parameters in different seasons with high friction velocities, sensible heat fluxes, deep boundary layers in summer and monsoon season as compared to winter. The shortwave radiation is underestimated during the monsoon season, and is overestimated in winter and summer. In general, the model simulated a cold bias in soil temperature in summer and monsoon season and a warm bias in winter; the simulated surface fluxes and air temperature followed these trends. These biases could be due to a negative bias in net radiation resulting from a high bias in downward shortwave radiation in various seasons. The Noah LSM simulated various parameters more realistically in all seasons than the 5TD soil scheme due to inclusion of explicit vegetation processes in the former. The differences in the simulated fluxes with the two LSMs are small in winter and large in summer. The deep mixed layers are

  13. Land and ocean surface temperature: data development and modeling

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Wang, A.; Brunke, M.

    2014-12-01

    Surface temperature (ST) plays a critical role in land-atmosphere-ocean interactions, and is one of the fundamental variables for Earth system research. ST includes surface air temperature (SAT), surface skin temperature (Ts), and subsurface water or soil temperature at a given depth [T(z)]. In this presentation, we will review our recent work on land and ocean ST. Over land, we have developed the first global 0.5 deg hourly SAT datasets from 1948-2009 by merging in situ CRU data with reanalysis data. Using these datasets, over high latitudes in winter the monthly averaged diurnal temperature range is found to be much larger than the range of monthly averaged hourly temperature diurnal cycle. The former primarily reflects the movement of synoptic weather systems, while the latter is primarily affected by the diurnal radiative forcing. We have also compared Ts from satellite remote sensing (MODIS) and land modeling (CLM) with in situ measurements. For instance, we have identified five factors contributing to the Ts differences between the model and MODIS. Over ocean, we have developed a prognostic Ts parameterization for modeling and data analysis. For instance, the inclusion of the Ts diurnal cycle affects atmospheric processes at diurnal, intraseasonal, and longer time scales. Furthermore, our parameterization provides the relationship between water temperature T(z) at different depths and Ts, and hence helps to merge temperature data from satellite infrared and microwave sensors and in situ buoy and ship measurements.

  14. Influences of specific land use/land cover conversions on climatological normals of near-surface temperature

    USGS Publications Warehouse

    Hale, Robert C.; Gallo, Kevin P.; Loveland, Thomas R.

    2008-01-01

    Quantification of the effects of land use/land cover (LULC) changes on proximal measurements of near-surface air temperature is crucial to a better understanding of natural and anthropogenically induced climate change. In this study, data from stations utilized in deriving U.S. climatological temperature normals were analyzed in conjunction with NCEP-NCAR 50-Year Reanalysis (NNR) estimates and highly accurate LULC change maps in order to isolate the effects of LULC change from other climatological factors. While the “Normals” temperatures exhibited considerable warming in both minima and maxima, the NNR data revealed that the majority of the warming of maximum temperatures was not due to nearby LULC change. Warming of minimum temperatures was roughly evenly split between the effects of LULC change and other influences. Furthermore, the effects of LULC change varied considerably depending upon the particular type of land cover conversion that occurred. Urbanization, in particular, was found to result in warming of minima and maxima, while some LULC conversions that might be expected to have significantly altered nearby temperatures (e.g., clear-cutting of forests) did not.

  15. Global scale hydrology - Advances in land surface modeling

    SciTech Connect

    Wood, E.F. )

    1991-01-01

    Research into global scale hydrology is an expanding area that includes researchers from the meteorology, climatology, ecology and hydrology communities. This paper reviews research in this area carried out in the United States during the last IUGG quadrennial period of 1987-1990. The review covers the representation of land-surface hydrologic processes for general circulation models (GCMs), sensitivity analysis of these representations on global hydrologic fields like precipitation, regional studies of climate that have global hydrologic implications, recent field studies and experiments whose aims are the improved understanding of land surface-atmospheric interactions, and the use of remotely sensed data for the further understanding of the spatial variability of surface hydrologic processes that are important at regional and global climate scales. 76 refs.

  16. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  17. The generation of China land surface datasets for CLM

    NASA Astrophysics Data System (ADS)

    Li, Haiying; Peng, Hongchun; Li, Xin; Veroustraete, Frank

    2005-10-01

    Community land model or common land model (CLM) describes the exchange of the fluxes of energy, mass and momentum between the earth's surface and the planetary boundary layer. This model is used to simulate the environmental changes in China. Hence, it requires a complete parameters field of the land surface. The present paper focuses on making the surface datasets of CLM in China. In the present paper, vegetation was divided into 39 Plant Function Types (PFTs) of China from its classification map. The land surface datasets were created using vegetation type, five land cover types (lake, wetland, glacier, urban and vegetated), monthly maximum Normalized Difference Vegetation Index (NDVI) derived from SPOT_VGT data and soil properties data. The percentages of glacier, lake and wetland were derived from their own vector maps of China. The fractional coverage of PFTs was derived from China vegetation map. Time-independent vegetation biophysical parameters, such as canopy top and bottom heights and other vegetation parameters related to photosynthesis, were based on the values documented in literatures. The soil color dataset was derived from landuse and vegetation data based on their correspondent relationship. The soil texture (clay%, sand% and silt%) came from global dataset. Time-dependent vegetation biophysical parameters, such as leaf area index(LAI) and fractional absorbed photosynthetically active radiation(FPAR), were calculated from one year of NDVI monthly maximum value composites for the China region based on equations given in Sellers et al. (1996a,b) and Los et al. (2000). The resolution of these datasets for CLM is 1km.

  18. On the Potential Predictability of Seasonal Land-Surface Climate

    SciTech Connect

    Phillips, T J

    2001-10-01

    The chaotic behavior of the continental climate of an atmospheric general circulation model is investigated from an ensemble of decadal simulations with common specifications of radiative forcings and monthly ocean boundary conditions, but different initial states of atmosphere and land. The variability structures of key model land-surface processes appear to agree sufficiently with observational estimates to warrant detailed examination of their predictability on seasonal time scales. This predictability is inferred from several novel measures of spatio-temporal reproducibility applied to eleven model variables. The reproducibility statistics are computed for variables in which the seasonal cycle is included or excluded, the former case being most pertinent to climate model simulations, and the latter to predictions of the seasonal anomalies. Because the reproducibility metrics in the latter case are determined in the context of a ''perfectly'' known ocean state, they are properly viewed as estimates of the potential predictability of seasonal climate. Inferences based on these reproducibility metrics are shown to be in general agreement with those derived from more conventional measures of potential predictability. It is found that the land-surface variables which include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land-surface anomaly is generally low, although it is considerably higher in the Tropics; its spatial reproducibility also fluctuates in tandem with warm and cold phases of the El Nino/Southern Oscillation phenomenon. However, the detailed sensitivities to initial conditions depend somewhat on the land-surface process: pressure and temperature anomalies exhibit the highest temporal reproducibilities, while hydrological and turbulent flux anomalies show the highest spatial reproducibilities

  19. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  20. The Effect of Landing Surface on the Plantar Kinetics of Chinese Paratroopers Using Half-Squat Landing

    PubMed Central

    Li, Yi; Wu, Ji; Zheng, Chao; Huang, Rong Rong; Na, Yuhong; Yang, Fan; Wang, Zengshun; Wu, Di

    2013-01-01

    The objective of the study was to determine the effect of landing surface on plantar kinetics during a half-squat landing. Twenty male elite paratroopers with formal parachute landing training and over 2 years of parachute jumping experience were recruited. The subjects wore parachuting boots in which pressure sensing insoles were placed. Each subject was instructed to jump off a platform with a height of 60 cm, and land on either a hard or soft surface in a half-squat posture. Outcome measures were maximal plantar pressure, time to maximal plantar pressure (T-MPP), and pressure-time integral (PTI) upon landing on 10 plantar regions. Compared to a soft surface, hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. Shorter T- MPP was found during hard surface landing in the 1st and 2nd metatarsal and medial rear foot. Landing on a hard surface landing resulted in a lower PTI than a soft surface in the 1stphalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the1st to 4thmetatarsal region for hard surface landing, and the 1stphalangeal and 5thmetatarsal region for soft surface landing. Key Points Understanding plantar kinetics during the half-squat landing used by Chinese paratroopers can assist in the design of protective footwear. Compared to landing on a soft surface, a hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. A shorter time to maximal plantar pressure was found during a hard surface landing in the 1st and 2nd metatarsals and medial rear foot. Landing on a hard surface resulted in a lower pressure-time integral than landing on a soft surface in the 1st phalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the 1st to 4th metatarsal

  1. Modeling Near-Surface Temperatures at Martian Landing Sites

    NASA Technical Reports Server (NTRS)

    Martin, T. Z.; Bridges, N. T.; Murphy, J. R.

    2003-01-01

    We have developed a process for deriving near-surface (approx. 1m) temperatures for potential landing sites, based on observational parameters from MGS TES, Odyssey THEMIS, and a boundary layer model developed by Murphy for fitting Pathfinder meteorological measurements. Minimum nighttime temperatures at the MER landing sites can limit power available, and thus mission lifetime. Temperatures are derived based on thermal inertia, albedo, and opacity estimated for the Hematite site in Sinus Meridiani, using predictions of 1-m air temperatures from a one-dimensional atmospheric model. The Hematite site shows 9 % probability of landing at a location with nighttime temperatures below the 97 C value considered to be a practical limit for operations.

  2. Terrestrial Ecosystems - Land Surface Forms of the Conterminous United States

    USGS Publications Warehouse

    Cress, Jill J.; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2009-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey has generated land surface form classes to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States, using an ecosystems classification developed by NatureServe . A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. Since land surface forms strongly influence the differentiation and distribution of terrestrial ecosystems, they are one of the key input layers in this biophysical stratification. After extensive investigation into various land surface form mapping methodologies, the decision was made to use the methodology developed by the Missouri Resource Assessment Partnership (MoRAP). MoRAP made modifications to Hammond's land surface form classification, which allowed the use of 30-meter source data and a 1-km2 window for analyzing the data cell and its surrounding cells (neighborhood analysis). While Hammond's methodology was based on three topographic variables, slope, local relief, and profile type, MoRAP's methodology uses only slope and local relief. Using the MoRAP method, slope is classified as gently sloping when more than 50 percent of the area in a 1-km2 neighborhood has slope less than 8 percent, otherwise the area is considered moderately sloping. Local relief, which is the difference between the maximum and minimum elevation in a neighborhood, is classified into five groups: 0-15 m, 16-30 m, 31-90 m, 91-150 m, and >150 m. The land surface form classes are derived by combining slope and local relief to create eight landform classes: flat plains (gently sloping and local relief = 90 m), low hills (not gently sloping and local relief = 150 m). However, in the USGS application of the MoRAP methodology, an additional local relief group was used (> 400 m) to capture additional local topographic variation. As a result, low

  3. Enhancing Global Land Surface Hydrology Estimates from the NASA MERRA Reanalysis Using Precipitation Observations and Model Parameter Adjustments

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Koster, Randal; DeLannoy, Gabrielle; Forman, Barton; Liu, Qing; Mahanama, Sarith; Toure, Ally

    2011-01-01

    The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\\-tERRA output for land surface hydrological studies.

  4. Characterizing the spatial dynamics of land surface temperature-impervious surface fraction relationship

    NASA Astrophysics Data System (ADS)

    Wang, Jiong; Qingming, Zhan; Guo, Huagui; Jin, Zhicheng

    2016-03-01

    The land surface temperature (LST) pattern is treated as one of the primary indications of environmental impacts of land cover change. Researchers continue to explore the potential contribution of land surface to temperature rising. The LST-land surface relationship is dynamic and varies spatially. Based upon the previous studies, this research assumes that such dynamics is manifested at two levels: (1) the phenomenon level, and (2) its formation mechanism level. The research presents a workflow of exploring such dynamics at both levels. The variogram of the phenomenon and multi-scale analysis of the LST-land surface relationship are mutually interpreted. In the case study of Wuhan, China, the variogram of the LST indicates that the operational scale of the phenomenon is 500-650 m. It suggests the optimal scale to inspect the LST and its cause in the study area. This finding is verified and further inspected through multi-scale analysis of the LST-Impervious Surface Fraction (ISF) relationship at the formation mechanism level. The research also employs the Spatial Autocorrelation model to show how the ISF impacts the LST through scales. A flexible autocorrelation weight matrix is proposed and implemented in the model. The parameters of the model exhibit the thermal sensitivity of land surface and again represent the scale features. The Ordinary Least Square regression is used as the benchmark. Several implications are discussed.

  5. WRF Simulation over the Eastern Africa by use of Land Surface Initialization

    NASA Astrophysics Data System (ADS)

    Sakwa, V. N.; Case, J.; Limaye, A. S.; Zavodsky, B.; Kabuchanga, E. S.; Mungai, J.

    2014-12-01

    The East Africa region experiences severe weather events associated with hazards of varying magnitude. It receives heavy precipitation which leads to wide spread flooding and lack of sufficient rainfall in some parts results into drought. Cases of flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). The source of heat and moisture depends on the state of the land surface which interacts with the boundary layer of the atmosphere to produce excessive precipitation or lack of it that leads to severe drought. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Improved modeling capabilities within the region have the potential to enhance forecast guidance in support of daily operations and high-impact weather over East Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Non-hydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over Eastern Africa.SPoRT and SERVIR provide land surface initialization datasets and model verification tool. The NASA Land Information System (LIS) provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Model verification is done using the Model Evaluation Tools (MET) package, in order

  6. Fully Automated Generation of Accurate Digital Surface Models with Sub-Meter Resolution from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Wohlfeil, J.; Hirschmüller, H.; Piltz, B.; Börner, A.; Suppa, M.

    2012-07-01

    Modern pixel-wise image matching algorithms like Semi-Global Matching (SGM) are able to compute high resolution digital surface models from airborne and spaceborne stereo imagery. Although image matching itself can be performed automatically, there are prerequisites, like high geometric accuracy, which are essential for ensuring the high quality of resulting surface models. Especially for line cameras, these prerequisites currently require laborious manual interaction using standard tools, which is a growing problem due to continually increasing demand for such surface models. The tedious work includes partly or fully manual selection of tie- and/or ground control points for ensuring the required accuracy of the relative orientation of images for stereo matching. It also includes masking of large water areas that seriously reduce the quality of the results. Furthermore, a good estimate of the depth range is required, since accurate estimates can seriously reduce the processing time for stereo matching. In this paper an approach is presented that allows performing all these steps fully automated. It includes very robust and precise tie point selection, enabling the accurate calculation of the images' relative orientation via bundle adjustment. It is also shown how water masking and elevation range estimation can be performed automatically on the base of freely available SRTM data. Extensive tests with a large number of different satellite images from QuickBird and WorldView are presented as proof of the robustness and reliability of the proposed method.

  7. Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Rihani, Jehan F.; Maxwell, Reed M.; Chow, Fotini K.

    2010-12-01

    This work investigates the role of terrain and subsurface heterogeneity on the interactions between groundwater dynamics and land surface energy fluxes using idealized simulations. A three-dimensional variably saturated groundwater code (ParFlow) coupled to a land surface model (Common Land Model) is used to account for both vertical and lateral water and pressure movement. This creates a fully integrated approach, coupling overland and subsurface flow while having an explicit representation of the water table and all land surface processes forced by atmospheric data. Because the water table is explicitly represented in these simulations, regions with stronger interaction between water table depth and the land surface energy balance (known as critical zones) can be identified. This study uses simple terrain and geologic configurations to demonstrate the importance of lateral surface and subsurface flows in determining land surface heat and moisture fluxes. Strong correlations are found between the land surface fluxes and water table depth across all cases, including terrain shape, subsurface heterogeneity, vegetation type, and climatological region. Results show that different land forms and subsurface heterogeneities produce very different water table dynamics and land surface flux responses to atmospheric forcing. Subsurface formation and properties have the greatest effect on the coupling between the water table and surface heat and moisture fluxes. Changes in landform and land surface slope also have an effect on these interactions by influencing the fraction of rainfall contributing to overland flow versus infiltration. This directly affects the extent of the critical zone with highest coupling strength along the hillside. Vegetative land cover, as seen in these simulations, has a large effect on the energy balance at the land surface but a small effect on streamflow and water table dynamics and thus a limited impact on the land surface-subsurface interactions

  8. Development of land surface reflectance models based on multiscale simulation

    NASA Astrophysics Data System (ADS)

    Goodenough, Adam A.; Brown, Scott D.

    2015-05-01

    Modeling and simulation of Earth imaging sensors with large spatial coverage necessitates an understanding of how photons interact with individual land surface processes at an aggregate level. For example, the leaf angle distribution of a deciduous forest canopy has a significant impact on the path of a single photon as it is scattered among the leaves and, consequently, a significant impact on the observed bidirectional reflectance distribution function (BRDF) of the canopy as a whole. In particular, simulation of imagery of heterogeneous scenes for many multispectral/hyperspectral applications requires detailed modeling of regions of the spectrum where many orders of scattering are required due to both high reflectance and transmittance. Radiative transfer modeling based on ray tracing, hybrid Monte Carlo techniques and detailed geometric and optical models of land cover means that it is possible to build effective, aggregate optical models with parameters such as species, spatial distribution, and underlying terrain variation. This paper examines the capability of the Digital Image and Remote Sensing Image Generation (DIRSIG) model to generate BRDF data representing land surfaces at large scale from modeling at a much smaller scale. We describe robust methods for generating optical property models effectively in DIRSIG and present new tools for facilitating the process. The methods and results for forest canopies are described relative to the RAdiation transfer Model Intercomparison (RAMI) benchmark scenes, which also forms the basis for an evaluation of the approach. Additional applications and examples are presented, representing different types of land cover.

  9. Impact of land cover and population density on land surface temperature: case study in Wuhan, China

    NASA Astrophysics Data System (ADS)

    Li, Lin; Tan, Yongbin; Ying, Shen; Yu, Zhonghai; Li, Zhen; Lan, Honghao

    2014-01-01

    With the rapid development of urbanization, the standard of living has improved, but changes to the city thermal environment have become more serious. Population urbanization is a driving force of residential expansion, which predominantly influences the land surface temperature (LST). We obtained the land covers and LST maps of Wuhan from Landsat-5 images in 2000, 2002, 2005, and 2009, and discussed the distribution of land use/cover change and LST variation, and we analyzed the correlation between population distribution and LST values in residential regions. The results indicated massive variation of land cover types, which was shown as a reduction in cultivatable land and the expansion of building regions. High-LST regions concentrated on the residential and industrial areas with low vegetation coverage. In the residential region, the population density (PD) had effects on the LST values. Although the area or variation of residential regions was close, lower PD was associated with lower mean LST or LST variation. Thus, decreasing the high-LST regions concentration by reducing the PD may alleviate the urban heat island effect on the residential area. Taken together, these results can provide supports for urban planning projects and studies on city ecological environments.

  10. Design and development of a profilometer for the fast and accurate characterization of optical surfaces

    NASA Astrophysics Data System (ADS)

    Gómez-Pedrero, José A.; Rodríguez-Ibañez, Diego; Alonso, José; Quirgoa, Juan A.

    2015-09-01

    With the advent of techniques devised for the mass production of optical components made with surfaces of arbitrary form (also known as free form surfaces) in the last years, a parallel development of measuring systems adapted for these new kind of surfaces constitutes a real necessity for the industry. Profilometry is one of the preferred methods for the assessment of the quality of a surface, and is widely employed in the optical fabrication industry for the quality control of its products. In this work, we present the design, development and assembly of a new profilometer with five axis of movement, specifically suited to the measurement of medium size (up to 150 mm of diameter) "free-form" optical surfaces with sub-micrometer accuracy and low measuring times. The apparatus is formed by three X, Y, Z linear motorized positioners plus and additional angular and a tilt positioner employed to locate accurately the surface to be measured and the probe which can be a mechanical or an optical one, being optical one a confocal sensor based on chromatic aberration. Both optical and mechanical probes guarantee an accuracy lower than the micrometer in the determination of the surface height, thus ensuring an accuracy in the surface curvatures of the order of 0.01 D or better. An original calibration procedure based on the measurement of a precision sphere has been developed in order to correct the perpendicularity error between the axes of the linear positioners. To reduce the measuring time of the profilometer, a custom electronics, based on an Arduino™ controller, have been designed and produced in order to synchronize the five motorized positioners and the optical and mechanical probes so that a medium size surface (around 10 cm of diameter) with a dynamic range in curvatures of around 10 D, can be measured in less than 300 seconds (using three axes) keeping the resolution in height and curvature in the figures mentioned above.

  11. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  12. Analytical simulation and inversion of dynamic urban land surface effects

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Rivera, J.; Blum, P.; Schweizer, D.; Rybach, L.

    2015-12-01

    Long-term thermal changes at the land surface can be backtracked from borehole temperature profiles. The main focus so far has been on past climate changes, assuming perfect coupling of surface air and ground temperature. In many urbanized areas, however, temperature profiles are heavily perturbed. We find a characteristic bending of urban profiles towards shallow depth, which indicates strong heating from the ground surface during recent decades. This phenomenon is generally described as subsurface urban heat island (UHI) effect, which exists beneath many cities worldwide. Major drivers are land use changes and urban structures that act as long-term heat sources that artificially load the top 100 m of the ground. While variability in land use and coverage are critical factors for reliable borehole climatology, temperature profiles can also be inverted to trace back the combined effect of past urbanization and climate. We present an analytical framework based on the superposition of specific Green's functions for simulating transient land use changes and their effects on borehole temperature profiles. By inversion in a Bayesian framework, flexible calibration of unknown spatially distributed parameter values and their correlation is feasible. The procedure is applied to four temperature logs which are around 200-400 m deep from the city and suburbs of Zurich, Switzerland. These were recorded recently by a temperature sensor and data logger introduced in closed borehole heat exchangers before the start of geothermal operation. At the sites, long-term land use changes are well documented for more than the last century. This facilitated focusing on a few unknown parameters, and we selected the contribution by asphalt and by basements of buildings. It is revealed that for three of the four sites, these two factors dominate the subsurface UHI evolution. At one site, additional factors such as buried district heating networks may play a role. It is demonstrated that site

  13. Identifying and Addressing Land Surface Model Deficiencies with Data Assimilation

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Li, Bailing; Beaudoing, Hiroko Kato; Houborg, Rasmus; Zaitchik, Ben; Reichle, Rolf; Kumar, Sujay

    2012-01-01

    Land surface models (LSMs) encapsulate our understanding of terrestrial water and energy cycle physics and provide estimates of land surface states and fluxes when and where measurement gaps exist. Gaps in our understanding of the physics are a different issue. Data assimilation can address that issue both directly, through updating of prognostic model variables, or indirectly, when the simulated world conflicts with observation, necessitating adjustment of the model. Here we will focus on the latter case and present several examples, including (1) depth to bedrock adjustment to accommodate assimilated GRACE terrestrial water storage data; (2) steps to prevent immediate melting of assimilated snow cover; (3) irrigation's contribution to evapotranspiration; (4) lessons learned from soil moisture data assimilation; (5) the potential impact of satellite based runoff observation

  14. Derived Land Surface Emissivity From Suomi NPP CrIS

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.

  15. Dual-beam interferometer for the accurate determination of surface-wave velocity.

    PubMed

    McKie, A D; Wagner, J W; Spicer, J B; Deaton, J B

    1991-10-01

    A novel dual-beam interferometer has been designed and constructed that enables two beams from a He-Ne laser to probe remotely the surface of a material. The separation of the two He-Ne beams is adjustable in the 15-to- 40-mm range with a spatial resolution of 2 microm. Surface-acoustic-wave measurements have been performed with two different probe separations so that the travel time for the surface waves over a known distance can be determined accurately. With the aid of autocorrelation algorithms, the Rayleigh pulse velocity on 7075-T651 aluminum has been measured to be 2888 +/- 4 m/s. The current precision of the system is limited mainly by the 10-ns sampling rate of the digital oscilloscope used. Rayleigh pulse interactions with a surface-breaking slot, machined to a nominal depth of 0.5 mm, have also been examined and the depth estimated ultrasonically to be 0.49 +/- 0.02 mm. The system may also provide a technique for direct quantitative studies of surface-wave attenuation. PMID:20706500

  16. Quantifying Uncertainties in Land Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2012-01-01

    Uncertainties in the retrievals of microwave land surface emissivities were quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including SSM/I, TMI and AMSR-E, were studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors in the retrievals. Generally these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 14% (312 K) over desert and 17% (320 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.52% (26 K). In particular, at 85.0/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are mostly likely caused by rain/cloud contamination, which can lead to random errors up to 1017 K under the most severe conditions.

  17. Linking land use with pesticides in Dutch surface waters.

    PubMed

    Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R

    2012-01-01

    Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds. PMID:23885409

  18. Land-surface studies with a directional neutron detector.

    SciTech Connect

    Desilets, Darin; Brennan, James S.; Mascarenhas, Nicholas; Marleau, Peter

    2009-09-01

    Direct measurements of cosmic-ray neutron intensity were recorded with a neutron scatter camera developed at SNL. The instrument used in this work is a prototype originally designed for nuclear non-proliferation work, but in this project it was used to characterize the response of ambient neutrons in the 0.5-10 MeV range to water located on or above the land surface. Ambient neutron intensity near the land surface responds strongly to the presence of water, suggesting the possibility of an indirect method for monitoring soil water content, snow water equivalent depth, or canopy intercepted water. For environmental measurements the major advantage of measuring neutrons with the scatter camera is the limited (60{sup o}) field of view that can be obtained, which allows observations to be conducted at a previously unattainable spatial scales. This work is intended to provide new measurements of directional fluxes which can be used in the design of new instruments for passively and noninvasively observing land-surface water. Through measurements and neutron transport modeling we have demonstrated that such a technique is feasible.

  19. Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, china.

    PubMed

    Han, Guifeng; Xu, Jianhua

    2013-07-01

    Using SPOT/VGT NDVI time series images (2002-2009) and MODIS/LST images (2002-2009) smoothed by a Savitzky-Golay filter, the land surface phenology (LSP) and land surface temperature (LST), respectively, are extracted for six cities in the Yangtze River Delta, China, including Shanghai, Hangzhou, Nanjing, Changzhou, Wuxi, and Suzhou. The trends of the averaged LSP and LST are analyzed, and the relationship between these values is revealed along the urban-rural gradient. The results show that urbanization advances the start of the growing season, postpones the end of the growing season, prolongs the growing season length (GSL), and reduces the difference between maximal NDVI and minimal NDVI in a year (NDVIamp). More obvious changes occur in surface vegetation phenology as the urbanized area is approached. The LST drops monotonously and logarithmically along the urban-rural gradient. Urbanization generally affects the LSP of the surrounding vegetation within 6 km to the urban edge. Except for GSL, the difference in the LSP between urban and rural areas has a significant logarithmic relationship with the distance to the urban edge. In addition, there is a very strong linear relationship between the LSP and the LST along the urban-rural gradient, especially within 6 km to the urban edge. The correlations between LSP and gross domestic product and population density reveal that human activities have considerable influence on the land surface vegetation growth. PMID:23740439

  20. Diurnal Variation of Meteorological Parameters in the Land Surface Interface

    NASA Astrophysics Data System (ADS)

    Pillai, J. S.

    A pilot land surface processes experiment was conducted at Anand, Gujarat, situated in the western part of India, from April to July 1995. The diurnal variation of air and soil temperature with respect to solar radiation was studied in two selected periods, one in summer and the other during monsoon. It was observed that during summer, there was a considerable lag in the temperature maxima with respect to solar radiation, as compared to the monsoon period. Also, in summer, when there was an increase in wind speed from near zero values in the early morning hours, the soil surface as well as the air temperature minima were raised.

  1. Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea Breeze

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske; Arnold, James E. (Technical Monitor)

    2002-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the

  2. NPP VIIRS Land Surface Temperature EDR validation using NOAA's observation networks

    NASA Astrophysics Data System (ADS)

    Guillevic, P. C.; Privette, J. L.

    2012-12-01

    NOAA will soon use the new Visible Infrared Imager Radiometer Suite (VIIRS) on the Joint Polar Satellite System (JPSS) as its primary polar-orbiting satellite imager. Employing a near real-time processing system, NOAA will generate a series of Environmental Data Records (EDRs) from VIIRS data. For example, the VIIRS Land Surface Temperature (LST) EDR will estimate the surface skin temperature over all global land areas and provide key information for monitoring Earth surface energy and water fluxes. Because both VIIRS and its processing algorithms are new, NOAA is conducting a rigorous calibration and validation program to understand and improve product quality. This work presents a new validation methodology to estimate the quantitative uncertainty in the LST EDR, and contribute to improving the retrieval algorithm. It employs a physically-based approach to scaling up point LST measurements currently made operationally at many field and weather stations around the world. The scaling method consists of the merging information collected at different spatial resolutions within a land surface model to fully characterize large area (km x km scale) satellite products. The approach can be used to explore scaling issues over terrestrial surfaces spanning a large range of climate regimes and land cover types, including forests and mixed vegetated areas. First results show that VIIRS and MODIS (collection 5) LST products are very consistent. Over vegetated areas, VIIRS LST EDRs verify JPSS program quality requirements - bias and precision specifications of VIIRS LST EDRs are 1.5K and 2.5K. However, VIIRS agrees better with scaled-up field data than with non-scaled field observations. Over desert areas, current VIIRS LST EDRs do not verify JPSS specifications. VIIRS and MODIS LST products tend to underestimate surface temperature at night. Ultimately, this validation approach should lead to an accurate and continuously-assessed VIIRS LST products suitable to support weather

  3. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    NASA Astrophysics Data System (ADS)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  4. Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar

    2010-01-01

    Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.

  5. Mapping the global land surface using 1 km AVHRR data

    USGS Publications Warehouse

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  6. Surface Landing Site Weather Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. L.

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.

  7. Analyzing Land Cover Change in Kazakhstan: Land Surface Phenology, Climatic Variation, and Sensor Artifacts

    NASA Astrophysics Data System (ADS)

    de Beurs, K. M.; Henebry, G. M.

    2003-12-01

    The collapse of the economic and political institutions of the Soviet Union in the early 1990s led to widespread agricultural de-intensification, land abandonment, loss of livestock, and decreased grazing pressure. In semi-arid to arid regions dominated by dryland agriculture and grazing, the quantification of land cover change must distinguish anthropogenic forcings from interannual climatic variation and the peculiarities associated with specific sensor systems. Were the land cover changes that occurred in Kazakhstan following independence in 1991 of sufficient magnitude to alter the land surface phenology at resolutions relevant to climate models? To explore this question it is necessary first to partition the sources of variation in the image archive. We used the standard Pathfinder AVHRR Land (PAL) dataset, which consists of global 10 d maximum NDVI composites from 7/1981 to 9/2001 at 8 km resolution. To what extent are the PAL data affected by sensor artifacts that may mask other kinds of change? We evaluated 19 subsets of 1600 sq km, one for each ecoregion of Kazakhstan as delineated by the World Wildlife Fund. To minimize residual cloud contamination in the PAL data, a modified version of the best index slope extraction algorithm was applied. The method filters distortions without altering the seasonal NDVI pattern. We pursued two complementary aspects of change analysis: (1) detection of trends within each sensor's tenure and (2) detection of trends and discontinuities across the entire observational period. Seasonal polynomial models of NDVI phenology were developed to relate accumulated growing degree-day with NDVI. To test for trends within periods, both the residuals and the filtered data were submitted to seasonal Mann-Kendall tests that were modified to correct for serial correlation. To identify discontinuities, the entire series was tested using the standard normal homogeneity test (SNHT) without trend. The Kruskal-Wallis test with Bonferroni

  8. Characterization of land surface energy fluxes at the Salar de Atacama, Northern Chile using ASTER image classification

    NASA Astrophysics Data System (ADS)

    Kampf, S. K.; Tyler, S. W.

    2003-12-01

    Models of land surface energy fluxes often use remotely sensed data to derive surface temperature, albedo, and emissivity, important parameters in energy budget calculations. The ability to determine the spatial distribution of these parameters can lead to improved estimations of the spatial variability of land surface energy fluxes. However, other parameters used in energy flux calculations such as aerodynamic resistance are not directly linked to quantities commonly derived from remotely sensed data. If images can be accurately classified into separate land cover types, empirically determined values of unknown parameters can then be assigned separately to each land cover classification. This study examines several techniques of determining the spatial distribution of land surface energy fluxes at the Salar de Atacama, a large playa in northern Chile. Fluxes are calculated using Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Level 2 surface kinetic temperature, surface emissivity, and surface reflectance data in conjunction with ground-based meteorological measurements. Energy fluxes are calculated initially by applying a single value of aerodynamic resistance to the entire image area. Subsequently, the ASTER scene is classified into distinct land cover types, and land surface roughness is characterized using the ratio of ASTER band 3N (nadir-viewing) to band 3B (back-viewing). Separate values of aerodynamic resistance are then assigned to each land cover type, and energy fluxes over the entire Salar de Atacama are calculated using these spatially distributed aerodynamic resistance values. Results of both energy flux calculation techniques are evaluated at several sites on the playa using ground-based energy flux measurements.

  9. Conterminous United States Surface Radiative Forcing due to Contemporary Land Cover Land Use Albedo Change

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Roy, D. P.

    2012-12-01

    Recently available Landsat land cover land use (LCLU) change information for four epochs, 1973-1980, 1980-1986, 1986-1992 and 1992-2000, and MODerate Resolution Imaging Spectroradiometer (MODIS) albedo and snow cover data are used to estimate LCLU albedo change surface radiative forcing for the conterminous United States (CONUS) for each epoch and for 1973 to 2000. Landsat 10 × 10 km or 20 × 20 km LCLU classification maps for 1973, 1980, 1986, 1992 and 2000 located using a stratified random sampling methodology with respect to 84 contiguous CONUS ecoregions are used to provide ecoregion and CONUS estimates. A CONUS scale warming (0.0037 Wm-2) due to LCLU albedo change from 1973 to 2000 is estimated associated with decreasing agricultural and forested lands and increasing developed and grassland/shrublands. The 1986 to 1992 period had the highest overall CONUS forcing (0.0093 Wm-2) due to agricultural land conversion, attributed primarily to the 1985 Farm Bill that established the Conservation Reserve Program. The radiative forcing for individual ecoregions varied geographically in sign and magnitude, with the most negative forcings (as low as -0.8630 Wm-2) due to forest loss, and the most positive forcings (up to 0.2640 Wm-2) due to the conversion of grasslands/shrublands. These results make an important contribution to quantifying the role of LCLU change on the climate system, and underscore the need for repeat, wall-to-wall, spatially-explicit national LCLU mapping.

  10. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  11. Accessing Recent Trend of Land Surface Temperature from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Romanov, Peter

    2011-01-01

    Land surface temperature (Ts) is an important element to measure the state of terrestrial ecosystems and to study surface energy budgets. In support of the land cover/land use change-related international program MAIRS (Monsoon Asia Integrated Regional Study), we have collected global monthly Ts measured by MODIS since the beginning of the missions. The MODIS Ts time series have approximately 11 years of data from Terra since 2000 and approximately 9 years of data from Aqua since 2002, which makes possible to study the recent climate, such as trend. In this study, monthly climatology from two platforms are calculated and compared with that from AIRS. The spatial patterns of Ts trends are accessed, focusing on the Eurasia region. Furthermore, MODIS Ts trends are compared with those from AIRS and NASA's atmospheric assimilation model, MERRA (Modern Era Retrospective-analysis for Research and Applications). The preliminary results indicate that the recent 8-year Ts trend shows an oscillation-type spatial variation over Eurasia. The pattern is consistent for data from MODIS, AIRS, and MERRA, with the positive center over Eastern Europe, and the negative center over Central Siberia. The calculated climatology and anomaly of MODIS Ts will be integrated into the online visualization system, Giovanni, at NASA GES DISC for easy use by scientists and general public.

  12. Accessing Recent Trend of Land Surface Temperature from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Shen, S.; Leptoukh, G. G.; Romanov, P.

    2011-12-01

    Land surface temperature (LST) is an important element to measure the state of the terrestrial ecosystems and to study the surface energy budgets. In support of the land cover/land use change related international program MAIRS (Monsoon Asia Integrated Regional Study), we have collected the global monthly LST measured by MODIS since the beginning of the missions. The MODIS LST time series have ~11 years of data from Terra since 2000 and ~9 years of data from Aqua since 2002, which makes possible to study the recent climate, such as trend and variability. In this study, monthly climatology from two satellite platforms are calculated and compared. The spatial patterns of LST trends are accessed, focusing on the Asian Monsoon region. Furthermore, the MODIS LST trends are compared with the skin temperature trend from the NASA's atmospheric assimilation model, MERRA (MODERN ERA RETROSPECTIVE-ANALYSIS FOR RESEARCH AND APPLICATIONS), which has longer data record since 1979. The calculated climatology and anomaly of MODIS LST will be integrated into the online visualization system, Giovanni, at NASA GES DISC for easy access and use by scientists and general public.

  13. Evaluation of Ten Methods for Initializing a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Houser, P. R.; Berg, A. A.; Famiglietti, J. S.

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth"s water cycle and climate variability. NASA"s Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type).

  14. CEOS Land Surface Imaging Constellation Mid-Resolution Optical Guidelines

    NASA Technical Reports Server (NTRS)

    Keyes, Jennifer P.; Killough, B.

    2011-01-01

    The LSI community of users is large and varied. To reach all these users as well as potential instrument contributors this document has been organized by measurement parameters of interest such as Leaf Area Index and Land Surface Temperature. These measurement parameters and the data presented in this document are drawn from multiple sources, listed at the end of the document, although the two primary ones are "The Space-Based Global Observing System in 2010 (GOS-2010)" that was compiled for the World Meteorological Organization (WMO) by Bizzarro Bizzarri, and the CEOS Missions, Instruments, and Measurements online database (CEOS MIM). For each measurement parameter the following topics will be discussed: (1) measurement description, (2) applications, (3) measurement spectral bands, and (4) example instruments and mission information. The description of each measurement parameter starts with a definition and includes a graphic displaying the relationships to four general land surface imaging user communities: vegetation, water, earth, and geo-hazards, since the LSI community of users is large and varied. The vegetation community uses LSI data to assess factors related to topics such as agriculture, forest management, crop type, chlorophyll, vegetation land cover, and leaf or canopy differences. The water community analyzes snow and lake cover, water properties such as clarity, and body of water delineation. The earth community focuses on minerals, soils, and sediments. The geo-hazards community is designed to address and aid in emergencies such as volcanic eruptions, forest fires, and large-scale damaging weather-related events.

  15. Surface Ionization and Soft Landing Techniques in Mass Spectrometry

    SciTech Connect

    Futrell, Jean H.; Laskin, Julia

    2010-04-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has extended mass spectrometric methods to large molecules and molecular complexes. This both greatly expands appli¬cations of mass spectrometry and makes the activation and dissociation of complex ions an integral part of large molecule mass spectrometry. A corollary of the much greater number of internal degrees of freedom and high density of states associated with molecular complexity is that internal energies much higher than the dissociation energies for competing fragmentation processes are required for observable fragmentation in time scales sampled by mass spectrometers. This article describes the kinetics of surface-induced dissociation (SID), a particularly efficient activation method for complex ions. Two very important characteristics of SID are very rapid, sub-picosecond activation and precise control of ion internal energy by varying ion collision energy. The nature of the surface plays an important role in SID, determining both efficiency and mechanism of ion activation. Surface composition and morphology strongly influence the relative importance of competing reactions of SID, ion capture (soft-landing), surface reaction and neutralization. The important features of SID and ion soft-landing are described briefly in this review and more fully in the recommended reading list.

  16. Integrated Display System for Low Visibility Landing and Surface Operations

    NASA Technical Reports Server (NTRS)

    Beskenis, Sharon Otero; Green, David F., Jr.; Hyer, Paul V.; Johnson, Edward J., Jr.

    1998-01-01

    This report summarizes the software products and system architectures developed by Lockheed Martin in support of the Low Visibility Landing and Surface Operations (LVLASO) program at NASA Langley Research Center. It presents an overview of the technical aspects, capabilities, and system integration issues associated with an integrated display system (IDS) that collects, processes and presents information to an aircraft flight crew during all phases of landing, roll-out, turn-off, inbound taxi, outbound taxi and takeoff. Communications hardware, drivers, and software provide continuous real-time data at varying rates and from many different sources to the display programs for presentation on a head-down display (HDD) and/or a head-up display (HUD). An electronic moving map of the airport surface is implemented on the HDD which includes the taxi route assigned by air traffic control, a text messaging system, and surface traffic and runway status information. Typical HUD symbology for navigation and control of the aircraft is augmented to provide aircraft deceleration guidance after touchdown to a pilot selected exit and taxi guidance along the route assigned by ATC. HUD displays include scene-linked symbolic runways, runway exits and taxiways that are conformal with the actual locations on the airport surface. Display formats, system architectures, and the various IDS programs are discussed.

  17. Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Friedl, Mark A.; Tan, Bin; Zhang, Xiaoyang; Verma, Manish

    2010-01-01

    Information related to land surface phenology is important for a variety of applications. For example, phenology is widely used as a diagnostic of ecosystem response to global change. In addition, phenology influences seasonal scale fluxes of water, energy, and carbon between the land surface and atmosphere. Increasingly, the importance of phenology for studies of habitat and biodiversity is also being recognized. While many data sets related to plant phenology have been collected at specific sites or in networks focused on individual plants or plant species, remote sensing provides the only way to observe and monitor phenology over large scales and at regular intervals. The MODIS Global Land Cover Dynamics Product was developed to support investigations that require regional to global scale information related to spatiotemporal dynamics in land surface phenology. Here we describe the Collection 5 version of this product, which represents a substantial refinement relative to the Collection 4 product. This new version provides information related to land surface phenology at higher spatial resolution than Collection 4 (500-m vs. 1-km), and is based on 8-day instead of 16-day input data. The paper presents a brief overview of the algorithm, followed by an assessment of the product. To this end, we present (1) a comparison of results from Collection 5 versus Collection 4 for selected MODIS tiles that span a range of climate and ecological conditions, (2) a characterization of interannual variation in Collections 4 and 5 data for North America from 2001 to 2006, and (3) a comparison of Collection 5 results against ground observations for two forest sites in the northeastern United States. Results show that the Collection 5 product is qualitatively similar to Collection 4. However, Collection 5 has fewer missing values outside of regions with persistent cloud cover and atmospheric aerosols. Interannual variability in Collection 5 is consistent with expected ranges of

  18. Surface-material maps of Viking landing sites on Mars

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Keller, J. M.

    1991-01-01

    Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.

  19. Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval

    PubMed Central

    Liu, Desheng; Pu, Ruiliang

    2008-01-01

    Land surface temperature (LST) retrieved from satellite thermal sensors often consists of mixed temperature components. Retrieving subpixel LST is therefore needed in various environmental and ecological studies. In this paper, we developed two methods for downscaling coarse resolution thermal infrared (TIR) radiance for the purpose of subpixel temperature retrieval. The first method was developed on the basis of a scale-invariant physical model on TIR radiance. The second method was based on a statistical relationship between TIR radiance and land cover fraction at high spatial resolution. The two methods were applied to downscale simulated 990-m ASTER TIR data to 90-m resolution. When validated against the original 90-m ASTER TIR data, the results revealed that both downscaling methods were successful in capturing the general patterns of the original data and resolving considerable spatial details. Further quantitative assessments indicated a strong agreement between the true values and the estimated values by both methods.

  20. Retrieving Land Surface Temperature from Hyperspectral Thermal Infrared Data Using a Multi-Channel Method

    PubMed Central

    Zhong, Xinke; Huo, Xing; Ren, Chao; Labed, Jelila; Li, Zhao-Liang

    2016-01-01

    Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (LSE) properly into consideration. In the adapted method, LST can be retrieved by a linear function of 36 brightness temperatures at Top of Atmosphere (TOA) using channels where LSE has high values. We evaluated the adapted method using simulation data at nadir and satellite data near nadir. The Root Mean Square Error (RMSE) of the LST retrieved from the simulation data is 0.90 K. Compared with an LST product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat, the error in the LST retrieved from the Infared Atmospheric Sounding Interferometer (IASI) is approximately 1.6 K. The adapted method can be used for the near-real-time production of an LST product and to provide the physical method to simultaneously retrieve atmospheric profiles, LST, and LSE with a first-guess LST value. The limitations of the adapted method are that it requires the minimum LSE in the spectral interval of 800–950 cm−1 larger than 0.95 and it has not been extended for off-nadir measurements. PMID:27187408

  1. Retrieving Land Surface Temperature from Hyperspectral Thermal Infrared Data Using a Multi-Channel Method.

    PubMed

    Zhong, Xinke; Huo, Xing; Ren, Chao; Labed, Jelila; Li, Zhao-Liang

    2016-01-01

    Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (LSE) properly into consideration. In the adapted method, LST can be retrieved by a linear function of 36 brightness temperatures at Top of Atmosphere (TOA) using channels where LSE has high values. We evaluated the adapted method using simulation data at nadir and satellite data near nadir. The Root Mean Square Error (RMSE) of the LST retrieved from the simulation data is 0.90 K. Compared with an LST product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat, the error in the LST retrieved from the Infared Atmospheric Sounding Interferometer (IASI) is approximately 1.6 K. The adapted method can be used for the near-real-time production of an LST product and to provide the physical method to simultaneously retrieve atmospheric profiles, LST, and LSE with a first-guess LST value. The limitations of the adapted method are that it requires the minimum LSE in the spectral interval of 800-950 cm(-1) larger than 0.95 and it has not been extended for off-nadir measurements. PMID:27187408

  2. Surface Landing Site Weather Analysis for Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. Lee

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is an important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface atmospheric conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. Climatological time series of operational surface weather observations are used to calculate probabilities of occurrence of various sets of hypothetical vehicle constraint thresholds, Data are available for numerous geographical locations such that statistical analysis can be performed for single sites as well as multiple-site network configurations. Results provide statistical descriptions of how often certain weather conditions are observed at the site(s) and the percentage that specified criteria thresholds are matched or exceeded. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that can be obtained,

  3. Enhancing model-based land surface temperature estimates using multi-platform microwave remote sensing products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature plays an important role in land surface processes, and it is a key input to physically-based retrieval algorithms of important hydrological states and fluxes, such as soil moisture and evaporation. This study presents a framework to use independent estimates of land surface ...

  4. Comparison of MISR and MODIS land surface albedos: Methodology

    NASA Astrophysics Data System (ADS)

    Taberner, M.; Pinty, B.; Govaerts, Y.; Liang, S.; Verstraete, M. M.; Gobron, N.; Widlowski, J.-L.

    2010-03-01

    The broadband white sky surface albedo (bihemispherical reflectance) products available from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared at regional and continental scales with similar products generated from the Multiangle Imaging Spectroradiometer (MISR) land surface bidirectional reflectance factor (BRF) parameters. This paper describes the methodology applied to derive MISR white sky albedos over four spectral broadbands of interest, namely, 0.3-0.7 μm, 0.4-1.1 μm, 0.7-3.0 μm, and 0.3-3.0 μm, as well as an evaluation of the strategy adopted to compare the MODIS and MISR products. The results are very encouraging since the two data sets show very good statistical agreement over large areas and over a full year of measurements, despite the many differences that exist in the suite of algorithms applied to retrieve these surface quantities from each of these instruments separately.

  5. Session on coupled land surface/hydrological/atmospheric models

    NASA Technical Reports Server (NTRS)

    Pielke, Roger

    1993-01-01

    The current model capabilities in the context of land surface interactions with the atmosphere include only one-dimensional characteristics of vegetation and soil surface heat, moisture, momentum, and selected other trace gas fluxes (e.g., CO2). The influence of spatially coherent fluxes that result from landscape heterogeneity were not included. Valuable representations of several aspects of the landscape pattern currently exist. These include digital elevation data and measures of the leaf area index (i.e., Normalized Difference Vegetation Index (NDVI) from Advanced Very High Resolution Radiometer (AVHRR) data). A major deficiency, however, is the lack of an ability to sample spatially representative shallow and (especially) deep soil moisture. Numerous mesoscale modeling and observed studies demonstrated the sensitivity of planetary boundary layer structure and deep convection to the magnitude of the surface moisture flux.

  6. Highly accurate potential energy surface for the He-H2 dimer.

    PubMed

    Bakr, Brandon W; Smith, Daniel G A; Patkowski, Konrad

    2013-10-14

    A new highly accurate interaction potential is constructed for the He-H2 van der Waals complex. This potential is fitted to 1900 ab initio energies computed at the very large-basis coupled-cluster level and augmented by corrections for higher-order excitations (up to full configuration interaction level) and the diagonal Born-Oppenheimer correction. At the vibrationally averaged H-H bond length of 1.448736 bohrs, the well depth of our potential, 15.870 ± 0.065 K, is nearly 1 K larger than the most accurate previous studies have indicated. In addition to constructing our own three-dimensional potential in the van der Waals region, we present a reparameterization of the Boothroyd-Martin-Peterson potential surface [A. I. Boothroyd, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 119, 3187 (2003)] that is suitable for all configurations of the triatomic system. Finally, we use the newly developed potentials to compute the properties of the lone bound states of (4)He-H2 and (3)He-H2 and the interaction second virial coefficient of the hydrogen-helium mixture. PMID:24116617

  7. Physically plausible prescription of land surface model soil moisture

    NASA Astrophysics Data System (ADS)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  8. Chemically Accurate Simulation of a Polyatomic Molecule-Metal Surface Reaction.

    PubMed

    Nattino, Francesco; Migliorini, Davide; Kroes, Geert-Jan; Dombrowski, Eric; High, Eric A; Killelea, Daniel R; Utz, Arthur L

    2016-07-01

    Although important to heterogeneous catalysis, the ability to accurately model reactions of polyatomic molecules with metal surfaces has not kept pace with developments in gas phase dynamics. Partnering the specific reaction parameter (SRP) approach to density functional theory with ab initio molecular dynamics (AIMD) extends our ability to model reactions with metals with quantitative accuracy from only the lightest reactant, H2, to essentially all molecules. This is demonstrated with AIMD calculations on CHD3 + Ni(111) in which the SRP functional is fitted to supersonic beam experiments, and validated by showing that AIMD with the resulting functional reproduces initial-state selected sticking measurements with chemical accuracy (4.2 kJ/mol ≈ 1 kcal/mol). The need for only semilocal exchange makes our scheme computationally tractable for dissociation on transition metals. PMID:27284787

  9. Chemically Accurate Simulation of a Polyatomic Molecule-Metal Surface Reaction

    PubMed Central

    2016-01-01

    Although important to heterogeneous catalysis, the ability to accurately model reactions of polyatomic molecules with metal surfaces has not kept pace with developments in gas phase dynamics. Partnering the specific reaction parameter (SRP) approach to density functional theory with ab initio molecular dynamics (AIMD) extends our ability to model reactions with metals with quantitative accuracy from only the lightest reactant, H2, to essentially all molecules. This is demonstrated with AIMD calculations on CHD3 + Ni(111) in which the SRP functional is fitted to supersonic beam experiments, and validated by showing that AIMD with the resulting functional reproduces initial-state selected sticking measurements with chemical accuracy (4.2 kJ/mol ≈ 1 kcal/mol). The need for only semilocal exchange makes our scheme computationally tractable for dissociation on transition metals. PMID:27284787

  10. Land surface emissivity retrieval from airborne hyperspectral scanner thermal infrared data over urban surfaces

    NASA Astrophysics Data System (ADS)

    Gao, C. X.; Qian, Y. G.; Wang, N.; Ma, L. L.; Jiang, X. G.

    2015-12-01

    Land surface emissivity (LSE) is a key parameter for characterizing the land surface, and is vital for a wide variety of surface-atmosphere studies. This paper retrieved LSEs of land surfaces over the city of Madrid, Spain from airborne hyperspectral scanner (AHS) thermal infrared data using temperature emissivity separation (TES) method. Six different kinds of urban surfaces: asphalt, bare soil, granite, pavement, shrub and grass pavement, were selected to evaluate the performance of the TES method in urban areas. The results demonstrate that the TES method can be successfully applied to retrieve LSEs in urban area. The six urban surfaces have similar curve shape of emissivity spectra, with the lowest emissivity in band 73, and highest in band 78; the LSE for bare soil varies significantly with spectra, approximately from 0.90 in band 72 to 0.98 in band 78, whereas the LSE for grass has the smallest spectral variation, approximately from 0.965 in band 72 to 0.974 in band 78, and the shrub presents higher LSE than other surfaces in bands 72, 73, 75-77, but a little lower in bands 78 and 79. Furthermore, it is worth noting that band 73 is suitable for discriminating different urban surfaces because large LSE differences exist in this channel for different urban surfaces.

  11. A method for assessing the distinguishability of land covers and soils in land surface models: Basic principles and first results.

    NASA Astrophysics Data System (ADS)

    Eckhardt, Klaus

    2015-04-01

    Land surface-atmosphere interactions are shaped by temporally and spatially varying characteristics of land cover and soil. Yet, model parameters representing these characteristics are oftentimes highly uncertain. Against the background of the parameter uncertainty it is questionable if models are actually always able to describe the emulated systems in such detail as is claimed. Taking this into account, honesty demands that models are simplified as far as possible. A further argument for such a simplification is that the parameterisation of a model is generally an expensive task and should be avoided for land covers and soils whose physical effect cannot be distinguished by the model. On the other hand, the simplification must not go too far. Land surface models have to meet certain minimum requirements pertaining to their ability to reproduce land covers and soils in a differentiated manner. In a model which is used for a land cover change study, for example, the respective covers have to distinguished not only formally, but in their acual effect. A method is presented which contributes to answering the following fundamental questions: (1) How far should land surface models be simplified in order not to feign an explanatory power they do not possess? (2) How far can land surface models be simplified without loosing their explanatory power? (3) Which land surface model is appropriate for a given task with respect to its ability to differentiate between the land covers and soils of interest? Where is need for model improvements? Application of the method is exemplified by means of the model Noah-LSM. Ongoing studies aiming at characterising a number of wide-spread land surface models with respect to their ability to distinguish the physical effect of different land covers are outlined.

  12. High-Resolution Specification of the Land and Ocean Surface for Improving Regional Mesoscale Model Predictions

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Lazarus, Steven M.; Splitt, Michael E.; Crosson, William L.; Lapenta, William M.; Jedlovec, Gary J.; Peters-Lidard, Christa D.

    2008-01-01

    The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many meteorological processes. High-resolution, accurate representations of surface properties such as sea-surface temperature (SST), soil temperature and moisture content, ground fluxes, and vegetation are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of sensible weather. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been conducting separate studies to examine the impacts of high-resolution land-surface initialization data from the Goddard Space Flight Center Land Information System (LIS) on subsequent WRF forecasts, as well as the influence of initializing WRF with SST composites derived from the MODIS instrument. This current project addresses the combined impacts of using high-resolution lower boundary data over both land (LIS data) and water (MODIS SSTs) on the subsequent daily WRF forecasts over Florida during May 2004. For this experiment, the WRF model is configured to run on a nested domain with 9- km and 3-kin grid spacing, centered on the Florida peninsula and adjacent coastal waters of the Gulf of Mexico and Atlantic Ocean. A control configuration of WRF is established to take all initial condition data from the NCEP Eta model. Meanwhile, two WRF experimental runs are configured to use high-resolution initialization data from (1) LIS land-surface data only, and (2) a combination of LIS data and high-resolution MODIS SST composites. The experiment involves running 24-hour simulations of the control WRF configuration, the MS-initialized WRF, and the LIS+MODIS-initialized WRF daily for the entire month of May 2004. All atmospheric data for initial and boundary conditions for the Control, LIS, and LIS+MODIS runs come from the NCEP Eta model on a 40-km grid. Verification statistics are generated at land surface observation sites and buoys, and the impacts

  13. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1995-01-01

    A significant progress has been made in TIR instrumentation which is required to establish the spectral BRDF/emissivity knowledge base of land-surface materials and to validate the land-surface temperature (LST) algorithms. The SIBRE (spectral Infrared Bidirectional Reflectance and Emissivity) system and a TIR system for measuring spectral directional-hemispherical emissivity have been completed and tested successfully. Optical properties and performance features of key components (including spectrometer, and TIR source) of these systems have been characterized by integrated use of local standards (blackbody and reference plates). The stabilization of the spectrometer performance was improved by a custom designed and built liquid cooling system. Methods and procedures for measuring spectral TIR BRDF and directional-hemispheric emissivity with these two systems have been verified in sample measurements. These TIR instruments have been used in the laboratory and the field, giving very promising results. The measured spectral emissivities of water surface are very close to the calculated values based on well established water refractive index values in published papers. Preliminary results show that the TIR instruments can be used for validation of the MODIS LST algorithm in homogeneous test sites. The beta-3 version of the MODIS LST software is being prepared for its delivery scheduled in the early second half of this year.

  14. Quantifying Uncertainties in Land-Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2013-01-01

    Uncertainties in the retrievals of microwaveland-surface emissivities are quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including the Special Sensor Microwave Imager, the Tropical Rainfall Measuring Mission Microwave Imager, and the Advanced Microwave Scanning Radiometer for Earth Observing System, are studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land-surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors inthe retrievals. Generally, these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 1%-4% (3-12 K) over desert and 1%-7% (3-20 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.5%-2% (2-6 K). In particular, at 85.5/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are most likely caused by rain/cloud contamination, which can lead to random errors up to 10-17 K under the most severe conditions.

  15. Predictability in France : atmospheric forcing or land surface initial conditions?

    NASA Astrophysics Data System (ADS)

    Singla, S.; Martin, E.; Céron, J.-P.; Regimbeau, F.

    2010-09-01

    A first study of a hydrological forecasting suite has already been done at seasonal time scales over France (Céron and al., 2010) in a context of adaptation for water resources management. The results showed the feasibility of hydrological seasonal forecasts by forcing the hydrometeorological model Safran-Isba-Modcou (SIM) with seasonal atmospheric forecasts from the DEMETER project. Scores were better for hydrological variables than for atmospheric variables for four river catchments for the spring season. The purpose of the present study is to quantify the sources of predictability of the hydrometeorological system. Two experiences were conducted in order to address this issue. The first experience consisted in testing the impact of the land surface initial conditions. We used realistic land surface initial state produced by the operational SIM model for the specific year and 9 random years of Safran atmospheric analyses (temperature and precipitation) from 1971 to 2001, in a consistent way with the previous study (Céron et al, 2010). The other atmospheric parameters (wind, specific humidity, long wave and short wave radiation and cloudiness) come from the SAFRAN climatology over the same period. The second experience was designed to evaluate the impact of the atmospheric forcing with 9 random years, chosen for the land surface initial state. The atmospheric forcing (temperature and precipitation) comes from the Safran analysis system for the corresponding year. Some results of this study will be presented on soil wetness index (SWI) forecasts and river flows forecasts for all stations in France. We will compare deterministic and probabilistic scores of the two experiences with those of the hydrological forecasting suite built with the seasonal forecasts from the DEMETER project. Perspectives for the downscaling of seasonal forecasts will be discussed in a last part. Céron J-P, Tanguy G, Franchistéguy L, Martin E, Regimbeau F and Vidal J-P, 2010. Hydrological

  16. Estimation of land surface evaporation map over large areas using remote sensing data

    NASA Astrophysics Data System (ADS)

    Jiang, Le

    Accurate estimation of surface energy fluxes is essential for various hydrological, meteorological, agricultural and ecological applications. Over the years, a wide variety of instrument systems and estimation methodologies have been developed to measure and estimate surface fluxes. In this study, a simple scheme is proposed to estimate surface evaporation over large heterogeneous areas using remote sensing data. This approach is based on an extension of the Priestley-Taylor equation and a relationship between remotely sensed surface temperature and vegetation index. Further simplification by using more generalized form for remotely sensed surface parameters set leads to a simpler formulation for evaporative fraction within a trapezoid/triangle space of remotely sensed vegetation index and surface temperature parameter space. Compared to ground flux observations by the Atmospheric Radiation Measurement (ARM) program, six case studies varying from early spring to late summer over the central United States show that the proposed method provides better estimation accuracy for surface evaporation than the original Priestley-Taylor method. Detailed comparison with the widely used aerodynamic resistance energy balance residual method suggests that the proposed method can achieve similar or better estimation of latent heat flux over large areas with much less input parameters. The residual method, on the other hand, requires estimation of aerodynamic resistance to heat transfer that necessitates the measurements of several ground-based observations including land surface vegetation height and surface wind.

  17. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations

    NASA Astrophysics Data System (ADS)

    Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.

    2016-05-01

    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.

  18. Highly accurate isotope measurements of surface material on planetary objects in situ

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Neuland, Maike; Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2013-04-01

    Studies of isotope variations in solar system objects are of particular interest and importance. Highly accurate isotope measurements provide insight into geochemical processes, constrain the time of formation of planetary material (crystallization ages) and can be robust tracers of pre-solar events and processes. A detailed understanding of the chronology of the early solar system and dating of planetary materials require precise and accurate measurements of isotope ratios, e.g. lead, and abundance of trace element. However, such measurements are extremely challenging and until now, they never have been attempted in space research. Our group designed a highly miniaturized and self-optimizing laser ablation time-of-flight mass spectrometer for space flight for sensitive and accurate measurements of the elemental and isotopic composition of extraterrestrial materials in situ. Current studies were performed by using UV radiation for ablation and ionization of sample material. High spatial resolution is achieved by focusing the laser beam to about Ø 20μm onto the sample surface. The instrument supports a dynamic range of at least 8 orders of magnitude and a mass resolution m/Δm of up to 800—900, measured at iron peak. We developed a measurement procedure, which will be discussed in detail, that allows for the first time to measure with the instrument the isotope distribution of elements, e.g. Ti, Pb, etc., with a measurement accuracy and precision in the per mill and sub per mill level, which is comparable to well-known and accepted measurement techniques, such as TIMS, SIMS and LA-ICP-MS. The present instrument performance offers together with the measurement procedure in situ measurements of 207Pb/206Pb ages with the accuracy for age in the range of tens of millions of years. Furthermore, and in contrast to other space instrumentation, our instrument can measure all elements present in the sample above 10 ppb concentration, which offers versatile applications

  19. Evaluation of modeled microwave land surface emissivities with satellite-based estimates

    NASA Astrophysics Data System (ADS)

    Prigent, C.; Liang, P.; Tian, Y.; Aires, F.; Moncet, J.-L.; Boukabara, S. A.

    2015-04-01

    An accurate estimate of the microwave surface emissivity is necessary for the retrieval of atmospheric quantities from microwave imagers or sounders. The objective of this study is to evaluate the microwave land surface emissivity modeling of the Community Radiative Transfer Model (CRTM), providing quantitative statistic information for further model improvements. First, the model-simulated emissivity is compared to emissivity estimates derived from satellite observations (TELSEM, Tool to Estimate Land Surface Emissivities at Microwaves). The model simulations agree reasonably well with TELSEM over snow-free vegetated areas, especially at vertical polarization up to 40 GHz. For snow-free surfaces, the mean difference between CRTM and TELSEM emissivities at vertical polarization is lower than 0.01 below 40 GHz and increases to 0.02 at 89 GHz. At horizontal polarization, it increases with frequency, from 0.01 at 10.6 GHz to 0.04 at 89 GHz. Over deserts and snow, larger differences are observed, which can be due to the lack of quality inputs to the model in these complex environments. A further evaluation is provided by comparing brightness temperature (Tbs) simulations with AMSR-E observations, where CRTM emissivity and TELSEM emissivity are coupled into a comprehensive radiative transfer model to simulate the brightness temperatures, respectively. The comparison shows smaller RMS errors with the satellite-derived estimates than with the model, despite some significant bias at midday with the satellite-derived emissivities at high frequencies. This study confirms and extends to the global scale previous evaluations of land surface microwave emissivity model. It emphasizes the needs for better physical modeling in arid regions and over snow-covered surfaces.

  20. Photometric ``Flicker:'' Tracer of Granulation and an Accurate Measure of Stellar Surface Gravity

    NASA Astrophysics Data System (ADS)

    Bastien, Fabienne

    2015-04-01

    As a result of the high precision and cadence of surveys like NASA's Kepler, we may now directly observe the very low-level light variations in Sun-like stars. In my dissertation, I found that some of these variations unexpectedly arise from granulation, a result that enables us to more accurately determine the physical properties of Sun-like stars, permits us to understand the nature of surface convection and its connection to activity, and allows us to better determine the properties of planets around Sun-like stars. I find that granulation manifests through light ``flicker,'' thereby yielding a simple measurement of stellar surface gravity with a precision of 0.1 dex. I use this, together and solely with two other simple ways of characterizing the stellar photometric variations in a high quality light curve, to construct an evolutionary diagram for Sun-like stars from the main-sequence on towards the red giant branch. I use flicker to re-determine the fundamental properties of Kepler planet host stars, finding that the stars - and hence the planets orbiting them - are 20-30% larger than previous estimates. Finally, I show that high precision light curves can yield remarkably clean predictors of radial velocity (RV) jitter in magnetically inactive stars, allowing the exoplanet community to prioritize RV follow-up campaigns with discovery light curves and providing insight into the primary physical drivers of RV jitter in such stars.

  1. Variability and evolution of global land surface phenology over the past three decades (1982-2012).

    PubMed

    Garonna, Irene; de Jong, Rogier; Schaepman, Michael E

    2016-04-01

    Monitoring land surface phenology (LSP) is important for understanding both the responses and feedbacks of ecosystems to the climate system, and for representing these accurately in terrestrial biosphere models. Moreover, by shedding light on phenological trends at a variety of scales, LSP provides the potential to fill the gap between traditional phenological (field) observations and the large-scale view of global models. In this study, we review and evaluate the variability and evolution of satellite-derived growing season length (GSL) globally and over the past three decades. We used the longest continuous record of Normalized Difference Vegetation Index data available to date at global scale to derive LSP metrics consistently over all vegetated land areas and for the period 1982-2012. We tested GSL, start- and end-of-season metrics (SOS and EOS, respectively) for linear trends as well as for significant trend shifts over the study period. We evaluated trends using global environmental stratification information in place of commonly used land cover maps to avoid circular findings. Our results confirmed an average lengthening of the growing season globally during 1982-2012 - averaging 0.22-0.34 days yr(-1), but with spatially heterogeneous trends. About 13-19% of global land areas displayed significant GSL change, and over 30% of trends occurred in the boreal/alpine biome of the Northern Hemisphere, which showed diverging GSL evolution over the past three decades. Within this biome, the 'Cold and Mesic' environmental zone appeared as an LSP change hotspot. We also examined the relative contribution of SOS and EOS to the overall changes, finding that EOS trends were generally stronger and more prevalent than SOS trends. These findings constitute a step towards the identification of large-scale phenological drivers of vegetated land surfaces, necessary for improving phenological representation in terrestrial biosphere models. PMID:26924776

  2. Land use changes and its impact on land surface temperature of Yancheng City from 2000 to 2009 analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xinghan

    2014-02-01

    In the paper, based on the technology of remote sensing and geographic information system, and according to the Landsat TM images obtained the land use database and land surface temperature of Yancheng city in the year of 2000 and 2009. Five land use types were identified, namely: farmland, building site, forest and grassland, water, and beach wetland. And then analysis of the urban expansion model based on the Defense Meteorological satellite data. The results show that: (1) In the five kinds of land use types, the largest rate of land use change is beach wetland, which is -8.23, followed by water as -5.17, forest and grassland is 3.27, building site is 2.24, farmland is 0.69. (2) During the 2000-2009, the towns of Yancheng city continuous outward expansion. In the old town, the expansion model is similar to the concentric circles spread to the periphery, but in the new district, which mainly concentrated in the northeast and southeast, the expansion model is re-planning, development and construction. (3) The land use structure change, especially the changes of beach wetland have a largest influence on the land surface temperature of Yancheng city. Among them, the average land surface temperature has increased over 8 degrees. However, the farmland change due to the overall land surface temperature decreased. And the increase of building site, making the urban heat island effect has been enhanced, while the town where the land surface temperature increases in value added in 0 to 5 degrees. At the same time, the water changes, this due to the land surface temperature increases and the added value in the range of 5 to 8 degrees.

  3. Impact of Calibrated Land Surface Model Parameters on the Accuracy and Uncertainty of Land-Atmosphere Coupling in WRF Simulations

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (LIS-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  4. Land Surface Modeling Applications for Famine Early Warning

    NASA Astrophysics Data System (ADS)

    McNally, A.; Verdin, J. P.; Peters-Lidard, C. D.; Arsenault, K. R.; Wang, S.; Kumar, S.; Shukla, S.; Funk, C. C.; Pervez, M. S.; Fall, G. M.; Karsten, L. R.

    2015-12-01

    AGU 2015 Fall Meeting Session ID#: 7598 Remote Sensing Applications for Water Resources Management Land Surface Modeling Applications for Famine Early Warning James Verdin, USGS EROS Christa Peters-Lidard, NASA GSFC Amy McNally, NASA GSFC, UMD/ESSIC Kristi Arsenault, NASA GSFC, SAIC Shugong Wang, NASA GSFC, SAIC Sujay Kumar, NASA GSFC, SAIC Shrad Shukla, UCSB Chris Funk, USGS EROS Greg Fall, NOAA Logan Karsten, NOAA, UCAR Famine early warning has traditionally required close monitoring of agro-climatological conditions, putting them in historical context, and projecting them forward to anticipate end-of-season outcomes. In recent years, it has become necessary to factor in the effects of a changing climate as well. There has also been a growing appreciation of the linkage between food security and water availability. In 2009, Famine Early Warning Systems Network (FEWS NET) science partners began developing land surface modeling (LSM) applications to address these needs. With support from the NASA Applied Sciences Program, an instance of the Land Information System (LIS) was developed to specifically support FEWS NET. A simple crop water balance model (GeoWRSI) traditionally used by FEWS NET took its place alongside the Noah land surface model and the latest version of the Variable Infiltration Capacity (VIC) model, and LIS data readers were developed for FEWS NET precipitation forcings (NOAA's RFE and USGS/UCSB's CHIRPS). The resulting system was successfully used to monitor and project soil moisture conditions in the Horn of Africa, foretelling poor crop outcomes in the OND 2013 and MAM 2014 seasons. In parallel, NOAA created another instance of LIS to monitor snow water resources in Afghanistan, which are an early indicator of water availability for irrigation and crop production. These successes have been followed by investment in LSM implementations to track and project water availability in Sub-Saharan Africa and Yemen, work that is now underway. Adoption of

  5. Human Mars Landing Site and Impacts on Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Bussey, Ben; Hoffman, Stephen J.

    2016-01-01

    NASA has begun a process to identify and discuss candidate locations where humans could land, live and work on the Martian surface. These locations are referred to as Exploration Zones (EZs). Given current mission concepts, an EZ is a collection of Regions of Interest (ROIs) that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains a landing site and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. These candidate EZs will be used by NASA as part of a multi-year process of determining where and how humans could explore Mars. In the near term this process includes: (a) identifying locations that would maximize the potential science return from future human exploration missions, (b) identifying locations with the potential for resources required to support humans, (c) developing concepts and engineering systems needed by future human crews to conduct operations within an EZ, and (d) identifying key characteristics of the proposed candidate EZs that cannot be evaluated using existing data sets, thus helping to define precursor measurements needed in advance of human missions. Existing and future robotic spacecraft will be tasked to gather data from specific Mars surface sites within the representative EZs to support these NASA activities. The proposed paper will describe NASA's initial steps for identifying and evaluating candidate EZs and ROIs. This includes plans for the "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" to be held in October 2015 at which proposals for EZs and ROIs will be presented and discussed. It will also include a discussion of how these considerations are (or will be) taken into account as future robotic Mars missions are

  6. Assessment of Aquarius/SAC-D Soil Moisture and Land Surface Temperature Using SMOS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective is to exploit the large amount of land observations and extend the impact of Aquarius to land applications. The L-band observations over land present an unprecedented opportunity to provide a critical hydrologic parameter, land surface soil moisture. This research will expand the impac...

  7. Land use and surface process domains on alpine hillslopes

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Caviezel, Chatrina; Hunziker, Matthias

    2015-04-01

    Shrubs and trees are generally considered to protect hillslopes from erosion. As a consequence, shrub encroachment on mountain pastures after abandoning grazing is not considered a threat to soils. However, the abandonment of mown or grazed grasslands causes a shift in vegetation composition and thus a change in landscape ecology and geomorphology. On many alpine slopes, current changes in land use and vegetation cover are accompanied by climate change, potentially generating a new geomorphic regime. Most of the debate focuses on the effect of land abandonment on water erosion rates. Generally, an established perennial vegetation cover improves the mechanical anchoring of the soil and the regulation of the soil water budget, including runoff generation and erosion. However, changing vegetation composition affects many other above- and below-ground properties like root density, -diversity and -geometry, soil structure, pore volume and acidity. Each combination of these properties can lead to a distinct scenario of dominating surface processes, often not reflected by common erosion risk assessment procedures. The study of soil properties along a chronosequence of green alder (alnusviridis) encroachment on the Unteralptal in central Switzerland reveals that shrub encroachment changes soil and vegetation properties towards an increase of resistance to run-off related erosion processes, but a decrease of slope stability against shallow landslides. The latter are a particular threat because of the currently increasing frequency of slide-triggering high magnitude rainfalls. The potential change of process domain on alpine pastures highlights the need for a careful use of erosion models when assessing future land use and climate scenarios. In mountains, but also other intensively managed agricultural landscapes, risk assessment without the appropriate reflection on the shifting relevance of surface processes carries the risk of missing future threats to environmental

  8. Mars Sample Return without Landing on the Surface

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Jones, Steven M.; Yen, A. S.

    2000-01-01

    Many in the science community want a Mars sample return in the near future, with the expectation that it will provide in-depth information, significantly beyond what we know from remote sensing, limited in-situ measurements, and work with Martian meteorites. Certainly, return of samples from the Moon resulted in major advances in our understanding of both the geologic history of our planetary satellite, and its relationship to Earth. Similar scientific insights would be expected from analyses of samples returned from Mars. Unfortunately, Mars-lander sample-return missions have been delayed, for the reason that NASA needs more time to review the complexities and risks associated with that type of mission. A traditional sample return entails a complex transfer-chain, including landing, collection, launch, rendezvous, and the return to Earth, as well as an evaluation of potential biological hazards involved with bringing pristine Martian organics to Earth. There are, however, means of returning scientifically-rich samples from Mars without landing on the surface. This paper discusses an approach for returning intact samples of surface dust, based on known instrument technology, without using an actual Martian lander.

  9. Parameterization of Land Surface Processes to Study Boundary Layer Characteristics over a Semiarid Region in Northwest India.

    NASA Astrophysics Data System (ADS)

    Satyanarayana, A. N. V.; Lykossov, V. N.; Mohanty, U. C.; Machul'Skaya, E. E.

    2003-04-01

    The atmospheric boundary layer and land surface processes play a crucial role and affect large-scale phenomena such as monsoons. A comprehensive soil-vegetation parameterization scheme has been developed to understand the complex interaction of the transfer processes, such as heat and moisture within the atmospheric surface layer and the active land layer. In this scheme, attention is given to the accurate representation of soil heat and moisture by considering all three states of water and their phase transitions. This scheme is incorporated in a one-dimensional multilevel boundary layer model for accurate representation of energy exchange processes to study the boundary layer characteristics. Numerical experiments are carried out with this model using special datasets obtained from the Land Surface Processes Experiment (LASPEX-97) at Anand (22.4°N, 72.6°E), a semiarid region of the state of Gujarat in northwest India. For this study, a dry simulation in February 1997 and a wet situation in July 1997 are considered. The model-simulated temporal variation of the fluxes of sensible heat, latent heat, and net radiation and soil temperatures are compared with the available observations. The results suggest that this model is suitable for better representation of land surface processes and the PBL in large-scale atmospheric models.

  10. Accurate prediction of V1 location from cortical folds in a surface coordinate system

    PubMed Central

    Hinds, Oliver P.; Rajendran, Niranjini; Polimeni, Jonathan R.; Augustinack, Jean C.; Wiggins, Graham; Wald, Lawrence L.; Rosas, H. Diana; Potthast, Andreas; Schwartz, Eric L.; Fischl, Bruce

    2008-01-01

    Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904; Stensaas et al., 1974; Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better

  11. Simulation of land-atmosphere gaseous exchange using a coupled land surface-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Gu, C.; Riley, W. J.; Perez, T. J.; Pan, L.

    2009-12-01

    It is important to develop and evaluate biogeochemical models that on the one hand represent vegetation and soil dynamics and on the other hand provide energy and water fluxes in a temporal resolution suitable for biogeochemical processes. In this study, we present a consistent coupling between a common land surface model (CLM3.0) and a recently developed biogeochemical model (TOUGHREACT-N). The model TOUGHREACT-N (TR-N) is one of the few process-based models that simulate green house gases fluxes by using an implicit scheme to solve the diffusion equations governing soil heat and water fluxes. By coupling with CLM3.0, we have significantly improved TR-N by including realistic representations of surface water, energy, and momentum exchanges, through the use of improved formulations for soil evaporation, plant transpiration, vegetation growth, and plant nitrogen uptake embedded in CLM3.0. The coupled CLMTR-N model is a first step for a full coupling of land surface and biogeochemical processes. The model is evaluated with measurements of soil temperature, soil water content, and N2O and N2 gaseous emission data from fallow, corn, and forest sites in Venezuela. The results demonstrate that the CLMTR-N model simulates realistic diurnal variation of soil temperature, soil water content, and N gaseous fluxes. For example, mean differences between predicted and observed midday near-surface soil water content were 8, 11, and 4 % in July, August, and September. The sensitivity of the biogeochemical processes and resulting N emissions to variation in environmental drivers is high, which indicates the need to calculate biogeochemical processes in, at least, two hourly time steps using dynamically updated (rather than daily averaged) soil environmental conditions. The development in CLMTR-N of such a complex representation of processes will allow us to characterize relevant processes and simplifications appropriate for regional to global-scale coupled biogeochemical and

  12. An algorithm for retrieving land surface temperatures using VIIRS data in combination with multi-sensors.

    PubMed

    Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao

    2014-01-01

    A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 , the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from -0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is -0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of -1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919

  13. An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors

    PubMed Central

    Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao

    2014-01-01

    A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 g/cm2, the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from −0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is −0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of −1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919

  14. An Open and Transparent Databank of Global Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Rennie, J.; Thorne, P.; Lawrimore, J. H.; Gleason, B.; Menne, M. J.; Williams, C.

    2013-12-01

    The International Surface Temperature Initiative (ISTI) consists of an effort to create an end-to-end process for land surface air temperature analyses. The foundation of this process is the establishment of a global land surface databank. The databank builds upon the groundbreaking efforts of scientists who led efforts to construct global land surface datasets in the 1980's and 1990's. A primary aim of the databank is to improve aspects including data provenance, version control, temporal and spatial coverage, and improved methods for bringing dozens of source data together into an integrated dataset. The databank consists of multiple stages, with each successive stage providing a higher level of processing, quality and integration. Currently more than 50 sources of data have been added to the databank. An automated algorithm has been developed that merges these sources into one complete dataset by removing duplicate station records, identifying two or more station records that can be merged into a single record, and incorporating new and unique stations. The program runs iteratively through all the sources which are ordered based upon criteria established by the ISTI. The highest preferred source, known as the target, runs through all the candidate sources, calculating station comparisons that are acceptable for merging. The process is probabilistic in approach, and the final fate of a candidate station is based upon metadata matching and data equivalence criteria. If there is not enough information, the station is withheld for further investigation. The algorithm has been validated using a pseudo-source of stations with a known time of observation bias, and correct matches have been made nearly 95% of the time. The final product, endorsed and recommended by ISTI, contains over 30,000 stations, however slight changes in the algorithm can perturb results. Subjective decisions, such as the ordering of the sources, or changing metadata and data matching thresholds

  15. The Rhone-Aggregation Land Surface Scheme Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Boone, A. A.; Habets, F.; Noilhan and Working Group, J.

    2002-05-01

    The Rhone-AGGregation (Rhone-AGG) Land Surface Scheme intercomparison project is an initiative within the Global Energy and Water Cycle Experiment (GEWEX) Global Land-Atmosphere System Study (GLASS)/Global Soil Wetness Project (GSWP) panel of the World Climate Research Programme (WCRP). This project makes use of the Rhone modeling system, which was developed in recent years by the French research community in order to study the continental water cycle on a regional scale. Three distinct components comprise this system: an analysis system to determine the near-surface atmospheric forcing, a Land Surface Scheme (LSS) interface and a distributed hydrological model. The coupling between the three components of the system is 1-way. It was created in an attempt to ensure a consistent dialogue between the atmosphere (precipitation, radiative fluxes, state variables) and the hydrological variables (evaporation, soil moisture, runoff, ground water and river flow). The atmospheric data, which have been mapped to an 8 km grid, consist of standard screen level observations at approximately 60 Météo-France weather network sites within the domain, European Centre for Medium-Range Weather Forecasts (ECMWF) analysis, climatological data and total daily precipitation data from over 1500 gauges. The system utilizes high spatial resolution European soil and vegetation databases, but it has been designed such that it is transferable to other regions. The size of the entire Rhone basin (86,996 km 2) is comparable to the area of a typical coarse-resolution Global atmospheric Climate Model (GCM) grid element, so that it is of interest to examine how the simulations from a wide range of LSSs, which are used in GCMs, numerical weather prediction models, mesoscale atmospheric models or hydrological models, are impacted by changing the spatial resolution over the domain from 8 km to approximately 69 km (1 degree). The main issues addressed by the Rhone-AGG project are how various state of

  16. Human Mars Landing Site and Impacts on Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Bussey, Ben; Hoffman, Stephen J.

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. Studies related to Mars surface operations and related system capabilities have led to the current definition of an EZ as well as ROIs. An EZ is a collection of ROIs that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Workshop results will be used to prepare for

  17. Land Surface Temperature Measurements form EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1996-01-01

    We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.

  18. Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.

    2016-01-01

    Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated

  19. Atmospheric and land surface measurements in a prototype hydrologic observatory

    NASA Astrophysics Data System (ADS)

    Scanlon, B.; Krajewski, W.; Famiglietti, J.; Duffy, C.

    2003-12-01

    Quantifying spatial and temporal variability in fluxes across interfaces and storage within reservoirs is critical for understanding the water cycle. The interfaces being considered in this presentation on the Neuse basin prototype hydrologic observatory (HO) include the land surface - atmosphere and land surface - groundwater. Critical fluxes include precipitation, infiltration, evapotranspiration and energy balance, and groundwater recharge; soil water storage in the unsaturated zone is an important determinant of flux partitioning at either interface. A companion presentation in this session (Genereux et al.) focuses on fluxes of water and solutes related to groundwater-surface water interfaces and surface water flow. The proposed measurement approach combines remote sensing and in-situ measurements to cover a wide range in spatial (1 m2 - 10,000 km2) scales. High-resolution precipitation maps will be provided by a combination of NEXRAD data and an enhanced ground-based network of rain gauges, disdrometers, and profilers. Evapotranspiration and energy balance fluxes will be monitored at several locations to characterize spatial patterns and process controls. Measurements of water content and matric potential will be co-located in the unsaturated zone to develop in situ water retention functions and to test existing pedotransfer functions for translating basic soils data to hydraulic parameters for modeling. Subsurface water fluxes in the unsaturated zone will also be estimated using newly developed fluxmeters. Co-located unsaturated and saturated zone instrumentation will be used to measure vertical and horizontal gradients to determine flux direction and to quantify fluxes using modeling. Fluxes in the unsaturated zone below the root zone may be equated to groundwater recharge. In addition, environmental tracers (tritium/helium and chlorofluorocarbons) will be measured in groundwater to estimate recharge rates. Ground-based measurements will be located in

  20. Evaluating soil moisture constraints on surface fluxes in land surface models globally

    NASA Astrophysics Data System (ADS)

    Harris, Phil; Gallego-Elvira, Belen; Taylor, Christopher; Folwell, Sonja; Ghent, Darren; Veal, Karen; Hagemann, Stefan

    2016-04-01

    Soil moisture availability exerts a strong control over land evaporation in many regions. However, global climate models (GCMs) disagree on when and where evaporation is limited by soil moisture. Evaluation of the relevant modelled processes has suffered from a lack of reliable, global observations of land evaporation at the GCM grid box scale. Satellite observations of land surface temperature (LST) offer spatially extensive but indirect information about the surface energy partition and, under certain conditions, about soil moisture availability on evaporation. Specifically, as soil moisture decreases during rain-free dry spells, evaporation may become limited leading to increases in LST and sensible heat flux. We use MODIS Terra and Aqua observations of LST at 1 km from 2000 to 2012 to assess changes in the surface energy partition during dry spells lasting 10 days or longer. The clear-sky LST data are aggregated to a global 0.5° grid before being composited as a function dry spell day across many events in a particular region and season. These composites are then used to calculate a Relative Warming Rate (RWR) between the land surface and near-surface air. This RWR can diagnose the typical strength of short term changes in surface heat fluxes and, by extension, changes in soil moisture limitation on evaporation. Offline land surface model (LSM) simulations offer a relatively inexpensive way to evaluate the surface processes of GCMs. They have the benefits that multiple models, and versions of models, can be compared on a common grid and using unbiased forcing. Here, we use the RWR diagnostic to assess global, offline simulations of several LSMs (e.g., JULES and JSBACH) driven by the WATCH Forcing Data-ERA Interim. Both the observed RWR and the LSMs use the same 0.5° grid, which allows the observed clear-sky sampling inherent in the underlying MODIS LST to be applied to the model outputs directly. This approach avoids some of the difficulties in analysing free

  1. Integrated Land Surface Water State Indicators for Climate Assessment

    NASA Astrophysics Data System (ADS)

    Lamb, B. T.; McDonald, K. C.; Steiner, N.; Azarderakhsh, M.; Schroeder, R.

    2014-12-01

    Accurate characterization of seasonal freeze/thaw transition timing coupled with accompanying characterization of snowpack water content, surface inundation, and radiation balance give the potential for an unambiguous indication of climate change. Earth remote sensing data sources have demonstrated utility for determining these surface and radiation balance state variables. NASA's Climate Indicators Team seeks to develop and test potential climate indicators that employ NASA capabilities to support the National Climate Assessemnt and are useful to decision makers. We present development of a set of climate indicators built upon remote sensing measures of surface water state variables: Landscape freeze/thaw (FT), Snow Water Equivalent (SWE), Surface inundation fraction (Fw), and radiative flux. Indicators based on and derived from these parameters may be assembled from integrated remote sensing datasets and provide key information in assessment of climate state. Combined, these state variables provide unique insight into linkages and feedbacks in terrestrial energy, water and carbon cycles and allow examination to the response of the integrated system to climate drivers. Assembled from existing remote sensing datasets, these deliverables will represent the first broad-scale observationally-based, comprehensive measures of surface water state and distribution coupled to atmospheric radiation for use in climate change assessment.

  2. Improved representation of surface-groundwater interactions in land surface models

    NASA Astrophysics Data System (ADS)

    Ganji, Arman; Sushama, Laxmi

    2016-04-01

    Surface-groundwater interactions are important and determine the evolution of hydrologic variables such as soil moisture, evapotranspiration and surface runoff. Despite its importance, groundwater is not explicitly represented in many land surface schemes, used in climate models. In this study, the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include groundwater dynamics. The impact of these modifications on the regional hydrology is assessed by comparing three simulations, performed with the original and modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim), for the 1980-2011 period, over a northeast Canadian domain. The modified and original versions of CLASS differ in the underlying boundary condition for soil layer hydrology, with one version being based on gravitational drainage from an original version of CLASS and the other one is newly proposed unconfined groundwater at the depth of bedrock layer. Results suggest statistically significant increases in soil moisture, during the spring and summer seasons, for the simulation with the new groundwater scheme, compared to the original version of CLASS, which is also reflected in the increased summer surface runoff and streamflows in this simulation with modified CLASS, over most of the study domain. The streamflows in this simulation is in better agreement to those observed. This study thus demonstrates the importance of groundwater scheme in land surface models for realistic simulation of hydrological processes.

  3. Satellite Derived Land Surface Temperature for Model Assimilation

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie J.; Jedlovec, Gary J.; Lapenta, William

    1999-01-01

    Studies have shown that land surface temperature (LST) tendencies are sensitive to the surface moisture availability which is a function of soil moisture and vegetation. The assimilation of satellite derived LST tendencies into the surface energy budget of mesoscale models has shown promise in improving the representation of the complex effects of both soil moisture and vegetation within the models for short term simulations. LST derived from geostationary satellites has the potential of providing the temporal and spatial resolution needed for an LST assimilation process. This paper presents an analysis comparing the LST derived from GOES-8 infrared measurements with LST calculated by the MM5 numerical model. The satellite derived LSTs are calculated using a physical split window approach using channels 4 and 5 of GOES-8. The differences in the LST data sets, especially the tendencies, are presented and examined. Quantifying the differences between the data sets provide insight of possible weaknesses in the model parameterizations affecting the surface energy budget calculations and an indication of the potential effectiveness o f assimilating LST into the models.

  4. Investigation of Aerodynamic and Aerodynamic and Radiometric Land Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Crago, Richard D.; Friedl, Mark; Kustas, William; Wang, Ye-Qiao

    2003-01-01

    The overall goal of the project was to reconcile the difference between T(sub s,r) and T(sub aero), while maintaining consistency within models and with theory and data. The project involved collaboration between researchers at Bucknell University, Boston University, University of mode Island, and the USDNARS Hydrology Laboratory. This report focuses on the work done at Bucknell, which used an analytical continuous-source flux model developed by Crago (1998), based on work by Brutsaert and Sugita (1996) to generate fluxes at all levels of the canopy. Named ALARM [Analytical Land- Atmosphere-Radiometer Model] by Suleiman and Crago (2002), the model assumes the foliage has an exponential vertical temperature profile. The same profile is felt by the within-canopy turbulence and 'seen" by a radiometer viewing the surface from any zenith view angle. ALARM converts radiometric surface temperatures taken from any view angle into a clearly-defined version of Taero called the equivalent isothermal surface temperature T(sub s,j), and then calculates the sensible heat flux H using Monin-Obukhov similarity theory. This allows remotely sensed Ts,r measurements to be used to produce high quality sensible and latent heat flux estimates, or to validate or update the surface temperature produced by SVATs in climate or mesoscale models.

  5. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  6. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  7. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  8. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  9. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  10. Sensitivity analysis of coupled groundwater processes within a land surface model.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Miller, N. L.; Kollet, S. J.

    2004-05-01

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budgets that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, models for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM2.0) and a variably-saturated groundwater model (ParFlow) have been coupled as single model, in single-column and distributed form. An initial set of single column simulations based on data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) and synthetic data demonstrate the temporal dynamics of both of the coupled models. A 15-year single-column simulation using the data from the Usadievskiy catchment in Valdai, Russia demonstrate the coupled model's ability to accurately predict the soil moisture profile and location of the water table, in addition to water and energy balance within the watershed. The distributed coupled model will also be demonstrated using a series of spatially variable subsurface parameter runs, which will be used to investigate upscaling in land-surface models. The coupled model will ultimately be used to assist

  11. Sensitivity Analysis of Coupled Groundwater Processes within a Land Surface Model

    SciTech Connect

    Maxwell, R M; Miller, N L; Kollet, S J

    2004-05-05

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budgets that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, models for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM2.0) and a variably-saturated groundwater model (ParFlow) have been coupled as single model, in single-column and distributed form. An initial set of single column simulations based on data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) and synthetic data demonstrate the temporal dynamics of both of the coupled models. A 15-year single-column simulation using the data from the Usadievskiy catchment in Valdai, Russia demonstrate the coupled model's ability to accurately predict the soil moisture profile and location of the water table, in addition to water and energy balance within the watershed. The distributed coupled model will also be demonstrated using a series of spatially variable subsurface parameter runs, which will be used to investigate upscaling in land-surface models. The coupled model will ultimately be used to assist

  12. Communication: An accurate global potential energy surface for the ground electronic state of ozone

    SciTech Connect

    Dawes, Richard E-mail: hguo@unm.edu; Lolur, Phalgun; Li, Anyang; Jiang, Bin; Guo, Hua E-mail: hguo@unm.edu

    2013-11-28

    We report a new full-dimensional and global potential energy surface (PES) for the O + O{sub 2} → O{sub 3} ozone forming reaction based on explicitly correlated multireference configuration interaction (MRCI-F12) data. It extends our previous [R. Dawes, P. Lolur, J. Ma, and H. Guo, J. Chem. Phys. 135, 081102 (2011)] dynamically weighted multistate MRCI calculations of the asymptotic region which showed the widely found submerged reef along the minimum energy path to be the spurious result of an avoided crossing with an excited state. A spin-orbit correction was added and the PES tends asymptotically to the recently developed long-range electrostatic model of Lepers et al. [J. Chem. Phys. 137, 234305 (2012)]. This PES features: (1) excellent equilibrium structural parameters, (2) good agreement with experimental vibrational levels, (3) accurate dissociation energy, and (4) most-notably, a transition region without a spurious reef. The new PES is expected to allow insight into the still unresolved issues surrounding the kinetics, dynamics, and isotope signature of ozone.

  13. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  14. MEaSUREs Land Surface Temperature from GOES satellites

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Ma, Yingtao; Chen, Wen; Hulley, Glynn; Borbas, Eva; Hain, Chris; Hook, Simon

    2016-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Both observations have unique advantages, however, when combined, introduced are challenges related to inhomogeneity of the resulting information. NASA has identified a major need for developing long-term, consistent, and calibrated data and products that are consistent across multiple missions and satellite sensors. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record (ESDR) for Earth Science" led by Jet Propulsion Laboratory, such an effort is underway. In this presentation we will describe part of that effort, dealing with the generation of an approach to derive LST information from the GOES satellites from 2000 and onward. Since implementation of the well-established split window approach is not possible after mid-2003 (will be possible again after the launch of GOES-R in October of 2016), there is a need to focus on retrievals from a single thermal channel in order to provide continuity in the LST record. The methodology development requires the generation of consistently calibrated GOES observations, identification of clear sky radiances, and development of retrieval algorithms that benefit from most recent advances in related fields that provide auxiliary information required for driving the inference schemes. Results will be presented from two approaches. One is based on a regression approach that utilizes a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and. The second approach uses MERRA-2 reanalysis fields with the RTTOV radiative transfer model approach to derive LST from the LEO satellites, adjusted for the GEO characteristics. The advantage of this latter approach is in the consistency between this retrieval approaches and those used at JPL

  15. Land Surface Temperature Measurements from EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zheng-Ming

    2004-01-01

    This report summarizes the accomplishments made by the MODIS LST (Land-Surface Temperature) group at University of California, Santa Barbara, under NASA Contract. Version 1 of the MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (ATBD) was reviewed in June 1994, version 2 reviewed in November 1994, version 3.1 in August 1996, and version 3.3 updated in April 1999. Based on the ATBD, two LST algorithms were developed, one is the generalized split-window algorithm and another is the physics-based day/night LST algorithm. These two LST algorithms were implemented into the production generation executive code (PGE 16) for the daily standard MODIS LST products at level-2 (MODII-L2) and level-3 (MODIIA1 at 1 km resolution and MODIIB1 at 5km resolution). PGE codes for 8-day 1 km LST product (MODIIA2) and the daily, 8-day and monthly LST products at 0.05 degree latitude/longitude climate model grids (CMG) were also delivered. Four to six field campaigns were conducted each year since 2000 to validate the daily LST products generated by PGE16 and the calibration accuracies of the MODIS TIR bands used for the LST/emissivity retrieval from versions 2-4 of Terra MODIS data and versions 3-4 of Aqua MODIS data. Validation results from temperature-based and radiance-based methods indicate that the MODIS LST accuracy is better than 1 C in most clear-sky cases in the range from -10 to 58 C. One of the major lessons learn from multi- year temporal analysis of the consistent V4 daily Terra MODIS LST products in 2000-2003 over some selected target areas including lakes, snow/ice fields, and semi-arid sites is that there are variable numbers of cloud-contaminated LSTs in the MODIS LST products depending on surface elevation, land cover types, and atmospheric conditions. A cloud-screen scheme with constraints on spatial and temporal variations in LSTs was developed to remove cloud-contaminated LSTs. The 5km LST product was indirectly validated through comparisons to

  16. LAND SURFACE TEMPERATURE RETRIEVAL AT HIGH SPATIAL AND TEMPORAL RESOLUTIONS OVER THE SOUTHWESTERN UNITED STATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) and its diurnal variation are important observable characteristics when evaluating climate change, land-atmosphere energy exchange processes and the global hydrological cycle. These characteristics are observable from satellite platforms using thermal infrared, but do...

  17. Monitoring global land surface drought based on a hybrid evapotranspiration model

    NASA Astrophysics Data System (ADS)

    Yao, Yunjun; Liang, Shunlin; Qin, Qiming; Wang, Kaicun; Zhao, Shaohua

    2011-06-01

    The latent heat of evapotranspiration (ET) plays an important role in the assessment of drought severity as one sensitive indicator of land drought status. A simple and accurate method of estimating global ET for the monitoring of global land surface droughts from remote sensing data is essential. The objective of this research is to develop a hybrid ET model by introducing empirical coefficients based on a simple linear two-source land ET model, and to then use this model to calculate the Evaporative Drought Index (EDI) based on the actual estimated ET and the potential ET in order to characterize global surface drought conditions. This is done using the Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) products, AVHRR-NDVI products from the Global Inventory Modeling and Mapping Studies (GIMMS) group, and National Centers for Environmental Prediction Reanalysis-2 (NCEP-2) datasets. We randomly divided 22 flux towers into two groups and performed a series of cross-validations using ground measurements collected from the corresponding flux towers. The validation results from the second group of flux towers using the data from the first group for calibration show that the daily bias varies from -6.72 W/m 2 to 12.95 W/m 2 and the average monthly bias is -1.73 W/m 2. Similarly, the validation results of the first group of flux towers using data from second group for calibration show that the daily bias varies from -12.91 W/m 2 to 10.26 W/m 2 and the average monthly bias is -3.59 W/m 2. To evaluate the reliability of the hybrid ET model on a global scale, we compared the estimated ET from the GEWEX, AVHRR-GIMMS-NDVI, and NECP-2 datasets with the latent heat flux from the Global Soil Wetness Project-2 (GSWP-2) datasets. We found both of them to be in good agreement, which further supports the validity of our model's global ET estimation. Significantly, the patterns of monthly EDI anomalies have a good spatial and temporal correlation with

  18. Towards Improved High-Resolution Land Surface Hydrologic Reanalysis Using a Physically-Based Hydrologic Model and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Zhang, F.; Duffy, C.; Yu, X.

    2014-12-01

    A coupled physically based land surface hydrologic model, Flux-PIHM, has been developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM has been implemented and manually calibrated at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Model predictions of discharge, point soil moisture, point water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. When calibrated only using discharge, and soil moisture and water table depth at one point, Flux-PIHM is able to resolve the observed 101 m scale soil moisture pattern at the Shale Hills watershed when an appropriate map of soil hydraulic properties is provided. A Flux-PIHM data assimilation system has been developed by incorporating EnKF for model parameter and state estimation. Both synthetic and real data assimilation experiments have been performed at the Shale Hills watershed. Synthetic experiment results show that the data assimilation system is able to simultaneously provide accurate estimates of multiple parameters. In the real data experiment, the EnKF estimated parameters and manually calibrated parameters yield similar model performances, but the EnKF method significantly decreases the time and labor required for calibration. The data requirements for accurate Flux-PIHM parameter estimation via data assimilation using synthetic observations have been tested. Results show that by assimilating only in situ outlet discharge, soil water content at one point, and the land surface temperature averaged over the whole watershed, the data assimilation system can provide an accurate representation of watershed hydrology. Observations of these key variables are available with national and even global spatial coverage (e.g., MODIS surface temperature, SMAP soil moisture, and the USGS gauging stations). National atmospheric reanalysis

  19. Land Surface Temperature Measurements from EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1997-01-01

    We made modifications to the linear kernel bidirectional reflectance distribution function (BRDF) models from Roujean et al. and Wanner et al. that extend the spectral range into the thermal infrared (TIR). With these TIR BRDF models and the IGBP land-cover product, we developed a classification-based emissivity database for the EOS/MODIS land-surface temperature (LST) algorithm and used it in version V2.0 of the MODIS LST code. Two V2.0 LST codes have been delivered to the MODIS SDST, one for the daily L2 and L3 LST products, and another for the 8-day 1km L3 LST product. New TIR thermometers (broadband radiometer with a filter in the 10-13 micron window) and an IR camera have been purchased in order to reduce the uncertainty in LST field measurements due to the temporal and spatial variations in LST. New improvements have been made to the existing TIR spectrometer in order to increase its accuracy to 0.2 C that will be required in the vicarious calibration of the MODIS TIR bands.

  20. Land Surface Temperature Variational Assimilation within the ORCHIDEE Continental Surface model

    NASA Astrophysics Data System (ADS)

    Benavides-Pinjosovsky, H. S.; Ottle, C.; Thiria, S.; Badran, F.; Crepon, M. R.; Maugis, P.; Brajard, J.

    2013-12-01

    Variational data assimilation is applied to the energy and water budgets modules of the ORCHIDEE land surface model. This part of the model called SECHIBA, describes the exchanges of water and energy between the surface and the atmosphere. The adjoint semi-generator software called YAO is used as a framework to implement 4D-Var assimilation. First, sensitivity analysis was performed in order to validate the adjoint and to identify the most influential parameters. Following, the results of twin experiments using synthetic observations, are shown in order to demonstrate the robustness of the assimilation. In addition, assimilation were made using observational meteorology dataset from the Surface Monitoring Of Soil Reservoir EXperiment (SMOSREX). The results obtained when controlling the most sensitive parameters and the initial soil water content, show the flexibility of the assimilation scheme and the potential of land surface temperature variational data assimilation to improve model calibration and reduce prediction errors. Keywords: Sensibility Analysis, Data Assimilation, Model Calibration, Land Surface Temperature

  1. The Effect of Errors in Snow Assimilation on Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Cosgrove, Brian A.; Houser, Paul R.; Atlas, Robert (Technical Monitor)

    2001-01-01

    The accurate portrayal of the hydrological cycle is extremely important in land surface modeling. Central to this effort is the treatment of snow, as errors in the representation of this quantity can impact practically all other modeled quantities through alterations in the water and energy balances. Although land surface model (LSM) simulations can benefit from the assimilation of snow cover and snow depth observations, they can be negatively impacted if such observations contain errors or if a model bias exists in the simulation of surface or soil temperatures. Both cases may lead to excessive melting or growth of snow packs, and to large alterations in both the energy and water balances. Such problems in the snow assimilation process, made evident by the repeated melting and replenishing of snow pack over significant areas of the United States, exists in the Eta Data Assimilation System and is a product of the EDAS system's direct insertion assimilation of snow data. Occurring on a 24 hour cycle, the repeated melting infuses the soil column with a large quantity of water that upsets the hydrological cycle. In an effort to quantify the impacts of such errors in snow assimilation on water and energy budgets, a series of Mosaic LSM simulations were performed over the 12 month period covering October 1998 to October 1999.

  2. A New Multiscale Flow Network Generation Scheme for Land Surface Models

    SciTech Connect

    Guo, Jianzhong; Liang, Xu; Leung, Lai R.

    2004-12-11

    This paper presents a new approach of generating flow networks for land surface models that are applied at different spatial scales based on fine-resolution digital elevation model (DEM). Without losing computational efficiency, the new multi-scale approach has the following advantages compared to existing methods: (1) it allows surface and subsurface runoff from a land surface model grid to exit through multiple directions simultaneously rather than through only one of the eight directions as in many other methods; (2) it guarantees that the newly generated river network is closer to the real river network; and (3) it introduces the concept of elastic coefficient to determine hydrological features such as river slope and length for more accurate flow routing across different spatial scales. The new flow network generation scheme has been applied to the Blue River watershed in Oklahoma at different spatial resolutions using a kinematic wave routing method. Comparisons of the routed streamflows at the watershed outlet associated with different spatial scales show clear advantages of the new approach over the widely used eight directions (D8) method, especially at the coarser spatial resolution. This method is particularly suitable for macroscale hydrologic models and climate models where the accuracy of river routing can be severely limited by the coarse spatial resolution.

  3. A New Multi-Scale Flow Network Generation Scheme for Land Surface Models

    SciTech Connect

    Guo, Jianzhong; Liang, Xu; Leung, Lai-Yung R.

    2004-12-11

    This paper presents a new approach of generating flow networks for land surface models that are applied at different spatial scales based on a fine-resolution digital elevation model (DEM). Without losing computational efficiency, the new multi-scale approach has the advantages that (1) it allows surface and subsurface runoff in a land surface model grid to exit through multiple directions simultaneously rather than through only one of the eight directions as in many other methods; and (2) it introduces the concept of elastic coefficient to determine hydrological features, such as river slope and length for more accurate flow routing across different spatial scales. The new flow network generation scheme has been applied to the Blue River watershed in Oklahoma at different spatial resolutions used in conjunction with a kinematic wave routing method. Comparisons of the routed streamflows at the watershed outlet show clear advantages of the new approach over the widely used eight directions (D8) method, especially at coarser spatial resolution. This method is particularly suitable for macroscale hydrologic models and climate models where the accuracy of river routing can be severely limited by the coarse spatial resolution.

  4. Two Surface Temperature Retrieval Methods Compared Over Agricultural Lands

    NASA Technical Reports Server (NTRS)

    French, Andrew N.; Schmugge, Thomas J.; Jacob, Frederic; Ogawa, Kenta; Houser, Paul R. (Technical Monitor)

    2002-01-01

    Accurate, spatially distributed surface temperatures are required for modeling evapotranspiration (ET) over agricultural fields under wide ranging conditions, including stressed and unstressed vegetation. Modeling approaches that use surface temperature observations, however, have the burden of estimating surface emissivities. Emissivity estimation, the subject of much recent research, is facilitated by observations in multiple thermal infrared bands. But it is nevertheless a difficult task. Using observations from a multiband thermal sensor, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), estimated surface emissivities and temperatures are retrieved in two different ways: the temperature emissivity separation approach (TES) and the normalized emissivity approach (NEM). Both rely upon empirical relationships, but the assumed relationships are different. TES relies upon a relationship between the minimum spectral emissivity and the range of observed emissivities. NEM relies upon an assumption that at least one thermal band has a pre-determined emissivity (close to 1.0). The benefits and consequences of each approach will be demonstrated for two different landscapes: one in central Oklahoma, USA and another in southern New Mexico.

  5. Accurate response surface approximations for weight equations based on structural optimization

    NASA Astrophysics Data System (ADS)

    Papila, Melih

    Accurate weight prediction methods are vitally important for aircraft design optimization. Therefore, designers seek weight prediction techniques with low computational cost and high accuracy, and usually require a compromise between the two. The compromise can be achieved by combining stress analysis and response surface (RS) methodology. While stress analysis provides accurate weight information, RS techniques help to transmit effectively this information to the optimization procedure. The focus of this dissertation is structural weight equations in the form of RS approximations and their accuracy when fitted to results of structural optimizations that are based on finite element analyses. Use of RS methodology filters out the numerical noise in structural optimization results and provides a smooth weight function that can easily be used in gradient-based configuration optimization. In engineering applications RS approximations of low order polynomials are widely used, but the weight may not be modeled well by low-order polynomials, leading to bias errors. In addition, some structural optimization results may have high-amplitude errors (outliers) that may severely affect the accuracy of the weight equation. Statistical techniques associated with RS methodology are sought in order to deal with these two difficulties: (1) high-amplitude numerical noise (outliers) and (2) approximation model inadequacy. The investigation starts with reducing approximation error by identifying and repairing outliers. A potential reason for outliers in optimization results is premature convergence, and outliers of such nature may be corrected by employing different convergence settings. It is demonstrated that outlier repair can lead to accuracy improvements over the more standard approach of removing outliers. The adequacy of approximation is then studied by a modified lack-of-fit approach, and RS errors due to the approximation model are reduced by using higher order polynomials. In

  6. Characterizing The Surface Dynamics For Land Cover Mapping: Current Achievements Of The ESA CCI Land Cover

    NASA Astrophysics Data System (ADS)

    Lamarche, Celine; Bontemps, Sophie; Verhegghen, Astrid; Radoux, Jullien; Vanbogaert, Eric; Kalogirou, Vasileios; Seifert, Frank Martin; Arino, Olivier; Defourny, Pierre

    2013-12-01

    Land Cover (LC) was listed as an Essential Climate Variable by the Global Climate Observing System and included the ESA Climate Change Initiative (CCI) that aims at providing global long-term satellite-based products tailored to the need of the climate modelling community. In the framework of the CCI-LC project, the LC concept was revisited in order to reconcile the LC users' divergent needs for both stable/consistent global LC products over time and more dynamic information related to the dynamic processes of the land surface. This paper aims first at describing the three global products generated in response to this need for more dynamic information, namely the condition products. These products characterize globally the green vegetation phenology, the burnt areas and snow occurrences. The main challenge beyond the production of these datasets refers to the spatio/temporal consistency between the stable and dynamic components of the LC. The second objective of this paper is therefore to address the work on-going on the characterization of this consistency.

  7. Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality.

    PubMed

    Wilson, Cyril O

    2015-07-01

    Anthropogenic forces widely influence the composition, configuration, and trend of land use and land cover (LULC) changes with potential implications for surface water quality. These changes have the likelihood of generating non-point source pollution with additional environmental implications for terrestrial and aquatic ecosystems. Monitoring the scope and trajectory of LULC change is pivotal for region-wide planning, tracking the sustainability of natural resources, and meeting the information needs of policy makers. A good comprehension of the dynamics of anthropogenic drivers (proximate and underlying) that influence such changes in LULC is important because any potential adverse change in LULC that may be inimical to sustainable water quality might be addressed at the anthropogenic driver level rather than the LULC change stage. Using a dense time stack of Landsat-5 Thematic Mapper images, a hydrologic water quality and socio-geospatial modeling framework, this study quantifies the role of anthropogenic drivers of LULC change on total suspended solids and total phosphorus concentrations in the Lower Chippewa River Watershed, Wisconsin, at three time steps-1990, 2000, and 2010. Results of the study demonstrated that proximate drivers of LULC change accounted for between 32 and 59% of the concentration and spatial distribution of total suspended solids, while the extent of phosphorus impairment attributed to the proximate drivers ranged between 31 and 42%. PMID:26065891

  8. Implementation of diverse tree hydraulics in a land surface model

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Shevliakova, E.; Malyshev, S.; Weng, E.; Pacala, S. W.

    2013-12-01

    Increasing attention has been devoted to the occurence of drought kill in forests worldwide. These mortality events are significant disruptions to the terrestrial carbon cycle, but the mechanisms required to represent drought kill are not represented in terrestrial carbon cycle models. In part, this is due to the challenge of representing the diversity of hydraulic strategies, which include stomatal sensitivity to water deficit and woody tissue vulnerability to cavitation at low water potential. In part, this is due to the challenge of representing this boundary value problem numerically, because the hydraulic components determine water potential at the leaf, but the stomatal conductance on the leaf also determines the hydraulic gradients within the plant. This poster will describe the development of a land surface model parameterization of diverse tree hydraulic strategies.

  9. Evolution of Land Surface Modeling over the Last 30 Years

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Lettenmaier, D. P.

    2001-12-01

    John Schaake has been intimately involved in hydrological modeling and climate studies throughout his career, and initially proposed the Mississippi River basin as the first GEWEX continental scale basin. Land surface modeling has progressed to the point that coupled water-energy-vegetation macroscale models can run at high resolution at continental to global scales. This presentation will review this evolution of macroscale models and use recent results from the authors' Variable Infiltration Capacity (VIC) macroscale SVAT to revisit research quetions that John Schaake has investigated during his career. These results include a 17-year daily, 2-degree resolution global water balance simulation; a 50-year 3-hourly, 1/8-degree resolution U.S. LDAS-domain water-energy balance simulation; and real-time, hourly, 1/8-degree resolution U.S. LDAS-domain water-energy balance simulations.

  10. Evapotranspiration process as the result of land surface - atmosphere interaction.

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Sepulcre Canto, Guadalupe

    2010-05-01

    Since a few years, EUMETSAT (http://www.eumetsat.int) is developing a network of decentralized meteorological satellite data processing centers called ‘Satellite Application Facilities' (SAFs). These centers have both operational and research objectives in view to develop robust products and services. The ‘Land-Surface-Analysis' SAF (LSA-SAF, http://landsaf.meteo.pt/), develops algorithms for the estimation of operational land products using meteorological satellites. The SEVIRI instrument, on-board Meteosat Second Generation (MSG) satellites, is design to provide wide area coverage and is able to monitor quick changing surface variables affected by cloudiness and diurnal cycle. It has a 3 km spatial resolution at sub-satellite point and a high observation repetition rate (15 min). RMI participates to the LSA-SAF to develop the evapotranspiration (ET) product. ET is the combined response of soil and vegetation to environmental conditions provided by the atmosphere and soil. ET cannot be observed directly and is assessed indirectly through modeling. Different approaches exist to compute ET, from simple empirical relationships to semi-empirical and more complex models. Soil-Vegetation-Atmosphere Transfer (SVAT) schemes are conceived to mimic as best as possible the interaction between atmosphere and land surface. The proposed model is based on the SVAT scheme developed at ECMWF and is adapted to accept real-time data from meteorological satellites. In this contribution we test the capability of the algorithm to reproduce locally observed fluxes at ground measurement stations in Europe and Africa. Emphasis is put on highlighting the interaction between atmosphere and land surface. Local observations of the atmospheric variables (radiation fluxes, air temperature and humidity, wind speed, precipitation) are first compared to the input data (from LSA-SAF and ECMWF) used in the model. Resulting ET and related water and energy fluxes are then compared to observations

  11. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    NASA Technical Reports Server (NTRS)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; Fisher, J. B.; Jung, M.; Kanamitsu, M.; Reichle, R. H.; Reichstein, M.; Rodell, M.; Sheffield, J.; Tu, K.; Wang, K.

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  12. Assimilation of GOES Land Surface Data into a Mesoscale Models

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Dembek, Scott; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    A technique has been developed for assimilating Geostationary Operational Environmental Satellite (GOES)-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The assimilation technique has been applied to the Oklahoma-Kansas region during the spring-summer 2000 time period when dynamic changes in vegetation cover occur. In April, central Oklahoma is characterized by large NDVI associated with winter wheat while surrounding areas are primarily rangeland with lower NDVI. In July the vegetation pattern reverses as the central wheat area changes to low NDVI due to harvesting and the surrounding rangeland is greener than it was in April. The goal of this study is to determine if assimilating satellite land surface data can improve simulation of the complex spatial distribution of surface energy and water fluxes across this region. The PSU/NCAR NM5 V3 system is used in this study. The grid configuration consists of a 36-km CONUS domain and a 12-km nest over the area of interest. Bulk verification statistics (BIAS and RMSE) of surface

  13. A global, 30-m resolution land-surface water body dataset for 2000

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large

  14. Impact of Optimized land Surface Parameters on the Land-Atmosphere Coupling in WRF Simulations of Dry and Wet Extremes

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay; Santanello, Joseph; Peters-Lidard, Christa; Harrison, Ken

    2011-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spin up of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.

  15. Parameter Estimation of a Physically-Based Land Surface Hydrologic Model Using the Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Zhang, F.; Duffy, C.

    2012-12-01

    A fully-coupled physically-based land surface hydrologic model, Flux-PIHM, is developed by incorporating a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land-surface scheme is mainly adapted from the Noah LSM, which is widely used in mesoscale atmospheric models and has undergone extensive testing. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent both the link between groundwater and the surface energy balance, as well as some of the land surface heterogeneities caused by topography. Flux-PIHM has been implemented and manually calibrated at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Model predictions of discharge, soil moisture, water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. The discharge prediction is significantly better than state-of-the-art conceptual models implemented at similar watersheds. The ensemble Kalman filter (EnKF) provides a promising approach for physically-based land surface hydrologic model calibration. A Flux-PHIM data assimilation system is developed by incorporating EnKF into Flux-PIHM for model parameter and state estimation. This is the first parameter estimation using EnKF for a physically-based hydrologic model. Both synthetic and real data experiments are performed at the Shale Hills watershed to test the capability of EnKF in parameter estimation. Six model parameters selected from a model parameter sensitivity test are estimated. In the synthetic experiments, synthetic observations of discharge, water table depth, soil moisture, land surface temperature, sensible and latent heat fluxes, and transpiration are assimilated into the system. Observations are assimilated every 72 hours in wet periods, and every 144 hours in dry periods. Results show that EnKF is capable of accurately estimating model parameter values for Flux-PIHM. In the first set of experiments

  16. Information-Theoretic Benchmarking of Land Surface Models

    NASA Astrophysics Data System (ADS)

    Nearing, Grey; Mocko, David; Kumar, Sujay; Peters-Lidard, Christa; Xia, Youlong

    2016-04-01

    Benchmarking is a type of model evaluation that compares model performance against a baseline metric that is derived, typically, from a different existing model. Statistical benchmarking was used to qualitatively show that land surface models do not fully utilize information in boundary conditions [1] several years before Gong et al [2] discovered the particular type of benchmark that makes it possible to *quantify* the amount of information lost by an incorrect or imperfect model structure. This theoretical development laid the foundation for a formal theory of model benchmarking [3]. We here extend that theory to separate uncertainty contributions from the three major components of dynamical systems models [4]: model structures, model parameters, and boundary conditions describe time-dependent details of each prediction scenario. The key to this new development is the use of large-sample [5] data sets that span multiple soil types, climates, and biomes, which allows us to segregate uncertainty due to parameters from the two other sources. The benefit of this approach for uncertainty quantification and segregation is that it does not rely on Bayesian priors (although it is strictly coherent with Bayes' theorem and with probability theory), and therefore the partitioning of uncertainty into different components is *not* dependent on any a priori assumptions. We apply this methodology to assess the information use efficiency of the four land surface models that comprise the North American Land Data Assimilation System (Noah, Mosaic, SAC-SMA, and VIC). Specifically, we looked at the ability of these models to estimate soil moisture and latent heat fluxes. We found that in the case of soil moisture, about 25% of net information loss was from boundary conditions, around 45% was from model parameters, and 30-40% was from the model structures. In the case of latent heat flux, boundary conditions contributed about 50% of net uncertainty, and model structures contributed

  17. In-situ land surface emissivity retrieved from FTIR spectroscopic measurements at Gobabeb, Namibia

    NASA Astrophysics Data System (ADS)

    Goettsche, Frank; Olesen, Folke; Bork-Unkelbach, Annika

    2015-04-01

    Gobabeb, Namibia (hyper-arid climate) is one of KIT's four dedicated LST validation stations. The network provides validation data to EUMETSAT's Land Surface Analysis - Satellite Application Facility (LSA-SAF). Gobabeb station measures upwelling and down-welling thermal infrared (TIR) radiance for LST determination as well as broadband SW & LW up- and downwelling radiance over the vast and flat gravel plains of the Namib Desert, i.e. the measurements are representative for an area of several 100 km2. All data are provided at one minute temporal resolution. The gravel plains are mainly covered by coarse gravel, sand, and desiccated grass and are highly homogeneous in space and time: this allows validating a broad range of satellite-derived products with a limited number of representative radiance measurements. However, over arid regions the relatively high uncertainty in land surface emissivity (LSE) limits the accuracy with which land surface temperature (LST) can be retrieved. As LSE uncertainty affects LST obtained from satellite measurements and in-situ radiance measurements alike, the determination and validation of LST requires accurate knowledge of emissivity for the areas observed by the ground radiometers and the satellite sensor. During previous campaigns in-situ emissivities of dominant surface cover types at Gobabeb were obtained with a variant of the so-called 'emissivity box method', which presents a well-established and straight-forward way to determine in-situ emissivity. However, the method is limited in that it retrieves channel-effective emissivities specific to the field radiometer. For validating satellite LST&E products these still need to be matched to the response function of the satellite sensor: this is usually achieved via an empirical regression relationship and introduces additional uncertainty. In contrast, emissivity spectra allow obtaining accurate channel-effective LSE of arbitrary sensors. However, due to the weight and other

  18. Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes

    NASA Astrophysics Data System (ADS)

    Ghosh, Aniruddha; Joshi, P. K.

    2014-10-01

    Land surface temperature (LST), a key parameter in understanding thermal behavior of various terrestrial processes, changes rapidly and hence mapping and modeling its spatio-temporal evolution requires measurements at frequent intervals and finer resolutions. We designed a series of experiments for disaggregation of LST (DLST) derived from the Landsat ETM + thermal band using narrowband reflectance information derived from the EO1-Hyperion hyperspectral sensor and selected regression algorithms over three geographic locations with different climate and land use land cover (LULC) characteristics. The regression algorithms applied to this end were: partial least square regression (PLS), gradient boosting machine (GBM) and support vector machine (SVM). To understand the scale dependence of regression algorithms for predicting LST, we developed individual models (local models) at four spatial resolutions (480 m, 240 m, 120 m and 60 m) and tested the differences between these using RMSE derived from cross-validated samples. The sharpening capabilities of the models were assessed by predicting LST at finer resolutions using models developed at coarser spatial resolution. The results were also compared with LST produced by DisTrad sharpening model. It was found that scale dependence of the models is a function of the study area characteristics and regression algorithms. Considering the sharpening experiments, both GBM and SVM performed better than PLS which produced noisy LST at finer spatial resolutions. Based on the results, it can be concluded that GBM and SVM are more suitable algorithms for operational implementation of this application. These algorithms outperformed DisTrad model for heterogeneous landscapes with high variation in soil moisture content and photosynthetic activities. The variable importance measure derived from PLS and GBM provided insights about the characteristics of the relevant bands. The results indicate that wavelengths centered around 457, 671

  19. Development of a continuous multi-satellite land surface temperature product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature plays an obvious and important role in land surface processes. In addition, it is a key input in physically-based retrieval algorithms of important water and energy products, such as surface net radiation, evapotranspiration and soil moisture. To address these needs, satelli...

  20. Spatial validation of large scale land surface models against monthly land surface temperature patterns using innovative performance metrics.

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Siemann, Amanda; Stisen, Simon; Sheffield, Justin

    2016-04-01

    Land surface models (LSMs) are a key tool to enhance process understanding and to provide predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration (aET), at each grid cell. LST observations are widely available through satellite remote sensing platforms that enable comprehensive spatial validations of LSMs. In spite of the availability of LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true spatial pattern information. This study features two innovative spatial performance metrics, namely EOF- and connectivity-analysis, to validate predicted LST patterns by three LSMs (Mosaic, Noah, VIC) over the contiguous USA. The LST validation dataset is derived from global High-Resolution-Infrared-Radiometric-Sounder (HIRS) retrievals for a 30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality, and attests better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, more than 75% of the LST variability can be captured by a single pattern that is strongly driven by air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the coupling between aET and LST is investigated at flux tower sites and compared against LSMs to explain the identified LST shortcomings.

  1. Afforestation in China cools local land surface temperature.

    PubMed

    Peng, Shu-Shi; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Zhou, Liming; Li, Laurent Z X; Myneni, Ranga B; Yin, Yi; Zeng, Hui

    2014-02-25

    China has the largest afforested area in the world (∼62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which negates the climatic benefits of carbon sequestration. Here, we used satellite measurements of land surface temperature (LST) from planted forests and adjacent grasslands or croplands in China to understand how afforestation affects LST. Afforestation is found to decrease daytime LST by about 1.1 ± 0.5 °C (mean ± 1 SD) and to increase nighttime LST by about 0.2 ± 0.5 °C, on average. The observed daytime cooling is a result of increased evapotranspiration. The nighttime warming is found to increase with latitude and decrease with average rainfall. Afforestation in dry regions therefore leads to net warming, as daytime cooling is offset by nighttime warming. Thus, it is necessary to carefully consider where to plant trees to realize potential climatic benefits in future afforestation projects. PMID:24516135

  2. Afforestation in China cools local land surface temperature

    PubMed Central

    Peng, Shu-Shi; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Zhou, Liming; Li, Laurent Z. X.; Myneni, Ranga B.; Yin, Yi; Zeng, Hui

    2014-01-01

    China has the largest afforested area in the world (∼62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which negates the climatic benefits of carbon sequestration. Here, we used satellite measurements of land surface temperature (LST) from planted forests and adjacent grasslands or croplands in China to understand how afforestation affects LST. Afforestation is found to decrease daytime LST by about 1.1 ± 0.5 °C (mean ± 1 SD) and to increase nighttime LST by about 0.2 ± 0.5 °C, on average. The observed daytime cooling is a result of increased evapotranspiration. The nighttime warming is found to increase with latitude and decrease with average rainfall. Afforestation in dry regions therefore leads to net warming, as daytime cooling is offset by nighttime warming. Thus, it is necessary to carefully consider where to plant trees to realize potential climatic benefits in future afforestation projects. PMID:24516135

  3. Human Mars Landing Site and Impacts on Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  4. Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction

    SciTech Connect

    Mersmann, Sven; Seitel, Alexander; Maier-Hein, Lena; Erz, Michael; Jähne, Bernd; Nickel, Felix; Mieth, Markus; Mehrabi, Arianeb

    2013-08-15

    Purpose: In image-guided surgery (IGS) intraoperative image acquisition of tissue shape, motion, and morphology is one of the main challenges. Recently, time-of-flight (ToF) cameras have emerged as a new means for fast range image acquisition that can be used for multimodal registration of the patient anatomy during surgery. The major drawbacks of ToF cameras are systematic errors in the image acquisition technique that compromise the quality of the measured range images. In this paper, we propose a calibration concept that, for the first time, accounts for all known systematic errors affecting the quality of ToF range images. Laboratory and in vitro experiments assess its performance in the context of IGS.Methods: For calibration the camera-related error sources depending on the sensor, the sensor temperature and the set integration time are corrected first, followed by the scene-specific errors, which are modeled as function of the measured distance, the amplitude and the radial distance to the principal point of the camera. Accounting for the high accuracy demands in IGS, we use a custom-made calibration device to provide reference distance data, the cameras are calibrated too. To evaluate the mitigation of the error, the remaining residual error after ToF depth calibration was compared with that arising from using the manufacturer routines for several state-of-the-art ToF cameras. The accuracy of reconstructed ToF surfaces was investigated after multimodal registration with computed tomography (CT) data of liver models by assessment of the target registration error (TRE) of markers introduced in the livers.Results: For the inspected distance range of up to 2 m, our calibration approach yielded a mean residual error to reference data ranging from 1.5 ± 4.3 mm for the best camera to 7.2 ± 11.0 mm. When compared to the data obtained from the manufacturer routines, the residual error was reduced by at least 78% from worst calibration result to most accurate

  5. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Besides, these measurements help to integrate groundwater effects on surface energy balance within land surface models and clima...

  6. Optimal averaging of soil moisture predictions from ensemble land surface model simulations

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Su, C.-H.; Ryu, D.; Yilmaz, M. T.

    2015-11-01

    The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variable (IV) regression approach and comparisons against a long-term surface soil moisture data set acquired from satellite remote sensing. Application of the approach to multimodel ensemble soil moisture output from Phase 2 of the North American Land Data Assimilation System (NLDAS-2) and European Space Agency (ESA) Soil Moisture (SM) Essential Climate Variable (ECV) data set allows for the calculation of optimal weighting coefficients for individual members of the NLDAS-2 LSM ensemble and a biased-minimized estimate of uncertainty in a deterministic soil moisture analysis derived via optimal averaging. As such, it provides key information required to accurately condition soil moisture expectations using information gleaned from a multimodel LSM ensemble. However, existing continuity and rescaling concerns surrounding the generation of long-term, satellite-based soil moisture products must likely be resolved before the proposed approach can be applied with full confidence.

  7. Tracking daily land surface albedo and reflectance anisotropy with moderate-resolution imaging spectroradiometer (MODIS)

    NASA Astrophysics Data System (ADS)

    Shuai, Yanmin

    A new algorithm provides daily values of land surface albedo and angular reflectance at a 500-m spatial resolution using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently in orbit on NASA's Terra and Aqua satellite platforms. To overcome the day-to-day variance in observed surface reflectance induced by differences in view and solar illumination angles, the algorithm uses the RossThickLiSparse-Reciprocal bidirectional reflectance model, which is fitted to all MODIS observations of a 500-m resolution cell acquired during a 16-day moving window. Individual observations are weighted by their quality, observation coverage, and proximity to the production date of interest. Product quality is measured by (1) the root mean square error (RMSE) of observations against the best model fit; and (2) the ability of the angular sampling pattern of the observations at hand to determine reflectance model parameters accurately. A regional analysis of model fits to data from selected MODIS data tiles establishes the bounds of these quality measures for application in the daily algorithm. The algorithm, which is now available to users of direct broadcast satellite data from MODIS, allows daily monitoring of rapid surface radiation and land surface change phenomena such as crop development and forest foliage cycles. In two demonstrations, the daily algorithm captured rapid change in plant phenology. The growth phases of a winter wheat crop, as monitored at the Yucheng agricultural research station in Yucheng, China, matched MODIS daily multispectral reflectance data very well, especially during the flowering and heading stages. The daily algorithm also captured the daily change in autumn leaf color in New England, documenting the ability of the algorithm to work well over large regions with varying degrees of cloud cover and atmospheric conditions. Daily surface albedos measured using ground-based instruments on towers at the agricultural and

  8. The impact of built-up surfaces on land surface temperatures in Italian urban areas.

    PubMed

    Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Orlandini, Simone; Raschi, Antonio; Maracchi, Giampiero; Munafò, Michele

    2016-05-01

    Urban areas are characterized by the very high degree of soil sealing and continuous built-up areas: Italy is one of the European countries with the highest artificial land cover rate, which causes a substantial spatial variation in the land surface temperature (LST), modifying the urban microclimate and contributing to the urban heat island effect. Nevertheless, quantitative data regarding the contribution of different densities of built-up surfaces in determining urban spatial LST changes is currently lacking in Italy. This study, which aimed to provide clear and quantitative city-specific information on annual and seasonal spatial LST modifications resulting from increased urban built-up coverage, was conducted generally throughout the whole year, and specifically in two different periods (cool/cold and warm/hot periods). Four cities (Milan, Rome, Bologna and Florence) were included in the study. The LST layer and the built-up-surface indicator were obtained via use of MODIS remote sensing data products (1km) and a very high-resolution map (5m) of built-up surfaces recently developed by the Italian National Institute for Environmental Protection and Research. The relationships between the dependent (mean daily, daytime and nighttime LST values) and independent (built-up surfaces) variables were investigated through linear regression analyses, and comprehensive built-up-surface-related LST maps were also developed. Statistically significant linear relationships (p<0.001) between built-up surfaces and spatial LST variations were observed in all the cities studied, with a higher impact during the warm/hot period than in the cool/cold ones. Daytime and nighttime LST slope patterns depend on the city size and relative urban morphology. If implemented in the existing city plan, the urban maps of built-up-surface-related LST developed in this study might be able to support more sustainable urban land management practices by identifying the critical areas (Hot

  9. The Impact of Differing Land Surface Models and Water Isotopic Parameterizations to the Distribution of Water Isotopes in a Coupled Atmosphere-Land Global Climate Model.

    NASA Astrophysics Data System (ADS)

    Nusbaumer, J. M.; Wong, T. E.; Noone, D. C.

    2014-12-01

    Isotope-enabled Global Climate Models (GCMs) are becoming important tools in facilitating the synthesis of disparate isotope proxy data, allowing for uncertainties in proxy-based reconstructions to be tested in a way not possible with inversion methods. They also provide a means to test processes and parameterizations in the GCMs themselves, as new in-situ and remote sensing systems now can measure water isotopes at the spatial and temporal scale needed to validate global models. However, one issue with isotope-enabled GCMs is that much of the past focus and development has been on the atmosphere and ocean, which means other components of the earth system are poorly understood in comparison. Newly developed isotope-enabled GCMs with fully-functional land surface models, along with new observational platforms, allow for one to examine the importance of the land surface on the distribution of water isotopes in the earth system. We report here on experiments using the new NCAR isotope-enabled Community Atmosphere Model version 5 (iCAM5) and the isotope-enabled Community Land Model Version 4 (iCLM4), as well as a growing number of measurements of isotopic ratios in precipitation and water vapor. In particular, iCAM5 is used to simulate the modern isotopic climate coupled to a. a simple bucket model for isotopes, b. iCLM4 with equilibrium fractionation only, and c. fully-fractionating iCLM4. Along with the use of iCLM4, numerous variations in the representation of kinetic fractionation are examined, as well as different parameterizations for the impact of dew and frost on the isotope ratios in the surface water vapor, snow, and soil moisture. Results show that having a fully-functioning land surface model has a large impact on the simulated isotope ratios, and is necessary if one wants to simulate water isotopes in the earth system accurately. Accurately simulating d-excess and O17-excess requires having a kinetic fractionation factor that properly accounts for the

  10. Characterizing Past Variances, Extremes, and Trends in Land Surface Phenology

    NASA Astrophysics Data System (ADS)

    Brown, J. F.; Gallant, A.; Sadinski, W.; Stricherz, B.

    2010-12-01

    Land management agencies need to anticipate potential negative effects of climate change on a host of ecosystem services, such as those related to biodiversity, habitat, and biomass production. Recognizing the differences in effects from climate change versus the typical interannual variability of climate, however, is fundamental to determining management strategies. We integrate data from multiple sources to characterize variances, extremes, and trends in phenological behavior for a set of landscapes. The study landscapes are part of a larger research network to assess: (1) actual and projected impacts of climate/global change on biodiversity-related and other ecosystem services provided by wetland-upland landscape matrices and (2) conservation options for mitigating negative effects. We are applying time-series data on vegetation response, snow timing and duration, and temperature and precipitation to characterize multiple decades of land surface phenology as baseline information. We are characterizing a set of landscapes along a transect extending from 88-100 degrees West longitude and including the North Woods, Mixed Hardwood Forests, and Prairie Potholes ecological regions. With archived satellite sensor data (e.g., Advanced Very High Resolution Radiometer, Moderate Resolution Imaging Spectroradiometer), we quantify metrics of snow cover and vegetation phenology at coarse spatial scales over the past two decades. Preliminary results from these data suggest a cyclical nature to the start of the vegetation growing season that is not paralleled by results for timing and duration of snow cover. The study landscapes along the transect share similar direction of departure from the median date of the start of vegetation green-up in half the years, but exhibit regional or local differences in direction of departure for the remaining years. The study landscapes share much more consistency in direction of departure from the median duration of snow cover across years. To

  11. Variational assimilation of land surface temperature observations for enhanced river flow predictions

    NASA Astrophysics Data System (ADS)

    Ercolani, Giulia; Castelli, Fabio

    2016-04-01

    Data assimilation (DA) has the potential of improving hydrologic forecasts. However, many issues arise in case it is employed for spatially distributed hydrologic models that describes processes in various compartments: large dimensionality of the inverse problem, layers governed by different equations, non-linear and discontinuous model structure, complex topology of domains such as surface drainage and river network.On the other hand, integrated models offer the possibility of improving prediction of specific states by exploiting observations of quantities belonging to other compartments. In terms of forecasting river discharges, and hence for their enhancement, soil moisture is a key variable, since it determines the partitioning of rainfall into infiltration and surface runoff. However, soil moisture measurements are affected by issues that could prevent a successful DA and an actual improvement of discharge predictions.In-situ measurements suffer a dramatic spatial scarcity, while observations from satellite are barely accurate and provide spatial information only at a very coarse scale (around 40 km).Hydrologic models that explicitly represent land surface processes of coupled water and energy balance provide a valid alternative to direct DA of soil moisture.They gives the possibility of inferring soil moisture states through DA of remotely sensed Land Surface Temperature (LST), whose measurements are more accurate and with a higher spatial resolution in respect to those of soil moisture. In this work we present the assimilation of LST data in a hydrologic model (Mobidic) that is part of the operational forecasting chain for the Arno river, central Italy, with the aim of improving flood predictions. Mobidic is a raster based, continuous in time and distributed in space hydrologic model, with coupled mass and energy balance at the surface and coupled groundwater and surface hydrology. The variational approach is adopted for DA, since it requires less

  12. Understanding the Differences Between AIRS, MODIS and ASTER Land Surface Emissivity Products

    NASA Astrophysics Data System (ADS)

    Hook, S.; Hulley, G.

    2008-12-01

    quantitative results on the differences between emissivity products from different sensors as a result of differences in spatial, spectral and temporal resolutions, and furthermore, comparisons with laboratory results will give a measure of the accuracy of the emissivity products - a critical aspect for the broad scientific community in deriving accurate land surface temperatures.

  13. Comparative analysis of land surface emissivity retrieval methods and the impact on the land surface temperature based on Landsat-8 thermal infrared data

    NASA Astrophysics Data System (ADS)

    Kan, Zenghui; Liu, Chaoshun; Zhou, Cong; Li, Zhijun

    2015-09-01

    With the increasingly prevalent and far-reaching application of remote sensing, several algorithms have been put forward for land surface temperature retrieval. However, there is still no consensus on the calculation of land surface emissivity (LSE), which is one of the significant parameters in land surface temperature (LST) retrieval. In this paper, two methods of estimating LSE based on thematic mapper data were introduced: Van's empirical formula method and the mixed pixels method. Based on the detailed introduction to Van's empirical formula and the mixed pixels decomposing method in computing surface emissivity, Landsat-8 thermal infrared data and the radiative transfer equation method were used to obtain the land surface temperature in Taihu region. In this paper, atmospheric parameters are based on real-time atmospheric profile to reduce the LST error brought by the atmospheric profile. Two figures were acquired, which represented the LST of Van's empirical formula and the mixed pixels decomposing method respectively. The relationship between land surface temperature and land cover was also studied.

  14. Sensitivity of land surface modeling to parameters: An uncertainty quantification method applied to the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.

    2015-12-01

    Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes

  15. Land Surface Temperature Measurements from EOD MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zheng-Ming

    1998-01-01

    We made more tests of the version 2.0 daily Level 2 and Level 3 Land-Surface Temperature (LST) code (PGE 16) jointly with the MODIS Science Data Support Team (SDST). After making minor changes a few times, the PGE16 code has been successfully integrated and tested by MODIS SDST, and recently has passed the inspection at the Goddard Distributed Active Archive Center (DAAC). We conducted a field campaign in the area of Mono Lake, California on March 10, 1998, in order to validate the MODIS LST algorithm in cold and dry conditions. Two MODIS Airborne Simulator (MAS) flights were completed during the field campaign, one before noon, and another around 10 pm PST. The weather condition for the daytime flight was perfect: clear sky, the column water vapor measured by radiosonde around 0.3 cm, and wind speed less than a half meter per second. The quality of MAS data is good for both day and night flights. We analyzed the noise equivalent temperature difference (NE(delta)T) and the calibration accuracy of the seven MAS thermal infrared (TIR) bands, that are used in the MODIS day/night LST algorithm, with daytime MAS data over four flat homogeneous study areas: two on Grant Lake (covered with ice and snow, respectively), one on Mono Lake, and another on the snow field site where we made field measurements. NE(delta)T ranges from 0.2 to 0.6 k for bands 42, 45, 46, and 48. It ranges from 0.8 to 1.1 K for bands 30-32. The day and night MAS data have been used to retrieve surface temperature and emissivities in these bands. A simple method to correct the effect of night thin cirrus has been incorporated into the day/night LST algorithm in dry atmospheric conditions. We compared the retrieved surface temperatures with those measured with TIR spectrometer, radiometers and thermistors in the snow test site, and the retrieved emissivity images with topographic map. The daytime LST values match well within 1 K. The night LST retrieved from MAS data is 3.3 K colder than those from

  16. Land surface cleanup of plutonium at the Nevada Test Site

    SciTech Connect

    Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

    1991-01-01

    The Nevada Test Site (NTS) covers approximately 3300 km{sup 2} of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model Tr-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. 5 refs., 5 figs.

  17. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Crosson, William; Estes, Maurice Jr.; Estes, Sue; Quattrochi, Dale; Johnson, Daniel

    2013-01-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heatrelated mortality data. The current HWWS do not take into account intra-urban spatial variation in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with estimates of land surface temperature (LST) derived from thermal remote sensing data. In order to further improve the consideration of intra-urban variations in risk from extreme heat, we also developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. In this paper, we will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  18. Multiscale Land surface feedbacks within agricultural and urban systems

    NASA Astrophysics Data System (ADS)

    Niyogi, D.

    2012-12-01

    This presentation will first discuss the interplay between agricultural landscapes and regional hydroclimatology with particular emphasis on the US Corn Belt. Results and experiences from studies underway as part of a multistate project (Making Climate Information Useful 2 Usable- U2U) will be summarized. The presentation will also highlight experiences regarding the different challenges in developing the regional assessment and guidance regarding sustainable futures. Study results will also be compared with findings from other geographical regions where agriculture - climate linkages are stretching the limits of sustainable water use. A vulnerability framework that can be considered for such agriculture - climate - water links will also be presented. The second issue the presentation will discuss relates to the urban land surface feedbacks and efforts underway to guide efforts related to greening as well as regional landuse planning. The complex links between city structures, urban layouts, and regional climate will be synthesized and the framework regarding a decision support system that is being developed will be presented. Salient points of the modeling efforts, data challenges, and the need for linking multiple disciplines will be presented with special focus on droughts and the need for considering complex multiscale coupled interactions within the analysis.

  19. Land Surface Temperature Measurements from EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1997-01-01

    We applied the multi-method strategy of land-surface temperature (LST) and emissivity measurements in two field campaigns this year for validating the MODIS LST algorithm. The first field campaign was conducted in Death Valley, CA, on March 3rd and the second one in Railroad Valley, NV, on June 23-27. ER2 MODIS Airborne Simulator (MAS) data were acquired in morning and evening for these two field campaigns. TIR spectrometer, radiometer, and thermistor data were also collected in the field campaigns. The LST values retrieved from MAS data with the day/night LST algorithm agree with those obtained from ground-based measurements within 1 C and show close correlations with topographic maps. The band emissivities retrieved from MAS data show close correlations with geological maps in the Death Valley field campaign. The comparison of measurement data in the latest Railroad Valley field campaign indicates that we are approaching the goals of the LST validation: LST uncertainty less than 0.5 C, and emissivity uncertainty less than 0.005 in the 10-13 spectral range. Measurement data show that the spatial variation in LST is the major uncertainty in the LST validation. In order to reduce this uncertainty, a new component of the multi-method strategy has been identified.

  20. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    NASA Astrophysics Data System (ADS)

    Al-Hamdan, M. Z.; Crosson, W. L.; Estes, M. G., Jr.; Estes, S. M.; Quattrochi, D. A.; Johnson, D.

    2013-12-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heat-related mortality data. The current HWWS do not take into account intra-urban spatial variations in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with land surface temperature (LST) estimates derived from thermal remote sensing data. In order to further improve the assessment of intra-urban variations in risk from extreme heat, we developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. We will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  1. Fire disturbance effects on land surface albedo in Alaskan tundra

    NASA Astrophysics Data System (ADS)

    French, Nancy H. F.; Whitley, Matthew A.; Jenkins, Liza K.

    2016-03-01

    The study uses satellite Moderate Resolution Imaging Spectroradiometer albedo products (MCD43A3) to assess changes in albedo at two sites in the treeless tundra region of Alaska, both within the foothills region of the Brooks Range, the 2007 Anaktuvuk River Fire (ARF) and 2012 Kucher Creek Fire (KCF). Results are compared to each other and other studies to assess the magnitude of albedo change and the longevity of impact of fire on land surface albedo. In both sites there was a marked decrease of albedo in the year following the fire. In the ARF, albedo slowly increased until 4 years after the fire, when it returned to albedo values prior to the fire. For the year immediately after the fire, a threefold difference in the shortwave albedo decrease was found between the two sites. ARF showed a 45.3% decrease, while the KCF showed a 14.1% decrease in shortwave albedo, and albedo is more variable in the KCF site than ARF site 1 year after the fire. These differences are possibly the result of differences in burn severity of the two fires, wherein the ARF burned more completely with more contiguous patches of complete burn than KCF. The impact of fire on average growing season (April-September) surface shortwave forcing in the year following fire is estimated to be 13.24 ± 6.52 W m-2 at the ARF site, a forcing comparable to studies in other treeless ecosystems. Comparison to boreal studies and the implications to energy flux are discussed in the context of future increases in fire occurrence and severity in a warming climate.

  2. Land Surface Temperature Variational Assimilation within the ORCHIDEE Continental Surface model

    NASA Astrophysics Data System (ADS)

    Benavides, Hector Simon; Ottlé, Catherine; Thiria, Sylvie; Brajard, Julien; Bradan, Fouad; Maugis, Pascal

    2014-05-01

    Variational data assimilation of FLUXNET soil surface temperature is applied to the energy and water budgets modules of the ORCHIDEE land surface model. This part of the model, called SECHIBA, describes the exchanges of water and energy between the surface and the atmosphere. The adjoint semi-generator software YAO is used as a framework to implement 4D-VAR assimilation. First, sensitivity analysis was performed in order to validate the adjoint and to identify the most influential parameters. Following, the results of twin experiments using synthetic observations demonstrate the robustness, consistency and flexibility of the process. Rendundant combinations of parameters and insensitive ones can then be detected, thus allowing to document the most efficient set of parameters to calibrate. However, optimal sets of parameter vary with time of day, season, site and initial state, thus suggesting a calibration strategy based on different time windows and sites to help constrain a larger set of parameter than on a single space-time window. Doing so on two FLUXNET sites and including initial soil water content as a parameter improves the model output. Although it proved difficult to characterize at the same time state variables and fluxes, this study puts forward the potential of land surface temperature variational data assimilation in model calibration and prediction errors reduction.

  3. Land cover change impacts on surface ozone: an observation-based study

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lin, Jintai

    2016-04-01

    Ozone air quality is a critical global environmental issue. Although it is clear that industrialization and urbanization has increased surface ozone through enhanced emissions of its precursors, much less is known about the role of changes in land cover and land use. Human activities have substantially altered the global land cover and land use through agriculture, urbanization, deforestation, and afforestation. Changes in Land cover and land use affect the ozone levels by altering soil emissions of nitrogen oxides (NOx), biogenic emissions of volatile organic compounds (VOCs), and dry deposition of ozone itself. This study performs a series of experiments with a chemical transport model based on satellite observation of land types to analyze the influences of changes in land cover/land use and their impact on surface ozone concentration. Our results indicate that land cover change explains 1-2 ppbv of summertime surface ozone increase in the Western United States and 1-6 ppbv of increase in Southern China between 2001 and 2012. This is largely driven by enhanced isoprene emissions and soil NOx emissions. It is also found that land cover change itself elevates summertime surface zone in Canadian coniferous forests by up to 4 ppbv mainly through substantial decreases in ozone dry deposition associated with increased vegetation density in a warmer climate.

  4. Analysis of the Effects of Different Land Use and Land Cover Classification on Surface Meteorological Variables using WRF Model

    NASA Astrophysics Data System (ADS)

    Sati, A. P.

    2015-12-01

    The continuous population growth and the subsequent economic expansion over centuries have been the primary drivers of land use /land cover (LULC) changes resulting in the environmental changes across the globe. Most of the urban areas being developed today are on the expense of agricultural or barren lands and the changes result from various practices such as deforestation, changing agriculture practices, rapid expansion of urban centers etc.For modeling applications, classification of land use is important and periodic updates of land cover are necessary to capture change due to LULC changes.Updated land cover and land use data derived from satellites offer the possibility of consistent and regularly collected information on LULC. In this study we explore the application of Landsat based LULC classification inWeather Research and Forecasting (WRF) model in predicting the meteorology over Delhi, India. The supervised classification of Landsat 8 imagery over Delhi region is performed which update the urban extent as well as other Land use for the region. WRF model simulations are performed using LULC classification from Landsat data, United States Geological Survey (USGS) and Moderate Resolution Imaging Spectroradiometer (MODIS) for various meteorological parameters. Modifications in LULC showed a significant effect on various surface meteorological parameters such as temperature, humidity, wind circulations and other underlying surface parameters. There is a considerable improvement in the spatial distribution of the surface meteorological parameters with correction in input LULC. The study demonstrates the improved LULC classification from Landsat data than currently in vogue and their potential to improve numerical weather simulations especially for expanding urban areas.The continuous population growth and the subsequent economic expansion over centuries have been the primary drivers of land use /land cover (LULC) changes resulting in the environmental changes

  5. Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials

    NASA Technical Reports Server (NTRS)

    Moore, Henry J.; Jakosky, Bruce M.

    1989-01-01

    Consideration is given to the relations between the physical properties of the surface materials at Viking landing sites, the physical properties of other Martian surfaces inferred from radar observations from earth and thermal observations from orbit, and the geological processes that formed the materials and shaped the surfaces. The radar and thermal remote-sensing signatures of the landing site surface materials are estimated and compared with the thermal and radar measurements for the entire planet. It is shown that the surface materials at the landing sites are good analogs for the materials in most of the Martian equatorial regions.

  6. Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials

    NASA Astrophysics Data System (ADS)

    Moore, H. J.; Jakosky, B. M.

    1989-09-01

    Consideration is given to the relations between the physical properties of the surface materials at Viking landing sites, the physical properties of other Martian surfaces inferred from radar observations from earth and thermal observations from orbit, and the geological processes that formed the materials and shaped the surfaces. The radar and thermal remote-sensing signatures of the landing site surface materials are estimated and compared with the thermal and radar measurements for the entire planet. It is shown that the surface materials at the landing sites are good analogs for the materials in most of the Martian equatorial regions.

  7. DEVELOPMENT OF A LAND-SURFACE MODEL PART I: APPLICATION IN A MESOSCALE METEOROLOGY MODEL

    EPA Science Inventory

    Parameterization of land-surface processes and consideration of surface inhomogeneities are very important to mesoscale meteorological modeling applications, especially those that provide information for air quality modeling. To provide crucial, reliable information on the diurn...

  8. Validation of Land Surface Temperature products in arid climate regions with permanent in-situ measurements

    NASA Astrophysics Data System (ADS)

    Goettsche, F.; Olesen, F.; Trigo, I.; Hulley, G. C.

    2013-12-01

    Land Surface Temperature (LST) is operationally obtained from several space-borne sensors, e.g. from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) by the Land Surface Analysis - Satellite Application Facility (LSA-SAF) and from the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-Terra by the MODIS Land Team. The relative accuracy of LST products can be assessed by cross-validating different products. Alternatively, the so-called 'radiance based validation' can be used to compare satellite-retrieved LST with results from radiative transfer models: however, this requires precise a priori knowledge of land surface emissivity (LSE) and atmospheric conditions. Ultimately, in-situ measurements (';ground truth') are needed for validating satellite LST&E products. Therefore, the LST product derived by LSA-SAF is validated with independent in-situ measurements (';temperature based validation') at permanent validation stations located in different climate regions on the SEVIRI disk. In-situ validation is largely complicated by the spatial scale mismatch between satellite sensors and ground based sensors, i.e. areas observed by ground radiometers usually cover about 10 m2, whereas satellite measurements in the thermal infrared typically cover between 1 km2 and 100 km2. Furthermore, an accurate characterization of the surface is critical for all validation approaches, but particularly over arid regions, as shown by in-situ measurements revealing that LSE products can be wrong by more than 3% [1]. The permanent stations near Gobabeb (Namibia; hyper-arid desert climate) and Dahra (Senegal; hot-arid steppe-prairie climate) are two of KIT's four dedicated LST validation stations. Gobabeb station is located on vast and flat gravel plains (several 100 km2), which are mainly covered by coarse gravel, sand, and desiccated grass. The gravel plains are highly homogeneous in space and time, which makes them ideal for

  9. Mapping land-surface fluxes of carbon, water and energy from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A framework for routine mapping of land-surface fluxes of carbon, water, and energy at the field to regional scales has been established for drought monitoring, water resource management, yield forecasting and crop-growth monitoring. The framework uses the ALEXI/DisALEXI suite of land-surface model...

  10. Analysis of Surface Energy Budget Data Over Varying Land-Cover Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy budget plays an important role in boundary-layer meteorology and quantifying these budgets over varying land surface types is important in studying land-atmosphere interactions. In late April 2007, eddy covariance towers were erected at four sites in the Little Washita Watershed ...

  11. Analysis of surface energy budget data over varying land-cover conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy budget plays an important role in boundary-layer meteorology and quantifying these budgets over varying land surface types is important in studying land-atmosphere interactions. In late April 2007, eddy covariance towers were erected at four sites in the Little Washita Watershed i...

  12. A LAND-SURFACE HYDROLOGY PARAMETERIZATION WITH SUBGRID VARIABILITY FOR GENERAL CIRCULATION MODELS

    EPA Science Inventory

    Most of the existing generation of general circulation models (GCMs) use so-called bucket algorithms to represent land-surface hydrology. iosphere-atmosphere models that include the transfer of energy, mass, and momentum between the atmosphere and the land surface are a recent al...

  13. Deriving New Topography-based Global Datasets for Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Tesfa, T. K.; Leung, L. R.

    2015-12-01

    Topography exerts a major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Land surface spatial structure that captures spatial heterogeneity influenced by topography is expected to improve representation of land surface processes in land surface models. For example, land surface modeling using subbasins instead of regular grids as computational units has demonstrated improved scalability of simulated runoff and streamflow processes. In this study, a local classification method is applied to derive a new land surface spatial structure defined by further dividing subbasins into subgrid units based on elevation, topographic slope and aspect to take advantage of the emergent patterns and scaling properties of atmospheric, hydrologic, and vegetation processes in land surface models. For this purpose, a more consistent 90 meter resolution global surface elevation data has been developed by blending elevation data obtained from various sources. Taking the advantage of natural hydrologic connectivity of watersheds, new subbasin-based river routing and reservoir dependency datasets are being developed to improve representation of the managed hydrologic systems in the Community Land Model.

  14. Using scatterometer-based surface soil moisture products to optimally calibrate land data assimilation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land data assimilation systems are designed to merge uncertain land surface model predictions with error-prone observations. Ingestion into a data assimilation systems represents a critical pathway towards key applications goals for remotely-sensed surface soil moisture products. However, the effe...

  15. Feasibility study for image guided kidney surgery: assessment of required intraoperative surface for accurate image to physical space registrations

    NASA Astrophysics Data System (ADS)

    Benincasa, Anne B.; Clements, Logan W.; Herrell, S. Duke; Chang, Sam S.; Cookson, Michael S.; Galloway, Robert L.

    2006-03-01

    Currently, the removal of kidney tumor masses uses only direct or laparoscopic visualizations, resulting in prolonged procedure and recovery times and reduced clear margin. Applying current image guided surgery (IGS) techniques, as those used in liver cases, to kidney resections (nephrectomies) presents a number of complications. Most notably is the limited field of view of the intraoperative kidney surface, which constrains the ability to obtain a surface delineation that is geometrically descriptive enough to drive a surface-based registration. Two different phantom orientations were used to model the laparoscopic and traditional partial nephrectomy views. For the laparoscopic view, fiducial point sets were compiled from a CT image volume using anatomical features such as the renal artery and vein. For the traditional view, markers attached to the phantom set-up were used for fiducials and targets. The fiducial points were used to perform a point-based registration, which then served as a guide for the surface-based registration. Laser range scanner (LRS) obtained surfaces were registered to each phantom surface using a rigid iterative closest point algorithm. Subsets of each phantom's LRS surface were used in a robustness test to determine the predictability of their registrations to transform the entire surface. Results from both orientations suggest that about half of the kidney's surface needs to be obtained intraoperatively for accurate registrations between the image surface and the LRS surface, suggesting the obtained kidney surfaces were geometrically descriptive enough to perform accurate registrations. This preliminary work paves the way for further development of kidney IGS systems.

  16. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring.

    PubMed

    Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-01

    There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models. PMID:26165141

  17. Modeling carbon and nitrogen dynamics in disturbed ecosystems: A case study of coal surface-mined lands in eastern Ohio

    NASA Astrophysics Data System (ADS)

    West, Tristram Lyf O'brien

    The quantification of carbon (C) and nitrogen (N) cycling in ecosystems is important for (a) understanding changes in ecosystem structure and function with changes in land use, (b) determining sustainability of ecosystems, and (c) balancing the global C budget as it relates to global climate change. Estimating future dynamics of C and N is complicated by the projected changes in climate including increased atmospheric CO2 and temperature. Regional climate change can differ significantly from average global change and should be accounted for if accurate changes in C and N budgets are to be obtained. In the State of Ohio, increased precipitation and existing tropospheric aerosols need to be considered in addition to expected increases in CO2 and temperature. A meso-scale study was conducted to determine regional effects of climate change on C and N cycling within disturbed ecosystems. Objectives of the research were to quantify (a) sediment yield, (b) current C storage in vegetation and soils, and (c) C efflux from soils from both abandoned and rehabilitated coal surface-mined lands in Ohio. A process-based, dynamic model was developed to simulate sediment yield, grassland production, and C and N cycling on mined lands. Verification of plant production and soil erosion submodels with data sets from surface-mined lands in the mid-western U.S. showed r2 values of 99.5% and 97%, respectively. A spatial model was developed with land cover and topographic data in a geographic information system to supply the dynamic model with land area, percent slope, and slope aspect values for the study region. From the land cover theme and other documented sources, the estimated extent of surface-mined lands was 102 km2 of abandoned, unvegetated, surface-mined land and 565 km2 of rehabilitated surface-mined land. Simulations from the dynamic model estimated that unvegetated surface-mined lands in Ohio produce approximately 441,325 t yr-1 of sediment and between 2,000 and 20,000 t yr

  18. The Impact of the Parcel-Level Land Architecture on Land Surface Temperature in the Phoenix Metropolitan Area

    NASA Astrophysics Data System (ADS)

    LI, X.; Ouyang, Y.; Turner, B. L., II; Harlan, S.; Brazel, A.

    2014-12-01

    The relationship between land surface temperature (LST) and characteristics of the urban land system has received increasing attention in urban heat island research, especially for desert cities. The relationship between the land composition and LST has been widely studied. Such researches generally employ medium or coarser spatial resolution remotely sensed data and primarily focuses on the effects of one land cover type on the LST. In this study, we explore the effects of land system architecture - composition and configuration of different land-cover classes - on LST in the central Arizona-Phoenix metropolitan area at a fine-scale resolution, focused on the composition and configuration of single family residential parcels. A 1 m resolution land-cover map is used to calculate landscape metrics at the parcel level, and 6.8 m resolution data from the MODIS/ASTER are employed to retrieve LST. We introduce the socio-economic factors at neighborhood level as explanatory variables to help control for potential neighborhood effects. Multiple linear regression models examine the effects of landscape configuration on LST at the parcel scale, controlling for the effects of landscape composition and neighborhood characteristics. Results show that the configuration of parcels affects LST, revealing significant variable relationships between that architecture and LST at nighttime and daytime, and the role of the neighborhood effects on the outcomes.

  19. The surface energy balance at the Huygens landing site and the moist surface conditions on Titan

    NASA Astrophysics Data System (ADS)

    Williams, Kaj E.; McKay, Christopher P.; Persson, Fredrik

    2012-01-01

    The Huygens Probe provided a wealth of data concerning the atmosphere of Titan. It also provided tantalizing evidence of a small amount of surface liquid. We have developed a detailed surface energy balance for the Probe landing site. We find that the daily averaged non-radiative fluxes at the surface are 0.7 W m-2, much larger than the global average value predicted by McKay et al. (1991) of 0.037 W m-2. Considering the moist surface, the methane and ethane detected by the Probe from the surface is consistent with a ternary liquid of ethane, methane, and nitrogen present on the surface with mole fractions of methane, ethane, and nitrogen of 0.44, 0.34, and 0.22, respectively, and a total mass load of ∼0.05 kg m-2. If this liquid is included in the surface energy balance, only a small fraction of the non-radiative energy is due to latent heat release (∼10-3 W m-2). If the amount of atmospheric ethane is less than 0.6×10-5, the surface liquid is most likely evaporating over timescales of 5 Titan days, and the moist surface is probably a remnant of a recent precipitation event. If the surface liquid mass loading is increased to 0.5 kg m-2, then the liquid lifetime increases to ∼56 Titan days. Our modeling results indicate a dew cycle is unlikely, given that even when the diurnal variation of liquid is in equilibrium, the diurnal mass variation is only 3% of the total liquid. If we assume a high atmospheric mixing ratio of ethane (>0.6×10-5), the precipitation of liquid is large (38 cm/Titan year for an ethane mixing ratio of 2×10-5). Such a flux is many orders of magnitude in excess of the photochemical production rate of ethane.

  20. Distributions of surface-layer buoyance versus lifting condensation level over a heterogeneous land surface

    SciTech Connect

    Schrieber, K.; Zhang, Qing; Stull, R.

    1996-04-15

    Onset and coverage of small cumulus clouds depend on the relative abundance of surface-layer air parcels possessing favorable buoyancy and moisture - two variables that are coupled through the surface energy budget. This abundance is described using a joint frequency distribution (JFD) as a function of virtual potential temperature {theta}{sub v} and height of the lifting condensation level z{sub LCL}. It is shown analytically that the shape and spread of this JFD depends on the ranges of Bowen ratios and solar forcings (albedoes, cloud shading, etc.) that exist within a domain of heterogeneous land use. To sample the character of such JFDs in the real atmosphere, a case study is presented using turbulence data gathered by aircraft flying in the surface layer of southwest France. This case study includes 4 days of clear skies during the Hydrologic Atmospheric Pilot Experiment (HAPEX) of 1986. The full flight track during HAPEX overflew a wide range of land use including evergreen forest, corn, vineyards, pastures, and irrigated fields over varied topography. The JFDs from these full tracks are found to be quite complex, being frequently multimodal with a convoluted perimeter. However, when a full track is broken into segments, each over a subdomain of quasi-homogeneous land use, the resulting segment JFDs are mono-modal with simpler topology. Such a characterization of JFDs provides guidance toward eventual subgrid cumulus parameterization in large-scale forecast models, with associated impacts in aviation forecasting, pollutant venting and chemical reactions, verticle dispersion and turbulence modulation, and radiation balance in climate-change models. 48 refs., 17 figs., 7 tabs.

  1. Effects of land use/cover change on land surface energy partitioning and climate in Northeast China

    NASA Astrophysics Data System (ADS)

    Liu, Fengshan; Tao, Fulu; Liu, Jiyuan; Zhang, Shuai; Xiao, Dengpan; Wang, Meng; Zhang, He; Bai, Huizi

    2016-01-01

    The Simple Biosphere Model (SiB2) and the 2 × 2 km resolution National Land use/Land Cover database were used to investigate the effects of Land Use/Cover Change (LUCC) on land surface energy balance and climate in Jilin Province, northeast China, from 1990 to 2005. The spatial patterns of the components of surface energy balance (i.e., net radiation ( R n), latent heat (LH), sensible heat (SH), and albedo ( α)) and climate (i.e., canopy temperature ( T c), diurnal temperature range (DTR)), as well as the roles of land cover type in variations of energy balance and climate, were investigated. The results showed that there were general similar trends in R n, LH, SH, and α in the LUCC process. The spatial patterns of T c and DTR also showed consistent relationships with LUCC processes. Leaf area index (LAI) and canopy conductance ( g c) were found to be the key factors in controlling the spatial patterns of the components of surface energy balance and T c. Using linear correlation method, the gaps of the components of surface energy balance were well-explained by the differences of LAI and g c, and R n had a better correlation with T c and DTR, in the process of LUCC. The surface energy partitioning of R n into LH and SH could not only dampen or strengthen the temperature difference, but also change the relative size of albedo-based R n when the albedo gap was small, between land cover types.

  2. Estimation of Land Surface Temperature from 1-km AVHRR data

    NASA Astrophysics Data System (ADS)

    Frey, Corinne

    2016-04-01

    In order to re-process DLRs 1km AVHRR data archive to different geophysical and descriptive parameters of the land surface and the atmosphere, a series of scientific data processors are being developed in the framework of the TIMELINE project. The archive of DLR ranges back to the 80ies. One of the data processors is SurfTemp, which processes L2 LST and emissivity datasets from AVHRR L1b data. The development of the data processor included the selection of statistical procedures suitable for time series processing, including four mono-window and six split window algorithms. For almost all of these algorithms, new constants were generated, which better account for different atmospheric and geometric acquisition situations. The selection of optimal algorithms for SurfTemp is based on a round robin approach, in which the selected mono-window and split window algorithms are tested on the basis of a large number of TOA radiance/LST pairs, which were generated using a radiative transfer model and the SeeBorV5 profile database. The original LSTs are thereby compared to the LSTs derived from the TOA radiances using the mono- and split window algorithms. The algorithm comparison includes measures of precision, as well as the sensitivity of a method to the accuracy of its input data. The results of the round robin are presented, as well as the implementation of selected algorithms into SurfTemp. Further, first cross-validation results between the AVHRR LST and MODIS LST are shown.

  3. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  4. The impacts of precipitating hydrometeors radiative effects on land surface temperature in contemporary GCMs using satellite observations

    NASA Astrophysics Data System (ADS)

    Li, J.-L. F.; Lee, Wei-Liang; Yu, Jia-Yuh; Hulley, Glynn; Fetzer, Eric; Chen, Yi-Chun; Wang, Yi-Hui

    2016-01-01

    An accurate representation of the land surface temperature (LST) climatology of the coupled land-atmosphere system has strong implications for the reliability of projected land surface processes and their variability inferred by the global climate models (GCMs) contributed to the Intergovernmental Panel on Climate Change CMIP5. We have identified a substantial underestimation of the total ice water path and biases of surface radiation budget commonly seen in the CMIP models which are highly correlated to the biases of LST over land. One of the potential causes of the CMIP model biases is the missing representation of large frozen precipitating hydrometeors and their radiative effects (i.e., snow) in all CMIP3 and most CMIP5 models. We examine the impacts of snow on the radiation, all-sky and clear-sky LST, and air-land heat fluxes to explore the implications to the common biases in CMIP models by performing sensitivity experiments with and without snow radiation effects using the National Center for Atmospheric Research Community Earth System Model version 1. It is found that an exclusion of the snow radiative effects the CESM1 generates the LST biases (up to 2-3 K) in the midlatitude and high latitude, in particular, in December, January, and February (DJF). All-sky and clear-sky LST in model simulations are found to be too cold and are mainly due to underestimated downward surface (longwave) LW radiation in DJF, which is consistent with those in CMIP models. The correlation between the changes of the LST and downward surface LW radiation is very high both in summer and winter seasons.

  5. Estimating land surface heat flux using radiometric surface temperature without the need for an extra resistance

    NASA Astrophysics Data System (ADS)

    Su, H.; Yang, Y.; Liu, S.

    2015-12-01

    Remotely-sensed land surface temperature (LST) is a key variable in energy balance and is widely used for estimating regional heat flux. However, the inequality between LST and aerodynamic surface temperature (Taero) poses a great challenge for regional heat flux estimation in one -source energy balance models. In this study, a one-source model for land (OSML) was proposed to estimate regional surface heat flux without a need for an empirical extra resistance. The proposed OSML employs both a conceptual VFC/LST trapezoid model and the electrical analogue formula of sensible heat flux (H) to estimate the radiometric-convective resistance (rae) by using a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX), using a remotely-sensed data set at a regional scale. Validated against tower observations, the root mean square deviation (RMSD) of H and latent heat flux (LE) from OSML was 47 W/m2 and 51 W/m2, which is comparable to other published studies. OSML and SEBS (Surface Energy Balance System) compared under the same available energy indicated that LE estimated by OSML is comparable to that derived from the SEBS model. In conducting further inter-comparisons of rae, the aerodynamic resistance derived from SEBS (ra_SEBS), and aerodynamic resistance (ra) derived from Brutsaert et al. (2005) in corn and soybean fields, we found that rae and ra_SEBS are comparable. Most importantly, our study indicates that the OSML method is applicable without having to acquire wind speed or to specify aerodynamic surface characteristics and that it is applicable to heterogeneous areas.

  6. Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.

    1998-01-01

    Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.

  7. MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-04-01

    Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS

  8. NASA Lands Car-sized Rover on Martian Surface

    NASA Video Gallery

    NASA's most advanced Mars rover Curiosity has landed on the Red Planet. The one-ton rover, hanging by ropes from a rocket backpack, touched down onto Mars Sunday to end a 36-week flight and begin a...

  9. Recent developments in the reclamation of surface mined lands

    USGS Publications Warehouse

    Sharma, K.D.; Gough, L.P.; Kumar, S.; Sharma, B.K.; Saxena, S.K.

    1997-01-01

    A broad review of mine land reclamation problems and challenges in arid lands is presented with special emphasis on work recently completed in India. The economics of mining in the Indian Desert is second only to agriculture in importance. Lands disturbed by mining, however, have only recently been the focus of reclamation attempts. Studies were made and results compiled of problems associated with germplasm selection, soil, plant and overburden characterization and manipulation, plant establishment methods utilized, soil amendment needs, use and conservation of available water and the evaluation of ecosystem sustainability. Emphasis is made of the need for multi-disciplinary approaches to mine land reclamation research and for the long-term monitoring of reclamation success.

  10. Inferring land surface parameters from the diurnal variability of microwave and infrared temperatures

    NASA Astrophysics Data System (ADS)

    Norouzi, Hamidreza; Temimi, Marouane; AghaKouchak, Amir; Azarderakhsh, Marzieh; Khanbilvardi, Reza; Shields, Gerarda; Tesfagiorgis, Kibrewossen

    This study investigates the properties of the diurnal cycle of microwave brightness temperatures (TB), namely the phase and the amplitude, and their variability in time and space over the globe to infer information on key land surface parameters like changes in soil texture spatial distribution, soil moisture conditions, and vegetation density. The phase corresponds to the lag between Land Surface Temperature (LST) and TB diurnal cycles. The amplitude is determined as the difference between the maximum and the minimum of TB diurnal cycle. The diurnal cycle of TB was constructed using observations from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and the Special Sensor Microwave/Imager (SSM/I). The latter offer a series of sensors, namely, F13, F14, and F15 that were used in this study for a higher temporal coverage and more accurate diurnal cycle determination. LST estimates, which are available every 3 h from the International Satellite Cloud Climatology Project (ISCCP) database were used to build the LST diurnal cycle. ISCCP LST data is an infrared-based temperature with almost no penetration and is the representative of top skin temperature. The analyses of the diurnal cycles showed that the diurnal amplitude of TB decreases as the vegetation density increases, especially in the case of low frequencies which penetrate deeper into the canopy which makes them more sensitive to changes in vegetation density. The interannual variations of TB diurnal amplitudes were also in agreement with the seasonality of the vegetation cover. Over desert and rain forest regions where surface conditions do not vary significantly throughout the year, the changes in diurnal amplitudes were the lowest. A relationship between phase and amplitude values was established. It was found that the amplitude of TB diurnal cycle decreases when the phase lag increases. The spatial distribution of the determined diurnal properties, namely, phase and amplitude of TB

  11. An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface albedo has been recognized by the Global Terrestrial Observing System (GTOS) as an essential climate variable crucial for accurate modeling and monitoring of the Earth’s radiative budget. While global climate studies can leverage albedo datasets from MODIS, VIIRS, and other coarse-reso...

  12. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  13. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  14. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  15. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  16. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  17. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  18. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  19. Interferometric Constraints on Surface Brightness Asymmetries in Long-Period Variable Stars: A Threat to Accurate Gaia Parallaxes

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Jorissen, A.; Cruzalèbes, P.; Pasquato, E.; Chiavassa, A.; Spang, A.; Rabbia, Y.; Chesneau, O.

    2011-09-01

    A monitoring of surface brightness asymmetries in evolved giants and supergiants is necessary to estimate the threat that they represent to accurate Gaia parallaxes. Closure-phase measurements obtained with AMBER/VISA in a 3-telescope configuration are fitted by a simple model to constrain the photocenter displacement. The results for the C-type star TX Psc show a large deviation of the photocenter displacement that could bias the Gaia parallax.

  20. Field-scale land surface modeling over continental extents: Applications in satellite remote sensing of soil moisture

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Wood, E. F.; Cai, X.

    2015-12-01

    Existing land surface models (LSM) struggle to accurately represent the observed field-scale (~100 meters) spatial heterogeneity of soil moisture due to the over-simplistic parameterizations of sub-grid heterogeneity and the coarseness of the model input data. This is especially relevant in the context of satellite remote sensing of soil moisture since land surface models are seen as important tools with which to validate high-resolution soil moisture retrievals. To address this challenge, we have developed HydroBloks, a semi-distributed land surface model that uses hydrologic response units (HRUs) to represent the observed field-scale spatial heterogeneity of soil moisture while maintaining the computational efficiency of existing LSMs. To accomplish this goal, HydroBloks couples the Noah-MP land surface model to the Dynamic TOPMODEL hydrologic model. The HRUs are defined by clustering proxies of the drivers of spatial heterogeneity using field-scale land data (e.g., NLCD). This allows for each HRU's results to be readily mapped out in space, enabling model application and validation at sub-100 meter scales. In this study, HydroBloks is implemented at three USDA watersheds over the contiguous United States (Little Washita, Little River, and Walnut Gulch). HydroBloks is run at each watershed between 2004 and 2014 using a 100 Latin Hypercube Sample to account for model parameter uncertainty. Each catchment's model ensemble is constrained and validated using available in-situ top-layer soil moisture observations. The results from this study provide insight into the strengths and weaknesses of existing soil moisture networks and the model's potential applications for improved design of in-situ soil moisture networks.

  1. Land surface contribution to climate predictability: the long way from early evidence to improved forecast skill

    NASA Astrophysics Data System (ADS)

    Douville, Hervé

    2013-04-01

    Seasonal forecasts performance over most land areas remains relatively weak, particularly in the mid-latitudes where the interannual ocean variability has a lesser influence than in the tropics. Yet, many observational and numerical studies suggest that there is a fraction of predictability that is still untapped over land at the monthly to seasonal time scales, due to both local and remote land surface effects. Soil moisture and snow mass anomalies may have a strong signature in the land surface energy budget and thereby influence not only surface temperature, but also precipitation through changes in surface evaporation and/or moisture convergence. Land surface anomalies may also trigger planetary waves that can have remote effects on seasonal mean climate. This talk will first illustrate some potential land surface impacts on climate predictability using both statistical and numerical evidence. Then, the limitations of such studies and the practical difficulties for taking advantage of the land surface memory will be presented, as well as on-going efforts for adressing these issues at both European (i.e., SPECS) and international (i.e., GLACE) levels.

  2. Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures

    NASA Astrophysics Data System (ADS)

    Ackerley, Duncan; Dommenget, Dietmar

    2016-06-01

    General circulation models (GCMs) are valuable tools for understanding how the global ocean-atmosphere-land surface system interacts and are routinely evaluated relative to observational data sets. Conversely, observational data sets can also be used to constrain GCMs in order to identify systematic errors in their simulated climates. One such example is to prescribe sea surface temperatures (SSTs) such that 70 % of the Earth's surface temperature field is observationally constrained (known as an Atmospheric Model Intercomparison Project, AMIP, simulation). Nevertheless, in such simulations, land surface temperatures are typically allowed to vary freely, and therefore any errors that develop over the land may affect the global circulation. In this study therefore, a method for prescribing the land surface temperatures within a GCM (the Australian Community Climate and Earth System Simulator, ACCESS) is presented. Simulations with this prescribed land surface temperature model produce a mean climate state that is comparable to a simulation with freely varying land temperatures; for example, the diurnal cycle of tropical convection is maintained. The model is then developed further to incorporate a selection of "proof of concept" sensitivity experiments where the land surface temperatures are changed globally and regionally. The resulting changes to the global circulation in these sensitivity experiments are found to be consistent with other idealized model experiments described in the wider scientific literature. Finally, a list of other potential applications is described at the end of the study to highlight the usefulness of such a model to the scientific community.

  3. AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study (BOREAS)

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John; Keightley, Keir; Prentiss, Dylan; Reith, Ernest; Green, Robert

    2001-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely-sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS follow-on program is concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has the potential of contributing to BOREAS through: (1) accurate retrieved apparent surface reflectance; (2) improved landcover classification; and (3) direct assessment of biochemical/biophysical information such as canopy liquid water and chlorophyll concentration through pigment fits. In this paper, we present initial products for major flux tower sites including: (1) surface reflectance of dominant cover types; (2) a land-cover classification developed using spectral mixture analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA); and (3) liquid water maps. Our goal is to compare these land-cover maps to existing maps and to incorporate AVIRIS image products into models of photosynthetic flux.

  4. Determination of Land Surface Temperature and Soil Moisture From Trmm/tmi Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Wen, J.; Su, Z.

    An analytical algorithm for determination of land surface temperature and soil mois- ture from Tropical Rainfall Measuring Mission/Microwave Imager (TRMM/TMI) re- mote sensing data is developed in this study. Error analyses illustrate that uncer- tainty of the involved parameters will not give serious errors in determination of land surface temperature and soil Fresnel reflectivity. With the proposed algorithm and TRMM/TMI remote sensing data collected during Global Energy and Water Experi- ment (GEWEX) Asian Monsoon Experiment in Tibet (GAME/Tibet) Intensive Obser- vation Period (IOP'98) field campaign in 1998, the regional and temporal distributions of the land surface temperature and volumetric soil moisture are estimated over the central Tibetan plateau area. To validate the proposed method, the ground measured surface temperature and soil volumetric moisture are compared to TRMM/TMI de- rived land surface temperature and soil Fresnel reflectivity respectively. The result shows that estimated surface temperature is in good agreement with ground mea- surements, their difference and correlation coefficient are 0.52+-2.41 K and 0.81. A quasi-linear relationship exists between the estimated Fresnel reflectivity and ground measured volumetric soil moisture with a correlation coefficient 0.82. The land sur- face characteristics can also be clearly identified from the regional distribution of the estimated land surface temperature, the mountainous area and water bodies give a very lower surface temperature while the river basin shows a higher surface temper- ature compared to the mountainous area. The southeastern part of the selected area has lower soil moisture, while the river basin exhibits high soil moisture values. It is therefore concluded that the proposed method is successful for the retrieval of land surface temperature and soil moisture using TRMM/TMI data. Keywords: TRMM/TMI, brightness temperature, land surface emperature, soil mois- ture and Tibetan

  5. A novel method for more accurately mapping the surface temperature of ultrasonic transducers.

    PubMed

    Axell, Richard G; Hopper, Richard H; Jarritt, Peter H; Oxley, Chris H

    2011-10-01

    This paper introduces a novel method for measuring the surface temperature of ultrasound transducer membranes and compares it with two standard measurement techniques. The surface temperature rise was measured as defined in the IEC Standard 60601-2-37. The measurement techniques were (i) thermocouple, (ii) thermal camera and (iii) novel infra-red (IR) "micro-sensor." Peak transducer surface measurements taken with the thermocouple and thermal camera were -3.7 ± 0.7 (95% CI)°C and -4.3 ± 1.8 (95% CI)°C, respectively, within the limits of the IEC Standard. Measurements taken with the novel IR micro-sensor exceeded these limits by 3.3 ± 0.9 (95% CI)°C. The ambiguity between our novel method and the standard techniques could have direct patient safety implications because the IR micro-sensor measurements were beyond set limits. The spatial resolution of the measurement technique is not well defined in the IEC Standard and this has to be taken into consideration when selecting which measurement technique is used to determine the maximum surface temperature. PMID:21856072

  6. Validation and Error Metrics for the Atmospheric Compensation for a Landsat Land Surface Temperature Product

    NASA Astrophysics Data System (ADS)

    Cook, M. J.; Schott, J. R.

    2013-12-01

    An automated process for the atmospheric compensation for a Landsat land surface temperature product has been developed. Landsat data are very attractive for a global land surface temperature product because the spatial and temporal resolution and range of the imagery make them well matched to applications for the study of agriculture, the environment, weather, and climate among others. However, Landsat's single thermal band requires per-pixel atmospheric compensation and emissivity; this work focuses on the atmospheric compensation aspect of the process and will be integrated with ASTER derived emissivity data to output a land surface temperature product. For the same reasons Landsat is attractive, an automated atmospheric compensation technique is challenging; it requires atmospheric characterization over a large area and long time scale at an acceptable resolution. Using North American Regional Reanalysis (NARR) data, MODTRAN radiative transfer code, and a number of interpolation techniques, a tool has been developed to generate the necessary radiative transfer parameters at each pixel for any radiometrically calibrated North American Landsat scene in the archive. Initial validation of predicted temperatures using ground truth water temperatures from platforms and buoys verifies the fidelity of the process with good performance when the atmosphere is accurately characterized. However, performance is poorer when the composition of the atmosphere is not as well understood. Because of the desired automation and extent of the tool, we are limited in the availability of acceptable atmospheric profile data. The goal is to understand sources of error in order to predict and characterize the uncertainty in the retrieved temperatures. While the performance has been extensively tested using a number of NOAA buoys with bulk temperature measurements corrected to skin temperature, traditional error analysis is complicated by the atmospheric reanalysis, radiative transfer

  7. Land surface model evaluation using a new soil moisture dataset from Kamennaya Steppe, Russia

    NASA Astrophysics Data System (ADS)

    Atkins, T.; Robock, A.; Speranskaya, N.

    2004-12-01

    The land surface affects the atmosphere through the transfer of energy and moisture and serves as the lower boundary in numerical weather prediction and climate models. To obtain good forecasts, these models must therefore accurately portray the land surface. Actual in situ measurements are vital for testing and developing these models. It is with this in mind that we have obtained a dataset of soil moisture, soil temperature and meteorological measurements from Kamennaya Steppe, Russia. The meteorological dataset spans the time period 1965-1991, while the soil moisture dataset runs from 1956-1991. The soil moisture dataset contains gravimetric volumetric total soil moisture measurements for 10 layers taken from forest, agricultural and grassland soils. The meteorological dataset contains 3-hourly measurements of precipitation, temperature, wind speed, pressure and relative humidity. We obtained longwave and shortwave radiation data from standard formulae. The data will be made available to the public via the Rutgers University Center for Environmental Prediction Global Soil Moisture Data Bank. Soil temperature is important in determining the timing, duration and intensity of runoff and snowmelt, particularly at the beginning and end of the winter when the ground is only partially frozen. Soil temperature can in turn be affected by the vertical distribution of roots. The soil temperature data are for 1969-1991. The data are daily averaged for every 20 cm to 1.2 meters in depth. These data are used to investigate the natural sensitivity of soil temperature to vegetation type and root distribution. We also use the temperature data, as well as water balance and snowfall data to test the sensitivity of the Noah land surface model (LSM) soil temperature to vertical root distribution, and what effect that has on the hydrology of the site. In addition to soil temperature data, we also have soil moisture data for several vegetation types. We compare the soil moisture time

  8. Land Surface Temperature Forecasting using spectral observations of MODIS and Modular Neural Networks

    NASA Astrophysics Data System (ADS)

    Taghavi, Farahnaz; Zargaran, Zahrah; Ahmadi, Abbas

    Land Surface Temperature (LST) is a significant parameter for many applications including numerical weather prediction, climate and environmental studies. The goal of this study is using a combination of Modular neural networks and satellite image as input to predict the LST in Tehran ,Iran.In this study, two MLP and RBF neural networks and an algorithm for calculating of LST based spectral observations of MODerate resolution Imaging Spectra-radiometer (MODIS) are used This algorithm include Brightness Temperature of channel 31(BT31) and 32(BT32) on thermal band of MODIS. The algorithm are written using Hierarchical Data Format (HDF) calibrated data which has the spatial resolution of 1km by ENVI (Environment for Visualizing Images) software, and output products are in HDF format. Initial results show that modular neural network helps to improve networks' generalization and learning speed and the main reason for selecting these networks is their good performance in this problem.The model has a modular learning and structure. Since the task decomposition at first and the combination of results to get the final prediction at the end are key and effective points on the performance of modular neural network, in this study we propose a new approach to this issue. This method uses the Self-Organizing Map (SOM) Neural Network and Particle Swarm Optimization(PSO) algorithm for task decomposition. The proposed model combines this neural networks and optimization algorithms. Results indicate that use of PSO algorithm has caused suitable distribution of clusters obtained from SOM algorithm. In addition to the use of satellite images has improved the performance of the proposed model. Finally, the results obtained from this model will be compared with some other methods with non-modular structure and learning and it is shown that this proposed model is able to produce accurate results. The result of this comparison show that training time of model in the forecasting of land

  9. Spatially Complete Global Spectral Surface Albedos: Value-Added Datasets Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Land surface albedo is an important parameter in describing the radiative properties of the earth s surface as it represents the amount of incoming solar radiation that is reflected from the surface. The amount and type of vegetation of the surface dramatically alters the amount of radiation that is reflected; for example, croplands that contain leafy vegetation will reflect radiation very differently than blacktop associated with urban areas. In addition, since vegetation goes through a growth, or phenological, cycle, the amount of radiation that is reflected changes over the course of a year. As a result, albedo is both temporally and spatially dependant upon global location as there is a distribution of vegetated surface types and growing conditions. Land surface albedo is critical for a wide variety of earth system research projects including but not restricted to remote sensing of atmospheric aerosol and cloud properties from space, ground-based analysis of aerosol optical properties from surface-based sun/sky radiometers, biophysically-based land surface modeling of the exchange of energy, water, momentum, and carbon for various land use categories, and surface energy balance studies. These projects require proper representation of the surface albedo s spatial, spectral, and temporal variations, however, these representations are often lacking in datasets prior to the latest generation of land surface albedo products.

  10. Forcing a Global, Offline Land Surface Modeling System with Observation-Based Fields

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Houser, Paul R.; Jambor, U.; Gottschalck, J.; Radakovich, J.; Arsenault, K.; Meng, C.-J.; Mitchell, K. E.

    2002-01-01

    The Global Land Data Assimilation System (GLDAS) drives multiple uncoupled land surface models in order to produce optimal output fields of surface states in near-real time, globally, at 1/4 degree spatial resolution. These fields are then made available for coupled atmospheric model initialization and further research. One of the unique aspects of GLDAS is its ability to ingest both modeled and observation-derived forcing for running global scale land surface models. This paper compares results of runs forced by modeled and observed precipitation and shortwave radiation fields. Differences are examined and the impact of the observations on model skill is assessed.

  11. Accurate evaluation of free-form surface profile error based on quasi particle swarm optimization algorithm and surface subdivision

    NASA Astrophysics Data System (ADS)

    Wen, Xiulan; Zhao, Yibing; Wang, Dongxia; Zhu, Xiaochu; Xue, Xiaoqiang

    2013-03-01

    Although significant progress has been made in precision machining of free-form surfaces recently, inspection of such surfaces remains a difficult problem. In order to solve the problem that no specific standards for the verification of free-form surface profile are available, the profile parameters of free-form surface are proposed by referring to ISO standards regarding form tolerances and considering its complexity and non-rotational symmetry. Non-uniform rational basis spline(NURBS) for describing free-form surface is formulated. Crucial issues in surface inspection and profile error verification are localization between the design coordinate system(DCS) and measurement coordinate system(MCS) for searching the closest points on the design model corresponding to measured points. A quasi particle swarm optimization(QPSO) is proposed to search the transformation parameters to implement localization between DCS and MCS. Surface subdivide method which does the searching in a recursively reduced range of the parameters u and v of the NURBS design model is developed to find the closest points. In order to verify the effectiveness of the proposed methods, the design model is generated by NURBS and the measurement data of simulation example are generated by transforming the design model to arbitrary position and orientation, and the parts are machined based on the design model and are measured on CMM. The profile errors of simulation example and actual parts are calculated by the proposed method. The results verify that the evaluation precision of freeform surface profile error by the proposed method is higher 10%-22% than that by CMM software. The proposed method deals with the hard problem that it has a lower precision in profile error evaluation of free-form surface.

  12. Effects land surface type, land use, and land use change on aquatic-atmosphere fluxes of carbon dioxide from tropical forests and peat lands of Borneo

    NASA Astrophysics Data System (ADS)

    Oechel, W. C.; Abelleira Martínez, O.; Anshari, G.; Ikawa, H.; Lawrence, W. T.; Metz, M.; Neteler, M.; Nuriman, M.; Rocchini, D.; Zona, D.

    2011-12-01

    Tropical peat lands appear to be loosing huge amounts of carbon dioxide to the atmosphere due to patterns of land use and land use change including conversion of tropical forest peat lands to palm oil production and other agricultural endeavors and forest exploitation. Here, we look at the effect of land use patterns on the export of carbon to tropical river systems and the efflux from tropical rivers to the atmosphere. Levels of pcarbon dioxide, DOC and POC were measured in the Kapuas River, the longest river in Borneo. Patterns of land use and land use change were correlated with export rates of organic matter to the river as well as the vertical fluxes of carbon dioxide from the river and delta to the atmosphere. Land conversion of tropical forests on peat land soils to agriculture, including palm oil production, had some of the highest rates of lateral fluxes of organic carbon to the river system, and among the highest fluxes of carbon dioxide from the river to the atmosphere. This approach illustrates the utility of using a combination of methods: pcarbon dioxide measurement, water chemistry, temporal remote sensing, and modeling to understand and quantify the impact of land use change on GHG emissions from tropical peat lands. Boat based eddy covariance, developed and tested in the coastal zones of the Pacific Ocean, promises to provide a powerful addition to these approaches.

  13. Identifying surface response to drought and heat with a land surface model and NDVI

    NASA Astrophysics Data System (ADS)

    Harrison, L. S.; Michaelsen, J.; Funk, C. C.; Carvalho, L. V.; Still, C. J.; McNally, A.; Peters-Lidard, C. D.

    2012-12-01

    Lack of in situ observations makes drought monitoring a challenge in East Africa. Hence an effective means of identifying climate hazards and surface impacts are satellite-based rainfall estimates and vegetation observations. During the 2011 Kenyan drought Rainfall Estimation Algorithm Version 2 (RFE2.0) and expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) NDVI products were used to delineate regional gradients of food insecurity, a critical factor in prompt distribution of aid. Land surface models (LSM) beckon as a means for expanding our understanding of drought. Modeled turbulent surface fluxes may make explicit physical processes responsible for observed plant stress. When sensible heating occurs under low evapotranspiration (AET) conditions, we would expect vegetation stress to increase. In this paper we examine two aspects of temperature-vegetation stress as interpreted by a LSM: (1) To what extent do sensible heating anomalies accompany AET anomalies and (2) how do rainfall and temperature influence energy partitioning? We investigate for the March-May rainy season (2001-12) across Kenya's rangelands at interannual and sub-seasonal timescales. Results highlight landscape characteristics with disproportionate sensitivity to climate. LSM estimates are compared to the vegetation response observed with NDVI. We establish the relationship between sources and use 2009 and 2011 agro-pastoral droughts as criteria for the LSM as a potential monitoring tool. Climate and flux data are from Noah3.2 LSM forced with RFE2.0 rainfall in a custom configuration of the NASA Land Information System. Satellite observations are from eMODIS NDVI.

  14. A new burn severity index based on land surface temperature and enhanced vegetation index

    NASA Astrophysics Data System (ADS)

    Zheng, Zhong; Zeng, Yongnian; Li, Songnian; Huang, Wei

    2016-03-01

    Remotely sensed data have already become one of the major resources for estimating the burn severity of forest fires. Recently, Land Surface Temperature (LST) calculated from remote sensing data has been considered as a potential indicator for estimating burn severity. However, using the LST-based index alone may not be sufficient for estimating burn severity in the areas that has unburned trees and vegetation. In this paper, a new index is proposed by considering LST and enhanced vegetation index (EVI) together. The accuracy of the proposed index was evaluated by using 264 composite burn index (CBI) field sample data of the five fires across different regional eco-type areas in the Western United States. Results show that the proposed index performed equally well for post-fire areas covered with both sparse vegetation and dense vegetation and relatively better than some commonly-used burn severity indices. This index also has high potential of estimating burn severity if more accurate surface temperatures can be obtained in the future.

  15. [A Novel Method of Soil Moisture Content Monitoring by Land Surface Temperature and LAI].

    PubMed

    Gao, Zhong-ling; Zheng, Xiao-po; Sun, Yue-jun; Wang, Jian-hua

    2015-11-01

    Land surface temperature (Ts) is influenced by soil background and vegetation growing conditions, and the combination of Ts and vegetation indices (Vis) can indicate the status of surface soil moisture content (SMC). In this study, Advanced Temperature Vegetation Dryness Index (ATVDI) used for monitoring SMC was proposed on the basis of the simulation results with agricultural climate model CUPID. Previous studies have concluded that Normalized Difference Vegetation Index (NDVI) easily reaches the saturation point, andLeaf Area Index (LAI) was then used instead of NDVI to estimate soil moisture content in the paper. With LAI-Ts scatter diagram established by the simulation results of CUPID model; how Ts varied with LAI and SMC was found. In the case of the identical soil background, the logarithmic relations between Ts and LAI were more accurate than the linear relations included in Temperature Vegetation Dryness Index (TVDI), based on which ATVDI was then developed. LAI-Ts scatter diagram with satellite imagery were necessary for determining the expression of the upper and lower logarithmic curves while ATVDI was used for monitoring SMC. Ts derived from satellite imagery were then transformed to the Ts-value which has the same SMC and the minimum LAI in study area with look-up table. The measured SMC from the field sites in Weihe Plain, Shanxi Province, China, and the products of LAI and Ts (MOD15A2 and MOD11A2, respectively) produced by the image derived from Moderate Resolution Imaging Spectrometer (MODIS) were collected to validate the new method proposed in this study. The validation results shown that ATVDI (R² = 0.62) was accurate enough to monitor SMC, and it achieved better result than TVDI. Moreover, ATVDI-derived result were Ts values with some physical meanings, which made it comparative in different periods. Therefore, ATVDI is a promising method for monitoring SMC in different time-spatial scales in agricultural fields. PMID:26978922

  16. Coupled Soil Water and Heat Transport Near the Land Surface in Arid and Semiarid Regions - Multi-Domain Modeling

    NASA Astrophysics Data System (ADS)

    Mohanty, Binayak; Yang, Zhenlei

    2016-04-01

    Understanding and simulating coupled water and heat transfer appropriately in the shallow subsurface is of vital significance for accurate prediction of soil evaporation that would improve the coupling between land surface and atmosphere, which consequently could enhance the reliability of weather as well as climate forecast. The theory of Philip and de Vries (1957), accounting for water vapor diffusion only, was considered physically incomplete and consequently extended and improved by several researchers by explicitly taking water vapor convection, dispersion or air flow into account. It is generally believed that the soil moisture is usually low in the near surface layer under highly transient field conditions, particularly in arid and semiarid regions, and that accurate characterization of water vapor transport is critical when modeling simultaneous water and heat transport in the shallow field soils. The first objective of this study is thus mainly to test existing coupled water and heat transport theories and to develop reasonable and simplified numerical models using field experimental data collected under semi-arid and arid hydro-climatic conditions. In addition, more complex multi-domain models are developed for ubiquitous heterogeneous terrestrial surfaces such as horizontal textural contrasts or structured heterogeneity including macropores (fractures, cracks, root channels, etc.). This would make coupled water and heat transfer models applicable in such non-homogeneous soils more meaningful and enhance the skill of land-atmosphere interaction models at a larger context.

  17. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.

  18. Modeling land-surface processes and land-atmosphere interactions in the community weather and regional climate WRF model (Invited)

    NASA Astrophysics Data System (ADS)

    Chen, F.; Barlage, M. J.

    2013-12-01

    The Weather Research and Forecasting (WRF) model has been widely used with high-resolution configuration in the weather and regional climate communities, and hence demands its land-surface models to treat not only fast-response processes, such as plant evapotranspiration that are important for numerical weather prediction but also slow-evolving processes such as snow hydrology and interactions between surface soil water and deep aquifer. Correctly representing urbanization, which has been traditionally ignored in coarse-resolution modeling, is critical for applying WRF to air quality and public health research. To meet these demands, numerous efforts have been undertaken to improve land-surface models (LSM) in WRF, including the recent implementation of the Noah-MP (Noah Multiple-Physics). Noah-MP uses multiple options for key sub-grid land-atmosphere interaction processes (Niu et al., 2011; Yang et al., 2011), and contains a separate vegetation canopy representing within- and under-canopy radiation and turbulent processes, a multilayer physically-based snow model, and a photosynthesis canopy resistance parameterization with a dynamic vegetation model. This paper will focus on the interactions between fast and slow land processes through: 1) a benchmarking of the Noah-MP performance, in comparison to five widely-used land-surface models, in simulating and diagnosing snow evolution for complex terrain forested regions, and 2) the effects of interactions between shallow and deep aquifers on regional weather and climate. Moreover, we will provide an overview of recent improvements of the integrated WRF-Urban modeling system, especially its hydrological enhancements that takes into account the effects of lawn irrigation, urban oasis, evaporation from pavements, anthropogenic moisture sources, and a green-roof parameterization.

  19. A simple hydrologically based model of land surface water and energy fluxes for general circulation models

    NASA Technical Reports Server (NTRS)

    Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.

    1994-01-01

    A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.

  20. Spreading of liquid droplets on cylindrical surfaces: Accurate determination of contact angle

    NASA Astrophysics Data System (ADS)

    Wagner, H. D.

    1990-02-01

    The characterization of the physicochemical nature of interfaces is a key problem in the field of advanced fibrous composites. The macroscopic regime contact angle, which reflects the energetics of wetting at the solid-liquid interface, is difficult to measure by usual methods in the case of very thin cylindrical fibers, but it may be calculated from the shape of a liquid droplet spread onto a cylindrical monofilament using a method developed by Yamaki and Katayama [J. Appl. Polym. Sci. 19, 2897 (1975)], and B. J. Carroll [J. Coll. Interf. Sci. 57, 488 (1976)]. Unfortunately, measurements of the contact angle based on this method are, so far, unable to provide an accuracy of better than about 5°. In the present article two simple extensions of the method of Yamaki and Katayama and Carroll, are presented, from which highly accurate values of the contact angle may be obtained. This is demonstrated experimentally from the spreading of glycerol droplets on carbon fibers and epoxy droplets on aramid fibers.

  1. Pole Photogrammetry with AN Action Camera for Fast and Accurate Surface Mapping

    NASA Astrophysics Data System (ADS)

    Gonçalves, J. A.; Moutinho, O. F.; Rodrigues, A. C.

    2016-06-01

    High resolution and high accuracy terrain mapping can provide height change detection for studies of erosion, subsidence or land slip. A UAV flying at a low altitude above the ground, with a compact camera, acquires images with resolution appropriate for these change detections. However, there may be situations where different approaches may be needed, either because higher resolution is required or the operation of a drone is not possible. Pole photogrammetry, where a camera is mounted on a pole, pointing to the ground, is an alternative. This paper describes a very simple system of this kind, created for topographic change detection, based on an action camera. These cameras have high quality and very flexible image capture. Although radial distortion is normally high, it can be treated in an auto-calibration process. The system is composed by a light aluminium pole, 4 meters long, with a 12 megapixel GoPro camera. Average ground sampling distance at the image centre is 2.3 mm. The user moves along a path, taking successive photos, with a time lapse of 0.5 or 1 second, and adjusting the speed in order to have an appropriate overlap, with enough redundancy for 3D coordinate extraction. Marked ground control points are surveyed with GNSS for precise georeferencing of the DSM and orthoimage that are created by structure from motion processing software. An average vertical accuracy of 1 cm could be achieved, which is enough for many applications, for example for soil erosion. The GNSS survey in RTK mode with permanent stations is now very fast (5 seconds per point), which results, together with the image collection, in a very fast field work. If an improved accuracy is needed, since image resolution is 1/4 cm, it can be achieved using a total station for the control point survey, although the field work time increases.

  2. LDAS Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Mocko, David; Beaudoing, Hiroko Kato

    2014-01-01

    The land-surface component of the hydrological cycle is fundamental to the overall functioning of the atmospheric and climate processes. The characterization of the spatial and temporal variability of water and energy cycles is critical to improve our understanding of the land-surface-atmosphere interaction and the impact of land-surface processes on climate extremes. Because the accurate knowledge of these processes and their variability is important for climate predictions, most Numerical Weather Prediction (NWP) centers have incorporated land-surface schemes in their models. However, errors in the NWP forcing accumulate in the surface and energy stores, leading to incorrect surface water and energy partitioning and related processes.

  3. A joint NOAA/USGS study to evaluate satellite assessment of land surface features and climatic variables

    USGS Publications Warehouse

    Gallo, K.P.; Tarpley, J.D.; Howard, S.M.; Moore, D.G.

    1987-01-01

    Data collection and preliminary analyses have begun for a study that will evaluate the usefulness of satellite data for assessment of land surface features and climatic variables. The objective of the study is to determine what relationships exist between routinely available ground-based climatic and land surface information and satellite-obtained land surface information. The overall goal is to contribute to the increasingly important understanding of land surface climatology.

  4. ESTIMATION OF LAND SURFACE BROADBAND ALBEDOS AND LEAF AREA INDEX FROM EO-1 DATA AND VALIDATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Advanced Land Imager (ALI) is a multispectral sensor onboard NASA Earth Observer-1 (EO-1). It has similar spatial resolution to the Landsat-7 Enhanced Thematic Mapper Plus (ETM+), with three additional spectral bands. We developed new algorithms for estimating both land surface broadband albedo...

  5. Applicability of Density Functional Theory in Reproducing Accurate Vibrational Spectra of Surface Bound Species

    SciTech Connect

    Matanovic, Ivana; Atanassov, Plamen; Kiefer, Boris; Garzon, Fernando; Henson, Neil J.

    2014-10-05

    The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized-gradient approximation (GGA), nonlocal correlation, meta-GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised-RPBE, vdW-DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW-DF and meta-GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of 22.62 and 21.1% for the NAN stretching and RhAH stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the RhAH and NAN stretching modes from the bulk phonons and by solving one- and two-dimensional Schr€odinger equation associated with the RhAH, RhAN, and NAN potential energy we calculated the anharmonic correction for NAN and RhAH stretching modes as 231 cm21 and 277 cm21 at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments.

  6. Applicability of density functional theory in reproducing accurate vibrational spectra of surface bound species.

    PubMed

    Matanović, Ivana; Atanassov, Plamen; Kiefer, Boris; Garzon, Fernando H; Henson, Neil J

    2014-10-01

    The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized-gradient approximation (GGA), nonlocal correlation, meta-GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised-RPBE, vdW-DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW-DF and meta-GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of -2.62 and -1.1% for the N-N stretching and Rh-H stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the Rh-H and N-N stretching modes from the bulk phonons and by solving one- and two-dimensional Schrödinger equation associated with the Rh-H, Rh-N, and N-N potential energy we calculated the anharmonic correction for N-N and Rh-H stretching modes as -31 cm(-1) and -77 cm(-1) at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments. PMID:25164265

  7. Technology for accurate surface and attitude control of a large spaceborne antenna and microwave system

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1978-01-01

    Problems associated with controlling a large diameter (200 - 300 m) spaceborne antenna and microwave system operating at frequencies in the range from 20 GHz to at least 300 GHz are addressed. Such large structures must point to any new target and settle in one hour, and have control surface accuracy to 50 microns rms. Critical technologies required to enable system development by 1990 to 2000 for radio/ radar astronomy, orbiting Deep Space rela satellite, SETI, very long base interferometry, and earth looking radiometry applications are discussed.

  8. Comparison of in-situ, aircraft, and satellite based land surface temperature measurements

    NASA Astrophysics Data System (ADS)

    Baker, B.; Krishna, P.; Meyers, T. P.

    2013-12-01

    and surface temperature (LST) is a key variable used in surface energy budget studies, and in near-real time is assimilated into land surface models for short and medium range forecasts. Observations of LST over multiple years are also critical for climate trend assessment. However, accurate in-situ measurements of LST over continents are not yet available for the whole globe and are not routinely conducted at weather stations. Recently an effort has been underway to validate LST sensed remotely from satellites to the actual measured skin temperature using data from the United States Climate Reference Network (USCRN). The goal of this work is to quantify the spatial variability and the representativeness of the single-point skin temperature measurement already being made at USCRN sites. NOAA/ATDD is collaborating with the University of Tennessee Space Institute's (UTSI) Aviation Systems and Flight Research Department in Tullahoma, TN to utilize an instrumented aircraft to perform measurements of Earth's skin temperature over selected USCRN sites in the continental U.S. Airborne remote sensing is a powerful tool to assess the spatial variability of LST over a location with sufficient sampling density and has the operational flexibility depending on the study requirements. We will present the results from airborne campaigns made concurrently with satellite overpasses over a grassland site and a deciduous forest site, compare the relationship of surface temperature to air temperature at a number of CRN sites and show results of an intercomparison between the JPL reference skin temperature measurement and the CRN sensor.

  9. Isolating Effects of Terrain and Subsurface Heterogeneity on Land Surface Energy Fluxes using Coupled Surface-Subsurface Simulations

    NASA Astrophysics Data System (ADS)

    Rihani, J.; Maxwell, R. M.; Chow, F. K.

    2009-12-01

    Idealized simulations are used to study effects of terrain, subsurface formations, properties, land cover and climatology on the feedbacks between water table depth and energy fluxes at the land surface. Vertical and lateral water transport are taken into account in an interactive manner between overland and subsurface flow while having an explicit representation of the water table. This is done by using a three-dimensional variably saturated groundwater code (ParFlow) coupled to a land surface model (the Common Land Model). Results indicate a strong coupling between water table depth and land surface energy fluxes in certain transitional areas between very shallow and very deep water table locations along the hillsides of the simulation cases. Subsurface formations and properties are identified as having the strongest effect on the location, extent, and strength of coupling between water table depth and energy fluxes. These feedbacks are strongly affected by changing thickness of the top-most subsurface formation, and they become more complex as more layers are introduced in the system. Terrain has a more pronounced effect on the hydrology of the system than on the coupling between water table and energy fluxes. Vegetative land cover on the other hand has a small effect on hydrology and water table dynamics, but a large effect on the energy fluxes at the land surface. Two different climatologies are tested and similar trends are observed even with dramatically different atmospheric forcings. A drier climate however will produce narrower transition zones of coupling. This demonstrates that lateral surface and subsurface flows have a great effect on land surface fluxes even for very simplistic terrain and geologic settings. It is thus important that these results are extended to more realistic settings and applied to understand the more complicated coupling processes that occur in a real watershed.

  10. DISPLAR: an accurate method for predicting DNA-binding sites on protein surfaces

    PubMed Central

    Tjong, Harianto; Zhou, Huan-Xiang

    2007-01-01

    Structural and physical properties of DNA provide important constraints on the binding sites formed on surfaces of DNA-targeting proteins. Characteristics of such binding sites may form the basis for predicting DNA-binding sites from the structures of proteins alone. Such an approach has been successfully developed for predicting protein–protein interface. Here this approach is adapted for predicting DNA-binding sites. We used a representative set of 264 protein–DNA complexes from the Protein Data Bank to analyze characteristics and to train and test a neural network predictor of DNA-binding sites. The input to the predictor consisted of PSI-blast sequence profiles and solvent accessibilities of each surface residue and 14 of its closest neighboring residues. Predicted DNA-contacting residues cover 60% of actual DNA-contacting residues and have an accuracy of 76%. This method significantly outperforms previous attempts of DNA-binding site predictions. Its application to the prion protein yielded a DNA-binding site that is consistent with recent NMR chemical shift perturbation data, suggesting that it can complement experimental techniques in characterizing protein–DNA interfaces. PMID:17284455

  11. Land surface phenologies viewed in the middle infrared: seasonal contrasts between vegetation, soils, and impervious surfaces

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Krehbiel, C.; Kovalskyy, V.

    2012-12-01

    The middle infrared (MIR) region of the electromagnetic spectrum spans 3-5 microns. It is the mixing zone between reflected sunlight and emitted earthlight in roughly equal proportions. This region has received very little attention in terrestrial remote sensing. Yet the MIR merits exploration of how it could be used for monitoring land surface phenologies (LSP) and seasonalities due to five characteristics. First, green vegetation is MIR-dark, reflecting just 2-5% of the incident radiation. Second, soils are MIR-bright, reflecting up to one-third of the incident radiation. Third, impervious surfaces, such as concretes, asphalts, and other building and paving materials are also MIR-bright. Fourth, the resulting seasonal contrast in MIR between vegetated and non-vegetated surfaces lets urbanized areas emerge from the vegetated landscape. Fifth, MIR wavelengths penetrate anthropogenic haze and smoke because the particle radii are smaller. Here we use MODIS (MYD02) image time series to illustrate the temporal progressions of MIR at various wavelengths and how they compare to and diverge from the more familiar NDVI and derived LSP metrics.IR portrait of the USA east of W98: maximum value composite of Aqua MODIS MIR band 23 during DOY 219-233 of 2010.

  12. Modelling the Relationship Between Land Surface Temperature and Landscape Patterns of Land Use Land Cover Classification Using Multi Linear Regression Models

    NASA Astrophysics Data System (ADS)

    Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.

    2016-06-01

    The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.

  13. Validation of spatiotemporally dense springtime land surface phenology with intensive and upscale in situ

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface phenology (LSP) developed using temporally and spatially optimized remote sensing data, is particularly promising for use in detailed ecosystem monitoring and modeling efforts. Validating spatiotemporally dense LSP using compatible (intensively collected) in situ phenological data is t...

  14. Large-Scale Validation of AMIP2 Land-Surface Simulations

    SciTech Connect

    Phillips, T J

    2003-02-04

    Diagnostic Subproject 12 (DSP 12) on Land-surface Processes and Parameterizations is one of several AMIP-related efforts to analyze the effectiveness of current climate models in simulating continental processes. DSP 12's particular objectives are (1) to validate large-scale AMIP2 continental simulations against available global reference data sets; (2) to verify continental energy/moisture conservation and diagnose related land-surface processes in the AMIP2 models; and (3) to formulate hypotheses on putative connections between AMIP2 simulation performance and the complexities of the respective land-surface schemes (LSSs) that might be tested by further numerical experimentation. This paper outlines DSP 12's large-scale validation work, while companion papers by Henderson-Sellers et al., Irannejad et al., and Zhang et al. briefly present our analysis of other facets of AMIP2 land-surface simulations.

  15. Estimating spatial veriability in atmospheric properties over remotely sensed land-surface conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the spatial relationships between land-surface fluxes and near-surface atmospheric properties (AP), and the potential errors in flux estimation due to homogeneous atmospheric inputs over heterogeneous landscapes. A Large Eddy Simulation (LES) model is coupled to a surface ene...

  16. Accurate stratospheric particle size distributions from a flat plate collection surface

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.

    1985-01-01

    Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.

  17. ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey R.; Bell, J. F.; Bender, S.; Blaney, D.; Cloutis, E.; DeFlores, L.; Ehlmann, B.; Gasnault, O.; Gondet, B.; Kinch, K.; Lemmon, M.; Le Mouélic, S.; Maurice, S.; Rice, M.; Wiens, R. C.

    2015-03-01

    The spectrometers on the Mars Science Laboratory (MSL) ChemCam instrument were used in passive mode to record visible/near-infrared (400-840 nm) radiance from the martian surface. Using the onboard ChemCam calibration targets' housing as a reflectance standard, we developed methods to collect, calibrate, and reduce radiance observations to relative reflectance. Such measurements accurately reproduce the known reflectance spectra of other calibration targets on the rover, and represent the highest spatial resolution (0.65 mrad) and spectral sampling (<1 nm) visible/near-infrared reflectance spectra from a landed platform on Mars. Relative reflectance spectra of surface rocks and soils match those from orbital observations and multispectral data from the MSL Mastcam camera. Preliminary analyses of the band depths, spectral slopes, and reflectance ratios of the more than 2000 spectra taken during the first year of MSL operations demonstrate at least six spectral classes of materials distinguished by variations in ferrous and ferric components. Initial comparisons of ChemCam spectra to laboratory spectra of minerals and Mars analog materials demonstrate similarities with palagonitic soils and indications of orthopyroxene in some dark rocks. Magnesium-rich "raised ridges" tend to exhibit distinct near-infrared slopes. The ferric absorption downturn typically found for martian materials at <600 nm is greatly subdued in brushed rocks and drill tailings, consistent with their more ferrous nature. Calcium-sulfate veins exhibit the highest relative reflectances observed, but are still relatively red owing to the effects of residual dust. Such dust is overall less prominent on rocks sampled within the "blast zone" immediately surrounding the landing site. These samples were likely affected by the landing thrusters, which partially removed the ubiquitous dust coatings. Increased dust coatings on the calibration targets during the first year of the mission were documented by

  18. AccuCLASS - an Enhancement of the Canadian Land Surface Scheme for Climate Assessment Over the Prairies

    NASA Astrophysics Data System (ADS)

    Loukili, Y.; Woodbury, A. D.; Snelgrove, K. R.

    2006-12-01

    The Canadian Land Surface Scheme (CLASS) is a numerical model developed at the Canadian Atmospheric Environment Service by Verseghy et al. [1991, 1993, 2000] and used to evaluate the vertical transfer of energy and water between the land surface and three soil layers. Among the features of CLASS its treatment of the land surface as a composite of four primary subareas: canopy and snow covered ground, snow-covered ground, canopy covered soil, and bare soil. The vegetation properties are also related via weighted averages to four types: needleaf trees, broadleaf trees, grass and crops. The incorporation of meteorological data as forcing inputs drives the model through advanced formulae describing the earth surface physics. These include canopy radiation and evapotranspiration, sensible and latent heat fluxes, rainfall interception, infiltration and ponding, snow melt and soil freezing. Such treatment allows for a realistic estimation of the surface energy balance. In this work, a major revision of CLASS, called AccuCLASS, is introduced, which permits a user specified depth and as many soil layers as needed. Almost all the physically based calculations of heat and moisture transfer in CLASS are kept and adequately extended to fit the desired refined mesh. In the resolution of soil temperature and heat flux terms, the GMRES iterative method replaced the explicit algebraic manipulation. Moreover, in the moisture regime, a water table lower boundary condition is added for the future coupling with groundwater models. The results of AccuCLASS are extensively validated for some synthetic runs under real-like seasonal weather conditions and different soil types, through inter-comparing to simulation outputs from SHAW [Flerchinger and Saxon, 1989], HYDRUS-1D [Simunek et al., 1998] and HELP [Schroeder et al., 1994] models. We find that AccuCLASS and SHAW accurately predict moisture and bottom drainage amounts; and that the original CLASS code does not have sufficient grid

  19. Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Ma, Yaoming

    2016-07-01

    Land surface heat fluxes over the heterogeneous landscape of the Tibetan Plateau can serve as boundary conditions for modeling the regional climate and the Asian monsoon system. The Weather Research and Forecasting (WRF) atmospheric modeling system has enabled us to model the land surface heat flux through sensitivity experiments that utilize in situ observation data and the regional land-atmosphere exchanges of water and heat fluxes that are foundational to understanding the water and energy cycles present during the Asian monsoon period. A series of sensitivity experiments based on the WRF model and field observations has been proposed and tested for deriving the land surface heat fluxes (surface net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) over a heterogeneous land surface. The sensitivity experiments were simulated over the field area of the Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau (CEOP-CAMP/Tibet), located on the northern Tibetan Plateau of China. A WRF modeling period from July to August 2007 was selected for the summer monsoon conditions. To validate the modeling results, the ground-measured or calculated variables (e.g., net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) were compared to the simulated values. The modeling results show that the derived model land surface heat fluxes are in agreement with the land surface observations over the study area in summer. Therefore, the WRF model sensitivity experiments were successful in simulating the land surface heat fluxes over the study area.

  20. Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Ma, Yaoming

    2015-05-01

    Land surface heat fluxes over the heterogeneous landscape of the Tibetan Plateau can serve as boundary conditions for modeling the regional climate and the Asian monsoon system. The Weather Research and Forecasting (WRF) atmospheric modeling system has enabled us to model the land surface heat flux through sensitivity experiments that utilize in situ observation data and the regional land-atmosphere exchanges of water and heat fluxes that are foundational to understanding the water and energy cycles present during the Asian monsoon period. A series of sensitivity experiments based on the WRF model and field observations has been proposed and tested for deriving the land surface heat fluxes (surface net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) over a heterogeneous land surface. The sensitivity experiments were simulated over the field area of the Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau (CEOP-CAMP/Tibet), located on the northern Tibetan Plateau of China. A WRF modeling period from July to August 2007 was selected for the summer monsoon conditions. To validate the modeling results, the ground-measured or calculated variables (e.g., net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) were compared to the simulated values. The modeling results show that the derived model land surface heat fluxes are in agreement with the land surface observations over the study area in summer. Therefore, the WRF model sensitivity experiments were successful in simulating the land surface heat fluxes over the study area.

  1. Techniques Deriving Land Cover and Earth Surface Deformation Information from Polarimetric SAR Interferometry- Final Report

    NASA Astrophysics Data System (ADS)

    Pottier, E.; Chen, E.; Li, Z.; Hong, W.; Xiang, M.; Li, Y.; Cloude, S. R.; Papathanassiou, K.; Zhang, L.; Li, X.

    2013-01-01

    In this paper we provide a summary of activities carried out under the DRAGON collaborative program in a project concerned with the application of Pol-InSAR to deriving land cover and Earth Surface deformation information. This project (ID. 5344) is based around four main scientific topics: Land Cover Analysis, Earth Surface Deformation Monitoring and DEM Extraction, Forest Vertical Structure Parameters Extraction and PolSARpro Software Development.

  2. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    NASA Technical Reports Server (NTRS)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  3. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Service (KMS)

    NASA Technical Reports Server (NTRS)

    Case, Johnathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the planetary boundary layer (PBL) of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface, particularly within weakly-sheared environments such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in land surface and numerical weather prediction (NWP) models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-impact weather over eastern Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) NWP model in real time to support its daily forecasting operations, making use of the NOAA/National Weather Service (NWS) Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the KMS-WRF runs on a regional grid over eastern Africa. Two organizations at the NASA Marshall Space Flight Center in Huntsville, AL, SERVIR and the Shortterm Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMS for enhancing its regional modeling capabilities through new datasets and tools. To accomplish this goal, SPoRT and SERVIR is providing enhanced, experimental land surface initialization datasets and model verification capabilities to KMS as part of this collaboration. To produce a land-surface initialization more consistent with the resolution of the KMS-WRF runs, the NASA Land Information System (LIS) is run at a comparable

  4. Accurate and precise quantification of atmospheric nitrate in streams draining land of various uses by using triple oxygen isotopes as tracers

    NASA Astrophysics Data System (ADS)

    Tsunogai, Urumu; Miyauchi, Takanori; Ohyama, Takuya; Komatsu, Daisuke D.; Nakagawa, Fumiko; Obata, Yusuke; Sato, Keiichi; Ohizumi, Tsuyoshi

    2016-06-01

    Land use in a catchment area has significant impacts on nitrate eluted from the catchment, including atmospheric nitrate deposited onto the catchment area and remineralised nitrate produced within the catchment area. Although the stable isotopic compositions of nitrate eluted from a catchment can be a useful tracer to quantify the land use influences on the sources and behaviour of the nitrate, it is best to determine these for the remineralised portion of the nitrate separately from the unprocessed atmospheric nitrate to obtain a more accurate and precise quantification of the land use influences. In this study, we determined the spatial distribution and seasonal variation of stable isotopic compositions of nitrate for more than 30 streams within the same watershed, the Lake Biwa watershed in Japan, in order to use 17O excess (Δ17O) of nitrate as an additional tracer to quantify the mole fraction of atmospheric nitrate accurately and precisely. The stable isotopic compositions, including Δ17O of nitrate, in precipitation (wet deposition; n = 196) sampled at the Sado-seki monitoring station were also determined for 3 years. The deposited nitrate showed large 17O excesses similar to those already reported for midlatitudes: Δ17O values ranged from +18.6 to +32.4 ‰ with a 3-year average of +26.3 ‰. However, nitrate in each inflow stream showed small annual average Δ17O values ranging from +0.5 to +3.1 ‰, which corresponds to mole fractions of unprocessed atmospheric nitrate to total nitrate from (1.8 ± 0.3) to (11.8 ± 1.8) % respectively, with an average for all inflow streams of (5.1 ± 0.5) %. Although the annual average Δ17O values tended to be smaller in accordance with the increase in annual average stream nitrate concentration from 12.7 to 106.2 µmol L-1, the absolute concentrations of unprocessed atmospheric nitrate were almost stable at (2.3 ± 1.1) µmol L-1 irrespective of the changes in population density and land use in each catchment area

  5. Exploring the interactions between water and sediment fluxes, plant growth, and land surface form through modeling

    NASA Astrophysics Data System (ADS)

    Flores Cervantes, J. H.; Bras, R. L.

    2006-12-01

    In a numerical model we explore the interactions between water fluxes, sediment fluxes, and plant growth, on a simulated land surface, and how these interactions shape the land surface in time. We hypothesize that the form of the land surface and the distribution of plants in space depends on the studied interactions. Our numerical model combines elements of an existing "landscape evolution model" where the land surface properties are assumed homogeneous, with: i) a model of soil thickness where a dynamic soil moisture is simulated; and ii) a model of vegetation growth and death as a function of soil moisture. Vegetation cover affects the land surface properties such as the critical shear stress and infiltration capacity. In the resulting model the land surface properties are spatially (and temporally) variable. Seasonality, runon, and the effects of differences in solar radiation in hillslopes with different inclination and orientation (with respect to the geographic north) in the evaporation and transpiration processes, are among the new elements incorporated into the new model. We compare this numerical model to field observations at a location in the Sevilleta Long Term Ecological Research (LTER) Site, NM, where opposing hillslopes, one facing north and the other facing south, are clearly different. The south facing slope has a scarcer vegetation and signs of more fluvial erosion than the north facing slope, which receives less solar radiation and thus is likely to experience less water losses due to evaporation.

  6. Automated system for fast and accurate analysis of SF6 injected in the surface ocean.

    PubMed

    Koo, Chul-Min; Lee, Kitack; Kim, Miok; Kim, Dae-Ok

    2005-11-01

    This paper describes an automated sampling and analysis system for the shipboard measurement of dissolved sulfur hexafluoride (SF6) in surface marine environments into which SF6 has been deliberately released. This underway system includes a gas chromatograph associated with an electron capture detector, a fast and highly efficient SF6-extraction device, a global positioning system, and a data acquisition system based on Visual Basic 6.0/C 6.0. This work is distinct from previous studies in that it quantifies the efficiency of the SF6-extraction device and its carryover effect and examines the effect of surfactant on the SF6-extraction efficiency. Measurements can be continuously performed on seawater samples taken from a seawater line installed onboard a research vessel. The system runs on an hourly cycle during which one set of four SF6 standards is measured and SF6 derived from the seawater stream is subsequently analyzed for the rest of each 1 h period. This state-of-art system was successfully used to trace a water mass carrying Cochlodinium polykrikoides, which causes harmful algal blooms (HAB) in the coastal waters of southern Korea. The successful application of this analysis system in tracing the HAB-infected water mass suggests that the SF6 detection method described in this paper will improve the quality of the future study of biogeochemical processes in the marine environment. PMID:16294883

  7. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  8. Accurate single-sequence prediction of solvent accessible surface area using local and global features

    PubMed Central

    Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej

    2014-01-01

    We present a new approach for predicting the Accessible Surface Area (ASA) using a General Neural Network (GENN). The novelty of the new approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Instead we use solely sequential window information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is tested on predicting the ASA of globular proteins and found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for GENN and ASAquick are available from Research and Information Systems at http://mamiris.com, from the SPARKS Lab at http://sparks-lab.org, and from the Battelle Center for Mathematical Medicine at http://mathmed.org. PMID:25204636

  9. Accurate single-sequence prediction of solvent accessible surface area using local and global features.

    PubMed

    Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej

    2014-11-01

    We present a new approach for predicting the Accessible Surface Area (ASA) using a General Neural Network (GENN). The novelty of the new approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Instead we use solely sequential window information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment-based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is tested on predicting the ASA of globular proteins and found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for GENN and ASAquick are available from Research and Information Systems at http://mamiris.com, from the SPARKS Lab at http://sparks-lab.org, and from the Battelle Center for Mathematical Medicine at http://mathmed.org. PMID:25204636

  10. A new fast accurate nonlinear medical image registration program including surface preserving regularization.

    PubMed

    Gruslys, Audrunas; Acosta-Cabronero, Julio; Nestor, Peter J; Williams, Guy B; Ansorge, Richard E

    2014-11-01

    Recently inexpensive graphical processing units (GPUs) have become established as a viable alternative to traditional CPUs for many medical image processing applications. GPUs offer the potential of very significant improvements in performance at low cost and with low power consumption. One way in which GPU programs differ from traditional CPU programs is that increasingly elaborate calculations per voxel may not impact of the overall processing time because memory accesses can dominate execution time. This paper presents a new GPU based elastic image registration program named Ezys. The Ezys image registration algorithm belongs to the wide class of diffeomorphic demons but uses surface preserving image smoothing and regularization filters designed for a GPU that would be computationally expensive on a CPU. We describe the methods used in Ezys and present results from two important neuroscience applications. Firstly inter-subject registration for transfer of anatomical labels and secondly longitudinal intra-subject registration to quantify atrophy in individual subjects. Both experiments showed that Ezys registration compares favorably with other popular elastic image registration programs. We believe Ezys is a useful tool for neuroscience and other applications, and also demonstrates the value of developing of novel image processing filters specifically designed for GPUs. PMID:24968094

  11. Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry

    NASA Astrophysics Data System (ADS)

    Rosenthal, Yair; Lohmann, George P.

    2002-09-01

    Paired δ18O and Mg/Ca measurements on the same foraminiferal shells offer the ability to independently estimate sea surface temperature (SST) changes and assess their temporal relationship to the growth and decay of continental ice sheets. The accuracy of this method is confounded, however, by the absence of a quantitative method to correct Mg/Ca records for alteration by dissolution. Here we describe dissolution-corrected calibrations for Mg/Ca-paleothermometry in which the preexponent constant is a function of size-normalized shell weight: (1) for G. ruber (212-300 μm) (Mg/Ca)ruber = (0.025 wt + 0.11) e0.095T and (b) for G. sacculifer (355-425 μm) (Mg/Ca)sacc = (0.0032 wt + 0.181) e0.095T. The new calibrations improve the accuracy of SST estimates and are globally applicable. With this correction, eastern equatorial Atlantic SST during the Last Glacial Maximum is estimated to be 2.9° ± 0.4°C colder than today.

  12. Accurate First-Principles Spectra Predictions for Ethylene and its Isotopologues from Full 12D AB Initio Surfaces

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Rey, Michael; Tyuterev, Vladimir; Nikitin, Andrei V.; Szalay, Peter

    2015-06-01

    Hydrocarbons such as ethylene (C_2H_4) and methane (CH_4) are of considerable interest for the modeling of planetary atmospheres and other astrophysical applications. Knowledge of rovibrational transitions of hydrocarbons is of primary importance in many fields but remains a formidable challenge for the theory and spectral analysis. Essentially two theoretical approaches for the computation and prediction of spectra exist. The first one is based on empirically-fitted effective spectroscopic models. Several databases aim at collecting the corresponding data but the information about C_2H_4 spectrum present in these databases remains limited, only some spectral ranges around 1000, 3000 and 6000 cm-1 being available. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. Although they do not yet reach the spectroscopic accuracy, they could provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on two necessary ingredients: (i) accurate intramolecular potential energy surface and dipole moment surface components and (ii) efficient computational methods to achieve a good numerical convergence. We report predictions of vibrational and rovibrational energy levels of C_2H_4 using our new ground state potential energy surface obtained from extended ab initio calculations. Additionally we will introduce line positions and line intensities predictions based on a new dipole moment surface for ethylene. These results will be compared with previous works on ethylene and its isotopologues.

  13. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Appreciating when and how groundwater affects surface temperature and energy fluxes is important for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To explore the shallow groundwater effect, we numerically exposed two soil profiles – one havi...

  14. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  15. How accurately do we know the temperature of the surface of the earth?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun

    2016-04-01

    The earth's surface temperature is important in a variety of applications including global warming. We analyze six monthly series from 1880 - 2012, each produced with different methodologies with uncertainties (errors) estimated using various statistical assumptions and models. In the first part of this presentation, we estimate the error in a new way, by systematically determining how close the different series are to each other, the error at a given time scale is quantified by the root mean square fluctuation in the difference between the series as well as the difference between individual series and the average of all the available series. By examining the differences systematically from months to over a century, we find that the standard short range correlation assumption is untenable, that the differences in the series have long range statistical dependencies and that the error is roughly constant between one month and one century - varying only slightly between ±0.03 and ±0.05oC. In the second part of the presentation, we make a stochastic model of both the earth temperature and a model of how the error varies with time scale. The temperature model combines a fractional Gaussian noise (fGn) for the natural variability with a superposed linear model of the anthropogenic warming. The fGn has long range statistical dependencies with fluctuation exponent H = -0.1. The error model has three components: a white noise measurement error, a missing data bias and an areal reduction factor (bias). Whereas the white noise error has only short term correlations, the second - due differing amounts of missing data - is a random process of the same statistical type as the temperature (fGn) but with an amplitude that depends on the amount of data missing from each set. The third correction is an "areal reduction factor" that takes into account the fact that the space-time resolution of the data (here monthly, at 5ox5o) is not quite correct. We use the six global series to

  16. Projected Surface Radiative Forcing due to 2000 to 2100 Land Use Land Cover Albedo Change Across the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Sleeter, B. M.

    2013-12-01

    Satellite-derived contemporary land-use land-cover (LULC) change, albedo data, and modeled future LULC changes are used to study potential impacts of LULC change from 2000 to 2100 on surface albedo and radiative forcing across the conterminous United States (CONUS). Downscaled projected LULC change information, consistent with Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), is provided by incorporating ecoregion-based land use histories, global integrated assessment models, and expert judgment. The downscaled projections span a wide range of future potential socioeconomic conditions across 10 land cover classes and 84 ecoregions. The A2 scenario had the highest overall CONUS forcing (-0.5369 Wm-2) due to projected high demands for developed and agricultural lands, associated with high population growth and low environmental protection. The B1 scenario had the lowest overall CONUS forcing (-0.0114 Wm-2) due primarily to projected low population growth and strong protection of biodiversity. The radiative forcing for individual ecoregions varied geographically in sign and magnitude, with the most negative forcings (as low as -1.8023 Wm-2, A2 scenario) due primarily to the conversion of forest to agriculture, and the most positive forcings (up to 0.9053 Wm-2, B2 scenario) due to the conversion of agriculture to forest. These results make an important contribution to quantifying the potential future role of LULC change on the climate system, and underscore the need for repeat, wall-to-wall, spatially-explicit national land cover mapping.

  17. A Technique for Assimilating GOES-Derived Land Surface Products into Regional Models to Improve the Representation of Land Surface Forcing

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary

    1998-01-01

    As the parameterizations of surface energy budgets in regional models have become more complete physically, models have the potential to be much more realistic in simulations of coupling between surface radiation, hydrology, and surface energy transfer. Realizing the importance of properly specifying the surface energy budget, many institutions are using land-surface models to represent the lower boundary forcing associated with biophysical processes and soil hydrology. However, the added degrees of freedom due to inclusion of such land-surface schemes require the specification of additional parameters within the model system such as vegetative resistances, green vegetation fraction, leaf area index, soil physical and hydraulic characteristics, stream flow, runoff, and the vertical distribution of soil moisture. A technique has been developed for assimilating GOES-IR skin temperature tendencies into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. An advantage of this technique for short-range forecasts is that it does not require a complex land-surface formulation within the

  18. Long-range cross-correlation between urban impervious surfaces and land surface temperatures

    NASA Astrophysics Data System (ADS)

    Nie, Qin; Xu, Jianhua; Man, Wang

    2016-03-01

    The thermal effect of urban impervious surfaces (UIS) is a complex problem. It is thus necessary to study the relationship between UIS and land surface temperatures (LST) using complexity science theory and methods. This paper investigates the long-range cross-correlation between UIS and LST with detrended cross-correlation analysis and multifractal detrended cross-correlation analysis, utilizing data from downtown Shanghai, China. UIS estimates were obtained from linear spectral mixture analysis, and LST was retrieved through application of the mono-window algorithm, using Landsat Thematic Mapper and Enhanced Thematic Mapper Plus data for 1997-2010. These results highlight a positive long-range cross-correlation between UIS and LST across People's Square in Shanghai. LST has a long memory for a certain spatial range of UIS values, such that a large increment in UIS is likely to be followed by a large increment in LST. While the multifractal long-range cross-correlation between UIS and LST was observed over a longer time period in the W-E direction (2002-2010) than in the N-S (2007-2010), these observed correlations show a weakening during the study period as urbanization increased.

  19. Identifying the Local Surface Urban Heat Island Through the Morphology of the Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Jiong; Zhan, Qingming; Xiao, Yinghui

    2016-06-01

    Current characterization of the Land Surface Temperature (LST) at city scale insufficiently supports efficient mitigations and adaptations of the Surface Urban Heat Island (SUHI) at local scale. This research intends to delineate the LST variation at local scale where mitigations and adaptations are more feasible. At the local scale, the research helps to identify the local SUHI (LSUHI) at different levels. The concept complies with the planning and design conventions that urban problems are treated with respect to hierarchies or priorities. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. The continuous and smooth latent LST is first recovered from the raw images. The Multi-Scale Shape Index (MSSI) is then applied to the latent LST to extract morphological indicators. The local scale variation of the LST is quantified by the indicators such that the LSUHI can be identified morphologically. The results are promising. It can potentially be extended to investigate the temporal dynamics of the LST and LSUHI. This research serves to the application of remote sensing, pattern analysis, urban microclimate study, and urban planning at least at 2 levels: (1) it extends the understanding of the SUHI to the local scale, and (2) the characterization at local scale facilitates problem identification and support mitigations and adaptations more efficiently.

  20. Restoration of surface-mined lands with rainfall harvesting

    SciTech Connect

    Sauer, R.H.; Rickard, W.H.

    1982-12-01

    Strip mining for coal in the arid western US will remove grazing land as energy demands are met. Conventional resotration usually includes leveling the spoil banks and covering them with top soil, fertilizing, seeding and irrigation with well or river water. An overview of research on an alternate method of restoring this land is reported. From 1976 through 1981 studies were conducted on the use of water harvesting, the collection and use of rainfall runoff, to restore the vegetative productivity of strip mined lands in arid regions. These studies tested the technical and economic feasibility of using partially leveled spoil banks at strip mines as catchment areas to collect and direct runoff to the topsoiled valley floor where crops were cultivated. Information was collected on the efficiency of seven treatments to increase runoff from the catchment areas and on the productivity of seven crops. The experiments were conducted in arid areas of Washington, Arizona, and Colorado. It was concluded that water harvesting can replace or augment expensive and inadequate supplies of well and river water in arid regions with a suitable climate. These studies showed that some treatments provided adequate runoff to produce a useful crop in the valleys, thus making this alternative approach to restoration technically feasible. This approach was also potentially economically feasible where the treatment costs of the catchment areas were low, the treatment was effective, the crop was productive and valuable, and earthmoving costs were lower than with conventional restoration involving complete leveling of spoil banks. It was also concluded that water harvesting can be made more effective with further information on catchment area treatments, which crops are most adaptable to water harvesting, the optimum incline of the catchment areas and climatic influences on water harvesting.

  1. Accurate Ab Initio Quantum Mechanics Simulations of Bi2Se3 and Bi2Te3 Topological Insulator Surfaces.

    PubMed

    Crowley, Jason M; Tahir-Kheli, Jamil; Goddard, William A

    2015-10-01

    It has been established experimentally that Bi2Te3 and Bi2Se3 are topological insulators, with zero band gap surface states exhibiting linear dispersion at the Fermi energy. Standard density functional theory (DFT) methods such as PBE lead to large errors in the band gaps for such strongly correlated systems, while more accurate GW methods are too expensive computationally to apply to the thin films studied experimentally. We show here that the hybrid B3PW91 density functional yields GW-quality results for these systems at a computational cost comparable to PBE. The efficiency of our approach stems from the use of Gaussian basis functions instead of plane waves or augmented plane waves. This remarkable success without empirical corrections of any kind opens the door to computational studies of real chemistry involving the topological surface state, and our approach is expected to be applicable to other semiconductors with strong spin-orbit coupling. PMID:26722872

  2. Land surface model calibration through microwave data assimilation for improving soil moisture simulations

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Zhu, La; Chen, Yingying; Zhao, Long; Qin, Jun; Lu, Hui; Tang, Wenjun; Han, Menglei; Ding, Baohong; Fang, Nan

    2016-02-01

    Soil moisture is a key variable in climate system, and its accurate simulation needs effective soil parameter values. Conventional approaches may obtain soil parameter values at point scale, but they are costly and not efficient at grid scale (10-100 km) of current climate models. This study explores the possibility to estimate soil parameter values by assimilating AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) brightness temperature (TB) data. In the assimilation system, the TB is simulated by the coupled system of a land surface model (LSM) and a radiative transfer model (RTM), and the simulation errors highly depend on parameters in both the LSM and the RTM. Thus, sensitive soil parameters may be inversely estimated through minimizing the TB errors. A crucial step for the parameter estimation is made to suppress the contamination of uncertainties in atmospheric forcing data. The effectiveness of the estimated parameter values is evaluated against intensive measurements of soil parameters and soil moisture in three grasslands of the Tibetan Plateau and the Mongolian Plateau. The results indicate that this satellite data-based approach can improve the data quality of soil porosity, a key parameter for soil moisture modeling, and LSM simulations with the estimated parameter values reasonably reproduce the measured soil moisture. This demonstrates it is feasible to calibrate LSMs for soil moisture simulations at grid scale by assimilating microwave satellite data, although more efforts are expected to improve the robustness of the model calibration.

  3. Land surface energy partitioning revisited: A novel approach based on single depth soil measurement

    NASA Astrophysics Data System (ADS)

    Yang, Jiachuan; Wang, Zhi-Hua

    2014-12-01

    The partitioning of solar energy into sensible, latent, and ground heat fluxes over the land surface is responsible for changes of state variables in the soil-atmosphere system. Recent research enables the reconstruction of the land surface temperature and ground heat flux using Green's function approach, as well as the estimate of the distribution of available energy into latent and sensible heat fluxes based on linear stability analysis. Combining the Green's function approach and linear stability analysis, we propose a new physically based numerical procedure to estimate the land surface energy partitioning in this paper. The new method is capable of predicting all surface energy budgets using a single depth soil measurement; the model reliability is evaluated with comparisons to flux tower measurements. The results of this study deepen our insight into the implicit link between surface energy partition and subsurface soil dynamics and how the link can be employed to related research areas.

  4. Impact of Land Surface Parameters on the Evaluation of East Asia Monsoon Precipitation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xue, Y.; Guo, W.

    2015-12-01

    Land surface has crucial impact on air movement through momentum, energy and mass exchange. Leaf area index (LAI), one of important variable in the land surface processes, involves in canopy radiative transfer, momentum transfer, precipitation interception loss, and transpiration, which affect on land surface energy and water partition processes. Therefore, it crucially affects the ability of models to adequately simulate land-surface interaction. In this study, Long-term Global Mapping LAI (GLOBMAP LAI) and its corresponding land cover and greenness fraction are introduced into WRF_NMM/SSiB2. Compared with the control simulation based on the original specified LAI that is based on limited survey. The simulation with GLOBMAP LAI produced better precipitation distribution and rain belt movement. The improvements of the East Asia monsoon precipitation simulation are mainly attributed to the correction of the position of subtropical high. The north edge of subtropical high is related to the position of East Asia Westerly Jet. In the control simulation, weak westerlies lead subtropical high to move northward. Therefore compared with observations, more precipitation is in high latitudes. With imposed remote sensing LAI, the model produces larger meridional temperature gradient in surface and upper air, leading to stronger thermal westerlies. The Southward of Westerly Jet blocks the subtropical high, which amends the position of monsoon rain belt. This study directly takes advantage of recently available remote sensing products, and attributes the improved regional model simulation to proper LAI specification, which leads to adequate land/atmosphere interactions.

  5. Sources of discrepancies between satellite-derived and land surface model estimates of latent heat fluxes

    NASA Astrophysics Data System (ADS)

    Lipton, Alan E.; Liang, Pan; Jiménez, Carlos; Moncet, Jean-Luc; Aires, Filipe; Prigent, Catherine; Lynch, Richard; Galantowicz, John F.; d'Entremont, Robert P.; Uymin, Gennady

    2015-03-01

    Monthly-average estimates of latent heat flux have been derived from a combination of satellite-derived microwave emissivities, day-night differences in land surface temperature (from microwave AMSR-E), downward solar and infrared fluxes from ISCCP cloud analysis, and MODIS visible and near-infrared surface reflectances. The estimates, produced with a neural network, were compared with data from the Noah land surface model, as produced for GLDAS-2, and with two alternative estimates derived from different datasets and methods. Areas with extensive, persistent, substantial discrepancies between the satellite and land surface model fluxes have been analyzed with the aid of data from flux towers. The sources of discrepancies were found to include problems with the model surface roughness length and turbulent exchange coefficients for midlatitude cropland areas in summer, inaccuracies in the precipitation data that were used as forcing for the land surface model, and model underestimation of transpiration in some forests during dry periods. At the tower sites analyzed, agreement with tower data was generally closer for our satellite-derived fluxes than for the land surface model fluxes, in terms of monthly averages.

  6. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  7. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    SciTech Connect

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and sensible

  8. Accurate double many-body expansion potential energy surface of HS2A2A‧) by scaling the external correlation

    NASA Astrophysics Data System (ADS)

    Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng

    2016-05-01

    A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol‑1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).

  9. Land Surface Albedo from MERIS Reflectances Using MODIS Directional Factors

    NASA Technical Reports Server (NTRS)

    Schaaf, Crystal L. B.; Gao, Feng; Strahler, Alan H.

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  10. Determination of land surface temperature by using Landsat 8 TIRS: A case study in Erzurum, Turkey

    NASA Astrophysics Data System (ADS)

    Dagliyar, Ayse; Avdan, Ugur; Demircioglu Yildiz, Nalan; Nefeslioglu, Hakan A.

    2015-04-01

    The use of satellite imagery in climate change and environmental studies has increased exponentially in accordance with rapid advancement in satellite technology. Apart from the studies such as determination of potential geothermal zones, volcanology, evaluation of geological structures and lithological units, the research on the effects of urban heat islands is also a crucial topic in climate change studies. Land surface temperature can be calculated by using the thermal bands of satellite images. Landsat 8 satellite launched on February 11th in 2013 carries 2 different sensors which are OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) having 12 bit radiometric resolution. In this study, land surface temperature of the urban area and its surrounding in Erzurum was calculated by using the satellite data which was acquired from the Landsat 8 Path/Row 172/32 on July 25th in 2014. Considering the surface emissivity and brightness values, the land surface temperature was evaluated in the study area. In order to validate the predicted land surface temperature values, in-situ land surface temperature measurements which were acquired from the stations of the General Directorate of State Meteorological Service in the city of Erzurum and in the districts Uzundere, İspir, Oltu, Tortum and Hınıs were considered. According to the comparisons, the maximum temperature difference was obtained to be 6.45°C in the Tortum station and the minimum temperature difference was observed to be 1.86°C in the Uzundere station. Additionally, by applying supervised classification on the Landsat 8 imagery, the land-use classes were obtained and the temperature differences observed according to the land-use were also investigated.

  11. Evaluation of the Aerosol Type Effect on the Surface Reflectance Retrieval Using Chris/proba Images Over Land

    NASA Astrophysics Data System (ADS)

    Tirelli, C.; Manzo, C.; Curci, G.; Bassani, C.

    2015-04-01

    Surface reflectance has a central role in the analysis of land surface for a broad variety of agricultural, geological and urban studies. An accurate atmospheric correction, obtained by an appropriate selection of aerosol type and loading, is the first requirement for a reliable surface reflectance estimation. The aerosol type is defined by its micro-physical properties, while the aerosol loading is described by optical thickness at 550 nm. The aim of this work is to evaluate the radiative impact of the aerosol model on the surface reflectance obtained from CHRIS (Compact High Resolution Imaging Spectrometer) hyperspectral data over land by using the specifically developed algorithm CHRIS@CRI (CHRIS Atmospherically Corrected Reflectance Imagery) based on the 6SV radiative transfer model. Five different aerosol models have been used: one provided by the AERONET inversion products (used as reference), three standard aerosol models in 6SV, and one obtained from the output of the GEOS-Chem global chemistry-transport model (CTM). As test case the urban site of Bruxelles and the suburban area of Rome Tor Vergata have been considered. The results obtained encourages the use of CTM in operational retrieval and provides an evaluation of the role of the aerosol model in the atmospheric correction process, considering the different microphysical properties impact.

  12. Surface Circulation of Lakes and Nearly Land-Locked Seas

    PubMed Central

    Emery, K. O.; Csanady, G. T.

    1973-01-01

    The pattern of surface circulation has been mapped for more than 40 lakes, marginal seas, estuaries, and lagoons. All are within the northern hemisphere, and all except one are known to have a counterclockwise pattern. This consistent pattern is attributed to the drag of wind blowing across the bodies of water. Warmer surface water is displaced to the right-hand shore zone (facing downwind), where it produces greater surface turbulence and, thus, greater wind drag. This effect leads to counterclockwise water circulation regardless of the direction and, within limits, the duration of the wind. PMID:16592051

  13. Land Surface Phenology in Kazakhstan: Climatic Variability and Institutional Change

    NASA Astrophysics Data System (ADS)

    de Beurs, K. M.; Henebry, G. M.

    2002-12-01

    Kazakhstan is the second largest country to emerge from the collapse of the Soviet Union. At 2.7 million sq km, Kazakhstan is nearly four times the size of Texas and more than one-third the size of the conterminous US. Kazakhstan is mostly rangeland: nearly 70% of the land area is grazed by cattle, sheep, goats, and other livestock. Consequent to the abrupt institutional changes surrounding the disintegration of the Soviet Union in the early 1990s, the Kazakhstan region has reportedly undergone extensive land-cover change. However, observing and quantifying these changes is difficult because of (1) the loss of regional environmental monitoring networks at the beginning of the 1990s and (2) the lack of historical Landsat imagery over much of the region, due to gaps in ground station reception masks. Were the institutional changes sufficiently great to affect NDVI phenology at spatial resolutions and extents relevant to mesoscale meteorological models? To explore this question, we used the NDVI time series from the Pathfinder AVHRR Land (PAL) data set, which consists of 10 d maximum NDVI composites at a spatial resolution of 8 km. Daily minimum and maximum temperatures, and daily precipitation rates were extracted from the NCEP/NCAR CDAS/Reanalysis Project. We produced 10 d composites of growing degree-days (GDD) and precipitation amounts. Simple quadratic models were used to relate NDVI time series to GDD. Two agricultural areas were examined: the region of rain-fed spring wheat cultivation in the north (25600 sq km near Kostanai) and the region of irrigated cotton and rice in the south (576 sq km near Kyzylorda). Two periods were evaluated: during the Soviet era (1985-89) and after the independence of Kazakhstan (1995-99). Models for the irrigated area had a better fit than the models for the rain-fed area, but all models were strongly significant. In the north, the temperature regime and the mean precipitation amounts were comparable for 1985-89 and 1995-99. The

  14. Soft- and reactive landing of ions onto surfaces: Concepts and applications.

    PubMed

    Johnson, Grant E; Gunaratne, Don; Laskin, Julia

    2016-01-01

    Soft- and reactive landing of mass-selected ions is gaining attention as a promising approach for the precisely-controlled preparation of materials on surfaces that are not amenable to deposition using conventional methods. A broad range of ionization sources and mass filters are available that make ion soft-landing a versatile tool for surface modification using beams of hyperthermal (<100 eV) ions. The ability to select the mass-to-charge ratio of the ion, its kinetic energy and charge state, along with precise control of the size, shape, and position of the ion beam on the deposition target distinguishes ion soft landing from other surface modification techniques. Soft- and reactive landing have been used to prepare interfaces for practical applications as well as precisely-defined model surfaces for fundamental investigations in chemistry, physics, and materials science. For instance, soft- and reactive landing have been applied to study the surface chemistry of ions isolated in the gas-phase, prepare arrays of proteins for high-throughput biological screening, produce novel carbon-based and polymer materials, enrich the secondary structure of peptides and the chirality of organic molecules, immobilize electrochemically-active proteins and organometallics on electrodes, create thin films of complex molecules, and immobilize catalytically active organometallics as well as ligated metal clusters. In addition, soft landing has enabled investigation of the size-dependent behavior of bare metal clusters in the critical subnanometer size regime where chemical and physical properties do not scale predictably with size. The morphology, aggregation, and immobilization of larger bare metal nanoparticles, which are directly relevant to the design of catalysts as well as improved memory and electronic devices, have also been studied using ion soft landing. This review article begins in section 1 with a brief introduction to the existing applications of ion soft- and

  15. Assimilation of Freeze-Thaw Observations into the NASA Catchment Land Surface Model

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Reichle, R. H.; De Lannoy, G. J.; Kimball, J. S.

    2013-12-01

    The land surface freeze/thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and net primary productivity at the land surface. To support the level 4 soil moisture and carbon products (value-added, i.e. using a combination of remote sensing data and modeling) for the planned NASA Soil Moisture Active Passive (SMAP) mission, an F/T assimilation algorithm is developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. A rule-based approach that incorporates model and observational errors is developed and used for assimilating the categorical F/T measurements into the land surface model (F/T analysis). An Observing System Simulation Experiment is conducted using synthetically generated measurements of the F/T state for a region in North America (90-110oW longitude, 45-55oN latitude). The synthetic 'truth' is generated using the NASA Catchment land surface model forced with surface meteorological fields from the Modern-Era Retrospective Reanalysis for Research and Applications (MERRA). To generate synthetic measurements, the true categorical F/T state is corrupted with a prescribed amount of F/T classification error. The assimilation experiment employs the same Catchment model except that forcing errors (relative to truth) are introduced via the application of meteorological forcing fields from the Global Land Data Assimilation System (GLDAS). The effect of the F/T analysis and classification error on land surface temperature and soil temperature predictions is examined in this research.

  16. Diagnosing coupled watershed processes using a fully-coupled groundwater, land-surface, surface water and mesoscale atmospheric model

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Kollet, S. J.; Chow, F. K.

    2007-12-01

    A variably-saturated groundwater flow model with an integrated overland flow component, a land-surface model and a mesoscale atmospheric model is used to examine the interplay between coupled water and energy processes. These processes are influenced by land-surface topography and subsurface heterogeneity. This parallel, integrated model simulates spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. Spatial statistics are used to demonstrate spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating. Additionally, spectral transforms of subsurface arrival times are computed using a transient Lagrangian transport simulation. Macrodispersion is used to mimic the effects of subsurface heterogeneity for a range of Peclet numbers. The slopes of these transforms indicate fractal scaling of this system over a range of timescales. All of these techniques point to importance of realistically representing coupled processes and the need to understand and diagnose these processes in nature. This work was conducted under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory (LLNL) under contract W-7405-Eng-48. This project was funded by the Laboratory Directed Research and Development Program at LLNL

  17. Comparison of land surface temperature measurements at NOAA CRN sites with airborne and satellite observations

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Kochendorfer, J.; Baker, B.; Dumas, E.; Meyers, T. P.; Guillevic, P.; Corda, S.; Muratore, J.; Martos, B.

    2011-12-01

    Land surface temperature (LST) is a key variable for studying global or regional land surface processes and the energy and water vapor exchange at the biosphere-atmosphere interface. In an effort to better quantify the spatial variability and overall representativeness of single-point surface temperature measurement being recorded at NOAA's Climate Reference Network (CRN) sites and to improve the accuracy of satellite land surface temperature measurements, airborne flight campaigns were conducted over two vegetated sites in Tennessee, USA during 2010 to 2011. During the campaign, multiple measurements of land surface temperature were made using Infra-Red temperature sensors at micrometeorological tower sites and onboard an instrumented Piper Navajo airborne research aircraft. In addition to this, coincident Moderate Resolution Imaging Spectroradiometer (MODIS) LST observations, onboard the NASA Terra and Aqua Earth Observing System satellites were used. The aircraft-based and satellite based land surface temperature measurements were compared to in situ, tower based LST measurements. Preliminary results show good agreement between in situ, aircraft and satellite measurements.

  18. An Integrated Snow Radiance and Snow Physics Modeling Framework for Cold Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Tedesco, Marco

    2006-01-01

    Recent developments in forward radiative transfer modeling and physical land surface modeling are converging to allow the assembly of an integrated snow/cold lands modeling framework for land surface modeling and data assimilation applications. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. Together these form a flexible framework for self-consistent remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. Each element of this framework is modular so the choice of element can be tailored to match the emphasis of a particular study. For example, within our framework, four choices of a FRTM are available to simulate the brightness temperature of snow: Two models are available to model the physical evolution of the snowpack and underlying soil, and two models are available to handle the water/energy balance at the land surface. Since the framework is modular, other models-physical or statistical--can be accommodated, too. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster at the NASA Goddard Space Flight Center. The advantages of such an integrated modular framework built on the LIS will be described through examples-e.g., studies to analyze snow field experiment observations, and simulations of future satellite missions for snow and cold land processes.

  19. Modeling of Land Surface Flux on the regional climate of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    Land surface heat fluxes over the heterogeneous landscape of the Tibetan Plateau can serve as boundary conditions for modeling the regional climate and the Asian monsoon system. The Weather Research and Forecasting (WRF) atmospheric modeling system has enabled us to model the land surface heat flux through sensitivity experiments that utilize in-situ observation data and the regional land-atmosphere exchanges of water and heat fluxes that are foundational to understanding the water and energy cycles present during the Asian monsoon period. A series of sensitivity experiments based on the WRF model and field observations has been proposed and tested for deriving the land surface heat fluxes (surface net radiation flux, soil heat flux, sensible heat flux and latent heat flux) over a heterogeneous land surface. The sensitivity experiments were simulated over the field area of the Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau (CEOP-CAMP/Tibet), located on the northern Tibetan Plateau of China. A WRF modeling period from July to August 2007 was selected for the summer monsoon conditions. To validate the modeling results, the ground-measured or calculated variables (e.g., net radiation flux, soil heat flux, sensible heat flux and latent heat flux) were compared to the simulated values. The modeling results show that the derived model land surface heat fluxes are in agreement with the land surface observations over the study area in summer. Therefore, the WRF model sensitivity experiments were successful in simulating the land surface heat fluxes over the study area. In this study, we designed cases for the WRF model, which lead to the following conclusions: 1) The WRF model successfully simulated the surface heat fluxes over the complex land surface of the Tibetan Plateau, including the diurnal variation. The modeling eigenvalues were similar to the observations. 2) When the initial