Carr, Lucas J; Mahar, Matthew T
2012-01-01
Purpose. To examine the accuracy of intensity and inclinometer output of three physical activity monitors during various sedentary and light-intensity activities. Methods. Thirty-six participants wore three physical activity monitors (ActiGraph GT1M, ActiGraph GT3X+, and StepWatch) while completing sedentary (lying, sitting watching television, sitting using computer, and standing still) light (walking 1.0 mph, pedaling 7.0 mph, pedaling 15.0 mph) intensity activities under controlled settings. Accuracy for correctly categorizing intensity was assessed for each monitor and threshold. Accuracy of the GT3X+ inclinometer function (GT3X+Incl) for correctly identifying anatomical position was also assessed. Percentage agreement between direct observation and the monitor recorded time spent in sedentary behavior and light intensity was examined. Results. All monitors using all thresholds accurately identified over 80% of sedentary behaviors and 60% of light-intensity walking time based on intensity output. The StepWatch was the most accurate in detecting pedaling time but unable to detect pedal workload. The GT3X+Incl accurately identified anatomical position during 70% of all activities but demonstrated limitations in discriminating between activities of differing intensity. Conclusions. Our findings suggest that all three monitors accurately measure most sedentary and light-intensity activities although choice of monitors should be based on study-specific needs.
NASA Technical Reports Server (NTRS)
Jefferies, S. M.; Duvall, T. L., Jr.
1991-01-01
A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.
Method of absorbance correction in a spectroscopic heating value sensor
Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John
2013-09-17
A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.
Image Processing of Porous Silicon Microarray in Refractive Index Change Detection.
Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi
2017-06-08
A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.
Image Processing of Porous Silicon Microarray in Refractive Index Change Detection
Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi
2017-01-01
A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image. PMID:28594383
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillot, Mathieu; Gingras, Luc; Archambault, Louis
2011-04-15
Purpose: The purposes of this work were: (1) To determine if a spectral method can accurately correct the Cerenkov light effect in plastic scintillation detectors (PSDs) for situations where the Cerenkov light is dominant over the scintillation light and (2) to develop a procedural guideline for accurately determining the calibration factors of PSDs. Methods: The authors demonstrate, by using the equations of the spectral method, that the condition for accurately correcting the effect of Cerenkov light is that the ratio of the two calibration factors must be equal to the ratio of the Cerenkov light measured within the two differentmore » spectral regions used for analysis. Based on this proof, the authors propose two new procedures to determine the calibration factors of PSDs, which were designed to respect this condition. A PSD that consists of a cylindrical polystyrene scintillating fiber (1.6 mm{sup 3}) coupled to a plastic optical fiber was calibrated by using these new procedures and the two reference procedures described in the literature. To validate the extracted calibration factors, relative dose profiles and output factors for a 6 MV photon beam from a medical linac were measured with the PSD and an ionization chamber. Emphasis was placed on situations where the Cerenkov light is dominant over the scintillation light and on situations dissimilar to the calibration conditions. Results: The authors found that the accuracy of the spectral method depends on the procedure used to determine the calibration factors of the PSD and on the attenuation properties of the optical fiber used. The results from the relative dose profile measurements showed that the spectral method can correct the Cerenkov light effect with an accuracy level of 1%. The results obtained also indicate that PSDs measure output factors that are lower than those measured with ionization chambers for square field sizes larger than 25x25 cm{sup 2}, in general agreement with previously published Monte Carlo results. Conclusions: The authors conclude that the spectral method can be used to accurately correct the Cerenkov light effect in PSDs. The authors confirmed the importance of maximizing the difference of Cerenkov light production between calibration measurements. The authors also found that the attenuation of the optical fiber, which is assumed to be constant in the original formulation of the spectral method, may cause a variation of the calibration factors in some experimental setups.« less
Application of Shack-Hartmann wavefront sensing technology to transmissive optic metrology
NASA Astrophysics Data System (ADS)
Rammage, Ron R.; Neal, Daniel R.; Copland, Richard J.
2002-11-01
Human vision correction optics must be produced in quantity to be economical. At the same time every human eye is unique and requires a custom corrective solution. For this reason the vision industries need fast, versatile and accurate methodologies for characterizing optics for production and research. Current methods for measuring these optics generally yield a cubic spline taken from less than 10 points across the surface of the lens. As corrective optics have grown in complexity this has become inadequate. The Shack-Hartmann wavefront sensor is a device that measures phase and irradiance of light in a single snapshot using geometric properties of light. Advantages of the Shack-Hartmann sensor include small size, ruggedness, accuracy, and vibration insensitivity. This paper discusses a methodology for designing instruments based on Shack-Hartmann sensors. The method is then applied to the development of an instrument for accurate measurement of transmissive optics such as gradient bifocal spectacle lenses, progressive addition bifocal lenses, intrarocular devices, contact lenses, and human corneal tissue. In addition, this instrument may be configured to provide hundreds of points across the surface of the lens giving improved spatial resolution. Methods are explored for extending the dynamic range and accuracy to meet the expanding needs of the ophthalmic and optometric industries. Data is presented demonstrating the accuracy and repeatability of this technique for the target optics.
Chromatic aberration correction: an enhancement to the calibration of low-cost digital dermoscopes.
Wighton, Paul; Lee, Tim K; Lui, Harvey; McLean, David; Atkins, M Stella
2011-08-01
We present a method for calibrating low-cost digital dermoscopes that corrects for color and inconsistent lighting and also corrects for chromatic aberration. Chromatic aberration is a form of radial distortion that often occurs in inexpensive digital dermoscopes and creates red and blue halo-like effects on edges. Being radial in nature, distortions due to chromatic aberration are not constant across the image, but rather vary in both magnitude and direction. As a result, distortions are not only visually distracting but could also mislead automated characterization techniques. Two low-cost dermoscopes, based on different consumer-grade cameras, were tested. Color is corrected by imaging a reference and applying singular value decomposition to determine the transformation required to ensure accurate color reproduction. Lighting is corrected by imaging a uniform surface and creating lighting correction maps. Chromatic aberration is corrected using a second-order radial distortion model. Our results for color and lighting calibration are consistent with previously published results, while distortions due to chromatic aberration can be reduced by 42-47% in the two systems considered. The disadvantages of inexpensive dermoscopy can be quickly substantially mitigated with a suitable calibration procedure. © 2011 John Wiley & Sons A/S.
Security-enhanced chaos communication with time-delay signature suppression and phase encryption.
Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun
2016-08-15
A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.
Fast determination of the spatially distributed photon fluence for light dose evaluation of PDT
NASA Astrophysics Data System (ADS)
Zhao, Kuanxin; Chen, Weiting; Li, Tongxin; Yan, Panpan; Qin, Zhuanping; Zhao, Huijuan
2018-02-01
Photodynamic therapy (PDT) has shown superiorities of noninvasiveness and high-efficiency in the treatment of early-stage skin cancer. Rapid and accurate determination of spatially distributed photon fluence in turbid tissue is essential for the dosimetry evaluation of PDT. It is generally known that photon fluence can be accurately obtained by Monte Carlo (MC) methods, while too much time would be consumed especially for complex light source mode or online real-time dosimetry evaluation of PDT. In this work, a method to rapidly calculate spatially distributed photon fluence in turbid medium is proposed implementing a classical perturbation and iteration theory on mesh Monte Carlo (MMC). In the proposed method, photon fluence can be obtained by superposing a perturbed and iterative solution caused by the defects in turbid medium to an unperturbed solution for the background medium and therefore repetitive MMC simulations can be avoided. To validate the method, a non-melanoma skin cancer model is carried out. The simulation results show the solution of photon fluence can be obtained quickly and correctly by perturbation algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, C.; Aldering, G.; Aragon, C.
2015-02-10
We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a givenmore » supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than ∼0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty.« less
Stray light effects in above-water remote-sensing reflectance from hyperspectral radiometers.
Talone, Marco; Zibordi, Giuseppe; Ansko, Ilmar; Banks, Andrew Clive; Kuusk, Joel
2016-05-20
Stray light perturbations are unwanted distortions of the measured spectrum due to the nonideal performance of optical radiometers. Because of this, stray light characterization and correction is essential when accurate radiometric measurements are a necessity. In agreement with such a need, this study focused on stray light correction of hyperspectral radiometers widely applied for above-water measurements to determine the remote-sensing reflectance (RRS). Stray light of sample radiometers was experimentally characterized and a correction algorithm was developed and applied to field measurements performed in the Mediterranean Sea. Results indicate that mean stray light corrections are appreciable, with values generally varying from -1% to +1% in the 400-700 nm spectral region for downward irradiance and sky radiance, and from -1% to +4% for total radiance from the sea. Mean corrections for data products such as RRS exhibit values that depend on water type varying between -0.5% and +1% in the blue-green spectral region, with peaks up to 9% in the red in eutrophic waters. The possibility of using one common stray light correction matrix for the analyzed class of radiometers was also investigated. Results centered on RRS support such a feasibility at the expense of an increment of the uncertainty typically well below 0.5% in the blue-green and up to 1% in the red, assuming sensors are based on spectrographs from the same production batch.
Forward and correctional OFDM-based visible light positioning
NASA Astrophysics Data System (ADS)
Li, Wei; Huang, Zhitong; Zhao, Runmei; He, Peixuan; Ji, Yuefeng
2017-09-01
Visible light positioning (VLP) has attracted much attention in both academic and industrial areas due to the extensive deployment of light-emitting diodes (LEDs) as next-generation green lighting. Generally, the coverage of a single LED lamp is limited, so LED arrays are always utilized to achieve uniform illumination within the large-scale indoor environment. However, in such dense LED deployment scenario, the superposition of the light signals becomes an important challenge for accurate VLP. To solve this problem, we propose a forward and correctional orthogonal frequency division multiplexing (OFDM)-based VLP (FCO-VLP) scheme with low complexity in generating and processing of signals. In the first forward procedure of FCO-VLP, an initial position is obtained by the trilateration method based on OFDM-subcarriers. The positioning accuracy will be further improved in the second correctional procedure based on the database of reference points. As demonstrated in our experiments, our approach yields an improved average positioning error of 4.65 cm and an enhanced positioning accuracy by 24.2% compared with trilateration method.
Gamma model and its analysis for phase measuring profilometry.
Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G
2010-03-01
Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Overbeck, V. R.; Snetsinger, K. G.; Russell, P. B.; Ferry, G. V.
1990-01-01
The use of the active scattering spectrometer probe (ASAS-X) to measure sulfuric acid aerosols on U-2 and ER-2 research aircraft has yielded results that are at times ambiguous due to the dependence of particles' optical signatures on refractive index as well as physical dimensions. The calibration correction of the ASAS-X optical spectrometer probe for stratospheric aerosol studies is validated through an independent and simultaneous sampling of the particles with impactors; sizing and counting of particles on SEM images yields total particle areas and volumes. Upon correction of calibration in light of these data, spectrometer results averaged over four size distributions are found to agree with similarly averaged impactor results to within a few percent: indicating that the optical properties or chemical composition of the sample aerosol must be known in order to achieve accurate optical aerosol spectrometer size analysis.
NASA Astrophysics Data System (ADS)
Riggs, A. J. Eldorado; Cady, Eric J.; Prada, Camilo M.; Kern, Brian D.; Zhou, Hanying; Kasdin, N. Jeremy; Groff, Tyler D.
2016-07-01
For direct imaging and spectral characterization of cold exoplanets in reflected light, the proposed Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will carry two types of coronagraphs. The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory has been testing both coronagraph types and demonstrated their abilities to achieve high contrast. Focal plane wavefront correction is used to estimate and mitigate aberrations. As the most time-consuming part of correction during a space mission, the acquisition of probed images for electric field estimation needs to be as short as possible. We present results from the HCIT of narrowband, low-signal wavefront estimation tests using a shaped pupil Lyot coronagraph (SPLC) designed for the WFIRST CGI. In the low-flux regime, the Kalman filter and iterated extended Kalman filter provide faster correction, better achievable contrast, and more accurate estimates than batch process estimation.
Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters.
Ripple, Dean C; Hu, Zhishang
2016-03-01
Industry and regulatory bodies desire more accurate methods for counting and characterizing particles. Measurements of proteinaceous-particle concentrations by light obscuration and flow imaging can differ by factors of ten or more. We propose methods to correct the diameters reported by light obscuration and flow imaging instruments. For light obscuration, diameters were rescaled based on characterization of the refractive index of typical particles and a light scattering model for the extinction efficiency factor. The light obscuration models are applicable for either homogeneous materials (e.g., silicone oil) or for chemically homogeneous, but spatially non-uniform aggregates (e.g., protein aggregates). For flow imaging, the method relied on calibration of the instrument with silica beads suspended in water-glycerol mixtures. These methods were applied to a silicone-oil droplet suspension and four particle suspensions containing particles produced from heat stressed and agitated human serum albumin, agitated polyclonal immunoglobulin, and abraded ethylene tetrafluoroethylene polymer. All suspensions were measured by two flow imaging and one light obscuration apparatus. Prior to correction, results from the three instruments disagreed by a factor ranging from 3.1 to 48 in particle concentration over the size range from 2 to 20 μm. Bias corrections reduced the disagreement from an average factor of 14 down to an average factor of 1.5. The methods presented show promise in reducing the relative bias between light obscuration and flow imaging.
CORRECTING FOR INTERSTELLAR SCATTERING DELAY IN HIGH-PRECISION PULSAR TIMING: SIMULATION RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palliyaguru, Nipuni; McLaughlin, Maura; Stinebring, Daniel
2015-12-20
Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any methodmore » to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse “jitter” is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.« less
Annear, Matthew J; Gornik, Kara R; Venturi, Francesca L; Hauptman, Joe G; Bartoe, Joshua T; Petersen-Jones, Simon M
2013-09-01
The increasing importance of canine retinal dystrophy models means accurate vision testing is needed. This study was performed to evaluate a four-choice vision testing technique for any difference in outcome measures with repeated evaluations of the same dogs. Four 11-month-old RPE65-deficient dogs. Vision was evaluated using a previously described four-choice vision testing device. Four evaluations were performed at 2-week intervals. Vision was assessed at six different white light intensities (bright through dim), and each eye was evaluated separately. The ability to select the one of the four exit tunnels that was open at the far end was assessed ('choice of exit') and recorded as correct or incorrect first tunnel choice. 'Time to exit' the device was also recorded. Both outcomes were analyzed for significance using anova. We hypothesized that performance would improve with repeated testing (more correct choices and more rapid time to exit). 'Choice of exit' did not vary significantly between each evaluation (P = 0.12), in contrast 'time to exit' increased significantly (P = 0.012), and showed greater variability in dim light conditions. We found no evidence to support the hypothesis that either measure of outcome worsened with repeated testing; in fact, the 'time to exit' outcome worsened rather than improved. The 'choice of exit' gave consistent results between trials. These outcome data indicate the importance of including a choice-based assessment of vision in addition to measurement of device transit time. © 2012 American College of Veterinary Ophthalmologists.
Real-time intraoperative fluorescence imaging system using light-absorption correction.
Themelis, George; Yoo, Jung Sun; Soh, Kwang-Sup; Schulz, Ralf; Ntziachristos, Vasilis
2009-01-01
We present a novel fluorescence imaging system developed for real-time interventional imaging applications. The system implements a correction scheme that improves the accuracy of epi-illumination fluorescence images for light intensity variation in tissues. The implementation is based on the use of three cameras operating in parallel, utilizing a common lens, which allows for the concurrent collection of color, fluorescence, and light attenuation images at the excitation wavelength from the same field of view. The correction is based on a ratio approach of fluorescence over light attenuation images. Color images and video is used for surgical guidance and for registration with the corrected fluorescence images. We showcase the performance metrics of this system on phantoms and animals, and discuss the advantages over conventional epi-illumination systems developed for real-time applications and the limits of validity of corrected epi-illumination fluorescence imaging.
Addition of Adapted Optics towards obtaining a quantitative detection of diabetic retinopathy
NASA Astrophysics Data System (ADS)
Yust, Brian; Obregon, Isidro; Tsin, Andrew; Sardar, Dhiraj
2009-04-01
An adaptive optics system was assembled for correcting the aberrated wavefront of light reflected from the retina. The adaptive optics setup includes a superluminous diode light source, Hartmann-Shack wavefront sensor, deformable mirror, and imaging CCD camera. Aberrations found in the reflected wavefront are caused by changes in the index of refraction along the light path as the beam travels through the cornea, lens, and vitreous humour. The Hartmann-Shack sensor allows for detection of aberrations in the wavefront, which may then be corrected with the deformable mirror. It has been shown that there is a change in the polarization of light reflected from neovascularizations in the retina due to certain diseases, such as diabetic retinopathy. The adaptive optics system was assembled towards the goal of obtaining a quantitative measure of onset and progression of this ailment, as one does not currently exist. The study was done to show that the addition of adaptive optics results in a more accurate detection of neovascularization in the retina by measuring the expected changes in polarization of the corrected wavefront of reflected light.
Monitoring Disaster-Related Power Outages Using NASA Black Marble Nighttime Light Product
NASA Astrophysics Data System (ADS)
Wang, Z.; Román, M. O.; Sun, Q.; Molthan, A. L.; Schultz, L. A.; Kalb, V. L.
2018-04-01
Timely and accurate monitoring of disruptions to the electricity grid, including the magnitude, spatial extent, timing, and duration of net power losses, is needed to improve situational awareness of disaster response and long-term recovery efforts. Satellite-derived Nighttime Lights (NTL) provide an indication of human activity patterns and have been successfully used to monitor disaster-related power outages. The global 500 m spatial resolution National Aeronautics and Space Administration (NASA) Black Marble NTL daily standard product suite (VNP46) is generated from Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the NASA/National Oceanic and Atmospheric Administration (NOAA) Suomi National Polar-orbiting Partnership (Suomi- NPP) satellite, which began operations on 19 January 2012. With its improvements in product accuracy (including critical atmospheric and BRDF correction routines), the VIIRS daily Black Mable product enables systematic monitoring of outage conditions across all stages of the disaster management cycle.
Hu, Min-Chun; Cheng, Ming-Hsun; Lan, Kun-Chan
2016-01-01
An automatic tongue diagnosis framework is proposed to analyze tongue images taken by smartphones. Different from conventional tongue diagnosis systems, our input tongue images are usually in low resolution and taken under unknown lighting conditions. Consequently, existing tongue diagnosis methods cannot be directly applied to give accurate results. We use the SVM (support vector machine) to predict the lighting condition and the corresponding color correction matrix according to the color difference of images taken with and without flash. We also modify the state-of-the-art work of fur and fissure detection for tongue images by taking hue information into consideration and adding a denoising step. Our method is able to correct the color of tongue images under different lighting conditions (e.g. fluorescent, incandescent, and halogen illuminant) and provide a better accuracy in tongue features detection with less processing complexity than the prior work. In this work, we proposed an automatic tongue diagnosis framework which can be applied to smartphones. Unlike the prior work which can only work in a controlled environment, our system can adapt to different lighting conditions by employing a novel color correction parameter estimation scheme.
Greene, Samuel M; Shan, Xiao; Clary, David C
2016-02-28
We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.
Real-time lens distortion correction: speed, accuracy and efficiency
NASA Astrophysics Data System (ADS)
Bax, Michael R.; Shahidi, Ramin
2014-11-01
Optical lens systems suffer from nonlinear geometrical distortion. Optical imaging applications such as image-enhanced endoscopy and image-based bronchoscope tracking require correction of this distortion for accurate localization, tracking, registration, and measurement of image features. Real-time capability is desirable for interactive systems and live video. The use of a texture-mapping graphics accelerator, which is standard hardware on current motherboard chipsets and add-in video graphics cards, to perform distortion correction is proposed. Mesh generation for image tessellation, an error analysis, and performance results are presented. It is shown that distortion correction using commodity graphics hardware is substantially faster than using the main processor and can be performed at video frame rates (faster than 30 frames per second), and that the polar-based method of mesh generation proposed here is more accurate than a conventional grid-based approach. Using graphics hardware to perform distortion correction is not only fast and accurate but also efficient as it frees the main processor for other tasks, which is an important issue in some real-time applications.
Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C
2017-09-01
To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Stray light calibration of the Dawn Framing Camera
NASA Astrophysics Data System (ADS)
Kovacs, Gabor; Sierks, Holger; Nathues, Andreas; Richards, Michael; Gutierrez-Marques, Pablo
2013-10-01
Sensitive imaging systems with high dynamic range onboard spacecrafts are susceptible to ghost and stray-light effects. During the design phase, the Dawn Framing Camera was laid out and optimized to minimize those unwanted, parasitic effects. However, the requirement of low distortion to the optical design and use of a front-lit focal plane array induced an additional stray light component. This paper presents the ground-based and in-flight procedures characterizing the stray-light artifacts. The in-flight test used the Sun as the stray light source, at different angles of incidence. The spacecraft was commanded to point predefined solar elongation positions, and long exposure images were recorded. The PSNIT function was calculated by the known illumination and the ground based calibration information. In the ground based calibration, several extended and point sources were used with long exposure times in dedicated imaging setups. The tests revealed that the major contribution to the stray light is coming from the ghost reflections between the focal plan array and the band pass interference filters. Various laboratory experiments and computer modeling simulations were carried out to quantify the amount of this effect, including the analysis of the diffractive reflection pattern generated by the imaging sensor. The accurate characterization of the detector reflection pattern is the key to successfully predict the intensity distribution of the ghost image. Based on the results, and the properties of the optical system, a novel correction method is applied in the image processing pipeline. The effect of this correction procedure is also demonstrated with the first images of asteroid Vesta.
The dim light melatonin onset following fixed and free sleep schedules.
Burgess, Helen J; Eastman, Charmane I
2005-09-01
The time at which the dim light melatonin onset (DLMO) occurs can be used to ensure the correct timing of light and/or melatonin administration in order to produce desired circadian phase shifts. Sometimes however, measuring the DLMO is not feasible. Here we determined if the DLMO was best estimated from fixed sleep times (based on habitual sleep times) or free (ad libitum) sleep times. Young healthy sleepers on fixed (n=60) or free (n=60) sleep schedules slept at home for 6 days. Sleep times were recorded with sleep logs verified with wrist actigraphy. Half-hourly saliva samples were then collected during a dim light phase assessment and were later assayed to determine the DLMO. We found that the DLMO was more highly correlated with sleep times in the free sleepers than in the fixed sleepers (DLMO versus wake time, r=0.70 and r=0.44, both P<0.05). The regression equation between wake time and the DLMO in the free sleepers predicted the DLMO in an independent sample of free sleepers (n=23) to within 1.5 h of the actual DLMO in 96% of cases. These results indicate that the DLMO can be readily estimated in people whose sleep times are minimally affected by work, class and family commitments. Further work is necessary to determine if the DLMO can be accurately estimated in people with greater work and family responsibilities that affect their sleep times, perhaps by using weekend wake times, and if this method will apply to the elderly and patients with circadian rhythm disorders.
The dim light melatonin onset following fixed and free sleep schedules
Burgess, Helen J.; Eastman, Charmane I.
2013-01-01
Summary The time at which the dim light melatonin onset (DLMO) occurs can be used to ensure the correct timing of light and/or melatonin administration in order to produce desired circadian phase shifts. Sometimes however, measuring the DLMO is not feasible. Here we determined if the DLMO was best estimated from fixed sleep times (based on habitual sleep times) or free (ad libitum) sleep times. Young healthy sleepers on fixed (n = 60) or free (n = 60) sleep schedules slept at home for 6 days. Sleep times were recorded with sleep logs verified with wrist actigraphy. Half-hourly saliva samples were then collected during a dim light phase assessment and were later assayed to determine the DLMO. We found that the DLMO was more highly correlated with sleep times in the free sleepers than in the fixed sleepers (DLMO versus wake time, r = 0.70 and r = 0.44, both P < 0.05). The regression equation between wake time and the DLMO in the free sleepers predicted the DLMO in an independent sample of free sleepers (n = 23) to within 1.5 h of the actual DLMO in 96% of cases. These results indicate that the DLMO can be readily estimated in people whose sleep times are minimally affected by work, class and family commitments. Further work is necessary to determine if the DLMO can be accurately estimated in people with greater work and family responsibilities that affect their sleep times, perhaps by using weekend wake times, and if this method will apply to the elderly and patients with circadian rhythm disorders. PMID:16120097
NASA Astrophysics Data System (ADS)
Tang, Yubo; Carns, Jennifer; Polydorides, Alexandros D.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.
2016-08-01
A modular video endoscope is developed to enable both white light imaging (WLI) and vital-dye fluorescence imaging (VFI) in a single-endoscopic insertion for the early detection of cancer in Barrett's esophagus (BE). We demonstrate that VFI can be achieved in conjunction with white light endoscopy, where appropriate white balance is used to correct for the presence of the emission filter. In VFI mode, a contrast enhancement feature is implemented in real time to further highlight glandular patterns in BE and related malignancies without introducing artifacts. In a pilot study, we demonstrate accurate correlation of images in two widefield modalities, with representative images showing the disruption and effacement of glandular architecture associated with cancer development in BE. VFI images of these alterations exhibit enhanced contrast when compared to WLI. Results suggest that the usefulness of VFI in the detection of BE-related neoplasia should be further evaluated in future in vivo studies.
Flight test evaluation of predicted light aircraft drag, performance, and stability
NASA Technical Reports Server (NTRS)
Smetana, F. O.; Fox, S. R.
1979-01-01
A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pull up (from V max to V stall) and pushover (to V max for level flight). The technique, which is an extension of nonlinear equations of motion of the parameter identification methods of Iliff and Taylor and includes provisions for internal data compatibility improvement as well, was shown to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. Flow charts, listings, sample inputs and outputs for the relevant routines are provided as appendices. This technique was applied to flight data taken on the ATLIT aircraft. Lack of adequate knowledge of the correct full throttle thrust horsepower true airspeed variation and considerable internal data inconsistency made it impossible to apply the trajectory matching features of the technique.
Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves
NASA Technical Reports Server (NTRS)
Wakeford, H. R.; Sing, D.K.; Deming, D.; Mandell, A.
2016-01-01
Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 microns probe primarily the H2O absorption band at 1.4 microns, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as "ramp" probability (R (sub p)) divided by "ramp" total (R (sub asterisk)), which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts delta (sub lambda) times lambda) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.
Face Recognition Using Local Quantized Patterns and Gabor Filters
NASA Astrophysics Data System (ADS)
Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.
2015-05-01
The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.
3D Space Radiation Transport in a Shielded ICRU Tissue Sphere
NASA Technical Reports Server (NTRS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2014-01-01
A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.
Absorption and scattering of light by nonspherical particles. [in atmosphere
NASA Technical Reports Server (NTRS)
Bohren, C. F.
1986-01-01
Using the example of the polarization of scattered light, it is shown that the scattering matrices for identical, randomly ordered particles and for spherical particles are unequal. The spherical assumptions of Mie theory are therefore inconsistent with the random shapes and sizes of atmospheric particulates. The implications for corrections made to extinction measurements of forward scattering light are discussed. Several analytical methods are examined as potential bases for developing more accurate models, including Rayleigh theory, Fraunhoffer Diffraction theory, anomalous diffraction theory, Rayleigh-Gans theory, the separation of variables technique, the Purcell-Pennypacker method, the T-matrix method, and finite difference calculations.
General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies
NASA Technical Reports Server (NTRS)
Kopeikin, Sergei
2003-01-01
The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.
Singh, Gurpreet; Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong
2012-06-15
A complex-envelope (CE) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) approach to treat light-matter interaction self-consistently with electromagnetic field evolution for efficient simulations of active photonic devices is presented for the first time (to our best knowledge). The active medium (AM) is modeled using an efficient multilevel system of carrier rate equations to yield the correct carrier distributions, suitable for modeling semiconductor/solid-state media accurately. To include the AM in the CE-ADI-FDTD method, a first-order differential system involving CE fields in the AM is first set up. The system matrix that includes AM parameters is then split into two time-dependent submatrices that are then used in an efficient ADI splitting formula. The proposed CE-ADI-FDTD approach with AM takes 22% of the time as the approach of the corresponding explicit FDTD, as validated by semiconductor microdisk laser simulations.
Position Error Covariance Matrix Validation and Correction
NASA Technical Reports Server (NTRS)
Frisbee, Joe, Jr.
2016-01-01
In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.
Upper wide-angle viewing system for ITER.
Lasnier, C J; McLean, A G; Gattuso, A; O'Neill, R; Smiley, M; Vasquez, J; Feder, R; Smith, M; Stratton, B; Johnson, D; Verlaan, A L; Heijmans, J A C
2016-11-01
The Upper Wide Angle Viewing System (UWAVS) will be installed on five upper ports of ITER. This paper shows major requirements, gives an overview of the preliminary design with reasons for some design choices, examines self-emitted IR light from UWAVS optics and its effect on accuracy, and shows calculations of signal-to-noise ratios for the two-color temperature output as a function of integration time and divertor temperature. Accurate temperature output requires correction for vacuum window absorption vs. wavelength and for self-emitted IR, which requires good measurement of the temperature of the optical components. The anticipated signal-to-noise ratio using presently available IR cameras is adequate for the required 500 Hz frame rate.
Yang, Pao-Keng
2012-05-01
We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng
2012-05-01
We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.
ERIC Educational Resources Information Center
Beare, R. A.
2008-01-01
Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…
a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images
NASA Astrophysics Data System (ADS)
Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei
2018-04-01
Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.
Using DMSP/OLS nighttime imagery to estimate carbon dioxide emission
NASA Astrophysics Data System (ADS)
Desheng, B.; Letu, H.; Bao, Y.; Naizhuo, Z.; Hara, M.; Nishio, F.
2012-12-01
This study highlighted a method for estimating CO2 emission from electric power plants using the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) stable light image product for 1999. CO2 emissions from power plants account for a high percentage of CO2 emissions from fossil fuel consumptions. Thermal power plants generate the electricity by burning fossil fuels, so they emit CO2 directly. In many Asian countries such as China, Japan, India, and South Korea, the amounts of electric power generated by thermal power accounts over 58% in the total amount of electric power in 1999. So far, figures of the CO2 emission were obtained mainly by traditional statistical methods. Moreover, the statistical data were summarized as administrative regions, so it is difficult to examine the spatial distribution of non-administrative division. In some countries the reliability of such CO2 emission data is relatively low. However, satellite remote sensing can observe the earth surface without limitation of administrative regions. Thus, it is important to estimate CO2 using satellite remote sensing. In this study, we estimated the CO2 emission by fossil fuel consumption from electric power plant using stable light image of the DMSP/OLS satellite data for 1999 after correction for saturation effect in Japan. Digital number (DN) values of the stable light images in center areas of cities are saturated due to the large nighttime light intensities and characteristics of the OLS satellite sensors. To more accurately estimate the CO2 emission using the stable light images, a saturation correction method was developed by using the DMSP radiance calibration image, which does not include any saturation pixels. A regression equation was developed by the relationship between DN values of non-saturated pixels in the stable light image and those in the radiance calibration image. And, regression equation was used to adjust the DNs of the radiance calibration image. Then, saturated DNs of the stable light image was corrected using adjusted radiance calibration image. After that, regression analysis was performed with cumulative DNs of the corrected stable light image, electric power consumption, electric power generation and CO2 emission by fossil fuel consumption from electric power plant each other. Results indicated that there are good relationships (R2>90%) between DNs of the corrected stable light image and other parameters. Based on the above results, we estimated the CO2 emission from electric power plant using corrected stable light image. Keywords: DMSP/OLS, stable light, saturation light correction method, regression analysis Acknowledgment: The research was financially supported by the Sasakawa Scientific Research Grant from the Japan Science Society.
NASA Astrophysics Data System (ADS)
Hanrieder, N.; Wilbert, S.; Pitz-Paal, R.; Emde, C.; Gasteiger, J.; Mayer, B.; Polo, J.
2015-05-01
Losses of reflected Direct Normal Irradiance due to atmospheric extinction in concentrating solar tower plants can vary significantly with site and time. The losses of the direct normal irradiance between the heliostat field and receiver in a solar tower plant are mainly caused by atmospheric scattering and absorption by aerosol and water vapor concentration in the atmospheric boundary layer. Due to a high aerosol particle number, radiation losses can be significantly larger in desert environments compared to the standard atmospheric conditions which are usually considered in raytracing or plant optimization tools. Information about on-site atmospheric extinction is only rarely available. To measure these radiation losses, two different commercially available instruments were tested and more than 19 months of measurements were collected at the Plataforma Solar de Almería and compared. Both instruments are primarily used to determine the meteorological optical range (MOR). The Vaisala FS11 scatterometer is based on a monochromatic near-infrared light source emission and measures the strength of scattering processes in a small air volume mainly caused by aerosol particles. The Optec LPV4 long-path visibility transmissometer determines the monochromatic attenuation between a light-emitting diode (LED) light source at 532 nm and a receiver and therefore also accounts for absorption processes. As the broadband solar attenuation is of interest for solar resource assessment for Concentrating Solar Power (CSP), a correction procedure for these two instruments is developed and tested. This procedure includes a spectral correction of both instruments from monochromatic to broadband attenuation. That means the attenuation is corrected for the actual, time-dependent by the collector reflected solar spectrum. Further, an absorption correction for the Vaisala FS11 scatterometer is implemented. To optimize the Absorption and Broadband Correction (ABC) procedure, additional measurement input of a nearby sun photometer is used to enhance on-site atmospheric assumptions for description of the atmosphere in the algorithm. Comparing both uncorrected and spectral- and absorption-corrected extinction data from one year measurements at the Plataforma Solar de Almería, the mean difference between the scatterometer and the transmissometer is reduced from 4.4 to 0.6%. Applying the ABC procedure without the usage of additional input data from a sun photometer still reduces the difference between both sensors to about 0.8%. Applying an expert guess assuming a standard aerosol profile for continental regions instead of additional sun photometer input results in a mean difference of 0.81%. Therefore, applying this new correction method, both instruments can now be utilized to determine the solar broadband extinction in tower plants sufficiently accurate.
Pulsar Timing with the Fermi LAT
2010-12-01
the Fermi Science Tool gtbary with the tcorrect=geo option. The geocentric time is the satellite time corrected for geometric light travel time to...the geocenter. It does not include relativistic terms in the correction. The geocentric photon time tgeo is defined as tgeo = tobs + rsat c · n̂psr, (1
Hoogkamer, Wouter; Potocanac, Zrinka; Van Calenbergh, Frank; Duysens, Jacques
2017-10-01
Online gait corrections are frequently used to restore gait stability and prevent falling. They require shorter response times than voluntary movements which suggests that subcortical pathways contribute to the execution of online gait corrections. To evaluate the potential role of the cerebellum in these pathways we tested the hypotheses that online gait corrections would be less accurate in individuals with focal cerebellar damage than in neurologically intact controls and that this difference would be more pronounced for shorter available response times and for short step gait corrections. We projected virtual stepping stones on an instrumented treadmill while some of the approaching stepping stones were shifted forward or backward, requiring participants to adjust their foot placement. Varying the timing of those shifts allowed us to address the effect of available response time on foot placement error. In agreement with our hypothesis, individuals with focal cerebellar lesions were less accurate in adjusting their foot placement in reaction to suddenly shifted stepping stones than neurologically intact controls. However, the cerebellar lesion group's foot placement error did not increase more with decreasing available response distance or for short step versus long step adjustments compared to the control group. Furthermore, foot placement error for the non-shifting stepping stones was also larger in the cerebellar lesion group as compared to the control group. Consequently, the reduced ability to accurately adjust foot placement during walking in individuals with focal cerebellar lesions appears to be a general movement control deficit, which could contribute to increased fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of source shape on the numerical aperture factor with a geometrical-optics model.
Wan, Der-Shen; Schmit, Joanna; Novak, Erik
2004-04-01
We study the effects of an extended light source on the calibration of an interference microscope, also referred to as an optical profiler. Theoretical and experimental numerical aperture (NA) factors for circular and linear light sources along with collimated laser illumination demonstrate that the shape of the light source or effective aperture cone is critical for a correct NA factor calculation. In practice, more-accurate results for the NA factor are obtained when a linear approximation to the filament light source shape is used in a geometric model. We show that previously measured and derived NA factors show some discrepancies because a circular rather than linear approximation to the filament source was used in the modeling.
Modeling evaporation from spent nuclear fuel storage pools: A diffusion approach
NASA Astrophysics Data System (ADS)
Hugo, Bruce Robert
Accurate prediction of evaporative losses from light water reactor nuclear power plant (NPP) spent fuel storage pools (SFPs) is important for activities ranging from sizing of water makeup systems during NPP design to predicting the time available to supply emergency makeup water following severe accidents. Existing correlations for predicting evaporation from water surfaces are only optimized for conditions typical of swimming pools. This new approach modeling evaporation as a diffusion process has yielded an evaporation rate model that provided a better fit of published high temperature evaporation data and measurements from two SFPs than other published evaporation correlations. Insights from treating evaporation as a diffusion process include correcting for the effects of air flow and solutes on evaporation rate. An accurate modeling of the effects of air flow on evaporation rate is required to explain the observed temperature data from the Fukushima Daiichi Unit 4 SFP during the 2011 loss of cooling event; the diffusion model of evaporation provides a significantly better fit to this data than existing evaporation models.
Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics
Scott, S. D.; Mumgaard, R. T.
2016-07-20
A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less
Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S. D.; Mumgaard, R. T.
A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less
Upper wide-angle viewing system for ITER
Lasnier, C. J.; McLean, A. G.; Gattuso, A.; ...
2016-08-15
The Upper Wide Angle Viewing System (UWAVS) will be installed on five upper ports of ITER. Here, this paper shows major requirements, gives an overview of the preliminary design with reasons for some design choices, examines self-emitted IR light from UWAVS optics and its effect on accuracy, and shows calculations of signal-to-noise ratios for the two-color temperature output as a function of integration time and divertor temperature. Accurate temperature output requires correction for vacuum window absorption vs. wavelength and for self-emitted IR, which requires good measurement of the temperature of the optical components. The anticipated signal-to-noise ratio using presently availablemore » IR cameras is adequate for the required 500 Hz frame rate.« less
Han, Buhm; Kang, Hyun Min; Eskin, Eleazar
2009-01-01
With the development of high-throughput sequencing and genotyping technologies, the number of markers collected in genetic association studies is growing rapidly, increasing the importance of methods for correcting for multiple hypothesis testing. The permutation test is widely considered the gold standard for accurate multiple testing correction, but it is often computationally impractical for these large datasets. Recently, several studies proposed efficient alternative approaches to the permutation test based on the multivariate normal distribution (MVN). However, they cannot accurately correct for multiple testing in genome-wide association studies for two reasons. First, these methods require partitioning of the genome into many disjoint blocks and ignore all correlations between markers from different blocks. Second, the true null distribution of the test statistic often fails to follow the asymptotic distribution at the tails of the distribution. We propose an accurate and efficient method for multiple testing correction in genome-wide association studies—SLIDE. Our method accounts for all correlation within a sliding window and corrects for the departure of the true null distribution of the statistic from the asymptotic distribution. In simulations using the Wellcome Trust Case Control Consortium data, the error rate of SLIDE's corrected p-values is more than 20 times smaller than the error rate of the previous MVN-based methods' corrected p-values, while SLIDE is orders of magnitude faster than the permutation test and other competing methods. We also extend the MVN framework to the problem of estimating the statistical power of an association study with correlated markers and propose an efficient and accurate power estimation method SLIP. SLIP and SLIDE are available at http://slide.cs.ucla.edu. PMID:19381255
ON THE PROPER USE OF THE REDUCED SPEED OF LIGHT APPROXIMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov
I show that the reduced speed of light (RSL) approximation, when used properly (i.e., as originally designed—only for local sources but not for the cosmic background), remains a highly accurate numerical method for modeling cosmic reionization. Simulated ionization and star formation histories from the “Cosmic Reionization on Computers” project are insensitive to the adopted value of the RSL for as long as that value does not fall below about 10% of the true speed of light. A recent claim of the failure of the RSL approximation in the Illustris reionization model appears to be due to the effective speed ofmore » light being reduced in the equation for the cosmic background too and hence illustrates the importance of maintaining the correct speed of light in modeling the cosmic background.« less
Shrestha, Nabin K; Tuohy, Marion J; Hall, Gerri S; Reischl, Udo; Gordon, Steven M; Procop, Gary W
2003-11-01
Mycobacteria cause a variety of illnesses that differ in severity and public health implications. The differentiation of Mycobacterium tuberculosis from nontuberculous mycobacteria (NTM) is of primary importance for infection control and choice of antimicrobial therapy. Despite advances in molecular diagnostics, the ability to rapidly diagnose M. tuberculosis infections by PCR is still inadequate, largely because of the possibility of false-negative reactions. We designed and validated a real-time PCR for mycobacteria by using the LightCycler system with 18 reference strains and 168 clinical mycobacterial isolates. All clinically significant mycobacteria were detected; the mean melting temperatures (with 99.9% confidence intervals [99.9% CI] in parentheses) for the different mycobacteria were as follows: M. tuberculosis, 64.35 degrees C (63.27 to 65.42 degrees C); M. kansasii, 59.20 degrees C (58.07 to 60.33 degrees C); M. avium, 57.82 degrees C (57.05 to 58.60 degrees C); M. intracellulare, 54.46 degrees C (53.69 to 55.23 degrees C); M. marinum, 58.91 degrees C (58.28 to 59.55 degrees C); rapidly growing mycobacteria, 53.09 degrees C (50.97 to 55.20 degrees C) or 43.19 degrees C (42.19 to 44.49 degrees C). This real-time PCR assay with melting curve analysis consistently accurately detected and differentiated M. tuberculosis from NTM. Detection of an NTM helps ensure that the negative result for M. tuberculosis is a true negative. The specific melting temperature also provides a suggestion of the identity of the NTM present, when the most commonly encountered mycobacterial species are considered. In a parallel comparison, both the LightCycler assay and the COBAS Amplicor M. tuberculosis assay correctly categorized 48 of 50 specimens that were proven by culture to contain M. tuberculosis, and the LightCycler assay correctly characterized 3 of 3 specimens that contained NTM.
Shrestha, Nabin K.; Tuohy, Marion J.; Hall, Gerri S.; Reischl, Udo; Gordon, Steven M.; Procop, Gary W.
2003-01-01
Mycobacteria cause a variety of illnesses that differ in severity and public health implications. The differentiation of Mycobacterium tuberculosis from nontuberculous mycobacteria (NTM) is of primary importance for infection control and choice of antimicrobial therapy. Despite advances in molecular diagnostics, the ability to rapidly diagnose M. tuberculosis infections by PCR is still inadequate, largely because of the possibility of false-negative reactions. We designed and validated a real-time PCR for mycobacteria by using the LightCycler system with 18 reference strains and 168 clinical mycobacterial isolates. All clinically significant mycobacteria were detected; the mean melting temperatures (with 99.9% confidence intervals [99.9% CI] in parentheses) for the different mycobacteria were as follows: M. tuberculosis, 64.35°C (63.27 to 65.42°C); M. kansasii, 59.20°C (58.07 to 60.33°C); M. avium, 57.82°C (57.05 to 58.60°C); M. intracellulare, 54.46°C (53.69 to 55.23°C); M. marinum, 58.91°C (58.28 to 59.55°C); rapidly growing mycobacteria, 53.09°C (50.97 to 55.20°C) or 43.19°C (42.19 to 44.49°C). This real-time PCR assay with melting curve analysis consistently accurately detected and differentiated M. tuberculosis from NTM. Detection of an NTM helps ensure that the negative result for M. tuberculosis is a true negative. The specific melting temperature also provides a suggestion of the identity of the NTM present, when the most commonly encountered mycobacterial species are considered. In a parallel comparison, both the LightCycler assay and the COBAS Amplicor M. tuberculosis assay correctly categorized 48 of 50 specimens that were proven by culture to contain M. tuberculosis, and the LightCycler assay correctly characterized 3 of 3 specimens that contained NTM. PMID:14605148
On the proper use of the reduced speed of light approximation
Gnedin, Nickolay Y.
2016-12-07
I show that the Reduced Speed of Light (RSL) approximation, when used properly (i.e. as originally designed - only for the local sources but not for the cosmic background), remains a highly accurate numerical method for modeling cosmic reionization. Simulated ionization and star formation histories from the "Cosmic Reionization On Computers" (CROC) project are insensitive to the adopted value of the reduced speed of light for as long as that value does not fall below about 10% of the true speed of light. Here, a recent claim of the failure of the RSL approximation in the Illustris reionization model appearsmore » to be due to the effective speed of light being reduced in the equation for the cosmic background too, and, hence, illustrates the importance of maintaining the correct speed of light in modeling the cosmic background.« less
On the proper use of the reduced speed of light approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.
I show that the Reduced Speed of Light (RSL) approximation, when used properly (i.e. as originally designed - only for the local sources but not for the cosmic background), remains a highly accurate numerical method for modeling cosmic reionization. Simulated ionization and star formation histories from the "Cosmic Reionization On Computers" (CROC) project are insensitive to the adopted value of the reduced speed of light for as long as that value does not fall below about 10% of the true speed of light. Here, a recent claim of the failure of the RSL approximation in the Illustris reionization model appearsmore » to be due to the effective speed of light being reduced in the equation for the cosmic background too, and, hence, illustrates the importance of maintaining the correct speed of light in modeling the cosmic background.« less
Age estimation of bloodstains using smartphones and digital image analysis.
Thanakiatkrai, Phuvadol; Yaodam, Alisa; Kitpipit, Thitika
2013-12-10
Recent studies on bloodstains have focused on determining the time since deposition of bloodstains, which can provide useful temporal information to forensic investigations. This study is the first to use smartphone cameras in combination with a truly low-cost illumination system as a tool to estimate the age of bloodstains. Bloodstains were deposited on various substrates and photographed with a smartphone camera. Three smartphones (Samsung Galaxy S Plus, Apple iPhone 4, and Apple iPad 2) were compared. The environmental effects - temperature, humidity, light exposure, and anticoagulant - on the bloodstain age estimation process were explored. The color values from the digital images were extracted and correlated with time since deposition. Magenta had the highest correlation (R(2)=0.966) and was used in subsequent experiments. The Samsung Galaxy S Plus was the most suitable smartphone as its magenta decreased exponentially with increasing time and had highest repeatability (low variation within and between pictures). The quantifiable color change observed is consistent with well-established hemoglobin denaturation process. Using a statistical classification technique called Random Forests™, we could predict bloodstain age accurately up to 42 days with an error rate of 12%. Additionally, the age of forty blind stains were all correctly predicted, and 83% of mock casework samples were correctly classified. No within- and between-person variations were observed (p>0.05), while smartphone camera, temperature, humidity, and substrate color influenced the age determination process in different ways. Our technique provides a cheap, rapid, easy-to-use, and truly portable alternative to more complicated analysis using specialized equipment, e.g. spectroscopy and HPLC. No training is necessary with our method, and we envision a smartphone application that could take user inputs of environmental factors and provide an accurate estimate of bloodstain age. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves
NASA Astrophysics Data System (ADS)
Wakeford, H. R.; Sing, D. K.; Evans, T.; Deming, D.; Mandell, A.
2016-03-01
Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 μm probe primarily the H2O absorption band at 1.4 μm, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as Rp/R*, which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts {δ }λ (λ ) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.
Flight test evaluation of predicted light aircraft drag, performance, and stability
NASA Technical Reports Server (NTRS)
Smetana, F. O.; Fox, S. R.
1979-01-01
A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight.) The technique is an extension to non-linear equations of motion of the parameter identification methods of lliff and Taylor and includes provisions for internal data compatibility improvement as well. The technique was show to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. This technique was applied to flight data taken on the ATLIT aircraft. The drag and power values obtained from the initial least squares estimate are about 15% less than the 'true' values. If one takes into account the rather dirty wing and fuselage existing at the time of the tests, however, the predictions are reasonably accurate. The steady state lift measurements agree well with the extracted values only for small values of alpha. The predicted value of the lift at alpha = 0 is about 33% below that found in steady state tests while the predicted lift slope is 13% below the steady state value.
Saraceno, John F.; Shanley, James B.; Downing, Bryan D.; Pellerin, Brian A.
2017-01-01
In situ fluorescent dissolved organic matter (fDOM) measurements have gained increasing popularity as a proxy for dissolved organic carbon (DOC) concentrations in streams. One challenge to accurate fDOM measurements in many streams is light attenuation due to suspended particles. Downing et al. (2012) evaluated the need for corrections to compensate for particle interference on fDOM measurements using a single sediment standard in a laboratory study. The application of those results to a large river improved unfiltered field fDOM accuracy. We tested the same correction equation in a headwater tropical stream and found that it overcompensated fDOM when turbidity exceeded ∼300 formazin nephelometric units (FNU). Therefore, we developed a site-specific, field-based fDOM correction equation through paired in situ fDOM measurements of filtered and unfiltered streamwater. The site-specific correction increased fDOM accuracy up to a turbidity as high as 700 FNU, the maximum observed in this study. The difference in performance between the laboratory-based correction equation of Downing et al. (2012) and our site-specific, field-based correction equation likely arises from differences in particle size distribution between the sediment standard used in the lab (silt) and that observed in our study (fine to medium sand), particularly during high flows. Therefore, a particle interference correction equation based on a single sediment type may not be ideal when field sediment size is significantly different. Given that field fDOM corrections for particle interference under turbid conditions are a critical component in generating accurate DOC estimates, we describe a way to develop site-specific corrections.
Remote monitoring of LED lighting system performance
NASA Astrophysics Data System (ADS)
Thotagamuwa, Dinusha R.; Perera, Indika U.; Narendran, Nadarajah
2016-09-01
The concept of connected lighting systems using LED lighting for the creation of intelligent buildings is becoming attractive to building owners and managers. In this application, the two most important parameters include power demand and the remaining useful life of the LED fixtures. The first enables energy-efficient buildings and the second helps building managers schedule maintenance services. The failure of an LED lighting system can be parametric (such as lumen depreciation) or catastrophic (such as complete cessation of light). Catastrophic failures in LED lighting systems can create serious consequences in safety critical and emergency applications. Therefore, both failure mechanisms must be considered and the shorter of the two must be used as the failure time. Furthermore, because of significant variation between the useful lives of similar products, it is difficult to accurately predict the life of LED systems. Real-time data gathering and analysis of key operating parameters of LED systems can enable the accurate estimation of the useful life of a lighting system. This paper demonstrates the use of a data-driven method (Euclidean distance) to monitor the performance of an LED lighting system and predict its time to failure.
OMPS Limb Profiler Instrument Performance Assessment
NASA Technical Reports Server (NTRS)
Jaross, Glen R.; Bhartia, Pawan K.; Chen, Grace; Kowitt, Mark; Haken, Michael; Chen, Zhong; Xu, Philippe; Warner, Jeremy; Kelly, Thomas
2014-01-01
Following the successful launch of the Ozone Mapping and Profiler Suite (OMPS) aboard the Suomi National Polar-orbiting Partnership (SNPP) spacecraft, the NASA OMPS Limb team began an evaluation of instrument and data product performance. The focus of this paper is the instrument performance in relation to the original design criteria. Performance that is closer to expectations increases the likelihood that limb scatter measurements by SNPP OMPS and successor instruments can form the basis for accurate long-term monitoring of ozone vertical profiles. The team finds that the Limb instrument operates mostly as designed and basic performance meets or exceeds the original design criteria. Internally scattered stray light and sensor pointing knowledge are two design challenges with the potential to seriously degrade performance. A thorough prelaunch characterization of stray light supports software corrections that are accurate to within 1% in radiances up to 60 km for the wavelengths used in deriving ozone. Residual stray light errors at 1000nm, which is useful in retrievals of stratospheric aerosols, currently exceed 10%. Height registration errors in the range of 1 km to 2 km have been observed that cannot be fully explained by known error sources. An unexpected thermal sensitivity of the sensor also causes wavelengths and pointing to shift each orbit in the northern hemisphere. Spectral shifts of as much as 0.5nm in the ultraviolet and 5 nm in the visible, and up to 0.3 km shifts in registered height, must be corrected in ground processing.
NASA Astrophysics Data System (ADS)
Hanrieder, N.; Wilbert, S.; Pitz-Paal, R.; Emde, C.; Gasteiger, J.; Mayer, B.; Polo, J.
2015-08-01
Losses of reflected Direct Normal Irradiance due to atmospheric extinction in concentrated solar tower plants can vary significantly with site and time. The losses of the direct normal irradiance between the heliostat field and receiver in a solar tower plant are mainly caused by atmospheric scattering and absorption by aerosol and water vapor concentration in the atmospheric boundary layer. Due to a high aerosol particle number, radiation losses can be significantly larger in desert environments compared to the standard atmospheric conditions which are usually considered in ray-tracing or plant optimization tools. Information about on-site atmospheric extinction is only rarely available. To measure these radiation losses, two different commercially available instruments were tested, and more than 19 months of measurements were collected and compared at the Plataforma Solar de Almería. Both instruments are primarily used to determine the meteorological optical range (MOR). The Vaisala FS11 scatterometer is based on a monochromatic near-infrared light source emission and measures the strength of scattering processes in a small air volume mainly caused by aerosol particles. The Optec LPV4 long-path visibility transmissometer determines the monochromatic attenuation between a light-emitting diode (LED) light source at 532 nm and a receiver and therefore also accounts for absorption processes. As the broadband solar attenuation is of interest for solar resource assessment for concentrated solar power (CSP), a correction procedure for these two instruments is developed and tested. This procedure includes a spectral correction of both instruments from monochromatic to broadband attenuation. That means the attenuation is corrected for the time-dependent solar spectrum which is reflected by the collector. Further, an absorption correction for the Vaisala FS11 scatterometer is implemented. To optimize the absorption and broadband correction (ABC) procedure, additional measurement input of a nearby sun photometer is used to enhance on-site atmospheric assumptions for description of the atmosphere in the algorithm. Comparing both uncorrected and spectral- and absorption-corrected extinction data from 1-year measurements at the Plataforma Solar de Almería, the mean difference between the scatterometer and the transmissometer is reduced from 4.4 to 0.57 %. Applying the ABC procedure without the usage of additional input data from a sun photometer still reduces the difference between both sensors to about 0.8 %. Applying an expert guess assuming a standard aerosol profile for continental regions instead of additional sun photometer input results in a mean difference of 0.8 %. Additionally, a simulation approach which just uses sun photometer and common meteorological data to determine the on-site atmospheric extinction at surface is presented and corrected FS11 and LPV4 measurements are validated with the simulation results. For T1 km equal to 0.9 and a 10 min time resolution, an uncertainty analysis showed that an absolute uncertainty of about 0.038 is expected for the FS11 and about 0.057 for the LPV4. Combining both uncertainties results in an overall absolute uncertainty of 0.068 which justifies quite well the mean RMSE between both corrected data sets. For yearly averages several error influences average out and absolute uncertainties of 0.020 and 0.054 can be expected for the FS11 and the LPV4, respectively. Therefore, applying this new correction method, both instruments can now be utilized to sufficiently accurately determine the solar broadband extinction in tower plants.
Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang
2015-10-27
Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.
Space Technology for Palate Surgery
NASA Technical Reports Server (NTRS)
1980-01-01
University of Miami utilized NASA's spacecraft viewing technology to develop the optical profilometer provides more accurate measurements of cleft palate casts than has heretofore been possible, enabling better planning of corrective surgery. Lens like instrument electronically scans a palate cast precisely measuring its irregular contours by detecting minute differences in the intensity of a light beam reflected off the cast. Readings are computer processed and delivered to the surgeon by a teleprinter.
NASA Astrophysics Data System (ADS)
Saquet, E.; Emelyanov, N.; Robert, V.; Arlot, J.-E.; Anbazhagan, P.; Baillié, K.; Bardecker, J.; Berezhnoy, A. A.; Bretton, M.; Campos, F.; Capannoli, L.; Carry, B.; Castet, M.; Charbonnier, Y.; Chernikov, M. M.; Christou, A.; Colas, F.; Coliac, J.-F.; Dangl, G.; Dechambre, O.; Delcroix, M.; Dias-Oliveira, A.; Drillaud, C.; Duchemin, Y.; Dunford, R.; Dupouy, P.; Ellington, C.; Fabre, P.; Filippov, V. A.; Finnegan, J.; Foglia, S.; Font, D.; Gaillard, B.; Galli, G.; Garlitz, J.; Gasmi, A.; Gaspar, H. S.; Gault, D.; Gazeas, K.; George, T.; Gorda, S. Y.; Gorshanov, D. L.; Gualdoni, C.; Guhl, K.; Halir, K.; Hanna, W.; Henry, X.; Herald, D.; Houdin, G.; Ito, Y.; Izmailov, I. S.; Jacobsen, J.; Jones, A.; Kamoun, S.; Kardasis, E.; Karimov, A. M.; Khovritchev, M. Y.; Kulikova, A. M.; Laborde, J.; Lainey, V.; Lavayssiere, M.; Le Guen, P.; Leroy, A.; Loader, B.; Lopez, O. C.; Lyashenko, A. Y.; Lyssenko, P. G.; Machado, D. I.; Maigurova, N.; Manek, J.; Marchini, A.; Midavaine, T.; Montier, J.; Morgado, B. E.; Naumov, K. N.; Nedelcu, A.; Newman, J.; Ohlert, J. M.; Oksanen, A.; Pavlov, H.; Petrescu, E.; Pomazan, A.; Popescu, M.; Pratt, A.; Raskhozhev, V. N.; Resch, J.-M.; Robilliard, D.; Roschina, E.; Rothenberg, E.; Rottenborn, M.; Rusov, S. A.; Saby, F.; Saya, L. F.; Selvakumar, G.; Signoret, F.; Slesarenko, V. Y.; Sokov, E. N.; Soldateschi, J.; Sonka, A.; Soulie, G.; Talbot, J.; Tejfel, V. G.; Thuillot, W.; Timerson, B.; Toma, R.; Torsellini, S.; Trabuco, L. L.; Traverse, P.; Tsamis, V.; Unwin, M.; Abbeel, F. Van Den; Vandenbruaene, H.; Vasundhara, R.; Velikodsky, Y. I.; Vienne, A.; Vilar, J.; Vugnon, J.-M.; Wuensche, N.; Zeleny, P.
2018-03-01
During the 2014-2015 mutual events season, the Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE), Paris, France, and the Sternberg Astronomical Institute (SAI), Moscow, Russia, led an international observation campaign to record ground-based photometric observations of Galilean moon mutual occultations and eclipses. We focused on processing the complete photometric observations data base to compute new accurate astrometric positions. We used our method to derive astrometric positions from the light curves of the events. We developed an accurate photometric model of mutual occultations and eclipses, while correcting for the satellite albedos, Hapke's light scattering law, the phase effect, and the limb darkening. We processed 609 light curves, and we compared the observed positions of the satellites with the theoretical positions from IMCCE NOE-5-2010-GAL satellite ephemerides and INPOP13c planetary ephemeris. The standard deviation after fitting the light curve in equatorial positions is ±24 mas, or 75 km at Jupiter. The rms (O-C) in equatorial positions is ±50 mas, or 150 km at Jupiter.
NASA Astrophysics Data System (ADS)
Loureiro, A. D.; Gomes, L. M.; Ventura, L.
2018-02-01
The international standard ISO 12312-1 proposes transmittance tests that quantify how dark sunglasses lenses are and whether or not they are suitable for driving. To perform these tests a spectrometer is required. In this study, we present and analyze theoretically an accurate alternative method for performing these measurements using simple components. Using three LEDs and a four-channel sensor we generated weighting functions similar to the standard ones for luminous and traffic lights transmittances. From 89 sunglasses lens spectroscopy data, we calculated luminous transmittance and signal detection quotients using our obtained weighting functions and the standard ones. Mean-difference Tukey plots were used to compare the results. All tested sunglasses lenses were classified in the right category and correctly as suitable or not for driving. The greatest absolute errors for luminous transmittance and red, yellow, green and blue signal detection quotients were 0.15%, 0.17, 0.06, 0.04 and 0.18, respectively. This method will be used in a device capable to perform transmittance tests (visible, traffic lights and ultraviolet (UV)) according to the standard. It is important to measure rightly luminous transmittance and relative visual attenuation quotients to report correctly whether or not sunglasses are suitable for driving. Moreover, standard UV requirements depend on luminous transmittance.
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.; Maccamy, R. C.
1993-01-01
We consider the solution of scattering problems for the wave equation using approximate boundary conditions at artificial boundaries. These conditions are explicitly viewed as approximations to an exact boundary condition satisfied by the solution on the unbounded domain. We study the short and long term behavior of the error. It is provided that, in two space dimensions, no local in time, constant coefficient boundary operator can lead to accurate results uniformly in time for the class of problems we consider. A variable coefficient operator is developed which attains better accuracy (uniformly in time) than is possible with constant coefficient approximations. The theory is illustrated by numerical examples. We also analyze the proposed boundary conditions using energy methods, leading to asymptotically correct error bounds.
Advanced autostereoscopic display for G-7 pilot project
NASA Astrophysics Data System (ADS)
Hattori, Tomohiko; Ishigaki, Takeo; Shimamoto, Kazuhiro; Sawaki, Akiko; Ishiguchi, Tsuneo; Kobayashi, Hiromi
1999-05-01
An advanced auto-stereoscopic display is described that permits the observation of a stereo pair by several persons simultaneously without the use of special glasses and any kind of head tracking devices for the viewers. The system is composed of a right eye system, a left eye system and a sophisticated head tracking system. In the each eye system, a transparent type color liquid crystal imaging plate is used with a special back light unit. The back light unit consists of a monochrome 2D display and a large format convex lens. The unit distributes the light of the viewers' correct each eye only. The right eye perspective system is combined with a left eye perspective system is combined with a left eye perspective system by a half mirror in order to function as a time-parallel stereoscopic system. The viewer's IR image is taken through and focused by the large format convex lens and feed back to the back light as a modulated binary half face image. The auto-stereoscopic display employs the TTL method as the accurate head tracking. The system was worked as a stereoscopic TV phone between Duke University Department Tele-medicine and Nagoya University School of Medicine Department Radiology using a high-speed digital line of GIBN. The applications are also described in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Naizhuo; Zhou, Yuyu; Samson, Eric L.
The Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime lights imagery has proven to be a powerful remote sensing tool to monitor urbanization and assess socioeconomic activities at large scales. However, the existence of incompatible digital number (DN) values and geometric errors severely limit application of nighttime light image data on multi-year quantitative research. In this study we extend and improve previous studies on inter-calibrating nighttime lights image data to obtain more compatible and reliable nighttime lights time series (NLT) image data for China and the United States (US) through four steps: inter-calibration, geometric correction, steady increase adjustment, andmore » population data correction. We then use gross domestic product (GDP) data to test the processed NLT image data indirectly and find that sum light (summed DN value of pixels in a nighttime light image) maintains apparent increase trends with relatively large GDP growth rates but does not increase or decrease with relatively small GDP growth rates. As nighttime light is a sensitive indicator for economic activity, the temporally consistent trends between sum light and GDP growth rate imply that brightness of nighttime lights on the ground is correctly represented by the processed NLT image data. Finally, through analyzing the corrected NLT image data from 1992 to 2008, we find that China experienced apparent nighttime lights development in 1992-1997 and 2001-2008 respectively and the US suffered from nighttime lights decay in large areas after 2001.« less
Publisher Correction: Anderson light localization in biological nanostructures of native silk.
Choi, Seung Ho; Kim, Seong-Wan; Ku, Zahyun; Visbal-Onufrak, Michelle A; Kim, Seong-Ryul; Choi, Kwang-Ho; Ko, Hakseok; Choi, Wonshik; Urbas, Augustine M; Goo, Tae-Won; Kim, Young L
2018-03-19
The original PDF version of this Article contained errors in Equations 1 and 2. Both equations omitted all Γ terms. This has been corrected in the PDF version of the Article. The HTML version was correct from the time of publication.
Vector Sky Glint Corrections for Above Surface Retrieval of the Subsurface Polarized Light Field
NASA Astrophysics Data System (ADS)
Gilerson, A.; Foster, R.; McGilloway, A.; Ibrahim, A.; El-habashi, A.; Carrizo, C.; Ahmed, S.
2016-02-01
Knowledge of the underwater light field is fundamental to determining the health of the world's oceans and coastal regions. For decades, traditional remote sensing retrieval methods that rely solely on the spectral intensity of the water-leaving light have provided indicators of marine ecosystem health. As the demand for retrieval accuracy rises, use of the polarized nature of light as an additional remote sensing tool is becoming necessary. In order to observe the underwater polarized light field from above the surface (for ship, shore, or satellite applications), a method of correcting the above water signal for the effects of polarized surface-reflected skylight is needed. For three weeks in July-August 2014, the NASA Ship Aircraft Bio-Optical Research (SABOR) cruise continuously observed the polarized radiance of the ocean and the sky using a HyperSAS-POL system. The system autonomously tracks the Sun position and the heading of the research vessel in order to maintain a fixed relative solar azimuth angle (i.e. ±90°) and therefore avoid the specular reflection of the sunlight. Additionally, in-situ inherent optical properties (IOPs) were continuously acquired using a set of instrument packages modified for underway measurement, hyperspectral radiometric measurements were taken manually at all stations, and an underwater polarimeter was deployed when conditions permitted. All measurements, above and below the sea surface, were combined and compared in an effort to first develop a glint (sky + Sun) correction scheme for the upwelling polarized signal from a wind-driven ocean surface and compare with one assuming that the ocean surface is flat. Accurate retrieval of the subsurface vector light field is demonstrated through comparisons with polarized radiative transfer codes and direct measurements made by the underwater polarimeter.
Mobile image based color correction using deblurring
NASA Astrophysics Data System (ADS)
Wang, Yu; Xu, Chang; Boushey, Carol; Zhu, Fengqing; Delp, Edward J.
2015-03-01
Dietary intake, the process of determining what someone eats during the course of a day, provides valuable insights for mounting intervention programs for prevention of many chronic diseases such as obesity and cancer. The goals of the Technology Assisted Dietary Assessment (TADA) System, developed at Purdue University, is to automatically identify and quantify foods and beverages consumed by utilizing food images acquired with a mobile device. Color correction serves as a critical step to ensure accurate food identification and volume estimation. We make use of a specifically designed color checkerboard (i.e. a fiducial marker) to calibrate the imaging system so that the variations of food appearance under different lighting conditions can be determined. In this paper, we propose an image quality enhancement technique by combining image de-blurring and color correction. The contribution consists of introducing an automatic camera shake removal method using a saliency map and improving the polynomial color correction model using the LMS color space.
NASA Technical Reports Server (NTRS)
Fahr, A.; Braun, W.; Kurylo, M. J.
1993-01-01
Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.
Motwani, Manoj
2017-01-01
To demonstrate how using the Wavelight Contoura measured astigmatism and axis eliminates corneal astigmatism and creates uniformly shaped corneas. A retrospective analysis was conducted of the first 50 eyes to have bilateral full WaveLight ® Contoura LASIK correction of measured astigmatism and axis (vs conventional manifest refraction), using the Layer Yolked Reduction of Astigmatism Protocol in all cases. All patients had astigmatism corrected, and had at least 1 week of follow-up. Accuracy to desired refractive goal was assessed by postoperative refraction, aberration reduction via calculation of polynomials, and postoperative visions were analyzed as a secondary goal. The average difference of astigmatic power from manifest to measured was 0.5462D (with a range of 0-1.69D), and the average difference of axis was 14.94° (with a range of 0°-89°). Forty-seven of 50 eyes had a goal of plano, 3 had a monovision goal. Astigmatism was fully eliminated from all but 2 eyes, and 1 eye had regression with astigmatism. Of the eyes with plano as the goal, 80.85% were 20/15 or better, and 100% were 20/20 or better. Polynomial analysis postoperatively showed that at 6.5 mm, the average C3 was reduced by 86.5% and the average C5 by 85.14%. Using WaveLight ® Contoura measured astigmatism and axis removes higher order aberrations and allows for the creation of a more uniform cornea with accurate removal of astigmatism, and reduction of aberration polynomials. WaveLight ® Contoura successfully links the refractive correction layer and aberration repair layer using the Layer Yolked Reduction of Astigmatism Protocol to demonstrate how aberration removal can affect refractive correction.
High-rate dead-time corrections in a general purpose digital pulse processing system
Abbene, Leonardo; Gerardi, Gaetano
2015-01-01
Dead-time losses are well recognized and studied drawbacks in counting and spectroscopic systems. In this work the abilities on dead-time correction of a real-time digital pulse processing (DPP) system for high-rate high-resolution radiation measurements are presented. The DPP system, through a fast and slow analysis of the output waveform from radiation detectors, is able to perform multi-parameter analysis (arrival time, pulse width, pulse height, pulse shape, etc.) at high input counting rates (ICRs), allowing accurate counting loss corrections even for variable or transient radiations. The fast analysis is used to obtain both the ICR and energy spectra with high throughput, while the slow analysis is used to obtain high-resolution energy spectra. A complete characterization of the counting capabilities, through both theoretical and experimental approaches, was performed. The dead-time modeling, the throughput curves, the experimental time-interval distributions (TIDs) and the counting uncertainty of the recorded events of both the fast and the slow channels, measured with a planar CdTe (cadmium telluride) detector, will be presented. The throughput formula of a series of two types of dead-times is also derived. The results of dead-time corrections, performed through different methods, will be reported and discussed, pointing out the error on ICR estimation and the simplicity of the procedure. Accurate ICR estimations (nonlinearity < 0.5%) were performed by using the time widths and the TIDs (using 10 ns time bin width) of the detected pulses up to 2.2 Mcps. The digital system allows, after a simple parameter setting, different and sophisticated procedures for dead-time correction, traditionally implemented in complex/dedicated systems and time-consuming set-ups. PMID:26289270
Development of a drift-correction procedure for a direct-reading spectrometer
NASA Technical Reports Server (NTRS)
Chapman, G. B., II; Gordon, W. A.
1977-01-01
A procedure which provides automatic correction for drifts in the radiometric sensitivity of each detector channel in a direct-reading emission spectrometer is described. Such drifts are customarily controlled by the regular analyses of standards, which provide corrections for changes in the excitational, optical, and electronic components of the instrument. This standardization procedure, however, corrects for the optical and electronic drifts. It is a step that must be taken if the time, effort, and cost of processing standards is to be minimized. This method of radiometric drift correction uses a 1,000-W tungsten-halogen reference lamp to illuminate each detector through the same optical path as that traversed during sample analysis. The responses of the detector channels to this reference light are regularly compared with channel response to the same light intensity at the time of analytical calibration in order to determine and correct for drift. Except for placing the lamp in position, the procedure is fully automated and compensates for changes in spectral intensity due to variations in lamp current. A discussion of the implementation of this drift-correction system is included.
Leynes, Andrew P; Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep S; Shanbhag, Dattesh D; Seo, Youngho; Hope, Thomas A; Larson, Peder E Z
2018-05-01
Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUV max was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Presearch Data Conditioning in the Kepler Science Operations Center Pipeline
NASA Technical Reports Server (NTRS)
Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.
2010-01-01
We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) targets across the focal plane array. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss the science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and excess flux removal. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples of raw and corrected flux time series for flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and will be made available to the general public in accordance with the NASA/Kepler data release policy.
Exemplar-based human action pose correction.
Shen, Wei; Deng, Ke; Bai, Xiang; Leyvand, Tommer; Guo, Baining; Tu, Zhuowen
2014-07-01
The launch of Xbox Kinect has built a very successful computer vision product and made a big impact on the gaming industry. This sheds lights onto a wide variety of potential applications related to action recognition. The accurate estimation of human poses from the depth image is universally a critical step. However, existing pose estimation systems exhibit failures when facing severe occlusion. In this paper, we propose an exemplar-based method to learn to correct the initially estimated poses. We learn an inhomogeneous systematic bias by leveraging the exemplar information within a specific human action domain. Furthermore, as an extension, we learn a conditional model by incorporation of pose tags to further increase the accuracy of pose correction. In the experiments, significant improvements on both joint-based skeleton correction and tag prediction are observed over the contemporary approaches, including what is delivered by the current Kinect system. Our experiments for the facial landmark correction also illustrate that our algorithm can improve the accuracy of other detection/estimation systems.
Relativistic theory of the falling retroreflector gravimeter
NASA Astrophysics Data System (ADS)
Ashby, Neil
2018-02-01
We develop a relativistic treatment of interference between light reflected from a falling cube retroreflector in the vertical arm of an interferometer, and light in a reference beam in the horizontal arm. Coordinates that are nearly Minkowskian, attached to the falling cube, are used to describe the propagation of light within the cube. Relativistic effects such as the dependence of the coordinate speed of light on gravitational potential, propagation of light along null geodesics, relativity of simultaneity, and Lorentz contraction of the moving cube, are accounted for. The calculation is carried to first order in the gradient of the acceleration of gravity. Analysis of data from a falling cube gravimeter shows that the propagation time of light within the cube itself causes a significant reduction in the value of the acceleration of gravity obtained from measurements, compared to assuming reflection occurs at the face. An expression for the correction to g is derived and found to agree with experiment. Depending on the instrument, the correction can be several microgals, comparable to commonly applied corrections such as those due to polar motion and earth tides. The controversial ‘speed of light’ correction is discussed. Work of the US government, not subject to copyright.
Stanley, Jeffrey R.; Adkins, Joshua N.; Slysz, Gordon W.; Monroe, Matthew E.; Purvine, Samuel O.; Karpievitch, Yuliya V.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.
2011-01-01
Current algorithms for quantifying peptide identification confidence in the accurate mass and time (AMT) tag approach assume that the AMT tags themselves have been correctly identified. However, there is uncertainty in the identification of AMT tags, as this is based on matching LC-MS/MS fragmentation spectra to peptide sequences. In this paper, we incorporate confidence measures for the AMT tag identifications into the calculation of probabilities for correct matches to an AMT tag database, resulting in a more accurate overall measure of identification confidence for the AMT tag approach. The method is referred to as Statistical Tools for AMT tag Confidence (STAC). STAC additionally provides a Uniqueness Probability (UP) to help distinguish between multiple matches to an AMT tag and a method to calculate an overall false discovery rate (FDR). STAC is freely available for download as both a command line and a Windows graphical application. PMID:21692516
Mayoral, Alvaro; Hall, Reece M; Jackowska, Roksana; Readman, Jennifer E
2016-12-23
In the present work, ETS-10 microporous titanosilicate has been synthesized and its structure characterized by means of powder XRD and aberration corrected scanning transmission electron microscopy (C s -corrected STEM). For the first time, sodium ions have been imaged sitting inside the 7-membered rings. The ion-exchange capability has been tested by the inclusion of rare earth metals (Eu, Tb and Gd) to produce a luminescent material which has been studied by atomic-resolution C s -corrected STEM. The data produced has allowed unambiguous imaging of light atoms in a microporous framework as well as determining the cationic metal positions for the first time, providing evidence of the importance of advanced electron microscopy methods for the study of the local environment of metals within zeolitic supports providing unique information of both systems (guest and support) at the same time. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improving Focal Photostimulation of Cortical Neurons with Pre-derived Wavefront Correction
Choy, Julian M. C.; Sané, Sharmila S.; Lee, Woei M.; Stricker, Christian; Bachor, Hans A.; Daria, Vincent R.
2017-01-01
Recent progress in neuroscience to image and investigate brain function has been made possible by impressive developments in optogenetic and opto-molecular tools. Such research requires advances in optical techniques for the delivery of light through brain tissue with high spatial resolution. The tissue causes distortions to the wavefront of the incoming light which broadens the focus and consequently reduces the intensity and degrades the resolution. Such effects are detrimental in techniques requiring focal stimulation. Adaptive wavefront correction has been demonstrated to compensate for these distortions. However, iterative derivation of the corrective wavefront introduces time constraints that limit its applicability to probe living cells. Here, we demonstrate that we can pre-determine and generalize a small set of Zernike modes to correct for aberrations of the light propagating through specific brain regions. A priori identification of a corrective wavefront is a direct and fast technique that improves the quality of the focus without the need for iterative adaptive wavefront correction. We verify our technique by measuring the efficiency of two-photon photolysis of caged neurotransmitters along the dendrites of a whole-cell patched neuron. Our results show that encoding the selected Zernike modes on the excitation light can improve light propagation through brain slices of rats as observed by the neuron's evoked excitatory post-synaptic potential in response to localized focal uncaging at the spines of the neuron's dendrites. PMID:28507508
Refractive accuracy with light-adjustable intraocular lenses.
Villegas, Eloy A; Alcon, Encarna; Rubio, Elena; Marín, José M; Artal, Pablo
2014-07-01
To evaluate efficacy, predictability, and stability of refractive treatments using light-adjustable intraocular lenses (IOLs). University Hospital Virgen de la Arrixaca, Murcia, Spain. Prospective nonrandomized clinical trial. Eyes with a light-adjustable IOL (LAL) were treated with spatial intensity profiles to correct refractive errors. The effective changes in refraction in the light-adjustable IOL after every treatment were estimated by subtracting those in the whole eye and the cornea, which were measured with a Hartmann-Shack sensor and a corneal topographer, respectively. The refractive changes in the whole eye and light-adjustable IOL, manifest refraction, and visual acuity were obtained after every light treatment and at the 3-, 6-, and 12-month follow-ups. The study enrolled 53 eyes (49 patients). Each tested light spatial pattern (5 spherical; 3 astigmatic) produced a different refractive change (P<.01). The combination of 2 light adjustments induced a maximum change in spherical power of the light-adjustable IOL of between -1.98 diopters (D) and +2.30 D and in astigmatism of up to -2.68 D with axis errors below 9 degrees. Intersubject variability (standard deviation) ranged between 0.10 D and 0.40 D. The 2 required lock-in procedures induced a small myopic shift (range +0.01 to +0.57 D) that depended on previous adjustments. Light-adjustable IOL implantation achieved accurate refractive outcomes (around emmetropia) with good uncorrected distance visual acuity, which remained stable over time. Further refinements in nomograms and in the treatment's protocol would improve the predictability of refractive and visual outcomes with these IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Garrett, Adia J.; Mazzocco, Michèle M. M.; Baker, Linda
2009-01-01
Metacognition refers to knowledge about one’s own cognition. The present study was designed to assess metacognitive skills that either precede or follow task engagement, rather than the processes that occur during a task. Specifically, we examined prediction and evaluation skills among children with (n = 17) or without (n = 179) mathematics learning disability (MLD), from grades 2 to 4. Children were asked to predict which of several math problems they could solve correctly; later, they were asked to solve those problems. They were asked to evaluate whether their solution to each of another set of problems was correct. Children’s ability to evaluate their answers to math problems improved from grade 2 to grade 3, whereas there was no change over time in the children’s ability to predict which problems they could solve correctly. Children with MLD were less accurate than children without MLD in evaluating both their correct and incorrect solutions, and they were less accurate at predicting which problems they could solve correctly. However, children with MLD were as accurate as their peers in correctly predicting that they could not solve specific math problems. The findings have implications for the usefulness of children’s self-review during mathematics problem solving. PMID:20084181
Management of fluorescent lamps in controlled environment chambers
NASA Technical Reports Server (NTRS)
Romer, Mark
1994-01-01
Management of fluorescent lights is recommended to (1) maintain uniformity of light intensity over time and (2) permit reproducibility of lighting conditions during experimental replications. At the McGill Phytotron, the lighting intensity can be controlled to desired level because any individual pair of the 40 lamps in each chamber can be set to be 'on' at any particular time. A lamp canopy service history is maintained for each experiment permitting accurate replication of lighting conditions for subsequent replicate trials.
Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B.; Sturm, Benjamin W.
2016-02-09
According to one embodiment, a scintillator radiation detector system includes a scintillator, and a processing device for processing pulse traces corresponding to light pulses from the scintillator, where the processing device is configured to: process each pulse trace over at least two temporal windows and to use pulse digitization to improve energy resolution of the system. According to another embodiment, a scintillator radiation detector system includes a processing device configured to: fit digitized scintillation waveforms to an algorithm, perform a direct integration of fit parameters, process multiple integration windows for each digitized scintillation waveform to determine a correction factor, and apply the correction factor to each digitized scintillation waveform.
Perceived image quality with simulated segmented bifocal corrections
Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; de Gracia, Pablo; Sawides, Lucie; Marcos, Susana
2016-01-01
Bifocal contact or intraocular lenses use the principle of simultaneous vision to correct for presbyopia. A modified two-channel simultaneous vision simulator provided with an amplitude transmission spatial light modulator was used to optically simulate 14 segmented bifocal patterns (+ 3 diopters addition) with different far/near pupillary distributions of equal energy. Five subjects with paralyzed accommodation evaluated image quality and subjective preference through the segmented bifocal corrections. There are strong and systematic perceptual differences across the patterns, subjects and observation distances: 48% of the conditions evaluated were significantly preferred or rejected. Optical simulations (in terms of through-focus Strehl ratio from Hartmann-Shack aberrometry) accurately predicted the pattern producing the highest perceived quality in 4 out of 5 patients, both for far and near vision. These perceptual differences found arise primarily from optical grounds, but have an important neural component. PMID:27895981
Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides
Dreyer, Cyrus E.; Janotti, Anderson; Van de Walle, Chris G.; ...
2016-06-20
Here, accurate values for polarization discontinuities between pyroelectric materials are critical for understanding and designing the electronic properties of heterostructures. For wurtzite materials, the zincblende structure has been used in the literature as a reference to determine the effective spontaneous polarization constants. We show that, because the zincblende structure has a nonzero formal polarization, this method results in a spurious contribution to the spontaneous polarization differences between materials. In addition, we address the correct choice of "improper" versus "proper" piezoelectric constants. For the technologically important III-nitride materials GaN, AlN, and InN, we determine polarization discontinuities using a consistent reference basedmore » on the layered hexagonal structure and the correct choice of piezoelectric constants, and discuss the results in light of available experimental data.« less
Improved determination of particulate absorption from combined filter pad and PSICAM measurements.
Lefering, Ina; Röttgers, Rüdiger; Weeks, Rebecca; Connor, Derek; Utschig, Christian; Heymann, Kerstin; McKee, David
2016-10-31
Filter pad light absorption measurements are subject to two major sources of experimental uncertainty: the so-called pathlength amplification factor, β, and scattering offsets, o, for which previous null-correction approaches are limited by recent observations of non-zero absorption in the near infrared (NIR). A new filter pad absorption correction method is presented here which uses linear regression against point-source integrating cavity absorption meter (PSICAM) absorption data to simultaneously resolve both β and the scattering offset. The PSICAM has previously been shown to provide accurate absorption data, even in highly scattering waters. Comparisons of PSICAM and filter pad particulate absorption data reveal linear relationships that vary on a sample by sample basis. This regression approach provides significantly improved agreement with PSICAM data (3.2% RMS%E) than previously published filter pad absorption corrections. Results show that direct transmittance (T-method) filter pad absorption measurements perform effectively at the same level as more complex geometrical configurations based on integrating cavity measurements (IS-method and QFT-ICAM) because the linear regression correction compensates for the sensitivity to scattering errors in the T-method. This approach produces accurate filter pad particulate absorption data for wavelengths in the blue/UV and in the NIR where sensitivity issues with PSICAM measurements limit performance. The combination of the filter pad absorption and PSICAM is therefore recommended for generating full spectral, best quality particulate absorption data as it enables correction of multiple errors sources across both measurements.
Crops Models for Varying Environmental Conditions
NASA Technical Reports Server (NTRS)
Jones, Harry; Cavazzoni, James; Keas, Paul
2001-01-01
New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.
Manns, F; Milne, P J; Gonzalez-Cirre, X; Denham, D B; Parel, J M; Robinson, D S
1998-01-01
The purpose of this work was to quantify the magnitude of an artifact induced by stainless steel thermocouple probes in temperature measurements made in situ during experimental laser interstitial thermo-therapy (LITT). A procedure for correction of this observational error is outlined. A CW Nd:YAG laser system emitting 20W for 25-30 s delivered through a fiber-optic probe was used to create localized heating. The temperature field around the fiber-optic probe during laser irradiation was measured every 0.3 s in air, water, 0.4% intralipid solution, and fatty cadaver pig tissue, with a field of up to fifteen needle thermocouple probes. Direct absorption of Nd:YAG laser radiation by the thermocouple probes induced an overestimation of the temperature, ranging from 1.8 degrees C to 118.6 degrees C in air, 2.2 degrees C to 9.9 degrees C in water, 0.7 C to 4.7 C in intralipid and 0.3 C to 17.9 C in porcine tissue after irradiation at 20W for 30 s and depending on the thermocouple location. The artifact in porcine tissue was removed by applying exponential and linear fits to the measured temperature curves. Light absorption by thermocouple probes can induce a significant artifact in the measurement of laser-induced temperature increases. When the time constant of the thermocouple effect is much smaller than the thermal relaxation time of the surrounding tissue, the artifact can be accurately quantified. During LITT experiments where temperature differences of a few degrees are significant, the thermocouple artifact must be removed in order to be able accurately to predict the treatment outcome.
Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.
2014-01-01
Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030
System design for 3D wound imaging using low-cost mobile devices
NASA Astrophysics Data System (ADS)
Sirazitdinova, Ekaterina; Deserno, Thomas M.
2017-03-01
The state-of-the art method of wound assessment is a manual, imprecise and time-consuming procedure. Per- formed by clinicians, it has limited reproducibility and accuracy, large time consumption and high costs. Novel technologies such as laser scanning microscopy, multi-photon microscopy, optical coherence tomography and hyper-spectral imaging, as well as devices relying on the structured light sensors, make accurate wound assessment possible. However, such methods have limitations due to high costs and may lack portability and availability. In this paper, we present a low-cost wound assessment system and architecture for fast and accurate cutaneous wound assessment using inexpensive consumer smartphone devices. Computer vision techniques are applied either on the device or the server to reconstruct wounds in 3D as dense models, which are generated from images taken with a built-in single camera of a smartphone device. The system architecture includes imaging (smartphone), processing (smartphone or PACS) and storage (PACS) devices. It supports tracking over time by alignment of 3D models, color correction using a reference color card placed into the scene and automatic segmentation of wound regions. Using our system, we are able to detect and document quantitative characteristics of chronic wounds, including size, depth, volume, rate of healing, as well as qualitative characteristics as color, presence of necrosis and type of involved tissue.
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
NASA Astrophysics Data System (ADS)
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan
2015-02-01
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.
Röttgers, Rüdiger; McKee, David; Utschig, Christian
2014-10-20
The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; ...
2015-02-01
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less
Timebias corrections to predictions
NASA Technical Reports Server (NTRS)
Wood, Roger; Gibbs, Philip
1993-01-01
The importance of an accurate knowledge of the time bias corrections to predicted orbits to a satellite laser ranging (SLR) observer, especially for low satellites, is highlighted. Sources of time bias values and the optimum strategy for extrapolation are discussed from the viewpoint of the observer wishing to maximize the chances of getting returns from the next pass. What is said may be seen as a commercial encouraging wider and speedier use of existing data centers for mutually beneficial exchange of time bias data.
A Semi-implicit Method for Time Accurate Simulation of Compressible Flow
NASA Astrophysics Data System (ADS)
Wall, Clifton; Pierce, Charles D.; Moin, Parviz
2001-11-01
A semi-implicit method for time accurate simulation of compressible flow is presented. The method avoids the acoustic CFL limitation, allowing a time step restricted only by the convective velocity. Centered discretization in both time and space allows the method to achieve zero artificial attenuation of acoustic waves. The method is an extension of the standard low Mach number pressure correction method to the compressible Navier-Stokes equations, and the main feature of the method is the solution of a Helmholtz type pressure correction equation similar to that of Demirdžić et al. (Int. J. Num. Meth. Fluids, Vol. 16, pp. 1029-1050, 1993). The method is attractive for simulation of acoustic combustion instabilities in practical combustors. In these flows, the Mach number is low; therefore the time step allowed by the convective CFL limitation is significantly larger than that allowed by the acoustic CFL limitation, resulting in significant efficiency gains. Also, the method's property of zero artificial attenuation of acoustic waves is important for accurate simulation of the interaction between acoustic waves and the combustion process. The method has been implemented in a large eddy simulation code, and results from several test cases will be presented.
An image-space parallel convolution filtering algorithm based on shadow map
NASA Astrophysics Data System (ADS)
Li, Hua; Yang, Huamin; Zhao, Jianping
2017-07-01
Shadow mapping is commonly used in real-time rendering. In this paper, we presented an accurate and efficient method of soft shadows generation from planar area lights. First this method generated a depth map from light's view, and analyzed the depth-discontinuities areas as well as shadow boundaries. Then these areas were described as binary values in the texture map called binary light-visibility map, and a parallel convolution filtering algorithm based on GPU was enforced to smooth out the boundaries with a box filter. Experiments show that our algorithm is an effective shadow map based method that produces perceptually accurate soft shadows in real time with more details of shadow boundaries compared with the previous works.
Distortion Correction of OCT Images of the Crystalline Lens: GRIN Approach
Siedlecki, Damian; de Castro, Alberto; Gambra, Enrique; Ortiz, Sergio; Borja, David; Uhlhorn, Stephen; Manns, Fabrice; Marcos, Susana; Parel, Jean-Marie
2012-01-01
Purpose To propose a method to correct Optical Coherence Tomography (OCT) images of posterior surface of the crystalline lens incorporating its gradient index (GRIN) distribution and explore its possibilities for posterior surface shape reconstruction in comparison to existing methods of correction. Methods 2-D images of 9 human lenses were obtained with a time-domain OCT system. The shape of the posterior lens surface was corrected using the proposed iterative correction method. The parameters defining the GRIN distribution used for the correction were taken from a previous publication. The results of correction were evaluated relative to the nominal surface shape (accessible in vitro) and compared to the performance of two other existing methods (simple division, refraction correction: assuming a homogeneous index). Comparisons were made in terms of posterior surface radius, conic constant, root mean square, peak to valley and lens thickness shifts from the nominal data. Results Differences in the retrieved radius and conic constant were not statistically significant across methods. However, GRIN distortion correction with optimal shape GRIN parameters provided more accurate estimates of the posterior lens surface, in terms of RMS and peak values, with errors less than 6μm and 13μm respectively, on average. Thickness was also more accurately estimated with the new method, with a mean discrepancy of 8μm. Conclusions The posterior surface of the crystalline lens and lens thickness can be accurately reconstructed from OCT images, with the accuracy improving with an accurate model of the GRIN distribution. The algorithm can be used to improve quantitative knowledge of the crystalline lens from OCT imaging in vivo. Although the improvements over other methods are modest in 2-D, it is expected that 3-D imaging will fully exploit the potential of the technique. The method will also benefit from increasing experimental data of GRIN distribution in the lens of larger populations. PMID:22466105
Distortion correction of OCT images of the crystalline lens: gradient index approach.
Siedlecki, Damian; de Castro, Alberto; Gambra, Enrique; Ortiz, Sergio; Borja, David; Uhlhorn, Stephen; Manns, Fabrice; Marcos, Susana; Parel, Jean-Marie
2012-05-01
To propose a method to correct optical coherence tomography (OCT) images of posterior surface of the crystalline lens incorporating its gradient index (GRIN) distribution and explore its possibilities for posterior surface shape reconstruction in comparison to existing methods of correction. Two-dimensional images of nine human lenses were obtained with a time-domain OCT system. The shape of the posterior lens surface was corrected using the proposed iterative correction method. The parameters defining the GRIN distribution used for the correction were taken from a previous publication. The results of correction were evaluated relative to the nominal surface shape (accessible in vitro) and compared with the performance of two other existing methods (simple division, refraction correction: assuming a homogeneous index). Comparisons were made in terms of posterior surface radius, conic constant, root mean square, peak to valley, and lens thickness shifts from the nominal data. Differences in the retrieved radius and conic constant were not statistically significant across methods. However, GRIN distortion correction with optimal shape GRIN parameters provided more accurate estimates of the posterior lens surface in terms of root mean square and peak values, with errors <6 and 13 μm, respectively, on average. Thickness was also more accurately estimated with the new method, with a mean discrepancy of 8 μm. The posterior surface of the crystalline lens and lens thickness can be accurately reconstructed from OCT images, with the accuracy improving with an accurate model of the GRIN distribution. The algorithm can be used to improve quantitative knowledge of the crystalline lens from OCT imaging in vivo. Although the improvements over other methods are modest in two dimension, it is expected that three-dimensional imaging will fully exploit the potential of the technique. The method will also benefit from increasing experimental data of GRIN distribution in the lens of larger populations.
Active optical sensors for tree stem detection and classification in nurseries.
Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J; Hanson, Bradley D; Slaughter, David C
2014-06-19
Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.
Regge calculus and observations. II. Further applications.
NASA Astrophysics Data System (ADS)
Williams, Ruth M.; Ellis, G. F. R.
1984-11-01
The method, developed in an earlier paper, for tracing geodesies of particles and light rays through Regge calculus space-times, is applied to a number of problems in the Schwarzschild geometry. It is possible to obtain accurate predictions of light bending by taking sufficiently small Regge blocks. Calculations of perihelion precession, Thomas precession, and the distortion of a ball of fluid moving on a geodesic can also show good agreement with the analytic solution. However difficulties arise in obtaining accurate predictions for general orbits in these space-times. Applications to other problems in general relativity are discussed briefly.
NASA Astrophysics Data System (ADS)
Tol, Paul; van Hees, Richard; van Kempen, Tim; Krijger, Matthijs; Cadot, Sidney; Aben, Ilse; Ludewig, Antje; Dingjan, Jos; Persijn, Stefan; Hoogeveen, Ruud
2016-10-01
The Tropospheric Monitoring Instrument (TROPOMI) on-board the Sentinel-5 Precursor satellite is an Earth-observing spectrometer with bands in the ultraviolet, visible, near infrared and short-wave infrared (SWIR). It provides daily global coverage of atmospheric trace gases relevant for tropospheric air quality and climate research. Three new techniques will be presented that are unique for the TROPOMI-SWIR spectrometer. The retrieval of methane and CO columns from the data of the SWIR band requires for each detector pixel an accurate instrument spectral response function (ISRF), i.e. the normalized signal as a function of wavelength. A new determination method for Earth-observing instruments has been used in the on-ground calibration, based on measurements with a SWIR optical parametric oscillator (OPO) that was scanned over the whole TROPOMI-SWIR spectral range. The calibration algorithm derives the ISRF without needing the absolute wavelength during the measurement. The same OPO has also been used to determine the two-dimensional stray-light distribution for each SWIR pixel with a dynamic range of 7 orders. This was achieved by combining measurements at several exposure times and taking saturation into account. The correction algorithm and data are designed to remove the mean stray-light distribution and a reflection that moves relative to the direct image, within the strict constraints of the available time for the L01b processing. A third new technique is an alternative calibration of the SWIR absolute radiance and irradiance using a black body at the temperature of melting silver. Unlike a standard FEL lamp, this source does not have to be calibrated itself, because the temperature is very stable and well known. Measurement methods, data analyses, correction algorithms and limitations of the new techniques will be presented.
Atmospheric correction for remote sensing image based on multi-spectral information
NASA Astrophysics Data System (ADS)
Wang, Yu; He, Hongyan; Tan, Wei; Qi, Wenwen
2018-03-01
The light collected from remote sensors taken from space must transit through the Earth's atmosphere. All satellite images are affected at some level by lightwave scattering and absorption from aerosols, water vapor and particulates in the atmosphere. For generating high-quality scientific data, atmospheric correction is required to remove atmospheric effects and to convert digital number (DN) values to surface reflectance (SR). Every optical satellite in orbit observes the earth through the same atmosphere, but each satellite image is impacted differently because atmospheric conditions are constantly changing. A physics-based detailed radiative transfer model 6SV requires a lot of key ancillary information about the atmospheric conditions at the acquisition time. This paper investigates to achieve the simultaneous acquisition of atmospheric radiation parameters based on the multi-spectral information, in order to improve the estimates of surface reflectance through physics-based atmospheric correction. Ancillary information on the aerosol optical depth (AOD) and total water vapor (TWV) derived from the multi-spectral information based on specific spectral properties was used for the 6SV model. The experimentation was carried out on images of Sentinel-2, which carries a Multispectral Instrument (MSI), recording in 13 spectral bands, covering a wide range of wavelengths from 440 up to 2200 nm. The results suggest that per-pixel atmospheric correction through 6SV model, integrating AOD and TWV derived from multispectral information, is better suited for accurate analysis of satellite images and quantitative remote sensing application.
NASA Astrophysics Data System (ADS)
Ryu, Y. H.; Hodzic, A.; Barré, J.; Descombes, G.; Minnis, P.
2017-12-01
Clouds play a key role in radiation and hence O3 photochemistry by modulating photolysis rates and light-dependent emissions of biogenic volatile organic compounds (BVOCs). It is not well known, however, how much of the bias in O3 predictions is caused by inaccurate cloud predictions. This study quantifies the errors in surface O3 predictions associated with clouds in summertime over CONUS using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Cloud fields used for photochemistry are corrected based on satellite cloud retrievals in sensitivity simulations. It is found that the WRF-Chem model is able to detect about 60% of clouds in the right locations and generally underpredicts cloud optical depths. The errors in hourly O3 due to the errors in cloud predictions can be up to 60 ppb. On average in summertime over CONUS, the errors in 8-h average O3 of 1-6 ppb are found to be attributable to those in cloud predictions under cloudy sky conditions. The contribution of changes in photolysis rates due to clouds is found to be larger ( 80 % on average) than that of light-dependent BVOC emissions. The effects of cloud corrections on O3 are about 2 times larger in VOC-limited than NOx-limited regimes, suggesting that the benefits of accurate cloud predictions would be greater in VOC-limited than NOx-limited regimes.
The dark art of light measurement: accurate radiometry for low-level light therapy.
Hadis, Mohammed A; Zainal, Siti A; Holder, Michelle J; Carroll, James D; Cooper, Paul R; Milward, Michael R; Palin, William M
2016-05-01
Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement methods and all ten key parameters: wavelength, power, irradiation time, beam area (at the skin or culture surface; this is not necessarily the same size as the aperture), radiant energy, radiant exposure, pulse parameters, number of treatments, interval between treatments and anatomical location. Inclusion of these parameters will improve the information available to compare and contrast study outcomes and improve repeatability, reliability of studies.
CD-SEM real time bias correction using reference metrology based modeling
NASA Astrophysics Data System (ADS)
Ukraintsev, V.; Banke, W.; Zagorodnev, G.; Archie, C.; Rana, N.; Pavlovsky, V.; Smirnov, V.; Briginas, I.; Katnani, A.; Vaid, A.
2018-03-01
Accuracy of patterning impacts yield, IC performance and technology time to market. Accuracy of patterning relies on optical proximity correction (OPC) models built using CD-SEM inputs and intra die critical dimension (CD) control based on CD-SEM. Sub-nanometer measurement uncertainty (MU) of CD-SEM is required for current technologies. Reported design and process related bias variation of CD-SEM is in the range of several nanometers. Reference metrology and numerical modeling are used to correct SEM. Both methods are slow to be used for real time bias correction. We report on real time CD-SEM bias correction using empirical models based on reference metrology (RM) data. Significant amount of currently untapped information (sidewall angle, corner rounding, etc.) is obtainable from SEM waveforms. Using additional RM information provided for specific technology (design rules, materials, processes) CD extraction algorithms can be pre-built and then used in real time for accurate CD extraction from regular CD-SEM images. The art and challenge of SEM modeling is in finding robust correlation between SEM waveform features and bias of CD-SEM as well as in minimizing RM inputs needed to create accurate (within the design and process space) model. The new approach was applied to improve CD-SEM accuracy of 45 nm GATE and 32 nm MET1 OPC 1D models. In both cases MU of the state of the art CD-SEM has been improved by 3x and reduced to a nanometer level. Similar approach can be applied to 2D (end of line, contours, etc.) and 3D (sidewall angle, corner rounding, etc.) cases.
Mobile Image Based Color Correction Using Deblurring
Wang, Yu; Xu, Chang; Boushey, Carol; Zhu, Fengqing; Delp, Edward J.
2016-01-01
Dietary intake, the process of determining what someone eats during the course of a day, provides valuable insights for mounting intervention programs for prevention of many chronic diseases such as obesity and cancer. The goals of the Technology Assisted Dietary Assessment (TADA) System, developed at Purdue University, is to automatically identify and quantify foods and beverages consumed by utilizing food images acquired with a mobile device. Color correction serves as a critical step to ensure accurate food identification and volume estimation. We make use of a specifically designed color checkerboard (i.e. a fiducial marker) to calibrate the imaging system so that the variations of food appearance under different lighting conditions can be determined. In this paper, we propose an image quality enhancement technique by combining image de-blurring and color correction. The contribution consists of introducing an automatic camera shake removal method using a saliency map and improving the polynomial color correction model using the LMS color space. PMID:28572697
Simulated and Real Sheet-of-Light 3D Object Scanning Using a-Si:H Thin Film PSD Arrays.
Contreras, Javier; Tornero, Josep; Ferreira, Isabel; Martins, Rodrigo; Gomes, Luis; Fortunato, Elvira
2015-11-30
A MATLAB/SIMULINK software simulation model (structure and component blocks) has been constructed in order to view and analyze the potential of the PSD (Position Sensitive Detector) array concept technology before it is further expanded or developed. This simulation allows changing most of its parameters, such as the number of elements in the PSD array, the direction of vision, the viewing/scanning angle, the object rotation, translation, sample/scan/simulation time, etc. In addition, results show for the first time the possibility of scanning an object in 3D when using an a-Si:H thin film 128 PSD array sensor and hardware/software system. Moreover, this sensor technology is able to perform these scans and render 3D objects at high speeds and high resolutions when using a sheet-of-light laser within a triangulation platform. As shown by the simulation, a substantial enhancement in 3D object profile image quality and realism can be achieved by increasing the number of elements of the PSD array sensor as well as by achieving an optimal position response from the sensor since clearly the definition of the 3D object profile depends on the correct and accurate position response of each detector as well as on the size of the PSD array.
NASA Astrophysics Data System (ADS)
Chang, Vivide Tuan-Chyan; Merisier, Delson; Yu, Bing; Walmer, David K.; Ramanujam, Nirmala
2011-03-01
A significant challenge in detecting cervical pre-cancer in low-resource settings is the lack of effective screening facilities and trained personnel to detect the disease before it is advanced. Light based technologies, particularly quantitative optical spectroscopy, have the potential to provide an effective, low cost, and portable solution for cervical pre-cancer screening in these communities. We have developed and characterized a portable USB-powered optical spectroscopic system to quantify total hemoglobin content, hemoglobin saturation, and reduced scattering coefficient of cervical tissue in vivo. The system consists of a high-power LED as light source, a bifurcated fiber optic assembly, and two USB spectrometers for sample and calibration spectra acquisitions. The system was subsequently tested in Leogane, Haiti, where diffuse reflectance spectra from 33 colposcopically normal sites in 21 patients were acquired. Two different calibration methods, i.e., a post-study diffuse reflectance standard measurement and a real time self-calibration channel were studied. Our results suggest that a self-calibration channel enabled more accurate extraction of scattering contrast through simultaneous real-time correction of intensity drifts in the system. A self-calibration system also minimizes operator bias and required training. Hence, future contact spectroscopy or imaging systems should incorporate a selfcalibration channel to reliably extract scattering contrast.
NASA Astrophysics Data System (ADS)
Wang, Zhao; Yang, Shan; Wang, Shuguang; Shen, Yan
2017-10-01
The assessment of the dynamic urban structure has been affected by lack of timely and accurate spatial information for a long period, which has hindered the measurements of structural continuity at the macroscale. Defense meteorological satellite program's operational linescan system (DMSP/OLS) nighttime light (NTL) data provide an ideal source for urban information detection with a long-time span, short-time interval, and wide coverage. In this study, we extracted the physical boundaries of urban clusters from corrected NTL images and quantitatively analyzed the structure of the urban cluster system based on rank-size distribution, spatial metrics, and Mann-Kendall trend test. Two levels of urban cluster systems in the Yangtze River Delta region (YRDR) were examined. We found that (1) in the entire YRDR, the urban cluster system showed a periodic process, with a significant trend of even distribution before 2007 but an unequal growth pattern after 2007, and (2) at the metropolitan level, vast disparities exist in four metropolitan areas for the fluctuations of Pareto's exponent, the speed of cluster expansion, and the dominance of core cluster. The results suggest that the extracted urban cluster information from NTL data effectively reflect the evolving nature of regional urbanization, which in turn can aid in the planning of cities and help achieve more sustainable regional development.
Burgess, Helen J.; Wyatt, James K.; Park, Margaret; Fogg, Louis F.
2015-01-01
Study Objectives: There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Design: Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Setting: Laboratory or participants' homes. Participants: Thirty-five healthy adults, age 21–62 y. Interventions: N/A. Measurements and Results: Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for < 9 min of the required 8.5 h. Most participants collected every saliva sample within 5 min of the scheduled time. Ninety-two percent of home DLMOs were not affected by light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P < 0.001). Conclusions: Participants were reasonably compliant to the home phase assessment procedures. The good agreement between the home and laboratory dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Clinical Trial Registration: Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. Citation: Burgess HJ, Wyatt JK, Park M, Fogg LF. Home circadian phase assessments with measures of compliance yield accurate dim light melatonin onsets. SLEEP 2015;38(6):889–897. PMID:25409110
RighTime: A real time clock correcting program for MS-DOS-based computer systems
NASA Technical Reports Server (NTRS)
Becker, G. Thomas
1993-01-01
A computer program is described which effectively eliminates the misgivings of the DOS system clock in PC/AT-class computers. RighTime is a small, sophisticated memory-resident program that automatically corrects both the DOS system clock and the hardware 'CMOS' real time clock (RTC) in real time. RighTime learns what corrections are required without operator interaction beyond the occasional accurate time set. Both warm (power on) and cool (power off) errors are corrected, usually yielding better than one part per million accuracy in the typical desktop computer with no additional hardware, and RighTime increases the system clock resolution from approximately 0.0549 second to 0.01 second. Program tools are also available which allow visualization of RighTime's actions, verification of its performance, display of its history log, and which provide data for graphing of the system clock behavior. The program has found application in a wide variety of industries, including astronomy, satellite tracking, communications, broadcasting, transportation, public utilities, manufacturing, medicine, and the military.
ERIC Educational Resources Information Center
Shintani, Natsuko; Aubrey, Scott
2016-01-01
This study extends research on written corrective feedback (CF) by investigating how timing of CF affects grammar acquisition. Specifically, it examined the relative effects of synchronous and asynchronous CF on the accurate use of the hypothetical conditional structure. Participants were 68 intermediate-level students of English at a university…
Age and gender classification of Merriam's turkeys from foot measurements
Mark A. Rumble; Todd R. Mills; Brian F. Wakeling; Richard W. Hoffman
1996-01-01
Wild turkey sex and age information is needed to define population structure but is difficult to obtain. We classified age and gender of Merriamâs turkeys (Meleagris gallopavo merriami) accurately based on measurements of two foot characteristics. Gender of birds was correctly classified 93% of the time from measurements of middle toe pads; correct...
Testing large flats with computer generated holograms
NASA Astrophysics Data System (ADS)
Pariani, Giorgio; Tresoldi, Daniela; Spanò, Paolo; Bianco, Andrea
2012-09-01
We describe the optical test of a large flat based on a spherical mirror and a dedicated CGH. The spherical mirror, which can be accurately manufactured and tested in absolute way, allows to obtain a quasi collimated light beam, and the hologram performs the residual wavefront correction. Alignment tools for the spherical mirror and the hologram itself are encoded in the CGH. Sensitivity to fabrication errors and alignment has been evaluated. Tests to verify the effectiveness of our approach are now under execution.
[Evaluation of Sugar Content of Huanghua Pear on Trees by Visible/Near Infrared Spectroscopy].
Liu, Hui-jun; Ying, Yi-bin
2015-11-01
A method of ambient light correction was proposed to evaluate the sugar content of Huanghua pears on tree by visible/near infrared diffuse reflectance spectroscopy (Vis/NIRS). Due to strong interference of ambient light, it was difficult to collect the efficient spectral of pears on tree. In the field, covering the fruits with a bag blocking ambient light can get better results, but the efficiency is fairly low, the instrument corrections of dark and reference spectra may help to reduce the error of the model, however, the interference of the ambient light cannot be eliminated effectively. In order to reduce the effect of ambient light, a shutter was attached to the front of probe. When opening shutter, the spot spectrum were obtained, on which instrument light and ambient light acted at the same time. While closing shutter, background spectra were obtained, on which only ambient light acted, then the ambient light spectra was subtracted from spot spectra. Prediction models were built using data on tree (before and after ambient light correction) and after harvesting by partial least square (PLS). The results of the correlation coefficient (R) are 0.1, 0.69, 0.924; the root mean square error of prediction (SEP) are 0. 89°Brix, 0.42°Brix, 0.27°Brix; ratio of standard deviation (SD) to SEP (RPD) are 0.79, 1.69, 2.58, respectively. The results indicate that, method of background correction used in the experiment can reduce the effect of ambient lighting on spectral acquisition of Huanghua pears in field, efficiently. This method can be used to collect the visible/near infrared spectrum of fruits in field, and may give full play to visible/near-infrared spectroscopy in preharvest management and maturity testing of fruits in the field.
NASA Technical Reports Server (NTRS)
Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.
2000-01-01
A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.
NASA Astrophysics Data System (ADS)
Pozzi, Paolo; Wilding, Dean; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel
2018-02-01
In this work, we present a new confocal laser scanning microscope capable to perform sensorless wavefront optimization in real time. The device is a parallelized laser scanning microscope in which the excitation light is structured in a lattice of spots by a spatial light modulator, while a deformable mirror provides aberration correction and scanning. A binary DMD is positioned in an image plane of the detection optical path, acting as a dynamic array of reflective confocal pinholes, images by a high performance cmos camera. A second camera detects images of the light rejected by the pinholes for sensorless aberration correction.
Motwani, Manoj
2017-01-01
Purpose To demonstrate how using the Wavelight Contoura measured astigmatism and axis eliminates corneal astigmatism and creates uniformly shaped corneas. Patients and methods A retrospective analysis was conducted of the first 50 eyes to have bilateral full WaveLight® Contoura LASIK correction of measured astigmatism and axis (vs conventional manifest refraction), using the Layer Yolked Reduction of Astigmatism Protocol in all cases. All patients had astigmatism corrected, and had at least 1 week of follow-up. Accuracy to desired refractive goal was assessed by postoperative refraction, aberration reduction via calculation of polynomials, and postoperative visions were analyzed as a secondary goal. Results The average difference of astigmatic power from manifest to measured was 0.5462D (with a range of 0–1.69D), and the average difference of axis was 14.94° (with a range of 0°–89°). Forty-seven of 50 eyes had a goal of plano, 3 had a monovision goal. Astigmatism was fully eliminated from all but 2 eyes, and 1 eye had regression with astigmatism. Of the eyes with plano as the goal, 80.85% were 20/15 or better, and 100% were 20/20 or better. Polynomial analysis postoperatively showed that at 6.5 mm, the average C3 was reduced by 86.5% and the average C5 by 85.14%. Conclusions Using WaveLight® Contoura measured astigmatism and axis removes higher order aberrations and allows for the creation of a more uniform cornea with accurate removal of astigmatism, and reduction of aberration polynomials. WaveLight® Contoura successfully links the refractive correction layer and aberration repair layer using the Layer Yolked Reduction of Astigmatism Protocol to demonstrate how aberration removal can affect refractive correction. PMID:28553071
Maximum likelihood of phylogenetic networks.
Jin, Guohua; Nakhleh, Luay; Snir, Sagi; Tuller, Tamir
2006-11-01
Horizontal gene transfer (HGT) is believed to be ubiquitous among bacteria, and plays a major role in their genome diversification as well as their ability to develop resistance to antibiotics. In light of its evolutionary significance and implications for human health, developing accurate and efficient methods for detecting and reconstructing HGT is imperative. In this article we provide a new HGT-oriented likelihood framework for many problems that involve phylogeny-based HGT detection and reconstruction. Beside the formulation of various likelihood criteria, we show that most of these problems are NP-hard, and offer heuristics for efficient and accurate reconstruction of HGT under these criteria. We implemented our heuristics and used them to analyze biological as well as synthetic data. In both cases, our criteria and heuristics exhibited very good performance with respect to identifying the correct number of HGT events as well as inferring their correct location on the species tree. Implementation of the criteria as well as heuristics and hardness proofs are available from the authors upon request. Hardness proofs can also be downloaded at http://www.cs.tau.ac.il/~tamirtul/MLNET/Supp-ML.pdf
Accurate Waveforms for Non-spinning Binary Black Holes using the Effective-one-body Approach
NASA Technical Reports Server (NTRS)
Buonanno, Alessandra; Pan, Yi; Baker, John G.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.
2007-01-01
Using numerical relativity as guidance and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms of non-spinning binary black holes during the last stages of inspiral, merger and ringdown. Here, by successfully, we mean with phase differences < or approx. 8% of a gravitational-wave cycle accumulated until the end of the ringdown phase. We obtain this result by simply adding a 4 post-Newtonian order correction in the EOB radial potential and determining the (constant) coefficient by imposing high-matching performances with numerical waveforms of mass ratios m1/m2 = 1,2/3,1/2 and = 1/4, m1 and m2 being the individual black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are used to determine the ringdown frequency and decay time of three quasi-normal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at the light-ring. The accurate EOB waveforms may be employed for coherent searches of gravitational waves emitted by non-spinning coalescing binary black holes with ground-based laser-interferometer detectors.
The development of W-PBPM at diagnostic beamline
NASA Astrophysics Data System (ADS)
Kim, Seungnam; Kim, Myeongjin; Kim, Seonghan; Shin, Hocheol; Kim, Jiwha; Lee, Chaesun
2017-12-01
The photon beam position monitor (PBPM) plays a critically important role in the accurate monitoring of the beam position. W (Wire)-PBPMs are installed at the front end and photon transfer line (PTL) of the diagnostic beamline and detect the change of position and angle of the beam orbit applied to the beamline. It provides beam stability and position data in real time, which can be used in feedback system with BPM in storage-ring. Also it provides beam profile, which makes it possible to figure out the specifications of beam. With two W-PBPMs, the angle information of beam could be acquired and the results coupled with beam profile are used with orbit correction. The W-PBPM has been designed and installed in the diagnostic beamline at Pohang Light Source. Herein the details of the design, analysis and performance for the W-PBPM will be reported.
Delay time correction of the gas analyzer in the calculation of anatomical dead space of the lung.
Okubo, T; Shibata, H; Takishima, T
1983-07-01
By means of a mathematical model, we have studied a way to correct the delay time of the gas analyzer in order to calculate the anatomical dead space using Fowler's graphical method. The mathematical model was constructed of ten tubes of equal diameter but unequal length, so that the amount of dead space varied from tube to tube; the tubes were emptied sequentially. The gas analyzer responds with a time lag from the input of the gas signal to the beginning of the response, followed by an exponential response output. The single breath expired volume-concentration relationship was examined with three types of expired flow patterns of which were constant, exponential and sinusoidal. The results indicate that the time correction by the lag time plus time constant of the exponential response of the gas analyzer gives an accurate estimation of anatomical dead space. Time correction less inclusive than this, e.g. lag time only or lag time plus 50% response time, gives an overestimation, and a correction larger than this results in underestimation. The magnitude of error is dependent on the flow pattern and flow rate. The time correction in this study is only for the calculation of dead space, as the corrected volume-concentration curves does not coincide with the true curve. Such correction of the output of the gas analyzer is extremely important when one needs to compare the dead spaces of different gas species at a rather faster flow rate.
NASA Astrophysics Data System (ADS)
Arabsahebi, Reza; Voosoghi, Behzad; Tourian, Mohammad J.
2018-05-01
Tropospheric correction is one of the most important corrections in satellite altimetry measurements. Tropospheric wet and dry path delays have strong dependence on temperature, pressure and humidity. Tropospheric layer has particularly high variability over coastal regions due to humidity, wind and temperature gradients. Depending on the extent of water body and wind conditions over an inland water, Wet Tropospheric Correction (WTC) is within the ranges from a few centimeters to tens of centimeters. Therefore, an extra care is needed to estimate tropospheric corrections on the altimetric measurements over inland waters. This study assesses the role of tropospheric correction on the altimetric measurements over the Urmia Lake in Iran. For this purpose, four types of tropospheric corrections have been used: (i) microwave radiometer (MWR) observations, (ii) tropospheric corrections computed from meteorological models, (iii) GPS observations and (iv) synoptic station data. They have been applied to Jason-2 track no. 133 and SARAL/AltiKa track no. 741 and 356 corresponding to 117-153 and the 23-34 cycles, respectively. In addition, the corresponding measurements of PISTACH and PEACHI, include new retracking method and an innovative wet tropospheric correction, have also been used. Our results show that GPS observation leads to the most accurate tropospheric correction. The results obtained from the PISTACH and PEACHI projects confirm those obtained with the standard SGDR, i.e., the role of GPS in improving the tropospheric corrections. It is inferred that the MWR data from Jason-2 mission is appropriate for the tropospheric corrections, however the SARAL/AltiKa one is not proper because Jason-2 possesses an enhanced WTC near the coast. Furthermore, virtual stations are defined for assessment of the results in terms of time series of Water Level Height (WLH). The results show that GPS tropospheric corrections lead to the most accurate WLH estimation for the selected virtual stations, which improves the accuracy of the obtained WLH time series by about 5%.
NASA Astrophysics Data System (ADS)
Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin
2009-04-01
The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method utilizing optical CT-scanned radiochromic gels allows for the acquisition of a self-consistent volumetric data set in a single exposure, with sufficient spatial resolution to accurately characterize small fields.
Wallace, Jonathan; Wang, Martha O; Thompson, Paul; Busso, Mallory; Belle, Vaijayantee; Mammoser, Nicole; Kim, Kyobum; Fisher, John P; Siblani, Ali; Xu, Yueshuo; Welter, Jean F; Lennon, Donald P; Sun, Jiayang; Caplan, Arnold I; Dean, David
2014-03-01
This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO2 and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4-15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength.
NASA Astrophysics Data System (ADS)
Mallas, Georgios; Brooks, Dana H.; Rosenthal, Amir; Vinegoni, Claudio; Calfon, Marcella A.; Razansky, R. Nika; Jaffer, Farouc A.; Ntziachristos, Vasilis
2011-03-01
Intravascular Near-Infrared Fluorescence (NIRF) imaging is a promising imaging modality to image vessel biology and high-risk plaques in vivo. We have developed a NIRF fiber optic catheter and have presented the ability to image atherosclerotic plaques in vivo, using appropriate NIR fluorescent probes. Our catheter consists of a 100/140 μm core/clad diameter housed in polyethylene tubing, emitting NIR laser light at a 90 degree angle compared to the fiber's axis. The system utilizes a rotational and a translational motor for true 2D imaging and operates in conjunction with a coaxial intravascular ultrasound (IVUS) device. IVUS datasets provide 3D images of the internal structure of arteries and are used in our system for anatomical mapping. Using the IVUS images, we are building an accurate hybrid fluorescence-IVUS data inversion scheme that takes into account photon propagation through the blood filled lumen. This hybrid imaging approach can then correct for the non-linear dependence of light intensity on the distance of the fluorescence region from the fiber tip, leading to quantitative imaging. The experimental and algorithmic developments will be presented and the effectiveness of the algorithm showcased with experimental results in both saline and blood-like preparations. The combined structural and molecular information obtained from these two imaging modalities are positioned to enable the accurate diagnosis of biologically high-risk atherosclerotic plaques in the coronary arteries that are responsible for heart attacks.
Enhanced cooling of Yb:YLF using astigmatic Herriott cell (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gragossian, Aram; Meng, Junwei; Ghasemkhani, Mohammadreza; Albrecht, Alexander R.; Tonelli, Mauro; Sheik-Bahae, Mansoor
2017-02-01
Optical refrigeration of solids requires crystals with exceptional qualities. Crystals with external quantum efficiencies (EQE) larger than 99% and background absorptions of 4×10-4cm-1 have been cooled to cryogenic temperatures using non resonant cavities. Estimating the cooling efficiency requires accurate measurements of the above mentioned quantities. Here we discuss measurements of EQE and background absorption for two high quality Yb:YLF samples. For any given sample, to reach minimum achievable temperatures heat generated by fluorescence must be removed from the surrounding clamshell and more importantly, absorption of the laser light must be maximized. Since the absorption coefficient drops at lower temperatures the only option is to confine laser light in a cavity until almost 100% of the light is absorbed. This can be achieved by placing the crystal between a cylindrical and spherical mirror to form an astigmatic Herriott cell. In this geometry light enters through a hole in the middle of the spherical mirror and if the entrance angle is correct, it can make as many round trips as required to absorb all the light. At 120 K 60 passes and 150 passes at 100K ensures more than 95% absorption of the laser light. 5 and 10% Yb:YLF crystals placed in such a cell cool to sub 90K temperatures. Non-contact temperature measurements are more challenging for such a geometry. Reabsorption of fluorescence for each pass must be taken into account for accurate temperature measurements by differential luminescence thermometry (DLT). Alternatively, we used part of the spectrum that is not affected by reabsorption.
The installation and correction of compasses in airplanes
NASA Technical Reports Server (NTRS)
Schoeffel, M F
1927-01-01
The saving of time that results from flying across country on compass headings is beginning to be widely recognized. At the same time the general use of steel tube fuselages has made a knowledge of compass correction much more necessary than was the case when wooden fuselages were the rule. This paper has been prepared primarily for the benefit of the pilot who has never studied navigation and who does not desire to go into the subject more deeply than to be able to fly compass courses with confidence. It also contains material for the designer who wishes to install his compasses with the expectation that they may be accurately corrected.
Inexpensive Meter for Total Solar Radiation
NASA Technical Reports Server (NTRS)
Laue, E. G.
1987-01-01
Pyranometer containing solar cells measures combined intensity of direct light from Sun and diffuse light from sky. Instrument includes polyethylene dome that diffuses entering light so output of light detectors does not vary significantly with changing angle of Sun during day. Not to be calibrated for response of each detector to Sun angle, and sensor outputs not corrected separately before summed and integrated. Aids in deciding on proper time to harvest crops.
Krylov Deferred Correction Accelerated Method of Lines Transpose for Parabolic Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jun; Jingfang, Huang
2008-01-01
In this paper, a new class of numerical methods for the accurate and efficient solutions of parabolic partial differential equations is presented. Unlike traditional method of lines (MoL), the new {\\bf \\it Krylov deferred correction (KDC) accelerated method of lines transpose (MoL^T)} first discretizes the temporal direction using Gaussian type nodes and spectral integration, and symbolically applies low-order time marching schemes to form a preconditioned elliptic system, which is then solved iteratively using Newton-Krylov techniques such as Newton-GMRES or Newton-BiCGStab method. Each function evaluation in the Newton-Krylov method is simply one low-order time-stepping approximation of the error by solving amore » decoupled system using available fast elliptic equation solvers. Preliminary numerical experiments show that the KDC accelerated MoL^T technique is unconditionally stable, can be spectrally accurate in both temporal and spatial directions, and allows optimal time-step sizes in long-time simulations.« less
Pedestrians' perception and response towards vehicles during road-crossing at nighttime.
Balasubramanian, Venkatesh; Bhardwaj, Rahul
2018-01-01
Pedestrian being involved in road traffic accidents (RTA) is about 22% of all road traffic related deaths. In this study, we have estimated the pedestrian's response towards an approaching vehicle and the time taken to correctly recognize it while they crossed the road in dim-light nighttime conditions. This is also extendable to cycles and other low powered vehicles. Thirty volunteers participated in this study. A collection of six videos, which comprised of different vehicle scenarios were shown to each of the participants. It was observed that correct identification and time to recognize the vehicle was fastest when light emitting diode (LED) strip was fixed between headlights of a four-wheeler. Average time to recognize a low beam car and a high beam car with an LED strip was 7.62±2.39s and 11.23±2.94s respectively, whereas correct identification rates of the said low beam and high beam cars with LED strips were 93.33% and 86.67% respectively. Earlier when no LED was used, time to recognize low beam car and high beam car without LED strip were 20.55±3.50s and 25.57±4.14s respectively whereas correct identification of low beam car without LED strip and high beam car without LED strip were 90.00% and 56.67% respectively. Pedestrians are therefore less confused and can take right decision while crossing the road - particularly in a poor lighting environment - when there is a demarcating illumination between headlights of vehicle. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menegotti, L.; Delana, A.; Martignano, A.
Film dosimetry is an attractive tool for dose distribution verification in intensity modulated radiotherapy (IMRT). A critical aspect of radiochromic film dosimetry is the scanner used for the readout of the film: the output needs to be calibrated in dose response and corrected for pixel value and spatial dependent nonuniformity caused by light scattering; these procedures can take a long time. A method for a fast and accurate calibration and uniformity correction for radiochromic film dosimetry is presented: a single film exposure is used to do both calibration and correction. Gafchromic EBT films were read with two flatbed charge coupledmore » device scanners (Epson V750 and 1680Pro). The accuracy of the method is investigated with specific dose patterns and an IMRT beam. The comparisons with a two-dimensional array of ionization chambers using a 18x18 cm{sup 2} open field and an inverse pyramid dose pattern show an increment in the percentage of points which pass the gamma analysis (tolerance parameters of 3% and 3 mm), passing from 55% and 64% for the 1680Pro and V750 scanners, respectively, to 94% for both scanners for the 18x18 open field, and from 76% and 75% to 91% for the inverse pyramid pattern. Application to an IMRT beam also shows better gamma index results, passing from 88% and 86% for the two scanners, respectively, to 94% for both. The number of points and dose range considered for correction and calibration appears to be appropriate for use in IMRT verification. The method showed to be fast and to correct properly the nonuniformity and has been adopted for routine clinical IMRT dose verification.« less
Louarn, Gaëtan; Lecoeur, Jérémie; Lebon, Eric
2008-01-01
Background and Aims In grapevine, canopy-structure-related variations in light interception and distribution affect productivity, yield and the quality of the harvested product. A simple statistical model for reconstructing three-dimensional (3D) canopy structures for various cultivar–training system (C × T) pairs has been implemented with special attention paid to balance the time required for model parameterization and accuracy of the representations from organ to stand scales. Such an approach particularly aims at overcoming the weak integration of interplant variability using the usual direct 3D measurement methods. Model This model is original in combining a turbid-medium-like envelope enclosing the volume occupied by vine shoots with the use of discrete geometric polygons representing leaves randomly located within this volume to represent plant structure. Reconstruction rules were adapted to capture the main determinants of grapevine shoot architecture and their variability. Using a simplified set of parameters, it was possible to describe (1) the 3D path of the main shoot, (2) the volume occupied by the foliage around this path and (3) the orientation of individual leaf surfaces. Model parameterization (estimation of the probability distribution for each parameter) was carried out for eight contrasting C × T pairs. Key Results and Conclusions The parameter values obtained in each situation were consistent with our knowledge of grapevine architecture. Quantitative assessments for the generated virtual scenes were carried out at the canopy and plant scales. Light interception efficiency and local variations of light transmittance within and between experimental plots were correctly simulated for all canopies studied. The approach predicted these key ecophysiological variables significantly more accurately than the classical complete digitization method with a limited number of plants. In addition, this model accurately reproduced the characteristics of a wide range of individual digitized plants. Simulated leaf area density and the distribution of light interception among leaves were consistent with measurements. However, at the level of individual organs, the model tended to underestimate light interception. PMID:18202006
Pozzi, P; Wilding, D; Soloviev, O; Verstraete, H; Bliek, L; Vdovin, G; Verhaegen, M
2017-01-23
The quality of fluorescence microscopy images is often impaired by the presence of sample induced optical aberrations. Adaptive optical elements such as deformable mirrors or spatial light modulators can be used to correct aberrations. However, previously reported techniques either require special sample preparation, or time consuming optimization procedures for the correction of static aberrations. This paper reports a technique for optical sectioning fluorescence microscopy capable of correcting dynamic aberrations in any fluorescent sample during the acquisition. This is achieved by implementing adaptive optics in a non conventional confocal microscopy setup, with multiple programmable confocal apertures, in which out of focus light can be separately detected, and used to optimize the correction performance with a sampling frequency an order of magnitude faster than the imaging rate of the system. The paper reports results comparing the correction performances to traditional image optimization algorithms, and demonstrates how the system can compensate for dynamic changes in the aberrations, such as those introduced during a focal stack acquisition though a thick sample.
NASA Astrophysics Data System (ADS)
Lochocki, Benjamin; Vohnsen, Brian
2013-12-01
The Stiles-Crawford effect of the first kind describes a gradually diminished visibility of light that enters the eye towards the pupil rim. Although of retinal origin, it is commonly described by a Gaussian pupil apodization whose width is determined by a directionality parameter that depends on retinal eccentricity, wavelength and spatial coherence of the light. As the measurements are done psychophysically they are prone to subjective variations and difficult to obtain across the visible spectrum. In this work, requirements for accurate refractive correction when determining the directionality parameter at any given wavelength are discussed and we show that a current-controlled tunable liquid-polymer lens provides a convenient means to accomplish this without requiring mechanical readjustments. This may be the most convenient way to combat defocus across the visible spectrum in the analysis of the Stiles-Crawford effect as demonstrated through experiments and with a detailed Zemax eye-and-system analysis. The results obtained are discussed in relation to myopia and a reduced directionality for highly myopic eyes.
Irrigation scheduling: When, where, and how much?
USDA-ARS?s Scientific Manuscript database
Irrigation scheduling, a key element of proper water management, is the accurate forecasting of water application (amount and timing) for optimal crop production (yield and fruit quality). The goal is to apply the correct amount of water at the right time to minimize irrigation costs and maximize cr...
Effect of Age and Glaucoma on the Detection of Darks and Lights
Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel
2015-01-01
Purpose We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. Methods We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. Results We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. Conclusions We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma. PMID:26513506
Effect of Age and Glaucoma on the Detection of Darks and Lights.
Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel
2015-10-01
We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma.
Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang
2018-04-20
Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.
Active Optical Sensors for Tree Stem Detection and Classification in Nurseries
Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J.; Hanson, Bradley D.; Slaughter, David C.
2014-01-01
Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops. PMID:24949638
Discovery deep space optical communications (DSOC) transceiver
NASA Astrophysics Data System (ADS)
Roberts, W. Thomas
2017-02-01
NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.
NASA Astrophysics Data System (ADS)
Lyu, Jiang-Tao; Zhou, Chen
2017-12-01
Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.
The Power Plant Operating Data Based on Real-time Digital Filtration Technology
NASA Astrophysics Data System (ADS)
Zhao, Ning; Chen, Ya-mi; Wang, Hui-jie
2018-03-01
Real-time monitoring of the data of the thermal power plant was the basis of accurate analyzing thermal economy and accurate reconstruction of the operating state. Due to noise interference was inevitable; we need real-time monitoring data filtering to get accurate information of the units and equipment operating data of the thermal power plant. Real-time filtering algorithm couldn’t be used to correct the current data with future data. Compared with traditional filtering algorithm, there were a lot of constraints. First-order lag filtering method and weighted recursive average filtering method could be used for real-time filtering. This paper analyzes the characteristics of the two filtering methods and applications for real-time processing of the positive spin simulation data, and the thermal power plant operating data. The analysis was revealed that the weighted recursive average filtering method applied to the simulation and real-time plant data filtering achieved very good results.
Liu, Kuan-Yu; Herbert, John M
2017-10-28
Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affecting the many-body expansion (MBE), which only manifest in larger systems and thus have received scant attention in the literature. Many-body counterpoise (CP) corrections are shown to accelerate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set superposition error affects subsystem versus supersystem calculations. In water clusters ranging in size up to (H 2 O) 37 , four-body terms prove necessary to achieve accurate results for both total interaction energies and relative isomer energies, but the sheer number of tetramers makes the use of cutoff schemes essential. To predict relative energies of (H 2 O) 20 isomers, two approximations based on a lower level of theory are introduced and an ONIOM-type procedure is found to be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme suggest that if reasonable approximations to the subsystem energies are available (based on classical multipoles, say), then the number of requisite subsystem calculations can be reduced even more dramatically than when distance-based thresholds are employed. The end result is several accurate four-body methods that do not require charge embedding, and which are stable in large basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quantum chemistry methods. Even with aggressive thresholding, however, the four-body approach at the self-consistent field level still requires roughly ten times more processors to outmatch the performance of the corresponding supersystem calculation, in test cases involving 1500-1800 basis functions.
NASA Astrophysics Data System (ADS)
Liu, Kuan-Yu; Herbert, John M.
2017-10-01
Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affecting the many-body expansion (MBE), which only manifest in larger systems and thus have received scant attention in the literature. Many-body counterpoise (CP) corrections are shown to accelerate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set superposition error affects subsystem versus supersystem calculations. In water clusters ranging in size up to (H2O)37, four-body terms prove necessary to achieve accurate results for both total interaction energies and relative isomer energies, but the sheer number of tetramers makes the use of cutoff schemes essential. To predict relative energies of (H2O)20 isomers, two approximations based on a lower level of theory are introduced and an ONIOM-type procedure is found to be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme suggest that if reasonable approximations to the subsystem energies are available (based on classical multipoles, say), then the number of requisite subsystem calculations can be reduced even more dramatically than when distance-based thresholds are employed. The end result is several accurate four-body methods that do not require charge embedding, and which are stable in large basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quantum chemistry methods. Even with aggressive thresholding, however, the four-body approach at the self-consistent field level still requires roughly ten times more processors to outmatch the performance of the corresponding supersystem calculation, in test cases involving 1500-1800 basis functions.
Burgess, Helen J; Wyatt, James K; Park, Margaret; Fogg, Louis F
2015-06-01
There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Laboratory or participants' homes. Thirty-five healthy adults, age 21-62 y. N/A. Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for < 9 min of the required 8.5 h. Most participants collected every saliva sample within 5 min of the scheduled time. Ninety-two percent of home DLMOs were not affected by light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P < 0.001). Participants were reasonably compliant to the home phase assessment procedures. The good agreement between the home and laboratory dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. © 2015 Associated Professional Sleep Societies, LLC.
Biliouris, Dimitrios; Verstraeten, Willem W.; Dutré, Phillip; van Aardt, Jan A.N.; Muys, Bart; Coppin, Pol
2007-01-01
The design and calibration of a new hyperspectral Compact Laboratory Spectro-Goniometer (CLabSpeG) is presented. CLabSpeG effectively measures the bidirectional reflectance Factor (BRF) of a sample, using a halogen light source and an Analytical Spectral Devices (ASD) spectroradiometer. The apparatus collects 4356 reflectance data readings covering the spectrum from 350 nm to 2500 nm by independent positioning of the sensor, sample holder, and light source. It has an azimuth and zenith resolution of 30 and 15 degrees, respectively. CLabSpeG is used to collect BRF data and extract Bidirectional Reflectance Distribution Function (BRDF) data of non-isotropic vegetation elements such as bark, soil, and leaves. Accurate calibration has ensured robust geometric accuracy of the apparatus, correction for the conicality of the light source, while sufficient radiometric stability and repeatability between measurements are obtained. The bidirectional reflectance data collection is automated and remotely controlled and takes approximately two and half hours for a BRF measurement cycle over a full hemisphere with 125 cm radius and 2.4 minutes for a single BRF acquisition. A specific protocol for vegetative leaf collection and measurement was established in order to investigate the possibility to extract BRDF values from Fagus sylvatica L. leaves under laboratory conditions. Drying leaf effects induce a reflectance change during the BRF measurements due to the laboratory illumination source. Therefore, the full hemisphere could not be covered with one leaf. Instead 12 BRF measurements per leaf were acquired covering all azimuth positions for a single light source zenith position. Data are collected in radiance format and reflectance is calculated by dividing the leaf cycle measurement with a radiance cycle of a Spectralon reference panel, multiplied by a Spectralon reflectance correction factor and a factor to correct for the conical effect of the light source. BRF results of measured leaves are presented. PMID:28903201
Biliouris, Dimitrios; Verstraeten, Willem W; Dutré, Phillip; Van Aardt, Jan A N; Muys, Bart; Coppin, Pol
2007-09-07
The design and calibration of a new hyperspectral Compact Laboratory Spectro-Goniometer (CLabSpeG) is presented. CLabSpeG effectively measures the bidirectionalreflectance Factor (BRF) of a sample, using a halogen light source and an AnalyticalSpectral Devices (ASD) spectroradiometer. The apparatus collects 4356 reflectance datareadings covering the spectrum from 350 nm to 2500 nm by independent positioning of thesensor, sample holder, and light source. It has an azimuth and zenith resolution of 30 and15 degrees, respectively. CLabSpeG is used to collect BRF data and extract BidirectionalReflectance Distribution Function (BRDF) data of non-isotropic vegetation elements suchas bark, soil, and leaves. Accurate calibration has ensured robust geometric accuracy of theapparatus, correction for the conicality of the light source, while sufficient radiometricstability and repeatability between measurements are obtained. The bidirectionalreflectance data collection is automated and remotely controlled and takes approximatelytwo and half hours for a BRF measurement cycle over a full hemisphere with 125 cmradius and 2.4 minutes for a single BRF acquisition. A specific protocol for vegetative leafcollection and measurement was established in order to investigate the possibility to extractBRDF values from Fagus sylvatica L. leaves under laboratory conditions. Drying leafeffects induce a reflectance change during the BRF measurements due to the laboratorySensors 2007, 7 1847 illumination source. Therefore, the full hemisphere could not be covered with one leaf. Instead 12 BRF measurements per leaf were acquired covering all azimuth positions for a single light source zenith position. Data are collected in radiance format and reflectance is calculated by dividing the leaf cycle measurement with a radiance cycle of a Spectralon reference panel, multiplied by a Spectralon reflectance correction factor and a factor to correct for the conical effect of the light source. BRF results of measured leaves are presented.
Automated Diatom Analysis Applied to Traditional Light Microscopy: A Proof-of-Concept Study
NASA Astrophysics Data System (ADS)
Little, Z. H. L.; Bishop, I.; Spaulding, S. A.; Nelson, H.; Mahoney, C.
2017-12-01
Diatom identification and enumeration by high resolution light microscopy is required for many areas of research and water quality assessment. Such analyses, however, are both expertise and labor-intensive. These challenges motivate the need for an automated process to efficiently and accurately identify and enumerate diatoms. Improvements in particle analysis software have increased the likelihood that diatom enumeration can be automated. VisualSpreadsheet software provides a possible solution for automated particle analysis of high-resolution light microscope diatom images. We applied the software, independent of its complementary FlowCam hardware, to automated analysis of light microscope images containing diatoms. Through numerous trials, we arrived at threshold settings to correctly segment 67% of the total possible diatom valves and fragments from broad fields of view. (183 light microscope images were examined containing 255 diatom particles. Of the 255 diatom particles present, 216 diatoms valves and fragments of valves were processed, with 170 properly analyzed and focused upon by the software). Manual analysis of the images yielded 255 particles in 400 seconds, whereas the software yielded a total of 216 particles in 68 seconds, thus highlighting that the software has an approximate five-fold efficiency advantage in particle analysis time. As in past efforts, incomplete or incorrect recognition was found for images with multiple valves in contact or valves with little contrast. The software has potential to be an effective tool in assisting taxonomists with diatom enumeration by completing a large portion of analyses. Benefits and limitations of the approach are presented to allow for development of future work in image analysis and automated enumeration of traditional light microscope images containing diatoms.
MacNab, A J; MacPhail, I; MacNab, M K; Noble, R; O'Flaherty, D
1998-01-01
We conducted a prospective randomized study of success rate and time to intubation using Trachlight and Surch-Lite lighted stylets versus a regular tracheal tube stylet, in a training setting. Participants, 18 paediatric transport paramedics, performed two intubations with each of the three devices, using an airway management trainer. There was no significant difference in mean time for intubation between the three devices. The times for external confirmation of correct tube placement were comparable using the two lighted stylets. External confirmation of the tube placement using the lighted stylets was quicker than laryngoscopic visualization. In darkness, with a nonfunctioning laryngoscope, intubations were successfully performed 100% of the time with the lighted stylet, but only 11% of the time with the regular stylet. All paramedics felt that a lighted stylet would be a useful airway management adjunct for the transport environment for complicated intubations or for use in very high or low levels of ambient light.
NASA Astrophysics Data System (ADS)
Krummacher, B. C.; Mathai, M. K.; Choong, V.; Choulis, S. A.; So, F.; Winnacker, A.
2006-09-01
The external light output of organic light emitting diodes (OLEDs) can be increased by modifying the light emitting surface. The apparent light extraction enhancement is given by the ratio between the efficiency of the unmodified device and the efficiency of the modified device. This apparent light extraction enhancement is dependent on the OLED architecture itself and is not the correct value to judge the effectiveness of a technique to enhance light outcoupling due to substrate surface modification. We propose a general method to evaluate substrate surface modification techniques for light extraction enhancement of OLEDs independent from the device architecture. This method is experimentally demonstrated using green electrophosphorescent OLEDs with different device architectures. The substrate surface of these OLEDs was modified by applying a prismatic film to increase light outcoupling from the device stack. It was demonstrated that the conventionally measured apparent light extraction enhancement by means of the prismatic film does not reflect the actual performance of the light outcoupling technique. Rather, by comparing the light extracted out of the prismatic film to that generated in the OLED layers and coupled into the substrate (before the substrate/air interface), a more accurate evaluation of light outcoupling enhancement can be achieved. Furthermore we show that substrate surface modification can change the output spectrum of a broad band emitting OLED.
Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate
NASA Astrophysics Data System (ADS)
Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.
2008-08-01
The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.
Light, sleep and circadian rhythms in older adults with Alzheimer's disease and related dementias
Figueiro, Mariana G
2017-01-01
Alzheimer's disease and related dementias (ADRD) can cause sleep and behavioral problems that are problematic for ADRD patients and their family caregivers. Light therapy has shown promise as a nonpharmacological treatment, and preliminary studies demonstrate that timed light exposure can consolidate and improve nighttime sleep efficiency, increase daytime wakefulness and reduce evening agitation without the adverse effects of pharmacological solutions. Compliance with light treatment and the accurate measurement of light exposures during treatment, however, have presented barriers for the adoption of light therapy for ADRD. Recent research showing that the circadian system is maximally sensitive to short-wavelength light opens the way for the potential application of lower, more-targeted light intensities to maximize compliance and individualize light dose/timing in therapeutic settings. PMID:28534696
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ordy, J.M.; Brizzee, K.R.; Dunlap, W.P.
1982-02-01
The goals of this study were to examine the effects of 0, 50, and 100 rad of /sup 60/Co administered prenatally on postnatal development of neuromuscular coordination, visual discrimination learning, spontaneous light-dark stabilimeter activity, plasma cortisol, and somatometric growth rates of diurnal squirrel monkeys from birth to 90 days. In terms of accuracy, completeness, and time required for performance of reflexes and neuromuscular coordination, the performance of 50- and 100-rad offspring was less accurate and poorly coordinated and required more time for completion to that of controls. In visual orientation, discrimination, and reversal learning, the percentage correct responses of themore » 50- and 100-rad offspring were significantly lower than those of controls. Spontaneous light-dark stabilimeter activity of 50- and 100-rad offspring was significantly higher in the dark session than that of controls. Plasma cortisol was significantly higher in 100-rad infants than in controls. Comparisons of somatometric growth rates indicated that postnatal head circumference, crown-rump length, and to a lesser extent body weight increased at significantly slower rates in 50- and 100-rad offspring. These findings should provide essential information for formulating and carrying out multivariate behavioral, biochemical, and morphometric assessments of low-dose effects on the brain of primate offspring within demonstrable dose-response curves.« less
Time domain simulation of novel photovoltaic materials
NASA Astrophysics Data System (ADS)
Chung, Haejun
Thin-film silicon-based solar cells have operated far from the Shockley- Queisser limit in all experiments to date. Novel light-trapping structures, however, may help address this limitation. Finite-difference time domain simulation methods offer the potential to accurately determine the light-trapping potential of arbitrary dielectric structures, but suffer from materials modeling problems. In this thesis, existing dispersion models for novel photovoltaic materials will be reviewed, and a novel dispersion model, known as the quadratic complex rational function (QCRF), will be proposed. It has the advantage of accurately fitting experimental semiconductor dielectric values over a wide bandwidth in a numerically stable fashion. Applying the proposed dispersion model, a statistically correlated surface texturing method will be suggested, and light absorption rates of it will be explained. In future work, these designs will be combined with other structures and optimized to help guide future experiments.
NASA Astrophysics Data System (ADS)
Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto
2017-12-01
Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50% (error related to ERP) when a highly accurate observed orbit is used with the correction method. For iGMAS-predicted orbits, the accuracy improvement ranges from 8.5% for the inclined BeiDou orbits to 17.99% for the GPS orbits. This demonstrates that the correction method proposed by this study can optimize the ultra-rapid orbit prediction.
An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting.
Wu, Dan; Tang, Xiaohong; Wang, Kai; He, Zhubing; Li, Xianqiang
2017-11-25
Solar cells based on subwavelength-dimensions semiconductor nanowire (NW) arrays promise a comparable or better performance than their planar counterparts by taking the advantages of strong light coupling and light trapping. In this paper, we present an accurate and time-saving analytical design for optimal geometrical parameters of vertically aligned InP NWs for maximal solar energy absorption. Short-circuit current densities are calculated for each NW array with different geometrical dimensions under solar illumination. Optimal geometrical dimensions are quantitatively presented for single, double, and multiple diameters of the NW arrays arranged both squarely and hexagonal achieving the maximal short-circuit current density of 33.13 mA/cm 2 . At the same time, intensive finite-difference time-domain numerical simulations are performed to investigate the same NW arrays for the highest light absorption. Compared with time-consuming simulations and experimental results, the predicted maximal short-circuit current densities have tolerances of below 2.2% for all cases. These results unambiguously demonstrate that this analytical method provides a fast and accurate route to guide high performance InP NW-based solar cell design.
An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting
NASA Astrophysics Data System (ADS)
Wu, Dan; Tang, Xiaohong; Wang, Kai; He, Zhubing; Li, Xianqiang
2017-11-01
Solar cells based on subwavelength-dimensions semiconductor nanowire (NW) arrays promise a comparable or better performance than their planar counterparts by taking the advantages of strong light coupling and light trapping. In this paper, we present an accurate and time-saving analytical design for optimal geometrical parameters of vertically aligned InP NWs for maximal solar energy absorption. Short-circuit current densities are calculated for each NW array with different geometrical dimensions under solar illumination. Optimal geometrical dimensions are quantitatively presented for single, double, and multiple diameters of the NW arrays arranged both squarely and hexagonal achieving the maximal short-circuit current density of 33.13 mA/cm2. At the same time, intensive finite-difference time-domain numerical simulations are performed to investigate the same NW arrays for the highest light absorption. Compared with time-consuming simulations and experimental results, the predicted maximal short-circuit current densities have tolerances of below 2.2% for all cases. These results unambiguously demonstrate that this analytical method provides a fast and accurate route to guide high performance InP NW-based solar cell design.
Perceptual support promotes strategy generation: Evidence from equation solving.
Alibali, Martha W; Crooks, Noelle M; McNeil, Nicole M
2017-08-30
Over time, children shift from using less optimal strategies for solving mathematics problems to using better ones. But why do children generate new strategies? We argue that they do so when they begin to encode problems more accurately; therefore, we hypothesized that perceptual support for correct encoding would foster strategy generation. Fourth-grade students solved mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __) in a pre-test. They were then randomly assigned to one of three perceptual support conditions or to a Control condition. Participants in all conditions completed three mathematical equivalence problems with feedback about correctness. Participants in the experimental conditions received perceptual support (i.e., highlighting in red ink) for accurately encoding the equal sign, the right side of the equation, or the numbers that could be added to obtain the correct solution. Following this intervention, participants completed a problem-solving post-test. Among participants who solved the problems incorrectly at pre-test, those who received perceptual support for correctly encoding the equal sign were more likely to generate new, correct strategies for solving the problems than were those who received feedback only. Thus, perceptual support for accurate encoding of a key problem feature promoted generation of new, correct strategies. Statement of Contribution What is already known on this subject? With age and experience, children shift to using more effective strategies for solving math problems. Problem encoding also improves with age and experience. What the present study adds? Support for encoding the equal sign led children to generate correct strategies for solving equations. Improvements in problem encoding are one source of new strategies. © 2017 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Bogdanovich, M. V.; Kabanau, D. M.; Lebiadok, Y. V.; Shpak, P. V.; Ryabtsev, A. G.; Ryabtsev, G. I.; Shchemelev, M. A.; Andreev, I. A.; Kunitsyna, E. V.; Ivanov, E. V.; Yakovlev, Yu. P.
2017-02-01
The feasibility of using light-emitting devices, the radiation spectrum of which has maxima at wavelengths of 1.7, 1.9, and 2.2 μm for determining the water concentration in oil and oil products (gasoline, kerosene, diesel fuel) has been demonstrated. It has been found that the measurement error can be lowered if (i) the temperature of the light-emitting diode is maintained accurate to 0.5-1.0°C, (ii) by using a cell through which a permanently stirred analyte is pumped, and (iii) by selecting the repetition rate of radiation pulses from the light-emitting diodes according to the averaging time. A meter of water content in oil and oil products has been developed that is built around IR light-emitting device-photodiode optrons. This device provides water content on-line monitoring accurate to 1.5%.
An IR Navigation System for Pleural PDT
NASA Astrophysics Data System (ADS)
Zhu, Timothy; Liang, Xing; Kim, Michele; Finlay, Jarod; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles; Friedberg, Joseph; Cengel, Keith
2015-03-01
Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.
On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic
NASA Astrophysics Data System (ADS)
Backman, John; Schmeisser, Lauren; Virkkula, Aki; Ogren, John A.; Asmi, Eija; Starkweather, Sandra; Sharma, Sangeeta; Eleftheriadis, Konstantinos; Uttal, Taneil; Jefferson, Anne; Bergin, Michael; Makshtas, Alexander; Tunved, Peter; Fiebig, Markus
2017-12-01
Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than boxcar averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Δt) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations ( > 2.1-6.7 Mm-1 as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.
Mitcham, Trevor; Taghavi, Houra; Long, James; Wood, Cayla; Fuentes, David; Stefan, Wolfgang; Ward, John; Bouchard, Richard
2017-09-01
Photoacoustic (PA) imaging is capable of probing blood oxygen saturation (sO 2 ), which has been shown to correlate with tissue hypoxia, a promising cancer biomarker. However, wavelength-dependent local fluence changes can compromise sO 2 estimation accuracy in tissue. This work investigates using PA imaging with interstitial irradiation and local fluence correction to assess precision and accuracy of sO 2 estimation of blood samples through ex vivo bovine prostate tissue ranging from 14% to 100% sO 2 . Study results for bovine blood samples at distances up to 20 mm from the irradiation source show that local fluence correction improved average sO 2 estimation error from 16.8% to 3.2% and maintained an average precision of 2.3% when compared to matched CO-oximeter sO 2 measurements. This work demonstrates the potential for future clinical translation of using fluence-corrected and interstitially driven PA imaging to accurately and precisely assess sO 2 at depth in tissue with high resolution.
NASA Astrophysics Data System (ADS)
Meng, Qingxin; Hu, Xiangyun; Pan, Heping; Xi, Yufei
2018-04-01
We propose an algorithm for calculating all-time apparent resistivity from transient electromagnetic induction logging. The algorithm is based on the whole-space transient electric field expression of the uniform model and Halley's optimisation. In trial calculations for uniform models, the all-time algorithm is shown to have high accuracy. We use the finite-difference time-domain method to simulate the transient electromagnetic field in radial two-layer models without wall rock and convert the simulation results to apparent resistivity using the all-time algorithm. The time-varying apparent resistivity reflects the radially layered geoelectrical structure of the models and the apparent resistivity of the earliest time channel follows the true resistivity of the inner layer; however, the apparent resistivity at larger times reflects the comprehensive electrical characteristics of the inner and outer layers. To accurately identify the outer layer resistivity based on the series relationship model of the layered resistance, the apparent resistivity and diffusion depth of the different time channels are approximately replaced by related model parameters; that is, we propose an apparent resistivity correction algorithm. By correcting the time-varying apparent resistivity of radial two-layer models, we show that the correction results reflect the radially layered electrical structure and the corrected resistivities of the larger time channels follow the outer layer resistivity. The transient electromagnetic fields of radially layered models with wall rock are simulated to obtain the 2D time-varying profiles of the apparent resistivity and corrections. The results suggest that the time-varying apparent resistivity and correction results reflect the vertical and radial geoelectrical structures. For models with small wall-rock effect, the correction removes the effect of the low-resistance inner layer on the apparent resistivity of the larger time channels.
NASA Astrophysics Data System (ADS)
Cooper, Elizabeth; Dance, Sarah; Garcia-Pintado, Javier; Nichols, Nancy; Smith, Polly
2017-04-01
Timely and accurate inundation forecasting provides vital information about the behaviour of fluvial flood water, enabling mitigating actions to be taken by residents and emergency services. Data assimilation is a powerful mathematical technique for combining forecasts from hydrodynamic models with observations to produce a more accurate forecast. We discuss the effect of both domain size and channel friction parameter estimation on observation impact in data assimilation for inundation forecasting. Numerical shallow water simulations are carried out in a simple, idealized river channel topography. Data assimilation is performed using an Ensemble Transform Kalman Filter (ETKF) and synthetic observations of water depth in identical twin experiments. We show that reinitialising the numerical inundation model with corrected water levels after an assimilation can cause an initialisation shock if a hydrostatic assumption is made, leading to significant degradation of the forecast for several hours immediately following an assimilation. We demonstrate an effective and novel method for dealing with this. We find that using data assimilation to combine observations of water depth with forecasts from a hydrodynamic model corrects the forecast very effectively at time of the observations. In agreement with other authors we find that the corrected forecast then moves quickly back to the open loop forecast which does not take the observations into account. Our investigations show that the time taken for the forecast to decay back to the open loop case depends on the length of the domain of interest when only water levels are corrected. This is because the assimilation corrects water depths in all parts of the domain, even when observations are only available in one area. Error growth in the forecast step then starts at the upstream part of the domain and propagates downstream. The impact of the observations is therefore longer-lived in a longer domain. We have found that the upstream-downstream pattern of error growth can be due to incorrect friction parameter specification, rather than errors in inflow as shown elsewhere. Our results show that joint state-parameter estimation can recover accurate values for the parameter controlling channel friction processes in the model, even when observations of water level are only available on part of the flood plain. Correcting water levels and the channel friction parameter together leads to a large improvement in the forecast water levels at all simulation times. The impact of the observations is therefore much greater when the channel friction parameter is corrected along with water levels. We find that domain length effects disappear for joint state-parameter estimation.
PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT)
NASA Astrophysics Data System (ADS)
Ong, Yi Hong; Kim, Michele M.; Finlay, Jarod C.; Dimofte, Andreea; Singhal, Sunil; Glatstein, Eli; Cengel, Keith A.; Zhu, Timothy C.
2018-01-01
Photosensitizer fluorescence excited by photodynamic therapy (PDT) treatment light can be used to monitor the in vivo concentration of the photosensitizer and its photobleaching. The temporal integral of the product of in vivo photosensitizer concentration and light fluence is called PDT dose, which is an important dosimetry quantity for PDT. However, the detected photosensitizer fluorescence may be distorted by variations in the absorption and scattering of both excitation and fluorescence light in tissue. Therefore, correction of the measured fluorescence for distortion due to variable optical properties is required for absolute quantification of photosensitizer concentration. In this study, we have developed a four-channel PDT dose dosimetry system to simultaneously acquire light dosimetry and photosensitizer fluorescence data. We measured PDT dose at four sites in the pleural cavity during pleural PDT. We have determined an empirical optical property correction function using Monte Carlo simulations of fluorescence for a range of physiologically relevant tissue optical properties. Parameters of the optical property correction function for Photofrin fluorescence were determined experimentally using tissue-simulating phantoms. In vivo measurements of photosensitizer fluorescence showed negligible photobleaching of Photofrin during the PDT treatment, but large intra- and inter-patient heterogeneities of in vivo Photofrin concentration are observed. PDT doses delivered to 22 sites in the pleural cavity of 8 patients were different by 2.9 times intra-patient and 8.3 times inter-patient.
Kozaki, Tomoaki; Kubokawa, Ayaka; Taketomi, Ryunosuke; Hatae, Keisuke
2015-07-04
Bright nocturnal light has been known to suppress melatonin secretion. However, bright light exposure during the day-time might reduce light-induced melatonin suppression (LIMS) at night. The effective proportion of day-time light to night-time light is unclear; however, only a few studies on accurately controlling both day- and night-time conditions have been conducted. This study aims to evaluate the effect of different day-time light intensities on LIMS. Twelve male subjects between the ages of 19 and 23 years (mean ± S.D., 20.8 ± 1.1) gave informed consent to participate in this study. They were exposed to various light conditions (<10, 100, 300, 900 and 2700 lx) between the hours of 09:00 and 12:00 (day-time light conditions). They were then exposed to bright light (300 lx) again between 01:00 and 02:30 (night-time light exposure). They provided saliva samples before (00:55) and after night-time light exposure (02:30). A one-tailed paired t test yielded significant decrements of melatonin concentration after night-time light exposure under day-time dim, 100- and 300-lx light conditions. No significant differences exist in melatonin concentration between pre- and post-night-time light exposure under day-time 900- and 2700-lx light conditions. Present findings suggest the amount of light exposure needed to prevent LIMS caused by ordinary nocturnal light in individuals who have a general life rhythm (sleep/wake schedule). These findings may be useful in implementing artificial light environments for humans in, for example, hospitals and underground shopping malls.
NASA Astrophysics Data System (ADS)
Bachetti, Matteo; Huppenkothen, Daniela
2018-02-01
Dead time affects many of the instruments used in X-ray astronomy, by producing a strong distortion in power density spectra. This can make it difficult to model the aperiodic variability of the source or look for quasi-periodic oscillations. Whereas in some instruments a simple a priori correction for dead-time-affected power spectra is possible, this is not the case for others such as NuSTAR, where the dead time is non-constant and long (∼2.5 ms). Bachetti et al. (2015) suggested the cospectrum obtained from light curves of independent detectors within the same instrument as a possible way out, but this solution has always only been a partial one: the measured rms was still affected by dead time because the width of the power distribution of the cospectrum was modulated by dead time in a frequency-dependent way. In this Letter, we suggest a new, powerful method to normalize dead-time-affected cospectra and power density spectra. Our approach uses the difference of the Fourier amplitudes from two independent detectors to characterize and filter out the effect of dead time. This method is crucially important for the accurate modeling of periodograms derived from instruments affected by dead time on board current missions like NuSTAR and Astrosat, but also future missions such as IXPE.
NASA Astrophysics Data System (ADS)
Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh
2012-04-01
In warm inflation models there is the requirement of generating large dissipative couplings of the inflaton with radiation, while at the same time, not de-stabilising the flatness of the inflaton potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this Letter we show that if the inflaton and other light fields are pseudo-Nambu-Goldstone bosons then the radiative corrections to the potential are suppressed and the thermal corrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfil the contrary requirements of an inflaton potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflaton field with other light fields. We construct a warm inflation model which gives the observed CMB-anisotropy amplitude and spectral index where the symmetry breaking is at the GUT scale.
Modulated CMOS camera for fluorescence lifetime microscopy.
Chen, Hongtao; Holst, Gerhard; Gratton, Enrico
2015-12-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. © 2015 Wiley Periodicals, Inc.
Stray light lessons learned from the Mars reconnaissance orbiter's optical navigation camera
NASA Astrophysics Data System (ADS)
Lowman, Andrew E.; Stauder, John L.
2004-10-01
The Optical Navigation Camera (ONC) is a technical demonstration slated to fly on NASA"s Mars Reconnaissance Orbiter in 2005. Conventional navigation methods have reduced accuracy in the days immediately preceding Mars orbit insertion. The resulting uncertainty in spacecraft location limits rover landing sites to relatively safe areas, away from interesting features that may harbor clues to past life on the planet. The ONC will provide accurate navigation on approach for future missions by measuring the locations of the satellites of Mars relative to background stars. Because Mars will be a bright extended object just outside the camera"s field of view, stray light control at small angles is essential. The ONC optomechanical design was analyzed by stray light experts and appropriate baffles were implemented. However, stray light testing revealed significantly higher levels of light than expected at the most critical angles. The primary error source proved to be the interface between ground glass surfaces (and the paint that had been applied to them) and the polished surfaces of the lenses. This paper will describe troubleshooting and correction of the problem, as well as other lessons learned that affected stray light performance.
Høye, Gudrun; Fridman, Andrei
2013-05-06
Current high-resolution push-broom hyperspectral cameras introduce keystone errors to the captured data. Efforts to correct these errors in hardware severely limit the optical design, in particular with respect to light throughput and spatial resolution, while at the same time the residual keystone often remains large. The mixel camera solves this problem by combining a hardware component--an array of light mixing chambers--with a mathematical method that restores the hyperspectral data to its keystone-free form, based on the data that was recorded onto the sensor with large keystone. A Virtual Camera software, that was developed specifically for this purpose, was used to compare the performance of the mixel camera to traditional cameras that correct keystone in hardware. The mixel camera can collect at least four times more light than most current high-resolution hyperspectral cameras, and simulations have shown that the mixel camera will be photon-noise limited--even in bright light--with a significantly improved signal-to-noise ratio compared to traditional cameras. A prototype has been built and is being tested.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... all applicable corrective actions (replacing damaged parts). This supplemental NPRM would also require... of time that corresponds to the normal scheduled maintenance for most affected operators. In light of... ``before further flight'' for doing the corrective actions specified in paragraphs (f)(1)(i), (f)(1)(ii...
Large-Nc masses of light mesons from QCD sum rules for nonlinear radial Regge trajectories
NASA Astrophysics Data System (ADS)
Afonin, S. S.; Solomko, T. D.
2018-04-01
The large-Nc masses of light vector, axial, scalar and pseudoscalar mesons are calculated from QCD spectral sum rules for a particular ansatz interpolating the radial Regge trajectories. The ansatz includes a linear part plus exponentially degreasing corrections to the meson masses and residues. The form of corrections was proposed some time ago for consistency with analytical structure of Operator Product Expansion of the two-point correlation functions. We revised that original analysis and found the second solution for the proposed sum rules. The given solution describes better the spectrum of vector and axial mesons.
Feehan, Lynne M; Goldsmith, Charles H; Leung, April Y F; Li, Linda C
Purpose: To compare the ability of SenseWear Mini (SWm) and Actigraph GT3X (AG 3 ) accelerometers to differentiate between healthy adults' observed sedentary and light activities in a laboratory setting. Methods: The 22 participants (15 women, 7 men), ages 19 to 72 years, wore SWm and AG 3 monitors and performed five sedentary and four light activities for 5 minutes each while observed in a laboratory setting. Performance was examined through comparisons of accuracy, sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios. Correct identification of both types of activities was examined using area under the receiver operating characteristic curve (AUC). Results: Both monitors demonstrated excellent ability to identify sedentary activities (sensitivity>0.89). The SWm monitor was better at identifying light activities (specificity 0.61-0.71) than the AG 3 monitor (specificity 0.27-0.47) and thus also showed a greater ability to correctly identify both sedentary and light activities (SWm AUC 0.84; AG 3 AUC 0.62-0.73). Conclusions: SWm may be a more suitable monitor for detecting time spent in sedentary and light-intensity activities. This finding has clinical and research relevance for evaluation of time spent in lower intensity physical activities by sedentary adults.
Route profile analysis system and method
Mullenhoff, Donald J.; Wilson, Stephen W.
1986-01-01
A system for recording terrain profile information is disclosed. The system accurately senses incremental distances traveled by a vehicle along with vehicle inclination, recording both with elapsed time. The incremental distances can subsequently be differentiated with respect to time to obtain acceleration. The acceleration can then be used by the computer to correct the sensed inclination.
Route profile analysis system and method
Mullenhoff, D.J.; Wilson, S.W.
1982-07-29
A system for recording terrain profile information is disclosed. The system accurately senses incremental distances traveled by a vehicle along with vehicle inclination, recording both with elapsed time. The incremental distances can subsequently be differentiated with respect to time to obtain acceleration. The computer acceleration can then be used to correct the sensed inclination.
Validity of the Born approximation for beyond Gaussian weak lensing observables
Petri, Andrea; Haiman, Zoltan; May, Morgan
2017-06-06
Accurate forward modeling of weak lensing (WL) observables from cosmological parameters is necessary for upcoming galaxy surveys. Because WL probes structures in the nonlinear regime, analytical forward modeling is very challenging, if not impossible. Numerical simulations of WL features rely on ray tracing through the outputs of N-body simulations, which requires knowledge of the gravitational potential and accurate solvers for light ray trajectories. A less accurate procedure, based on the Born approximation, only requires knowledge of the density field, and can be implemented more efficiently and at a lower computational cost. In this work, we use simulations to show thatmore » deviations of the Born-approximated convergence power spectrum, skewness and kurtosis from their fully ray-traced counterparts are consistent with the smallest nontrivial O(Φ 3) post-Born corrections (so-called geodesic and lens-lens terms). Our results imply a cancellation among the larger O(Φ 4) (and higher order) terms, consistent with previous analytic work. We also find that cosmological parameter bias induced by the Born-approximated power spectrum is negligible even for a LSST-like survey, once galaxy shape noise is considered. When considering higher order statistics such as the κ skewness and kurtosis, however, we find significant bias of up to 2.5σ. Using the LensTools software suite, we show that the Born approximation saves a factor of 4 in computing time with respect to the full ray tracing in reconstructing the convergence.« less
Towards robust specularity detection and inpainting in cardiac images
NASA Astrophysics Data System (ADS)
Alsaleh, Samar M.; Aviles, Angelica I.; Sobrevilla, Pilar; Casals, Alicia; Hahn, James
2016-03-01
Computer-assisted cardiac surgeries had major advances throughout the years and are gaining more popularity over conventional cardiac procedures as they offer many benefits to both patients and surgeons. One obvious advantage is that they enable surgeons to perform delicate tasks on the heart while it is still beating, avoiding the risks associated with cardiac arrest. Consequently, the surgical system needs to accurately compensate the physiological motion of the heart which is a very challenging task in medical robotics since there exist different sources of disturbances. One of which is the bright light reflections, known as specular highlights, that appear on the glossy surface of the heart and partially occlude the field of view. This work is focused on developing a robust approach that accurately detects and removes those highlights to reduce their disturbance to the surgeon and the motion compensation algorithm. As a first step, we exploit both color attributes and Fuzzy edge detector to identify specular regions in each acquired image frame. These two techniques together work as restricted thresholding and are able to accurately identify specular regions. Then, in order to eliminate the specularity artifact and give the surgeon a better perception of the heart, the second part of our solution is dedicated to correct the detected regions using inpainting to propagate and smooth the results. Our experimental results, which we carry out in realistic datasets, reveal how efficient and precise the proposed solution is, as well as demonstrate its robustness and real-time performance.
Validity of the Born approximation for beyond Gaussian weak lensing observables
NASA Astrophysics Data System (ADS)
Petri, Andrea; Haiman, Zoltán; May, Morgan
2017-06-01
Accurate forward modeling of weak lensing (WL) observables from cosmological parameters is necessary for upcoming galaxy surveys. Because WL probes structures in the nonlinear regime, analytical forward modeling is very challenging, if not impossible. Numerical simulations of WL features rely on ray tracing through the outputs of N -body simulations, which requires knowledge of the gravitational potential and accurate solvers for light ray trajectories. A less accurate procedure, based on the Born approximation, only requires knowledge of the density field, and can be implemented more efficiently and at a lower computational cost. In this work, we use simulations to show that deviations of the Born-approximated convergence power spectrum, skewness and kurtosis from their fully ray-traced counterparts are consistent with the smallest nontrivial O (Φ3) post-Born corrections (so-called geodesic and lens-lens terms). Our results imply a cancellation among the larger O (Φ4) (and higher order) terms, consistent with previous analytic work. We also find that cosmological parameter bias induced by the Born-approximated power spectrum is negligible even for a LSST-like survey, once galaxy shape noise is considered. When considering higher order statistics such as the κ skewness and kurtosis, however, we find significant bias of up to 2.5 σ . Using the LensTools software suite, we show that the Born approximation saves a factor of 4 in computing time with respect to the full ray tracing in reconstructing the convergence.
Xu, Yihua; Pitot, Henry C
2006-03-01
In the studies of quantitative stereology of rat hepatocarcinogenesis, we have used image analysis technology (automatic particle analysis) to obtain data such as liver tissue area, size and location of altered hepatic focal lesions (AHF), and nuclei counts. These data are then used for three-dimensional estimation of AHF occurrence and nuclear labeling index analysis. These are important parameters for quantitative studies of carcinogenesis, for screening and classifying carcinogens, and for risk estimation. To take such measurements, structures or cells of interest should be separated from the other components based on the difference of color and density. Common background problems seen on the captured sample image such as uneven light illumination or color shading can cause severe problems in the measurement. Two application programs (BK_Correction and Pixel_Separator) have been developed to solve these problems. With BK_Correction, common background problems such as incorrect color temperature setting, color shading, and uneven light illumination background, can be corrected. With Pixel_Separator different types of objects can be separated from each other in relation to their color, such as seen with different colors in immunohistochemically stained slides. The resultant images of such objects separated from other components are then ready for particle analysis. Objects that have the same darkness but different colors can be accurately differentiated in a grayscale image analysis system after application of these programs.
NASA Technical Reports Server (NTRS)
Fletcher, Lauren E.; Aldridge, Ann M.; Wheelwright, Charles; Maida, James
1997-01-01
Task illumination has a major impact on human performance: What a person can perceive in his environment significantly affects his ability to perform tasks, especially in space's harsh environment. Training for lighting conditions in space has long depended on physical models and simulations to emulate the effect of lighting, but such tests are expensive and time-consuming. To evaluate lighting conditions not easily simulated on Earth, personnel at NASA Johnson Space Center's (JSC) Graphics Research and Analysis Facility (GRAF) have been developing computerized simulations of various illumination conditions using the ray-tracing program, Radiance, developed by Greg Ward at Lawrence Berkeley Laboratory. Because these computer simulations are only as accurate as the data used, accurate information about the reflectance properties of materials and light distributions is needed. JSC's Lighting Environment Test Facility (LETF) personnel gathered material reflectance properties for a large number of paints, metals, and cloths used in the Space Shuttle and Space Station programs, and processed these data into reflectance parameters needed for the computer simulations. They also gathered lamp distribution data for most of the light sources used, and validated the ability to accurately simulate lighting levels by comparing predictions with measurements for several ground-based tests. The result of this study is a database of material reflectance properties for a wide variety of materials, and lighting information for most of the standard light sources used in the Shuttle/Station programs. The combination of the Radiance program and GRAF's graphics capability form a validated computerized lighting simulation capability for NASA.
Buhot, M C; Chapuis, N; Scardigli, P; Herrmann, T
1991-07-01
The behaviour of sham-operated rats and rats with damage to the dorsal hippocampus was compared in a complex spatial problem-solving task using a 'hub-spoke-rim' wheel type maze. Compared to the classical Olton 8-arm radial maze and Morris water maze, this apparatus presents the animal with a series of possible alternative routes both direct and indirect to the goal (food). The task included 3 main stages: exploration, feeding and testing, as do the classic problem-solving tasks. During exploration, hippocampal rats were found to be more active than sham rats. Nevertheless, they displayed habituation and a relatively efficient circumnavigation, though, in both cases, different from those of sham rats. During test trials, hippocampal rats were characterized as being less accurate, making more errors than sham rats. Nevertheless, both groups increased their accuracy of first choices over trials. The qualitative analyses of test trial performance indicated that hippocampal rats were less accurate in terms of the initial error's deviation from the goal, and less efficient in terms of corrective behaviour than sham rats which used either the periphery or the spokes to attain economically the goal. Surprisingly, hippocampal rats were not limited to a taxon type orientation but learned to use the periphery, a tendency which developed over time. Seemingly, for sham rats, the problem-solving process took the form of updating information during transit. For hippocampal rats, the use of periphery reflected both an ability to discriminate its usefulness in reaching the goal via a taxis type behaviour, and some sparing of ability to generalize the closeness and the location of the goal. These results, especially the strategic correction patterns, are discussed in the light of Sutherland and Rudy's 'configurational association theory'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, inmore » contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.« less
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib
2016-03-01
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.
21 CFR 161.175 - Frozen raw breaded shrimp.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Thermometer (immersion type) accurate to ±2 °F. (ix) Copper sulfate crystals (CuSo4·5H2O). (2) Procedure. (i... the exact dip time required for “debreading” the composite units in a sample. For these trials only, a... correct dip time is the minimum time of immersion in the copper sulfate solution required before the...
21 CFR 161.175 - Frozen raw breaded shrimp.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Thermometer (immersion type) accurate to ±2 °F. (ix) Copper sulfate crystals (CuSo4·5H2O). (2) Procedure. (i... the exact dip time required for “debreading” the composite units in a sample. For these trials only, a... correct dip time is the minimum time of immersion in the copper sulfate solution required before the...
21 CFR 161.175 - Frozen raw breaded shrimp.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Thermometer (immersion type) accurate to ±2 °F. (ix) Copper sulfate crystals (CuSo4·5H2O). (2) Procedure. (i... the exact dip time required for “debreading” the composite units in a sample. For these trials only, a... correct dip time is the minimum time of immersion in the copper sulfate solution required before the...
The phase shift hypothesis for the circadian component of winter depression
Lewy, Alfred J.; Rough, Jennifer N.; Songer, Jeannine B.; Mishra, Neelam; Yuhas, Krista; Emens, Jonathan S.
2007-01-01
The finding that bright light can suppress melatonin production led to the study of two situations, indeed, models, of light deprivation: totally blind people and winterdepressives. The leading hypothesis for winter depression (seasonal affective disorder, or SAD) is the phase shift hypothesis (PSH). The PSH was recently established in a study in which SAD patients were given low-dose melatonin in the afternoon/evening to cause phase advances, or in the morning to cause phase delays, or placebo. The prototypical phase-delayed patient as well as the smaller subgroup of phase-advanced patients, optimally responded to melatonin given at the correct time. Symptom severity improved as circadian misalignment was corrected. Orcadian misalignment is best measured as the time interval between the dim light melatonin onset (DLMO) and mid-sleep. Using the operational definition of the plasma DLMO as the interpolated time when melatonin levels continuously rise above the threshold of 10 pglmL, the average interval between DLMO and mid-sleep in healthy controls is 6 hours, which is associated with optimal mood in SAD patients. PMID:17969866
Smith, Peter D [Santa Fe, NM; Claytor, Thomas N [White Rock, NM; Berry, Phillip C [Albuquerque, NM; Hills, Charles R [Los Alamos, NM
2010-10-12
An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.
An integration time adaptive control method for atmospheric composition detection of occultation
NASA Astrophysics Data System (ADS)
Ding, Lin; Hou, Shuai; Yu, Fei; Liu, Cheng; Li, Chao; Zhe, Lin
2018-01-01
When sun is used as the light source for atmospheric composition detection, it is necessary to image sun for accurate identification and stable tracking. In the course of 180 second of the occultation, the magnitude of sun light intensity through the atmosphere changes greatly. It is nearly 1100 times illumination change between the maximum atmospheric and the minimum atmospheric. And the process of light change is so severe that 2.9 times per second of light change can be reached. Therefore, it is difficult to control the integration time of sun image camera. In this paper, a novel adaptive integration time control method for occultation is presented. In this method, with the distribution of gray value in the image as the reference variable, and the concepts of speed integral PID control, the integration time adaptive control problem of high frequency imaging. The large dynamic range integration time automatic control in the occultation can be achieved.
Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes
NASA Astrophysics Data System (ADS)
Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.
2017-12-01
We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.
NASA Astrophysics Data System (ADS)
Gålfalk, Magnus; Karlson, Martin; Crill, Patrick; Bastviken, David
2017-04-01
The calibration and validation of remote sensing land cover products is highly dependent on accurate ground truth data, which are costly and practically challenging to collect. This study evaluates a novel and efficient alternative to field surveys and UAV imaging commonly applied for this task. The method consists of i) a light weight, water proof, remote controlled RGB-camera mounted on an extendable monopod used for acquiring wide-field images of the ground from a height of 4.5 meters, and ii) a script for semi-automatic image classification. In the post-processing, the wide-field images are corrected for optical distortion and geometrically rectified so that the spatial resolution is the same over the surface area used for classification. The script distinguishes land surface components by color, brightness and spatial variability. The method was evaluated in wetland areas located around Abisko, northern Sweden. Proportional estimates of the six main surface components in the wetlands (wet and dry Sphagnum, shrub, grass, water, rock) were derived for 200 images, equivalent to 10 × 10 m field plots. These photo plots were then used as calibration data for a regional scale satellite based classification which separates the six wetland surface components using a Sentinel-1 time series. The method presented in this study is accurate, rapid, robust and cost efficient in comparison to field surveys (time consuming) and drone mapping (which require low wind speeds and no rain, suffer from battery limited flight times, have potential GPS/compass errors far north, and in some areas are prohibited by law).
Reliability model of a monopropellant auxiliary propulsion system
NASA Technical Reports Server (NTRS)
Greenberg, J. S.
1971-01-01
A mathematical model and associated computer code has been developed which computes the reliability of a monopropellant blowdown hydrazine spacecraft auxiliary propulsion system as a function of time. The propulsion system is used to adjust or modify the spacecraft orbit over an extended period of time. The multiple orbit corrections are the multiple objectives which the auxiliary propulsion system is designed to achieve. Thus the reliability model computes the probability of successfully accomplishing each of the desired orbit corrections. To accomplish this, the reliability model interfaces with a computer code that models the performance of a blowdown (unregulated) monopropellant auxiliary propulsion system. The computer code acts as a performance model and as such gives an accurate time history of the system operating parameters. The basic timing and status information is passed on to and utilized by the reliability model which establishes the probability of successfully accomplishing the orbit corrections.
Spatio-temporal environmental data tide corrections for reconnaissance operations
NASA Astrophysics Data System (ADS)
Barbu, Costin; Avera, Will; Harris, Mike; Malpass, Kevyn
2005-06-01
Dynamic, accurate near-real time environmental data is critical to the success of the mine countermeasures operations. Bathymetric data acquired from the AQS-20 mine hunting sensor should be adjusted for local tide variations related to the specific geographic area and time interval. This problem can be overcome by a spatio-temporal estimate of tide corrections provided for the area and time of interest by the Naval Research Laboratory tide prediction code PCTides. For each geographic position of the AQS-20 sonar, a tide height relative to mean sea level is computed by interpolating the tidal information from the K - nearest neighbored stations for the corresponding time. The value is used to correct the measured depth generated by the AQS-20 sonar in that location to mean sea level for fusion with other bathymetric data products. It is argued that this paper provides a useful tool to the MCM decision factors during Mine Warfare operations.
Evaluation of liver fat in the presence of iron with MRI using T2* correction: a clinical approach.
Henninger, Benjamin; Benjamin, Henninger; Kremser, Christian; Christian, Kremser; Rauch, Stefan; Stefan, Rauch; Eder, Robert; Robert, Eder; Judmaier, Werner; Werner, Judmaier; Zoller, Heinz; Heinz, Zoller; Michaely, Henrik; Henrik, Michaely; Schocke, Michael; Michael, Schocke
2013-06-01
To assess magnetic resonance imaging (MRI) with conventional chemical shift-based sequences with and without T2* correction for the evaluation of steatosis hepatitis (SH) in the presence of iron. Thirty-one patients who underwent MRI and liver biopsy because of clinically suspected diffuse liver disease were retrospectively analysed. The signal intensity (SI) was calculated in co-localised regions of interest (ROIs) using conventional spoiled gradient-echo T1 FLASH in-phase and opposed-phase (IP/OP). T2* relaxation time was recorded in a fat-saturated multi-echo-gradient-echo sequence. The fat fraction (FF) was calculated with non-corrected and T2*-corrected SIs. Results were correlated with liver biopsy. There was significant difference (P < 0.001) between uncorrected and T2* corrected FF in patients with SH and concomitant hepatic iron overload (HIO). Using 5 % as a threshold resulted in eight false negative results with uncorrected FF whereas T2* corrected FF lead to true positive results in 5/8 patients. ROC analysis calculated three threshold values (8.97 %, 5.3 % and 3.92 %) for T2* corrected FF with accuracy 84 %, sensitivity 83-91 % and specificity 63-88 %. FF with T2* correction is accurate for the diagnosis of hepatic fat in the presence of HIO. Findings of our study suggest the use of IP/OP imaging in combination with T2* correction. • Magnetic resonance helps quantify both iron and fat content within the liver • T2* correction helps to predict the correct diagnosis of steatosis hepatitis • "Fat fraction" from T2*-corrected chemical shift-based sequences accurately quantifies hepatic fat • "Fat fraction" without T2* correction underestimates hepatic fat with iron overload.
White-Light Phase-Conjugate Mirrors as Distortion Correctors
NASA Technical Reports Server (NTRS)
Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha
2010-01-01
White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary mirror (see figure) white light from a distant source would not be brought to initial focus on one or more imaging scientific instrument(s) as in customary practice. Instead, the light would be brought to initial focus on a phase-conjugate mirror. The phase-conjugate mirror would send a phase-conjugate image back, along the path of the incoming light, to the primary mirror. A transparent, highly efficient diffractive thin film deposited on the primary mirror would direct the phase-conjugate image to the imaging instrument(s).
Impact of reconstruction parameters on quantitative I-131 SPECT
NASA Astrophysics Data System (ADS)
van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.
2016-07-01
Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.
McMullen, Allison R; Wallace, Meghan A; Pincus, David H; Wilkey, Kathy; Burnham, C A
2016-08-01
Invasive fungal infections have a high rate of morbidity and mortality, and accurate identification is necessary to guide appropriate antifungal therapy. With the increasing incidence of invasive disease attributed to filamentous fungi, rapid and accurate species-level identification of these pathogens is necessary. Traditional methods for identification of filamentous fungi can be slow and may lack resolution. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and accurate method for identification of bacteria and yeasts, but a paucity of data exists on the performance characteristics of this method for identification of filamentous fungi. The objective of our study was to evaluate the accuracy of the Vitek MS for mold identification. A total of 319 mold isolates representing 43 genera recovered from clinical specimens were evaluated. Of these isolates, 213 (66.8%) were correctly identified using the Vitek MS Knowledge Base, version 3.0 database. When a modified SARAMIS (Spectral Archive and Microbial Identification System) database was used to augment the version 3.0 Knowledge Base, 245 (76.8%) isolates were correctly identified. Unidentified isolates were subcultured for repeat testing; 71/319 (22.3%) remained unidentified. Of the unidentified isolates, 69 were not in the database. Only 3 (0.9%) isolates were misidentified by MALDI-TOF MS (including Aspergillus amoenus [n = 2] and Aspergillus calidoustus [n = 1]) although 10 (3.1%) of the original phenotypic identifications were not correct. In addition, this methodology was able to accurately identify 133/144 (93.6%) Aspergillus sp. isolates to the species level. MALDI-TOF MS has the potential to expedite mold identification, and misidentifications are rare. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Ocampo Giraldo, L.; Bolotnikov, A. E.; Camarda, G. S.; De Geronimo, G.; Fried, J.; Gul, R.; Hodges, D.; Hossain, A.; Ünlü, K.; Vernon, E.; Yang, G.; James, R. B.
2018-03-01
We evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enabling use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 μm (650 nm) to scan over a selected 3 × 3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.
Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.; ...
2017-12-18
Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.
Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less
Improved Correction of Misclassification Bias With Bootstrap Imputation.
van Walraven, Carl
2018-07-01
Diagnostic codes used in administrative database research can create bias due to misclassification. Quantitative bias analysis (QBA) can correct for this bias, requires only code sensitivity and specificity, but may return invalid results. Bootstrap imputation (BI) can also address misclassification bias but traditionally requires multivariate models to accurately estimate disease probability. This study compared misclassification bias correction using QBA and BI. Serum creatinine measures were used to determine severe renal failure status in 100,000 hospitalized patients. Prevalence of severe renal failure in 86 patient strata and its association with 43 covariates was determined and compared with results in which renal failure status was determined using diagnostic codes (sensitivity 71.3%, specificity 96.2%). Differences in results (misclassification bias) were then corrected with QBA or BI (using progressively more complex methods to estimate disease probability). In total, 7.4% of patients had severe renal failure. Imputing disease status with diagnostic codes exaggerated prevalence estimates [median relative change (range), 16.6% (0.8%-74.5%)] and its association with covariates [median (range) exponentiated absolute parameter estimate difference, 1.16 (1.01-2.04)]. QBA produced invalid results 9.3% of the time and increased bias in estimates of both disease prevalence and covariate associations. BI decreased misclassification bias with increasingly accurate disease probability estimates. QBA can produce invalid results and increase misclassification bias. BI avoids invalid results and can importantly decrease misclassification bias when accurate disease probability estimates are used.
Spectral mismatch and solar simulator quality factor in advanced LED solar simulators
NASA Astrophysics Data System (ADS)
Scherff, Maximilian L. D.; Nutter, Jason; Fuss-Kailuweit, Peter; Suthues, Jörn; Brammer, Torsten
2017-08-01
Solar cell simulators based on light emitting diodes (LED) have the potential to achieve a large potential market share in the next years. As advantages they can provide a short and long time stable spectrum, which fits very well to the global AM1.5g reference spectrum. This guarantees correct measurements during the flashes and throughout the light engines’ life span, respectively. Furthermore, a calibration with a solar cell type of different spectral response (SR) as well as the production of solar cells with varying SR in between two calibrations does not affect the correctness of the measurement result. A high quality 21 channel LED solar cell spectrum is compared to former study comprising a standard modified xenon spectrum light source. It is shown, that the spectrum of the 21-channel-LED light source performs best for all examined cases.
Characterization of 3-Dimensional PET Systems for Accurate Quantification of Myocardial Blood Flow.
Renaud, Jennifer M; Yip, Kathy; Guimond, Jean; Trottier, Mikaël; Pibarot, Philippe; Turcotte, Eric; Maguire, Conor; Lalonde, Lucille; Gulenchyn, Karen; Farncombe, Troy; Wisenberg, Gerald; Moody, Jonathan; Lee, Benjamin; Port, Steven C; Turkington, Timothy G; Beanlands, Rob S; deKemp, Robert A
2017-01-01
Three-dimensional (3D) mode imaging is the current standard for PET/CT systems. Dynamic imaging for quantification of myocardial blood flow with short-lived tracers, such as 82 Rb-chloride, requires accuracy to be maintained over a wide range of isotope activities and scanner counting rates. We proposed new performance standard measurements to characterize the dynamic range of PET systems for accurate quantitative imaging. 82 Rb or 13 N-ammonia (1,100-3,000 MBq) was injected into the heart wall insert of an anthropomorphic torso phantom. A decaying isotope scan was obtained over 5 half-lives on 9 different 3D PET/CT systems and 1 3D/2-dimensional PET-only system. Dynamic images (28 × 15 s) were reconstructed using iterative algorithms with all corrections enabled. Dynamic range was defined as the maximum activity in the myocardial wall with less than 10% bias, from which corresponding dead-time, counting rates, and/or injected activity limits were established for each scanner. Scatter correction residual bias was estimated as the maximum cavity blood-to-myocardium activity ratio. Image quality was assessed via the coefficient of variation measuring nonuniformity of the left ventricular myocardium activity distribution. Maximum recommended injected activity/body weight, peak dead-time correction factor, counting rates, and residual scatter bias for accurate cardiac myocardial blood flow imaging were 3-14 MBq/kg, 1.5-4.0, 22-64 Mcps singles and 4-14 Mcps prompt coincidence counting rates, and 2%-10% on the investigated scanners. Nonuniformity of the myocardial activity distribution varied from 3% to 16%. Accurate dynamic imaging is possible on the 10 3D PET systems if the maximum injected MBq/kg values are respected to limit peak dead-time losses during the bolus first-pass transit. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, Brian T.; /Notre Dame U.; Garnavich, Peter M.
2010-01-01
We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that amore » single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx}< 2 days and t{sub r} - t{sub f} > 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our sample.« less
Real-Time Parameter Estimation Using Output Error
NASA Technical Reports Server (NTRS)
Grauer, Jared A.
2014-01-01
Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.
Effects of spatial coherence in diffraction phase microscopy.
Edwards, Chris; Bhaduri, Basanta; Nguyen, Tan; Griffin, Benjamin G; Pham, Hoa; Kim, Taewoo; Popescu, Gabriel; Goddard, Lynford L
2014-03-10
Quantitative phase imaging systems using white light illumination can exhibit lower noise figures than laser-based systems. However, they can also suffer from object-dependent artifacts, such as halos, which prevent accurate reconstruction of the surface topography. In this work, we show that white light diffraction phase microscopy using a standard halogen lamp can produce accurate height maps of even the most challenging structures provided that there is proper spatial filtering at: 1) the condenser to ensure adequate spatial coherence and 2) the output Fourier plane to produce a uniform reference beam. We explain that these object-dependent artifacts are a high-pass filtering phenomenon, establish design guidelines to reduce the artifacts, and then apply these guidelines to eliminate the halo effect. Since a spatially incoherent source requires significant spatial filtering, the irradiance is lower and proportionally longer exposure times are needed. To circumvent this tradeoff, we demonstrate that a supercontinuum laser, due to its high radiance, can provide accurate measurements with reduced exposure times, allowing for fast dynamic measurements.
Text recognition and correction for automated data collection by mobile devices
NASA Astrophysics Data System (ADS)
Ozarslan, Suleyman; Eren, P. Erhan
2014-03-01
Participatory sensing is an approach which allows mobile devices such as mobile phones to be used for data collection, analysis and sharing processes by individuals. Data collection is the first and most important part of a participatory sensing system, but it is time consuming for the participants. In this paper, we discuss automatic data collection approaches for reducing the time required for collection, and increasing the amount of collected data. In this context, we explore automated text recognition on images of store receipts which are captured by mobile phone cameras, and the correction of the recognized text. Accordingly, our first goal is to evaluate the performance of the Optical Character Recognition (OCR) method with respect to data collection from store receipt images. Images captured by mobile phones exhibit some typical problems, and common image processing methods cannot handle some of them. Consequently, the second goal is to address these types of problems through our proposed Knowledge Based Correction (KBC) method used in support of the OCR, and also to evaluate the KBC method with respect to the improvement on the accurate recognition rate. Results of the experiments show that the KBC method improves the accurate data recognition rate noticeably.
Pavanello, Michele; Adamowicz, Ludwik; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Polyansky, Oleg L; Tennyson, Jonathan; Szidarovszky, Tamás; Császár, Attila G; Berg, Max; Petrignani, Annemieke; Wolf, Andreas
2012-01-13
First-principles computations and experimental measurements of transition energies are carried out for vibrational overtone lines of the triatomic hydrogen ion H(3)(+) corresponding to floppy vibrations high above the barrier to linearity. Action spectroscopy is improved to detect extremely weak visible-light spectral lines on cold trapped H(3)(+) ions. A highly accurate potential surface is obtained from variational calculations using explicitly correlated Gaussian wave function expansions. After nonadiabatic corrections, the floppy H(3)(+) vibrational spectrum is reproduced at the 0.1 cm(-1) level up to 16600 cm(-1).
New reaction tester accurate within 56 microseconds
NASA Technical Reports Server (NTRS)
Brown, H.
1972-01-01
Testing device measures simple and disjunctive reaction time of human subject to light stimuli. Tester consists of reaction key, logic card, panel mounted neon indicators, and interconnecting wiring. Device is used for determining reaction times of patients undergoing postoperative neurological therapy.
NASA Astrophysics Data System (ADS)
Dou, Jiangpei; Ren, Deqing; Zhang, Xi; Zhu, Yongtian; Zhao, Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang, Feng; Yang, Chao
2014-08-01
Almost all high-contrast imaging coronagraphs proposed until now are based on passive coronagraph optical components. Recently, Ren and Zhu proposed for the first time a coronagraph that integrates a liquid crystal array (LCA) for the active pupil apodizing and a deformable mirror (DM) for the phase corrections. Here, for demonstration purpose, we present the initial test result of a coronagraphic system that is based on two liquid crystal spatial light modulators (SLM). In the system, one SLM is served as active pupil apodizing and amplitude correction to suppress the diffraction light; another SLM is used to correct the speckle noise that is caused by the wave-front distortions. In this way, both amplitude and phase error can be actively and efficiently compensated. In the test, we use the stochastic parallel gradient descent (SPGD) algorithm to control two SLMs, which is based on the point spread function (PSF) sensing and evaluation and optimized for a maximum contrast in the discovery area. Finally, it has demonstrated a contrast of 10-6 at an inner working angular distance of ~6.2 λ/D, which is a promising technique to be used for the direct imaging of young exoplanets on ground-based telescopes.
NASA Astrophysics Data System (ADS)
Skotheim, Øystein; Schumann-Olsen, Henrik; Thorstensen, Jostein; Kim, Anna N.; Lacolle, Matthieu; Haugholt, Karl-Henrik; Bakke, Thor
2015-03-01
Structured light is a robust and accurate method for 3D range imaging in which one or more light patterns are projected onto the scene and observed with an off-axis camera. Commercial sensors typically utilize DMD- or LCD-based LED projectors, which produce good results but have a number of drawbacks, e.g. limited speed, limited depth of focus, large sensitivity to ambient light and somewhat low light efficiency. We present a 3D imaging system based on a laser light source and a novel tip-tilt-piston micro-mirror. Optical interference is utilized to create sinusoidal fringe patterns. The setup allows fast and easy control of both the frequency and the phase of the fringe patterns by altering the axes of the micro-mirror. For 3D reconstruction we have adapted a Dual Frequency Phase Shifting method which gives robust range measurements with sub-millimeter accuracy. The use of interference for generating sine patterns provides high light efficiency and good focusing properties. The use of a laser and a bandpass filter allows easy removal of ambient light. The fast response of the micro-mirror in combination with a high-speed camera and real-time processing on the GPU allows highly accurate 3D range image acquisition at video rates.
[Entomologic fauna and its importance in the determination of the age of corpses].
Dolný, A; Loyka, S
1993-04-01
The authors summarize results of research conducted in 1990-1992, the aim of which was to test the accuracy of practical application of forensic entomology in medical practice. Based on the results of laboratory breeding of necrophagic Diptera collected from corpses and based on time characteristics of subsequent stages, the authors assessed the assumed time of death. In all instances where there was the first generation of necrophagic species of Diptera in the first and second stage of succession the results were very accurate, in the remaining cases the data of death was estimated correctly but less accurately.
Development of an Ultra-Violet Digital Camera for Volcanic Sulfur Dioxide Imaging
NASA Astrophysics Data System (ADS)
Bluth, G. J.; Shannon, J. M.; Watson, I. M.; Prata, F. J.; Realmuto, V. J.
2006-12-01
In an effort to improve monitoring of passive volcano degassing, we have constructed and tested a digital camera for quantifying the sulfur dioxide (SO2) content of volcanic plumes. The camera utilizes a bandpass filter to collect photons in the ultra-violet (UV) region where SO2 selectively absorbs UV light. SO2 is quantified by imaging calibration cells of known SO2 concentrations. Images of volcanic SO2 plumes were collected at four active volcanoes with persistent passive degassing: Villarrica, located in Chile, and Santiaguito, Fuego, and Pacaya, located in Guatemala. Images were collected from distances ranging between 4 and 28 km away, with crisp detection up to approximately 16 km. Camera set-up time in the field ranges from 5-10 minutes and images can be recorded in as rapidly as 10-second intervals. Variable in-plume concentrations can be observed and accurate plume speeds (or rise rates) can readily be determined by tracing individual portions of the plume within sequential images. Initial fluxes computed from camera images require a correction for the effects of environmental light scattered into the field of view. At Fuego volcano, simultaneous measurements of corrected SO2 fluxes with the camera and a Correlation Spectrometer (COSPEC) agreed within 25 percent. Experiments at the other sites were equally encouraging, and demonstrated the camera's ability to detect SO2 under demanding meteorological conditions. This early work has shown great success in imaging SO2 plumes and offers promise for volcano monitoring due to its rapid deployment and data processing capabilities, relatively low cost, and improved interpretation afforded by synoptic plume coverage from a range of distances.
Paloor, S; Aland, T; Mathew, J; Al-Hammadi, N; Hammoud, R
2012-06-01
To report on an initial investigation into the use of optically stimulated luminescent dosimeters (OSLDs) for in-vivo dosimetry for total body irradiation (TBI) treatments. Specifically, we report on the determination of angular dependence, sensitivity correction factors and the dose calibration factors. The OSLD investigated in our work was InLight/OSL nanoDot dosimeters (Landauer Inc.). Nanodots are 5 mm diameter, 0.2 mm thick disk-shaped Carbon-doped Al2O3, and were read using a Landauer InLight microstar reader and associated software.OSLDs were irradiated under two setup conditions: a) typical clinical reference conditions (95cm SSD, 5cm depth in solid water, 10×10 cm field size), and b) TBI conditions (520cm SSD, 5cm depth in solid water, 40×40 cm field size,). The angular dependence was checked for angles ranging ±60 degree from normal incidence. In order to directly compare the sensitivity correction factors, a common dose was delivered to the OSLDs for the two setups. Pre- and post-irradiation readings were acquired. OSLDs were optically annealed under various techniques (1) by keeping over a film view box, (2) Using multiple scan on a flat bed optical scanner and (3) Using natural room light. Under reference conditions, the calculated sensitivity correction factors of the OSLDs had a SD of 2.2% and a range of 5%. Under TBI conditions, the SD increased to 3.4% and the range to 6.0%. The variation in sensitivity correction factors between individual OSLDs across the two measurement conditions was up to 10.3%. Angular dependence of less than 1% is observed. The best bleaching method we found is to keep OSLDs for more than 3 hours on a film viewer which will reduce normalized response to less than 1%. In order to obtain the most accurate results when using OSLDs for in-vivo dosimetry for TBI treatments, sensitivity correction factors and dose calibration factors should all be determined under clinical TBI conditions. © 2012 American Association of Physicists in Medicine.
Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans
Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; ...
2012-01-01
Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less
NASA Astrophysics Data System (ADS)
Skenes, Kevin; Kumar, Arkadeep; Prasath, R. G. R.; Danyluk, Steven
2018-02-01
Near-infrared (NIR) polariscopy is a technique used for the non-destructive evaluation of the in-plane stresses in photovoltaic silicon wafers. Accurate evaluation of these stresses requires correct identification of the stress-optic coefficient, a material property which relates photoelastic parameters to physical stresses. The material stress-optic coefficient of silicon varies with crystallographic orientation. This variation poses a unique problem when measuring stresses in multicrystalline silicon (mc-Si) wafers. This paper concludes that the crystallographic orientation of silicon can be estimated by measuring the transmission of NIR light through the material. The transmission of NIR light through monocrystalline wafers of known orientation were compared with the transmission of NIR light through various grains in mc-Si wafers. X-ray diffraction was then used to verify the relationship by obtaining the crystallographic orientations of these assorted mc-Si grains. Variation of transmission intensity for different crystallographic orientations is further explained by using planar atomic density. The relationship between transmission intensity and planar atomic density appears to be linear.
Bayesian Integration of Isotope Ratios for Geographic Sourcing of Castor Beans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Hart, Garret L.
Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based onmore » the integrated model with a class accuracy of 6 0 . 9 {+-} 2 . 1 % versus 5 5 . 9 {+-} 2 . 1 % and 4 0 . 2 {+-} 1 . 8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less
Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret
Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less
Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans
Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; Ehleringer, James; West, Jason; Gill, Gary; Duckworth, Douglas
2012-01-01
Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1% versus 55.9 ± 2.1% and 40.2 ± 1.8% for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model. PMID:22919270
HMI Data Corrected for Stray Light Now Available
NASA Astrophysics Data System (ADS)
Norton, A. A.; Duvall, T. L.; Schou, J.; Cheung, M. C. M.; Scherrer, P. H.
2016-10-01
The form of the point spread function (PSF) derived for HMI is an Airy function convolved with a Lorentzian. The parameters are bound by observational ground-based testing of the instrument conducted prior to launch (Wachter et al., 2012), by full-disk data used to evaluate the off-limb behavior of the scattered light, as well as by data obtained during the Venus transit. The PSF correction has been programmed in both C and cuda C and runs within the JSOC environment using either a CPU or GPU. A single full-disk intensity image can be deconvolved in less than one second. The PSF is described in more detail in Couvidat et al. (2016) and has already been used by Hathaway et al. (2015) to forward-model solar-convection spectra, by Krucker et al. (2015) to investigate footpoints of off-limb solar flares and by Whitney, Criscuoli and Norton (2016) to examine the relations between intensity contrast and magnetic field strengths. In this presentation, we highlight the changes to umbral darkness, granulation contrast and plage field strengths that result from stray light correction. A twenty-four hour period of scattered-light corrected HMI data from 2010.08.03, including the isolated sunspot NOAA 11092, is currently available for anyone. Requests for additional time periods of interest are welcome and will be processed by the HMI team.
Wang, Yu-Jen; Chen, Po-Ju; Liang, Xiao; Lin, Yi-Hsin
2017-03-27
Augmented reality (AR), which use computer-aided projected information to augment our sense, has important impact on human life, especially for the elder people. However, there are three major challenges regarding the optical system in the AR system, which are registration, vision correction, and readability under strong ambient light. Here, we solve three challenges simultaneously for the first time using two liquid crystal (LC) lenses and polarizer-free attenuator integrated in optical-see-through AR system. One of the LC lens is used to electrically adjust the position of the projected virtual image which is so-called registration. The other LC lens with larger aperture and polarization independent characteristic is in charge of vision correction, such as myopia and presbyopia. The linearity of lens powers of two LC lenses is also discussed. The readability of virtual images under strong ambient light is solved by electrically switchable transmittance of the LC attenuator originating from light scattering and light absorption. The concept demonstrated in this paper could be further extended to other electro-optical devices as long as the devices exhibit the capability of phase modulations and amplitude modulations.
Zhao, Mingtao; Kuo, Anthony N; Izatt, Joseph A
2010-04-26
Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.
An investigation of light transport through scattering bodies with non-scattering regions.
Firbank, M; Arridge, S R; Schweiger, M; Delpy, D T
1996-04-01
Near-infra-red (NIR) spectroscopy is increasingly being used for monitoring cerebral oxygenation and haemodynamics. One current concern is the effect of the clear cerebrospinal fluid upon the distribution of light in the head. There are difficulties in modelling clear layers in scattering systems. The Monte Carlo model should handle clear regions accurately, but is too slow to be used for realistic geometries. The diffusion equation can be solved quickly for realistic geometries, but is only valid in scattering regions. In this paper we describe experiments carried out on a solid slab phantom to investigate the effect of clear regions. The experimental results were compared with the different models of light propagation. We found that the presence of a clear layer had a significant effect upon the light distribution, which was modelled correctly by Monte Carlo techniques, but not by diffusion theory. A novel approach to calculating the light transport was developed, using diffusion theory to analyze the scattering regions combined with a radiosity approach to analyze the propagation through the clear region. Results from this approach were found to agree with both the Monte Carlo and experimental data.
Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy.
Zhang, Rongxiao; Gladstone, David J; Jarvis, Lesley A; Strawbridge, Rendall R; Jack Hoopes, P; Friedman, Oscar D; Glaser, Adam K; Pogue, Brian W
2013-11-01
Cherenkov radiation is induced when charged particles travel through dielectric media (such as biological tissue) faster than the speed of light through that medium. Detection of this radiation or excited luminescence during megavoltage external beam radiotherapy (EBRT) can allow emergence of a new approach to superficial dose estimation, functional imaging, and quality assurance for radiation therapy dosimetry. In this letter, the first in vivo Cherenkov images of a real-time Cherenkoscopy during EBRT are presented. The imaging system consisted of a time-gated intensified charge coupled device (ICCD) coupled with a commercial lens. The ICCD was synchronized to the linear accelerator to detect Cherenkov photons only during the 3.25-μs radiation bursts. Images of a tissue phantom under irradiation show that the intensity of Cherenkov emission is directly proportional to radiation dose, and images can be acquired at 4.7 frames/s with SNR>30. Cherenkoscopy was obtained from the superficial regions of a canine oral tumor during planned, Institutional Animal Care and Use Committee approved, conventional (therapeutically appropriate) EBRT irradiation. Coregistration between photography and Cherenkoscopy validated that Cherenkov photons were detected from the planned treatment region. Real-time images correctly monitored the beam field changes corresponding to the planned dynamic wedge movement, with accurate extent of overall beam field, and expected cold and hot regions.
Uribe-Patarroyo, Néstor; Bouma, Brett E.
2015-01-01
We present a new technique for the correction of nonuniform rotation distortion in catheter-based optical coherence tomography (OCT), based on the statistics of speckle between A-lines using intensity-based dynamic light scattering. This technique does not rely on tissue features and can be performed on single frames of data, thereby enabling real-time image correction. We demonstrate its suitability in a gastrointestinal balloon-catheter OCT system, determining the actual rotational speed with high temporal resolution, and present corrected cross-sectional and en face views showing significant enhancement of image quality. PMID:26625040
Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory.
Stephen E. Reutebuch; Hans-Erik Andersen; Robert J. McGaughey
2005-01-01
Airborne laser scanning of forests has been shown to provide accurate terrain models and, at the same time, estimates of multiple resource inventory variables through active sensing of three-dimensional (3D) forest vegetation. Brief overviews of airborne laser scanning technology [often referred to as "light detection and ranging" (LIDAR)] and research...
USDA-ARS?s Scientific Manuscript database
Quantifying global carbon and water balances requires accurate estimation of gross primary production (GPP) and evapotranspiration (ET), respectively, across space and time. Models that are based on the theory of light use efficiency (LUE) and water use efficiency (WUE) have emerged as efficient met...
NASA Astrophysics Data System (ADS)
Badoil, Bruno; Cathelinaud, Michel; Lemarchand, Fabien; Lemarquis, Frédéric; Lequime, Michel
2017-11-01
Metal-dielectric light absorbers are of great interest for suppressing stray light in optical systems. Such coatings can give an absorption level greater than 99.9% over a broad spectral range provided that the complex refractive index of metallic films is accurately known. For this purpose we developed a new real-time monitoring system that allows to measure in situ both reflectance and transmittance of the coating during manufacturing in the deposition chamber. This paper describes the system design and its characteristics and gives some preliminary results concerning metallic thin film characterizations.
Predicting hepatitis B monthly incidence rates using weighted Markov chains and time series methods.
Shahdoust, Maryam; Sadeghifar, Majid; Poorolajal, Jalal; Javanrooh, Niloofar; Amini, Payam
2015-01-01
Hepatitis B (HB) is a major global mortality. Accurately predicting the trend of the disease can provide an appropriate view to make health policy disease prevention. This paper aimed to apply three different to predict monthly incidence rates of HB. This historical cohort study was conducted on the HB incidence data of Hamadan Province, the west of Iran, from 2004 to 2012. Weighted Markov Chain (WMC) method based on Markov chain theory and two time series models including Holt Exponential Smoothing (HES) and SARIMA were applied on the data. The results of different applied methods were compared to correct percentages of predicted incidence rates. The monthly incidence rates were clustered into two clusters as state of Markov chain. The correct predicted percentage of the first and second clusters for WMC, HES and SARIMA methods was (100, 0), (84, 67) and (79, 47) respectively. The overall incidence rate of HBV is estimated to decrease over time. The comparison of results of the three models indicated that in respect to existing seasonality trend and non-stationarity, the HES had the most accurate prediction of the incidence rates.
NASA Astrophysics Data System (ADS)
Adhitama, Egy; Fauzi, Ahmad
2018-05-01
In this study, a pendulum experimental tool with a light-based timer has been developed to measure the period of a simple pendulum. The obtained data was automatically recorded in an Excel spreadsheet. The intensity of monochromatic light, sensed by a 3DU5C phototransistor, dynamically changes as the pendulum swings. The changed intensity varies the resistance value and was processed by the microcontroller, ATMega328, to obtain a signal period as a function of time and brightness when the pendulum crosses the light. Through the experiment, using calculated average periods, the gravitational acceleration value has been accurately and precisely determined.
Spatio-thermal depth correction of RGB-D sensors based on Gaussian processes in real-time
NASA Astrophysics Data System (ADS)
Heindl, Christoph; Pönitz, Thomas; Stübl, Gernot; Pichler, Andreas; Scharinger, Josef
2018-04-01
Commodity RGB-D sensors capture color images along with dense pixel-wise depth information in real-time. Typical RGB-D sensors are provided with a factory calibration and exhibit erratic depth readings due to coarse calibration values, ageing and thermal influence effects. This limits their applicability in computer vision and robotics. We propose a novel method to accurately calibrate depth considering spatial and thermal influences jointly. Our work is based on Gaussian Process Regression in a four dimensional Cartesian and thermal domain. We propose to leverage modern GPUs for dense depth map correction in real-time. For reproducibility we make our dataset and source code publicly available.
Eccentricity error identification and compensation for high-accuracy 3D optical measurement
He, Dong; Liu, Xiaoli; Peng, Xiang; Ding, Yabin; Gao, Bruce Z
2016-01-01
The circular target has been widely used in various three-dimensional optical measurements, such as camera calibration, photogrammetry and structured light projection measurement system. The identification and compensation of the circular target systematic eccentricity error caused by perspective projection is an important issue for ensuring accurate measurement. This paper introduces a novel approach for identifying and correcting the eccentricity error with the help of a concentric circles target. Compared with previous eccentricity error correction methods, our approach does not require taking care of the geometric parameters of the measurement system regarding target and camera. Therefore, the proposed approach is very flexible in practical applications, and in particular, it is also applicable in the case of only one image with a single target available. The experimental results are presented to prove the efficiency and stability of the proposed approach for eccentricity error compensation. PMID:26900265
Eccentricity error identification and compensation for high-accuracy 3D optical measurement.
He, Dong; Liu, Xiaoli; Peng, Xiang; Ding, Yabin; Gao, Bruce Z
2013-07-01
The circular target has been widely used in various three-dimensional optical measurements, such as camera calibration, photogrammetry and structured light projection measurement system. The identification and compensation of the circular target systematic eccentricity error caused by perspective projection is an important issue for ensuring accurate measurement. This paper introduces a novel approach for identifying and correcting the eccentricity error with the help of a concentric circles target. Compared with previous eccentricity error correction methods, our approach does not require taking care of the geometric parameters of the measurement system regarding target and camera. Therefore, the proposed approach is very flexible in practical applications, and in particular, it is also applicable in the case of only one image with a single target available. The experimental results are presented to prove the efficiency and stability of the proposed approach for eccentricity error compensation.
Cosmic Aberration, and Its Correction
ERIC Educational Resources Information Center
Dixon, Robert
2011-01-01
Because the speed of light is finite, the further we look into space, the earlier we see. A galaxy seen 50 million light years away is 50 million years ago. How far out in space and how far back in time can we expect to see, and what should it look like? To a first approximation and ignoring local galactic interactions, the Hubble model of the…
A note on the Sagnac effect for matter beams
NASA Astrophysics Data System (ADS)
Ruggiero, Matteo Luca; Tartaglia, Angelo
2015-05-01
We study the Sagnac effect for matter beams, in order to estimate the kinematic corrections to the basic formula, deriving from the position and the extent of the interferometer, and discuss the analogy with the Aharonov-Bohm effect. We show that the formula for the Sagnac time delay is the same for matter and light beams in arbitrary stationary space-times, provided that a suitable condition on the speed of the beams is fulfilled. Hence, the same results obtained for light beams apply to matter beams.
Liquid Crystal on Silicon Wavefront Corrector
NASA Technical Reports Server (NTRS)
Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.
2004-01-01
A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.
NASA Astrophysics Data System (ADS)
Noyes, Ben F.; Mokaberi, Babak; Mandoy, Ram; Pate, Alex; Huijgen, Ralph; McBurney, Mike; Chen, Owen
2017-03-01
Reducing overlay error via an accurate APC feedback system is one of the main challenges in high volume production of the current and future nodes in the semiconductor industry. The overlay feedback system directly affects the number of dies meeting overlay specification and the number of layers requiring dedicated exposure tools through the fabrication flow. Increasing the former number and reducing the latter number is beneficial for the overall efficiency and yield of the fabrication process. An overlay feedback system requires accurate determination of the overlay error, or fingerprint, on exposed wafers in order to determine corrections to be automatically and dynamically applied to the exposure of future wafers. Since current and future nodes require correction per exposure (CPE), the resolution of the overlay fingerprint must be high enough to accommodate CPE in the overlay feedback system, or overlay control module (OCM). Determining a high resolution fingerprint from measured data requires extremely dense overlay sampling that takes a significant amount of measurement time. For static corrections this is acceptable, but in an automated dynamic correction system this method creates extreme bottlenecks for the throughput of said system as new lots have to wait until the previous lot is measured. One solution is using a less dense overlay sampling scheme and employing computationally up-sampled data to a dense fingerprint. That method uses a global fingerprint model over the entire wafer; measured localized overlay errors are therefore not always represented in its up-sampled output. This paper will discuss a hybrid system shown in Fig. 1 that combines a computationally up-sampled fingerprint with the measured data to more accurately capture the actual fingerprint, including local overlay errors. Such a hybrid system is shown to result in reduced modelled residuals while determining the fingerprint, and better on-product overlay performance.
Stray light correction of array spectroradiometer measurement in ultraviolet
NASA Astrophysics Data System (ADS)
Wu, Zhifeng; Dai, Caihong; Wang, Yanfei; Li, Ling
2018-02-01
For most of the array spectroradiometer, stray light is significant in UV band. Stray light correction of a UV array spectroradiometer is investigated using optical filters. If a group of filters with continuous bandpass are chosen, stray light contribution due to all the bands can be obtained using a numerical algorithm. The array spectroradiometer with the stray light corrected is used to measure the spectral irradiance of several UV lamps. The measurement results are compared to a double monochromator spectroradiometer. When xenon lamp is the array spectroradiometer calibration lamp, after stray light correction, the difference can be improved from nearly 10% to 2.0% in UVC band. When tungsten lamp is the calibration lamp, the difference can be improved from around 90% to less than 20%.
Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography
Liu, J.; Xia, J.; Chen, C.; Zhang, G.
2005-01-01
The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.
Development of Control System for Hydrolysis Crystallization Process
NASA Astrophysics Data System (ADS)
Wan, Feng; Shi, Xiao-Ming; Feng, Fang-Fang
2016-05-01
Sulfate method for producing titanium dioxide is commonly used in China, but the determination of crystallization time is artificially which leads to a big error and is harmful to the operators. In this paper a new method for determining crystallization time is proposed. The method adopts the red laser as the light source, uses the silicon photocell as reflection light receiving component, using optical fiber as the light transmission element, differential algorithm is adopted in the software to realize the determination of the crystallizing time. The experimental results show that the method can realize the determination of crystallization point automatically and accurately, can replace manual labor and protect the health of workers, can be applied to practice completely.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Spinhirne, James D.; Campbell, James R.; Berkoff, Timothy A.; Bates, David; Starr, David OC. (Technical Monitor)
2001-01-01
The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (< 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.
Stable and Spectrally Accurate Schemes for the Navier-Stokes Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jun; Liu, Jie
2011-01-01
In this paper, we present an accurate, efficient and stable numerical method for the incompressible Navier-Stokes equations (NSEs). The method is based on (1) an equivalent pressure Poisson equation formulation of the NSE with proper pressure boundary conditions, which facilitates the design of high-order and stable numerical methods, and (2) the Krylov deferred correction (KDC) accelerated method of lines transpose (mbox MoL{sup T}), which is very stable, efficient, and of arbitrary order in time. Numerical tests with known exact solutions in three dimensions show that the new method is spectrally accurate in time, and a numerical order of convergence 9more » was observed. Two-dimensional computational results of flow past a cylinder and flow in a bifurcated tube are also reported.« less
ERIC Educational Resources Information Center
McCane-Bowling, Sara J.; Strait, Andrea D.; Guess, Pamela E.; Wiedo, Jennifer R.; Muncie, Eric
2014-01-01
This study examined the predictive utility of five formative reading measures: words correct per minute, number of comprehension questions correct, reading comprehension rate, number of maze correct responses, and maze accurate response rate (MARR). Broad Reading cluster scores obtained via the Woodcock-Johnson III (WJ III) Tests of Achievement…
Ma, Ya-Jun; Lu, Xing; Carl, Michael; Zhu, Yanchun; Szeverenyi, Nikolaus M; Bydder, Graeme M; Chang, Eric Y; Du, Jiang
2018-08-01
To develop an accurate T 1 measurement method for short T 2 tissues using a combination of a 3-dimensional ultrashort echo time cones actual flip angle imaging technique and a variable repetition time technique (3D UTE-Cones AFI-VTR) on a clinical 3T scanner. First, the longitudinal magnetization mapping function of the excitation pulse was obtained with the 3D UTE-Cones AFI method, which provided information about excitation efficiency and B 1 inhomogeneity. Then, the derived mapping function was substituted into the VTR fitting to generate accurate T 1 maps. Numerical simulation and phantom studies were carried out to compare the AFI-VTR method with a B 1 -uncorrected VTR method, a B 1 -uncorrected variable flip angle (VFA) method, and a B 1 -corrected VFA method. Finally, the 3D UTE-Cones AFI-VTR method was applied to bovine bone samples (N = 6) and healthy volunteers (N = 3) to quantify the T 1 of cortical bone. Numerical simulation and phantom studies showed that the 3D UTE-Cones AFI-VTR technique provides more accurate measurement of the T 1 of short T 2 tissues than the B 1 -uncorrected VTR and VFA methods or the B 1 -corrected VFA method. The proposed 3D UTE-Cones AFI-VTR method showed a mean T 1 of 240 ± 25 ms for bovine cortical bone and 218 ± 10 ms for the tibial midshaft of human volunteers, respectively, at 3 T. The 3D UTE-Cones AFI-VTR method can provide accurate T 1 measurements of short T 2 tissues such as cortical bone. Magn Reson Med 80:598-608, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Oh, Gyong Jin; Kim, Lyang-June; Sheen, Sue-Ho; Koo, Gyou-Phyo; Jin, Sang-Hun; Yeo, Bo-Yeon; Lee, Jong-Ho
2009-05-01
This paper presents a real time implementation of Non Uniformity Correction (NUC). Two point correction and one point correction with shutter were carried out in an uncooled imaging system which will be applied to a missile application. To design a small, light weight and high speed imaging system for a missile system, SoPC (System On a Programmable Chip) which comprises of FPGA and soft core (Micro-blaze) was used. Real time NUC and generation of control signals are implemented using FPGA. Also, three different NUC tables were made to make the operating time shorter and to reduce the power consumption in a large range of environment temperature. The imaging system consists of optics and four electronics boards which are detector interface board, Analog to Digital converter board, Detector signal generation board and Power supply board. To evaluate the imaging system, NETD was measured. The NETD was less than 160mK in three different environment temperatures.
Hayashi, Norio; Miyati, Tosiaki; Minami, Takashi; Takeshita, Yumie; Ryu, Yasuji; Matsuda, Tsuyoshi; Ohno, Naoki; Hamaguchi, Takashi; Kato, Kenichiro; Takamura, Toshinari; Matsui, Osamu
2013-01-01
The focus of this study was on the investigation of the accuracy of the fat fraction of the liver by use of single-breath-holding magnetic resonance spectroscopy (MRS) with T (2) correction. Single-voxel proton MRS was performed with several TE values, and the fat fraction was determined with and without T (2) correction. MRS was also performed with use of the point-resolved spectroscopy sequence in single breath holding. The T (2) values of both water and fat were determined separately at the same time, and the effect of T (2) on the fat fraction was corrected. In addition, MRS-based fat fractions were compared with the degree of hepatic steatosis (HS) by liver biopsy in human subjects. With T (2) correction, the MRI-derived fat fractions were in good agreement with the fat fractions in all phantoms, but the fat fractions were overestimated without T (2) correction. R (2) values were in good agreement with the preset iron concentrations in the phantoms. The MRI-derived fat fraction was well correlated with the degree of HS. Iron deposited in the liver affects the signal strength when proton MRS is used for detection of the fat signal in the liver. However, the fat signal can be evaluated more accurately when the T (2) correction is applied. Breath-holding MRS minimizes the respiratory motion, and it can be more accurate in the quantification of the hepatic fat fraction.
NASA Astrophysics Data System (ADS)
Wakamatsu, Takashi; Onoda, Takashi; Ogata, Makoto
2018-05-01
An in situ measurement method of monitoring protein aggregation in precrystalline solutions is presented. The method is based on a small-angle forward static light scattering (F-SLS) technique. This technique uses an accurate optical arrangement of a combination of a collimating lens and a CCD to obtain an F-SLS pattern from an aggregate-containing protein solution in one shot. The real-time observation of a crystallizing lysozyme captured the formation of fractal aggregates in the initial formation stage.
Human Adolescent Phase Response Curves to Bright White Light.
Crowley, Stephanie J; Eastman, Charmane I
2017-08-01
Older adolescents are particularly vulnerable to circadian misalignment and sleep restriction, primarily due to early school start times. Light can shift the circadian system and could help attenuate circadian misalignment; however, a phase response curve (PRC) to determine the optimal time for receiving light and avoiding light is not available for adolescents. We constructed light PRCs for late pubertal to postpubertal adolescents aged 14 to 17 years. Participants completed 2 counterbalanced 5-day laboratory sessions after 8 or 9 days of scheduled sleep at home. Each session included phase assessments to measure the dim light melatonin onset (DLMO) before and after 3 days of free-running through an ultradian light-dark (wake-sleep) cycle (2 h dim [~20 lux] light, 2 h dark). In one session, intermittent bright white light (~5000 lux; four 20-min exposures) was alternated with 10 min of dim room light once per day for 3 consecutive days. The time of light varied among participants to cover the 24-h day. For each individual, the phase shift to bright light was corrected for the free-run derived from the other laboratory session with no bright light. One PRC showed phase shifts in response to light start time relative to the DLMO and another relative to home sleep. Phase delay shifts occurred around the hours corresponding to home bedtime. Phase advances occurred during the hours surrounding wake time and later in the afternoon. The transition from delays to advances occurred at the midpoint of home sleep. The adolescent PRCs presented here provide a valuable tool to time bright light in adolescents.
NASA Astrophysics Data System (ADS)
Bae, Euiwon; Patsekin, Valery; Rajwa, Bartek; Bhunia, Arun K.; Holdman, Cheryl; Davisson, V. Jo; Hirleman, E. Daniel; Robinson, J. Paul
2012-04-01
A microbial high-throughput screening (HTS) system was developed that enabled high-speed combinatorial studies directly on bacterial colonies. The system consists of a forward scatterometer for elastic light scatter (ELS) detection, a plate transporter for sample handling, and a robotic incubator for automatic incubation. To minimize the ELS pattern-capturing time, a new calibration plate and correction algorithms were both designed, which dramatically reduced correction steps during acquisition of the circularly symmetric ELS patterns. Integration of three different control software programs was implemented, and the performance of the system was demonstrated with single-species detection for library generation and with time-resolved measurement for understanding ELS colony growth correlation, using Escherichia coli and Listeria. An in-house colony-tracking module enabled researchers to easily understand the time-dependent variation of the ELS from identical colony, which enabled further analysis in other biochemical experiments. The microbial HTS system provided an average scan time of 4.9 s per colony and the capability of automatically collecting more than 4000 ELS patterns within a 7-h time span.
Identification of Histoplasma capsulatum from culture extracts by real-time PCR.
Martagon-Villamil, Jose; Shrestha, Nabin; Sholtis, Mary; Isada, Carlos M; Hall, Gerri S; Bryne, Terry; Lodge, Barbara A; Reller, L Barth; Procop, Gary W
2003-03-01
We designed and tested a real-time LightCycler PCR assay for Histoplasma capsulatum that correctly identified the 34 H. capsulatum isolates in a battery of 107 fungal isolates tested and also detected H. capsulatum in clinical specimens from three patients that were culture positive for this organism.
NASA Astrophysics Data System (ADS)
Dickey, Dwayne J.; Moore, Ronald B.; Tulip, John
2001-01-01
For photodynamic therapy of solid tumors, such as prostatic carcinoma, to be achieved, an accurate model to predict tissue parameters and light dose must be found. Presently, most analytical light dosimetry models are fluence based and are not clinically viable for tissue characterization. Other methods of predicting optical properties, such as Monet Carlo, are accurate but far too time consuming for clinical application. However, radiance predicted by the P3-Approximation, an anaylitical solution to the transport equation, may be a viable and accurate alternative. The P3-Approximation accurately predicts optical parameters in intralipid/methylene blue based phantoms in a spherical geometry. The optical parameters furnished by the radiance, when introduced into fluence predicted by both P3- Approximation and Grosjean Theory, correlate well with experimental data. The P3-Approximation also predicts the optical properties of prostate tissue, agreeing with documented optical parameters. The P3-Approximation could be the clinical tool necessary to facilitate PDT of solid tumors because of the limited number of invasive measurements required and the speed in which accurate calculations can be performed.
Science, technology and mission design for LATOR experiment
NASA Astrophysics Data System (ADS)
Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L.
2017-11-01
The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun. By using independent time-series of highly accurate measurements of the Shapiro time-delay (laser ranging accurate to 1 cm) and interferometric astrometry (accurate to 0.1 picoradian), LATOR will measure gravitational deflection of light by the solar gravity with accuracy of 1 part in a billion, a factor {30,000 better than currently available. LATOR will perform series of highly-accurate tests of gravitation and cosmology in its search for cosmological remnants of scalar field in the solar system. We present science, technology and mission design for the LATOR mission.
Ianakiev, Kiril D [Los Alamos, NM; Hsue, Sin Tao [Santa Fe, NM; Browne, Michael C [Los Alamos, NM; Audia, Jeffrey M [Abiquiu, NM
2006-07-25
The present invention includes an apparatus and corresponding method for temperature correction and count rate expansion of inorganic scintillation detectors. A temperature sensor is attached to an inorganic scintillation detector. The inorganic scintillation detector, due to interaction with incident radiation, creates light pulse signals. A photoreceiver processes the light pulse signals to current signals. Temperature correction circuitry that uses a fast light component signal, a slow light component signal, and the temperature signal from the temperature sensor to corrected an inorganic scintillation detector signal output and expanded the count rate.
Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.
2000-01-01
Two numerical models to simulate an enhanced very early time electromagnetic (VETEM) prototype system that is used for buried-object detection and environmental problems are presented. In the first model, the transmitting and receiving loop antennas accurately analyzed using the method of moments (MoM), and then conjugate gradient (CG) methods with the fast Fourier transform (FFT) are utilized to investigate the scattering from buried conducting plates. In the second model, two magnetic dipoles are used to replace the transmitter and receiver. Both the theory and formulation are correct and the simulation results for the primary magnetic field and the reflected magnetic field are accurate.
Barillot, Romain; Louarn, Gaëtan; Escobar-Gutiérrez, Abraham J; Huynh, Pierre; Combes, Didier
2011-10-01
Most studies dealing with light partitioning in intercropping systems have used statistical models based on the turbid medium approach, thus assuming homogeneous canopies. However, these models could not be directly validated although spatial heterogeneities could arise in such canopies. The aim of the present study was to assess the ability of the turbid medium approach to accurately estimate light partitioning within grass-legume mixed canopies. Three contrasted mixtures of wheat-pea, tall fescue-alfalfa and tall fescue-clover were sown according to various patterns and densities. Three-dimensional plant mock-ups were derived from magnetic digitizations carried out at different stages of development. The benchmarks for light interception efficiency (LIE) estimates were provided by the combination of a light projective model and plant mock-ups, which also provided the inputs of a turbid medium model (SIRASCA), i.e. leaf area index and inclination. SIRASCA was set to gradually account for vertical heterogeneity of the foliage, i.e. the canopy was described as one, two or ten horizontal layers of leaves. Mixtures exhibited various and heterogeneous profiles of foliar distribution, leaf inclination and component species height. Nevertheless, most of the LIE was satisfactorily predicted by SIRASCA. Biased estimations were, however, observed for (1) grass species and (2) tall fescue-alfalfa mixtures grown at high density. Most of the discrepancies were due to vertical heterogeneities and were corrected by increasing the vertical description of canopies although, in practice, this would require time-consuming measurements. The turbid medium analogy could be successfully used in a wide range of canopies. However, a more detailed description of the canopy is required for mixtures exhibiting vertical stratifications and inter-/intra-species foliage overlapping. Architectural models remain a relevant tool for studying light partitioning in intercropping systems that exhibit strong vertical heterogeneities. Moreover, these models offer the possibility to integrate the effects of microclimate variations on plant growth.
Howard, Christina J; Wilding, Robert; Guest, Duncan
2017-02-01
There is mixed evidence that video game players (VGPs) may demonstrate better performance in perceptual and attentional tasks than non-VGPs (NVGPs). The rapid serial visual presentation task is one such case, where observers respond to two successive targets embedded within a stream of serially presented items. We tested light VGPs (LVGPs) and NVGPs on this task. LVGPs were better at correct identification of second targets whether they were also attempting to respond to the first target. This performance benefit seen for LVGPs suggests enhanced visual processing for briefly presented stimuli even with only very moderate game play. Observers were less accurate at discriminating the orientation of a second target within the stream if it occurred shortly after presentation of the first target, that is to say, they were subject to the attentional blink (AB). We find no evidence for any reduction in AB in LVGPs compared with NVGPs.
Atmospheric effects on active illumination
NASA Astrophysics Data System (ADS)
Shaw, Scot E. J.; Kansky, Jan E.
2005-08-01
For some beam-control applications, we can rely on the cooperation of the target when gathering information about the target location and the state of the atmosphere between the target and the beam-control system. The typical example is a cooperative point-source beacon on the target. Light from such a beacon allows the beam-control system to track the target accurately, and, if higher-order adaptive optics is to be employed, to make wave-front measurements and apply appropriate corrections with a deformable mirror. In many applications, including directed-energy weapons, the target is not cooperative. In the absence of a cooperative beacon, we must find other ways to collect the relevant information. This can be accomplished with an active-illumination system. Typically, this means shining one or more lasers at the target and observing the reflected light. In this paper, we qualitatively explore a number of difficulties inherent to active illumination, and suggest some possible mitigation techniques.
Gilmore, Adam Matthew
2014-01-01
Contemporary spectrofluorimeters comprise exciting light sources, excitation and emission monochromators, and detectors that without correction yield data not conforming to an ideal spectral response. The correction of the spectral properties of the exciting and emission light paths first requires calibration of the wavelength and spectral accuracy. The exciting beam path can be corrected up to the sample position using a spectrally corrected reference detection system. The corrected reference response accounts for both the spectral intensity and drift of the exciting light source relative to emission and/or transmission detector responses. The emission detection path must also be corrected for the combined spectral bias of the sample compartment optics, emission monochromator, and detector. There are several crucial issues associated with both excitation and emission correction including the requirement to account for spectral band-pass and resolution, optical band-pass or neutral density filters, and the position and direction of polarizing elements in the light paths. In addition, secondary correction factors are described including (1) subtraction of the solvent's fluorescence background, (2) removal of Rayleigh and Raman scattering lines, as well as (3) correcting for sample concentration-dependent inner-filter effects. The importance of the National Institute of Standards and Technology (NIST) traceable calibration and correction protocols is explained in light of valid intra- and interlaboratory studies and effective spectral qualitative and quantitative analyses including multivariate spectral modeling.
Walters, Daniel; Stringer, Simon; Rolls, Edmund
2013-01-01
The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a "look-up" table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity.
Walters, Daniel; Stringer, Simon; Rolls, Edmund
2013-01-01
The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a “look-up” table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity. PMID:23526976
NASA Astrophysics Data System (ADS)
Russ, Mark D.; Abel, Mark F.
1998-06-01
Five patients with cerebral palsy, hip dysplasia, pelvic obliquity, and scoliosis were evaluated retrospectively using three dimensional computed tomography (3DCT) scans of the proximal femur, pelvis, and lumbar spine to qualitatively evaluate their individual deformities by measuring a number of anatomical landmarks. Three dimensional reconstructions of the data were visualized, analyzed, and then manipulated interactively to perform simulated osteotomies of the proximal femur and pelvis to achieve surgical correction of the hip dysplasia. Severe deformity can occur in spastic cerebral palsy, with serious consequences for the quality of life of the affected individuals and their families. Controversy exists regarding the type, timing and efficacy of surgical intervention for correction of hip dysplasia in this population. Other authors have suggested 3DCT studies are required to accurately analyze acetabular deficiency, and that this data allows for more accurate planning of reconstructive surgery. It is suggested here that interactive manipulation of the data to simulate the proposed surgery is a clinically useful extension of the analysis process and should also be considered as an essential part of the pre-operative planning to assure that the appropriate procedure is chosen. The surgical simulation may reduce operative time and improve surgical correction of the deformity.
[The choice of color in fixed prosthetics: what steps should be followed for a reliable outcome?].
Vanheusden, Alain; Mainjot, Amélie
2004-01-01
The creation of a perfectly-matched esthetic fixed restoration is undeniably one of the most difficult challenges in modern dentistry. The final outcome depends on several essential steps: the use of an appropriate light source, the accurate analysis and correct evaluation of patient's teeth parameters (morphology, colour, surface texture,...), the clear and precise transmission of this data to the laboratory and the sound interpretation of it by a dental technician who masters esthetic prosthetic techniques perfectly. The purpose of this paper was to give a reproducible clinical method to the practitioner in order to achieve a reliable dental colorimetric analysis.
Threshold region for Higgs boson production in gluon fusion.
Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni
2012-09-07
We provide a quantitative determination of the effective partonic kinematics for Higgs boson production in gluon fusion in terms of the collider energy at the LHC. We use the result to assess, as a function of the Higgs boson mass, whether the large m(t) approximation is adequate and Sudakov resummation advantageous. We argue that our results hold to all perturbative orders. Based on our results, we conclude that the full inclusion of finite top mass corrections is likely to be important for accurate phenomenology for a light Higgs boson with m(H)~125 GeV at the LHC with √s=14 TeV.
NASA Astrophysics Data System (ADS)
Xie, Y. J.; Ho, Y. K.; Cao, N.; Shao, L.; Pang, J.; Chen, Z.; Zhang, S. Y.; Liu, J. R.
2003-11-01
By taking account of the high-order corrections to the paraxial approximation of a Gaussian beam, it has been verified that for a focused laser beam propagating in vacuum, there indeed exists a subluminous wave phase velocity region surrounding the laser beam axis. The magnitude of the phase velocity scales as Vϕm∼ c(1+ b/( kw0) 2), where Vϕm is the phase velocity of the wave, c is the speed of light in vacuum, w0 is the beam width at focus. This feature gives a reasonable explanation for the mechanism of capture and acceleration scenario.
Resolution of the COBE Earth sensor anomaly
NASA Technical Reports Server (NTRS)
Sedler, J.
1993-01-01
Since its launch on November 18, 1989, the Earth sensors on the Cosmic Background Explorer (COBE) have shown much greater noise than expected. The problem was traced to an error in Earth horizon acquisition-of-signal (AOS) times. Due to this error, the AOS timing correction was ignored, causing Earth sensor split-to-index (SI) angles to be incorrectly time-tagged to minor frame synchronization times. Resulting Earth sensor residuals, based on gyro-propagated fine attitude solutions, were as large as plus or minus 0.45 deg (much greater than plus or minus 0.10 deg from scanner specifications (Reference 1)). Also, discontinuities in single-frame coarse attitude pitch and roll angles (as large as 0.80 and 0.30 deg, respectively) were noted several times during each orbit. However, over the course of the mission, each Earth sensor was observed to independently and unexpectedly reset and then reactivate into a new configuration. Although the telemetered AOS timing corrections are still in error, a procedure has been developed to approximate and apply these corrections. This paper describes the approach, analysis, and results of approximating and applying AOS timing adjustments to correct Earth scanner data. Furthermore, due to the continuing degradation of COBE's gyroscopes, gyro-propagated fine attitude solutions may soon become unavailable, requiring an alternative method for attitude determination. By correcting Earth scanner AOS telemetry, as described in this paper, more accurate single-frame attitude solutions are obtained. All aforementioned pitch and roll discontinuities are removed. When proper AOS corrections are applied, the standard deviation of pitch residuals between coarse attitude and gyro-propagated fine attitude solutions decrease by a factor of 3. Also, the overall standard deviation of SI residuals from fine attitude solutions decrease by a factor of 4 (meeting sensor specifications) when AOS corrections are applied.
A symmetric multivariate leakage correction for MEG connectomes
Colclough, G.L.; Brookes, M.J.; Smith, S.M.; Woolrich, M.W.
2015-01-01
Ambiguities in the source reconstruction of magnetoencephalographic (MEG) measurements can cause spurious correlations between estimated source time-courses. In this paper, we propose a symmetric orthogonalisation method to correct for these artificial correlations between a set of multiple regions of interest (ROIs). This process enables the straightforward application of network modelling methods, including partial correlation or multivariate autoregressive modelling, to infer connectomes, or functional networks, from the corrected ROIs. Here, we apply the correction to simulated MEG recordings of simple networks and to a resting-state dataset collected from eight subjects, before computing the partial correlations between power envelopes of the corrected ROItime-courses. We show accurate reconstruction of our simulated networks, and in the analysis of real MEGresting-state connectivity, we find dense bilateral connections within the motor and visual networks, together with longer-range direct fronto-parietal connections. PMID:25862259
Modelling and mitigating refractive propagation effects in precision pulsar timing observations
NASA Astrophysics Data System (ADS)
Shannon, R. M.; Cordes, J. M.
2017-01-01
To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.
Generation of an incident focused light pulse in FDTD.
Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim
2008-11-10
A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.
Generation of an incident focused light pulse in FDTD
Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim
2009-01-01
A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas. PMID:19582013
Adaptive optics to enhance target recognition
NASA Astrophysics Data System (ADS)
McAulay, Alastair D.
2012-06-01
Target recognition can be enhanced by reducing image degradation due to atmospheric turbulence. This is accomplished by an adaptive optic system. We discuss the forms of degradation when a target is viewed through the atmosphere1: scintillation from ground targets on a hot day in visible or infrared light; beam spreading and wavering around in time; atmospheric turbulence caused by motion of the target or by weather. In the case of targets we can use a beacon laser that reflects back from the target into a wavefront detector to measure the effects of turbulence on propagation to and from the target before imaging.1 A deformable mirror then corrects the wavefront shape of the transmitted, reflected or scattered data for enhanced imaging. Further, recognition of targets is enhanced by performing accurate distance measurements to localized parts of the target using lidar. Distance is obtained by sending a short pulse to the target and measuring the time for the pulse to return. There is inadequate time to scan the complete field of view so that the beam must be steered to regions of interest such as extremities of the image during image recognition. Distance is particularly valuable to recognize fine features in range along the target or when segmentation is required to separate a target from background or from other targets. We discuss the issues involved.
40 CFR 89.115 - Application for certificate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (AECD), and all fuel system components to be installed on any production or test engine(s); (3) Proposed... corrected by amendment as provided for in § 89.123 to accurately reflect the manufacturer's production. (d..., but not limited to, injection timing and fuel rate), including the following: (i) The nominal or...
40 CFR 89.115 - Application for certificate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (AECD), and all fuel system components to be installed on any production or test engine(s); (3) Proposed... corrected by amendment as provided for in § 89.123 to accurately reflect the manufacturer's production. (d..., but not limited to, injection timing and fuel rate), including the following: (i) The nominal or...
40 CFR 89.115 - Application for certificate.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (AECD), and all fuel system components to be installed on any production or test engine(s); (3) Proposed... corrected by amendment as provided for in § 89.123 to accurately reflect the manufacturer's production. (d..., but not limited to, injection timing and fuel rate), including the following: (i) The nominal or...
40 CFR 89.115 - Application for certificate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (AECD), and all fuel system components to be installed on any production or test engine(s); (3) Proposed... corrected by amendment as provided for in § 89.123 to accurately reflect the manufacturer's production. (d..., but not limited to, injection timing and fuel rate), including the following: (i) The nominal or...
40 CFR 89.115 - Application for certificate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (AECD), and all fuel system components to be installed on any production or test engine(s); (3) Proposed... corrected by amendment as provided for in § 89.123 to accurately reflect the manufacturer's production. (d..., but not limited to, injection timing and fuel rate), including the following: (i) The nominal or...
Using E-Mail in Computer Assisted Freshman Composition and Rhetoric.
ERIC Educational Resources Information Center
Dowden, Rebecca; Humphries, Sharon
1997-01-01
Describes teaching freshman composition and rhetoric via e-mail as a distance education course at Tomball Community College (Texas). Discusses student and instructor responsibilities, e-mail procedures, problems encountered (lack of time, and managing disk and mailbox space), and benefits (reduced paper use, typed corrections, accurate records,…
NASA Technical Reports Server (NTRS)
Grund, Christian John; Eloranta, Edwin W.
1990-01-01
Cirrus clouds reflect incoming solar radiation and trap outgoing terrestrial radiation; therefore, accurate estimation of the global energy balance depends upon knowledge of the optical and physical properties of these clouds. Scattering and absorption by cirrus clouds affect measurements made by many satellite-borne and ground based remote sensors. Scattering of ambient light by the cloud, and thermal emissions from the cloud can increase measurement background noise. Multiple scattering processes can adversely affect the divergence of optical beams propagating through these clouds. Determination of the optical thickness and the vertical and horizontal extent of cirrus clouds is necessary to the evaluation of all of these effects. Lidar can be an effective tool for investigating these properties. During the FIRE cirrus IFO in Oct. to Nov. 1986, the High Spectral Resolution Lidar (HSRL) was operated from a rooftop site on the campus of the University of Wisconsin at Madison, Wisconsin. Approximately 124 hours of fall season data were acquired under a variety of cloud optical thickness conditions. Since the IFO, the HSRL data set was expanded by more than 63.5 hours of additional data acquired during all seasons. Measurements are presented for the range in optical thickness and backscattering phase function of the cirrus clouds, as well as contour maps of extinction corrected backscatter cross sections indicating cloud morphology. Color enhanced images of range-time indicator (RTI) displays a variety of cirrus clouds with approximately 30 sec time resolution are presented. The importance of extinction correction on the interpretation of cloud height and structure from lidar observations of optically thick cirrus are demonstrated.
A quality assurance program for clinical PDT
NASA Astrophysics Data System (ADS)
Dimofte, Andreea; Finlay, Jarod; Ong, Yi Hong; Zhu, Timothy C.
2018-02-01
Successful outcome of Photodynamic therapy (PDT) depends on accurate delivery of prescribed light dose. A quality assurance program is necessary to ensure that light dosimetry is correctly measured. We have instituted a QA program that include examination of long term calibration uncertainty of isotropic detectors for light fluence rate, power meter head intercomparison for laser power, stability of the light-emitting diode (LED) light source integrating sphere as a light fluence standard, laser output and calibration of in-vivo reflective fluorescence and absorption spectrometers. We examined the long term calibration uncertainty of isotropic detector sensitivity, defined as fluence rate per voltage. We calibrate the detector using the known calibrated light fluence rate of the LED light source built into an internally baffled 4" integrating sphere. LED light sources were examined using a 1mm diameter isotropic detector calibrated in a collimated beam. Wavelengths varying from 632nm to 690nm were used. The internal LED method gives an overall calibration accuracy of +/- 4%. Intercomparison among power meters was performed to determine the consistency of laser power and light fluence rate measured among different power meters. Power and fluence readings were measured and compared among detectors. A comparison of power and fluence reading among several power heads shows long term consistency for power and light fluence rate calibration to within 3% regardless of wavelength. The standard LED light source is used to calibrate the transmission difference between different channels for the diffuse reflective absorption and fluorescence contact probe as well as isotropic detectors used in PDT dose dosimeter.
Demonstration of an Enhanced Vertical Magnetic Gradient System for UXO
2008-04-01
flights were conducted and results evaluated. The cesium magnetometers , GPS systems (positioning and attitude), fluxgate magnetometers , data...makes a measurement and when it is time-stamped and recorded. This applies to the magnetometers , fluxgate and the GPS. Accurate positioning...requires a correction for this lag. Time lags between the magnetometers , fluxgate and GPS signals were measured by a proprietary utility. This utility
Fault-tolerant arithmetic via time-shared TMR
NASA Astrophysics Data System (ADS)
Swartzlander, Earl E.
1999-11-01
Fault tolerance is increasingly important as society has come to depend on computers for more and more aspects of daily life. The current concern about the Y2K problems indicates just how much we depend on accurate computers. This paper describes work on time- shared TMR, a technique which is used to provide arithmetic operations that produce correct results in spite of circuit faults.
Measurement and application of bidirectional reflectance distribution function
NASA Astrophysics Data System (ADS)
Liao, Fei; Li, Lin; Lu, Chengwen
2016-10-01
When a beam of light with certain intensity and distribution reaches the surface of a material, the distribution of the diffused light is related to the incident angle, the receiving angle, the wavelength of the light and the types of the material. Bidirectional Reflectance Distribution Function (BRDF) is a method to describe this distribution. For an optical system, the optical and mechanical materials' BRDF are unique, and if we want to calculate stray light of the system we should know the correct BRDF data of the whole materials. There are fundamental significances in the area of space remote sensor where BRDF is needed in the precise radiation calibration. It is also important in the military field where BRDF can be used in the object identification and target tracking, etc. In this paper, 11 kinds of aerospace materials' BRDF are measured and more than 310,000 groups of BRDF data are achieved , and also a BRDF database is established in China for the first time. With the BRDF data of the database, we can create the detector model, build the stray light radiation surface model in the stray light analysis software. In this way, the stray radiation on the detector can be calculated correctly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buonanno, Alessandra; Pan Yi; Baker, John G.
2007-11-15
We present an accurate approximation of the full gravitational radiation waveforms generated in the merger of noneccentric systems of two nonspinning black holes. Utilizing information from recent numerical relativity simulations and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms during the last stages of inspiral, merger, and ringdown. By 'successfully' here, we mean with phase differences < or approx. 8% of a gravitational-wave cycle accumulated by the end of the ringdown phase, maximizing only over time of arrival and initial phase. We obtain this result bymore » simply adding a 4-post-Newtonian order correction in the EOB radial potential and determining the (constant) coefficient by imposing high-matching performances with numerical waveforms of mass ratios m{sub 1}/m{sub 2}=1, 3/2, 2 and 4, m{sub 1} and m{sub 2} being the individual black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are used to determine the ringdown frequency and decay time of three quasinormal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at the EOB light ring. The EOB waveforms might be tested and further improved in the future by comparison with extremely long and accurate inspiral numerical relativity waveforms. They may be already employed for coherent searches and parameter estimation of gravitational waves emitted by nonspinning coalescing binary black holes with ground-based laser-interferometer detectors.« less
On Correlated-noise Analyses Applied to Exoplanet Light Curves
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Harrington, Joseph; Loredo, Thomas J.; Lust, Nate B.; Blecic, Jasmina; Stemm, Madison
2017-01-01
Time-correlated noise is a significant source of uncertainty when modeling exoplanet light-curve data. A correct assessment of correlated noise is fundamental to determine the true statistical significance of our findings. Here, we review three of the most widely used correlated-noise estimators in the exoplanet field, the time-averaging, residual-permutation, and wavelet-likelihood methods. We argue that the residual-permutation method is unsound in estimating the uncertainty of parameter estimates. We thus recommend to refrain from this method altogether. We characterize the behavior of the time averaging’s rms-versus-bin-size curves at bin sizes similar to the total observation duration, which may lead to underestimated uncertainties. For the wavelet-likelihood method, we note errors in the published equations and provide a list of corrections. We further assess the performance of these techniques by injecting and retrieving eclipse signals into synthetic and real Spitzer light curves, analyzing the results in terms of the relative-accuracy and coverage-fraction statistics. Both the time-averaging and wavelet-likelihood methods significantly improve the estimate of the eclipse depth over a white-noise analysis (a Markov-chain Monte Carlo exploration assuming uncorrelated noise). However, the corrections are not perfect when retrieving the eclipse depth from Spitzer data sets, these methods covered the true (injected) depth within the 68% credible region in only ˜45%-65% of the trials. Lastly, we present our open-source model-fitting tool, Multi-Core Markov-Chain Monte Carlo (MC3). This package uses Bayesian statistics to estimate the best-fitting values and the credible regions for the parameters for a (user-provided) model. MC3 is a Python/C code, available at https://github.com/pcubillos/MCcubed.
Almurayshid, Mansour; Helo, Yusuf; Kacperek, Andrzej; Griffiths, Jennifer; Hebden, Jem; Gibson, Adam
2017-09-01
In this article, we evaluate a plastic scintillation detector system for quality assurance in proton therapy using a BC-408 plastic scintillator, a commercial camera, and a computer. The basic characteristics of the system were assessed in a series of proton irradiations. The reproducibility and response to changes of dose, dose-rate, and proton energy were determined. Photographs of the scintillation light distributions were acquired, and compared with Geant4 Monte Carlo simulations and with depth-dose curves measured with an ionization chamber. A quenching effect was observed at the Bragg peak of the 60 MeV proton beam where less light was produced than expected. We developed an approach using Birks equation to correct for this quenching. We simulated the linear energy transfer (LET) as a function of depth in Geant4 and found Birks constant by comparing the calculated LET and measured scintillation light distribution. We then used the derived value of Birks constant to correct the measured scintillation light distribution for quenching using Geant4. The corrected light output from the scintillator increased linearly with dose. The system is stable and offers short-term reproducibility to within 0.80%. No dose rate dependency was observed in this work. This approach offers an effective way to correct for quenching, and could provide a method for rapid, convenient, routine quality assurance for clinical proton beams. Furthermore, the system has the advantage of providing 2D visualization of individual radiation fields, with potential application for quality assurance of complex, time-varying fields. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, N.; Odano, I.; Ohkubo, M.
1994-05-01
We developed a more accurate quantitative measurement of regional cerebral blood flow (rCBF) with the microsphere model using N-isopropyl-p-[I-123] iodoamphetamine (IMP) and a ring type single photon emission computed tomography (SPECT) system. SPECT studies were performed in 17 patients with brain diseases. A dose of 222 MBq (6 mCi) of [I-123]IMP was injected i.v., at the same time a 5 min period of arterial blood withdrawal was begun. SPECT data were acquired from 25 min to 60 min after tracer injection. For obtaining the brain activity concentration at 5 min after IMP injection, total brain counts collections and one minutemore » period short time SPECT studies were performed at 5, 20, and 60 min. Measurement of the values of rCBF was calculated using short time SPECT images at 5 min (rCBF), static SPECT images corrected with total cerebral counts (rCBF{sub Ct}.) and those corrected with reconstructed counts on short time SPECT images (rCBF{sub Cb}). There was a good relationship (r=0.69) between rCBF and rCBF{sub Ct}, however, rCBF{sub Ct} tends to be underestimated in high flow areas and overestimated in low flow areas. There was better relationship between rCBF and rCBF{sub Cb}(r=0.92). The overestimation and underestimation shown in rCBF{sub Ct} was considered to be due to the correction of reconstructed counts using a total cerebral time activity curve, because of the kinetic behavior of [I-123]IMP was different in each region. We concluded that more accurate rCBF values could be obtained using the regional time activity curves.« less
NASA Astrophysics Data System (ADS)
Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto; Marrocu, Marino
2017-03-01
Distribution mapping has been identified as the most efficient approach to bias-correct climate model rainfall, while reproducing its statistics at spatial and temporal resolutions suitable to run hydrologic models. Yet its implementation based on empirical distributions derived from control samples (referred to as nonparametric distribution mapping) makes the method's performance sensitive to sample length variations, the presence of outliers, the spatial resolution of climate model results, and may lead to biases, especially in extreme rainfall estimation. To address these shortcomings, we propose a methodology for simultaneous bias correction and high-resolution downscaling of climate model rainfall products that uses: (a) a two-component theoretical distribution model (i.e., a generalized Pareto (GP) model for rainfall intensities above a specified threshold u*, and an exponential model for lower rainrates), and (b) proper interpolation of the corresponding distribution parameters on a user-defined high-resolution grid, using kriging for uncertain data. We assess the performance of the suggested parametric approach relative to the nonparametric one, using daily raingauge measurements from a dense network in the island of Sardinia (Italy), and rainfall data from four GCM/RCM model chains of the ENSEMBLES project. The obtained results shed light on the competitive advantages of the parametric approach, which is proved more accurate and considerably less sensitive to the characteristics of the calibration period, independent of the GCM/RCM combination used. This is especially the case for extreme rainfall estimation, where the GP assumption allows for more accurate and robust estimates, also beyond the range of the available data.
Zhao, S M; Leach, J; Gong, L Y; Ding, J; Zheng, B Y
2012-01-02
The effect of atmosphere turbulence on light's spatial structure compromises the information capacity of photons carrying the Orbital Angular Momentum (OAM) in free-space optical (FSO) communications. In this paper, we study two aberration correction methods to mitigate this effect. The first one is the Shack-Hartmann wavefront correction method, which is based on the Zernike polynomials, and the second is a phase correction method specific to OAM states. Our numerical results show that the phase correction method for OAM states outperforms the Shark-Hartmann wavefront correction method, although both methods improve significantly purity of a single OAM state and the channel capacities of FSO communication link. At the same time, our experimental results show that the values of participation functions go down at the phase correction method for OAM states, i.e., the correction method ameliorates effectively the bad effect of atmosphere turbulence.
NASA Astrophysics Data System (ADS)
Deng, Zhipeng; Lei, Lin; Zhou, Shilin
2015-10-01
Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.
Ichikawa, Tamaki; Kitanosono, Takashi; Koizumi, Jun; Ogushi, Yoichi; Tanaka, Osamu; Endo, Jun; Hashimoto, Takeshi; Kawada, Shuichi; Saito, Midori; Kobayashi, Makiko; Imai, Yutaka
2007-12-20
We evaluated the usefulness of radiological reporting that combines continuous speech recognition (CSR) and error correction by transcriptionists. Four transcriptionists (two with more than 10 years' and two with less than 3 months' transcription experience) listened to the same 100 dictation files and created radiological reports using conventional transcription and a method that combined CSR with manual error correction by the transcriptionists. We compared the 2 groups using the 2 methods for accuracy and report creation time and evaluated the transcriptionists' inter-personal dependence on accuracy rate and report creation time. We used a CSR system that did not require the training of the system to recognize the user's voice. We observed no significant difference in accuracy between the 2 groups and 2 methods that we tested, though transcriptionists with greater experience transcribed faster than those with less experience using conventional transcription. Using the combined method, error correction speed was not significantly different between two groups of transcriptionists with different levels of experience. Combining CSR and manual error correction by transcriptionists enabled convenient and accurate radiological reporting.
High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air
NASA Astrophysics Data System (ADS)
Rella, C. W.; Chen, H.; Andrews, A. E.; Filges, A.; Gerbig, C.; Hatakka, J.; Karion, A.; Miles, N. L.; Richardson, S. J.; Steinbacher, M.; Sweeney, C.; Wastine, B.; Zellweger, C.
2012-08-01
Traditional techniques for measuring the mole fractions of greenhouse gas in the well-mixed atmosphere have required extremely dry sample gas streams (dew point < -25 °C) to achieve the inter-laboratory compatibility goals set forth by the Global Atmospheric Watch program of the World Meteorological Organization (WMO/GAW) for carbon dioxide (±0.1 ppm) and methane (±2 ppb). Drying the sample gas to low levels of water vapor can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular Cavity Ring Down Spectroscopy (CRDS), have led to the development of highly stable and precise greenhouse gas analyzers capable of highly accurate measurements of carbon dioxide, methane, and water vapor. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapor, these instruments permit for the first time accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapor correction factors, and we summarize a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterized dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to at least 1% water vapor. By determining the correction factors for individual instruments once at the start of life, this range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended above 4%.
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-09-21
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
NASA Astrophysics Data System (ADS)
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-10-01
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
Social contagion of correct and incorrect information in memory.
Rush, Ryan A; Clark, Steven E
2014-01-01
The present study examines how discussion between individuals regarding a shared memory affects their subsequent individual memory reports. In three experiments pairs of participants recalled items from photographs of common household scenes, discussed their recall with each other, and then recalled the items again individually. Results showed that after the discussion. individuals recalled more correct items and more incorrect items, with very small non-significant increases, or no change, in recall accuracy. The information people were exposed to during the discussion was generally accurate, although not as accurate as individuals' initial recall. Individuals incorporated correct exposure items into their subsequent recall at a higher rate than incorrect exposure items. Participants who were initially more accurate became less accurate, and initially less-accurate participants became more accurate as a result of their discussion. Comparisons to no-discussion control groups suggest that the effects were not simply the product of repeated recall opportunities or self-cueing, but rather reflect the transmission of information between individuals.
NASA Astrophysics Data System (ADS)
Bravo, Jaime; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.
2015-03-01
Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%, respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.
Parametric study of statistical bias in laser Doppler velocimetry
NASA Technical Reports Server (NTRS)
Gould, Richard D.; Stevenson, Warren H.; Thompson, H. Doyle
1989-01-01
Analytical studies have often assumed that LDV velocity bias depends on turbulence intensity in conjunction with one or more characteristic time scales, such as the time between validated signals, the time between data samples, and the integral turbulence time-scale. These parameters are presently varied independently, in an effort to quantify the biasing effect. Neither of the post facto correction methods employed is entirely accurate. The mean velocity bias error is found to be nearly independent of data validation rate.
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
Grout, Ray; Kolla, Hemanth; Minion, Michael; ...
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. Here, we demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher- order accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited tomore » recovering from soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual on the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehen- sive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Lightwave: An interactive estimation of indirect illumination using waves of light
NASA Astrophysics Data System (ADS)
Robertson, Michael
With the growth of computers and technology, so to has grown the desire to accurately recreate our world using computer graphics. However, our world is very complex and in many ways beyond our comprehension. Therefore, in order to perform this task, we must consider multiple disciplines and areas of research including physics, mathematics, optics, geology, and many more to at the very least approximate the world around us. The applications of being able to do this are plentiful as well, including the use of graphics in entertainment such as movies and games, in science such as weather forecasts and simulations, in medicine with body scans, or used in architecture, design, and many other areas. In order to recreate the world around us, an important task is to accurately recreate the way light travels and affects the objects we see. Rendering lighting has been a heavily researched area since the 1970's and has gotten more sophisticated over the years. Until recent developments in technology, realistic lighting of scenes has only been achievable offline taking seconds to hours or more to create a single image, however, due to advances in graphics technology, realistic lighting can be done in real-time. An important aspect of realistic lighting involves the inclusion of indirect illumination. However, to achieve a real-time rendering with indirect illumination, we must make trade-offs between scientific accuracy and performance, but as will be discussed later, scientific accuracy may not be necessary after all.
McElvania Tekippe, Erin; Shuey, Sunni; Winkler, David W; Butler, Meghan A; Burnham, Carey-Ann D
2013-05-01
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can be used as a method for the rapid identification of microorganisms. This study evaluated the Bruker Biotyper (MALDI-TOF MS) system for the identification of clinically relevant Gram-positive organisms. We tested 239 aerobic Gram-positive organisms isolated from clinical specimens. We evaluated 4 direct-smear methods, including "heavy" (H) and "light" (L) smears, with and without a 1-μl direct formic acid (FA) overlay. The quality measure assigned to a MALDI-TOF MS identification is a numerical value or "score." We found that a heavy smear with a formic acid overlay (H+FA) produced optimal MALDI-TOF MS identification scores and the highest percentage of correctly identified organisms. Using a score of ≥2.0, we identified 183 of the 239 isolates (76.6%) to the genus level, and of the 181 isolates resolved to the species level, 141 isolates (77.9%) were correctly identified. To maximize the number of correct identifications while minimizing misidentifications, the data were analyzed using a score of ≥1.7 for genus- and species-level identification. Using this score, 220 of the 239 isolates (92.1%) were identified to the genus level, and of the 181 isolates resolved to the species level, 167 isolates (92.2%) could be assigned an accurate species identification. We also evaluated a subset of isolates for preanalytic factors that might influence MALDI-TOF MS identification. Frequent subcultures increased the number of unidentified isolates. Incubation temperatures and subcultures of the media did not alter the rate of identification. These data define the ideal bacterial preparation, identification score, and medium conditions for optimal identification of Gram-positive bacteria by use of MALDI-TOF MS.
Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology
NASA Astrophysics Data System (ADS)
Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.
2014-02-01
Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.
Software Tools for Emittance Measurement and Matching for 12 GeV CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Dennis L.
2016-05-01
This paper discusses model-driven setup of the Continuous Electron Beam Accelerator Facility (CEBAF) for the 12GeV era, focusing on qsUtility. qsUtility is a set of software tools created to perform emittance measurements, analyze those measurements, and compute optics corrections based upon the measurements.qsUtility was developed as a toolset to facilitate reducing machine configuration time and reproducibility by way of an accurate accelerator model, and to provide Operations staff with tools to measure and correct machine optics with little or no assistance from optics experts.
Design of system calibration for effective imaging
NASA Astrophysics Data System (ADS)
Varaprasad Babu, G.; Rao, K. M. M.
2006-12-01
A CCD based characterization setup comprising of a light source, CCD linear array, Electronics for signal conditioning/ amplification, PC interface has been developed to generate images at varying densities and at multiple view angles. This arrangement is used to simulate and evaluate images by Super Resolution technique with multiple overlaps and yaw rotated images at different view angles. This setup also generates images at different densities to analyze the response of the detector port wise separately. The light intensity produced by the source needs to be calibrated for proper imaging by the high sensitive CCD detector over the FOV. One approach is to design a complex integrating sphere arrangement which costs higher for such applications. Another approach is to provide a suitable intensity feed back correction wherein the current through the lamp is controlled in a closed loop arrangement. This method is generally used in the applications where the light source is a point source. The third method is to control the time of exposure inversely to the lamp variations where lamp intensity is not possible to control. In this method, light intensity during the start of each line is sampled and the correction factor is applied for the full line. The fourth method is to provide correction through Look Up Table where the response of all the detectors are normalized through the digital transfer function. The fifth method is to have a light line arrangement where the light through multiple fiber optic cables are derived from a single source and arranged them in line. This is generally applicable and economical for low width cases. In our applications, a new method wherein an inverse multi density filter is designed which provides an effective calibration for the full swath even at low light intensities. The light intensity along the length is measured, an inverse density is computed, a correction filter is generated and implemented in the CCD based Characterization setup. This paper describes certain novel techniques of design and implementation of system calibration for effective Imaging to produce better quality data product especially while handling high resolution data.
Sawicki, R.H.; Sweatt, W.
1985-11-21
A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and provides for adjustably bending the light reflecting surface into one of different curvatures depending upon the astigmatism to be corrected and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment to the reinforced side edges of the light reflecting surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawicki, R.H.; Sweatt, W.
1985-11-21
A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and provides for adjustably bending the light reflecting surface into one of different curvatures depending upon the astigmatism to be corrected and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment tomore » the reinforced side edges of the light reflecting surface.« less
Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport
NASA Technical Reports Server (NTRS)
Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.
2008-01-01
Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.
Robust pattern decoding in shape-coded structured light
NASA Astrophysics Data System (ADS)
Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai
2017-09-01
Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.
Antenna Controller Replacement Software
NASA Technical Reports Server (NTRS)
Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza;
2010-01-01
The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and monitoring tracking performance.
Supernovae Discovery Efficiency
NASA Astrophysics Data System (ADS)
John, Colin
2018-01-01
Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.
NASA Astrophysics Data System (ADS)
He, Qiang; Schultz, Richard R.; Wang, Yi; Camargo, Aldo; Martel, Florent
2008-01-01
In traditional super-resolution methods, researchers generally assume that accurate subpixel image registration parameters are given a priori. In reality, accurate image registration on a subpixel grid is the single most critically important step for the accuracy of super-resolution image reconstruction. In this paper, we introduce affine invariant features to improve subpixel image registration, which considerably reduces the number of mismatched points and hence makes traditional image registration more efficient and more accurate for super-resolution video enhancement. Affine invariant interest points include those corners that are invariant to affine transformations, including scale, rotation, and translation. They are extracted from the second moment matrix through the integration and differentiation covariance matrices. Our tests are based on two sets of real video captured by a small Unmanned Aircraft System (UAS) aircraft, which is highly susceptible to vibration from even light winds. The experimental results from real UAS surveillance video show that affine invariant interest points are more robust to perspective distortion and present more accurate matching than traditional Harris/SIFT corners. In our experiments on real video, all matching affine invariant interest points are found correctly. In addition, for the same super-resolution problem, we can use many fewer affine invariant points than Harris/SIFT corners to obtain good super-resolution results.
Gruendling, Till; Guilhaus, Michael; Barner-Kowollik, Christopher
2008-09-15
We report on the successful application of size exclusion chromatography (SEC) combined with electrospray ionization mass spectrometry (ESI-MS) and refractive index (RI) detection for the determination of accurate molecular weight distributions of synthetic polymers, corrected for chromatographic band broadening. The presented method makes use of the ability of ESI-MS to accurately depict the peak profiles and retention volumes of individual oligomers eluting from the SEC column, whereas quantitative information on the absolute concentration of oligomers is obtained from the RI-detector only. A sophisticated computational algorithm based on the maximum entropy principle is used to process the data gained by both detectors, yielding an accurate molecular weight distribution, corrected for chromatographic band broadening. Poly(methyl methacrylate) standards with molecular weights up to 10 kDa serve as model compounds. Molecular weight distributions (MWDs) obtained by the maximum entropy procedure are compared to MWDs, which were calculated by a conventional calibration of the SEC-retention time axis with peak retention data obtained from the mass spectrometer. Comparison showed that for the employed chromatographic system, distributions below 7 kDa were only weakly influenced by chromatographic band broadening. However, the maximum entropy algorithm could successfully correct the MWD of a 10 kDa standard for band broadening effects. Molecular weight averages were between 5 and 14% lower than the manufacturer stated data obtained by classical means of calibration. The presented method demonstrates a consistent approach for analyzing data obtained by coupling mass spectrometric detectors and concentration sensitive detectors to polymer liquid chromatography.
NASA Astrophysics Data System (ADS)
Ji, Songsong; Yang, Yibo; Pang, Gang; Antoine, Xavier
2018-01-01
The aim of this paper is to design some accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations in rectangular domains. The Laplace transform in time and discrete Fourier transform in space are applied to get Green's functions of the semi-discretized equations in unbounded domains with single-source. An algorithm is given to compute these Green's functions accurately through some recurrence relations. Furthermore, the finite-difference method is used to discretize the reduced problem with accurate boundary conditions. Numerical simulations are presented to illustrate the accuracy of our method in the case of the linear Schrödinger and heat equations. It is shown that the reflection at the corners is correctly eliminated.
Nagata, Jun; Fukunaga, Yosuke; Akiyoshi, Takashi; Konishi, Tsuyoshi; Fujimoto, Yoshiya; Nagayama, Satoshi; Yamamoto, Noriko; Ueno, Masashi
2016-02-01
Accurate identification of the location of colorectal lesions is crucial during laparoscopic surgery. Endoscopic marking has been used as an effective preoperative marker for tumor identification. We investigated the feasibility and safety of an imaging method using near-infrared, light-emitting, diode-activated indocyanine green fluorescence in colorectal laparoscopic surgery. This was a single-institution, prospective study. This study was conducted in a tertiary referral hospital. We enrolled 24 patients who underwent laparoscopic surgery. Indocyanine green and India ink were injected into the same patients undergoing preoperative colonoscopy for colon cancer. During subsequent laparoscopic resection of colorectal tumors, the colon was first observed with white light. Then, indocyanine green was activated with a light-emitting diode at 760 nm as the light source. Near-infrared-induced fluorescence showed tumor location clearly and accurately in all 24 of the patients. All of the patients who underwent laparoscopic surgery after marking had positive indocyanine green staining at the time of surgery. Perioperative complications attributed to dye use were not observed. This study is limited by the cost of indocyanine green detection, the timing of the colonoscopy and tattooing in relation to the operation and identification with indocyanine green, and the small size of the series. These data suggest that our novel method for colonic marking with fluorescence imaging of near-infrared, light-emitting, diode-activated indocyanine green is feasible and safe. This method is useful, has no adverse effects, and can be used for perioperative identification of tumor location. Near-infrared, light-emitting, diode-activated indocyanine green has potential use as a colonic marking agent.
NASA Astrophysics Data System (ADS)
Wind, L.; Szymanski, W. W.
2002-06-01
Figure 3 of this paper has not printed correctly. Specifically, the character ψ is missing five times. The correct figure is reproduced below. The electronic version is unaffected. Figure 3. Schematic diagram of the lp detector system. The angle subtained by the cone of light that will be detected is constant and is determined by the focal length of the lens and the radius of the pinhole. To the left of the position indicated by z* the lp geometry behaves in the same way as the open detector geometry.
Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography
Birk, Udo Jochen; Rieckher, Matthias; Konstantinides, Nikos; Darrell, Alex; Sarasa-Renedo, Ana; Meyer, Heiko; Tavernarakis, Nektarios; Ripoll, Jorge
2010-01-01
The application of optical projection tomography to in-vivo experiments is limited by specimen movement during the acquisition. We present a set of mathematical correction methods applied to the acquired data stacks to correct for movement in both directions of the image plane. These methods have been applied to correct experimental data taken from in-vivo optical projection tomography experiments in Caenorhabditis elegans. Successful reconstructions for both fluorescence and white light (absorption) measurements are shown. Since no difference between movement of the animal and movement of the rotation axis is made, this approach at the same time removes artifacts due to mechanical drifts and errors in the assumed center of rotation. PMID:21258448
Development of position-sensitive time-of-flight spectrometer for fission fragment research
Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; ...
2014-07-09
A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less
Park, Kyungnam; Lee, Jangyoung; Kim, Soo-Young; Kim, Jinwoo; Kim, Insoo; Choi, Seung Pill; Jeong, Sikyung; Hong, Sungyoup
2013-06-01
This study assessed the method of fluid infusion control using an IntraVenous Infusion Controller (IVIC). Four methods of infusion control (dial flow controller, IV set without correction, IV set with correction and IVIC correction) were used to measure the volume of each technique at two infusion rates. The infused fluid volume with a dial flow controller was significantly larger than other methods. The infused fluid volume was significantly smaller with an IV set without correction over time. Regarding the concordance correlation coefficient (CCC) of infused fluid volume in relation to a target volume, IVIC correction was shown to have the highest level of agreement. The flow rate measured in check mode showed a good agreement with the volume of collected fluid after passing through the IV system. Thus, an IVIC could assist in providing an accurate infusion control. © 2013 Wiley Publishing Asia Pty Ltd.
Huang, Hongxin; Inoue, Takashi; Tanaka, Hiroshi
2011-08-01
We studied the long-term optical performance of an adaptive optics scanning laser ophthalmoscope that uses a liquid crystal on silicon spatial light modulator to correct ocular aberrations. The system achieved good compensation of aberrations while acquiring images of fine retinal structures, excepting during sudden eye movements. The residual wavefront aberrations collected over several minutes in several situations were statistically analyzed. The mean values of the root-mean-square residual wavefront errors were 23-30 nm, and for around 91-94% of the effective time the errors were below the Marechal criterion for diffraction limited imaging. The ability to axially shift the imaging plane to different retinal depths was also demonstrated.
Home dim light melatonin onsets with measures of compliance in delayed sleep phase disorder.
Burgess, Helen J; Park, Margaret; Wyatt, James K; Fogg, Louis F
2016-06-01
The dim light melatonin onset (DLMO) assists with the diagnosis and treatment of circadian rhythm sleep disorders. Home DLMOs are attractive for cost savings and convenience, but can be confounded by home lighting and sample timing errors. We developed a home saliva collection kit with objective measures of light exposure and sample timing. We report on our first test of the kit in a clinical population. Thirty-two participants with delayed sleep phase disorder (DSPD; 17 women, aged 18-52 years) participated in two back-to-back home and laboratory phase assessments. Most participants (66%) received at least one 30-s epoch of light >50 lux during the home phase assessments, but for only 1.5% of the time. Most participants (56%) collected every saliva sample within 5 min of the scheduled time. Eighty-three per cent of home DLMOs were not affected by light or sampling errors. The home DLMOs occurred, on average, 10.2 min before the laboratory DLMOs, and were correlated highly with the laboratory DLMOs (r = 0.93, P < 0.001). These results indicate that home saliva sampling with objective measures of light exposure and sample timing, can assist in identifying accurate home DLMOs. © 2016 European Sleep Research Society.
Robust finger vein ROI localization based on flexible segmentation.
Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun
2013-10-24
Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.
Robust Finger Vein ROI Localization Based on Flexible Segmentation
Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun
2013-01-01
Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system. PMID:24284769
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
... portable instruments measure accurate emissions time series for very clean vehicles, such as Tier 2 (Bins 2... will then be submitted to OMB for review and approval. At that time, EPA will issue another Federal... response: one-time event. Total estimated burden: 1,213 hours (per year). Burden is defined at 5 CFR 1320.3...
Electron-probe microanalysis of light elements in coal and other kerogen
Bustin, R.M.; Mastalerz, Maria; Raudsepp, M.
1996-01-01
Recent advances in electron microprobe technology including development of layered synthetic microstructures, more stable electronics and better matrix-correction programs facilitated routine microanalysis of the light elements in coal. Utilizing an appropriately equipped electron microprobe with suitable standards, it is now possible to analyze directly the light elements (C, O and N, if abundant) in coal macerals and other kerogen. The analytical results are both accurate compared to ASTM methods and highly precise, and provide an opportunity to access the variation in coal chemistry at the micrometre scale. Our experiments show that analyses using a 10 kV accelerating voltage and 10 nA beam current yield the most reliable data and result in minimum sample damage and contamination. High sample counts were obtained for C, O and N using a bi-elemental nickel-carbon pseudo-crystal (2d = 9.5 nm) as an analyzing crystal. Vitrinite isolated from anthracite rank coal proves the best carbon standard and is more desirable than graphite which has higher porosity, whereas lower rank vitrinite is too heterogeneous to use routinely as a standard. Other standards utilized were magnesite for oxygen and BN for nitrogen. No significant carbon, oxygen or nitrogen X-ray peak shifts or peak-shape changes occur between standards and the kerogen analyzed. Counting rates for carbon and oxygen were found to be constant over a range of beam sizes and currents for counting times up to 160 s. Probe-determined carbon and oxygen contents agree closely with those reported from ASTM analyses. Nitrogen analyses compare poorly to ASTM values which probably is in response to overlap between the nitrogen Ka peak with the carbon K-adsorption edge and the overall low nitrogen content of most of our samples. Our results show that the electron microprobe technique provides accurate compositional data for both minor and major elements in coal without the necessity and inherent problems associated with mechanically isolating macerals. Studies to date have demonstrated the level of compositional variability within and between macerals in suites of Canadian coals.
Signal processing of aircraft flyover noise
NASA Technical Reports Server (NTRS)
Kelly, Jeffrey J.
1991-01-01
A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.
NASA Astrophysics Data System (ADS)
Hapgood, Mike
2017-04-01
Global navigation satellite systems (GNSS) are one of the technological wonders of the modern world. Popularly known as satellite navigation, these systems have provided global access to precision location and timing services and have thereby stimulated advances in industry and consumer services, including all forms of transport, telecommunications, financial trading, and even the synchronization of power grids. But this wonderful technology is at risk from natural phenomena in the form of space weather. GNSS signals experience a slight delay as they pass through the ionosphere. This delay varies with space weather conditions and is the most significant source of error for GNSS. Scientific efforts to correct these errors have stimulated billions of dollars of investment in systems that provide accurate correction data for suitably equipped GNSS receivers in a growing number of regions around the world. This accuracy is essential for GNSS use by aircraft and ships. Space weather also provides a further occasional but severe risk to GNSS: an extreme space weather event may deny access to GNSS as ionospheric scintillation scrambles the radio signals from satellites, and rapid ionospheric changes outstrip the ability of error correction systems to supply accurate corrections. It is vital that GNSS users have a backup for such occasions, even if it is only to hunker down and weather the storm.
Mohebian, Zohreh; Farhang Dehghan, Somayeh; Dehghan, Habiballah
2018-01-01
Heat exposure and unsuitable lighting are two physical hazardous agents in many workplaces for which there are some evidences regarding their mental effects. The purpose of this study was to assess the combined effect of heat exposure and different lighting levels on the attention rate and reaction time in a climatic chamber. This study was conducted on 33 healthy students (17 M/16 F) with a mean (±SD) age of 22.1 ± 2.3 years. The attention and reaction time test were done by continuous performance test and the RT meter, respectively, in different exposure conditions including the dry temperatures (22°C and 37°C) and lighting levels (200, 500, and 1500 lux). Findings demonstrated that increase in heat and lighting level caused a decrease in average attention percentage and correct responses and increase in commission error, omission error, and response time ( P < 0.05). The average of simple, diagnostic, two-color selective, and two-sound selective reaction times increased after combined exposure to heat and lighting ( P < 0.05). The results of this study indicated that, in job task which requires using cognitive functions like attention, vigilance, concentration, cautiousness, and reaction time, the work environment must be optimized in terms of heat and lighting level.
2013-01-01
Background Malaria rapid diagnostic tests (RDTs) are a useful tool in endemic malaria countries, where light microscopy is not feasible. In non-endemic countries they can be used as complementary tests to provide timely results in case of microscopy inexperience. This study aims to compare the new VIKIA Malaria Ag Pf/Pan™ RDT with PCR-corrected microscopy results and the commonly used CareStart™ RDT to diagnose falciparum and non-falciparum malaria in the endemic setting of Bamako, Mali and the non-endemic setting of Lyon, France. Methods Blood samples were collected during a 12-months and six-months period in 2011 from patients suspected to have malaria in Lyon and Bamako respectively. The samples were examined by light microscopy, the VIKIA Malaria Ag Pf/Pan™ test and in Bamako additionally with the CareStart™ RDT. Discordant results were corrected by real-time PCR. Sensitivity, specificity, positive predictive value and negative predictive value were used to evaluate test performance. Results Samples of 877 patients from both sites were included. The VIKIA Malaria Ag Pf/Pan™ had a sensitivity of 98% and 96% for Plasmodium falciparum in Lyon and Bamako, respectively, performing similar to PCR-corrected microscopy. Conclusions The VIKIA Malaria Ag Pf/Pan™ performs similar to PCR-corrected microscopy for the detection of P. falciparum, making it a valuable tool in malaria endemic and non-endemic regions. PMID:23742633
Eibach, Daniel; Traore, Boubacar; Bouchrik, Mourad; Coulibaly, Boubacar; Coulibaly, Nianégué; Siby, Fanta; Bonnot, Guillaume; Bienvenu, Anne-Lise; Picot, Stéphane
2013-06-06
Malaria rapid diagnostic tests (RDTs) are a useful tool in endemic malaria countries, where light microscopy is not feasible. In non-endemic countries they can be used as complementary tests to provide timely results in case of microscopy inexperience. This study aims to compare the new VIKIA Malaria Ag Pf/Pan™ RDT with PCR-corrected microscopy results and the commonly used CareStart™ RDT to diagnose falciparum and non-falciparum malaria in the endemic setting of Bamako, Mali and the non-endemic setting of Lyon, France. Blood samples were collected during a 12-months and six-months period in 2011 from patients suspected to have malaria in Lyon and Bamako respectively. The samples were examined by light microscopy, the VIKIA Malaria Ag Pf/Pan™ test and in Bamako additionally with the CareStart™ RDT. Discordant results were corrected by real-time PCR. Sensitivity, specificity, positive predictive value and negative predictive value were used to evaluate test performance. Samples of 877 patients from both sites were included. The VIKIA Malaria Ag Pf/Pan™ had a sensitivity of 98% and 96% for Plasmodium falciparum in Lyon and Bamako, respectively, performing similar to PCR-corrected microscopy. The VIKIA Malaria Ag Pf/Pan™ performs similar to PCR-corrected microscopy for the detection of P. falciparum, making it a valuable tool in malaria endemic and non-endemic regions.
Liu, Xinjie; Liu, Liangyun; Hu, Jiaochan; Du, Shanshan
2017-01-01
The measurement of solar-induced chlorophyll fluorescence (SIF) is a new tool for estimating gross primary production (GPP). Continuous tower-based spectral observations together with flux measurements are an efficient way of linking the SIF to the GPP. Compared to conical observations, hemispherical observations made with cosine-corrected foreoptic have a much larger field of view and can better match the footprint of the tower-based flux measurements. However, estimating the equivalent radiation transfer path length (ERTPL) for hemispherical observations is more complex than for conical observations and this is a key problem that needs to be addressed before accurate retrieval of SIF can be made. In this paper, we first modeled the footprint of hemispherical spectral measurements and found that, under convective conditions with light winds, 90% of the total radiation came from an FOV of width 72°, which in turn covered 75.68% of the source area of the flux measurements. In contrast, conical spectral observations covered only 1.93% of the flux footprint. Secondly, using theoretical considerations, we modeled the ERTPL of the hemispherical spectral observations made with cosine-corrected foreoptic and found that the ERTPL was approximately equal to twice the sensor height above the canopy. Finally, the modeled ERTPL was evaluated using a simulated dataset. The ERTPL calculated using the simulated data was about 1.89 times the sensor’s height above the target surface, which was quite close to the results for the modeled ERTPL. Furthermore, the SIF retrieved from atmospherically corrected spectra using the modeled ERTPL fitted well with the reference values, giving a relative root mean square error of 18.22%. These results show that the modeled ERTPL was reasonable and that this method is applicable to tower-based hemispherical observations of SIF. PMID:28509843
Accurate estimation of influenza epidemics using Google search data via ARGO.
Yang, Shihao; Santillana, Mauricio; Kou, S C
2015-11-24
Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.
Shedding light on the mercury mass discrepancy by weighing Hg 52+ ions in a Penning trap
NASA Astrophysics Data System (ADS)
Fritioff, T.; Bluhme, H.; Schuch, R.; Bergström, I.; Björkhage, M.
2003-07-01
In their nuclear tables Audi and Wapstra have pointed out a serious mass discrepancy between their extrapolated values for the mercury isotopes and those from a direct measurement by the Manitoba group. The values deviate by as much as 85 ppb from each other with claimed uncertainties of about 16 and 7 ppb, respectively. In order to decide which values are correct the masses of the 198Hg and 204Hg isotopes have been measured in the Stockholm Penning trap mass spectrometer SMILETRAP using 52+ ions. This charge state corresponds to a filled Ni electron configuration for which the electron binding energy can be accurately calculated. The mass values obtained are 197.966 768 44(43) u for 198Hg and 203.973 494 10(39) u for 204Hg. These values agree with those measured by the Manitoba group, with a 3 times lower uncertainty. This measurement was made possible through the implementation of a cooling technique of the highly charged mercury ions during charge breeding in the electron beam ion source used for producing the Hg 52+ ions.
Dynamic imaging model and parameter optimization for a star tracker.
Yan, Jinyun; Jiang, Jie; Zhang, Guangjun
2016-03-21
Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.
Roumeliotis, Grayson; Willing, Ryan; Neuert, Mark; Ahluwalia, Romy; Jenkyn, Thomas; Yazdani, Arjang
2015-09-01
The accurate assessment of symmetry in the craniofacial skeleton is important for cosmetic and reconstructive craniofacial surgery. Although there have been several published attempts to develop an accurate system for determining the correct plane of symmetry, all are inaccurate and time consuming. Here, the authors applied a novel semi-automatic method for the calculation of craniofacial symmetry, based on principal component analysis and iterative corrective point computation, to a large sample of normal adult male facial computerized tomography scans obtained clinically (n = 32). The authors hypothesized that this method would generate planes of symmetry that would result in less error when one side of the face was compared to the other than a symmetry plane generated using a plane defined by cephalometric landmarks. When a three-dimensional model of one side of the face was reflected across the semi-automatic plane of symmetry there was less error than when reflected across the cephalometric plane. The semi-automatic plane was also more accurate when the locations of bilateral cephalometric landmarks (eg, frontozygomatic sutures) were compared across the face. The authors conclude that this method allows for accurate and fast measurements of craniofacial symmetry. This has important implications for studying the development of the facial skeleton, and clinical application for reconstruction.
NASA Astrophysics Data System (ADS)
Al-Doasari, Ahmad E.
The 1991 Gulf War caused massive environmental damage in Kuwait. Deposition of oil and soot droplets from hundreds of burning oil-wells created a layer of tarcrete on the desert surface covering over 900 km2. This research investigates the spatial change in the tarcrete extent from 1991 to 1998 using Landsat Thematic Mapper (TM) imagery and statistical modeling techniques. The pixel structure of TM data allows the spatial analysis of the change in tarcrete extent to be conducted at the pixel (cell) level within a geographical information system (GIS). There are two components to this research. The first is a comparison of three remote sensing classification techniques used to map the tarcrete layer. The second is a spatial-temporal analysis and simulation of tarcrete changes through time. The analysis focuses on an area of 389 km2 located south of the Al-Burgan oil field. Five TM images acquired in 1991, 1993, 1994, 1995, and 1998 were geometrically and atmospherically corrected. These images were classified into six classes: oil lakes; heavy, intermediate, light, and traces of tarcrete; and sand. The classification methods tested were unsupervised, supervised, and neural network supervised (fuzzy ARTMAP). Field data of tarcrete characteristics were collected to support the classification process and to evaluate the classification accuracies. Overall, the neural network method is more accurate (60 percent) than the other two methods; both the unsupervised and the supervised classification accuracy assessments resulted in 46 percent accuracy. The five classifications were used in a lagged autologistic model to analyze the spatial changes of the tarcrete through time. The autologistic model correctly identified overall tarcrete contraction between 1991--1993 and 1995--1998. However, tarcrete contraction between 1993--1994 and 1994--1995 was less well marked, in part because of classification errors in the maps from these time periods. Initial simulations of tarcrete contraction with a cellular automaton model were not very successful. However, more accurate classifications could improve the simulations. This study illustrates how an empirical investigation using satellite images, field data, GIS, and spatial statistics can simulate dynamic land-cover change through the use of a discrete statistical and cellular automaton model.
Practical use of a plastic scintillator for quality assurance of electron beam therapy.
Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige
2017-06-07
Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).
Real-time pulse oximetry artifact annotation on computerized anaesthetic records.
Gostt, Richard Karl; Rathbone, Graeme Dennis; Tucker, Adam Paul
2002-01-01
Adoption of computerised anaesthesia record keeping systems has been limited by the concern that they record artifactual data and accurate data indiscriminately. Data resulting from artifacts does not reflect the patient's true condition and presents a problem in later analysis of the record, with associated medico-legal implications. This study developed an algorithm to automatically annotate pulse oximetry artifacts and sought to evaluate the algorithm's accuracy in routine surgical procedures. MacAnaesthetist is a semi-automatic anaesthetic record keeping system developed for the Apple Macintosh computer, which incorporated an algorithm designed to automatically detect pulse oximetry artifacts. The algorithm labeled artifactual oxygen saturation values < 90%. This was done in real-time by analyzing physiological data captured from a Datex AS/3 Anaesthesia Monitor. An observational study was conducted to evaluate the accuracy of the algorithm during routine surgical procedures (n = 20). An anaesthetic record was made by an anaesthetist using the Datex AS/3 record keeper, while a second anaesthetic record was produced in parallel using MacAnaesthetist. A copy of the Datex AS/3 record was kept for later review by a group of anaesthetists (n = 20), who judged oxygen saturation values < 90% to be either genuine or artifact. MacAnaesthetist correctly labeled 12 out of 13 oxygen saturations < 90% (92.3% accuracy). A post-operative review of the Datex AS/3 anaesthetic records (n = 8) by twenty anaesthetists resulted in 127 correct responses out of total of 200 (63.5% accuracy). The remaining Datex AS/3 records (n = 12) were not reviewed, as they did not contain any oxygen saturations <90%. The real-time artifact detection algorithm developed in this study was more accurate than anaesthetists who post-operatively reviewed records produced by an existing computerised anaesthesia record keeping system. Algorithms have the potential to more accurately identify and annotate artifacts on computerised anaesthetic records, assisting clinicians to more correctly interpret abnormal data.
The selective digital integrator: A new device for modulated polarization spectroscopy
NASA Astrophysics Data System (ADS)
Vrancic, Aljosa
1998-12-01
A new device, a selective digital integrator (SDI), for the acquisition of modulated polarization spectroscopy (MPS) signals is described. Special attention is given to the accurate measurement of very small (AC component of interest <10-3 x DC component), rapidly modulated (~50 kHz) signals at or below noise levels. Various data acquisition methods and problems associated with the collection of modulated signals are discussed. The SDI solves most of these problems and has the following advantages: it provides the average-time resolved profile of a modulated signal; it eliminates errors if the modulation is not sinusoidal; it enables separate measurements of the various phases of the signal modulation cycle; it permits simultaneous measurement of absorption, circular dichroism (CD) and linear dichroism (LD) spectra; it facilitates 3-D absorbance measurements; it has a wide gain-switching-free dynamic range (10 orders of magnitude or more); it offers a constant S/N ratio mode of operation; it eliminates the need for photomultiplier voltage feedback, and it has faster scanning speeds. The time-resolution, selectivity, wide dynamic range, and low-overhead on-the-fly data processing are useful for other modulated spectroscopy (MS) and non-MS experiments such as pulse height distribution and time-resolved pulse counting measurements. The advantages of the MPS-SDI method are tested on the first Rydberg electronic transitions of (+)-3- methylcyclopentanone. The experimental results validate the predicted SDI capabilities. However, they also point to two difficulties that had not been noted previously: the presence of LD in a gaseous sample and a pressure- dependence of the relative peak heights of the CD spectrum. Models for these anomalies are proposed. The presence of the oscillatory LD (but not an LD background) is explained with a sample cell model based on the observed polarization-dependent time-resolved profiles of transmitted light intensity. To obtain expressions for these intensities, a theoretical background, which provides a new approach to the treatment of light/matter interaction, is included as an Appendix. To explain the second anomaly, present only at high optical densities, a model based on the presence of scattered light is introduced and verified. The mode of correction for the scattering problem is outlined.
Fulop, Sean A; Fitz, Kelly
2006-01-01
A modification of the spectrogram (log magnitude of the short-time Fourier transform) to more accurately show the instantaneous frequencies of signal components was first proposed in 1976 [Kodera et al., Phys. Earth Planet. Inter. 12, 142-150 (1976)], and has been considered or reinvented a few times since but never widely adopted. This paper presents a unified theoretical picture of this time-frequency analysis method, the time-corrected instantaneous frequency spectrogram, together with detailed implementable algorithms comparing three published techniques for its computation. The new representation is evaluated against the conventional spectrogram for its superior ability to track signal components. The lack of a uniform framework for either mathematics or implementation details which has characterized the disparate literature on the schemes has been remedied here. Fruitful application of the method is shown in the realms of speech phonation analysis, whale song pitch tracking, and additive sound modeling.
Toward Online Measurement of Decision State
NASA Technical Reports Server (NTRS)
Lachter, Joel; Johnston, James C.; Corrado, Greg S.; McClelland, James L.
2009-01-01
In traditional perceptual decision-making experiments, two pieces of data are collected on each trial: response time and accuracy. But how confident were participants and how did their decision state evolve over time? We asked participants to provide a continuous readout of their decision state by moving a cursor along a sliding scale between a 100% certain left response and a 100% certain right response. Subjects did not terminate the trials; rather, trials were timed out at random and subjects were scored based on the cursor position at that time. Higher rewards for correct responses and higher penalties for errors were associated with extreme responses so that the response with the highest expected value was that which accurately reflected the participant's odds of being correct. This procedure encourages participants to expose the time-course of their evolving decision state. Evidence on how well they can do this will be presented.
Toward Online Measurement of Decision State
NASA Technical Reports Server (NTRS)
Lachter, Joel; Johnston, James C.; Corrado, Greg S.; McClelland, James L.
2009-01-01
In traditional perceptual decision-making experiments, two pieces of data recollected on each trial: response time and accuracy. But how confident were participants and how did their decision state evolve over time? We asked participants to provide a continuous readout of their decision state by moving a cursor along a sliding scale between a 100% certain left response and a 100% certain right response. Subjects did not terminate the trials; rather, trials were timed out at random and subjects were scored based on the cursor position at the time. Higher rewards for correct responses and higher penalties for errors were associated with extreme responses so that the response with the highest ex[pected value was that which accurately reflected the participant's odds of being correct. This procedure encourages participants to expose the time-course of their evolving decision state. Evidence on how well they can do this will be presented.
Information recall using relative spike timing in a spiking neural network.
Sterne, Philip
2012-08-01
We present a neural network that is capable of completing and correcting a spiking pattern given only a partial, noisy version. It operates in continuous time and represents information using the relative timing of individual spikes. The network is capable of correcting and recalling multiple patterns simultaneously. We analyze the network's performance in terms of information recall. We explore two measures of the capacity of the network: one that values the accurate recall of individual spike times and another that values only the presence or absence of complete patterns. Both measures of information are found to scale linearly in both the number of neurons and the period of the patterns, suggesting these are natural measures of network information. We show a smooth transition from encodings that provide precise spike times to flexible encodings that can encode many scenes. This makes it plausible that many diverse tasks could be learned with such an encoding.
Heßelmann, Andreas
2015-04-14
Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.
2016-01-01
In a touch-screen paradigm, we recorded 3- to 7-year-olds’ (N = 108) accuracy and response times (RTs) to assess their comprehension of 2-clause sentences containing before and after. Children were influenced by order: performance was most accurate when the presentation order of the 2 clauses matched the chronological order of events: “She drank the juice, before she walked in the park” (chronological order) versus “Before she walked in the park, she drank the juice” (reverse order). Differences in RTs for correct responses varied by sentence type: accurate responses were made more speedily for sentences that afforded an incremental processing of meaning. An independent measure of memory predicted this pattern of performance. We discuss these findings in relation to children’s knowledge of connective meaning and the processing requirements of sentences containing temporal connectives. PMID:27690492
Side readout of long scintillation crystal elements with digital SiPM for TOF-DOI PET.
Yeom, Jung Yeol; Vinke, Ruud; Levin, Craig S
2014-12-01
Side readout of scintillation light from crystal elements in positron emission tomography (PET) is an alternative to conventional end-readout configurations, with the benefit of being able to provide accurate depth-of-interaction (DOI) information and good energy resolution while achieving excellent timing resolution required for time-of-flight PET. This paper explores different readout geometries of scintillation crystal elements with the goal of achieving a detector that simultaneously achieves excellent timing resolution, energy resolution, spatial resolution, and photon sensitivity. The performance of discrete LYSO scintillation elements of different lengths read out from the end/side with digital silicon photomultipliers (dSiPMs) has been assessed. Compared to 3 × 3 × 20 mm(3) LYSO crystals read out from their ends with a coincidence resolving time (CRT) of 162 ± 6 ps FWHM and saturated energy spectra, a side-readout configuration achieved an excellent CRT of 144 ± 2 ps FWHM after correcting for timing skews within the dSiPM and an energy resolution of 11.8% ± 0.2% without requiring energy saturation correction. Using a maximum likelihood estimation method on individual dSiPM pixel response that corresponds to different 511 keV photon interaction positions, the DOI resolution of this 3 × 3 × 20 mm(3) crystal side-readout configuration was computed to be 0.8 mm FWHM with negligible artifacts at the crystal ends. On the other hand, with smaller 3 × 3 × 5 mm(3) LYSO crystals that can also be tiled/stacked to provide DOI information, a timing resolution of 134 ± 6 ps was attained but produced highly saturated energy spectra. The energy, timing, and DOI resolution information extracted from the side of long scintillation crystal elements coupled to dSiPM have been acquired for the first time. The authors conclude in this proof of concept study that such detector configuration has the potential to enable outstanding detector performance in terms of timing, energy, and DOI resolution.
Side readout of long scintillation crystal elements with digital SiPM for TOF-DOI PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeom, Jung Yeol, E-mail: yeomjy@kumoh.ac.kr, E-mail: cslevin@stanford.edu; Vinke, Ruud; Levin, Craig S., E-mail: yeomjy@kumoh.ac.kr, E-mail: cslevin@stanford.edu
Purpose: Side readout of scintillation light from crystal elements in positron emission tomography (PET) is an alternative to conventional end-readout configurations, with the benefit of being able to provide accurate depth-of-interaction (DOI) information and good energy resolution while achieving excellent timing resolution required for time-of-flight PET. This paper explores different readout geometries of scintillation crystal elements with the goal of achieving a detector that simultaneously achieves excellent timing resolution, energy resolution, spatial resolution, and photon sensitivity. Methods: The performance of discrete LYSO scintillation elements of different lengths read out from the end/side with digital silicon photomultipliers (dSiPMs) has been assessed.more » Results: Compared to 3 × 3 × 20 mm{sup 3} LYSO crystals read out from their ends with a coincidence resolving time (CRT) of 162 ± 6 ps FWHM and saturated energy spectra, a side-readout configuration achieved an excellent CRT of 144 ± 2 ps FWHM after correcting for timing skews within the dSiPM and an energy resolution of 11.8% ± 0.2% without requiring energy saturation correction. Using a maximum likelihood estimation method on individual dSiPM pixel response that corresponds to different 511 keV photon interaction positions, the DOI resolution of this 3 × 3 × 20 mm{sup 3} crystal side-readout configuration was computed to be 0.8 mm FWHM with negligible artifacts at the crystal ends. On the other hand, with smaller 3 × 3 × 5 mm{sup 3} LYSO crystals that can also be tiled/stacked to provide DOI information, a timing resolution of 134 ± 6 ps was attained but produced highly saturated energy spectra. Conclusions: The energy, timing, and DOI resolution information extracted from the side of long scintillation crystal elements coupled to dSiPM have been acquired for the first time. The authors conclude in this proof of concept study that such detector configuration has the potential to enable outstanding detector performance in terms of timing, energy, and DOI resolution.« less
Hammond, Billy R
2015-01-01
To evaluate the effects of filtering short wavelength light on visual performance under intense light conditions among pseudophakic patients previously implanted with a clear intraocular lens (IOL). This was a patient-masked, randomized crossover study conducted at 6 clinical sites in the United States between September 2013 and January 2014. One hundred fifty-four bilaterally pseudophakic patients were recruited. Photostress recovery time and glare disability thresholds were measured with clip-on blue-light-filtering and placebo (clear; no blue-light filtration) glasses worn over patients' habitual correction. Photostress recovery time was quantified as the time necessary to regain sight of a grating target after intense light exposure. Glare disability threshold was assessed as the intensity of a white-light annulus necessary to obscure a central target. The order of filter used and test eye were randomized across patients. Photostress recovery time and glare disability thresholds were significantly improved (both P < 0.0001) when patients used blue-light-filtering glasses compared with clear, nonfiltering glasses. Compared with a nonfiltering placebo, adding a clip-on blue-absorbing filter to the glasses of pseudophakic patients implanted with clear IOLs significantly increased their ability to cope with glare and to recover normal viewing after an intensive photostress. This result implies that IOL designs with blue-light-filtering characteristics may be beneficial under intense light conditions.
In, Myung-Ho; Posnansky, Oleg; Speck, Oliver
2016-05-01
To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.
Hyperspectral radiometer for automated measurement of global and diffuse sky irradiance
NASA Astrophysics Data System (ADS)
Kuusk, Joel; Kuusk, Andres
2018-01-01
An automated hyperspectral radiometer for the measurement of global and diffuse sky irradiance, SkySpec, has been designed for providing the SMEAR-Estonia research station with spectrally-resolved solar radiation data. The spectroradiometer has been carefully studied in the optical radiometry laboratory of Tartu Observatory, Estonia. Recorded signals are corrected for spectral stray light as well as for changes in dark signal and spectroradiometer spectral responsivity due to temperature effects. Comparisons with measurements of shortwave radiation fluxes made at the Baseline Surface Radiation Network (BSRN) station at Tõravere, Estonia, and with fluxes simulated using the atmospheric radiative transfer model 6S and Aerosol Robotic Network (AERONET) data showed that the spectroradiometer is a reliable instrument that provides accurate estimates of integrated fluxes and of their spectral distribution. The recorded spectra can be used to estimate the amount of atmospheric constituents such as aerosol and column water vapor, which are needed for the atmospheric correction of spectral satellite images.
Disentangling diatom species complexes: does morphometry suffice?
Borrego-Ramos, María; Olenici, Adriana
2017-01-01
Accurate taxonomic resolution in light microscopy analyses of microalgae is essential to achieve high quality, comparable results in both floristic analyses and biomonitoring studies. A number of closely related diatom taxa have been detected to date co-occurring within benthic diatom assemblages, sharing many morphological, morphometrical and ecological characteristics. In this contribution, we analysed the hypothesis that, where a large sample size (number of individuals) is available, common morphometrical parameters (valve length, width and stria density) are sufficient to achieve a correct identification to the species level. We focused on some common diatom taxa belonging to the genus Gomphonema. More than 400 valves and frustules were photographed in valve view and measured using Fiji software. Several statistical tools (mixture and discriminant analysis, k-means clustering, classification trees, etc.) were explored to test whether mere morphometry, independently of other valve features, leads to correct identifications, when compared to identifications made by experts. In view of the results obtained, morphometry-based determination in diatom taxonomy is discouraged. PMID:29250472
2014-01-01
Background Parents often fail to correctly perceive their children’s weight status, but no studies have examined the association between parental weight status perception and longitudinal BMIz change (BMI standardized to a reference population) at various ages. We investigated whether parents are able to accurately perceive their child’s weight status at age 5. We also investigated predictors of accurate weight status perception. Finally, we investigated the predictive value of accurate weight status perception in explaining children’s longitudinal weight development up to the age of 9, in children who were overweight at the age of 5. Methods We used longitudinal data from the KOALA Birth Cohort Study. At the child’s age of 5 years, parents filled out a questionnaire regarding child and parent characteristics and their perception of their child’s weight status. We calculated the children’s actual weight status from parental reports of weight and height at ages 2, 5, 6, 7, 8, and 9 years. Regression analyses were used to identify factors predicting which parents accurately perceived their child’s weight status. Finally, regression analyses were used to predict subsequent longitudinal BMIz change in overweight children. Results Eighty-five percent of the parents of overweight children underestimated their child’s weight status at age 5. The child’s BMIz at age 2 and 5 were significant positive predictors of accurate weight status perception (vs. underestimation) in normal weight and overweight children. Accurate weight status perception was a predictor of higher future BMI in overweight children, corrected for actual BMI at baseline. Conclusions Children of parents who accurately perceived their child’s weight status had a higher BMI over time, probably making it easier for parents to correctly perceive their child’s overweight. Parental awareness of the child’s overweight as such may not be sufficient for subsequent weight management by the parents, implying that parents who recognize their child’s overweight may not be able or willing to adequately manage the overweight. PMID:24678601
Composite resin reinforcement of flared canals using light-transmitting plastic posts.
Lui, J L
1994-05-01
Composite resins have been advocated as a reinforcing build-up material for badly damaged endodontically treated teeth with flared canals. However, the control of an autocuring composite resin is difficult because it polymerizes rapidly within the root canal. While the light-curing composite resins are more user friendly, their polymerization can be a problem deep in the root canal. Light-transmitting plastic posts allow the transmission of light into the root canal and enable intraradicular composite resin reconstitution and reinforcement of weakened roots. At the same time, the light-transmitting plastic post forms an optimal post canal in the rehabilitated root and can accurately fit a matching retentive final post. These light-transmitting posts are a useful addition to the dental armamentarium.
Park, Yongwoo; Malacarne, Antonio; Azaña, José
2011-02-28
A simple, highly accurate measurement technique for real-time monitoring of the group delay (GD) profiles of photonic dispersive devices over ultra-broad spectral bandwidths (e.g. an entire communication wavelength band) is demonstrated. The technique is based on time-domain self-interference of an incoherent light pulse after linear propagation through the device under test, providing a measurement wavelength range as wide as the source spectral bandwidth. Significant enhancement in the signal-to-noise ratio of the self-interference signal has been observed by use of a relatively low-noise incoherent light source as compared with the theoretical estimate for a white-noise light source. This fact combined with the use of balanced photo-detection has allowed us to significantly reduce the number of profiles that need to be averaged to reach a targeted GD measurement accuracy, thus achieving reconstruction of the device GD profile in real time. We report highly-accurate monitoring of (i) the group-delay ripple (GDR) profile of a 10-m long chirped fiber Bragg grating over the full C band (~42 nm), and (ii) the group velocity dispersion (GVD) and dispersion slope (DS) profiles of a ~2-km long dispersion compensating fiber module over an ~72-nm wavelength range, both captured at a 15 frames/s video rate update, with demonstrated standard deviations in the captured GD profiles as low as ~1.6 ps.
Applegate, Samantha L; Rice, Martin S; Stein, Franklin; Maitra, Kinsuk K
2008-01-01
The present study investigated whether knowledge of results, in the form of visual and audible feedback, would increase the accuracy of time-telling in an individual with an intellectual disability. A 19-year-old male with mild intellectual disability participated in this A1-B1-A2-B2 single-subject study design. The task involved correctly identifying the time given on a computer. Data, based on the Wilcoxon signed-rank test, showed that the participant demonstrated a greater number of correct responses during the intervention phases. Incorporating knowledge of results into a learning strategy for this individual with intellectual disability resulted in an increased ability to accurately identify the correct time on an analogue clock. There is a need to replicate the study design to increase the external validity and generalization of results. The strategies described in the present study may also be useful for occupational therapists who teach individuals with intellectual disability to gain skills in their everyday activities of daily living (ADLs). (c) 2007 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Natraj, Vijay; Li, King-Fai; Yung, Yuk L.
2009-02-01
Tables that have been used as a reference for nearly 50 years for the intensity and polarization of reflected and transmitted light in Rayleigh scattering atmospheres have been found to be inaccurate, even to four decimal places. We convert the integral equations describing the X and Y functions into a pair of coupled integro-differential equations that can be efficiently solved numerically. Special care has been taken in evaluating Cauchy principal value integrals and their derivatives that appear in the solution of the Rayleigh scattering problem. The new approach gives results accurate to eight decimal places for the entire range of tabulation (optical thicknesses 0.02-1.0, surface reflectances 0-0.8, solar and viewing zenith angles 0°-88.85°, and relative azimuth angles 0°-180°), including the most difficult case of direct transmission in the direction of the sun. Revised tables have been created and stored electronically for easy reference by the planetary science and astrophysics community.
Relocation of Wyoming mine production blasts using calibration explosions
Finn, Carol A.; Kraft, Gordon D.; Sibol, Matthew S.; Jones, Ronald L.; Pulaski, Mark E.
2001-01-01
Given a set of well-recorded calibration events, it appears that the JHD methodology is a viable technique for improving locational accuracy of future small events where the location depends on arrival times from predominantly local and/or regional stations. In this specific case, the International Association of Seismology and the Physics of the Earth’s Interior (IASPEI) travel-time tables, coupled with JHDderived travel-time corrections, may obviate the need for an accurately known regional velocity structure in the Powder River Basin region.
Effects of posture on exercise performance - Measurement by systolic time intervals.
NASA Technical Reports Server (NTRS)
Spodick, D. H.; Quarry-Pigott, V. M.
1973-01-01
Because posture significantly influences cardiac performance, the effects of moderate supine and upright ergometer exercise were compared on the basis of proportional (+37%) rate increments over resting control. Supine exercise produced significant decreases in left ventricular ejection time (LVET), pre-ejection period (PEP), and isovolumic contraction time (IVCT). Ejection time index (ETI) and corrected ejection time (LVETc) did not change significantly. Upright exercise produced greater decreases in PEP and LVET, but despite the rate increase there was no change in LVET, which resulted in sharp increases in ETI and LVETc. The discordant directional effects on LVET and its rate-correcting indices between the two postures were consistent with hemodynamic studies demonstrating lack of stroke volume change during supine exercise and increased stroke volume over control during light to moderate upright exercise.
NASA Astrophysics Data System (ADS)
Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong
2016-10-01
The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.
Cahuantzi, Roberto; Buckley, Alastair
2017-09-01
Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.
An action spectrum for UV-B radiation and the rat lens.
Merriam, J C; Löfgren, S; Michael, R; Söderberg, P; Dillon, J; Zheng, L; Ayala, M
2000-08-01
To determine an action spectrum for UV-B radiation and the rat lens and to show the effect of the atmosphere and the cornea on the action spectrum. One eye of young female rats was exposed to 5-nm bandwidths of UV-B radiation (290, 295, 300, 305, 310, and 315 nm). Light scattering of exposed and nonexposed lenses was measured 1 week after irradiation. A quadratic polynomial was fit to the dose-response curve for each wave band. The dose at each wave band that produced a level of light scattering greater than 95% of the nonexposed lenses was defined as the maximum acceptable dose (MAD). Transmittance of the rat cornea was measured with a fiberoptic spectrophotometer. The times to be exposed to the MAD in Stockholm (59.3 degrees N) and La Palma (28 degrees N) were compared. Significant light scattering was detected after UV-B at 295, 300, 305, 310, and 315 nm. The lens was most sensitive to UV-B at 300 nm. Correcting for corneal transmittance showed that the rat lens is at least as sensitive to UV radiation at 295 nm as at 300 nm. The times to be exposed to the MAD at each wave band were greater in Stockholm than in La Palma, and in both locations the theoretical time to be exposed to the MAD was least at 305 nm. After correcting for corneal transmittance, the biological sensitivity of the rat lens to UV-B is at least as great at 295 nm as at 300 nm. After correcting for transmittance by the atmosphere, UV-B at 305 nm is the most likely wave band to injure the rat lens in both Stockholm and La Palma.
Reconstruction of sound source signal by analytical passive TR in the environment with airflow
NASA Astrophysics Data System (ADS)
Wei, Long; Li, Min; Yang, Debin; Niu, Feng; Zeng, Wu
2017-03-01
In the acoustic design of air vehicles, the time-domain signals of noise sources on the surface of air vehicles can serve as data support to reveal the noise source generation mechanism, analyze acoustic fatigue, and take measures for noise insulation and reduction. To rapidly reconstruct the time-domain sound source signals in an environment with flow, a method combining the analytical passive time reversal mirror (AP-TR) with a shear flow correction is proposed. In this method, the negative influence of flow on sound wave propagation is suppressed by the shear flow correction, obtaining the corrected acoustic propagation time delay and path. Those corrected time delay and path together with the microphone array signals are then submitted to the AP-TR, reconstructing more accurate sound source signals in the environment with airflow. As an analytical method, AP-TR offers a supplementary way in 3D space to reconstruct the signal of sound source in the environment with airflow instead of the numerical TR. Experiments on the reconstruction of the sound source signals of a pair of loud speakers are conducted in an anechoic wind tunnel with subsonic airflow to validate the effectiveness and priorities of the proposed method. Moreover the comparison by theorem and experiment result between the AP-TR and the time-domain beamforming in reconstructing the sound source signal is also discussed.
Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.
Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris
2014-08-01
The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.
A 3D image sensor with adaptable charge subtraction scheme for background light suppression
NASA Astrophysics Data System (ADS)
Shin, Jungsoon; Kang, Byongmin; Lee, Keechang; Kim, James D. K.
2013-02-01
We present a 3D ToF (Time-of-Flight) image sensor with adaptive charge subtraction scheme for background light suppression. The proposed sensor can alternately capture high resolution color image and high quality depth map in each frame. In depth-mode, the sensor requires enough integration time for accurate depth acquisition, but saturation will occur in high background light illumination. We propose to divide the integration time into N sub-integration times adaptively. In each sub-integration time, our sensor captures an image without saturation and subtracts the charge to prevent the pixel from the saturation. In addition, the subtraction results are cumulated N times obtaining a final result image without background illumination at full integration time. Experimental results with our own ToF sensor show high background suppression performance. We also propose in-pixel storage and column-level subtraction circuit for chiplevel implementation of the proposed method. We believe the proposed scheme will enable 3D sensors to be used in out-door environment.
Time-to-space mapping of femtosecond pulses.
Nuss, M C; Li, M; Chiu, T H; Weiner, A M; Partovi, A
1994-05-01
We report time-to-space mapping of femtosecond light pulses in a temporal holography setup. By reading out a temporal hologram of a short optical pulse with a continuous-wave diode laser, we accurately convert temporal pulse-shape information into a spatial pattern that can be viewed with a camera. We demonstrate real-time acquisition of electric-field autocorrelation and cross correlation of femtosecond pulses with this technique.
NASA Astrophysics Data System (ADS)
Mortier, A.; Sousa, S. G.; Adibekyan, V. Zh.; Brandão, I. M.; Santos, N. C.
2014-12-01
Context. Precise stellar parameters (effective temperature, surface gravity, metallicity, stellar mass, and radius) are crucial for several reasons, amongst which are the precise characterization of orbiting exoplanets and the correct determination of galactic chemical evolution. The atmospheric parameters are extremely important because all the other stellar parameters depend on them. Using our standard equivalent-width method on high-resolution spectroscopy, good precision can be obtained for the derived effective temperature and metallicity. The surface gravity, however, is usually not well constrained with spectroscopy. Aims: We use two different samples of FGK dwarfs to study the effect of the stellar surface gravity on the precise spectroscopic determination of the other atmospheric parameters. Furthermore, we present a straightforward formula for correcting the spectroscopic surface gravities derived by our method and with our linelists. Methods: Our spectroscopic analysis is based on Kurucz models in local thermodynamic equilibrium, performed with the MOOG code to derive the atmospheric parameters. The surface gravity was either left free or fixed to a predetermined value. The latter is either obtained through a photometric transit light curve or derived using asteroseismology. Results: We find first that, despite some minor trends, the effective temperatures and metallicities for FGK dwarfs derived with the described method and linelists are, in most cases, only affected within the errorbars by using different values for the surface gravity, even for very large differences in surface gravity, so they can be trusted. The temperatures derived with a fixed surface gravity continue to be compatible within 1 sigma with the accurate results of the infrared flux method (IRFM), as is the case for the unconstrained temperatures. Secondly, we find that the spectroscopic surface gravity can easily be corrected to a more accurate value using a linear function with the effective temperature. Tables 1 and 2 are available in electronic form at http://www.aanda.org
Fleischman, Ross J.; Lundquist, Mark; Jui, Jonathan; Newgard, Craig D.; Warden, Craig
2014-01-01
Objective To derive and validate a model that accurately predicts ambulance arrival time that could be implemented as a Google Maps web application. Methods This was a retrospective study of all scene transports in Multnomah County, Oregon, from January 1 through December 31, 2008. Scene and destination hospital addresses were converted to coordinates. ArcGIS Network Analyst was used to estimate transport times based on street network speed limits. We then created a linear regression model to improve the accuracy of these street network estimates using weather, patient characteristics, use of lights and sirens, daylight, and rush-hour intervals. The model was derived from a 50% sample and validated on the remainder. Significance of the covariates was determined by p < 0.05 for a t-test of the model coefficients. Accuracy was quantified by the proportion of estimates that were within 5 minutes of the actual transport times recorded by computer-aided dispatch. We then built a Google Maps-based web application to demonstrate application in real-world EMS operations. Results There were 48,308 included transports. Street network estimates of transport time were accurate within 5 minutes of actual transport time less than 16% of the time. Actual transport times were longer during daylight and rush-hour intervals and shorter with use of lights and sirens. Age under 18 years, gender, wet weather, and trauma system entry were not significant predictors of transport time. Our model predicted arrival time within 5 minutes 73% of the time. For lights and sirens transports, accuracy was within 5 minutes 77% of the time. Accuracy was identical in the validation dataset. Lights and sirens saved an average of 3.1 minutes for transports under 8.8 minutes, and 5.3 minutes for longer transports. Conclusions An estimate of transport time based only on a street network significantly underestimated transport times. A simple model incorporating few variables can predict ambulance time of arrival to the emergency department with good accuracy. This model could be linked to global positioning system data and an automated Google Maps web application to optimize emergency department resource use. Use of lights and sirens had a significant effect on transport times. PMID:23865736
Sawicki, Richard H.; Sweatt, William
1987-01-01
A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique utilizes first means which defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and second means acting on the first means for adjustably bending the light reflecting surface into a particular selected one of the different curvatures depending upon the astigmatism to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment to the reinforced side edges of the light reflecting surface.
3D reconstruction based on light field images
NASA Astrophysics Data System (ADS)
Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei
2018-04-01
This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.
Signal-to-noise ratio of arbitrarily filtered spontaneous emission
NASA Astrophysics Data System (ADS)
Šprem, Marko; Bosiljevac, Marko; Babić, Dubravko
2018-02-01
The signal-to-noise ratio (SNR) of filtered incoherent light can be approximated from the product of the coherence time of the light and the equivalent (electrical) noise bandwidth of the detector. This approximation holds only for the light with very short coherence time, that is in the case where the optical bandwidth of the light is much larger than the electrical bandwidth. We present here an expression for accurate evaluation of the SNR of the filtered incoherent light, which computes SNR from arbitrary shapes of optical and electrical filter power spectral densities (PSD). The PSDs of the filters can be measured using optical and electrical spectrum analyzers. Using our expression, we show that the SNR reaches unity when the electrical filter bandwidth is becoming larger than the optical filter bandwidth. To prove the theory, we evaluate and directly measure SNR of an incoherent light source filtered with several optical filters with bandwidths larger and commensurate with the bandwidth of the detector. For later we used optical and electrical filters with 3-dB bandwidths of 15 GHz and 10 GHz, respectively. Using our expression to evaluate SNR we obtained results in a good agreement with directly measured SNR. The results also prove that the approximation for evaluating SNR does not provide accurate results. The PSD of the detector with large noise bandwidth is difficult to measure using spectrum analyzer. There- fore, we report here a method for measuring the electrical noise bandwidth of the detector using the heterodyne linewidth measurement technique with tunable laser.
Advanced lighting guidelines: 1993. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, C.; Tolen, T.M.; Benya, J.R.
1993-12-31
The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halidemore » and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.« less
Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel
2010-10-11
We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.
Accurate atomistic first-principles calculations of electronic stopping
Schleife, André; Kanai, Yosuke; Correa, Alfredo A.
2015-01-20
In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Jorgenson, Philip C. E.
2007-01-01
A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However even with these up-to-date improvements, the basic upwind scheme is still plagued by the so-called "pathological behaviors," e.g., the carbuncle phenomenon, the expansion shock, etc. A solution to these limitations is presented which uses a very simple dissipation model while still preserving second order accuracy. This scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the methods.
Stanley, Jeremy C; Robinson, Kerian G; Devitt, Brian M; Richmond, Anneka K; Webster, Kate E; Whitehead, Timothy S; Feller, Julian A
2016-03-01
There are numerous methods available to assist surgeons in the accurate correction of varus alignment during medial opening wedge high tibial osteotomy (MOWHTO). Preoperative planning performed with radiographs or more recently intraoperative computer navigation software has been used. The aim of the study was to compare the accuracy of computer navigated versus non-navigated techniques to correct varus alignment of the knee. The preoperative and postoperative radiographs of 117 knees that underwent MOWHTO were investigated to assess radiographic limb alignment 12-months postoperatively. The desired correction was defined as a weight bearing line (Mikulicz point {MP}) 58% of the width of the tibial plateau from the medial tibial margin. Sixty-five knees were corrected using a conventional technique and 52 knees were corrected using computer navigation. The mean MP percentage was 59% in the navigated group, compared with 56% in the fluoroscopic group (p=0.183). 51.9% of the navigation knees were corrected to within five percent of the desired correction, in contrast to 38.5% of the fluoroscopically corrected knees (p=0.15). 71.2% of the navigated knees were corrected to within 10% of the desired correction, compared with 63.1% of the fluoroscopically corrected knees (p=0.36). Large preoperative deformities were more accurately corrected with navigation assistance (57% vs 49%, p=0.049). No statistically significant difference was found in the radiographic correction of varus alignment twelve months postoperatively between navigated and fluoroscopic techniques of MOWHTO. However, a subgroup analysis demonstrated that larger preoperative varus deformities may be more accurately corrected using computer navigation. Copyright © 2016 Elsevier B.V. All rights reserved.
Measurement of LYSO Intrinsic Light Yield Using Electron Excitation
NASA Astrophysics Data System (ADS)
Turtos, Rosana Martinez; Gundacker, Stefan; Pizzichemi, Marco; Ghezzi, Alessio; Pauwels, Kristof; Auffray, Etiennette; Lecoq, Paul; Paganoni, Marco
2016-04-01
The determination of the intrinsic light yield (LYint) of scintillating crystals, i.e. number of optical photons created per amount of energy deposited, constitutes a key factor in order to characterize and optimize their energy and time resolution. However, until now measurements of this quantity are affected by large uncertainties and often rely on corrections for bulk absorption and surface/edge state. The novel idea presented in this contribution is based on the confinement of the scintillation emission in the central upper part of a 10 mm cubic crystal using a 1.5 MeV electron beam with diameter of 1 mm. A black non-reflective pinhole aligned with the excitation point is used to fix the light extraction solid angle (narrower than total reflection angle), which then sets a light cone travel path through the crystal. The final number of photoelectrons detected using a Hamamatsu R2059 photomultiplier tube (PMT) was corrected for the extraction solid angle, the Fresnel reflection coefficient and quantum efficiency (QE) of the PMT. The total number of optical photons produced per energy deposited was found to be 40000 ph/MeV ± 9% (syst) ±3% (stat) for LYSO. Simulations using Geant4 were successfully compared to light output measurements of 2 × 2 mm2 section crystals with lengths of 5-30 mm, in order to validate the light transport model and set a limit on Light Transfer Efficiency estimations.
NASA Astrophysics Data System (ADS)
Kurata, Tomohiro; Oda, Shigeto; Kawahira, Hiroshi; Haneishi, Hideaki
2016-12-01
We have previously proposed an estimation method of intravascular oxygen saturation (SO_2) from the images obtained by sidestream dark-field (SDF) imaging (we call it SDF oximetry) and we investigated its fundamental characteristics by Monte Carlo simulation. In this paper, we propose a correction method for scattering by the tissue and performed experiments with turbid phantoms as well as Monte Carlo simulation experiments to investigate the influence of the tissue scattering in the SDF imaging. In the estimation method, we used modified extinction coefficients of hemoglobin called average extinction coefficients (AECs) to correct the influence from the bandwidth of the illumination sources, the imaging camera characteristics, and the tissue scattering. We estimate the scattering coefficient of the tissue from the maximum slope of pixel value profile along a line perpendicular to the blood vessel running direction in an SDF image and correct AECs using the scattering coefficient. To evaluate the proposed method, we developed a trial SDF probe to obtain three-band images by switching multicolor light-emitting diodes and obtained the image of turbid phantoms comprised of agar powder, fat emulsion, and bovine blood-filled glass tubes. As a result, we found that the increase of scattering by the phantom body brought about the decrease of the AECs. The experimental results showed that the use of suitable values for AECs led to more accurate SO_2 estimation. We also confirmed the validity of the proposed correction method to improve the accuracy of the SO_2 estimation.
Making 3D movies of Northern Lights
NASA Astrophysics Data System (ADS)
Hivon, Eric; Mouette, Jean; Legault, Thierry
2017-10-01
We describe the steps necessary to create three-dimensional (3D) movies of Northern Lights or Aurorae Borealis out of real-time images taken with two distant high-resolution fish-eye cameras. Astrometric reconstruction of the visible stars is used to model the optical mapping of each camera and correct for it in order to properly align the two sets of images. Examples of the resulting movies can be seen at http://www.iap.fr/aurora3d
Amini, Ahmad; Nilsson, Elin
2008-02-13
An accurate method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been developed for quantitative analysis of calcitonin and insulin in different commercially available pharmaceutical products. Tryptic peptides derived from these polypeptides were chemically modified at their C-terminal lysine-residues with 2-methoxy-4,5-dihydro-imidazole (light tagging) as standard and deuterated 2-methoxy-4,5-dihydro-imidazole (heavy tagging) as internal standard (IS). The heavy modified tryptic peptides (4D-Lys tag), differed by four atomic mass units from the corresponding light labelled counterparts (4H-Lys tag). The normalized peak areas (the ratio between the light and heavy tagged peptides) were used to construct a standard curve to determine the concentration of the analytes. The concentrations of calcitonin and insulin content of the analyzed pharmaceutical products were accurately determined, and less than 5% error was obtained between the present method and the manufacturer specified values. It was also found that the cysteine residues in CSNLSTCVLGK from tryptic calcitonin were converted to lanthionine by the loss of one sulfhydryl group during the labelling procedure.
Conjugate adaptive optics with remote focusing in multiphoton microscopy
NASA Astrophysics Data System (ADS)
Tao, Xiaodong; Lam, Tuwin; Zhu, Bingzhao; Li, Qinggele; Reinig, Marc R.; Kubby, Joel
2018-02-01
The small correction volume for conventional wavefront shaping methods limits their application in biological imaging through scattering media. In this paper, we take advantage of conjugate adaptive optics (CAO) and remote focusing (CAORF) to achieve three-dimensional (3D) scanning through a scattering layer with a single correction. Our results show that the proposed system can provide 10 times wider axial field of view compared with a conventional conjugate AO system when 16,384 segments are used on a spatial light modulator. We demonstrate two-photon imaging with CAORF through mouse skull. The fluorescent microspheres embedded under the scattering layers can be clearly observed after applying the correction.
Atmospheric correction for inland water based on Gordon model
NASA Astrophysics Data System (ADS)
Li, Yunmei; Wang, Haijun; Huang, Jiazhu
2008-04-01
Remote sensing technique is soundly used in water quality monitoring since it can receive area radiation information at the same time. But more than 80% radiance detected by sensors at the top of the atmosphere is contributed by atmosphere not directly by water body. Water radiance information is seriously confused by atmospheric molecular and aerosol scattering and absorption. A slight bias of evaluation for atmospheric influence can deduce large error for water quality evaluation. To inverse water composition accurately we have to separate water and air information firstly. In this paper, we studied on atmospheric correction methods for inland water such as Taihu Lake. Landsat-5 TM image was corrected based on Gordon atmospheric correction model. And two kinds of data were used to calculate Raleigh scattering, aerosol scattering and radiative transmission above Taihu Lake. Meanwhile, the influence of ozone and white cap were revised. One kind of data was synchronization meteorology data, and the other one was synchronization MODIS image. At last, remote sensing reflectance was retrieved from the TM image. The effect of different methods was analyzed using in situ measured water surface spectra. The result indicates that measured and estimated remote sensing reflectance were close for both methods. Compared to the method of using MODIS image, the method of using synchronization meteorology is more accurate. And the bias is close to inland water error criterion accepted by water quality inversing. It shows that this method is suitable for Taihu Lake atmospheric correction for TM image.
Accurate and fast multiple-testing correction in eQTL studies.
Sul, Jae Hoon; Raj, Towfique; de Jong, Simone; de Bakker, Paul I W; Raychaudhuri, Soumya; Ophoff, Roel A; Stranger, Barbara E; Eskin, Eleazar; Han, Buhm
2015-06-04
In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lessard, Francois; Archambault, Louis; Plamondon, Mathieu
Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80more » to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with a residual 2.1% coefficient of variation (COV) over the 80-150-kVp energy range. Monte Carlo corrections reduced the COV to 1.4% over this energy range. All PDD measurements were in good agreement with one another except for the uncorrected PSD data, in which an over-response was observed with depth (13% at 10 cm with a 100 kVp beam), showing that beam hardening had a non-negligible effect on the PSD response. A correction based on LCT compensated very well for this effect, reducing the over-response to 3%.Conclusion: In the diagnostic energy range, PSDs show high-energy dependence, which can be corrected using spectra-weighted mass energy-absorption coefficients, showing no considerable sign of quenching between these energies. Correction factors obtained by Monte Carlo simulations confirm that the approximations made by LCT corrections are valid. Thus, PSDs could be useful for real-time dosimetry in radiology applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsanea, F; Therriault-Proulx, F; Sawakuchi, G
Purpose: The light generated in organic scintillators depends on both the radiation dose and the linear energy transfer (LET). The LET dependence leads to an under-response of the detector in the Bragg peak of proton beams. This phenomenon, called ionization quenching, must be corrected to obtain accurate dose measurements of proton beams. This work exploits the ionization quenching phenomenon to provide a method of measuring LET and auto correcting quenching. Methods: We exposed simultaneously four different organic scintillators (BCF-12, PMMA, PVT, and LSD; 1mm in diameter) and a plane parallel ionization chamber in passively scattered proton beams to doses betweenmore » 32 and 43 cGy and fluence averaged LET values from 0.47 to 1.26 keV/µm. The LET values for each irradiation condition were determined using a validated Monte Carlo model of the beam line. We determined the quenching parameter in the Birk’s equation for scintillation in BCF-12 for dose measurements. One set of irradiation conditions was used to correlate the scintillation response ratio to the LET values and plot a scintillation response ratio versus LET calibration curve. Irradiation conditions independent from the calibration ones were used to validate this method. Comparisons to the expected values were made on both the basis of dose and LET. Results: Among all the scintillators investigated, the ratio of PMMA to BCF-12 provided the best correlation to LET values and was used as the LET calibration curve. The expected LET values in the validation set were within 2%±6%, which resulted in dose accuracy of 1.5%±5.8% for the range of LET values investigated in this work. Conclusion: We have demonstrated the feasibility of using the ratio between the light output of two organic scintillators to simultaneously measure LET and dose of therapeutic proton beams. Further studies are needed to verify the response in higher LET values.« less
NASA Astrophysics Data System (ADS)
Ryu, Young-Hee; Hodzic, Alma; Barre, Jerome; Descombes, Gael; Minnis, Patrick
2018-05-01
Clouds play a key role in radiation and hence O3 photochemistry by modulating photolysis rates and light-dependent emissions of biogenic volatile organic compounds (BVOCs). It is not well known, however, how much error in O3 predictions can be directly attributed to error in cloud predictions. This study applies the Weather Research and Forecasting with Chemistry (WRF-Chem) model at 12 km horizontal resolution with the Morrison microphysics and Grell 3-D cumulus parameterization to quantify uncertainties in summertime surface O3 predictions associated with cloudiness over the contiguous United States (CONUS). All model simulations are driven by reanalysis of atmospheric data and reinitialized every 2 days. In sensitivity simulations, cloud fields used for photochemistry are corrected based on satellite cloud retrievals. The results show that WRF-Chem predicts about 55 % of clouds in the right locations and generally underpredicts cloud optical depths. These errors in cloud predictions can lead to up to 60 ppb of overestimation in hourly surface O3 concentrations on some days. The average difference in summertime surface O3 concentrations derived from the modeled clouds and satellite clouds ranges from 1 to 5 ppb for maximum daily 8 h average O3 (MDA8 O3) over the CONUS. This represents up to ˜ 40 % of the total MDA8 O3 bias under cloudy conditions in the tested model version. Surface O3 concentrations are sensitive to cloud errors mainly through the calculation of photolysis rates (for ˜ 80 %), and to a lesser extent to light-dependent BVOC emissions. The sensitivity of surface O3 concentrations to satellite-based cloud corrections is about 2 times larger in VOC-limited than NOx-limited regimes. Our results suggest that the benefits of accurate predictions of cloudiness would be significant in VOC-limited regions, which are typical of urban areas.
The development of formative assessment probes for optics education
NASA Astrophysics Data System (ADS)
Dokter, Erin F. C.; Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.
2010-08-01
Research exploring students' knowledge of optics from elementary through college has revealed that many concepts can be difficult for students to grasp. This can be the case particularly with fundamental concepts, such as the nature of light, how light interacts with matter, and how light behaves in optical systems. The use of formative assessment probes (low-stakes questions posed to students before instruction or in real-time in the classroom) can inform instructors about student background knowledge, and can also be used as they progress through learning in class. By understanding what students know prior to instruction, and how well they are learning in real-time, instruction can be designed and modified in order to encourage the development of scientifically-accurate knowledge.
Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul
2015-04-02
The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.
Electromagnetic Flow Meter Having a Driver Circuit Including a Current Transducer
NASA Technical Reports Server (NTRS)
Patel, Sandeep K. (Inventor); Karon, David M. (Inventor); Cushing, Vincent (Inventor)
2014-01-01
An electromagnetic flow meter (EMFM) accurately measures both the complete flow rate and the dynamically fluctuating flow rate of a fluid by applying a unipolar DC voltage to excitation coils for a predetermined period of time, measuring the electric potential at a pair of electrodes, determining a complete flow rate and independently measuring the dynamic flow rate during the "on" cycle of the DC excitation, and correcting the measurements for errors resulting from galvanic drift and other effects on the electric potential. The EMFM can also correct for effects from the excitation circuit induced during operation of the EMFM.
Barlier-Salsi, A
2014-12-01
The European directive 2006/25/EC requires the employer to assess and, if necessary, measure the levels of exposure to optical radiation in the workplace. Array spectroradiometers can measure optical radiation from various types of sources; however poor stray light rejection affects their accuracy. A stray light correction matrix, using a tunable laser, was developed at the National Institute of Standards and Technology (NIST). As tunable lasers are very expensive, the purpose of this study was to implement this method using only nine low power lasers; other elements of the correction matrix being completed by interpolation and extrapolation. The correction efficiency was evaluated by comparing CCD spectroradiometers with and without correction and a scanning double monochromator device as reference. Similar to findings recorded by NIST, these experiments show that it is possible to reduce the spectral stray light by one or two orders of magnitude. In terms of workplace risk assessment, this spectral stray light correction method helps determine exposure levels, with an acceptable degree of uncertainty, for the majority of workplace situations. The level of uncertainty depends upon the model of spectroradiometers used; the best results are obtained with CCD detectors having an enhanced spectral sensitivity in the UV range. Thus corrected spectroradiometers require a validation against a scanning double monochromator spectroradiometer before using them for risk assessment in the workplace.
Development for equipment of the milk macromolecules content detection
NASA Astrophysics Data System (ADS)
Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen
Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.
Suárez, Inmaculada; Coto, Baudilio
2015-08-14
Average molecular weights and polydispersity indexes are some of the most important parameters considered in the polymer characterization. Usually, gel permeation chromatography (GPC) and multi angle light scattering (MALS) are used for this determination, but GPC values are overestimated due to the dispersion introduced by the column separation. Several procedures were proposed to correct such effect usually involving more complex calibration processes. In this work, a new method of calculation has been considered including diffusion effects. An equation for the concentration profile due to diffusion effects along the GPC column was considered to be a Fickian function and polystyrene narrow standards were used to determine effective diffusion coefficients. The molecular weight distribution function of mono and poly disperse polymers was interpreted as a sum of several Fickian functions representing a sample formed by only few kind of polymer chains with specific molecular weight and diffusion coefficient. Proposed model accurately fit the concentration profile along the whole elution time range as checked by the computed standard deviation. Molecular weights obtained by this new method are similar to those obtained by MALS or traditional GPC while polydispersity index values are intermediate between those obtained by the traditional GPC combined to Universal Calibration method and the MALS method. Values for Pearson and Lin coefficients shows improvement in the correlation of polydispersity index values determined by GPC and MALS methods when diffusion coefficients and new methods are used. Copyright © 2015 Elsevier B.V. All rights reserved.
Toward transient finite element simulation of thermal deformation of machine tools in real-time
NASA Astrophysics Data System (ADS)
Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg
2018-01-01
Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few lines of shader code (provided in supplemental material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2013.102), is high performance, and has a negligible memory footprint.
Yeang, Hoong-Yeet
2015-07-01
An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles. Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisniega, A; Zbijewski, W; Stayman, J
Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced formore » additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain trauma imaging at the point of care in sports and military applications. Research grant from Carestream Health. JY is an employee of Carestream Health.« less
High accuracy OMEGA timekeeping
NASA Technical Reports Server (NTRS)
Imbier, E. A.
1982-01-01
The Smithsonian Astrophysical Observatory (SAO) operates a worldwide satellite tracking network which uses a combination of OMEGA as a frequency reference, dual timing channels, and portable clock comparisons to maintain accurate epoch time. Propagational charts from the U.S. Coast Guard OMEGA monitor program minimize diurnal and seasonal effects. Daily phase value publications of the U.S. Naval Observatory provide corrections to the field collected timing data to produce an averaged time line comprised of straight line segments called a time history file (station clock minus UTC). Depending upon clock location, reduced time data accuracies of between two and eight microseconds are typical.
GATE Monte Carlo simulation of dose distribution using MapReduce in a cloud computing environment.
Liu, Yangchuan; Tang, Yuguo; Gao, Xin
2017-12-01
The GATE Monte Carlo simulation platform has good application prospects of treatment planning and quality assurance. However, accurate dose calculation using GATE is time consuming. The purpose of this study is to implement a novel cloud computing method for accurate GATE Monte Carlo simulation of dose distribution using MapReduce. An Amazon Machine Image installed with Hadoop and GATE is created to set up Hadoop clusters on Amazon Elastic Compute Cloud (EC2). Macros, the input files for GATE, are split into a number of self-contained sub-macros. Through Hadoop Streaming, the sub-macros are executed by GATE in Map tasks and the sub-results are aggregated into final outputs in Reduce tasks. As an evaluation, GATE simulations were performed in a cubical water phantom for X-ray photons of 6 and 18 MeV. The parallel simulation on the cloud computing platform is as accurate as the single-threaded simulation on a local server and the simulation correctness is not affected by the failure of some worker nodes. The cloud-based simulation time is approximately inversely proportional to the number of worker nodes. For the simulation of 10 million photons on a cluster with 64 worker nodes, time decreases of 41× and 32× were achieved compared to the single worker node case and the single-threaded case, respectively. The test of Hadoop's fault tolerance showed that the simulation correctness was not affected by the failure of some worker nodes. The results verify that the proposed method provides a feasible cloud computing solution for GATE.
Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-01-01
Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked. PMID:28466026
Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-04-01
Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.
Fast-SG: an alignment-free algorithm for hybrid assembly.
Di Genova, Alex; Ruz, Gonzalo A; Sagot, Marie-France; Maass, Alejandro
2018-05-01
Long-read sequencing technologies are the ultimate solution for genome repeats, allowing near reference-level reconstructions of large genomes. However, long-read de novo assembly pipelines are computationally intense and require a considerable amount of coverage, thereby hindering their broad application to the assembly of large genomes. Alternatively, hybrid assembly methods that combine short- and long-read sequencing technologies can reduce the time and cost required to produce de novo assemblies of large genomes. Here, we propose a new method, called Fast-SG, that uses a new ultrafast alignment-free algorithm specifically designed for constructing a scaffolding graph using light-weight data structures. Fast-SG can construct the graph from either short or long reads. This allows the reuse of efficient algorithms designed for short-read data and permits the definition of novel modular hybrid assembly pipelines. Using comprehensive standard datasets and benchmarks, we show how Fast-SG outperforms the state-of-the-art short-read aligners when building the scaffoldinggraph and can be used to extract linking information from either raw or error-corrected long reads. We also show how a hybrid assembly approach using Fast-SG with shallow long-read coverage (5X) and moderate computational resources can produce long-range and accurate reconstructions of the genomes of Arabidopsis thaliana (Ler-0) and human (NA12878). Fast-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low effort, high portability, and low cost.
Teng, Long; Pivnenko, Mike; Robertson, Brian; Zhang, Rong; Chu, Daping
2014-10-20
A simple and efficient compensation method for the full correction of both the anisotropic and isotropic nonuniformity of the light phase retardance in a liquid crystal (LC) layer is presented. This is achieved by accurate measurement of the spatial variation of the LC layer's thickness with the help of a calibrated liquid crystal wedge, rather than solely relying on the light intensity profile recorded using two crossed polarizers. Local phase retardance as a function of the applied voltage is calculated with its LC thickness and a set of reference data measured from the intensity of the reflected light using two crossed polarizers. Compensation of the corresponding phase nonuniformity is realized by applying adjusted local voltage signals for different grey levels. To demonstrate its effectiveness, the proposed method is applied to improve the performance of a phase-only liquid crystal on silicon (LCOS) spatial light modulator (SLM). The power of the first diffraction order measured with the binary phase gratings compensated by this method is compared with that compensated by the conventional crossed-polarizer method. The results show that the phase compensation method proposed here can increase the dynamic range of the first order diffraction power significantly from 15~21 dB to over 38 dB, while the crossed-polarizer method can only increase it to 23 dB.
Accurate estimation of influenza epidemics using Google search data via ARGO
Yang, Shihao; Santillana, Mauricio; Kou, S. C.
2015-01-01
Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search–based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people’s online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions. PMID:26553980
Specific Impulse Definition for Ablative Laser Propulsion
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Gregory, Don A.
2004-01-01
The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.
Head movement compensation in real-time magnetoencephalographic recordings.
Little, Graham; Boe, Shaun; Bardouille, Timothy
2014-01-01
Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.
New approach for the quantification of processed animal proteins in feed using light microscopy.
Veys, P; Baeten, V
2010-07-01
A revision of European Union's total feed ban on animal proteins in feed will need robust quantification methods, especially for control analyses, if tolerance levels are to be introduced, as for fishmeal in ruminant feed. In 2006, a study conducted by the Community Reference Laboratory for Animal Proteins in feedstuffs (CRL-AP) demonstrated the deficiency of the official quantification method based on light microscopy. The study concluded that the method had to be revised. This paper puts forward an improved quantification method based on three elements: (1) the preparation of permanent slides with an optical adhesive preserving all morphological markers of bones necessary for accurate identification and precision counting; (2) the use of a counting grid eyepiece reticle; and (3) new definitions for correction factors for the estimated portions of animal particles in the sediment. This revised quantification method was tested on feeds adulterated at different levels with bovine meat and bone meal (MBM) and fishmeal, and it proved to be effortless to apply. The results obtained were very close to the expected values of contamination levels for both types of adulteration (MBM or fishmeal). Calculated values were not only replicable, but also reproducible. The advantages of the new approach, including the benefits of the optical adhesive used for permanent slide mounting and the experimental conditions that need to be met to implement the new method correctly, are discussed.
Ma, Irene W Y; Caplin, Joshua D; Azad, Aftab; Wilson, Christina; Fifer, Michael A; Bagchi, Aranya; Liteplo, Andrew S; Noble, Vicki E
2017-12-01
Non-invasive measures that can accurately estimate cardiac output may help identify volume-responsive patients. This study seeks to compare two non-invasive measures (corrected carotid flow time and carotid blood flow) and their correlations with invasive reference measurements of cardiac output. Consenting adult patients (n = 51) at Massachusetts General Hospital cardiac catheterization laboratory undergoing right heart catheterization between February and April 2016 were included. Carotid ultrasound images were obtained concurrently with cardiac output measurements, obtained by the thermodilution method in the absence of severe tricuspid regurgitation and by the Fick oxygen method otherwise. Corrected carotid flow time was calculated as systole time/√cycle time. Carotid blood flow was calculated as π × (carotid diameter) 2 /4 × velocity time integral × heart rate. Measurements were obtained using a single carotid waveform and an average of three carotid waveforms for both measures. Single waveform measurements of corrected flow time did not correlate with cardiac output (ρ = 0.25, 95% CI -0.03 to 0.49, p = 0.08), but an average of three waveforms correlated significantly, although weakly (ρ = 0.29, 95% CI 0.02-0.53, p = 0.046). Carotid blood flow measurements correlated moderately with cardiac output regardless of if single waveform or an average of three waveforms were used: ρ = 0.44, 95% CI 0.18-0.63, p = 0.004, and ρ = 0.41, 95% CI 0.16-0.62, p = 0.004, respectively. Carotid blood flow may be a better marker of cardiac output and less subject to measurements issues than corrected carotid flow time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, D; McEwen, M; Shen, H
Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC wasmore » benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors.« less
Anisotropy of Photopolymer Parts Made by Digital Light Processing
Monzón, Mario; Ortega, Zaida; Hernández, Alba; Paz, Rubén; Ortega, Fernando
2017-01-01
Digital light processing (DLP) is an accurate additive manufacturing (AM) technology suitable for producing micro-parts by photopolymerization. As most AM technologies, anisotropy of parts made by DLP is a key issue to deal with, taking into account that several operational factors modify this characteristic. Design for this technology and photopolymers becomes a challenge because the manufacturing process and post-processing strongly influence the mechanical properties of the part. This paper shows experimental work to demonstrate the particular behavior of parts made using DLP. Being different to any other AM technology, rules for design need to be adapted. Influence of build direction and post-curing process on final mechanical properties and anisotropy are reported and justified based on experimental data and theoretical simulation of bi-material parts formed by fully-cured resin and partially-cured resin. Three photopolymers were tested under different working conditions, concluding that post-curing can, in some cases, correct the anisotropy, mainly depending on the nature of photopolymer. PMID:28772426
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleury, Pierre; Uzan, Jean-Philippe; Larena, Julien, E-mail: fleury@iap.fr, E-mail: j.larena@ru.ac.za, E-mail: uzan@iap.fr
On the scale of the light beams subtended by small sources, e.g. supernovae, matter cannot be accurately described as a fluid, which questions the applicability of standard cosmic lensing to those cases. In this article, we propose a new formalism to deal with small-scale lensing as a diffusion process: the Sachs and Jacobi equations governing the propagation of narrow light beams are treated as Langevin equations. We derive the associated Fokker-Planck-Kolmogorov equations, and use them to deduce general analytical results on the mean and dispersion of the angular distance. This formalism is applied to random Einstein-Straus Swiss-cheese models, allowing usmore » to: (1) show an explicit example of the involved calculations; (2) check the validity of the method against both ray-tracing simulations and direct numerical integration of the Langevin equation. As a byproduct, we obtain a post-Kantowski-Dyer-Roeder approximation, accounting for the effect of tidal distortions on the angular distance, in excellent agreement with numerical results. Besides, the dispersion of the angular distance is correctly reproduced in some regimes.« less
The theory of stochastic cosmological lensing
NASA Astrophysics Data System (ADS)
Fleury, Pierre; Larena, Julien; Uzan, Jean-Philippe
2015-11-01
On the scale of the light beams subtended by small sources, e.g. supernovae, matter cannot be accurately described as a fluid, which questions the applicability of standard cosmic lensing to those cases. In this article, we propose a new formalism to deal with small-scale lensing as a diffusion process: the Sachs and Jacobi equations governing the propagation of narrow light beams are treated as Langevin equations. We derive the associated Fokker-Planck-Kolmogorov equations, and use them to deduce general analytical results on the mean and dispersion of the angular distance. This formalism is applied to random Einstein-Straus Swiss-cheese models, allowing us to: (1) show an explicit example of the involved calculations; (2) check the validity of the method against both ray-tracing simulations and direct numerical integration of the Langevin equation. As a byproduct, we obtain a post-Kantowski-Dyer-Roeder approximation, accounting for the effect of tidal distortions on the angular distance, in excellent agreement with numerical results. Besides, the dispersion of the angular distance is correctly reproduced in some regimes.
Coupled Neutron Transport for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.
2009-01-01
Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light particle transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.
NASA Astrophysics Data System (ADS)
Ann, Byoung-moo; Song, Younghoon; Kim, Junki; Yang, Daeho; An, Kyungwon
2015-08-01
Exact measurement of the second-order correlation function g(2 )(t ) of a light source is essential when investigating the photon statistics and the light generation process of the source. For a stationary single-mode light source, the Mandel Q factor is directly related to g(2 )(0 ) . For a large mean photon number in the mode, the deviation of g(2 )(0 ) from unity is so small that even a tiny error in measuring g(2 )(0 ) would result in an inaccurate Mandel Q . In this work, we address the detector-dead-time effect on g(2 )(0 ) of stationary sub-Poissonian light. It is then found that detector dead time can induce a serious error in g(2 )(0 ) and thus in Mandel Q in those cases even in a two-detector configuration. Utilizing the cavity-QED microlaser, a well-established sub-Poissonian light source, we measured g(2 )(0 ) with two different types of photodetectors with different dead times. We also introduced prolonged dead time by intentionally deleting the photodetection events following a preceding one within a specified time interval. We found that the observed Q of the cavity-QED microlaser was underestimated by 19% with respect to the dead-time-free Q when its mean photon number was about 600. We derived an analytic formula which well explains the behavior of the g(2 )(0 ) as a function of the dead time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddu, S; Sun, B; Grantham, K
2016-06-15
Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range andmore » SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal.« less
Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction
NASA Technical Reports Server (NTRS)
Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Yen, S. Y.; Napel, S.
2000-01-01
This paper presents a new reconstruction algorithm for both single- and dual-energy computed tomography (CT) imaging. By incorporating the polychromatic characteristics of the X-ray beam into the reconstruction process, the algorithm is capable of eliminating beam hardening artifacts. The single energy version of the algorithm assumes that each voxel in the scan field can be expressed as a mixture of two known substances, for example, a mixture of trabecular bone and marrow, or a mixture of fat and flesh. These assumptions are easily satisfied in a quantitative computed tomography (QCT) setting. We have compared our algorithm to three commonly used single-energy correction techniques. Experimental results show that our algorithm is much more robust and accurate. We have also shown that QCT measurements obtained using our algorithm are five times more accurate than that from current QCT systems (using calibration). The dual-energy mode does not require any prior knowledge of the object in the scan field, and can be used to estimate the attenuation coefficient function of unknown materials. We have tested the dual-energy setup to obtain an accurate estimate for the attenuation coefficient function of K2 HPO4 solution.
Tytell, Eric D; Ellington, Charles P
2003-01-01
The vortex wake structure of the hawkmoth, Manduca sexta, was investigated using a vortex ring generator. Based on existing kinematic and morphological data, a piston and tube apparatus was constructed to produce circular vortex rings with the same size and disc loading as a hovering hawkmoth. Results show that the artificial rings were initially laminar, but developed turbulence owing to azimuthal wave instability. The initial impulse and circulation were accurately estimated for laminar rings using particle image velocimetry; after the transition to turbulence, initial circulation was generally underestimated. The underestimate for turbulent rings can be corrected if the transition time and velocity profile are accurately known, but this correction will not be feasible for experiments on real animals. It is therefore crucial that the circulation and impulse be estimated while the wake vortices are still laminar. The scaling of the ring Reynolds number suggests that flying animals of about the size of hawkmoths may be the largest animals whose wakes stay laminar for long enough to perform such measurements during hovering. Thus, at low advance ratios, they may be the largest animals for which wake circulation and impulse can be accurately measured. PMID:14561347
NASA Astrophysics Data System (ADS)
Nagib, Hassan; Vinuesa, Ricardo
2013-11-01
Ability of available Pitot tube corrections to provide accurate mean velocity profiles in ZPG boundary layers is re-examined following the recent work by Bailey et al. Measurements by Bailey et al., carried out with probes of diameters ranging from 0.2 to 1.89 mm, together with new data taken with larger diameters up to 12.82 mm, show deviations with respect to available high-quality datasets and hot-wire measurements in the same Reynolds number range. These deviations are significant in the buffer region around y+ = 30 - 40 , and lead to disagreement in the von Kármán coefficient κ extracted from profiles. New forms for shear, near-wall and turbulence corrections are proposed, highlighting the importance of the latest one. Improved agreement in mean velocity profiles is obtained with new forms, where shear and near-wall corrections contribute with around 85%, and remaining 15% of the total correction comes from turbulence correction. Finally, available algorithms to correct wall position in profile measurements of wall-bounded flows are tested, using as benchmark the corrected Pitot measurements with artificially simulated probe shifts and blockage effects. We develop a new scheme, κB - Musker, which is able to accurately locate wall position.
Sexing California gulls using morphometrics and discriminant function analysis
Herring, Garth; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Takekawa, John Y.
2010-01-01
A discriminant function analysis (DFA) model was developed with DNA sex verification so that external morphology could be used to sex 203 adult California Gulls (Larus californicus) in San Francisco Bay (SFB). The best model was 97% accurate and included head-to-bill length, culmen depth at the gonys, and wing length. Using an iterative process, the model was simplified to a single measurement (head-to-bill length) that still assigned sex correctly 94% of the time. A previous California Gull sex determination model developed for a population in Wyoming was then assessed by fitting SFB California Gull measurement data to the Wyoming model; this new model failed to converge on the same measurements as those originally used by the Wyoming model. Results from the SFB discriminant function model were compared to the Wyoming model results (by using SFB data with the Wyoming model); the SFB model was 7% more accurate for SFB California gulls. The simplified DFA model (head-to-bill length only) provided highly accurate results (94%) and minimized the measurements and time required to accurately sex California Gulls.
Radar - ESRL Wind Profiler with RASS, Wasco Airport - Derived Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
Profiles of turbulence dissipation rate for 15-minute intervals, time-stamped at the beginning of the 15-minute period, during the final 30 minutes of each hour. During that time, the 915-MHz wind profiling radar was in an optimized configuration with a vertically pointing beam only for measuring accurate spectral widths of vertical velocity. A bias-corrected dissipation rate also was profiled (described in McCaffrey et al. 2017). Hourly files contain two 15-minute profiles.
Pupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography
Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Viehland, Christian; Keller, Brenton; Izatt, Joseph A.
2016-01-01
Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-vasculature maps of the anterior segment. Unfortunately, ASOCT structural and vasculature imaging systems do not capture volumes instantaneously and are subject to motion artifacts due to involuntary eye motion that may hinder their accuracy and repeatability. Several groups have demonstrated real-time tracking for motion-compensated in vivo OCT retinal imaging, but these techniques are not applicable in the anterior segment. In this work, we demonstrate a simple and low-cost pupil tracking system integrated into a custom swept-source OCT system for real-time motion-compensated anterior segment volumetric imaging. Pupil oculography hardware coaxial with the swept-source OCT system enabled fast detection and tracking of the pupil centroid. The pupil tracking ASOCT system with a field of view of 15 x 15 mm achieved diffraction-limited imaging over a lateral tracking range of +/- 2.5 mm and was able to correct eye motion at up to 22 Hz. Pupil tracking ASOCT offers a novel real-time motion compensation approach that may facilitate accurate and reproducible anterior segment imaging. PMID:27574800
Safi, Sare; Rahimi, Anoushiravan; Raeesi, Afsaneh; Safi, Hamid; Aghazadeh Amiri, Mohammad; Malek, Mojtaba; Yaseri, Mehdi; Haeri, Mohammad; Middleton, Frank A; Solessio, Eduardo; Ahmadieh, Hamid
2017-01-01
To evaluate the ability of contrast sensitivity (CS) to discriminate loss of visual function in diabetic subjects with no clinical signs of retinopathy relative to that of normal subjects. In this prospective cross-sectional study, we measured CS in 46 diabetic subjects with a mean age of 48±6 years, a best-corrected visual acuity of 20/20 and no signs of diabetic retinopathy. The CS in these subjects was compared with CS measurements in 46 normal control subjects at four spatial frequencies (3, 6, 12, 18 cycles per degree) under moderate (500 lux) and dim (less than 2 lux) background light conditions. CS was approximately 0.16 log units lower in patients with diabetes relative to controls both in moderate and in dim background light conditions. Logistic regression classification and receiver operating characteristic curve analysis indicated that CS analysis using two light conditions was more accurate (0.78) overall compared with CS analysis using only a single illumination condition (accuracy values were 0.67 and 0.70 in moderate and dim light conditions, respectively). Our results showed that patients with diabetes without clinical signs of retinopathy exhibit a uniform loss in CS at all spatial frequencies tested. Measuring the loss in CS at two spatial frequencies (3 and 6 cycles per degree) and two light conditions (moderate and dim) is sufficiently robust to classify diabetic subjects with no retinopathy versus control subjects.
GERLUMPH Data Release 2: 2.5 Billion Simulated Microlensing Light Curves
NASA Astrophysics Data System (ADS)
Vernardos, G.; Fluke, C. J.; Bate, N. F.; Croton, D.; Vohl, D.
2015-04-01
In the upcoming synoptic all-sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disk. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated \\gt 2.5 billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our data are openly available to the community and are complemented by online eResearch tools, located at http://gerlumph.swin.edu.au.
Multifocal multiphoton microscopy with adaptive optical correction
NASA Astrophysics Data System (ADS)
Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon
2013-02-01
Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.
Real-time 3D measurement based on structured light illumination considering camera lens distortion
NASA Astrophysics Data System (ADS)
Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, ShiLing
2014-12-01
Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. In traditional 3-D measurement system where the processing time is not a key factor, camera lens distortion correction is performed directly. However, for the time-critical high-speed applications, the time-consuming correction algorithm is inappropriate to be performed directly during the real-time process. To cope with this issue, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. And a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the merit of the LUT, the 3-D reconstruction can be achieved at 92.34 frames per second.
Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR.
Catalano, Onofrio A; Coutinho, Artur M; Sahani, Dushyant V; Vangel, Mark G; Gee, Michael S; Hahn, Peter F; Witzel, Thomas; Soricelli, Andrea; Salvatore, Marco; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce R; Gervais, Debra
2017-04-01
Correct staging is imperative for colorectal cancer (CRC) since it influences both prognosis and management. Several imaging methods are used for this purpose, with variable performance. Positron emission tomography-magnetic resonance (PET/MR) is an innovative imaging technique recently employed for clinical application. The present study was undertaken to compare the staging accuracy of whole-body positron emission tomography-computed tomography (PET/CT) with whole-body PET/MR in patients with both newly diagnosed and treated colorectal cancer. Twenty-six patients, who underwent same day whole-body (WB) PET/CT and WB-PET/MR, were evaluated. PET/CT and PET/MR studies were interpreted by consensus by a radiologist and a nuclear medicine physician. Correlations with prior imaging and follow-up studies were used as the reference standard. Correct staging was compared between methods using McNemar's Chi square test. The two methods were in agreement and correct for 18/26 (69%) patients, and in agreement and incorrect for one patient (3.8%). PET/MR and PET/CT stages for the remaining 7/26 patients (27%) were discordant, with PET/MR staging being correct in all seven cases. PET/MR significantly outperformed PET/CT overall for accurate staging (P = 0.02). PET/MR outperformed PET/CT in CRC staging. PET/MR might allow accurate local and distant staging of CRC patients during both at the time of diagnosis and during follow-up.
A Neural Network Model for K(λ) Retrieval and Application to Global Kpar Monitoring.
Chen, Jun; Zhu, Yuanli; Wu, Yongsheng; Cui, Tingwei; Ishizaka, Joji; Ju, Yongtao
2015-01-01
Accurate estimation of diffuse attenuation coefficients in the visible wavelengths Kd(λ) from remotely sensed data is particularly challenging in global oceanic and coastal waters. The objectives of the present study are to evaluate the applicability of a semi-analytical Kd(λ) retrieval model (SAKM) and Jamet's neural network model (JNNM), and then develop a new neural network Kd(λ) retrieval model (NNKM). Based on the comparison of Kd(λ) predicted by these models with in situ measurements taken from the global oceanic and coastal waters, all of the NNKM, SAKM, and JNNM models work well in Kd(λ) retrievals, but the NNKM model works more stable and accurate than both SAKM and JNNM models. The near-infrared band-based and shortwave infrared band-based combined model is used to remove the atmospheric effects on MODIS data. The Kd(λ) data was determined from the atmospheric corrected MODIS data using the NNKM, JNNM, and SAKM models. The results show that the NNKM model produces <30% uncertainty in deriving Kd(λ) from global oceanic and coastal waters, which is 4.88-17.18% more accurate than SAKM and JNNM models. Furthermore, we employ an empirical approach to calculate Kpar from the NNKM model-derived diffuse attenuation coefficient at visible bands (443, 488, 555, and 667 nm). The results show that our model presents a satisfactory performance in deriving Kpar from the global oceanic and coastal waters with 20.2% uncertainty. The Kpar are quantified from MODIS data atmospheric correction using our model. Comparing with field measurements, our model produces ~31.0% uncertainty in deriving Kpar from Bohai Sea. Finally, the applicability of our model for general oceanographic studies is briefly illuminated by applying it to climatological monthly mean remote sensing reflectance for time ranging from July, 2002- July 2014 at the global scale. The results indicate that the high Kd(λ) and Kpar values are usually found around the coastal zones in the high latitude regions, while low Kd(λ) and Kpar values are usually found in the open oceans around the low-latitude regions. These results could improve our knowledge about the light field under waters at either the global or basin scales, and be potentially used into general circulation models to estimate the heat flux between atmosphere and ocean.
Hautvast, Gilion L T F; Salton, Carol J; Chuang, Michael L; Breeuwer, Marcel; O'Donnell, Christopher J; Manning, Warren J
2012-05-01
Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kyrazis, D. T.; Weiland, T. L.
1990-10-01
The propagation of intense 3rd harmonic light (0.351 micron) through large optical components of the Nova laser results in fracture damage of the center of the component. This damage is caused by an intense acoustical wave brought to focus in the center by reflecting off the circular edge of the optic. The source of this wave is light generated by transverse stimulated Brillouin scattering (SBS). By taking into account the transient gain characteristics of the SBS, the pulse energy can be correctly predicted that would cause damage for any time variation in intensity in the pump beam, and predict the relative intensity of the Brillouin light. The model is based on the transient behavior of a first order linear system.
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, Vasily V.; Hall, Gregory E., E-mail: gehall@bnl.gov
We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method ismore » capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.« less
A simplified method for correcting contaminant concentrations in eggs for moisture loss.
Heinz, Gary H.; Stebbins, Katherine R.; Klimstra, Jon D.; Hoffman, David J.
2009-01-01
We developed a simplified and highly accurate method for correcting contaminant concentrations in eggs for the moisture that is lost from an egg during incubation. To make the correction, one injects water into the air cell of the egg until overflowing. The amount of water injected corrects almost perfectly for the amount of water lost during incubation or when an egg is left in the nest and dehydrates and deteriorates over time. To validate the new method we weighed freshly laid chicken (Gallus gallus) eggs and then incubated sets of fertile and dead eggs for either 12 or 19 d. We then injected water into the air cells of these eggs and verified that the weights after water injection were almost identical to the weights of the eggs when they were fresh. The advantages of the new method are its speed, accuracy, and simplicity: It does not require the calculation of a correction factor that has to be applied to each contaminant residue.
Wang, Geng; Xing, Fei; Wei, Minsong; You, Zheng
2017-10-16
The strong stray light has huge interference on the detection of weak and small optical signals, and is difficult to suppress. In this paper, a miniaturized baffle with angled vanes was proposed and a rapid optimization model of strong light elimination was built, which has better suppression of the stray lights than the conventional vanes and can optimize the positions of the vanes efficiently and accurately. Furthermore, the light energy distribution model was built based on the light projection at a specific angle, and the light propagation models of the vanes and sidewalls were built based on the Lambert scattering, both of which act as the bias of a calculation method of stray light. Moreover, the Monte-Carlo method was employed to realize the Point Source Transmittance (PST) simulation, and the simulation result indicated that it was consistent with the calculation result based on our models, and the PST could be improved by 2-3 times at the small incident angles for the baffle designed by the new method. Meanwhile, the simulation result was verified by laboratory tests, and the new model with derived analytical expressions which can reduce the simulation time significantly.
An Accurate Temperature Correction Model for Thermocouple Hygrometers 1
Savage, Michael J.; Cass, Alfred; de Jager, James M.
1982-01-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronand; Russell, Jeff; Prados, Don; Stanley, Thomas
2005-01-01
Remotely sensed ground reflectance is the foundation of any interoperability or change detection technique. Satellite intercomparisons and accurate vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), require the generation of accurate reflectance maps (NDVI is used to describe or infer a wide variety of biophysical parameters and is defined in terms of near-infrared (NIR) and red band reflectances). Accurate reflectance-map generation from satellite imagery relies on the removal of solar and satellite geometry and of atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance has been widely applied to a few systems only. The ability to obtain atmospherically corrected imagery and products from various satellites is essential to enable widescale use of remotely sensed, multitemporal imagery for a variety of applications. An atmospheric correction approach derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that can be applied to high-spatial-resolution satellite imagery under many conditions was evaluated to demonstrate a reliable, effective reflectance map generation method. Additional information is included in the original extended abstract.
Accurate Degradation Rate Calculation with RdTools | Photovoltaic Research
, seasonal effects such as soiling, shading and temperature bias are minimized by use of year-on-year (YOY , and 4) Rd and error calculation. Data normalization is comprised of PR + temperature correction, PVLIB . Seasonal effects are minimized by only comparing points at similar times of year. Graphic of a 10 multi
Analysis of Galaxy 15 Satellite Images from a Small-Aperture Telescope
2011-09-01
December 2010) during which it did not respond to commands from the ground. During this time period, the satellite drifted eastward causing...and 2) aberration. The light speed correction reflects the motion of the satellite along the orbit during the time Δt it takes for the signal to... time (or phase angle) with a separate photometric analysis performed at Oceanit. To obtain the photometry , we used AstroGraph software (Fig. 3
Kanematsu, Nobuyuki
2011-04-01
This work addresses computing techniques for dose calculations in treatment planning with proton and ion beams, based on an efficient kernel-convolution method referred to as grid-dose spreading (GDS) and accurate heterogeneity-correction method referred to as Gaussian beam splitting. The original GDS algorithm suffered from distortion of dose distribution for beams tilted with respect to the dose-grid axes. Use of intermediate grids normal to the beam field has solved the beam-tilting distortion. Interplay of arrangement between beams and grids was found as another intrinsic source of artifact. Inclusion of rectangular-kernel convolution in beam transport, to share the beam contribution among the nearest grids in a regulatory manner, has solved the interplay problem. This algorithmic framework was applied to a tilted proton pencil beam and a broad carbon-ion beam. In these cases, while the elementary pencil beams individually split into several tens, the calculation time increased only by several times with the GDS algorithm. The GDS and beam-splitting methods will complementarily enable accurate and efficient dose calculations for radiotherapy with protons and ions. Copyright © 2010 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Space-time light field rendering.
Wang, Huamin; Sun, Mingxuan; Yang, Ruigang
2007-01-01
In this paper, we propose a novel framework called space-time light field rendering, which allows continuous exploration of a dynamic scene in both space and time. Compared to existing light field capture/rendering systems, it offers the capability of using unsynchronized video inputs and the added freedom of controlling the visualization in the temporal domain, such as smooth slow motion and temporal integration. In order to synthesize novel views from any viewpoint at any time instant, we develop a two-stage rendering algorithm. We first interpolate in the temporal domain to generate globally synchronized images using a robust spatial-temporal image registration algorithm followed by edge-preserving image morphing. We then interpolate these software-synchronized images in the spatial domain to synthesize the final view. In addition, we introduce a very accurate and robust algorithm to estimate subframe temporal offsets among input video sequences. Experimental results from unsynchronized videos with or without time stamps show that our approach is capable of maintaining photorealistic quality from a variety of real scenes.
NASA Astrophysics Data System (ADS)
Devour, Brian M.; Bell, Eric F.
2017-06-01
Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.
Rajan, Rajitha Papukutty; Riesen, Hans; Rebane, Aleksander
2013-11-15
Slow light based on transient spectral hole-burning is reported for emerald, Be(3)Al(2)Si(6)O(18):Cr(3+). Experiments were conducted in π polarization on the R(1)(± 3/2) line (E2 ← A(2)4) at 2.2 K in zero field and low magnetic fields B||c. The hole width was strongly dependent on B||c, and this allowed us to smoothly tune the pulse delay from 40 to 154 ns between zero field and B||c = 15.2 mT. The latter corresponds to a group velocity of 16 km/s. Slow light in conjunction with a linear filter theory can be used as a powerful and accurate technique in time-resolved spectroscopy, e.g., to determine spectral hole-widths as a function of time.
Daily Light Exposure Patterns Reveal Phase and Period of the Human Circadian Clock.
Woelders, Tom; Beersma, Domien G M; Gordijn, Marijke C M; Hut, Roelof A; Wams, Emma J
2017-06-01
Light is the most potent time cue that synchronizes (entrains) the circadian pacemaker to the 24-h solar cycle. This entrainment process is an interplay between an individual's daily light perception and intrinsic pacemaker period under free-running conditions. Establishing individual estimates of circadian phase and period can be time-consuming. We show that circadian phase can be accurately predicted (SD = 1.1 h for dim light melatonin onset, DLMO) using 9 days of ambulatory light and activity data as an input to Kronauer's limit-cycle model for the human circadian system. This approach also yields an estimated circadian period of 24.2 h (SD = 0.2 h), with longer periods resulting in later DLMOs. A larger amount of daylight exposure resulted in an earlier DLMO. Individuals with a long circadian period also showed shorter intervals between DLMO and sleep timing. When a field-based estimation of tau can be validated under laboratory studies in a wide variety of individuals, the proposed methods may prove to be essential tools for individualized chronotherapy and light treatment for shift work and jetlag applications. These methods may improve our understanding of fundamental properties of human circadian rhythms under daily living conditions.
Daily Light Exposure Patterns Reveal Phase and Period of the Human Circadian Clock
Woelders, Tom; Beersma, Domien G. M.; Gordijn, Marijke C. M.; Hut, Roelof A.; Wams, Emma J.
2017-01-01
Light is the most potent time cue that synchronizes (entrains) the circadian pacemaker to the 24-h solar cycle. This entrainment process is an interplay between an individual’s daily light perception and intrinsic pacemaker period under free-running conditions. Establishing individual estimates of circadian phase and period can be time-consuming. We show that circadian phase can be accurately predicted (SD = 1.1 h for dim light melatonin onset, DLMO) using 9 days of ambulatory light and activity data as an input to Kronauer’s limit-cycle model for the human circadian system. This approach also yields an estimated circadian period of 24.2 h (SD = 0.2 h), with longer periods resulting in later DLMOs. A larger amount of daylight exposure resulted in an earlier DLMO. Individuals with a long circadian period also showed shorter intervals between DLMO and sleep timing. When a field-based estimation of tau can be validated under laboratory studies in a wide variety of individuals, the proposed methods may prove to be essential tools for individualized chronotherapy and light treatment for shift work and jetlag applications. These methods may improve our understanding of fundamental properties of human circadian rhythms under daily living conditions. PMID:28452285
Analysis of multicrystal pump–probe data sets. I. Expressions for the RATIO model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Bertrand; Coppens, Philip
2014-08-30
The RATIO method in time-resolved crystallography [Coppenset al.(2009).J. Synchrotron Rad.16, 226–230] was developed for use with Laue pump–probe diffraction data to avoid complex corrections due to wavelength dependence of the intensities. The application of the RATIO method in processing/analysis prior to structure refinement requires an appropriate ratio model for modeling the light response. The assessment of the accuracy of pump–probe time-resolved structure refinements based on the observed ratios was discussed in a previous paper. In the current paper, a detailed ratio model is discussed, taking into account both geometric and thermal light-induced changes.
Polosky, Marc A.; Garcia, Ernest J.; Plummer, David W.
2001-01-01
A microminiature timer having an optical readout is disclosed. The timer can be formed by surface micromachining or LIGA processes on a silicon substrate. The timer includes an integral motor (e.g. an electrostatic motor) that can intermittently wind a mainspring to store mechanical energy for driving a train of meshed timing gears at a rate that is regulated by a verge escapement. Each timing gear contains an optical encoder that can be read out with one or more light beams (e.g. from a laser or light-emitting diode) to recover timing information. In the event that electrical power to the timer is temporarily interrupted, the mechanical clock formed by the meshed timing gears and verge escapement can continue to operate, generating accurate timing information that can be read out when the power is restored.
Fixing the Leak: Empirical Corrections for the Small Light Leak in Hinode XRT
NASA Astrophysics Data System (ADS)
Saar, Steven H.; DeLuca, E. E.; McCauley, P.; Kobelski, A.
2013-07-01
On May 9, 2012, the the straylight level of XRT on Hinode suddenly increased, consistent with the appearance of a pinhole in the entrance filter (possibly a micrometeorite breach). The effect of this event is most noticeable in the optical G band data, which shows an average light excess of ~30%. However, data in several of the X-ray filters is also affected, due to low sensitivity "tails" of their filter responses into the visible. Observations taken with the G band filter but with the visible light shutter (VLS) closed show a weak, slightly shifted, out-of-focus image, revealing the leaked light. The intensity of the leak depends on telescope pointing, dropping strongly for images taken off-disk. By monitoring light levels in the corners of full-Sun Ti-poly filter images, we determine the approximate time of the event: ~13:30 UT. We use pairs of images taken just-before and after the filter breach to directly measure the leakage in two affected X-ray filters. We then develop a model using a scaled, shifted, and smoothed versions of the VLS closed images to remove the contamination. We estimate the uncertainties involved in our proposed correction procedure. This research was supported under NASA contract NNM07AB07C for Hinode XRT.
Multiple scattering in the remote sensing of natural surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wen-Hao; Weeks, R.; Gillespie, A.R.
1996-07-01
Radiosity models predict the amount of light scattered many times (multiple scattering) among scene elements in addition to light interacting with a surface only once (direct reflectance). Such models are little used in remote sensing studies because they require accurate digital terrain models and, typically, large amounts of computer time. We have developed a practical radiosity model that runs relatively quickly within suitable accuracy limits, and have used it to explore problems caused by multiple-scattering in image calibration, terrain correction, and surface roughness estimation for optical images. We applied the radiosity model to real topographic surfaces sampled at two verymore » different spatial scales: 30 m (rugged mountains) and 1 cm (cobbles and gravel on an alluvial fan). The magnitude of the multiple-scattering (MS) effect varies with solar illumination geometry, surface reflectivity, sky illumination and surface roughness. At the coarse scale, for typical illumination geometries, as much as 20% of the image can be significantly affected (>5%) by MS, which can account for as much as {approximately}10% of the radiance from sunlit slopes, and much more for shadowed slopes, otherwise illuminated only by skylight. At the fine scale, radiance from as much as 30-40% of the scene can have a significant MS component, and the MS contribution is locally as high as {approximately}70%, although integrating to the meter scale reduces this limit to {approximately}10%. Because the amount of MS increases with reflectivity as well as roughness, MS effects will distort the shape of reflectance spectra as well as changing their overall amplitude. The change is proportional to surface roughness. Our results have significant implications for determining reflectivity and surface roughness in remote sensing.« less
NASA Astrophysics Data System (ADS)
Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing
2015-09-01
The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α2 ≃ 2α1.
Grabo, Daniel; Inaba, Kenji; Hammer, Peter; Karamanos, Efstathios; Skiada, Dimitra; Martin, Matthew; Sullivan, Maura; Demetriades, Demetrios
2014-09-01
Tension pneumothorax can rapidly progress to cardiac arrest and death if not promptly recognized and appropriately treated. We sought to evaluate the effectiveness of traditional didactic slide-based lectures (SBLs) as compared with fresh tissue cadaver-based training (CBT) for placement of needle thoracostomy (NT). Forty randomly selected US Navy corpsmen were recruited to participate from incoming classes of the Navy Trauma Training Center at the LAC + USC Medical Center and were then randomized to one of two NT teaching methods. The following outcomes were compared between the two study arms: (1) time required to perform the procedure, (2) correct placement of the needle, and (3) magnitude of deviation from the correct position. During the study period, a total of 40 corpsmen were enrolled, 20 randomized to SBL and 20 to CBT arms. When outcomes were analyzed, time required to NT placement was not different between the two arms. Examination of the location of needle placement revealed marked differences between the two study groups. Only a minority of the SBL group (35%) placed the NT correctly in the second intercostal space. In comparison, the majority of corpsmen assigned to the CBT group demonstrated accurate placement in the second intercostal space (75%). In a CBT module, US Navy corpsmen were better trained to place NT accurately than their traditional didactic SBL counterparts. Further studies are indicated to identify the optimal components of effective simulation training for NT and other emergent interventions.
ERIC Educational Resources Information Center
Sheen, Younghee; Wright, David; Moldawa, Anna
2009-01-01
Building on Sheen's (2007) study of the effects of written corrective feedback (CF) on the acquisition of English articles, this article investigated whether direct focused CF, direct unfocused CF and writing practice alone produced differential effects on the accurate use of grammatical forms by adult ESL learners. Using six intact adult ESL…
Exact simulation of polarized light reflectance by particle deposits
NASA Astrophysics Data System (ADS)
Ramezan Pour, B.; Mackowski, D. W.
2015-12-01
The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.
Adaptive Optics at Lawrence Livermore National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavel, D T
2003-03-10
Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media andmore » must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.« less
Analytic double product integrals for all-frequency relighting.
Wang, Rui; Pan, Minghao; Chen, Weifeng; Ren, Zhong; Zhou, Kun; Hua, Wei; Bao, Hujun
2013-07-01
This paper presents a new technique for real-time relighting of static scenes with all-frequency shadows from complex lighting and highly specular reflections from spatially varying BRDFs. The key idea is to depict the boundaries of visible regions using piecewise linear functions, and convert the shading computation into double product integrals—the integral of the product of lighting and BRDF on visible regions. By representing lighting and BRDF with spherical Gaussians and approximating their product using Legendre polynomials locally in visible regions, we show that such double product integrals can be evaluated in an analytic form. Given the precomputed visibility, our technique computes the visibility boundaries on the fly at each shading point, and performs the analytic integral to evaluate the shading color. The result is a real-time all-frequency relighting technique for static scenes with dynamic, spatially varying BRDFs, which can generate more accurate shadows than the state-of-the-art real-time PRT methods.
Review on recent research progress on laser power measurement based on light pressure
NASA Astrophysics Data System (ADS)
Lai, WenChang; Zhou, Pu
2018-03-01
Accurate measuring the laser power is one of the most important issue to evaluate the performance of high power laser. For the time being, most of the demonstrated technique could be attributed to direct measuring route. Indirect measuring laser power based on light pressure, which has been under intensive investigation, has the advantages such as fast response, real-time measuring and high accuracy, compared with direct measuring route. In this paper, we will review several non-traditional methods based on light pressure to precisely measure the laser power proposed recently. The system setup, measuring principle and scaling methods would be introduced and analyzed in detail. We also compare the benefit and the drawback of these methods and analyze the uncertainties of the measurements.
Design of an holographic off-axis calibration light source for ARGOS at the LBT
NASA Astrophysics Data System (ADS)
Schwab, Christian; Gassler, Wolfgang; Peter, Diethard; Blumchen, Thomas; Aigner, Simon; Quirrenbach, Andreas
We report on the design of an artificial light source for ARGOS, the multiple Rayleigh laser guide star (LGS) facility at the Large Binocular Telescope (LBT). Our light source mimics the expected night-time illumination of the adaptive secondary mirror (ASM) by the laser beacons very accurately and provides a way to check the achieved performance, allowing thorough testing of the system during day time. The optical design makes use of computer generated holograms (CGH) and strong aspheres to achieve a very small residual wavefront error. Additional structures on the CGH facilitate quick and precise alignment of the optics in the prime focus. We demonstrate that the scheme can be applied to the current European Extremely Large Telescope (E-ELT) design in a similar way.
SeaWiFS technical report series. Volume 31: Stray light in the SeaWiFS radiometer
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Barnes, Robert A.; Holmes, Alan W.; Esaias, Wayne E.
1995-01-01
Some of the measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will not be useful as ocean measurements. For the ocean data set, there are procedures in place to mask the SeaWiFS measurements of clouds and ice. Land measurements will also be masked using a geographic technique based on each measurment's latitude and longitude. Each of these masks involves a source of light much brighter than the ocean. Because of stray light in the SeaWiFS radiometer, light from these bright sources can contaminate ocean measurements located a variable number of pixels away from a bright source. In this document, the sources of stray light in the sensor are examined, and a method is developed for masking measurements near bright targets for stray light effects. In addition, a procedure is proposed for reducing the effects of stray light in the flight data from SeaWiFS. This correction can also reduce the number of pixels masked for stray light. Without these corrections, local area scenes must be masked 10 pixels before and after bright targets in the along-scan direction. The addition of these corrections reduces the along-scan masks to four pixels before and after bright sources. In the along-track direction, the flight data are not corrected, and are masked two pixels before and after. Laboratory measurements have shown that stray light within the instrument changes in a direct ratio to the intensity of the bright source. The measurements have also shown that none of the bands show peculiarities in their stray light response. In other words, the instrument's response is uniform from band to band. The along-scan correction is based on each band's response to a 1 pixel wide bright sources. Since these results are based solely on preflight laboratory measurements, their successful implementation requires compliance with two additional criteria. First, since SeaWiFS has a large data volume, the correction and masking procedures must be such that they can be converted into computationally fast algorithms. Second, they must be shown to operate properly on flight data. The laboratory results, and the corrections and masking procedures that derive from them, should be considered as zeroeth order estimates of the effects that will be found on orbit.
Fully 3D refraction correction dosimetry system.
Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan
2016-02-21
The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.
Quantum Tunneling Affects Engine Performance.
Som, Sibendu; Liu, Wei; Zhou, Dingyu D Y; Magnotti, Gina M; Sivaramakrishnan, Raghu; Longman, Douglas E; Skodje, Rex T; Davis, Michael J
2013-06-20
We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 + O2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here.
Apparatus for and method of correcting for aberrations in a light beam
Sawicki, Richard H.
1996-01-01
A technique for adjustably correcting for aberrations in a light beam is disclosed herein. This technique utilizes first means which defines a flat, circular light reflecting surface having opposite reinforced circumferential edges and a central post and which is resiliently distortable, to a limited extent, into different concave and/or convex curvatures, which may be Gaussian-like, about the central axis, and second means acting on the first means for adjustably distorting the light reflecting surface into a particular selected one of the different curvatures depending upon the aberrations to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably distorted into the selected curvature by application of particular axial moments to the central post on the opposite side from the light reflecting surface and lateral moments to the circumference of the reflecting surface.
Apparatus for and method of correcting for aberrations in a light beam
Sawicki, R.H.
1996-09-17
A technique for adjustably correcting for aberrations in a light beam is disclosed herein. This technique utilizes first means which defines a flat, circular light reflecting surface having opposite reinforced circumferential edges and a central post and which is resiliently distortable, to a limited extent, into different concave and/or convex curvatures, which may be Gaussian-like, about the central axis, and second means acting on the first means for adjustably distorting the light reflecting surface into a particular selected one of the different curvatures depending upon the aberrations to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably distorted into the selected curvature by application of particular axial moments to the central post on the opposite side from the light reflecting surface and lateral moments to the circumference of the reflecting surface. 8 figs.
NASA Astrophysics Data System (ADS)
Waki, Masaki; Uruno, Shigenori; Ohashi, Hiroyuki; Manabe, Tetsuya; Azuma, Yuji
We propose an optical fiber connection navigation system that uses visible light communication for an integrated distribution module in a central office. The system realizes an accurate database, requires less skilled work to operate and eliminates human error. This system can achieve a working time reduction of up to 88.0% compared with the conventional work without human error for the connection/removal of optical fiber cords, and is economical as regards installation and operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Jason P.; Carlson, Deborah K.; Ortiz, Anne
Accurate location of seismic events is crucial for nuclear explosion monitoring. There are several sources of error in seismic location that must be taken into account to obtain high confidence results. Most location techniques account for uncertainties in the phase arrival times (measurement error) and the bias of the velocity model (model error), but they do not account for the uncertainty of the velocity model bias. By determining and incorporating this uncertainty in the location algorithm we seek to improve the accuracy of the calculated locations and uncertainty ellipses. In order to correct for deficiencies in the velocity model, itmore » is necessary to apply station specific corrections to the predicted arrival times. Both master event and multiple event location techniques assume that the station corrections are known perfectly, when in reality there is an uncertainty associated with these corrections. For multiple event location algorithms that calculate station corrections as part of the inversion, it is possible to determine the variance of the corrections. The variance can then be used to weight the arrivals associated with each station, thereby giving more influence to stations with consistent corrections. We have modified an existing multiple event location program (based on PMEL, Pavlis and Booker, 1983). We are exploring weighting arrivals with the inverse of the station correction standard deviation as well using the conditional probability of the calculated station corrections. This is in addition to the weighting already given to the measurement and modeling error terms. We re-locate a group of mining explosions that occurred at Black Thunder, Wyoming, and compare the results to those generated without accounting for station correction uncertainty.« less
Bastin, M E; Armitage, P A
2000-07-01
The accurate determination of absolute measures of diffusion anisotropy in vivo using single-shot, echo-planar imaging techniques requires the acquisition of a set of high signal-to-noise ratio, diffusion-weighted images that are free from eddy current induced image distortions. Such geometric distortions can be characterized and corrected in brain imaging data using magnification (M), translation (T), and shear (S) distortion parameters derived from separate water phantom calibration experiments. Here we examine the practicalities of using separate phantom calibration data to correct high b-value diffusion tensor imaging data by investigating the stability of these distortion parameters, and hence the eddy currents, with time. It is found that M, T, and S vary only slowly with time (i.e., on the order of weeks), so that calibration scans need not be performed after every patient examination. This not only minimises the scan time required to collect the calibration data, but also the computational time needed to characterize these eddy current induced distortions. Examples of how measurements of diffusion anisotropy are improved using this post-processing scheme are also presented.
Stellar mass functions and implications for a variable IMF
NASA Astrophysics Data System (ADS)
Bernardi, M.; Sheth, R. K.; Fischer, J.-L.; Meert, A.; Chae, K.-H.; Dominguez-Sanchez, H.; Huertas-Company, M.; Shankar, F.; Vikram, V.
2018-03-01
Spatially resolved kinematics of nearby galaxies has shown that the ratio of dynamical to stellar population-based estimates of the mass of a galaxy (M_{*}^JAM/M_{*}) correlates with σe, the light-weighted velocity dispersion within its half-light radius, if M* is estimated using the same initial mass function (IMF) for all galaxies and the stellar mass-to-light ratio within each galaxy is constant. This correlation may indicate that, in fact, the IMF is more bottom-heavy or dwarf-rich for galaxies with large σ. We use this correlation to estimate a dynamical or IMF-corrected stellar mass, M_{*}^{α _{JAM}}, from M* and σe for a sample of 6 × 105 Sloan Digital Sky Survey (SDSS) galaxies for which spatially resolved kinematics is not available. We also compute the `virial' mass estimate k(n,R) R_e σ _R^2/G, where n is the Sérsic index, in the SDSS and ATLAS3D samples. We show that an n-dependent correction must be applied to the k(n, R) values provided by Prugniel & Simien. Our analysis also shows that the shape of the velocity dispersion profile in the ATLAS3D sample varies weakly with n: (σR/σe) = (R/Re)-γ(n). The resulting stellar mass functions, based on M_*^{α _{JAM}} and the recalibrated virial mass, are in good agreement. Using a Fundamental Plane-based observational proxy for σe produces comparable results. The use of direct measurements for estimating the IMF-dependent stellar mass is prohibitively expensive for a large sample of galaxies. By demonstrating that cheaper proxies are sufficiently accurate, our analysis should enable a more reliable census of the mass in stars, especially at high redshift, at a fraction of the cost. Our results are provided in tabular form.
NASA Astrophysics Data System (ADS)
Zhao, M.
2017-12-01
Accurate data on gross domestic product (GDP) at pixel level are needed to understand the dynamics of regional economies. GDP spatialization is the basis of quantitative analysis on economic diversities of different administrative divisions and areas with different natural or humanistic attributes. Data from the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi National Polar-orbiting Partnership (NPP) satellite, are capable of estimating GDP, but few studies have been conducted for mapping GDP at pixel level and further pattern analysis of economic differences in different regions using the VIIRS data. This paper produced a pixel-level (500 m × 500 m) GDP map for South China in 2014 and quantitatively analyzed economic differences among diverse geomorphological types. Based on a regression analysis, the total nighttime light (TNL) of corrected VIIRS data were found to exhibit R2 values of 0.8935 and 0.9243 for prefecture GDP and county GDP, respectively. This demonstrated that TNL showed a more significant capability in reflecting economic status (R2 > 0.88) than other nighttime light indices (R2 < 0.52), and showed quadratic polynomial relationships with GDP rather than simple linear correlations at both prefecture and county levels. The corrected NPP-VIIRS data showed a better fit than the original data, and the estimation at the county level was better than at the prefecture level. The pixel-level GDP map indicated that: (a) economic development in coastal areas was higher than that in inland areas; (b) low altitude plains were the most developed areas, followed by low altitude platforms and low altitude hills; and (c) economic development in middle altitude areas, and low altitude hills and mountains remained to be strengthened.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zillich, Robert E., E-mail: robert.zillich@jku.at
2015-11-15
We construct an accurate imaginary time propagator for path integral Monte Carlo simulations for heterogeneous systems consisting of a mixture of atoms and molecules. We combine the pair density approximation, which is highly accurate but feasible only for the isotropic interactions between atoms, with the Takahashi–Imada approximation for general interactions. We present finite temperature simulations results for energy and structure of molecules–helium clusters X{sup 4}He{sub 20} (X=HCCH and LiH) which show a marked improvement over the Trotter approximation which has a 2nd-order time step bias. We show that the 4th-order corrections of the Takahashi–Imada approximation can also be applied perturbativelymore » to a 2nd-order simulation.« less
Buoyancy-corrected gravimetric analysis of lightly loaded filters.
Rasmussen, Pat E; Gardner, H David; Niu, Jianjun
2010-09-01
Numerous sources of uncertainty are associated with the gravimetric analysis of lightly loaded air filter samples (< 100 microg). The purpose of the study presented here is to investigate the effectiveness and limitations of air buoyancy corrections over experimentally adjusted conditions of temperature (21-25 degrees C) and relative humidity (RH) (16-60% RH). Conditioning (24 hr) and weighing were performed inside the Archimedes M3 environmentally controlled chamber. The measurements were performed using 20 size-fractionated samples of resuspended house dust loaded onto Teflo (PTFE) filters using a Micro-Orifice Uniform Deposit Impactor representing a wide range of mass loading (7.2-3130 microg) and cut sizes (0.056-9.9 microm). By maintaining tight controls on humidity (within 0.5% RH of control setting) throughout pre- and postweighing at each stepwise increase in RH, it was possible to quantify error due to water absorption: 45% of the total mass change due to water absorption occurred between 16 and 50% RH, and 55% occurred between 50 and 60% RH. The buoyancy corrections ranged from -3.5 to +5.8 microg in magnitude and improved relative standard deviation (RSD) from 21.3% (uncorrected) to 5.6% (corrected) for a 7.2 microg sample. It is recommended that protocols for weighing low-mass particle samples (e.g., nanoparticle samples) should include buoyancy corrections and tight temperature/humidity controls. In some cases, conditioning times longer than 24 hr may be warranted.
NASA Astrophysics Data System (ADS)
Davis, J. J.; Tracey, J. C.; Engle, S. G.; Guinan, E. F.
2002-12-01
* Julius Caesar, William Shakespeare Polaris (
Improved Ecosystem Predictions of the California Current System via Accurate Light Calculations
2011-09-30
System via Accurate Light Calculations Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA 98005 phone: 425...7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Sequoia Scientific, Inc,2700 Richards Road, Suite 107,Bellevue,WA,98005 8. PERFORMING...EcoLight-S 1.0 Users’ Guide and Technical Documentation. Sequoia Scientific, Inc., Bellevue, WA, 38 pages. Mobley, C. D., 2011. Fast light calculations
A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data
Li, Pengfei; Li, Yan; Guo, Xiucheng
2014-01-01
The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems. PMID:25435870
Li, Pengfei; Li, Yan; Guo, Xiucheng
2014-01-01
The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.
Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)
NASA Astrophysics Data System (ADS)
Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.
2018-04-01
Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.
Approaches on calibration of bolometer and establishment of bolometer calibration device
NASA Astrophysics Data System (ADS)
Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong
2015-10-01
Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.
Ellouze, M; Pichaud, M; Bonaiti, C; Coroller, L; Couvert, O; Thuault, D; Vaillant, R
2008-11-30
Time temperature integrators or indicators (TTIs) are effective tools making the continuous monitoring of the time temperature history of chilled products possible throughout the cold chain. Their correct setting is of critical importance to ensure food quality. The objective of this study was to develop a model to facilitate accurate settings of the CRYOLOG biological TTI, TRACEO. Experimental designs were used to investigate and model the effects of the temperature, the TTI inoculum size, pH, and water activity on its response time. The modelling process went through several steps addressing growth, acidification and inhibition phenomena in dynamic conditions. The model showed satisfactory results and validations in industrial conditions gave clear evidence that such a model is a valuable tool, not only to predict accurate response times of TRACEO, but also to propose precise settings to manufacture the appropriate TTI to trace a particular food according to a given time temperature scenario.
How does spatial and temporal resolution of vegetation index impact crop yield estimation?
USDA-ARS?s Scientific Manuscript database
Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing data have long been used in crop yield estimation for decades. The process-based approach uses light use efficiency model to estimate crop yield. Vegetation index (VI) ...
NASA's Black Marble Nighttime Lights Product Suite
NASA Technical Reports Server (NTRS)
Wang, Zhuosen; Sun, Qingsong; Seto, Karen C.; Oda, Tomohiro; Wolfe, Robert E.; Sarkar, Sudipta; Stevens, Joshua; Ramos Gonzalez, Olga M.; Detres, Yasmin; Esch, Thomas;
2018-01-01
NASA's Black Marble nighttime lights product suite (VNP46) is available at 500 meters resolution since January 2012 with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: (1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for atmospheric and BRDF (Bidirectional Reflectance Distribution Function) effects; (3) geometric-optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Initial validation results are presented together with example case studies illustrating the scientific utility of the products. This includes an evaluation of temporal patterns of NTL dynamics associated with urbanization, socioeconomic variability, cultural characteristics, and displaced populations affected by conflict. Current and planned activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at different geographic locations and time periods representing the full range of retrieval conditions.
Podobedov, V B; Miller, C C; Nadal, M E
2012-09-01
The authors describe the NIST high-efficiency instrument for measurements of bidirectional reflectance distribution function of colored materials, including gonioapparent materials such as metallic and pearlescent coatings. The five-axis goniospectrometer measures the spectral reflectance of samples over a wide range of illumination and viewing angles. The implementation of a broad-band source and a multichannel CCD spectrometer corrected for stray light significantly increased the efficiency of the goniometer. In the extended range of 380 nm to 1050 nm, a reduction of measurement time from a few hours to a few minutes was obtained. Shorter measurement time reduces the load on the precise mechanical assembly ensuring high angular accuracy over time. We describe the application of matrix-based correction of stray light and the extension of effective dynamic range of measured fluxes to the values of 10(6) to 10(7) needed for the absolute characterization of samples. The measurement uncertainty was determined to be 0.7% (k = 2), which is comparable with similar instruments operating in a single channel configuration. Several examples of reflectance data obtained with the improved instrument indicate a 0.3% agreement compared to data collected with the single channel configuration.
NASA Astrophysics Data System (ADS)
Saraceno, J.; Shanley, J. B.; Aulenbach, B. T.
2014-12-01
Fluorescent dissolved organic matter (FDOM) is an excellent proxy for dissolved organic carbon (DOC) in natural waters. Through this relationship, in situ FDOM can be utilized to capture both high frequency time series and long term fluxes of DOC in small streams. However, in order to calculate accurate DOC fluxes for comparison across sites, in situ FDOM data must be compensated for matrix effects. Key matrix effects, include temperature, turbidity and the inner filter effect due to color. These interferences must be compensated for to develop a reasonable relationship between FDOM and DOC. In this study, we applied laboratory-derived correction factors to real time data from the five USGS WEBB headwater streams in order to gauge their effectiveness across a range of matrix effects. The good news is that laboratory derived correction factors improved the predicative relationship (higher r2) between DOC and FDOM when compared to uncorrected data. The relative importance of each matrix effect (i.e. temperature) varied by site and by time, implying that each and every matrix effect should be compensated for when available. In general, temperature effects were more important on longer time scales, while corrections for turbidity and DOC inner filter effects were most prevalent during hydrologic events, when the highest instantaneous flux of DOC occurred. Unfortunately, even when corrected for matrix effects, in situ FDOM is a weaker predictor of DOC than A254, a common surrogate for DOC, implying that either DOC fluoresces at varying degrees (but should average out over time), that some matrix effects (e.g. pH) are either unaccounted for or laboratory-derived correction factors do not encompass the site variability of particles and organics. The least impressive finding is that the inherent dependence on three variables in the FDOM correction algorithm increases the likelihood of record data gaps which increases the uncertainty in calculated DOC flux values.
Improved correlation corrections to the local-spin-density approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Painter, G.S.
1981-10-15
The accurate correlation energies for the para- and ferromagnetic states of the electron liquid calculated by Ceperley and Alder were recently used by Vosko, Wilk, and Nusair to produce a new correlation-energy density of increased accuracy and proper limiting behavior in the metallic density regime (r/sub s/< or =6). In the present work, the correlation potential in the local-spin-density approximation (LSDA) is derived from the correlation-energy-density representation of Vosko et al. Characteristics of the new exchange-correlation model are compared with those of the LSDA model of Gunnarsson and Lundqvist. Specific comparison is made between these models and exact results inmore » the treatment of atomic and molecular hydrogen. Since the new treatment of correlation primarily affects the region of small r/sub s/, which is exchange dominated, correlation corrections are small compared with errors in the exchange energy. Thus, in light atoms the improved correlation model leads to a reduced cancellation of error between exchange and correlation energies, emphasizing the necessity for improved exchange treatment. For more homogeneous systems, the model should offer real improvement. The present results obtained with precise treatment of correlation within the prescription of Vosko et al. serve to define the present limitations of the LSDA and indicate the importance of nonlocal corrections, particularly for atoms.« less
Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction.
Pircher, Michael; Baumann, Bernhard; Götzinger, Erich; Sattmann, Harald; Hitzenberger, Christoph K
2007-12-10
It has been shown that transversal scanning (or en-face) optical coherence tomography (TS-OCT) represents an imaging modality capable to record high isotropic resolution images of the human retina in vivo. However, axial eye motion still remains a challenging problem of this technique. In this paper we introduce a novel method to compensate for this eye motion. An auxiliary spectral domain partial coherence interferometer (SD-PCI) was integrated into an existing TS-OCT system and used to measure accurately the position of the cornea. A light source emitting at 1310nm was used in the additional interferometer which enabled a nearly loss free coupling of the two measurement beams via a dichroic mirror. The recorded corneal position was used to drive an additional voice coil translation stage in the reference arm of the TS-OCT system to correct for axial eye motion. Currently, the correction can be performed with an update rate of ~200Hz. The TS-OCT instrument is operated with a line scan rate of 4000 transversal lines per second which enables simultaneous SLO/OCT imaging at a frame rate of 40fps. 3D data of the human retina with isotropic high resolution, that was sufficient to visualize the human cone mosaic in vivo, is presented.
Design of light-small high-speed image data processing system
NASA Astrophysics Data System (ADS)
Yang, Jinbao; Feng, Xue; Li, Fei
2015-10-01
A light-small high speed image data processing system was designed in order to meet the request of image data processing in aerospace. System was constructed of FPGA, DSP and MCU (Micro-controller), implementing a video compress of 3 million pixels@15frames and real-time return of compressed image to the upper system. Programmable characteristic of FPGA, high performance image compress IC and configurable MCU were made best use to improve integration. Besides, hard-soft board design was introduced and PCB layout was optimized. At last, system achieved miniaturization, light-weight and fast heat dispersion. Experiments show that, system's multifunction was designed correctly and worked stably. In conclusion, system can be widely used in the area of light-small imaging.
Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.
Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute
2016-08-12
Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.
Diffraction effects in mechanically chopped laser pulses
NASA Astrophysics Data System (ADS)
Gambhir, Samridhi; Singh, Mandip
2018-06-01
A mechanical beam chopper consists of a rotating disc of regularly spaced wide slits which allow light to pass through them. A continuous light beam, after passing through the rotating disc, is switched-on and switched-off periodically, and a series of optical pulses are produced. The intensity of each pulse is expected to rise and fall smoothly with time. However, a careful study has revealed that the edges of mechanically chopped laser light pulses consist of periodic intensity undulations which can be detected with a photo detector. In this paper, it is shown that the intensity undulations in mechanically chopped laser pulses are produced by diffraction of light from the rotating disc, and a detailed explanation is given of the intensity undulations in mechanically chopped laser pulses. An experiment presented in this paper provides an efficient method to capture a one dimensional diffraction profile of light from a straight sharp-edge in the time domain. In addition, the experiment accurately measures wavelengths of three different laser beams from the undulations in mechanically chopped laser light pulses.
High spatial precision nano-imaging of polarization-sensitive plasmonic particles
NASA Astrophysics Data System (ADS)
Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice
2018-02-01
Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.
Johnson, Erin R; Contreras-García, Julia
2011-08-28
We develop a new density-functional approach combining physical insight from chemical structure with treatment of multi-reference character by real-space modeling of the exchange-correlation hole. We are able to recover, for the first time, correct fractional-charge and fractional-spin behaviour for atoms of groups 1 and 2. Based on Becke's non-dynamical correlation functional [A. D. Becke, J. Chem. Phys. 119, 2972 (2003)] and explicitly accounting for core-valence separation and pairing effects, this method is able to accurately describe dissociation and strong correlation in s-shell many-electron systems. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Oelze, Michael L.; O'Brien, William D.
2004-11-01
Backscattered rf signals used to construct conventional ultrasound B-mode images contain frequency-dependent information that can be examined through the backscattered power spectrum. The backscattered power spectrum is found by taking the magnitude squared of the Fourier transform of a gated time segment corresponding to a region in the scattering volume. When a time segment is gated, the edges of the gated regions change the frequency content of the backscattered power spectrum due to truncating of the waveform. Tapered windows, like the Hanning window, and longer gate lengths reduce the relative contribution of the gate-edge effects. A new gate-edge correction factor was developed that partially accounted for the edge effects. The gate-edge correction factor gave more accurate estimates of scatterer properties at small gate lengths compared to conventional windowing functions. The gate-edge correction factor gave estimates of scatterer properties within 5% of actual values at very small gate lengths (less than 5 spatial pulse lengths) in both simulations and from measurements on glass-bead phantoms. While the gate-edge correction factor gave higher accuracy of estimates at smaller gate lengths, the precision of estimates was not improved at small gate lengths over conventional windowing functions. .
On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation
NASA Astrophysics Data System (ADS)
Ouwerkerk, Ronald; Bottomley, Paul A.
2001-02-01
Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T1 that ignores effects of chemical exchange. We evaluated the errors in 31P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (TR) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and γ-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T1. The analysis shows that these errors are negligible for the progressive saturation method if the observed T1 is derived from a three-parameter fit of the data. When T1 is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T1/5 ≤ TR ≤ 2T1. Errors are also less than 5% for three- and four-site exchange when TR ≥ T1*/2, the so-called "intrinsic" T1's of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T1's and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T1's were dependent on metabolite concentrations, errors in saturation corrections for TR = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T1 measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting 31P MRS data for partial saturation in the presence of chemical exchange. Even in systems where metabolite concentrations change, accurate saturation corrections are possible without much loss in SNR.
Level Indicator On A Tubular Inside Micrometer
NASA Technical Reports Server (NTRS)
Malinzak, R. Michael; Booth, Gary N.
1995-01-01
Leveling helps to ensure accurate measurements. Attachment helpful because in some situations that involve measurement of large, tight-tolerance inside dimensions, inside micrometers not held level between contact point give inaccurate readings. User adjusts position and orientation of micrometer and verifies level by observing bubble in level indicator. Upon feeling correct drag between micrometer tips and workpiece, user confident that tool used correctly and accurate measurement obtained.
Robust, open-source removal of systematics in Kepler data
NASA Astrophysics Data System (ADS)
Aigrain, S.; Parviainen, H.; Roberts, S.; Reece, S.; Evans, T.
2017-10-01
We present ARC2 (Astrophysically Robust Correction 2), an open-source python-based systematics-correction pipeline, to correct for the Kepler prime mission long-cadence light curves. The ARC2 pipeline identifies and corrects any isolated discontinuities in the light curves and then removes trends common to many light curves. These trends are modelled using the publicly available co-trending basis vectors, within an (approximate) Bayesian framework with 'shrinkage' priors to minimize the risk of overfitting and the injection of any additional noise into the corrected light curves, while keeping any astrophysical signals intact. We show that the ARC2 pipeline's performance matches that of the standard Kepler PDC-MAP data products using standard noise metrics, and demonstrate its ability to preserve astrophysical signals using injection tests with simulated stellar rotation and planetary transit signals. Although it is not identical, the ARC2 pipeline can thus be used as an open-source alternative to PDC-MAP, whenever the ability to model the impact of the systematics removal process on other kinds of signal is important.
2002 Airborne Geophysical Survey at Pueblo of Laguna Bombing Targets, New Mexico. Revision 3
2005-10-01
conducted and results evaluated. The eight cesium magnetometers , GPS systems (positioning and attitude), fluxgate magnetometers , data recording...Accurate positioning requires a correction for this lag. Time lags between the magnetometers , fluxgate magnetometer , and GPS signals were measured by...between magnetometers and fluxgate ); An initial check flight after installation. Under the category of data QA/QC: An extensive test flight to
A Design Architecture for an Integrated Training System Decision Support System
1990-07-01
Sensory modes include visual, auditory, tactile, or kinesthetic; performance categories include time to complete , speed of response, or correct action ...procedures, and finally application and examples from the aviation proponency with emphasis on the LHX program. Appendix B is a complete bibliography...integrated analysis of ITS development. The approach was designed to provide an accurate and complete representation of the ITS development process and
Fluorescence image excited by a scanning UV-LED light
NASA Astrophysics Data System (ADS)
Tsai, Hsin-Yi; Chen, Yi-Ju; Huang, Kuo-Cheng
2013-03-01
An optical scanning system using UV-LED light to induced fluorescence technology can enhance a fluorescence image significantly in a short period. It has several advantages such as lower power consumption, no scattering effect in skins, and multilayer images can be obtained to analyze skin disease. From the experiment results, the light intensity increases with increase spot size and decrease scanning speed, but the image resolution is oppositely. Moreover, the system could be widely used in clinical diagnosis and photodynamic therapy for skin disease because even the irradiated time of fluorescence substance is short but it will provide accurately positioning of fluorescence object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawicki, R.H.; Sweatt, W.
1987-03-03
An apparatus is described for correcting for astigmatism in a light beam reflected off of a light reflecting surface, comprising: (a) a first means defining a flat, rectangular light reflecting surface which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis. The first means is configured so that the light reflecting surface can be adjustably bent into the selected cylindrical curvature by applying a particular bending moment to the first means with respect to the surface, depending upon the curvature desired. The first means includes an integrally formed body member havingmore » a main plate-like segment including a front fact defining the light reflecting surface and a pair of spaced-apart flange segments extending rearwardly of the main segment; and (b) second means acting on the first means for adjustably bending the light reflecting surface into a particular selected one of the different cylindrical curvatures, depending upon the astigmatism to be corrected for.« less
Bending of Light in Modified Gravity at Large Distances
NASA Technical Reports Server (NTRS)
Sultana, Joseph; Kazanas, Demosthenes
2012-01-01
We discuss the bending of light in a recent model for gravity at large distances containing a Rindler type acceleration proposed by Grumiller. We consider the static, spherically symmetric metric with cosmological constant and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak. to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis, using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r(sub 0) of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r(sub 0). This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric
Sound velocity of tantalum under shock compression in the 18–142 GPa range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Feng, E-mail: xifeng@caep.cn; Jin, Ke; Cai, Lingcang, E-mail: cai-lingcang@aliyun.com
2015-05-14
Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in thismore » type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.« less