Science.gov

Sample records for accurate line focus

  1. Line gas sampling system ensures accurate analysis

    SciTech Connect

    Not Available

    1992-06-01

    Tremendous changes in the natural gas business have resulted in new approaches to the way natural gas is measured. Electronic flow measurement has altered the business forever, with developments in instrumentation and a new sensitivity to the importance of proper natural gas sampling techniques. This paper reports that YZ Industries Inc., Snyder, Texas, combined its 40 years of sampling experience with the latest in microprocessor-based technology to develop the KynaPak 2000 series, the first on-line natural gas sampling system that is both compact and extremely accurate. This means the composition of the sampled gas must be representative of the whole and related to flow. If so, relative measurement and sampling techniques are married, gas volumes are accurately accounted for and adjustments to composition can be made.

  2. Line-focus sun trackers

    SciTech Connect

    Gee, R.

    1980-05-01

    Sun trackers have been a troublesome component for line-focus concentrating collector systems. The problems have included poor accuracy, component failures, false locks on clouds, and restricted tracker operating ranges. In response to these tracking difficulties, a variety of improved sun trackers have been developed. A testing program is underway at SERI to determine the tracking accuracy of this new generation of sun trackers. The three major types of trackers are defined, some recent sun tracker developments are described, and the testing that is underway is outlined.

  3. Accurate in-line CD metrology for nanometer semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Perng, Baw-Ching; Shieh, Jyu-Horng; Jang, S.-M.; Liang, M.-S.; Huang, Renee; Chen, Li-Chien; Hwang, Ruey-Lian; Hsu, Joe; Fong, David

    2006-03-01

    The need for absolute accuracy is increasing as semiconductor-manufacturing technologies advance to sub-65nm nodes, since device sizes are reducing to sub-50nm but offsets ranging from 5nm to 20nm are often encountered. While TEM is well-recognized as the most accurate CD metrology, direct comparison between the TEM data and in-line CD data might be misleading sometimes due to different statistical sampling and interferences from sidewall roughness. In this work we explore the capability of CD-AFM as an accurate in-line CD reference metrology. Being a member of scanning profiling metrology, CD-AFM has the advantages of avoiding e-beam damage and minimum sample damage induced CD changes, in addition to the capability of more statistical sampling than typical cross section metrologies. While AFM has already gained its reputation on the accuracy of depth measurement, not much data was reported on the accuracy of CD-AFM for CD measurement. Our main focus here is to prove the accuracy of CD-AFM and show its measuring capability for semiconductor related materials and patterns. In addition to the typical precision check, we spent an intensive effort on examining the bias performance of this CD metrology, which is defined as the difference between CD-AFM data and the best-known CD value of the prepared samples. We first examine line edge roughness (LER) behavior for line patterns of various materials, including polysilicon, photoresist, and a porous low k material. Based on the LER characteristics of each patterning, a method is proposed to reduce its influence on CD measurement. Application of our method to a VLSI nanoCD standard is then performed, and agreement of less than 1nm bias is achieved between the CD-AFM data and the standard's value. With very careful sample preparations and TEM tool calibration, we also obtained excellent correlation between CD-AFM and TEM for poly-CDs ranging from 70nm to 400nm. CD measurements of poly ADI and low k trenches are also

  4. Accurate oscillator strengths for interstellar ultraviolet lines of Cl I

    NASA Technical Reports Server (NTRS)

    Schectman, R. M.; Federman, S. R.; Beideck, D. J.; Ellis, D. J.

    1993-01-01

    Analyses on the abundance of interstellar chlorine rely on accurate oscillator strengths for ultraviolet transitions. Beam-foil spectroscopy was used to obtain f-values for the astrophysically important lines of Cl I at 1088, 1097, and 1347 A. In addition, the line at 1363 A was studied. Our f-values for 1088, 1097 A represent the first laboratory measurements for these lines; the values are f(1088)=0.081 +/- 0.007 (1 sigma) and f(1097) = 0.0088 +/- 0.0013 (1 sigma). These results resolve the issue regarding the relative strengths for 1088, 1097 A in favor of those suggested by astronomical measurements. For the other lines, our results of f(1347) = 0.153 +/- 0.011 (1 sigma) and f(1363) = 0.055 +/- 0.004 (1 sigma) are the most precisely measured values available. The f-values are somewhat greater than previous experimental and theoretical determinations.

  5. Spectroscopically Accurate Line Lists for Application in Sulphur Chemistry

    NASA Astrophysics Data System (ADS)

    Underwood, D. S.; Azzam, A. A. A.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    Monitoring sulphur chemistry is thought to be of great importance for exoplanets. Doing this requires detailed knowledge of the spectroscopic properties of sulphur containing molecules such as hydrogen sulphide (H2S) [1], sulphur dioxide (SO2), and sulphur trioxide (SO3). Each of these molecules can be found in terrestrial environments, produced in volcano emissions on Earth, and analysis of their spectroscopic data can prove useful to the characterisation of exoplanets, as well as the study of planets in our own solar system, with both having a possible presence on Venus. A complete, high temperature list of line positions and intensities for H32 2 S is presented. The DVR3D program suite is used to calculate the bound ro-vibration energy levels, wavefunctions, and dipole transition intensities using Radau coordinates. The calculations are based on a newly determined, spectroscopically refined potential energy surface (PES) and a new, high accuracy, ab initio dipole moment surface (DMS). Tests show that the PES enables us to calculate the line positions accurately and the DMS gives satisfactory results for line intensities. Comparisons with experiment as well as with previous theoretical spectra will be presented. The results of this study will form an important addition to the databases which are considered as sources of information for space applications; especially, in analysing the spectra of extrasolar planets, and remote sensing studies for Venus and Earth, as well as laboratory investigations and pollution studies. An ab initio line list for SO3 was previously computed using the variational nuclear motion program TROVE [2], and was suitable for modelling room temperature SO3 spectra. The calculations considered transitions in the region of 0-4000 cm-1 with rotational states up to J = 85, and includes 174,674,257 transitions. A list of 10,878 experimental transitions had relative intensities placed on an absolute scale, and were provided in a form suitable

  6. Accurate transition rates for intercombination lines of singly ionized nitrogen

    SciTech Connect

    Tayal, S. S.

    2011-01-15

    The transition energies and rates for the 2s{sup 2}2p{sup 2} {sup 3}P{sub 1,2}-2s2p{sup 3} {sup 5}S{sub 2}{sup o} and 2s{sup 2}2p3s-2s{sup 2}2p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p{sup 3} {sup 1,3}P{sub 1}{sup o} and 2s{sup 2}2p3s {sup 1,3}P{sub 1}{sup o}levels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  7. Fast and accurate line scanner based on white light interferometry

    NASA Astrophysics Data System (ADS)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  8. Optical fiber sensor for tracking line-focus solar collectors.

    PubMed

    Wiczer, J J

    1982-08-01

    Currently there is a need to provide an alignment monitor feedback signal to the tracking mechanism of line-focus trough-type concentrating solar collectors. We report here on the novel use of an optical fiber as a distributed integrating sensor to generate such a signal. Experiments have shown that 3.0 m of optical fiber exposed to concentrated sunlight equal to ~40 suns in intensity will generate 1 microA of signal current in a silicon photodiode. These data were measured in an experimental line-focus solar collector using solar flux conditions common to this type of collector.

  9. Accurate Ritz Wavelengths of Parity-forbidden [Co II] and [V II] Lines of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-01

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 × 10-2 s-1 and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  10. ACCURATE RITZ WAVELENGTHS OF PARITY-FORBIDDEN [Co II] AND [V II] LINES OF ASTROPHYSICAL INTEREST

    SciTech Connect

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-15

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 Multiplication-Sign 10{sup -2} s{sup -1} and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  11. Line focus concentrating collector for Copper Mountain Ski Resort, Colorado (Engineering Materials)

    SciTech Connect

    Not Available

    1983-06-02

    The present invention is a device which develops an accurate line focus concentrating collector by flexural bending of thin reflective materials. This method avoids the need for expensive tooling and support frame fabrication. The technical work conducted during this quarter included completion of designs for the prototype system for the Copper Mountain Ski Resort in Colorado. Evaluation of alternate tracking and drive systems and final design of the support system. These drawings accompany DOE/CS/15072--T4.

  12. Accurate mask registration on tilted lines for 6F2 DRAM manufacturing

    NASA Astrophysics Data System (ADS)

    Roeth, K. D.; Choi, W.; Lee, Y.; Kim, S.; Yim, D.; Laske, F.; Ferber, M.; Daneshpanah, M.; Kwon, E.

    2015-10-01

    193nm immersion lithography is the mainstream production technology for the 22nm half pitch (HP) DRAM manufacturing. Considering multi-patterning as the technology to solve the very low k1 situation in the resolution equation puts extreme pressure on the intra-field overlay, to which mask registration error may be a significant error contributor [3]. The International Technology Roadmap for Semiconductors (ITRS [1]) requests a registration error below 4 nm for each mask of a multi-patterning set forming one layer on the wafer. For mask metrology at the 22nm HP node, maintaining a precision-to-tolerance (P/T) ratio below 0.25 will be very challenging. Mask registration error impacts intra-field wafer overlay directly and has a major impact on wafer yield. DRAM makers moved several years ago to 6F2 (figure 1, [2]) cell design and thus printing tilted lines at 15 or 30 degree. Overlay of contact layer over buried line has to be well controlled. However, measuring mask registration performance accurately on tilted lines was a challenge. KLA Tencor applied the model-based algorithm to enable the accurate registration measurement of tilted lines on the Poly layer as well as the mask-to-mask overlay to the adjacent contact layers. The metrology solution is discussed and measurement results are provided.

  13. Development of an accurate transmission line fault locator using the global positioning system satellites

    NASA Technical Reports Server (NTRS)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  14. Self assembled nanoparticle aggregates from line focused femtosecond laser ablation.

    PubMed

    Zuhlke, Craig A; Alexander, Dennis R; Bruce, John C; Ianno, Natale J; Kamler, Chad A; Yang, Weiqing

    2010-03-01

    In this paper we present the use of a line focused femtosecond laser beam that is rastered across a 2024 T3 aluminum surface to produce nanoparticles that self assemble into 5-60 micron diameter domed and in some cases sphere-shaped aggregate structures. Each time the laser is rastered over initial aggregates their diameter increases as new layers of nanoparticles self assemble on the surface. The aggregates are thus composed of layers of particles forming discrete layered shells inside of them. When micron size aggregates are removed, using an ultrasonic bath, rings are revealed that have been permanently formed in the sample surface. These rings appear underneath, and extend beyond the physical boundary of the aggregates. The surface is blackened by the formation of these structures and exhibits high light absorption. PMID:20389444

  15. Accurate oscillator strengths for ultraviolet lines of Ar I - Implications for interstellar material

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Beideck, D. J.; Schectman, R. M.; York, D. G.

    1992-01-01

    Analysis of absorption from interstellar Ar I in lightly reddened lines of sight provides information on the warm and hot components of the interstellar medium near the sun. The details of the analysis are limited by the quality of the atomic data. Accurate oscillator strengths for the Ar I lines at 1048 and 1067 A and the astrophysical implications are presented. From lifetimes measured with beam-foil spectroscopy, an f-value for 1048 A of 0.257 +/- 0.013 is obtained. Through the use of a semiempirical formalism for treating singlet-triplet mixing, an oscillator strength of 0.064 +/- 0.003 is derived for 1067 A. Because of the accuracy of the results, the conclusions of York and colleagues from spectra taken with the Copernicus satellite are strengthened. In particular, for interstellar gas in the solar neighborhood, argon has a solar abundance, and the warm, neutral material is not pervasive.

  16. Focusing and matching properties of the ATR transfer line

    SciTech Connect

    Tsoupas, N.; Fischer, W.; Kewisch, J.; MacKay, W.W.; Peggs, S.; Pilat, F.; Tepikian, S.; Wei, J.

    1997-07-01

    The AGS to RHIC (AtR) beam transfer line has been constructed and will be used to transfer beam bunches from the AGS machine into the RHIC machine which is presently under construction at BNL. The original design of the AtR line has been modified. This article will present the optics of the various sections of the existing AtR beam line, as well as the matching capabilities of the AtR line to the RHIC machine.

  17. Accurate characterization and modeling of transmission lines for GaAs MMIC's

    NASA Astrophysics Data System (ADS)

    Finlay, Hugh J.; Jansen, Rolf H.; Jenkins, John A.; Eddison, Ian G.

    1988-06-01

    The authors discuss computer-aided design (CAD) tools together with high-accuracy microwave measurements to realize improved design data for GaAs monolithic microwave integrated circuits (MMICs). In particular, a combined theoretical and experimental approach to the generation of an accurate design database for transmission lines on GaAs MMICs is presented. The theoretical approach is based on an improved transmission-line theory which is part of the spectral-domain hybrid-mode computer program MCLINE. The benefit of this approach in the design of multidielectric-media transmission lines is described. The program was designed to include loss mechanisms in all dielectric layers and to include conductor and surface roughness loss contributions. As an example, using GaAs ring resonator techniques covering 2 to 24 GHz, accuracies in effective dielectric constant and loss of 1 percent and 15 percent respectively, are presented. By combining theoretical and experimental techniques, a generalized MMIC microstrip design database is outlined.

  18. Gravitational Focusing and the Computation of an Accurate Moon/Mars Cratering Ratio

    NASA Technical Reports Server (NTRS)

    Matney, Mark J.

    2006-01-01

    There have been a number of attempts to use asteroid populations to simultaneously compute cratering rates on the Moon and bodies elsewhere in the Solar System to establish the cratering ratio (e.g., [1],[2]). These works use current asteroid orbit population databases combined with collision rate calculations based on orbit intersections alone. As recent work on meteoroid fluxes [3] have highlighted, however, collision rates alone are insufficient to describe the cratering rates on planetary surfaces - especially planets with stronger gravitational fields than the Moon, such as Earth and Mars. Such calculations also need to include the effects of gravitational focusing, whereby the spatial density of the slower-moving impactors is preferentially "focused" by the gravity of the body. This leads overall to higher fluxes and cratering rates, and is highly dependent on the detailed velocity distributions of the impactors. In this paper, a comprehensive gravitational focusing algorithm originally developed to describe fluxes of interplanetary meteoroids [3] is applied to the collision rates and cratering rates of populations of asteroids and long-period comets to compute better cratering ratios for terrestrial bodies in the Solar System. These results are compared to the calculations of other researchers.

  19. Intrinsic spatial shift of local focus metric curves in digital inline holography for accurate 3D morphology measurement of irregular micro-objects

    NASA Astrophysics Data System (ADS)

    Wu, Yingchun; Wu, Xuecheng; Lebrun, Denis; Brunel, Marc; Coëtmellec, Sébastien; Lesouhaitier, Olivier; Chen, Jia; Gréhan, Gérard

    2016-09-01

    A theoretical model of digital inline holography system reveals that the local focus metric curves (FMCs) of different parts of an irregular micro-object present spatial shift in the depth direction which is resulted from the depth shift. Thus, the 3D morphology of an irregular micro-object can be accurately measured using the cross correlation of the local FMCs. This method retrieves the 3D depth information directly, avoiding the uncertainty inherited from the depth position determination. Typical 3D morphology measurements, including the 3D boundary lines of tilted carbon fibers and irregular coal particles, and the 3D swimming gesture of a live Caenorhabdities elegans, are presented.

  20. Improved highly accurate localized motion imaging for monitoring high-intensity focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Qu, Xiaolei; Azuma, Takashi; Sugiyama, Ryusuke; Kanazawa, Kengo; Seki, Mika; Sasaki, Akira; Takeuchi, Hideki; Fujiwara, Keisuke; Itani, Kazunori; Tamano, Satoshi; Takagi, Shu; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-07-01

    Visualizing an area subjected to high-intensity focused ultrasound (HIFU) therapy is necessary for controlling the amount of HIFU exposure. One of the promising monitoring methods is localized motion imaging (LMI), which estimates coagulation length by detecting the change in stiffness. In this study, we improved the accuracy of our previous LMI by dynamic cross-correlation window (DCCW) and maximum vibration amount (MVA) methods. The DCCW method was used to increase the accuracy of estimating vibration amplitude, and the MVA method was employed to increase signal-noise ratio of the decrease ratio at the coagulated area. The qualitative comparison of results indicated that the two proposed methods could suppress the effect of noise. Regarding the results of the quantitative comparison, coagulation length was estimated with higher accuracy by the improved LMI method, and the root-mean-square error (RMSE) was reduced from 2.51 to 1.69 mm.

  1. Using Focused Regression for Accurate Time-Constrained Scaling of Scientific Applications

    SciTech Connect

    Barnes, B; Garren, J; Lowenthal, D; Reeves, J; de Supinski, B; Schulz, M; Rountree, B

    2010-01-28

    Many large-scale clusters now have hundreds of thousands of processors, and processor counts will be over one million within a few years. Computational scientists must scale their applications to exploit these new clusters. Time-constrained scaling, which is often used, tries to hold total execution time constant while increasing the problem size along with the processor count. However, complex interactions between parameters, the processor count, and execution time complicate determining the input parameters that achieve this goal. In this paper we develop a novel gray-box, focused median prediction errors are less than 13%. regression-based approach that assists the computational scientist with maintaining constant run time on increasing processor counts. Combining application-level information from a small set of training runs, our approach allows prediction of the input parameters that result in similar per-processor execution time at larger scales. Our experimental validation across seven applications showed that median prediction errors are less than 13%.

  2. Improved highly accurate localized motion imaging for monitoring high-intensity focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Qu, Xiaolei; Azuma, Takashi; Sugiyama, Ryusuke; Kanazawa, Kengo; Seki, Mika; Sasaki, Akira; Takeuchi, Hideki; Fujiwara, Keisuke; Itani, Kazunori; Tamano, Satoshi; Takagi, Shu; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-07-01

    Visualizing an area subjected to high-intensity focused ultrasound (HIFU) therapy is necessary for controlling the amount of HIFU exposure. One of the promising monitoring methods is localized motion imaging (LMI), which estimates coagulation length by detecting the change in stiffness. In this study, we improved the accuracy of our previous LMI by dynamic cross-correlation window (DCCW) and maximum vibration amount (MVA) methods. The DCCW method was used to increase the accuracy of estimating vibration amplitude, and the MVA method was employed to increase signal–noise ratio of the decrease ratio at the coagulated area. The qualitative comparison of results indicated that the two proposed methods could suppress the effect of noise. Regarding the results of the quantitative comparison, coagulation length was estimated with higher accuracy by the improved LMI method, and the root-mean-square error (RMSE) was reduced from 2.51 to 1.69 mm.

  3. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  4. The Importance of Accurate Atomic and Molecular Line-lists for Characterizing Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Freedman, R.; Tennyson, J.

    2013-06-01

    Recent advancements in exoplanet observations are placing unprecedented constraints on the physical and chemical properties of exoplanetary atmospheres. Statistically significant constraints have been placed on the abundances of atomic and molecular species, elemental abundance ratios, temperature profiles, energy circulation, presence of hazes/clouds, and non-equilibrium chemistry, in several exoplanetary atmospheres, including gas giants, ice giants, as well as super-Earths, over a wide temperature range. The chemical constraints have also motivated new paradigms for classifying exoplanets and new efforts to constraint their formation conditions. Central to all interpretations of exoplanet spectra, however, is the accuracy of fundamental inputs in the models, primarily, the atomic and molecular opacities, which are derived from laboratory experiments and/or ab initio numerical calculations. In this talk, we will review the state-of-the-art in atomic and molecular line-lists as applied to studies of exoplanetary atmospheres. We will discuss examples where advances in laboratory astrophysics, experimental and computational, have addressed important problems in the area of exoplanetary atmospheres, as well as outstanding questions requiring new experiments and/or theoretical calculations. For example, recent studies are suggesting that high-temperature line-lists of hydrocarbons (CH4, C2H2, HCN, etc.), and several metal hydrides, in addition to refined line-lists of several well-studied molecules, are important to accurately interpret exoplanetary spectra. We will highlight several fundamental questions in the area that require new efforts in laboratory astrophysics. Besides their importance in interpreting observations with current instruments, the refined parameters are also critical in the assessment of future facilities for exoplanet characterization, such as JWST, GMT, etc.

  5. Reengineering a surgical service line: focusing on core process improvement.

    PubMed

    Kelly, D L; Pestotnik, S L; Coons, M C; Lelis, J W

    1997-01-01

    Integrating principles from a variety of theory has led to the development of a conceptual framework for reengineering in a clinical care delivery setting to improve the value of services provided to the customer. A conceptual framework involving the identification of three high level core processes to reengineer can provide clarity and focus for clinicians to begin directing reengineering efforts. Those core processes are: clinical management of the patient's medical needs, patient operational processes to support the clinical processes, and administrative decision-making processes to support the implementation of the clinical and operational processes. Improvement in any one of these areas has the potential to increase value, but the concurrent targeting of these core processes for reengineering has provided a synergy that has accelerated the achievement of the desired outcomes in the area of surgical services. PMID:9161059

  6. Accurate On-Line Intervention Practices for Efficient Improvement of Reading Skills in Africa

    ERIC Educational Resources Information Center

    Marshall, Minda B.

    2016-01-01

    Lifelong learning is the only way to sustain proficient learning in a rapidly changing world. Knowledge and information are exploding across the globe. We need accurate ways to facilitate the process of drawing external factual information into an internal perceptive advantage from which to interpret and argue new information. Accurate and…

  7. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  8. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  9. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  10. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  11. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  12. Accurate CO{sub 2} laser frequencies and molecular constants of regular and new hot-band lines

    SciTech Connect

    Chou, Che-Chung; Shy, Jow-Tsong; Maki, A.G.

    1994-12-31

    A new, high-resolution, highly efficient, cw, CO{sub 2} laser oscillating on more than 250 lines including over 40 lines in the new 9 {mu}m hot band has been built at NIST, Boulder. The frequencies of the 9 and 10 {mu}m hot band lines and high J (to J=66) regular band lines of {sup 12}C{sup 16}O{sub 2} , which now fill the gap between the 9 and 10 {mu}m regions, have been locked to saturated fluorescence signals in CO{sub 2}, and measured. New molecular constants and more accurate frequencies of the four common isotopes of CO{sub 2} have been obtained.

  13. Line Shape Parameters for CO_2 Transitions: Accurate Predictions from Complex Robert-Bonamy Calculations

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Gamache, Robert R.

    2013-06-01

    A model for the prediction of the vibrational dependence of CO_2 half-widths and line shifts for several broadeners, based on a modification of the model proposed by Gamache and Hartmann, is presented. This model allows the half-widths and line shifts for a ro-vibrational transition to be expressed in terms of the number of vibrational quanta exchanged in the transition raised to a power p and a reference ro-vibrational transition. Complex Robert-Bonamy calculations were made for 24 bands for lower rotational quantum numbers J'' from 0 to 160 for N_2-, O_2-, air-, and self-collisions with CO_2. In the model a Quantum Coordinate is defined by (c_1 Δν_1 + c_2 Δν_2 + c_3 Δν_3)^p where a linear least-squares fit to the data by the model expression is made. The model allows the determination of the slope and intercept as a function of rotational transition, broadening gas, and temperature. From these fit data, the half-width, line shift, and the temperature dependence of the half-width can be estimated for any ro-vibrational transition, allowing spectroscopic CO_2 databases to have complete information for the line shape parameters. R. R. Gamache, J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer. {{83}} (2004), 119. R. R. Gamache, J. Lamouroux, J. Quant. Spectrosc. Radiat. Transfer. {{117}} (2013), 93.

  14. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    PubMed

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  15. Examining Student Conceptions of Covariation: A Focus on the Line of Best Fit

    ERIC Educational Resources Information Center

    Casey, Stephanie A.

    2015-01-01

    The purpose of this research study was to learn about students' conceptions concerning the line of best fit just prior to their introduction to the topic. Task-based interviews were conducted with thirty-three students, focused on five tasks that asked them to place the line of best fit on a scatterplot and explain their reasoning throughout the…

  16. Limited rotational and rovibrational line lists computed with highly accurate quartic force fields and ab initio dipole surfaces.

    PubMed

    Fortenberry, Ryan C; Huang, Xinchuan; Schwenke, David W; Lee, Timothy J

    2014-02-01

    In this work, computational procedures are employed to compute the rotational and rovibrational spectra and line lists for H2O, CO2, and SO2. Building on the established use of quartic force fields, MP2 and CCSD(T) Dipole Moment Surfaces (DMSs) are computed for each system of study in order to produce line intensities as well as the transition energies. The computed results exhibit a clear correlation to reference data available in the HITRAN database. Additionally, even though CCSD(T) DMSs produce more accurate intensities as compared to experiment, the use of MP2 DMSs results in reliable line lists that are still comparable to experiment. The use of the less computationally costly MP2 method is beneficial in the study of larger systems where use of CCSD(T) would be more costly. PMID:23692860

  17. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.

    PubMed

    Regalia, Giulia; Coelli, Stefania; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting "building blocks" into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis. PMID:27239191

  18. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis

    PubMed Central

    Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting “building blocks” into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis. PMID:27239191

  19. Accurate Calculation of Oscillator Strengths for CI II Lines Using Non-orthogonal Wavefunctions

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2004-01-01

    Non-orthogonal orbitals technique in the multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities for allowed and intercombination lines in Cl II. The relativistic corrections are included through the Breit-Pauli Hamiltonian. The Cl II wave functions show strong term dependence. The non-orthogonal orbitals are used to describe the term dependence of radial functions. Large sets of spectroscopic and correlation functions are chosen to describe adequately strong interactions in the 3s(sup 2)3p(sup 3)nl (sup 3)Po, (sup 1)Po and (sup 3)Do Rydberg series and to properly account for the important correlation and relaxation effects. The length and velocity forms of oscillator strength show good agreement for most transitions. The calculated radiative lifetime for the 3s3p(sup 5) (sup 3)Po state is in good agreement with experiment.

  20. Highly Accurate Semi-Empirical IR Line Lists of Asymmetric SO2 Isotopologues: SO18O and SO17O

    NASA Astrophysics Data System (ADS)

    Huang, X.; Schwenke, D.; Lee, T. J.

    2015-12-01

    Atmosphere models and simulations of Venus, Mars, and Exo-planets will greatly benefit from complete and accurate Infrared spectra data of important molecules such as SO2 and CO2. Currently, high resolution spectra data for SO2 is very limited at 296K and mainly for the primary isotopologue 626. It cannot effectively support the observed data analysis and simulations. Recently we published a semi-empirically refined potential energy surface, denoted Ames-1, and Ames-296K IR line lists for SO2 626 and a few symmetric isotopologues including 646, 636, 666 and 828. The accuracy of line positions is around 0.01 - 0.03 cm-1 for most transitions. For intensities, most deviations are less than 5-15%. Now we have carried out new potential energy surface refinements by including latest experimental data and those of isotopologues. On the newly fitted surface, for the first time we have computed 296K line lists for the two most abundant asymmetric isotopologues, SO2 628 and SO2 627. We will present the spectra simulations of SO2 628 and SO2 627, and compare it with latest high resolution experimental spectroscopy of SO2 628. A composite "natural" line list at 296K is also available with terrestial abundances. These line lists will be available to download at http://huang.seti.org.

  1. Evaluation of line focus solar central power systems. Volume II. Systems evaluation

    SciTech Connect

    Not Available

    1980-03-15

    An evaluation was completed to ascertain the applicability of line focus technologies to electrical power applications and to compare their performance and cost potential with point focus central receiver power systems. It was concluded that although the high temperature line focus (SRI) and fixed mirror line focus (GA) concepts duplicate the heat source characteristics and power conversion technology of the central receiver concepts these configurations do not offer a sufficient improvement in cost to warrant full scale development. The systems are, however, less complex than their point focus counterpart and should the central receiver system development falter they provide reasonable technology alternatives. The parabolic trough concept (BDM) was found to provide a low temperature technology alternative to the central receiver concept with promising performance and cost potential. Its continued development is recommended, with special emphasis on lower temperature (< 700/sup 0/F) applications. Finally, a variety of new promising line focus power system configurations were identified for a range of utility and industrial applications and recommendations were made on their implementation. This volume contains the detailed report. (WHK)

  2. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    SciTech Connect

    Bergeron, K D; Champion, R L; Hunke, R W

    1980-04-01

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  3. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  4. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  5. Polyallelic structural variants can provide accurate, highly informative genetic markers focused on diagnosis and therapeutic targets: Accuracy vs. Precision.

    PubMed

    Roses, A D

    2016-02-01

    Structural variants (SVs) include all insertions, deletions, and rearrangements in the genome, with several common types of nucleotide repeats including single sequence repeats, short tandem repeats, and insertion-deletion length variants. Polyallelic SVs provide highly informative markers for association studies with well-phenotyped cohorts. SVs can influence gene regulation by affecting epigenetics, transcription, splicing, and/or translation. Accurate assays of polyallelic SV loci are required to define the range and allele frequency of variable length alleles. PMID:26517180

  6. Focus detection from digital in-line holograms based on spectral l1 norms.

    PubMed

    Li, Weichang; Loomis, Nick C; Hu, Qiao; Davis, Cabell S

    2007-10-01

    A rapid focus-detection technique based directly on the spectral content of digital holograms is developed. It differs from previous approaches in that it does not need a full reconstruction of the image. The technique uses l(1) norms of object spectral components associated with the real and imaginary parts of the reconstruction kernel. Further, the l(1) norms can be computed efficiently in the spatial frequency domain using a polar coordinate system, yielding a drastic speedup of approximately 2 orders of magnitude compared with image-based focus detection. Significant computational savings are achieved when subsequent image reconstructions are done selectively over the detected focus distances. Focus-detection results from holograms of plankton are demonstrated that show the technique is both accurate and robust. PMID:17912295

  7. Mitigation of X-ray damage in macromolecular crystallography by submicrometre line focusing.

    PubMed

    Finfrock, Y Zou; Stern, Edward A; Alkire, R W; Kas, Joshua J; Evans-Lutterodt, Kenneth; Stein, Aaron; Duke, Norma; Lazarski, Krzysztof; Joachimiak, Andrzej

    2013-08-01

    Reported here are measurements of the penetration depth and spatial distribution of photoelectron (PE) damage excited by 18.6 keV X-ray photons in a lysozyme crystal with a vertical submicrometre line-focus beam of 0.7 µm full-width half-maximum (FWHM). The experimental results determined that the penetration depth of PEs is 5 ± 0.5 µm with a monotonically decreasing spatial distribution shape, resulting in mitigation of diffraction signal damage. This does not agree with previous theoretical predication that the mitigation of damage requires a peak of damage outside the focus. A new improved calculation provides some qualitative agreement with the experimental results, but significant errors still remain. The mitigation of radiation damage by line focusing was measured experimentally by comparing the damage in the X-ray-irradiated regions of the submicrometre focus with the large-beam case under conditions of equal exposure and equal volumes of the protein crystal, and a mitigation factor of 4.4 ± 0.4 was determined. The mitigation of radiation damage is caused by spatial separation of the dominant PE radiation-damage component from the crystal region of the line-focus beam that contributes the diffraction signal. The diffraction signal is generated by coherent scattering of incident X-rays (which introduces no damage), while the overwhelming proportion of damage is caused by PE emission as X-ray photons are absorbed.

  8. Focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Lee, M. A.; Klecker, B.; Ipavich, F. M.

    1992-01-01

    Evidence is presented for focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection. This evidence was obtained with the University of Maryland/Max-Planck-Institute experiment on the ISEE-3 spacecraft during the decay phase of the June 6, 1979, solar particle event. During the early portion of the decay phase of this event, interplanetary magnetic field lines were apparently draped around a coronal mass ejection, leading to a small focusing length on the western flank where ISEE 3 was located. A period of very slow decrease of particle intensity was observed, along with large sunward anisotropy in the solar wind frame, which is inconsistent with predictions of the standard Fokker-Planck equation models for diffusive transport. It was found possible to fit the observations, assuming that focused transport dominates and that the particle pitch angle scattering is isotropic.

  9. Line-focusing electromagnetic acoustic transducers for the detection of slit defects.

    PubMed

    Ogi, H; Hirao, M; Ohtani, T

    1999-01-01

    This paper describes the design principles of a line-focusing electromagnetic acoustic transducer (LF-EMAT) and the results of a feasibility test for detecting slit-type defects in metals. The LF-EMAT excites shear vertical (SV) elastic waves and focuses them to a line in a metal body. It consists of a permanent magnet block and a meanderline coil, whose spacing is continuously varied so that the excited SV waves become coherent on a focal line after traveling oblique paths. The measured directivity of generation and reception show a sharp peak at the designed focal line. The LF-EMATs are then applied to detecting slit defects in the bottom surface of steel blocks, on which the focal lines are located. Portions of the scattered defect signals are received by the same EMAT. When operated at 4 MHz, the LF-EMATs are capable of detecting slits deeper than 0.05 mm. The sensitivity decreases with liftoff and the LF-EMATs are usable with liftoff up to 0.6 mm. PMID:18238430

  10. Determination of near-surface material properties by line-focus acoustic microscopy

    SciTech Connect

    Achenbach, J.D.; Li, W.

    1996-12-31

    A line-focus acoustic microscope is used in conjunction with a multiple wave-mode method to determine elastic constants from a single V(z) measurement. V(z) curves which include contributions from different wave modes, measured using the line-focus acoustic microscope at 225 MHz, have been compared with theoretical results predicted by a V(z) measurement model. The determination of elastic constants has been achieved numerically by seeking a set of elastic constants that leads to the best fit, in the least square sense, of the theoretical results to the experimental ones. The method has been applied to isotropic materials in bulk, and plate and thin-film configurations. Elastic constants for each of these cases have been determined. The consistency, convergence, sensitivity and accuracy of the procedure have been investigated.

  11. Energy transport in plasmas produced by a high brightness krypton fluoride laser focused to a line

    NASA Astrophysics Data System (ADS)

    Al-Hadithi, Y.; Tallents, G. J.; Zhang, J.; Key, M. H.; Norreys, P. A.; Kodama, R.

    1994-05-01

    A high brightness krypton fluoride Raman laser (wavelength 0.268 μm) generating 0.3 TW, 12 ps pulses with 20 μrad beam divergence and a prepulse of less than 10-10 has been focused to produce a 10 μm wide line focus (irradiances ˜0.8-4×1015 W cm-2) on plastic targets with a diagnostic sodium fluoride (NaF) layer buried within the target. Axial and lateral transport of energy has been measured by analysis of x-ray images of the line focus and from x-ray spectra emitted by the layer of NaF with varying overlay thicknesses. It is shown that the ratio of the distance between the critical density surface and the ablation surface to the laser focal width controls lateral transport in a similar manner as for previous spot focus experiments. The measured axial energy transport is compared to medusa [J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, Comput. Phys. Commun. 7, 271 (1974)] one-dimensional hydrodynamic code simulations with an average atom post-processor for predicting spectral line intensities. An energy absorption of ˜10% in the code gives agreement with the experimental axial penetration. Various measured line ratios of hydrogen- and helium-like Na and F are investigated as temperature diagnostics in the NaF layer using the ration [R. W. Lee, B. L. Whitten, and R. E. Strout, J. Quant. Spectrosc. Radiat. Transfer 32, 91 (1984)] code.

  12. THE EFFECT OF STARSPOTS ON ACCURATE RADIUS DETERMINATION OF THE LOW-MASS DOUBLE-LINED ECLIPSING BINARY GU Boo

    SciTech Connect

    Windmiller, G.; Orosz, J. A.; Etzel, P. B. E-mail: orosz@sciences.sdsu.ed

    2010-04-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. Lopez-Morales and Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by Lopez-Morales and Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, Lopez-Morales and Ribas derived masses and radii accurate to {approx_equal}2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spots in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of Lopez-Morales and Ribas using models with and without spots. We derived a radius of the primary of 0.6329 +- 0.0026 R{sub sun}, 0.6413 +- 0.0049 R{sub sun}, and 0.6373 +- 0.0029 R{sub sun} from the CCD, photoelectric, and Lopez-Morales and Ribas data, respectively. Each of these measurements agrees with the value reported by Lopez-Morales and Ribas (R{sub 1} = 0.623 +- 0.016 R{sub sun}) at the level of {approx}2%. In addition, the spread in these values is {approx}1%-2% from the mean. For the secondary, we derive radii of 0.6074 +- 0.0035 R{sub sun}, 0.5944 +- 0.0069 R{sub sun}, and 0.5976 +- 0.0059 R{sub sun} from the three respective data sets. The Lopez-Morales and Ribas value is R{sub 2} = 0.620 +- 0.020 R{sub sun}, which is {approx}2%-3% larger than each of the three values we found. The spread in these values is {approx}2% from the mean. The systematic difference between our three determinations of the secondary radius and that of Lopez-Morales and Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations

  13. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  14. Accurate collision-induced line-coupling parameters for the fundamental band of CO in He - Close coupling and coupled states scattering calculations

    NASA Technical Reports Server (NTRS)

    Green, Sheldon; Boissoles, J.; Boulet, C.

    1988-01-01

    The first accurate theoretical values for off-diagonal (i.e., line-coupling) pressure-broadening cross sections are presented. Calculations were done for CO perturbed by He at thermal collision energies using an accurate ab initio potential energy surface. Converged close coupling, i.e., numerically exact values, were obtained for coupling to the R(0) and R(2) lines. These were used to test the coupled states (CS) and infinite order sudden (IOS) approximate scattering methods. CS was found to be of quantitative accuracy (a few percent) and has been used to obtain coupling values for lines to R(10). IOS values are less accurate, but, owing to their simplicity, may nonetheless prove useful as has been recently demonstrated.

  15. Modelling and optimization of transient processes in line focusing power plants with single-phase heat transfer medium

    NASA Astrophysics Data System (ADS)

    Noureldin, K.; González-Escalada, L. M.; Hirsch, T.; Nouri, B.; Pitz-Paal, R.

    2016-05-01

    A large number of commercial and research line focusing solar power plants are in operation and under development. Such plants include parabolic trough collectors (PTC) or linear Fresnel using thermal oil or molten salt as the heat transfer medium (HTM). However, the continuously varying and dynamic solar condition represent a big challenge for the plant control in order to optimize its power production and to keep the operation safe. A better understanding of the behaviour of such power plants under transient conditions will help reduce defocusing instances, improve field control, and hence, increase the energy yield and confidence in this new technology. Computational methods are very powerful and cost-effective tools to gain such understanding. However, most simulation models described in literature assume equal mass flow distributions among the parallel loops in the field or totally decouple the flow and thermal conditions. In this paper, a new numerical model to simulate a whole solar field with single-phase HTM is described. The proposed model consists of a hydraulic part and a thermal part that are coupled to account for the effect of the thermal condition of the field on the flow distribution among the parallel loops. The model is specifically designed for large line-focusing solar fields offering a high degree of flexibility in terms of layout, condition of the mirrors, and spatially resolved DNI data. Moreover, the model results have been compared to other simulation tools, as well as experimental and plant data, and the results show very good agreement. The model can provide more precise data to the control algorithms to improve the plant control. In addition, short-term and accurate spatially discretized DNI forecasts can be used as input to predict the field behaviour in-advance. In this paper, the hydraulic and thermal parts, as well as the coupling procedure, are described and some validation results and results of simulating an example field are

  16. Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits

    NASA Astrophysics Data System (ADS)

    Lee, Gun-Yeal; Lee, Seung-Yeol; Yun, Hansik; Park, Hyeonsoo; Kim, Joonsoo; Lee, Kyookeun; Lee, Byoungho

    2016-09-01

    The modulation of near-field signals has recently attracted considerable interest because of demands for the development of nano-scale optical devices that are capable of overcoming the diffraction limit of light. In this paper, we propose a new type of tuneable plasmonic lens that permits the foci of surface plasmon polariton (SPP) signals to be continuously steered by adjusting the input polarization state. The proposed structure consists of multi-lined nanoslit arrays, in which each array is tilted at a different angle to provide polarization sensitivity and the nanoslit size is adjusted to balance the relative amplitudes of the excited SPPs from each line. The nanoslits of each line are designed to focus SPPs at different positions; hence, the SPP focal length can be tuned by modifying the incident polarization state. Unlike in previously reported studies, our method enables plasmonic foci to be continuously varied with a smooth change in the incident linear polarization state. The proposed structures provide a novel degree of freedom in the multiplexing of near fields. Such characteristics are expected to enable the realization of active SPP modulation that can be applied in near-field imaging, optical tweezing systems, and integrated nano-devices.

  17. Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits.

    PubMed

    Lee, Gun-Yeal; Lee, Seung-Yeol; Yun, Hansik; Park, Hyeonsoo; Kim, Joonsoo; Lee, Kyookeun; Lee, Byoungho

    2016-01-01

    The modulation of near-field signals has recently attracted considerable interest because of demands for the development of nano-scale optical devices that are capable of overcoming the diffraction limit of light. In this paper, we propose a new type of tuneable plasmonic lens that permits the foci of surface plasmon polariton (SPP) signals to be continuously steered by adjusting the input polarization state. The proposed structure consists of multi-lined nanoslit arrays, in which each array is tilted at a different angle to provide polarization sensitivity and the nanoslit size is adjusted to balance the relative amplitudes of the excited SPPs from each line. The nanoslits of each line are designed to focus SPPs at different positions; hence, the SPP focal length can be tuned by modifying the incident polarization state. Unlike in previously reported studies, our method enables plasmonic foci to be continuously varied with a smooth change in the incident linear polarization state. The proposed structures provide a novel degree of freedom in the multiplexing of near fields. Such characteristics are expected to enable the realization of active SPP modulation that can be applied in near-field imaging, optical tweezing systems, and integrated nano-devices. PMID:27620281

  18. Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits

    PubMed Central

    Lee, Gun-Yeal; Lee, Seung-Yeol; Yun, Hansik; Park, Hyeonsoo; Kim, Joonsoo; Lee, Kyookeun; Lee, Byoungho

    2016-01-01

    The modulation of near-field signals has recently attracted considerable interest because of demands for the development of nano-scale optical devices that are capable of overcoming the diffraction limit of light. In this paper, we propose a new type of tuneable plasmonic lens that permits the foci of surface plasmon polariton (SPP) signals to be continuously steered by adjusting the input polarization state. The proposed structure consists of multi-lined nanoslit arrays, in which each array is tilted at a different angle to provide polarization sensitivity and the nanoslit size is adjusted to balance the relative amplitudes of the excited SPPs from each line. The nanoslits of each line are designed to focus SPPs at different positions; hence, the SPP focal length can be tuned by modifying the incident polarization state. Unlike in previously reported studies, our method enables plasmonic foci to be continuously varied with a smooth change in the incident linear polarization state. The proposed structures provide a novel degree of freedom in the multiplexing of near fields. Such characteristics are expected to enable the realization of active SPP modulation that can be applied in near-field imaging, optical tweezing systems, and integrated nano-devices. PMID:27620281

  19. Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits.

    PubMed

    Lee, Gun-Yeal; Lee, Seung-Yeol; Yun, Hansik; Park, Hyeonsoo; Kim, Joonsoo; Lee, Kyookeun; Lee, Byoungho

    2016-01-01

    The modulation of near-field signals has recently attracted considerable interest because of demands for the development of nano-scale optical devices that are capable of overcoming the diffraction limit of light. In this paper, we propose a new type of tuneable plasmonic lens that permits the foci of surface plasmon polariton (SPP) signals to be continuously steered by adjusting the input polarization state. The proposed structure consists of multi-lined nanoslit arrays, in which each array is tilted at a different angle to provide polarization sensitivity and the nanoslit size is adjusted to balance the relative amplitudes of the excited SPPs from each line. The nanoslits of each line are designed to focus SPPs at different positions; hence, the SPP focal length can be tuned by modifying the incident polarization state. Unlike in previously reported studies, our method enables plasmonic foci to be continuously varied with a smooth change in the incident linear polarization state. The proposed structures provide a novel degree of freedom in the multiplexing of near fields. Such characteristics are expected to enable the realization of active SPP modulation that can be applied in near-field imaging, optical tweezing systems, and integrated nano-devices.

  20. Theory and design of line-to-point focus solar concentrators with tracking secondary optics.

    PubMed

    Cooper, Thomas; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo

    2013-12-10

    The two-stage line-to-point focus solar concentrator with tracking secondary optics is introduced. Its design aims to reduce the cost per m(2) of collecting aperture by maintaining a one-axis tracking trough as the primary concentrator, while allowing the thermodynamic limit of concentration in 2D of 215× to be significantly surpassed by the implementation of a tracking secondary stage. The limits of overall geometric concentration are found to exceed 4000× when hollow secondary concentrators are used, and 6000× when the receiver is immersed in a dielectric material of refractive index n=1.5. Three exemplary collectors, with geometric concentrations in the range of 500-1500× are explored and their geometric performance is ascertained by Monte Carlo ray-tracing. The proposed solar concentrator design is well-suited for large-scale applications with discrete, flat receivers requiring concentration ratios in the range 500-2000×.

  1. Line-focus solar central power system, phase I. Subsystem experiment: receiver heat transfer

    SciTech Connect

    Slemmons, A J

    1980-04-01

    Wind-tunnel tests confirmed that heat losses due to natural convection are negligible in the line-focus, solar-powered receiver. Anomalies in the forced-convection tests prevented definitive conclusions regarding the more important forced convection. Flow-visualization tests using a water table show much lower velocities inside the receiver cavity than outside, supporting the supposition that the forced-heat transfer should be less than that from a standard exposed cylinder. Furthermore, the water-table tests showed ways to decrease the low velocities in the cavity should this be desired. Further wind-tunnel testing should be done to confirm estimates and to support advanced design. This testing can be done in standard wind tunnels since only the forced convection is of concern.

  2. An update on the development of a line-focus refractive concentrator array

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Oneill, Mark J.; Fraas, Lewis M.

    1994-01-01

    Concentrator arrays offer a number of generic benefits for space (i.e. high array efficiency, protection from space radiation effects, minimized plasma interactions, etc.). The line-focus refractive concept, however, also offers two very important advantages: (1) relaxation of precise array tracking requirements to only a single axis and (2) low-cost mass production of the lens material. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal errors for satellites having only single-axis tracking capability. New panel designs emphasize light weight, high stiffness, storability, and ease of manufacturing and assembly. This paper addresses the current status of the concentrator program with special emphasis on the design implications, and flexibility, of using a linear refractive concentrator lens as well as details recent fabrication of prototype hardware.

  3. Line-Focus Solar Power Plant Cost Reduction Plan (Milestone Report)

    SciTech Connect

    Kutscher, C.; Mehos, M.; Turchi, C.; Glatzmaier, G.; Moss, T.

    2010-12-01

    Line-focus solar collectors, in particular parabolic trough collectors, are the most mature and proven technology available for producing central electricity from concentrated solar energy. Because this technology has over 25 years of successful operational experience, resulting in a low perceived risk, it is likely that it will continue to be a favorite of investors for some time. The concentrating solar power (CSP) industry is developing parabolic trough projects that will cost billions of dollars, and it is supporting these projects with hundreds of millions of dollars of research and development funding. While this technology offers many advantages over conventional electricity generation -- such as utilizing plentiful domestic renewable fuel and having very low emissions of greenhouse gases and air pollutants -- it provides electricity in the intermediate power market at about twice the cost of its conventional competitor, combined cycle natural gas. The purpose of this document is to define a set of activities from fiscal year 2011 to fiscal year 2016 that will make this technology economically competitive with conventional means.

  4. Toward Accurate Reaction Energetics for Molecular Line Growth at Surface: Quantum Monte Carlo and Density Functional Theory Calculations

    SciTech Connect

    Kanai, Y; Takeuchi, N

    2009-10-14

    We revisit the molecular line growth mechanism of styrene on the hydrogenated Si(001) 2x1 surface. In particular, we investigate the energetics of the radical chain reaction mechanism by means of diffusion quantum Monte Carlo (QMC) and density functional theory (DFT) calculations. For the exchange correlation (XC) functional we use the non-empirical generalized-gradient approximation (GGA) and meta-GGA. We find that the QMC result also predicts the intra dimer-row growth of the molecular line over the inter dimer-row growth, supporting the conclusion based on DFT results. However, the absolute magnitudes of the adsorption and reaction energies, and the heights of the energy barriers differ considerably between the QMC and DFT with the GGA/meta-GGA XC functionals.

  5. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  6. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for ³²S¹⁶O₂ up to 8000 cm⁻¹.

    PubMed

    Huang, Xinchuan; Schwenke, David W; Lee, Timothy J

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (σ(RMS)) for all J = 0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(-1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm(-1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(-1) with 0.01-0.03 cm(-1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K(a)-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations. PMID:24655184

  7. Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility

    SciTech Connect

    Bambade, P.; Alabau Pons, M.; Amann, J.; Angal-Kalinin, D.; Apsimon, R.; Araki, S.; Aryshev, A.; Bai, S.; Bellomo, P.; Bett, D.; Blair, G.; Bolzon, B.; Boogert, S.; Boorman, G.; Burrows, P.N.; Christian, G.; Coe, P.; Constance, B.; Delahaye, Jean-Pierre; Deacon, L.; Elsen, E.; /DESY /Valencia U., IFIC /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Savoie U. /Fermilab /Ecole Polytechnique /KEK, Tsukuba /Kyungpook Natl. U. /KEK, Tsukuba /Pohang Accelerator Lab. /Kyoto U., Inst. Chem. Res. /Savoie U. /Daresbury /Tokyo U. /Royal Holloway, U. of London /Kyungpook Natl. U. /Pohang Accelerator Lab. /Tokyo U. /KEK, Tsukuba /SLAC /University Coll. London /KEK, Tsukuba /SLAC /Royal Holloway, U. of London /KEK, Tsukuba /Tokyo U. /SLAC /Tohoku U. /KEK, Tsukuba /Tokyo U. /Pohang Accelerator Lab. /Brookhaven /SLAC /Oxford U., JAI /SLAC /Orsay /KEK, Tsukuba /Oxford U., JAI /Orsay /Fermilab /Tohoku U. /Manchester U. /CERN /SLAC /Tokyo U. /KEK, Tsukuba /Oxford U., JAI /Hiroshima U. /KEK, Tsukuba /CERN /KEK, Tsukuba /Oxford U., JAI /Ecole Polytechnique /SLAC /Oxford U., JAI /Fermilab /SLAC /Liverpool U. /SLAC /Tokyo U. /SLAC /Tokyo U. /KEK, Tsukuba /SLAC /CERN

    2011-11-11

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  8. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  9. THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LATE-TYPE DOUBLE-LINED ECLIPSING BINARY OGLE SMC113.3 4007 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Graczyk, Dariusz; Pietrzynski, Grzegorz; Gieren, Wolfgang; Pilecki, Bogumil; Mennickent, Ronald E-mail: wgieren@astro-udec.cl; and others

    2012-05-10

    We have analyzed the long-period, double-lined eclipsing binary system OGLE SMC113.3 4007 (SC10 137844) in the Small Magellanic Cloud. The binary lies in the northeastern part of the galaxy and consists of two evolved, well-detached, non-active G8 giants. The orbit is eccentric with e = 0.311, and the orbital period is 371.6 days. Using extensive high-resolution spectroscopic and multi-color photometric data, we have determined a true distance modulus of the system of m - M = 18.83 {+-} 0.02 (statistical) {+-} 0.05 (systematic) mag using a surface-brightness-color relation for giant stars. This method is insensitive to metallicity and reddening corrections and depends only very little on stellar atmosphere model assumptions. Additionally, we derived very accurate, at the level of 1%-2%, physical parameters of both giant stars, particularly their masses and radii, making our results important for comparison with stellar evolution models. Our analysis underlines the high potential of late-type, double-lined detached binary systems for accurate distance determinations to nearby galaxies.

  10. Structural design considerations for a line-focus reflective module using inexpensive composite materials

    NASA Astrophysics Data System (ADS)

    Murphy, L. M.

    1982-08-01

    The structural design aspects of a parabolic trough reflective module is addressed. The reflective module is a lightweight, low flexural rigidity design that is rotated about the focal line. The modules and support frame are designed to rotate with a cable drive system in a cross row manner. Analysis indicates that the structural and optical aspects of the reflector frame concept are adequate, with dramatic savings in weight and costs for the structure.

  11. New operating strategies for molten salt in line focusing solar fields - Daily drainage and solar receiver preheating

    NASA Astrophysics Data System (ADS)

    Eickhoff, Martin; Meyer-Grünefeldt, Mirko; Keller, Lothar

    2016-05-01

    Nowadays molten salt is efficiently used in point concentrating solar thermal power plants. Line focusing systems still have the disadvantage of elevated heat losses at night because of active freeze protection of the solar field piping system. In order to achieve an efficient operation of line focusing solar power plants using molten salt, a new plant design and a novel operating strategy is developed for Linear Fresnel- and Parabolic Trough power plants. Daily vespertine drainage of the solar field piping and daily matutinal refilling of the solar preheated absorber tubes eliminate the need of nocturnal heating of the solar field and reduce nocturnal heat losses to a minimum. The feasibility of this new operating strategy with all its sub-steps has been demonstrated experimentally.

  12. Midtemperature Solar Systems Test Facility Program for predicting thermal performance of line-focusing, concentrating solar collectors

    SciTech Connect

    Harrison, T.D.

    1980-11-01

    The program at Sandia National Laboratories, Albuquerque, for predicting the performance of line-focusing solar collectors in industrial process heat applications is described. The qualifications of the laboratories selected to do the testing and the procedure for selecting commercial collectors for testing are given. The testing program is outlined. The computer program for performance predictions is described. An error estimate for the predictions and a sample of outputs from the program are included.

  13. Depth and all-in-focus images obtained by multi-line-scan light-field approach

    NASA Astrophysics Data System (ADS)

    Štolc, Svorad; Huber-Mörk, Reinhold; Holländer, Branislav; Soukup, Daniel

    2014-03-01

    We present a light-field multi-line-scan image acquisition and processing system intended for the 2.5/3-D inspection of fine surface structures, such as small parts, security print, etc. in an industrial environment. The system consists of an area-scan camera, that allows for a small number of sensor lines to be extracted at high frame rates, and a mechanism for transporting the inspected object at a constant speed. During the acquisition, the object is moved orthogonally to the camera's optical axis as well as the orientation of the sensor lines. In each time step, a predefined subset of lines is read out from the sensor and stored. Afterward, by collecting all corresponding lines acquired over time, a 3-D light field is generated, which consists of multiple views of the object observed from different viewing angles while transported w.r.t. the acquisition device. This structure allows for the construction of so-called epipolar plane images (EPIs) and subsequent EPI-based analysis in order to achieve two main goals: (i) the reliable estimation of a dense depth model and (ii) the construction of an all-in-focus intensity image. Beside specifics of our hardware setup, we also provide a detailed description of algorithmic solutions for the mentioned tasks. Two alternative methods for EPI-based analysis are compared based on artificial and real-world data.

  14. Depth and all-in-focus imaging by a multi-line-scan light-field camera

    NASA Astrophysics Data System (ADS)

    Štolc, Svorad; Soukup, Daniel; Holländer, Branislav; Huber-Mörk, Reinhold

    2014-09-01

    We present a multi-line-scan light-field image acquisition and processing system designed for 2.5/3-D inspection of fine surface structures in industrial environments. The acquired three-dimensional light field is composed of multiple observations of an object viewed from different angles. The acquisition system consists of an area-scan camera that allows for a small number of sensor lines to be extracted at high frame rates, and a mechanism for transporting an inspected object at a constant speed and direction. During acquisition, an object is moved orthogonally to the camera's optical axis as well as the orientation of the sensor lines and a predefined subset of lines is read out from the sensor at each time step. This allows for the construction of so-called epipolar plane images (EPIs) and subsequent EPI-based depth estimation. We compare several approaches based on testing a set of slope hypotheses in the EPI domain. Hypotheses are derived from block matching, namely the sum of absolute differences, modified sum of absolute differences, normalized cross correlation, census transform, and modified census transform. Results for depth estimation and all-in-focus image generation are presented for synthetic and real data.

  15. Analysis and potential of once-through steam generators in line focus systems - Final results of the DUKE project

    NASA Astrophysics Data System (ADS)

    Feldhoff, Jan Fabian; Hirsch, Tobias; Pitz-Paal, Robert; Valenzuela, Loreto

    2016-05-01

    The direct steam generation in line focus systems such as parabolic troughs and linear Fresnel collectors is one option for providing `solar steam' or heat. Commercial power plants use the recirculation concept, in which the steam generation is separated from the superheating by a steam drum. This paper analyzes the once-through mode as an advanced solar field concept. It summarizes the results of the DUKE project on loop design, a new temperature control strategy, thermo-mechanical stress analysis, and an overall cost analysis. Experimental results of the temperature control concept at the DISS test facility at Plataforma Solar de Almería are presented.

  16. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    SciTech Connect

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-07-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE`s needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities.

  17. Accurate line shapes from sub-1 cm(-1) resolution sum frequency generation vibrational spectroscopy of α-pinene at room temperature.

    PubMed

    Mifflin, Amanda L; Velarde, Luis; Ho, Junming; Psciuk, Brian T; Negre, Christian F A; Ebben, Carlena J; Upshur, Mary Alice; Lu, Zhou; Strick, Benjamin L; Thomson, Regan J; Batista, Victor S; Wang, Hong-Fei; Geiger, Franz M

    2015-02-26

    Despite the importance of terpenes in biology, the environment, and catalysis, their vibrational spectra remain unassigned. Here, we present subwavenumber high-resolution broad-band sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene that reveal 10 peaks in the C-H stretching region at room temperature. The high spectral resolution resulted in spectra with more and better resolved spectral features than those of the Fourier transform infrared, femtosecond stimulated Raman spectra in the bulk condensed phase and those of the conventional BB-SFG and scanning SFG spectroscopy of the same molecule on a surface. Experiment and simulation show the spectral line shapes with HR-BB-SFG to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 ps are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations. Phase-resolved spectra provided their orientational information. We propose the new spectroscopy as an attractive alternative to time domain vibrational spectroscopy or heterodyne detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules at molecular surfaces or interfaces.

  18. Multi-stage FEL amplifier with diaphragm focusing line as direct energy driver for inertial confinement fusion

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    An FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions, namely, using of multichannel, multi-stage FEL amplifier with diaphragm focusing line, reveal a possibility to construct the FEL system operating at radiation wavelength {lambda} = 0.5 {mu}m and providing flush energy E = 1 MJ and brightness 4 x 10{sup 22} W cm{sup -2} sr{sup -1} within steering pulse duration {tau} {approximately} 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R& D.

  19. Quantitative measurement of acoustic pressure in the focal zone of acoustic lens-line focusing using the Schlieren method.

    PubMed

    Jiang, Xueping; Cheng, Qian; Xu, Zheng; Qian, Menglu; Han, Qingbang

    2016-04-01

    This paper proposes a theory and method for quantitative measurement of the acoustic lens-line focusing ultrasonic (ALLFU) field in its focal spot size and acoustic pressure using the Schlieren imaging technique. Using Fourier transformation, the relationship between the brightness of the Schlieren image and the acoustic pressure was introduced. The ALLFU field was simulated using finite element method and compared with the Schlieren acoustic field image. The measurement of the focal spot size was performed using the Schlieren method. The acoustic pressure in the focal zone of the ALLFU field and the transducer-transmitting voltage response were quantitatively determined by measuring the diffraction light fringe intensity. The results show that the brightness of the Schlieren image is a linear function of the acoustic intensity when the acousto-optic interaction length remains constant and the acoustic field is weak. PMID:27139646

  20. Analysis of the eigenvalue equation of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    The paper presents analysis of the eigenvalue problem of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line. An FEL model is discussed wherein diffraction effects, space charge fields and energy spread of electrons in the beam are taken into account. To take into account diffraction effects at the diaphragms we apply the rigorous impedance boundary conditions proposed by Veinstein. The rigorous solutions of the eigenvalue problem leave been found for the stepped and bounded parabolic electron beam profiles. Analytical expressions for eigenfunctions of active open waveguide and formulae of their expansion in eigenfunctions of passive open waveguide, are derived, too. Asymptotic behaviour of the obtained solutions is studied in details. The multilayer approximation method has been used to solve the eigenvalue problem for the beams with an arbitrary gradient profile of current density. This novel type of an FEL amplifier has perspective to be used for applications where high average and peak radiation power is required.

  1. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    PubMed

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. PMID:22352478

  2. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    PubMed

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel.

  3. Automated on-line preconcentration of trace aqueous mercury with gold trap focusing for cold vapor atomic absorption spectrometry.

    PubMed

    Puanngam, Mahitti; Dasgupta, Purnendu K; Unob, Fuangfa

    2012-09-15

    A fully automated system for the determination of trace mercury in water by cold vapor atomic absorption spectrometry (CVAAS) is reported. The system uses preconcentration on a novel sorbent followed by liberation of the mercury and focusing by a gold trap. Mercury ions were extracted from water samples by passage through a solid phase sorbent column containing 2-(3-(2-aminoethylthio)propylthio)ethanamine modified silica gel. The captured mercury is released by thiourea and then elemental Hg is liberated by sodium borohydride. The vapor phase Hg is recaptured on a gold-plated tungsten filament. This is liberated as a sharp pulse (half-width<2 s) by directly electrically heating the tungsten filament in a dry argon stream. The mercury is measured by CVAAS; no moisture removal is needed. The effects of chloride and selected interfering ions were studied. The sample loading flow rate and argon flow rates for solution purging and filament sweeping were optimized. An overall 50-fold improvement in the limit of detection was observed relative to direct measurement by CVAAS. With a relatively modest multi-user instrument we attained a limit of detection of 35 ng L(-1) with 12% RSD at 0.20 μg L(-1) Hg level. The method was successfully applied to accurately determine sub-μg L(-1) level Hg in standard reference water samples.

  4. Friend spleen focus-forming virus induces factor independence in an erythropoietin-dependent erythroleukemia cell line.

    PubMed Central

    Ruscetti, S K; Janesch, N J; Chakraborti, A; Sawyer, S T; Hankins, W D

    1990-01-01

    Erythroid cells from mice infected with the polycythemia-inducing strain of Friend spleen focus-forming virus (SFFVP), unlike normal erythroid cells, can proliferate and differentiate in apparent absence of the erythroid hormone erythropoietin (Epo). The unique envelope glycoprotein encoded by SFFV has been shown to be responsible for this biological effect. The recent isolation of an Epo-dependent erythroleukemia cell line, HCD-57, derived from a mouse infected at birth with Friend murine leukemia virus, afforded us the opportunity to study the direct effect of SFFVP on a homogeneous population of factor-dependent cells. The introduction of SFFVP in complex with various helper viruses into these Epo-dependent cells efficiently and reproducibly gave rise to lines which expressed high levels of SFFV and were factor independent. SFFV appears to be unique in its ability to abrogate the factor dependence of Epo-dependent HCD-57 cells, since infection of these cells with retroviruses carrying a variety of different oncogenes had no effect. The induction of Epo independence by SFFV does not appear to involve a classical autocrine mechanism, since there is no evidence that the factor-independent cells synthesize or secrete Epo or depend on it for their growth. However, the SFFV-infected, factor-independent cells had significantly fewer receptors available for binding Epo than their factor-dependent counterparts had, raising the possibility that the induction of factor independence by the virus may be due to the interaction of an SFFV-encoded protein with the Epo receptor. Images PMID:2154592

  5. First line treatment of advanced non-small-cell lung cancer - specific focus on albumin bound paclitaxel.

    PubMed

    Gupta, Neha; Hatoum, Hassan; Dy, Grace K

    2014-01-01

    Lung cancer is the leading cause of cancer mortality worldwide in both men and women. Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for more than 80% of cases. Paclitaxel has a broad spectrum of activity against various malignancies, including NSCLC. Paclitaxel is poorly soluble in water and thus, until recently, its commercially available preparations contained a non-ionic solvent Cremophor EL®. Cremophor EL® improves the solubility of paclitaxel and allows its intravenous administration. However, certain side-effects associated with paclitaxel, such as hypersensitivity reactions, myelosuppression, and peripheral neuropathy, are known to be worsened by Cremophor®. Nanoparticle albumin-bound paclitaxel ([nab-paclitaxel] ABRAXANE® ABI-007) is a new generation formulation of paclitaxel that obviates the need for Cremophor®, resulting in a safer and faster infusion without requiring the use of premedications to avoid hypersensitivity. Albumin-binding receptor-mediated delivery and lack of sequestering Cremophor® micelles allow higher intratumoral concentration of pharmacologically active paclitaxel. Multiple clinical trials have demonstrated a superior tolerability profile of nab-paclitaxel in comparison to solvent-bound paclitaxel (sb-paclitaxel). A recent Phase III trial compared the effects of weekly nab-paclitaxel in combination with carboplatin versus sb-paclitaxel in combination with carboplatin given every 3 weeks for first line treatment of NSCLC. This trial highlights the weekly nab-paclitaxel combination as an alternate treatment option for NSCLC, with higher response rate in squamous cell NSCLC and longer survival in elderly patients. This review will focus on the properties of nab-paclitaxel and its use in the first line treatment of NSCLC.

  6. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  7. An isotopic-independent highly accurate potential energy surface for CO2 isotopologues and an initial (12)C(16)O2 infrared line list.

    PubMed

    Huang, Xinchuan; Schwenke, David W; Tashkun, Sergey A; Lee, Timothy J

    2012-03-28

    An isotopic-independent, highly accurate potential energy surface (PES) has been determined for CO(2) by refining a purely ab initio PES with selected, purely experimentally determined rovibrational energy levels. The purely ab initio PES is denoted Ames-0, while the refined PES is denoted Ames-1. Detailed tests are performed to demonstrate the spectroscopic accuracy of the Ames-1 PES. It is shown that Ames-1 yields σ(rms) (root-mean-squares error) = 0.0156 cm(-1) for 6873 J = 0-117 (12)C(16)O(2) experimental energy levels, even though less than 500 (12)C(16)O(2) energy levels were included in the refinement procedure. It is also demonstrated that, without any additional refinement, Ames-1 yields very good agreement for isotopologues. Specifically, for the (12)C(16)O(2) and (13)C(16)O(2) isotopologues, spectroscopic constants G(v) computed from Ames-1 are within ±0.01 and 0.02 cm(-1) of reliable experimentally derived values, while for the (16)O(12)C(18)O, (16)O(12)C(17)O, (16)O(13)C(18)O, (16)O(13)C(17)O, (12)C(18)O(2), (17)O(12)C(18)O, (12)C(17)O(2), (13)C(18)O(2), (13)C(17)O(2), (17)O(13)C(18)O, and (14)C(16)O(2) isotopologues, the differences are between ±0.10 and 0.15 cm(-1). To our knowledge, this is the first time a polyatomic PES has been refined using such high J values, and this has led to new challenges in the refinement procedure. An initial high quality, purely ab initio dipole moment surface (DMS) is constructed and used to generate a 296 K line list. For most bands, experimental IR intensities are well reproduced for (12)C(16)O(2) using Ames-1 and the DMS. For more than 80% of the bands, the experimental intensities are reproduced with σ(rms)(ΔI) < 20% or σ(rms)(ΔI∕δ(obs)) < 5. A few exceptions are analyzed and discussed. Directions for future improvements are discussed, though it is concluded that the current Ames-1 and the DMS should be useful in analyzing and assigning high-resolution laboratory or astronomical spectra. PMID:22462861

  8. Line-focus probe excitation of Scholte acoustic waves at the liquid-loaded surfaces of periodic structures

    SciTech Connect

    Every, A.G.; Vines, R.E.; Wolfe, J.P.

    1999-10-01

    A model is introduced to explain our observation of Scholte-like ultrasonic waves traveling at the water-loaded surfaces of solids with periodically varying properties. The observations pertain to two two-dimensional superlattices: a laminated solid of alternating 0.5-mm-thick layers of aluminum and a polymer, and a hexagonal array of polymer rods of lattice spacing 1 mm in an aluminum matrix. The surface waves are generated and detected by line focus acoustic lenses aligned parallel to each other, and separated by varying distances. The acoustic fields of these lenses may be considered a superposition of plain bulk waves with wave normals contained within the angular apertures of the lenses. For homogeneous solids, phase matching constraints do not allow the Scholte wave to be coupled into with an experimental configuration of this type. This is not true for a spatially periodic solid, where coupling between bulk waves and the Scholte surface wave takes place through Umklapp processes involving a change in the wave-vector component parallel to the surface by a reciprocal lattice vector. In the experiments, the source pulse is broadband, extending up to about 6 MHz, whereas the spectrum of the observed Scholte wave is peaked at around 4 and 4.5 MHz for the layered solid and hexagonal lattice, respectively. We attribute this to a resonance in the surface response of the solid, possibly associated with a critical point in the dispersion relation of the superlattice. On rotating the solid about its surface normal, the Scholte wave displays dramatic variation in phase arrival time and, to a lesser extent, also group arrival time. This variation is well accounted for by our model. {copyright} {ital 1999} {ital The American Physical Society}

  9. Use of new T-cell-based cell lines expressing two luciferase reporters for accurately evaluating susceptibility to anti-human immunodeficiency virus type 1 drugs.

    PubMed

    Chiba-Mizutani, Tomoko; Miura, Hideka; Matsuda, Masakazu; Matsuda, Zene; Yokomaku, Yoshiyuki; Miyauchi, Kosuke; Nishizawa, Masako; Yamamoto, Naoki; Sugiura, Wataru

    2007-02-01

    Two new T-cell-based reporter cell lines were established to measure human immunodeficiency virus type 1 (HIV-1) infectivity. One cell line naturally expresses CD4 and CXCR4, making it susceptible to X4-tropic viruses, and the other cell line, in which a CCR5 expression vector was introduced, is susceptible to both X4- and R5-tropic viruses. Reporter cells were constructed by transfecting the human T-cell line HPB-Ma, which demonstrates high susceptibility to HIV-1, with genomes expressing two different luciferase reporters, HIV-1 long terminal repeat-driven firefly luciferase and cytomegalovirus promoter-driven renilla luciferase. Upon HIV infection, the cells expressed firefly luciferase at levels that were highly correlated (r2=0.91 to 0.98) with the production of the capsid antigen p24. The cells also constitutively expressed renilla luciferase, which was used to monitor cell numbers and viability. The reliability of the cell lines for two in vitro applications, drug resistance phenotyping and drug screening, was confirmed. As HIV-1 efficiently replicated in these cells, they could be used for multiple-round replication assays as an alternative method to a single-cycle replication protocol. Coefficients of variation for drug susceptibility evaluated with the cell lines ranged from 17 to 41%. The new cell lines were beneficial for evaluating antiretroviral drug resistance. Firefly luciferase gave a wider dynamic range for evaluating virus infectivity, and the introduction of renilla luciferase improved assay reproducibility. The cell lines were also beneficial for screening new antiretroviral agents, as false inhibition caused by the cytotoxicity of test compounds was easily detected by monitoring renilla luciferase activity.

  10. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  11. Line-focus solar central power system, Phase I. Final report, 29 September 1978 to 30 April 1980. Volume II. Text

    SciTech Connect

    Slemmons, A J

    1980-04-01

    The conceptual design, parametric analysis, cost and performance analysis, and a commercial assessment of a 100-MWe high-temperature line-focus central power system are presented. Parametric analyses and conceptual design of the heliostat subsystem, receiver subsystem, heat transport subsystem, energy storage subsystem, electrical power generating subsystem, and master control subsystem are included. A market analysis and development plan are given. (WHK)

  12. The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm(-1).

    PubMed

    Campargue, Alain; Kassi, Samir; Pachucki, Krzysztof; Komasa, Jacek

    2012-01-14

    Five very weak transitions-O(2), O(3), O(4), O(5) and Q(5)-of the first overtone band of H(2) are measured by very high sensitivity CW-Cavity Ring Down Spectroscopy (CRDS) between 6900 and 7920 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min)≈ 5 × 10(-11) cm(-1) allowing for the detection of the O(5) transition with an intensity of 1.1 × 10(-30) cm per molecule, the smallest intensity value measured so far for an H(2) absorption line. A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift of the O(2) and O(3) lines was accurately determined from a series of recordings with pressure ranging between 10 and 700 Torr. From an exhaustive review of the literature data, the list of H(2) absorption lines detected so far has been constructed. It includes a total of 39 transitions ranging from the S(0) pure rotational line near 354 cm(-1) up to the S(1) transition of the (5-0) band near 18,908 cm(-1). These experimental values are compared to a highly accurate theoretical line list constructed for pure H(2) at 296 K (0-35,000 cm(-1), intensity cut off of 1 × 10(-34) cm per molecule). The energy levels and transition moments were computed from high level quantum mechanics calculations. The overall agreement between the theoretical and experimental values is found to be very good for the line positions. Some deviations for the intensities of the high overtone bands (V > 2) are discussed in relation with possible pressure effects affecting the retrieved intensity values. We conclude that the hydrogen molecule is probably a unique case in rovibrational spectroscopy for which first principles theory can provide accurate spectroscopic parameters at the level of the performances of the state of the art experimental techniques.

  13. Does It Matter How Much Time Students Spend on Line outside of School? PISA in Focus. No. 59

    ERIC Educational Resources Information Center

    OECD Publishing, 2016

    2016-01-01

    In 2012, 15-year-old students spent over two hours on line each day, on average across OECD countries. The most common online activities among 15-year-olds were browsing the Internet for fun and participating in social networks, with over 70% of students doing one of these every day or almost every day. Students who spent more than six hours per…

  14. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.

    PubMed

    Lee, Ming-Wei; Hung, Cheng-Hung; Liao, Jung-Li; Cheng, Nan-Yu; Hou, Ming-Feng; Tseng, Sheng-Hao

    2014-10-01

    In this paper, we demonstrate that a scanning MEMS mirror can be employed to create a linear gradient line source that is equivalent to a planar source. This light source setup facilitates the use of diffusion models of increased orders of approximation having closed form solution, and thus enhance the efficiency and accuracy in sample optical properties recovery. In addition, compared with a regular planar light source, the linear gradient line source occupies much less source area and has an elevated measurement efficiency. We employed a δ-P1 diffusion equation with a closed form solution and carried out a phantom study to understand the performance of this new method in determining the absorption and scattering properties of turbid samples. Moreover, our Monte Carlo simulation results indicated that this geometry had probing depths comparable to those of the conventional diffuse reflectance measurement geometry with a source-detector separation of 3 mm. We expect that this new source setup would facilitate the investigating of superficial volumes of turbid samples in the wavelength regions where tissue absorption coefficients are comparable to scattering coefficients.

  15. Solution-Focused Brief Therapy Groupwork with At-Risk Junior High School Students: Enhancing the Bottom Line

    ERIC Educational Resources Information Center

    Newsome, W. Sean

    2004-01-01

    Despite the preliminary studies that support solution-focused brief therapy, limited research has examined the model as a group intervention with students at risk for academic underachievement and school nonattendance. Therefore, the purpose of this study was to evaluate the impact of the model on school attendance and grade point average.…

  16. Line-focus solar central power system, Phase I. Final report, 29 September 1978 to 30 April 1980. Volume III. Appendices

    SciTech Connect

    Slemmons, A J

    1980-04-01

    The conceptual design, parametric analysis, cost and performance analysis, and commercial assessment of a 100-MWe line-focus solar central receiver power plant are reported. This volume contains the appendices: (a) methods of determination of molten salt heat-transfer coefficients and tube-wall temperatures, (b) inputs for STEAEC programs, (c) description of system analysis computer program, (d) receiver analysis program, and (e) heliostat production plan and design methodology. (WHK)

  17. The absorption spectrum of D2: ultrasensitive cavity ring down spectroscopy of the (2-0) band near 1.7 μm and accurate ab initio line list up to 24,000 cm(-1).

    PubMed

    Kassi, Samir; Campargue, Alain; Pachucki, Krzysztof; Komasa, Jacek

    2012-05-14

    Eleven very weak electric quadrupole transitions Q(2), Q(1), S(0)-S(8) of the first overtone band of D(2) have been measured by very high sensitivity CW-cavity ring down spectroscopy (CRDS) between 5850 and 6720 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min) ≈ 3 × 10(-11) cm(-1). By averaging a high number of spectra, the noise level was lowered to α(min) ≈ 4 × 10(-12) cm(-1) in order to detect the S(8) transition which is among the weakest transitions ever detected in laboratory experiments (line intensity on the order of 1.8 × 10(-31) cm/molecule at 296 K). A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift and position at zero pressure limit were determined from recordings with pressures ranging between 10 and 750 Torr. A highly accurate theoretical line list was constructed for pure D(2) at 296 K. The intensity threshold was fixed to a value of 1 × 10(-34) cm/molecule at 296 K. The obtained line list is provided as supplementary material. It extends up to 24,000 cm(-1) and includes 201 transitions belonging to ten v-0 cold bands (v = 0-9) and three v-1 hot bands (v = 1-3). The energy levels include the relativistic and quantum electrodynamic corrections as well as the effects of the finite nuclear mass. The quadrupole transition moments are calculated using highly accurate adiabatic wave functions. The CRDS line positions and intensities of the first overtone band are compared to the corresponding calculated values and to previous measurements of the S(0)-S(3) lines. The agreement between the CRDS and theoretical results is found within the claimed experimental uncertainties (on the order of 1 × 10(-3) cm(-1) and 2% for the positions and intensities, respectively) while the previous S(0)-S(3) measurements showed important deviations for the line intensities.

  18. On-line amino acid-based capillary isoelectric focusing-ESI-MS/MS for protein digests analysis.

    PubMed

    Zhu, Guijie; Sun, Liangliang; Yang, Ping; Dovichi, Norman J

    2012-10-31

    Six amino acids with pIs that ranged from 3.2 to 9.7 were used as ampholytes to establish a pH gradient in capillary isoelectric focusing. This amino acid-based capillary isoelectric focusing (cIEF) was coupled with ESI-MS/MS using an electrokinetically pumped sheath-flow interface for peptide analysis. Amino acid-based isoelectric focusing generates a two-order of magnitude lower background signal than commercial ampholytes in the important m/z range of 300-1800. Good focusing was achieved for insulin receptor, which produced ~10 s peak width. For 0.1 mg mL(-1) bovine serum albumin (BSA) digests, 24±1 peptides (sequence coverage 47±4%) were identified in triplicate analysis. As expected, the BSA peptides were separated according to their pI. The concentration detection limit for the BSA digests is 7 nM and the mass detection limit is 7 fmole. A solution of six bovine protein tryptic digests spanning 5 orders of magnitude in concentration was analyzed by amino acid based cIEF-ESI-MS/MS. Five proteins with a concentration range spanning 4 orders of magnitude were identified in triplicate runs. Using amino acid based cIEF-ESI-MS/MS, 112 protein groups and 303 unique peptides were identified in triplicate runs of a RAW 264.7 cell homogenate protein digest. In comparison with ampholyte based cIEF-ESI-MS/MS, amino acid based cIEF-ESI-MS/MS produces higher resolution of five acidic peptides, much cleaner mass spectra, and higher protein spectral counts.

  19. Accurate and practical identification of 20 Fusarium species by seven-locus sequence analysis and reverse line blot hybridization, and an in vitro antifungal susceptibility study.

    PubMed

    Wang, He; Xiao, Meng; Kong, Fanrong; Chen, Sharon; Dou, Hong-Tao; Sorrell, Tania; Li, Ruo-Yu; Xu, Ying-Chun

    2011-05-01

    Eleven reference and 25 clinical isolates of Fusarium were subject to multilocus DNA sequence analysis to determine the species and haplotypes of the fusarial isolates from Beijing and Shandong, China. Seven loci were analyzed: the translation elongation factor 1 alpha gene (EF-1α); the nuclear rRNA internal transcribed spacer (ITS), large subunit (LSU), and intergenic spacer (IGS) regions; the second largest subunit of the RNA polymerase gene (RPB2); the calmodulin gene (CAM); and the mitochondrial small subunit (mtSSU) rRNA gene. We also evaluated an IGS-targeted PCR/reverse line blot (RLB) assay for species/haplotype identification of Fusarium. Twenty Fusarium species and seven species complexes were identified. Of 25 clinical isolates (10 species), the Gibberella (Fusarium) fujikuroi species complex was the commonest (40%) and was followed by the Fusarium solani species complex (FSSC) (36%) and the F. incarnatum-F. equiseti species complex (12%). Six FSSC isolates were identified to the species level as FSSC-3+4, and three as FSSC-5. Twenty-nine IGS, 27 EF-1α, 26 RPB2, 24 CAM, 18 ITS, 19 LSU, and 18 mtSSU haplotypes were identified; 29 were unique, and haplotypes for 24 clinical strains were novel. By parsimony informative character analysis, the IGS locus was the most phylogenetically informative, and the rRNA gene regions were the least. Results by RLB were concordant with multilocus sequence analysis for all isolates. Amphotericin B was the most active drug against all species. Voriconazole MICs were high (>8 μg/ml) for 15 (42%) isolates, including FSSC. Analysis of larger numbers of isolates is required to determine the clinical utility of the seven-locus sequence analysis and RLB assay in species classification of fusaria. PMID:21389150

  20. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for {sup 32}S{sup 16}O{sub 2} up to 8000 cm{sup −1}

    SciTech Connect

    Huang, Xinchuan E-mail: Timothy.J.Lee@nasa.gov; Schwenke, David W.; Lee, Timothy J. E-mail: Timothy.J.Lee@nasa.gov

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected {sup 32}S{sup 16}O{sub 2} HITRAN data. Compared to HITRAN, the root-mean-squares error (σ{sub RMS}) for all J = 0–80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm{sup −1}. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm{sup −1}. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%–90%. Our predictions for {sup 34}S{sup 16}O{sub 2} band origins, higher energy {sup 32}S{sup 16}O{sub 2} band origins and missing {sup 32}S{sup 16}O{sub 2} IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict {sup 32/34}S{sup 16}O{sub 2} band origins below 5500 cm{sup −1} with 0.01–0.03 cm{sup −1} uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K{sub a}-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO{sub 2} IR spectral experimental analysis, as well as elimination of SO{sub 2} lines in high-resolution astronomical observations.

  1. A dynamic focusing x-ray monochromator for a wiggler beam line at the SRS of the SERC Daresbury Laboratory

    SciTech Connect

    De Bruijn, D.; Van Zuylen, P. ); Kruizinga, G. , P.O. Box 93138, 2509 AC Den Haag State University of Utrecht, Sorbonnelaan 16, 3508 TB Utrecht )

    1992-01-01

    A Si(220) double-crystal monochromator for the energy range 10--30 keV is presented. It will be used for EXAFS as well as powder diffraction measurements. To determine the requirements for this monochromator we looked, apart from mean considerations, at the requirements dictated by EXAFS in transmission mode. For good data analyses the proper shape, amplitude, and location at the energy axis of each wiggle is required. Moreover it is essential to separate the wiggles from background and noise. For the latter a high flux through the sample is desirable, which can be achieved by horizontal focusing of the beam. For that we have chosen to bend the second crystal sagitally. The sagittal bending radius is adjustable between 50 and 0.8 m, because for different energies different sagittal radii are necessary to focus the beam on the sample. The mean meridional radius of the second crystal is fixed at 130 m, which is an optimization for 20 keV. The meridional radius of the first crystal can be tuned between 100 and 500 m. When this radius is set to 130 m the energy resolution is calculated to be 6, 3, and 35 eV for 10, 20, and 30 keV (for perfectly bent crystals). By changing the meridional radius of the first crystal, future users of this monochromator can make the trade off between resolution and intensity. Movement of the monochromator exit beam, during a scan, will occur due to the monochromator geometry, but is reduced as much as possible by using an asymmetrically cut second crystal, with an asymmetry angle of 2.5{degree}. The average exit beam movement of the monochromator for a 1-keV scan is 20 {mu}m. For 40% of the energy range (10--30 keV) the exit beam position remains within 10 {mu}m. For the second crystal no translation stage is used.

  2. Partner-Focused Adherence Intervention for Second-line Antiretroviral Therapy: A Multinational Randomized Trial (ACTG A5234)

    PubMed Central

    Gross, Robert; Zheng, Lu; La Rosa, Alberto; Sun, Xin; Rosenkranz, Susan L.; Cardoso, Sandra Wagner; Ssali, Francis; Camp, Rob; Godfrey, Catherine; Cohn, Susan E.; Robbins, Gregory K.; Chisada, Anthony; Wallis, Carole L.; Reynolds, Nancy R.; Lu, Darlene; Safren, Steven A.; Hosey, Lara; Severe, Patrice; Collier, Ann C.

    2015-01-01

    Background Adherence is key to antiretroviral therapy (ART) success. Enhanced partner support may benefit patients with prior treatment failure. Methods We conducted a 1:1 randomized trial of a partner-based modified directly observed therapy (mDOT) compared with standard of care (SOC) at 9 sites in 8 countries. Participants had failed a first-line regimen with HIV RNA >1000 copies/mL and a willing partner. Randomization was computer generated and balanced by site. Participants and site investigators were not masked to group assignment. ART included lopinavir/ritonavir (400/100 mg) twice daily and emtricitabine/tenofovir disoproxil fumarate (200/300 mg) once daily. Trained partners observed one ART dose daily ≥5 days/week for 24 weeks. Primary outcome was HIV RNA >400 copies/mL before or at week 48 and adherence measured with microelectronic monitors was a secondary outcome. Findings We randomized 129 participants to mDOT and 128 to SOC, 130 (51%) males, 204 (79%) of African origin, 52 (20%) Latino, with median age 38 years. Partners were parents, 57 (22%), spouses 55 (21%), siblings 50 (19%), friends 41 (16%), and others 54 (21%). Primary outcome occurred in 26% (34/129) of mDOT and 18% (23/128) of SOC participants at week 48 (p=0.13). Median adherence was similar [Q1: 95% vs. 96% p=0.38, Q2: 91% vs. 94% p=0.40, Q3: 90% vs. 93% p=0.17, Q4: 90% vs. 93% p=0.36] in mDOT and SOC, respectively. Interpretation This intervention had no effect on outcomes. Potential reasons include study visits maximizing adherence in both groups and control partners already providing sufficient support. Partner-based training with mDOT does not appear promising to enhance adherence. Intensive follow-up with clinic staff may be a viable strategy in this setting. PMID:25664336

  3. Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: Application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells

    PubMed Central

    Elschenbroich, Sarah; Ignatchenko, Vladimir; Sharma, Parveen; Schmitt-Ulms, Gerold; Gramolini, Anthony O.; Kislinger, Thomas

    2013-01-01

    High resolution peptide separation is pivotal for successful shot-gun proteomics. The need for capable techniques propels invention and improvement of ever more sophisticated approaches. Recently, Agilent Technologies has introduced the OFFGEL fractionator, which conducts peptide separation by isoelectric focusing in an off-gel setup. This platform has been shown to accomplish high resolution of peptides for diverse sample types, yielding valuable advantages over comparable separation techniques. In this study, we deliver the first comparison of the newly emerging OFFGEL approach to the well-established on-line MudPIT platform. Samples from a membrane-enriched fraction isolated from murine C2C12 cells were subjected to replicate analysis by OFFGEL (12 fractions, pH 3 – 10) followed by RP-LC-MS/MS or 12-step on-line MudPIT. OFFGEL analyses yielded 1398 proteins (identified by 10,269 peptides) while 1428 proteins (11,078 peptides) were detected with the MudPIT approach. Thus, our data shows that both platforms produce highly comparable results in terms of protein/peptide identifications and reproducibility for the sample type analyzed. We achieve more accurate peptide focusing after OFFGEL fractionation with 88 % of all peptides binned to a single fraction, as compared to 61 % of peptides detected in only one step in MudPIT analyses. Our study suggests that both platforms are equally capable of high quality peptide separation of a sample with medium complexity, rendering them comparably valuable for comprehensive proteomic analyses. PMID:19670906

  4. Practice and power: a review and interpretive synthesis focused on the exercise of discretionary power in policy implementation by front-line providers and managers.

    PubMed

    Gilson, Lucy; Schneider, Helen; Orgill, Marsha

    2014-12-01

    Tackling the implementation gap is a health policy concern in low- and middle-income countries (LMICs). Limited attention has so far been paid to the influence of power relations over this gap. This article presents, therefore, an interpretive synthesis of qualitative health policy articles addressing the question: how do actors at the front line of health policy implementation exercise discretionary power, with what consequences and why? The article also demonstrates the particular approach of thematic synthesis and contributes to discussion of how such work can inform future health policy research. The synthesis drew from a broader review of published research on any aspect of policy implementation in LMICs for the period 1994-2009. From an initial set of 50 articles identified as relevant to the specific review question, a sample of 16 articles were included in this review. Nine report experience around decentralization, a system-level change, and seven present experience of implementing a range of reproductive health (RH) policies (new forms of service delivery). Three reviewers were involved in a systematic process of data extraction, coding, analysis, synthesis and article writing. The review findings identify: the practices of power exercised by front-line health workers and their managers; their consequences for policy implementation and health system performance; the sources of this power and health workers' reasons for exercising power. These findings also provide the basis for an overarching synthesis of experience, highlighting the importance of actors, power relations and multiple, embedded contextual elements as dimensions of health system complexity. The significance of this synthesis lies in its insights about: the micropractices of power exercised by front-line providers; how to manage this power through local level strategies both to influence and empower providers to act in support of policy goals; and the focus and nature of future research on

  5. service line analytics in the new era.

    PubMed

    Spence, Jay; Seargeant, Dan

    2015-08-01

    To succeed under the value-based business model, hospitals and health systems require effective service line analytics that combine inpatient and outpatient data and that incorporate quality metrics for evaluating clinical operations. When developing a framework for collection, analysis, and dissemination of service line data, healthcare organizations should focus on five key aspects of effective service line analytics: Updated service line definitions. Ability to analyze and trend service line net patient revenues by payment source. Access to accurate service line cost information across multiple dimensions with drill-through capabilities. Ability to redesign key reports based on changing requirements. Clear assignment of accountability.

  6. service line analytics in the new era.

    PubMed

    Spence, Jay; Seargeant, Dan

    2015-08-01

    To succeed under the value-based business model, hospitals and health systems require effective service line analytics that combine inpatient and outpatient data and that incorporate quality metrics for evaluating clinical operations. When developing a framework for collection, analysis, and dissemination of service line data, healthcare organizations should focus on five key aspects of effective service line analytics: Updated service line definitions. Ability to analyze and trend service line net patient revenues by payment source. Access to accurate service line cost information across multiple dimensions with drill-through capabilities. Ability to redesign key reports based on changing requirements. Clear assignment of accountability. PMID:26548137

  7. Infection by mink cell focus-forming viruses confers interleukin 2 (IL-2) independence to an IL-2-dependent rat T-cell lymphoma line.

    PubMed Central

    Tsichlis, P N; Bear, S E

    1991-01-01

    The development of T-cell lymphomas in rodents infected with type C retroviruses has been linked to the generation of a class of envelope (env) recombinant viruses called mink cell focus-forming viruses (MCF viruses) in the preleukemic thymus. To determine whether infection by MCF viruses altered the growth phenotype of retrovirus-induced T-cell lymphomas, a Moloney murine leukemia virus-induced interleukin-2 (IL-2)-dependent rat T-cell lymphoma line (4437A) was infected with MCF-247, modified MCF-V33 (mMCF-V33), or NZB-xenotropic (NZB-X) virus. The effects of virus infection on the IL-2 dependence of these cells was examined by cultivating them in the absence of IL-2. After IL-2 withdrawal, the uninfected and NZB-X-infected cells went through a crisis period characterized by massive death. All the independently maintained cultures of MCF- and mMCF-V33-infected cells, on the other hand, became IL-2 independent without a crisis. All the polytropic virus-infected IL-2-independent cultures contained a population of cells that was polyclonal with regard to polytropic provirus integration. Over this polyclonal background each culture produced multiple clones of cells that were selected rapidly after IL-2 withdrawal. Furthermore, the resulting MCF- or mMCF-V33-infected IL-2-independent cells retained the expression of IL-2 receptor. These data show that MCF and mMCF-V33 viruses may alter the growth phenotype of a T-cell lymphoma line and suggest that their effect on cell growth may be due to the direct interaction of the MCF envelope glycoprotein with cellular components, perhaps the IL-2 receptor. Images PMID:2052545

  8. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens

    PubMed Central

    Dörlich, René M.; Chen, Qing; Niklas Hedde, Per; Schuster, Vittoria; Hippler, Marc; Wesslowski, Janine; Davidson, Gary; Nienhaus, G. Ulrich

    2015-01-01

    Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues. PMID:25951521

  9. Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (100) silicon wafer.

    PubMed

    Lu, Yan; He, Cunfu; Song, Guorong; Wu, Bin; Chung, Cheng-Hsien; Lee, Yung-Chun

    2014-01-01

    This paper investigates a new method for fabrication of broadband line-focus ultrasonic transducers by sol-gel spin-coating the poly(vinylidene difluoride-trifluroethylene) [P(VDF-TrFE)] copolymer film on a concave fine-polished beryllium copper backing. The ferroelectric hysteresis loops of the P(VDF-TrFE) films spin-coated from different molar ratios of VDF/TrFE, 77/23 and 55/45, were measured to select the better mixture. Owing to the better acoustic matching to water, compared with lead zirconate titanate (PZT), the fabricated transducers show relatively wide bandwidth of approximately 50 MHz with high central frequency of 60 MHz obtained at the focal plane when a fused-quartz acts as a reflecting target. Each one of the two finished transducers has a focal length of 5mm and a full aperture angle of 90°. After applying the specially developed digital signal processing algorithm to the defocusing experiment data, which is called V(f,z) analysis method based on two-dimensional fast Fourier transform (2-D FFT), the operating frequency can extend from several MHz to over 90 MHz. Surface acoustic wave (SAW) velocities of a typical (100) silicon wafer was measured along various directions between [100] and [010] to represent the anisotropic features.

  10. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  11. Robust skew estimation using straight lines in document images

    NASA Astrophysics Data System (ADS)

    Koo, Hyung Il; Cho, Nam Ik

    2016-05-01

    A skew-estimation method using straight lines in document images is presented. Unlike conventional approaches exploiting the properties of text, we formulate the skew-estimation problem as an estimation task using straight lines in images and focus on robust and accurate line detection. To be precise, we adopt a block-based edge detector followed by a progressive line detector to take clues from a variety of sources such as text lines, boundaries of figures/tables, vertical/horizontal separators, and boundaries of textblocks. Extensive experiments on the datasets of skewed images and competition results reveal that the proposed method works robustly and yields accurate skew-estimation results.

  12. Attentional Focusing Instructions and Force Production

    PubMed Central

    Marchant, David C.

    2010-01-01

    Research progress assessing the role of attentional focusing instructions on skill acquisition and performance has lead researchers to apply this approach to force production tasks. Initial converging evidence indicates that force production tasks are sensitive to verbal instruction; externally focused instructions (onto movement outcomes, or onto the object force is being exerted against) are shown to be more beneficial than internally focused instructions (focusing attention onto the movements being executed). These benefits are observed for maximal and accurate force production, as well as the maintenance of force production in prolonged tasks. A range of mechanisms are identified supporting the proposal that an external focus promotes movement efficiency in line with energy and effort conservation. Future research is required to assess how this developing body of work interacts with the broader understanding of psychological and physiological factors implicated in the effective production, maintenance, and limitation of maximal or sub-maximal forces. PMID:21833266

  13. The importance of accurate atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Payne, Dylan; Schroeder, John; Liang, Pang

    2014-11-01

    This paper will focus on the effect of atmospheric conditions on EO sensor performance using computer models. We have shown the importance of accurately modeling atmospheric effects for predicting the performance of an EO sensor. A simple example will demonstrated how real conditions for several sites in China will significantly impact on image correction, hyperspectral imaging, and remote sensing. The current state-of-the-art model for computing atmospheric transmission and radiance is, MODTRAN® 5, developed by the US Air Force Research Laboratory and Spectral Science, Inc. Research by the US Air Force, Navy and Army resulted in the public release of LOWTRAN 2 in the early 1970's. Subsequent releases of LOWTRAN and MODTRAN® have continued until the present. Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns. The paper will demonstrate the importance of using validated models and local measured meteorological, atmospheric and aerosol conditions to accurately simulate the atmospheric transmission and radiance. Frequently default conditions are used which can produce errors of as much as 75% in these values. This can have significant impact on remote sensing applications.

  14. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  15. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  16. SPLASH: Accurate OH maser positions

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew; Gomez, Jose F.; Jones, Paul; Cunningham, Maria; Green, James; Dawson, Joanne; Ellingsen, Simon; Breen, Shari; Imai, Hiroshi; Lowe, Vicki; Jones, Courtney

    2013-10-01

    The hydroxyl (OH) 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. In this proposal, we request ATCA time to follow up OH maser candidates. This will give us accurate (~10") positions of the masers, which can be compared to other maser positions from HOPS, MMB and MALT-45 and will provide full polarisation measurements towards a sample of OH masers that have not been observed in MAGMO.

  17. Chemical and morphological characterization of Costa Rican papaya (Carica papaya L.) hybrids and lines with particular focus on their genuine carotenoid profiles.

    PubMed

    Schweiggert, Ralf M; Steingass, Christof B; Esquivel, Patricia; Carle, Reinhold

    2012-03-14

    Papaya (Carica papaya L.) F1 hybrids and inbred lines grown in Costa Rica were screened for morphological and nutritionally relevant fruit traits. The qualitative composition of carotenoids showed great similarity, being mostly composed of free and esterified β-cryptoxanthins accompanied by β-carotene, lycopene, and biosynthetic precursors. High levels of (all-E)-lycopene and its isomers were distinctive for red-fleshed hybrids, whereas yellow-fleshed fruits were virtually devoid of lycopenes. Because carotenoid levels among the investigated hybrids and lines differed significantly, this study supports the hypothesis of an exploitable genetic variability, and a potential heterotic effect regarding carotenoid expression may be instrumental in papaya-breeding programs. Due to significantly higher levels of provitamin A carotenoids and coinciding high levels of total lycopene, particularly red-fleshed hybrids might represent prospective sources of these compounds. Furthermore, the nutritional value of some genotypes was boosted by substantial amounts of ascorbic acid (up to 73 mg/100 g of fresh weight), which correlated to total soluble solids (R(2) = 0.86).

  18. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  19. Novel on-line column extraction apparatus coupled with binary peak focusing for high-performance liquid chromatography determination of rifampicin in human plasma: a strategy for therapeutic drug monitoring.

    PubMed

    Li, Wei; Peng, Min; Long, Minghui; Qiu, Ximin; Yang, Liping

    2014-12-01

    In order to develop a method that is completely suitable for the routine therapeutic drug monitoring, a sensitive and fully automated on-line column extraction apparatus in combination with high-performance liquid chromatography allowing binary peak focusing was developed and validated for the determination of rifampicin in human plasma. Rifapentine was used as an internal standard. The analytical cycle started with the injection of 100 μL of the sample pretreated by protein precipitation in a Venusil SCX extraction column. After the elution, the analytes were transferred and concentrated in an Xtimate C18 trap column. Finally, the trapped analytes were separated by an Xtimate C18 analytical column and were analyzed by an ultraviolet detector at 336 nm. With this new strategy, continuous on-line analysis of the compounds was successfully performed. The method showed excellent performance for the analysis of rifampicin in plasma samples, including calibration curve linearity (All r were larger than 0.9996), sensitivity (lowest limit of quantification was 0.12 μg/mL), method accuracy (within 6.6% in terms of relative error), and precision (relative standard deviations of intra- and interday precision were less than 7.8%). These results demonstrated that the simple, reliable, and automatic method based on on-line column extraction and binary peak focusing is a promising approach for therapeutic drug monitoring in complex biomatrix samples.

  20. On the importance of having accurate data for astrophysical modelling

    NASA Astrophysics Data System (ADS)

    Lique, Francois

    2016-06-01

    The Herschel telescope and the ALMA and NOEMA interferometers have opened new windows of observation for wavelengths ranging from far infrared to sub-millimeter with spatial and spectral resolutions previously unmatched. To make the most of these observations, an accurate knowledge of the physical and chemical processes occurring in the interstellar and circumstellar media is essential.In this presentation, I will discuss what are the current needs of astrophysics in terms of molecular data and I will show that accurate molecular data are crucial for the proper determination of the physical conditions in molecular clouds.First, I will focus on collisional excitation studies that are needed for molecular lines modelling beyond the Local Thermodynamic Equilibrium (LTE) approach. In particular, I will show how new collisional data for the HCN and HNC isomers, two tracers of star forming conditions, have allowed solving the problem of their respective abundance in cold molecular clouds. I will also present the last collisional data that have been computed in order to analyse new highly resolved observations provided by the ALMA interferometer.Then, I will present the calculation of accurate rate constants for the F+H2 → HF+H and Cl+H2 ↔ HCl+H reactions, which have allowed a more accurate determination of the physical conditions in diffuse molecular clouds. I will also present the recent work on the ortho-para-H2 conversion due to hydrogen exchange that allow more accurate determination of the ortho-to-para-H2 ratio in the universe and that imply a significant revision of the cooling mechanism in astrophysical media.

  1. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  2. Line Focus Receiver Infrared Temperature Survey System

    SciTech Connect

    Wendelin, Tim

    2010-06-01

    For ongoing maintenance and performance purposes, solar parabolic trough field operators desire to know that the Heat Collection Elements (HCEs) are performing properly. Measuring their temperature is one way of doing this One 30MW field can contain approximately 10,000 HCE's. This software interfaces with a GPS receiver and an infrared camera. It takes global positioning data from the GPS and uses this information to automate the infrared image capture and temperature analysis of individual solar parabolic HCEs in a solar parabolic trough field With this software system an entire 30MW field can be surveyed in 2-3 days.

  3. Line Focus Receiver Infrared Temperature Survey System

    2010-06-01

    For ongoing maintenance and performance purposes, solar parabolic trough field operators desire to know that the Heat Collection Elements (HCEs) are performing properly. Measuring their temperature is one way of doing this One 30MW field can contain approximately 10,000 HCE's. This software interfaces with a GPS receiver and an infrared camera. It takes global positioning data from the GPS and uses this information to automate the infrared image capture and temperature analysis of individual solarmore » parabolic HCEs in a solar parabolic trough field With this software system an entire 30MW field can be surveyed in 2-3 days.« less

  4. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  5. Accurate on line measurements of low fluences of charged particles

    NASA Astrophysics Data System (ADS)

    Palla, L.; Czelusniak, C.; Taccetti, F.; Carraresi, L.; Castelli, L.; Fedi, M. E.; Giuntini, L.; Maurenzig, P. R.; Sottili, L.; Taccetti, N.

    2015-03-01

    Ion beams supplied by the 3MV Tandem accelerator of LABEC laboratory (INFN-Firenze), have been used to study the feasibility of irradiating materials with ion fluences reproducible to about 1%. Test measurements have been made with 7.5 MeV 7Li2+ beams of different intensities. The fluence control is based on counting ions contained in short bursts generated by chopping the continuous beam with an electrostatic deflector followed by a couple of adjustable slits. Ions are counted by means of a micro-channel plate (MCP) detecting the electrons emitted from a thin layer of Al inserted along the beam path in between the pulse defining slits and the target. Calibration of the MCP electron detector is obtained by comparison with the response of a Si detector.

  6. Electrophoretic Focusing

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    2001-01-01

    Electrophoretic focusing is a new method of continuous flow electrophoresis that introduces precision flow control to achieve high resolution separations. The electric field is applied perpendicular to an incoming sample lamina and buffer but also perpendicular to the broad faces of the thin rectangular chamber. A uniform fluid cross-flow then enters and exits the separation chamber through the same broad faces which are porous. A balance is achieved by adjusting either the electric field or the cross-flow so the desired sample fraction with its specific migration velocity encounters an opposing flow of the same velocity. Applying an electric field transverse to the incoming sample lamina and opposing this field with a carefully configured buffer flow, a sample constituent can be selected and focused into a narrow stream for subsequent analysis. Monotonically changing either electric field or buffer cross-flow will yield a scan of all constituents of the sample. Stopping the scan increases the collection time for minor constituents to improve their analysis. Using the high voltage gradients and/or cross-flow to rapidly deflect extraneous sample through the porous screens and into either of the side (purge) chambers, the selected sample is focused in the center plane of the separation chamber and collected without contact or interaction with the separation chamber walls. Results will be presented on the separation of a range of materials including dyes, proteins, and monodisperse polystyrene latexes. Sources of sample dispersion inherent in other electrokinetic techniques will be shown to be negligible for a variety of sample concentrations, buffer properties and operating conditions.

  7. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  8. Improvement of Velocity Measurement Accuracy of Leaky Surface Acoustic Waves for Materials with Highly Attenuated Waveform of the V(z) curve by the Line-Focus-Beam Ultrasonic Material Characterization System

    NASA Astrophysics Data System (ADS)

    Ohashi, Yuji; Arakawa, Mototaka; Kushibiki, Jun‑ichi

    2006-05-01

    Measurement accuracies of leaky surface acoustic wave (LSAW) velocities for materials with highly attenuated waveforms of V(z) curves obtained by the line-focus-beam ultrasonic material characterization (LFB-UMC) system are investigated. Theoretical investigations were carried out and experiments were performed for TiO2-SiO2 glass (C-7972), Li2O-Al2O3-SiO2 glass ceramic (Zerodur\\textregistered), and (111) gadolinium gallium garnet (GGG) single crystal as specimens. Waveform attenuations of V(z) curves for C-7972 and Zerodur\\textregistered are greater than those for the (111) GGG single crystal. Frequency dependences of the waveform attenuations were calculated for each specimen by considering the propagation attenuation of LSAWs. The theoretical results revealed that the waveform attenuation dominantly depends upon the acoustic energy loss due to the water loading effect on the specimen surface, and that the waveform attenuation becomes smaller with decreasing frequency. Significant improvement of the measurement precision of LSAW velocities was demonstrated for each specimen using three LFB ultrasonic devices with different curvature radii R of the cylindrical acoustic lenses: R=2.0 mm at 75 MHz, R=1.5 mm at 110 MHz, and R=1.0 mm at 225 MHz; for C-7972, the precisions were improved from ± 0.0053% at 225 MHz to ± 0.0020% at 75 MHz.

  9. Accurate Stellar Parameters for Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brewer, John Michael; Fischer, Debra; Basu, Sarbani; Valenti, Jeff A.

    2015-01-01

    A large impedement to our understanding of planet formation is obtaining a clear picture of planet radii and densities. Although determining precise ratios between planet and stellar host are relatively easy, determining accurate stellar parameters is still a difficult and costly undertaking. High resolution spectral analysis has traditionally yielded precise values for some stellar parameters but stars in common between catalogs from different authors or analyzed using different techniques often show offsets far in excess of their uncertainties. Most analyses now use some external constraint, when available, to break observed degeneracies between surface gravity, effective temperature, and metallicity which can otherwise lead to correlated errors in results. However, these external constraints are impossible to obtain for all stars and can require more costly observations than the initial high resolution spectra. We demonstrate that these discrepencies can be mitigated by use of a larger line list that has carefully tuned atomic line data. We use an iterative modeling technique that does not require external constraints. We compare the surface gravity obtained with our spectral synthesis modeling to asteroseismically determined values for 42 Kepler stars. Our analysis agrees well with only a 0.048 dex offset and an rms scatter of 0.05 dex. Such accurate stellar gravities can reduce the primary source of uncertainty in radii by almost an order of magnitude over unconstrained spectral analysis.

  10. Experimental study of weak intersystem lines and related strong persistent lines of Ne II

    SciTech Connect

    Bridges, J. M.; Wiese, W. L.

    2007-08-15

    We operated a high-current hollow cathode discharge in pure neon at pressures from 93 to 173 Pa and measured the branching fractions of Ne II emission lines originating from several 2p{sup 5} 3p, 3d, and 4f levels, for which lifetime data were available in the literature. This allowed the determination of transition probabilities for all downward transitions, which included a number of weak intersystem lines. We focused our study on these weak lines, using care to assure correct identifications and accurate intensity measurements, in spite of the presence of much stronger other lines in their vicinity. In contrast to an earlier experiment, we achieved close agreement with a recent multiconfiguration Hartree-Fock calculation.

  11. Focusators for laser-branding

    NASA Astrophysics Data System (ADS)

    Doskolovich, L. L.; Kazanskiy, N. L.; Kharitonov, S. I.; Uspleniev, G. V.

    A new method is investigated for synthesis of computer-generated optical elements: focusators that are able to focus the radial-symmetrical laser beam into complex focal contours, in particular into alphanumeric symbols. The method is based on decomposition of the focal contour into segments of straight lines and semi-circles, following corresponding spacing out of the focusator on elementary segments (concentric rings or sectors) and solution of the inverse task of focusing from focusator segments into corresponding elements of the focal contour. The results of numerical computing of the field from synthesized focusators into the letters are presented. The theoretical efficiency of the focusators discussed is no less than 85%. The amplitude masks and the results of operational studies of synthesized focusators are presented.

  12. Verification and application of multi-source focus quantification

    NASA Astrophysics Data System (ADS)

    Simiz, J.-G.; Hasan, T.; Staals, F.; Le-Gratiet, B.; Tel, W. T.; Prentice, C.; Gemmink, J.-W.; Tishchenko, A.; Jourlin, Y.

    2016-03-01

    The concept of the multi-source focus correlation method was presented in 2015 [1, 2]. A more accurate understanding of real on-product focus can be obtained by gathering information from different sectors: design, scanner short loop monitoring, scanner leveling, on-product focus and topography. This work will show that chip topography can be predicted from reticle density and perimeter density data, including experimental proof. Different pixel sizes are used to perform the correlation in-line with the minimum resolution, correlation length of CMP effects and the spot size of the scanner level sensor. Potential applications of the topography determination will be evaluated, including optimizing scanner leveling by ignoring non-critical parts of the field, and without the need for time-consuming offline topography measurements.

  13. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  14. Transverse field focused system

    DOEpatents

    Anderson, Oscar A.

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  15. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  16. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  17. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  18. Accurate masses for dispersion-supported galaxies

    NASA Astrophysics Data System (ADS)

    Wolf, Joe; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj; Geha, Marla; Muñoz, Ricardo R.; Simon, Joshua D.; Avedo, Frank F.

    2010-08-01

    We derive an accurate mass estimator for dispersion-supported stellar systems and demonstrate its validity by analysing resolved line-of-sight velocity data for globular clusters, dwarf galaxies and elliptical galaxies. Specifically, by manipulating the spherical Jeans equation we show that the mass enclosed within the 3D deprojected half-light radius r1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy as long as the projected velocity dispersion profile is fairly flat near the half-light radius, as is typically observed. We find M1/2 = 3 G-1< σ2los > r1/2 ~= 4 G-1< σ2los > Re, where < σ2los > is the luminosity-weighted square of the line-of-sight velocity dispersion and Re is the 2D projected half-light radius. While deceptively familiar in form, this formula is not the virial theorem, which cannot be used to determine accurate masses unless the radial profile of the total mass is known a priori. We utilize this finding to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of a mass of approximately 3 × 109 Msolar, assuming a Λ cold dark matter cosmology. The faintest MW dSphs seem to have formed in dark matter haloes that are at least as massive as those of the brightest MW dSphs, despite the almost five orders of magnitude spread in luminosity between them. We expand our analysis to the full range of observed dispersion-supported stellar systems and examine their dynamical I-band mass-to-light ratios ΥI1/2. The ΥI1/2 versus M1/2 relation for dispersion-supported galaxies follows a U shape, with a broad minimum near ΥI1/2 ~= 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to ΥI1/2 ~= 3200 for ultra-faint dSphs and a more shallow rise to ΥI1/2 ~= 800 for galaxy cluster spheroids.

  19. Teaching Braille Line Tracking Using Stimulus Fading

    ERIC Educational Resources Information Center

    Scheithauer, Mindy C.; Tiger, Jeffrey H.

    2014-01-01

    Line tracking is a prerequisite skill for braille literacy that involves moving one's finger horizontally across a line of braille text and identifying when a line ends so the reader may reset his or her finger on the subsequent line. Current procedures for teaching line tracking are incomplete, because they focus on tracking lines with only…

  20. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  1. What's Normal? Accurately and Efficiently Assessing Menstrual Function.

    PubMed

    Takemoto, Darcie M; Beharry, Meera S

    2015-09-01

    Many young women are unsure of what constitutes normal menses. By asking focused questions, pediatric providers can quickly and accurately assess menstrual function and dispel anxiety and myths. In this article, we review signs and symptoms of normal versus pathologic menstrual functioning and provide suggestions to improve menstrual history taking.

  2. Comparative proteomic analysis of primary schwann cells and a spontaneously immortalized schwann cell line RSC 96: a comprehensive overview with a focus on cell adhesion and migration related proteins.

    PubMed

    Ji, Yuhua; Shen, Mi; Wang, Xin; Zhang, Shuqiang; Yu, Shu; Chen, Gang; Gu, Xiaosong; Ding, Fei

    2012-06-01

    Schwann cells (SCs) are the principal glial cells of the peripheral nervous system (PNS). As a result of tissue heterogeneity and difficulties in the isolation and culture of primary SCs, a considerable understanding of SC biology is obtained from SC lines. However, the differences between the primary SCs and SC lines remain uncertain. In the present study, quantitative proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) labeling was conducted to obtain an unbiased view of the proteomic profiles of primary rat SCs and RSC96, a spontaneously immortalized rat SC line. Out of 1757 identified proteins (FDR < 1%), 1702 were quantified, while 61 and 78 were found to be, respectively, up- or down-regulated (90% confidence interval) in RSC96. Bioinformatics analysis indicated the unique features of spontaneous immortalization, illustrated the dedifferentiated state of RSC96, and highlighted a panel of novel proteins associated with cell adhesion and migration including CADM4, FERMT2, and MCAM. Selected proteomic data and the requirement of these novel proteins in SC adhesion and migration were properly validated. Taken together, our data collectively revealed proteome differences between primary SCs and RSC96, validated several differentially expressed proteins with potential biological significance, and generated a database that may serve as a useful resource for studies of SC biology and pathology.

  3. Accurate evaluation of homogenous and nonhomogeneous gas emissivities

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Lee, K. P.

    1984-01-01

    Spectral transmittance and total band adsorptance of selected infrared bands of carbon dioxide and water vapor are calculated by using the line-by-line and quasi-random band models and these are compared with available experimental results to establish the validity of the quasi-random band model. Various wide-band model correlations are employed to calculate the total band absorptance and total emissivity of these two gases under homogeneous and nonhomogeneous conditions. These results are compared with available experimental results under identical conditions. From these comparisons, it is found that the quasi-random band model can provide quite accurate results and is quite suitable for most atmospheric applications.

  4. Scanning and focusing mechanisms of METEOSAT radiometer

    NASA Technical Reports Server (NTRS)

    Jouan, J.

    1977-01-01

    Two mechanisms, both of screw-jack type are described. The scanning mechanism, an oil lubricated and sealed unit drives and accurately positions the telescope of the METEOSAT radiometer. The dry lubricated focusing mechanism is used to adjust the focus of this telescope. The METEOSAT program is nearly completed, and the first flight model will be launched at the end of the year.

  5. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  11. Laser Guided Automated Calibrating System for Accurate Bracket Placement

    PubMed Central

    Anitha, A; Kumar, AJ; Mascarenhas, R; Husain, A

    2015-01-01

    Background: The basic premise of preadjusted bracket system is accurate bracket positioning. It is widely recognized that accurate bracket placement is of critical importance in the efficient application of biomechanics and in realizing the full potential of a preadjusted edgewise appliance. Aim: The purpose of this study was to design a calibrating system to accurately detect a point on a plane as well as to determine the accuracy of the Laser Guided Automated Calibrating (LGAC) System. Materials and Methods: To the lowest order of approximation a plane having two parallel lines is used to verify the accuracy of the system. On prescribing the distance of a point from the line, images of the plane are analyzed from controlled angles, calibrated and the point is identified with a laser marker. Results: The image was captured and analyzed using MATLAB ver. 7 software (The MathWorks Inc.). Each pixel in the image corresponded to a distance of 1cm/413 (10 mm/413) = 0.0242 mm (L/P). This implies any variations in distance above 0.024 mm can be measured and acted upon, and sets the highest possible accuracy for this system. Conclusion: A new automated system is introduced having an accuracy of 0.024 mm for accurate bracket placement. PMID:25745575

  12. Neutronic calculations for a final focus system

    NASA Astrophysics Data System (ADS)

    Mainardi, E.; Premuda, F.; Lee, E.

    2001-05-01

    For heavy-ion fusion and for "liquid-protected" reactor designs such as HYLIFE-II (Moir et al., Fusion Technol. 25 (1994); HYLIFE-II-Progress Report, UCID-21816, 4-82-100), a mixture of molten salts made of F 10, Li 6, Li 7, Be 9 called flibe allows highly compact target chambers. Smaller chambers will have lower costs and will allow the final-focus magnets to be closer to the target with decreased size of the focus spot and of the driver, as well as drastically reduced costs of IFE electricity. Consequently the superconducting coils of the magnets closer to the chamber will suffer higher radiation damage though they can stand only a certain amount of energy deposited before quenching. The scope of our calculations is essentially the total energy deposited on the magnetic lens system by fusion neutrons and induced γ-rays. Such a study is important for the design of the final focus system itself from the neutronic point of view and indicates some guidelines for a design with six magnets in the beam line. The entire chamber consists of 192 beam lines to provide access of heavy ions that will implode the pellet. A 3-D transport calculation of the radiation penetrating through ducts that takes into account the complexity of the system, requires Monte Carlo methods. The development of efficient and precise models for geometric representation and nuclear analysis is necessary. The parameters are optimized thanks to an accurate analysis of six geometrical models that are developed starting from the simplest. Different configurations are examined employing TART 98 (D.E. Cullen, Lawrence Livermore National Laboratory, UCRL-ID-126455, Rev. 1, November, 1997) and MCNP 4B (Briesmeister (Ed.), Version 4B, La-12625-m, March 1997, Los Alamos National Laboratory): two Monte Carlo codes for neutrons and photons. The quantities analyzed include: energy deposited by neutrons and gamma photons, values of the total fluence integrated on the whole energy range, neutron fluence spectrum

  13. "Only" and Focus.

    ERIC Educational Resources Information Center

    Vallduvi, Enric

    The relationship of the word "only," one of a class of words known as scalar particles, focus adverbs, focus inducers, or focus-sensitive particles, with the "focus" of the sentence is examined. It is suggested, based on analysis of discourse structure, that this "association with focus" is not an inherent property of this scalar particle. The…

  14. Measure Lines

    ERIC Educational Resources Information Center

    Crissman, Sally

    2011-01-01

    One tool for enhancing students' work with data in the science classroom is the measure line. As a coteacher and curriculum developer for The Inquiry Project, the author has seen how measure lines--a number line in which the numbers refer to units of measure--help students not only represent data but also analyze it in ways that generate…

  15. Transrectal high-intensity focused ultrasound ablation of prostate cancer: effective treatment requiring accurate imaging.

    PubMed

    Rouvière, Olivier; Souchon, Rémi; Salomir, Rarès; Gelet, Albert; Chapelon, Jean-Yves; Lyonnet, Denis

    2007-09-01

    Transrectal HIFU ablation has become a reasonable option for the treatment of localized prostate cancer in non-surgical patients, with 5-year disease-free survival similar to that of radiation therapy. It is also a promising salvage therapy of local recurrence after radiation therapy. These favourable results are partly due to recent improvements in prostate cancer imaging. However, further improvements are needed in patient selection, pre-operative localization of the tumor foci, assessment of the volume treated and early detection of recurrence. A better knowledge of the factors influencing the HIFU-induced tissue destruction and a better pre-operative assessment of them by imaging techniques should improve treatment outcome. Whereas prostate HIFU ablation is currently performed under transrectal ultrasound guidance, MR guidance with real-time operative monitoring of temperature will be available in the near future. If this technique will give better targeting and more uniform tissue destruction, its cost-effectiveness will have to be carefully evaluated. Finally, a recently reported synergistic effect between HIFU ablation and chemotherapy opens possibilities for treatment in high-risk or clinically advanced tumors.

  16. Hyperkahler metrics on focus-focus fibrations

    NASA Astrophysics Data System (ADS)

    Zhao, Jie

    In this thesis, we focus on the study of hyperkahler metric in four dimensional cases, and practice GMN's construction of hyperkahler metric on focus-focus fibrations. We explicitly compute the action-angle coordinates on the local model of focus-focus fibration, and show its semi-global invariant should be harmonic to admit a compatible holomorphic 2-form. Then we study the canonical semi-flat metric on it. After the instanton correction inspired by physics, we get a family of the generalized Ooguri-Vafa metric on focus-focus fibrations, which becomes more local examples of explicit hyperkahler metric in four dimensional cases. In addition, we also make some exploration of the Ooguri-Vafa metric in the thesis. We study the potential function of the Ooguri-Vafa metric, and prove that its nodal set is a cylinder of bounded radius 1 < R < 1. As a result, we get that only on a finite neighborhood of the singular fibre the Ooguri-Vafa metric is a hyperkahler metric. Finally, we give some estimates for the diameter of the fibration under the Oogui-Vafa metric, which confirms that the Oogui-Vafa metric is not complete. The new family of metric constructed in the thesis, we think, will provide more examples to further study of Lagrangian fibrations and mirror symmetry in future.

  17. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  18. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  19. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  20. Accurately measuring MPI broadcasts in a computational grid

    SciTech Connect

    Karonis N T; de Supinski, B R

    1999-05-06

    timing of events and, thus, eliminate concurrency between the collective communications that they measure. However, accurate event timing predictions are often impossible since network delays and local processing overheads are stochastic. Further, reasonable predictions are not possible if source code of the implementation is unavailable to the benchmark. We focus on measuring the performance of broadcast communication.

  1. A simple and accurate resist parameter extraction method for sub-80-nm DRAM patterns

    NASA Astrophysics Data System (ADS)

    Lee, Sook; Hwang, Chan; Park, Dong-Woon; Kim, In-Sung; Kim, Ho-Chul; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae

    2004-05-01

    Due to the polarization effect of high NA lithography, the consideration of resist effect in lithography simulation becomes increasingly important. In spite of the importance of resist simulation, many process engineers are reluctant to consider resist effect in lithography simulation due to time-consuming procedure to extract required resist parameters and the uncertainty of measurement of some parameters. Weiss suggested simplified development model, and this model does not require the complex kinetic parameters. For the device fabrication engineers, there is a simple and accurate parameter extraction and optimizing method using Weiss model. This method needs refractive index, Dill"s parameters and development rate monitoring (DRM) data in parameter extraction. The parameters extracted using referred sequence is not accurate, so that we have to optimize the parameters to fit the critical dimension scanning electron microscopy (CD SEM) data of line and space patterns. Hence, the FiRM of Sigma-C is utilized as a resist parameter-optimizing program. According to our study, the illumination shape, the aberration and the pupil mesh point have a large effect on the accuracy of resist parameter in optimization. To obtain the optimum parameters, we need to find the saturated mesh points in terms of normalized intensity log slope (NILS) prior to an optimization. The simulation results using the optimized parameters by this method shows good agreement with experiments for iso-dense bias, Focus-Exposure Matrix data and sub 80nm device pattern simulation.

  2. Method for Accurately Calibrating a Spectrometer Using Broadband Light

    NASA Technical Reports Server (NTRS)

    Simmons, Stephen; Youngquist, Robert

    2011-01-01

    A novel method has been developed for performing very fine calibration of a spectrometer. This process is particularly useful for modern miniature charge-coupled device (CCD) spectrometers where a typical factory wavelength calibration has been performed and a finer, more accurate calibration is desired. Typically, the factory calibration is done with a spectral line source that generates light at known wavelengths, allowing specific pixels in the CCD array to be assigned wavelength values. This method is good to about 1 nm across the spectrometer s wavelength range. This new method appears to be accurate to about 0.1 nm, a factor of ten improvement. White light is passed through an unbalanced Michelson interferometer, producing an optical signal with significant spectral variation. A simple theory can be developed to describe this spectral pattern, so by comparing the actual spectrometer output against this predicted pattern, errors in the wavelength assignment made by the spectrometer can be determined.

  3. Accurate mask model implementation in optical proximity correction model for 14-nm nodes and beyond

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Farys, Vincent; Huguennet, Frederic; Armeanu, Ana-Maria; Bork, Ingo; Chomat, Michael; Buck, Peter; Schanen, Isabelle

    2016-04-01

    In a previous work, we demonstrated that the current optical proximity correction model assuming the mask pattern to be analogous to the designed data is no longer valid. An extreme case of line-end shortening shows a gap up to 10 nm difference (at mask level). For that reason, an accurate mask model has been calibrated for a 14-nm logic gate level. A model with a total RMS of 1.38 nm at mask level was obtained. Two-dimensional structures, such as line-end shortening and corner rounding, were well predicted using scanning electron microscopy pictures overlaid with simulated contours. The first part of this paper is dedicated to the implementation of our improved model in current flow. The improved model consists of a mask model capturing mask process and writing effects, and a standard optical and resist model addressing the litho exposure and development effects at wafer level. The second part will focus on results from the comparison of the two models, the new and the regular.

  4. Accurate mask model implementation in OPC model for 14nm nodes and beyond

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Farys, Vincent; Huguennet, Frederic; Armeanu, Ana-Maria; Bork, Ingo; Chomat, Michael; Buck, Peter; Schanen, Isabelle

    2015-10-01

    In a previous work [1] we demonstrated that current OPC model assuming the mask pattern to be analogous to the designed data is no longer valid. Indeed as depicted in figure 1, an extreme case of line-end shortening shows a gap up to 10 nm difference (at mask level). For that reason an accurate mask model, for a 14nm logic gate level has been calibrated. A model with a total RMS of 1.38nm at mask level was obtained. 2D structures such as line-end shortening and corner rounding were well predicted using SEM pictures overlaid with simulated contours. The first part of this paper is dedicated to the implementation of our improved model in current flow. The improved model consists of a mask model capturing mask process and writing effects and a standard optical and resist model addressing the litho exposure and development effects at wafer level. The second part will focus on results from the comparison of the two models, the new and the regular, as depicted in figure 2.

  5. Columnar lined Barrett's oesophagus.

    PubMed

    Sharma, Neel; Ho, Khek Yu

    2015-12-01

    Over the past few years, the definition of Barrett's oesophagus has altered with no real agreement on histological understanding. This article highlights the increasing confusion regarding Barrett's oesophagus with a focus on the all-too-frequently ignored aspect of the columnar lined oesophagus.

  6. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    SciTech Connect

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  7. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  8. Accurate and Inaccurate Conceptions about Osmosis That Accompanied Meaningful Problem Solving.

    ERIC Educational Resources Information Center

    Zuckerman, June Trop

    This study focused on the knowledge of six outstanding science students who solved an osmosis problem meaningfully. That is, they used appropriate and substantially accurate conceptual knowledge to generate an answer. Three generated a correct answer; three, an incorrect answer. This paper identifies both the accurate and inaccurate conceptions…

  9. Accurate spectral modeling for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Gupta, S. K.

    1977-01-01

    Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.

  10. Focus Intonation in Bengali

    ERIC Educational Resources Information Center

    Hasan, Md. Kamrul

    2015-01-01

    This work attempts to investigate the role of prosody in the syntax of focus in Bangla. The aim of this study is to show the intonation pattern of Bangla in emphasis and focus. In order to do that, the author has looked at the pattern of focus without-i/o as well as with the same. Do they really pose any different focus intonation pattern from…

  11. Alternating phase focused linacs

    DOEpatents

    Swenson, Donald A.

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  12. Horizontal and Vertical Line Designs.

    ERIC Educational Resources Information Center

    Johns, Pat

    2003-01-01

    Presents an art lesson in which students learn about the artist Piet Mondrian and create their own abstract artworks. Focuses on geometric shapes using horizontal and vertical lines. Includes background information about the artist. (CMK)

  13. AXAF SIM focus mechanism study

    NASA Technical Reports Server (NTRS)

    Tananbaum, H. D.; Whitbeck, E.

    1994-01-01

    is by counting motor steps. The 'backup' method is by a pot mounted on the drive ring. Neither method provides for a direct measurement of the quantity desired (focus position). This is of concern because of the long and indirect relationship between focus and the sensed quantity (drive ring rotation). There are three sinusoidal relationships and structural stiffness in the path, and the resulting calibration is likely to be highly nonlinear. These methods would require an accurate ground calibration. (3) Ground calibration (and verification) of focus vs. drive position must be done in 1-g on the ground. This calibration will be complicated by both the structural characteristics of the bipods and the fact that the CG of the translating portion of the SIM is not on the optical axis (thereby causing unwated rotations and changing the focus position vs. motor step and pot readout relationships). The SIM translating weight could be offloaded, but the calibration then becomes sensitive to any errors in offloading (both magnitude and direction). There are concerns as to whether a calibration to the required accuracy can be accomplished on the ground. (4) The choice of a potentiometer as the focus position sensor is questionable in terms of reliability for a five year mission. The results of SAO's study of items 1, 2 and 3 described above are presented in this report.

  14. Progress toward accurate high spatial resolution actinide analysis by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.

    2010-12-01

    High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation

  15. Facility Focus: Residence Halls.

    ERIC Educational Resources Information Center

    College Planning & Management, 1999

    1999-01-01

    Describes four college residence halls that have successfully combined a comfortable, aesthetically pleasing, and socially stimulating atmosphere for its residents. Photographs and interior-design line drawings are included. (GR)

  16. Exploratory Focus Monitoring Test

    NASA Astrophysics Data System (ADS)

    Jedrzejewski, Robert

    1996-07-01

    Determination of the focus of the FOC is difficult because of the lack of aberrations. For small focus errors, it is very difficult to determine the sign of any focus error. We propose to use the field dependent astigmatism to remove this degeneracy. We will perform a fine focus sweep by moving the DOB to -1mm, -0.5mm, 0.0, +0.5mm, +1mm from nominal, and take images of a star using the F486N filter and placing the star in newly-defined apertures that are close to the edges of the field, where the field-dependent astigmatism is greatest. The appearance of the star as a function of focus will be unique, and this will allow an unambiguous determination of the focus. Before this program can be run, new apertures must be defined with size 256x256, SAMPOFF=0 and SAMPOFF=768, and LINEOFF=384.

  17. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  18. BrightFocus Foundation

    MedlinePlus

    ... Alzheimer’s Disease Research Program Macular Degeneration Research Program National Glaucoma Research Program Molecular Neurodegeneration ... Foundation BrightFocus Foundation 22512 Gateway Center Drive Clarksburg, MD ...

  19. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    NASA Astrophysics Data System (ADS)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  20. Solving the "Hidden Line" Problem

    NASA Technical Reports Server (NTRS)

    1984-01-01

    David Hedgley Jr., a mathematician at Dryden Flight Research Center, has developed an accurate computer program that considers whether a line in a graphic model of a three dimensional object should or should not be visible. The Hidden Line Computer Code, program automatically removes superfluous lines and permits the computer to display an object from specific viewpoints, just as the human eye would see it. Users include Rowland Institute for Science in Cambridge, MA, several departments of Lockheed Georgia Co., and Nebraska Public Power District (NPPD).

  1. Long line coupling models.

    SciTech Connect

    Warne, Larry Kevin; Chen, Kenneth C.

    2004-03-01

    This report assembles models for the response of a wire interacting with a conducting ground to an electromagnetic pulse excitation. The cases of an infinite wire above the ground as well as resting on the ground and buried beneath the ground are treated. The focus is on the characteristics and propagation of the transmission line mode. Approximations are used to simplify the description and formulas are obtained for the current. The semi-infinite case, where the short circuit current can be nearly twice that of the infinite line, is also examined.

  2. Subcycle Pulsed Focused Vector Beams

    SciTech Connect

    Lin Qiang; Zheng Jian; Becker, Wilhelm

    2006-12-22

    An accurate description of a subcycle pulsed beam (SCPB) is presented based on the complex-source model. The fields are exact solutions of Maxwell's equations and applicable to a focused pulsed beam with a pulse duration down to and below one cycle of the carrier wave and with arbitrary polarization state. Depending on the pulse duration, the pulse is blueshifted, and its wings are chirped. This effect, which we refer to as 'self-induced blueshift' goes beyond the carrier-envelope description. The corresponding phase is a temporal analog of the Gouy phase. The energy gain of a relativistic electron swept over by an SCPB is very sensitive to the proper form chosen to describe the pulse.

  3. Teaching braille line tracking using stimulus fading.

    PubMed

    Scheithauer, Mindy C; Tiger, Jeffrey H

    2014-01-01

    Line tracking is a prerequisite skill for braille literacy that involves moving one's finger horizontally across a line of braille text and identifying when a line ends so the reader may reset his or her finger on the subsequent line. Current procedures for teaching line tracking are incomplete, because they focus on tracking lines with only small gaps between characters. The current study extended previous line-tracking instruction using stimulus fading to teach tracking across larger gaps. After instruction, all participants showed improvement in line tracking, and 2 of 3 participants met mastery criteria for tracking across extended spaces.

  4. Accurate Drawbead Modeling in Stamping Simulations

    NASA Astrophysics Data System (ADS)

    Sester, M.; Burchitz, I.; Saenz de Argandona, E.; Estalayo, F.; Carleer, B.

    2016-08-01

    An adaptive line bead model that continually updates according to the changing conditions during the forming process has been developed. In these calculations, the adaptive line bead's geometry is treated as a 3D object where relevant phenomena like hardening curve, yield surface, through thickness stress effects and contact description are incorporated. The effectiveness of the adaptive drawbead model will be illustrated by an industrial example.

  5. Focus, 2000-2001.

    ERIC Educational Resources Information Center

    Focus, 2001

    2001-01-01

    These three issues of 2000-2001 "Focus" present a collection of papers focusing on issues related to poverty. The first issue discusses child support enforcement policy and low-income families, highlighting such issues as fragile families and child wellbeing; low-income families and the child support enforcement system; child support enforcement…

  6. FOCUS: Sustainable Mathematics Successes

    ERIC Educational Resources Information Center

    Mireles, Selina V.; Acee, Taylor W.; Gerber, Lindsey N.

    2014-01-01

    The FOCUS (Fundamentals of Conceptual Understanding and Success) Co-Requisite Model Intervention (FOCUS Intervention) for College Algebra was developed as part of the Developmental Education Demonstration Projects (DEDP) in Texas. The program was designed to use multiple services, courses, and best practices to support student completion of a…

  7. Agreement, Shells, and Focus.

    ERIC Educational Resources Information Center

    Simpson, Andrew; Wu, Zoe

    2002-01-01

    Reconsiders development and licensing of agreement as a syntactic projection and argues for a productive developmental relation between agreement and the category of focus. Suggests that focus projections are initially selected by a variety of functional heads with real semantic content, then, over time decays into a simple concord shell. Upon…

  8. Microfabricated particle focusing device

    DOEpatents

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  9. Can Appraisers Rate Work Performance Accurately?

    ERIC Educational Resources Information Center

    Hedge, Jerry W.; Laue, Frances J.

    The ability of individuals to make accurate judgments about others is examined and literature on this subject is reviewed. A wide variety of situational factors affects the appraisal of performance. It is generally accepted that the purpose of the appraisal influences the accuracy of the appraiser. The instrumentation, or tools, available to the…

  10. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  11. Effective Temperatures of Selected Main-Sequence Stars with the Most Accurate Parameters

    NASA Astrophysics Data System (ADS)

    Soydugan, F.; Eker, Z.; Soydugan, E.; Bilir, S.; Gökçe, E. Y.; Steer, I.; Tüysüz, M.; Šenyüz, T.; Demircan, O.

    2015-07-01

    In this study we investigate the distributions of the properties of detached double-lined binaries (DBs) in the mass-luminosity, mass-radius, and mass-effective temperature diagrams. We have improved the classical mass-luminosity relation based on the database of DBs by Eker et al. (2014a). Based on the accurate observational data available to us we propose a method for improving the effective temperatures of eclipsing binaries with accurate mass and radius determinations.

  12. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  13. Focused ultrasound in ophthalmology

    PubMed Central

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007

  14. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  15. Potential of Sentinel-1a for Grounding Line Measurements

    NASA Astrophysics Data System (ADS)

    Scheuchl, B.; Mouginot, J.; Rignot, E. J.

    2015-12-01

    The grounding line, the boundary between grounded and floating ice plays a crucial role for mass balance assessment, ice sheet modeling and the analysis of ice shelf melting. Interferometric Synthetic Aperture Radar data are the most accurate means to data to determine the grounding line on a large scale. The analysis of InSAR data from 1996 and 2011 shows a significant retreat of the grounding line in the Amundsen Sea Sector of West Antarctica along a retrograde bed. A new generation of spaceborne SAR sensors (Sentinel-1a, ALOS2) was launched in 2014 and has begun operational data collection since. Sentinel-1a collects data over ice sheets in a novel TOPSAR mode to provide large area coverage at relatively high resolution. Working closely with the ice sheet science community, ESA has implemented a data acquisition plan that ensures at least one ice sheet wide coverage per year and ongoing coverage in key coastal regions. The new mode, however does lead to some challenges in data processing. With focus on glaciers in West Antarctica (in particular we look at Smith, Pope and Kohler Glaciers), we show the potential of Sentinel-1a for grounding line mapping. Combining data from several currently available missions, we provide a 2015 update for the grounding line in the region.

  16. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  17. Feedback about more accurate versus less accurate trials: differential effects on self-confidence and activation.

    PubMed

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-06-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected byfeedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On day 1, participants performed a golf putting task under one of two conditions: one group received feedback on the most accurate trials, whereas another group received feedback on the least accurate trials. On day 2, participants completed an anxiety questionnaire and performed a retention test. Shin conductance level, as a measure of arousal, was determined. The results indicated that feedback about more accurate trials resulted in more effective learning as well as increased self-confidence. Also, activation was a predictor of performance. PMID:22808705

  18. Final focus nomenclature

    SciTech Connect

    Erickson, R.

    1986-08-08

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number. (LEW)

  19. Focusing corner cube

    DOEpatents

    Monjes, J.A.

    1985-09-12

    This invention retortreflects and focuses a beam of light. The invention comprises a modified corner cube reflector wherein one reflective surface is planar, a second reflective surface is spherical, and the third reflective surface may be planar or convex cylindrical.

  20. Passive focus sensor

    NASA Astrophysics Data System (ADS)

    Engelhardt, Kai; Knop, Karl

    1995-05-01

    A focus-sensor module that could take the place of the visual-image control for professional large-format cameras was fabricated. In addition, a passive focus-sensing method was shown to work at arbitrary locations and orientations in the recording plane of large-format professional cameras. A focus resolution of better than 0.1 mm and a range of measurement of +/- 5 mm at the image side were obtained at a minimum level of illuminance and with an aperture f/5.6 of the imaging lens. In the current method, three out of four images that arose from various sections of the camera's objective lens were applied for triangulation. The demonstrated approach was based on a linear photodiode array and employed one-dimensional image information for focus sensing.

  1. Inertial Focusing in Microfluidics

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2015-01-01

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future. PMID:24905880

  2. Facility Focus: Food Service.

    ERIC Educational Resources Information Center

    College Planning & Management, 2002

    2002-01-01

    Describes the Hawthorn Court Community Center at Iowa State University, Ames, and the HUB-Robeson Center at Pennsylvania State University. Focuses on the food service offered in these new student-life buildings. Includes photographs. (EV)

  3. Final focus test beam

    SciTech Connect

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  4. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  5. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  6. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  7. Preparation and accurate measurement of pure ozone.

    PubMed

    Janssen, Christof; Simone, Daniela; Guinet, Mickaël

    2011-03-01

    Preparation of high purity ozone as well as precise and accurate measurement of its pressure are metrological requirements that are difficult to meet due to ozone decomposition occurring in pressure sensors. The most stable and precise transducer heads are heated and, therefore, prone to accelerated ozone decomposition, limiting measurement accuracy and compromising purity. Here, we describe a vacuum system and a method for ozone production, suitable to accurately determine the pressure of pure ozone by avoiding the problem of decomposition. We use an inert gas in a particularly designed buffer volume and can thus achieve high measurement accuracy and negligible degradation of ozone with purities of 99.8% or better. The high degree of purity is ensured by comprehensive compositional analyses of ozone samples. The method may also be applied to other reactive gases. PMID:21456766

  8. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  9. Accurate modeling of parallel scientific computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Townsend, James C.

    1988-01-01

    Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.

  10. Accurate mask model for advanced nodes

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle

    2014-07-01

    Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.

  11. High harmonics focusing undulator

    SciTech Connect

    Varfolomeev, A.A.; Hairetdinov, A.H.; Smirnov, A.V.; Khlebnikov, A.S.

    1995-12-31

    It was shown in our previous work that there exist a possibility to enhance significantly the {open_quote}natural{close_quote} focusing properties of the hybrid undulator. Here we analyze the actual undulator configurations which could provide such field structure. Numerical simulations using 2D code PANDIRA were carried out and the enhanced focusing properties of the undulator were demonstrated. The obtained results provide the solution for the beam transport in a very long (short wavelength) undulator schemes.

  12. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  13. Focusing the parabolic antenna

    NASA Technical Reports Server (NTRS)

    Wu, L. K.; Moore, R. K.; Ulaby, F. T.

    1983-01-01

    The focused parabolic antenna has far field pattern characteristics in the radiating near field region. Therefore, it can provide fine resolutions in the across range dimensions. The technique of focusing the parabolic antenna is discussed and applied to a 2-1/2 foot parabolic antenna at X-band. The results of the pattern measurements at various ranges from 2.8 m to 5 m are provided.

  14. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  15. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-10-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  16. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-04-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  17. Accurate Molecular Polarizabilities Based on Continuum Electrostatics

    PubMed Central

    Truchon, Jean-François; Nicholls, Anthony; Iftimie, Radu I.; Roux, Benoît; Bayly, Christopher I.

    2013-01-01

    A novel approach for representing the intramolecular polarizability as a continuum dielectric is introduced to account for molecular electronic polarization. It is shown, using a finite-difference solution to the Poisson equation, that the Electronic Polarization from Internal Continuum (EPIC) model yields accurate gas-phase molecular polarizability tensors for a test set of 98 challenging molecules composed of heteroaromatics, alkanes and diatomics. The electronic polarization originates from a high intramolecular dielectric that produces polarizabilities consistent with B3LYP/aug-cc-pVTZ and experimental values when surrounded by vacuum dielectric. In contrast to other approaches to model electronic polarization, this simple model avoids the polarizability catastrophe and accurately calculates molecular anisotropy with the use of very few fitted parameters and without resorting to auxiliary sites or anisotropic atomic centers. On average, the unsigned error in the average polarizability and anisotropy compared to B3LYP are 2% and 5%, respectively. The correlation between the polarizability components from B3LYP and this approach lead to a R2 of 0.990 and a slope of 0.999. Even the F2 anisotropy, shown to be a difficult case for existing polarizability models, can be reproduced within 2% error. In addition to providing new parameters for a rapid method directly applicable to the calculation of polarizabilities, this work extends the widely used Poisson equation to areas where accurate molecular polarizabilities matter. PMID:23646034

  18. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models. PMID:27111139

  19. Accurate phase-shift velocimetry in rock

    NASA Astrophysics Data System (ADS)

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R.; Holmes, William M.

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  20. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  1. Effective cost modeling for service line planning.

    PubMed

    Scott, Michael; Stephen, Robert

    2010-05-01

    Healthcare executives have struggled to have accurate, timely information about cost and resources to model and monitor service line performance. Process-based cost modeling has been used successfully in other industries, but is relatively new in health care. Understanding costs and resources at process and patient levels can make the difference between a service line having a positive or negative margin. PMID:20446426

  2. Towards Perfect Water Line Intensities

    NASA Astrophysics Data System (ADS)

    Lodi, L.; Tennyson, J.

    2012-06-01

    Over the last ten years the increased availability of computational resources and the steady refinement of theoretical methods have permitted more and more accurate first principle calculations of water-vapor spectra as exemplified, e.g., by the very successful BT2 line list both line positions and intensities, a reliable dipole moment surface (DMS), affecting line intensities. It is also very useful to several application to give reasonable uncertainty bars for computed quantities, an aspect which traditionally has received little attention. We report here recent progress leading to very accurate room-temperature linelists covering the range 0.05-20 000 cm-1, complete with uncertainty bars, for the H_218O and H_217O water isotopologues Line intensities were produced using a recent DMS produced by our group which is capable of giving line intensites accurate to 1% for most medium and strong transitions. Line positions are based if possible on the experimentally derived energy levels recently produced by a IUPAC task group and have a typical accuracy of 0.0002 cm-1; when experimentally derived energy levels are unavailable calculated line position are provided, with an accuracy of the order of 0.2 cm-1. An extension to the main isotopologue H_216O is currently underway. R. J. Barber, J. Tennyson, G. J. Harris and R. N. Tolchenov, Mon. Not. R. Astron. Soc. {368}, 1087-1094 (2006). L. Lodi and J. Tennyson, J. Quant. Spectrosc. Radiat. Trans. (2012), doi:10.1016/j.jqsrt.2012.02.023 L. Lodi, J. Tennyson and O. L. Polyansky, J. Chem. Phys. {135}, 034113 (2011). J. Tennyson at al., J. Quant. Spectrosc. Radiat. Trans. {110}, 573-96 (2009).

  3. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  4. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  5. Chromatin States Accurately Classify Cell Differentiation Stages

    PubMed Central

    Larson, Jessica L.; Yuan, Guo-Cheng

    2012-01-01

    Gene expression is controlled by the concerted interactions between transcription factors and chromatin regulators. While recent studies have identified global chromatin state changes across cell-types, it remains unclear to what extent these changes are co-regulated during cell-differentiation. Here we present a comprehensive computational analysis by assembling a large dataset containing genome-wide occupancy information of 5 histone modifications in 27 human cell lines (including 24 normal and 3 cancer cell lines) obtained from the public domain, followed by independent analysis at three different representations. We classified the differentiation stage of a cell-type based on its genome-wide pattern of chromatin states, and found that our method was able to identify normal cell lines with nearly 100% accuracy. We then applied our model to classify the cancer cell lines and found that each can be unequivocally classified as differentiated cells. The differences can be in part explained by the differential activities of three regulatory modules associated with embryonic stem cells. We also found that the “hotspot” genes, whose chromatin states change dynamically in accordance to the differentiation stage, are not randomly distributed across the genome but tend to be embedded in multi-gene chromatin domains, and that specialized gene clusters tend to be embedded in stably occupied domains. PMID:22363642

  6. Accurate 12D dipole moment surfaces of ethylene

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Nikitin, Andrei V.; Rey, Michael; Szalay, Péter G.; Tyuterev, Vladimir G.

    2015-10-01

    Accurate ab initio full-dimensional dipole moment surfaces of ethylene are computed using coupled-cluster approach and its explicitly correlated counterpart CCSD(T)-F12 combined respectively with cc-pVQZ and cc-pVTZ-F12 basis sets. Their analytical representations are provided through 4th order normal mode expansions. First-principles prediction of the line intensities using variational method up to J = 30 are in excellent agreement with the experimental data in the range of 0-3200 cm-1. Errors of 0.25-6.75% in integrated intensities for fundamental bands are comparable with experimental uncertainties. Overall calculated C2H4 opacity in 600-3300 cm-1 range agrees with experimental determination better than to 0.5%.

  7. Fast focus field calculations

    NASA Astrophysics Data System (ADS)

    Leutenegger, Marcel; Geissbuehler, Matthias; Märki, Iwan; Leitgeb, Rainer A.; Lasser, Theo

    2008-02-01

    We present a method for fast calculation of the electromagnetic field near the focus of an objective with a high numerical aperture (NA). Instead of direct integration, the vectorial Debye diffraction integral is evaluated with the fast Fourier transform for calculating the electromagnetic field in the entire focal region. We generalize this concept with the chirp z transform for obtaining a flexible sampling grid and an additional gain in computation speed. Under the conditions for the validity of the Debye integral representation, our method yields the amplitude, phase and polarization of the focus field for an arbitrary paraxial input field in the aperture of the objective. Our fast calculation method is particularly useful for engineering the point-spread function or for fast image deconvolution. We present several case studies by calculating the focus fields of high NA oil immersion objectives for various amplitude, polarization and phase distributions of the input field. In addition, the calculation of an extended polychromatic focus field generated by a Bessel beam is presented. This extended focus field is of particular interest for Fourier domain optical coherence tomography because it preserves a lateral resolution of a few micrometers over an axial distance in the millimeter range.

  8. NICMOS focus monitor

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    1997-07-01

    This proposal is used to determine and monitor the optimal focus and tilt settings for all three NICMOS cameras. It is derived from SM2/NIC 7041, but is structurally quite a bit different. This proposal is built to run NIC1/2 focus sweeps on a weekly basis, and NIC3 focus sweeps twice a week during SMOV {following the "interim" runs of the 7150}. 7043 will run for as long as it is deemed necessary to keep track of the camera focii and to monitor the dewar anomaly. After the discussion on 20/3/96, this proposal is written to run 4 complete 1-week iterations starting 3 days after the last run of the 7150 {NICMOS COARSE OPTICAL ALIGNMENT, PART 2}.

  9. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  10. Sagittal focusing Laue monochromator

    DOEpatents

    Zhong; Zhong , Hanson; Jonathan , Hastings; Jerome , Kao; Chi-Chang , Lenhard; Anthony , Siddons; David Peter , Zhong; Hui

    2009-03-24

    An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

  11. Acceleration of electrons by a tightly focused intense laser beam.

    PubMed

    Li, Jian-Xing; Zang, Wei-Ping; Li, Ya-Dong; Tian, Jian-Guo

    2009-07-01

    The recent proposal to use Weinger transformation field (WTF) [Opt. Express 17, 4959-4969 (2009)] for describing tightly focused laser beams is investigated here in detail. In order to validate the accuracy of WTF, we derive the numerical field (NF) from the plane wave spectrum method. WTF is compared with NF and Lax series field (LSF). Results show that LSF is accurate close to the beam axis and divergent far from the beam axis, and WTF is always accurate. Moreover, electron dynamics in a tightly focused intense laser beam are simulated by LSF, WTF and NF, respectively. The results obtained by WTF are shown to be accurate.

  12. Acceleration of electrons by a tightly focused intense laser beam.

    PubMed

    Li, Jian-Xing; Zang, Wei-Ping; Li, Ya-Dong; Tian, Jian-Guo

    2009-07-01

    The recent proposal to use Weinger transformation field (WTF) [Opt. Express 17, 4959-4969 (2009)] for describing tightly focused laser beams is investigated here in detail. In order to validate the accuracy of WTF, we derive the numerical field (NF) from the plane wave spectrum method. WTF is compared with NF and Lax series field (LSF). Results show that LSF is accurate close to the beam axis and divergent far from the beam axis, and WTF is always accurate. Moreover, electron dynamics in a tightly focused intense laser beam are simulated by LSF, WTF and NF, respectively. The results obtained by WTF are shown to be accurate. PMID:19582099

  13. Many Ways to Make A Line

    ERIC Educational Resources Information Center

    Ferrell, Holly

    2006-01-01

    This article describes a middle school introductory art lesson that encourages experimentation as an essential part of the creative process. In this lesson, students experiment with different types of media and tools to create an abstract piece that focuses on the most basic element of art--line. Students focus on line quality, focal points,…

  14. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity

  15. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  16. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  17. Theoretical Atomic Physics code development IV: LINES, A code for computing atomic line spectra

    SciTech Connect

    Abdallah, J. Jr.; Clark, R.E.H.

    1988-12-01

    A new computer program, LINES, has been developed for simulating atomic line emission and absorption spectra using the accurate fine structure energy levels and transition strengths calculated by the (CATS) Cowan Atomic Structure code. Population distributions for the ion stages are obtained in LINES by using the Local Thermodynamic Equilibrium (LTE) model. LINES is also useful for displaying the pertinent atomic data generated by CATS. This report describes the use of LINES. Both CATS and LINES are part of the Theoretical Atomic PhysicS (TAPS) code development effort at Los Alamos. 11 refs., 9 figs., 1 tab.

  18. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  19. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.

  20. Accurate density functional thermochemistry for larger molecules.

    SciTech Connect

    Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.

    1997-06-20

    Density functional methods are combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. Seven different density functionals are assessed for the evaluation of heats of formation, Delta H 0 (298 K), for a test set of 40 molecules composed of H, C, O and N. The use of bond separation energies results in a dramatic improvement in the accuracy of all the density functionals. The B3-LYP functional has the smallest mean absolute deviation from experiment (1.5 kcal mol/f).

  1. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material. PMID:11366835

  2. Universality: Accurate Checks in Dyson's Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Godina, J. J.; Meurice, Y.; Oktay, M. B.

    2003-06-01

    In this talk we present high-accuracy calculations of the susceptibility near βc for Dyson's hierarchical model in D = 3. Using linear fitting, we estimate the leading (γ) and subleading (Δ) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized renormalization group transformation. We found γ = 1.29914073 ± 10 -8 and, Δ = 0.4259469 ± 10-7 independently of the choice of local integration measure (Ising or Landau-Ginzburg). After a suitable rescaling, the approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed by Koch and Wittwer.

  3. Focused electrojetting for nanoscale 3-D fabrication

    NASA Astrophysics Data System (ADS)

    Lee, Minhee; Kim, Ho-Young

    2012-11-01

    Although extreme miniaturization of components in integrated circuits and biochemical chips has driven the development of various nanofabrication technologies, three-dimensional fabrication of nanoscale objects is still in its infancy. Here we propose a novel method to fabricate a free-standing nanowall by the line-by-line deposition of electrospun polymer nanofibers. We show that the electrified nanojet, which tends to get unstable as traveling in free space due to the Coulombic repulsion, can be stably focused onto a narrow line of metal electrode. On the conducting line, the polymer nanojet is spontaneously folded successively to form a wall-like structure. We rationalize the period of spontaneous folding by balancing the tension in the polymer fiber with the electrostatic interaction of the fiber with the metal ground. This novel fabrication scheme can be applied for the development of three-dimensional bioscaffolds, nanofilters and nanorobots.

  4. Focusing on Mathematical Arguments

    ERIC Educational Resources Information Center

    Singletary, Laura M.; Conner, AnnaMarie

    2015-01-01

    "Collective argumentation" occurs when a group works together to arrive at a conclusion (supporting it with evidence). Simplistically, this occurs when students give answers to questions and tell how they arrived at the answer, perhaps prompted by a teacher. But collective argumentation can be much richer, with a focus on the process of…

  5. Youth Leadership. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on motivating young people to learn by providing leadership opportunities in school. "Coca-Cola Valued Youth Program: Assessing Progress" (Josie Danini Supik) examines the program's success. This program, which trains high-risk middle and high school students as tutors of younger children, has dramatically lowered dropout…

  6. Adolescent Literacy. Focus On

    ERIC Educational Resources Information Center

    Molineaux, Rebecca

    2009-01-01

    Evidence suggests that there is a crisis in adolescent literacy. Part of the problem is that students often receive little literacy instruction after elementary school. This "Focus On" examines the literacy instruction that adolescents need to be successful as they move on to more challenging texts in middle and high school. In addition, this…

  7. Focus on the President.

    ERIC Educational Resources Information Center

    Optometric Education, 2000

    2000-01-01

    An interview with the new president of the Association of Schools and Colleges of Optometry, John Schoessler, considers issues the president wishes to focus on during his presidency, changes in optometry students over the years, people who influenced his educational ideas, and research currently being conducted at Ohio State University College of…

  8. Focus on the President.

    ERIC Educational Resources Information Center

    Optometric Education, 1996

    1996-01-01

    In an interview, the incoming president of the Association of Schools and Colleges of Optometry (ASCO), Thomas L. Lewis, discusses his goals for the association, the challenges facing optometric education in the next decade, cooperation between ASCO and other professional organizations in optometry, his mentors in the profession, his focus as a…

  9. Focus on Basics, 1997.

    ERIC Educational Resources Information Center

    Focus on Basics, 1997

    1997-01-01

    Together, these four newsletters contain 36 articles devoted to adult literacy research and practice and the relationship between them. The following articles are included: "A Productive Partnership" (Richard J. Murnane, Bob Bickerton); "Welcome to 'Focus on Basics'" (Barbara Garner); "Applying Research on the Last Frontier" (Karen Backlund, Kathy…

  10. Focusing on the Invisible

    ERIC Educational Resources Information Center

    Haley, Tim R.

    2008-01-01

    This article seeks to answer the question of whether or not the design and development of an educational laboratory really changes when the focus is on nanotechnology. It explores current laboratory building trends and the added considerations for building a nanotechnology laboratory. The author leaves the reader with additional points to consider…

  11. Education Policy. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on educational policy in the Texas legislature in relation to student retention, Internet access, and sexual harassment. "1999 Texas Legislative Session--End of an Era?" (Albert Cortez, Maria Robledo Montecel) examines educational equity issues facing legislators: school funding, including the…

  12. Focusing educational initiatives

    NASA Technical Reports Server (NTRS)

    Parks, George K.

    1990-01-01

    The United States will soon be facing a critical shortage of aerospace scientists and engineers. To address this problem, Space Grant Colleges can assist in focusing interest in existing educational initiatives and in creating new educational opportunities, particularly for women and underrepresented minorities.

  13. Focus on stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Van den Broeck, Christian; Sasa, Shin-ichi; Seifert, Udo

    2016-02-01

    We introduce the thirty papers collected in this ‘focus on’ issue. The contributions explore conceptual issues within and around stochastic thermodynamics, use this framework for the theoretical modeling and experimental investigation of specific systems, and provide further perspectives on and for this active field.

  14. Focus on Bilingual Education.

    ERIC Educational Resources Information Center

    Mayo, Donald S., Ed.

    1982-01-01

    This collection of essays focuses on issues in bilingual education. First, Elizabeth Flynn examines different kinds of bilingual programs; efforts made towards cultural pluralism in a number of countries; national benefits to be derived from bilingualism; the needs of American ethnic groups, new immigrants, and foreign students; and the pros and…

  15. Instructional Technology. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This theme issue includes five articles that focus on implementing instructional technology in ways that benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Cruising the Web with English Language Learners" (Laura Chris Green) presents three scenarios using the World Wide Web in…

  16. Theme: Focus on Teaching.

    ERIC Educational Resources Information Center

    Connors, James J.; And Others

    1996-01-01

    Includes "The More Things Change..." (Connors); "Students--Bored of Education?" (Earle); "Yesterday, Today and Tomorrow" (Wesch et al.); "Attitude and the Value of Environment" (Foster); "Fins, Feathers and Fur" (Crank); "Greenhouse as a Focus for Agriscience" (Hurst); and "Agricultural and Environmental Education at Milton Hershey School"…

  17. Focus on the Presidency.

    ERIC Educational Resources Information Center

    Lindroth, Linda K.

    1996-01-01

    Uses Presidential and House of Representatives elections as basis for year-long curriculum focus on civics education, integrating print material, software, and the Internet. Describes classroom activities, Internet sites, and software described for four major areas: (1) campaigning for office; (2) moving into a new home; (3) reporting for work;…

  18. Equity. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue focuses on equity in children's literature, public funding for private schools, women in educational fields, female dropouts, and the relationship between school violence and family and community violence. "Violence in Our Schools" (Bradley Scott) explores reasons for school violence (media violence, isolation from family, racial…

  19. Bilingual Education. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue focuses on instructional practices, evaluation, and the state of bilingual education. "Effective Implementation of Bilingual Programs: Reflections from the Field" (Abelardo Villarreal, Adela Solis) describes the key characteristics of successful bilingual programs: vision and goals; program leadership; linkage to central office…

  20. Public Engagement. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1996

    1996-01-01

    This newsletter includes six articles that examine key issues facing public schools and communities related to accountability, bilingual education, immigrant education, school finance, and school choice. In addressing these issues, articles focus on the importance of community involvement and input in local school reform efforts aimed at achieving…

  1. Focus on First Graders.

    ERIC Educational Resources Information Center

    Schwartz, Shari S.

    The result of a collaboration between the El Paso, Texas, school district and community agencies, the Focus on First Graders program provides early intervention and prevention using a comprehensive approach to providing a variety of services at the school to at-risk first graders from low income families. Teachers and parents were surveyed to…

  2. Policy Update. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on the drastic revision of the Texas education code undertaken during the 1995 state legislative session. "Education Policy Reform: Key Points for Districts" (Albert Cortez, Mikki Symonds) outlines critical issues in the legislation that have an impact on educational quality: charter schools exempt from state regulations;…

  3. Young Children. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on educational, cognitive, and brain research with implications for early childhood educators, including those who work with limited-English-proficient, minority, and economically disadvantaged children. "Coming to Grips with Reading Instruction at the Early Grades" (Christie L. Goodman) reports…

  4. Focus on Efficient Management.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort. Office of Resource Management.

    Compiled as a workshop handbook, this guide presents information to help food service program administrators comply with federal regulations and evaluate and upgrade their operations. Part I discusses requirements of the National School Lunch Program, focusing on the "offer versus serve" method of service enacted in 1976 to reduce waste. After an…

  5. Homework. Focus On

    ERIC Educational Resources Information Center

    Rahal, Michelle Layer

    2010-01-01

    Homework has been an integral part of the educational system for over 100 years. What likely began as simple memorization tasks has evolved into complex projects and sparked an increasingly heated debate over the purpose and value of homework assignments. This "Focus On" examines the purpose of homework, how to create homework that has value,…

  6. Focused on Student Success

    ERIC Educational Resources Information Center

    California Community Colleges, Chancellor's Office, 2014

    2014-01-01

    In January 2011, the California Community Colleges Board of Governors formed a task force to chart a roadmap for system-wide focus on student success. The task force identified best practices and designed evidence-based recommendations to ensure student success is a driving theme in colleges. This comprehensive plan, known as the Student Success…

  7. [Focus: Family Communication].

    ERIC Educational Resources Information Center

    Barnes, Richard E., Ed.

    1977-01-01

    This issue of the "Journal of the Wisconsin Communication Association" focuses on family communication and contains the following articles: "Marital Typologies: An Alternative Approach to the Study of Communication in Enduring Relations" by Mary Anne Fitzpatrick, "Intimate Communication and the Family" by Marilyn D. LaCourt, and "A Study in…

  8. School Reform. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue addresses school reform, focusing on accountability, attrition, public-supported private education, equitable education, and schoolwide reform. "School-Student Performance and Accountability" (Jose A. Cardenas) discusses what constitutes good performance in school; the shifting emphasis among the input, output, and process of…

  9. Focus on Rashomon.

    ERIC Educational Resources Information Center

    Richie, Donald S., Ed.

    This Film Focus series is a collection of reviews, essays, and commentaries on the Japanese film Rashomon. The plot consists of an attack, a rape, and a robbery, all of which probably occurred during the Middle Ages. Each character relates his own version of what happened, or might have happened, revealing the outward and inner driving forces,…

  10. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  11. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  12. Accurate determination of characteristic relative permeability curves

    NASA Astrophysics Data System (ADS)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  13. How Accurately can we Calculate Thermal Systems?

    SciTech Connect

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-04-20

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K{sub eff}, for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors.

  14. SPECTROPOLARIMETRICALLY ACCURATE MAGNETOHYDROSTATIC SUNSPOT MODEL FOR FORWARD MODELING IN HELIOSEISMOLOGY

    SciTech Connect

    Przybylski, D.; Shelyag, S.; Cally, P. S.

    2015-07-01

    We present a technique to construct a spectropolarimetrically accurate magnetohydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion, and absorption in the solar interior and photosphere with the sunspot embedded into it. With the 6173 Å magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as the full Stokes vector for the simulation at various positions at the solar disk, and analyze the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterized. An increase in acoustic power in the simulated observations of the sunspot umbra away from the solar disk center was confirmed as the slow magnetoacoustic wave.

  15. The quest for customer focus.

    PubMed

    Gulati, Ranjay; Oldroyd, James B

    2005-04-01

    Companies have poured enormous amounts of money into customer relationship management, but in many cases the investment hasn't really paid off. That's because getting closer to customers isn't about building an information technology system. It's a learning journey-one that unfolds over four stages, requiring people and business units to coordinate in progressively more sophisticated ways. The journey begins with the creation of a companywide repository containing each interaction a customer has with the company, organized not by product, purchase, or location, but by customer. Communal coordination is what's called for at this stage, as each group contributes its information to the data pool separately from the others and then taps into it as needed. In the second stage, one-way serial coordination from centralized IT through analytical units and out to the operating units allows companies to go beyond just assembling data to drawing inferences. In stage three, companies shift their focus from past relationships to future behavior. Through symbiotic coordination, information flows back and forth between central analytic units and various organizational units like marketing, sales, and operations, as together they seek answers to questions like "How can we prevent customers from switching to a competitor?" and "Who would be most likely to buy a new product in the future"? In stage four, firms begin to move past discrete, formal initiatives and, through integral coordination, bring an increasingly sophisticated understanding oftheir customers to bear in all day-to-day operations. Skipping stages denies organizations the sure foundation they need to build a lasting customer-focused mind-set. Those that recognize this will invest their customer relationship dollars much more wisely-and will see their customer-focusing efforts pay offon the bottom line. PMID:15807042

  16. Primary Students' Success on the Structured Number Line

    ERIC Educational Resources Information Center

    Diezmann, Carmel M.; Lowrie, Tom; Sugars, Lindy A.

    2010-01-01

    Number lines are part of people's everyday life and are frequently used in primary mathematics as instructional aids, in texts, and for assessment purposes on mathematics tests. There are two types of number lines; (1) structured number lines, which are the focus of this paper; and (2) empty number lines. Structured number lines represent…

  17. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  18. Assembly-line Simulation Program

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.; Zendejas, Silvino; Malhotra, Shan

    1987-01-01

    Costs and profits estimated for models based on user inputs. Standard Assembly-line Manufacturing Industry Simulation (SAMIS) program generalized so useful for production-line manufacturing companies. Provides accurate and reliable means of comparing alternative manufacturing processes. Used to assess impact of changes in financial parameters as cost of resources and services, inflation rates, interest rates, tax policies, and required rate of return of equity. Most important capability is ability to estimate prices manufacturer would have to receive for its products to recover all of costs of production and make specified profit. Written in TURBO PASCAL.

  19. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  20. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  1. Focus on quantum efficiency

    NASA Astrophysics Data System (ADS)

    Buchleitner, Andreas; Burghardt, Irene; Cheng, Yuan-Chung; Scholes, Gregory D.; Schwarz, Ulrich T.; Weber-Bargioni, Alexander; Wellens, Thomas

    2014-10-01

    Technologies which convert light into energy, and vice versa, rely on complex, microscopic transport processes in the condensed phase, which obey the laws of quantum mechanics, but hitherto lack systematic analysis and modeling. Given our much improved understanding of multicomponent, disordered, highly structured, open quantum systems, this ‘focus on’ collection collects cutting-edge research on theoretical and experimental aspects of quantum transport in truly complex systems as defined, e.g., by the macromolecular functional complexes at the heart of photosynthesis, by organic quantum wires, or even photovoltaic devices. To what extent microscopic quantum coherence effects can (be made to) impact on macroscopic transport behavior is an equally challenging and controversial question, and this ‘focus on’ collection provides a setting for the present state of affairs, as well as for the ‘quantum opportunities’ on the horizon.

  2. Focused on Robert E

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the microscopic imager on the Mars Exploration Rover Opportunity, shows a geological feature dubbed 'Robert E.' Light from the top is illuminating the feature, which is located within the rock outcrop at Meridiani Planum, Mars. Several images, each showing a different part of 'Robert E' in good focus, were merged to produce this view. The area in this image, taken on Sol 15 of the Opportunity mission, is 2.2 centimeters (0.8 inches) across.

  3. Fine-tune lens-heating-induced focus drift with different process and illumination settings

    NASA Astrophysics Data System (ADS)

    Cui, Yuanting

    2001-09-01

    This study is to establish the relationship of lens heating (LH) performance with related process variables and develop the methodology for reducing LH induced focus drift for different products based on ASML LH algorithms and experiment data. Focus drift data is collected at certain LH machine constants for different process settings, such as different clear window images (CLW) in stepper jobs, different exposure doses, reticle transmission rates, and substrates. The further study is done at different illumination settings to establish the correlation between NA/sigma settings, focus drift and LH scaling factors ((mu) 1 (mu) 2). The characteristic (mu) 1, (mu) 2 -- NA/Ill relationship for this i-line stepper is generated using production batches. LH machine constants are fine-tuned based on the Poly layer for 0.30 micrometer Logic Mix-mode, 0.30 micrometer SRAM and 0.35 micrometer Embedded SRAM products. This work provides an accurate and practical way to fine-tune LH for all the i-line/DUV steppers based on the critical layer of representative products in a foundry fab.

  4. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  5. Selecting accurate statements from the cognitive interview using confidence ratings.

    PubMed

    Roberts, Wayne T; Higham, Philip A

    2002-03-01

    Participants viewed a videotape of a simulated murder, and their recall (and confidence) was tested 1 week later with the cognitive interview. Results indicated that (a) the subset of statements assigned high confidence was more accurate than the full set of statements; (b) the accuracy benefit was limited to information that forensic experts considered relevant to an investigation, whereas peripheral information showed the opposite pattern; (c) the confidence-accuracy relationship was higher for relevant than for peripheral information; (d) the focused-retrieval phase was associated with a greater proportion of peripheral and a lesser proportion of relevant information than the other phases; and (e) only about 50% of the relevant information was elicited, and most of this was elicited in Phase 1.

  6. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  7. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  8. The design of aerial camera focusing mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Changchang; Yang, Hongtao; Niu, Haijun

    2015-10-01

    In order to ensure the imaging resolution of aerial camera and compensating defocusing caused by the changing of atmospheric temperature, pressure, oblique photographing distance and other environmental factor [1,2], and to meeting the overall design requirements of the camera for the lower mass and smaller size , the linear focusing mechanism is designed. Through the target surface support, the target surface component is connected with focusing driving mechanism. Make use of precision ball screws, focusing mechanism transforms the input rotary motion of motor into linear motion of the focal plane assembly. Then combined with the form of linear guide restraint movement, the magnetic encoder is adopted to detect the response of displacement. And the closed loop control is adopted to realize accurate focusing. This paper illustrated the design scheme for a focusing mechanism and analyzed its error sources. It has the advantages of light friction and simple transmission chain and reducing the transmission error effectively. And this paper also analyses the target surface by finite element analysis and lightweight design. Proving that the precision of focusing mechanism can achieve higher than 3um, and the focusing range is +/-2mm.

  9. Simple and accurate optical height sensor for wafer inspection systems

    NASA Astrophysics Data System (ADS)

    Shimura, Kei; Nakai, Naoya; Taniguchi, Koichi; Itoh, Masahide

    2016-02-01

    An accurate method for measuring the wafer surface height is required for wafer inspection systems to adjust the focus of inspection optics quickly and precisely. A method for projecting a laser spot onto the wafer surface obliquely and for detecting its image displacement using a one-dimensional position-sensitive detector is known, and a variety of methods have been proposed for improving the accuracy by compensating the measurement error due to the surface patterns. We have developed a simple and accurate method in which an image of a reticle with eight slits is projected on the wafer surface and its reflected image is detected using an image sensor. The surface height is calculated by averaging the coordinates of the images of the slits in both the two directions in the captured image. Pattern-related measurement error was reduced by applying the coordinates averaging to the multiple-slit-projection method. Accuracy of better than 0.35 μm was achieved for a patterned wafer at the reference height and ±0.1 mm from the reference height in a simple configuration.

  10. Learning fast accurate movements requires intact frontostriatal circuits

    PubMed Central

    Shabbott, Britne; Ravindran, Roshni; Schumacher, Joseph W.; Wasserman, Paula B.; Marder, Karen S.; Mazzoni, Pietro

    2013-01-01

    The basal ganglia are known to play a crucial role in movement execution, but their importance for motor skill learning remains unclear. Obstacles to our understanding include the lack of a universally accepted definition of motor skill learning (definition confound), and difficulties in distinguishing learning deficits from execution impairments (performance confound). We studied how healthy subjects and subjects with a basal ganglia disorder learn fast accurate reaching movements. We addressed the definition and performance confounds by: (1) focusing on an operationally defined core element of motor skill learning (speed-accuracy learning), and (2) using normal variation in initial performance to separate movement execution impairment from motor learning abnormalities. We measured motor skill learning as performance improvement in a reaching task with a speed-accuracy trade-off. We compared the performance of subjects with Huntington's disease (HD), a neurodegenerative basal ganglia disorder, to that of premanifest carriers of the HD mutation and of control subjects. The initial movements of HD subjects were less skilled (slower and/or less accurate) than those of control subjects. To factor out these differences in initial execution, we modeled the relationship between learning and baseline performance in control subjects. Subjects with HD exhibited a clear learning impairment that was not explained by differences in initial performance. These results support a role for the basal ganglia in both movement execution and motor skill learning. PMID:24312037

  11. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    NASA Astrophysics Data System (ADS)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  12. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  13. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  14. Toward Accurate and Quantitative Comparative Metagenomics.

    PubMed

    Nayfach, Stephen; Pollard, Katherine S

    2016-08-25

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  15. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  16. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  17. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  18. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.

  19. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  20. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  1. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception. PMID:24549293

  2. Accurate Telescope Mount Positioning with MEMS Accelerometers

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate, and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the subarcminute range which is considerably smaller than the field-of-view of conventional imaging telescope systems. Here we present how this subarcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  3. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  4. Accurate Weather Forecasting for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  5. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  6. ACCURATE ESTIMATIONS OF STELLAR AND INTERSTELLAR TRANSITION LINES OF TRIPLY IONIZED GERMANIUM

    SciTech Connect

    Dutta, Narendra Nath; Majumder, Sonjoy E-mail: sonjoy@gmail.com

    2011-08-10

    In this paper, we report on weighted oscillator strengths of E1 transitions and transition probabilities of E2 transitions among different low-lying states of triply ionized germanium using highly correlated relativistic coupled cluster (RCC) method. Due to the abundance of Ge IV in the solar system, planetary nebulae, white dwarf stars, etc., the study of such transitions is important from an astrophysical point of view. The weighted oscillator strengths of E1 transitions are presented in length and velocity gauge forms to check the accuracy of the calculations. We find excellent agreement between calculated and experimental excitation energies. Oscillator strengths of few transitions, wherever studied in the literature via other theoretical and experimental approaches, are compared with our RCC calculations.

  7. Climate Services for Adaptation Support: Sectors, Regions, and Product Lines (Invited)

    NASA Astrophysics Data System (ADS)

    Owen, T.; Shea, E. E.

    2009-12-01

    Environmental information for decision support must be user-focused, accurate, and actionable. As the deleterious impacts of a non-stationary climate system manifest themselves through loss of civil infrastructure, cultural, and natural resources, NOAA and other science agencies are restructuring their approach to decision support, moving from a climate perspectives-centric model to one that offers more nimble, granular, and timely product lines supporting a breadth of sectoral- and regionally-focused decisions. This talk outlines NOAA’s efforts to this end, including its framing of sectors and regions, its development of emerging product lines, and its reliance on technological advances to better disseminate information. Through its climate services efforts, NOAA’s climate data resources can be leveraged to support sound adaptation decision making for societal infrastructure development and in the stewardship of marine, ocean, coastal, and terrestrial natural resources.

  8. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  9. Application of transmission-line super theory to classical transmission lines with risers

    NASA Astrophysics Data System (ADS)

    Rambousky, R.; Nitsch, J.; Tkachenko, S.

    2015-11-01

    By applying the Transmission-Line Super Theory (TLST) to a practical transmission-line configuration (two risers and a horizontal part of the line parallel to the ground plane) it is elaborated under which physical and geometrical conditions the horizontal part of the transmission-line can be represented by a classical telegrapher equation with a sufficiently accurate description of the physical properties of the line. The risers together with the part of the horizontal line close to them are treated as separate lines using the TLST. Novel frequency and local dependent reflection coefficients are introduced to take into account the action of the bends and their radiation. They can be derived from the matrizant elements of the TLST solution. It is shown that the solution of the resulting network and the TLST solution of the entire line agree for certain line configurations. The physical and geometrical parameters for these corresponding configurations are determined in this paper.

  10. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  11. Focus on 'Rue Legendre'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated image of PIA04196 Focus on 'Rue Legendre'

    Spirit used its microscopic imager to take this mosaic of the rock 'Haussmann' on martian day, or sol, 563 (August 3, 2005). The specific target is nicknamed 'Rue Legendre.' The rounded nature of the pebbles indicates that they were eroded on the surface before being embedded into the Haussmann rock. The size of the larger of the two pebbles is approximately 3 centimeters (1.2 inches). The rock probably formed from impact ejecta, consistent with other rocks Spirit discovered during its climb to the summit of 'Husband Hill.'

  12. Isoelectric focusing in space

    NASA Technical Reports Server (NTRS)

    Bier, M.; Egen, N. B.; Mosher, R. A.; Twitty, G. E.

    1982-01-01

    The potential of space electrophoresis is conditioned by the fact that all electrophoretic techniques require the suppression of gravity-caused convection. Isoelectric focusing (IEF) is a powerful variant of electrophoresis, in which amphoteric substances are separated in a pH gradient according to their isoelectric points. A new apparatus for large scale IEF, utilizing a recycling principle, has been developed. In the ground-based prototype, laminar flow is provided by a series of parallel filter elements. The operation of the apparatus is monitored by an automated array of pH and ultraviolet absorption sensors under control of a desk-top computer. The apparatus has proven to be useful for the purification of a variety of enzymes, snake venom proteins, peptide hormones, and other biologicals, including interferon produced by genetic engineering techniques. In planning for a possible space apparatus, a crucial question regarding electroosmosis needs to be addressed To solve this problem, simple focusing test modules are planned for inclusion in an early Shuttle flight.

  13. [Therapies by focused ultrasound].

    PubMed

    Grenier, N; Trillaud, H; Palussière, J; Mougenot, C; Quesson, B; Denis De Senneville, B; Moonen, C

    2007-11-01

    Many techniques of thermotherapy have emerged over the last several years in the field of oncology using different types of physical agents, including ultrasound. Only ultrasound can target deep seated lesions non-invasively without need for percutaneous probe insertion. Depending on their utilization, it is possible to select either thermal effects, in a continuous mode, at low temperature (allowing thermo-induced biological effects) or at high temperature (allowing thermoablation), or mechanical effects, in a pulsed mode, at low energy level (allowing biological effects) or at high energy levels (histotripsy). Thermoablation by focused ultrasound is now developing fast for applications in many organs. It gained a well defined role for the treatment of prostatic cancer and uterine leiomyoma but needs to be better evaluated in other organs such as the breast. Treatment of abdominal tumors must still be considered as experimental as long as problems related to acoustic interfaces (produced by ribs and gas) and movement correction are not resolved. Biological applications of focused ultrasound are currently being explored and have a great long term potential.

  14. Electrostatic Focusing Lens

    NASA Astrophysics Data System (ADS)

    Thomas, Eric; Hopkins, Demitri

    2011-10-01

    We developed an electrostatic focusing lens capable of generating DD reactions, by focusing deuterium ions generated from a pointed emitter at a frozen heavy water target. Due to difficulty with the pointed emitter, we later switched to a hollow cathode design. To model the lenses, chamber, and calculate the dimensions for the design that would maximize ion energy and density, the program SIMION was used. During stable operation, vacuum was hand adjusted around 10-13 mTorr. To keep stable beam, DC voltage generator was varied between 15-25 kV. Hand adjusting was necessary, because at points in the operation the frozen heavy water would release vapor at an increased rate. This caused the pressure to rise and the beam current to spike, creating instabilities and an arc to the lens. Three methods were used to determine successful DD production. (1) Two differently shielded Geiger counters (unshielded and UHMW-PE insulated tube), (2) Spectrophotometer comparing control peaks with heavy water tests, and (3) a calibrated bubble dosimeter specific to neutrons. Analysis of the results suggest the neutrons flux varied from 532 to 1.4 × 106 neutrons/sec, and require further tests to plot and narrow results.

  15. Product line cost estimation: a standard cost approach.

    PubMed

    Cooper, J C; Suver, J D

    1988-04-01

    Product line managers often must make decisions based on inaccurate cost information. A method is needed to determine costs more accurately. By using a standard costing model, product line managers can better estimate the cost of intermediate and end products, and hence better estimate the costs of the product line. PMID:10286385

  16. Variable focus crystal diffraction lens

    SciTech Connect

    Smither, R.K.

    1988-11-01

    A new method has been developed to control the shape of the surface of a diffracting crystal that will allow it to function as a variable focus crystal diffraction lens, for focusing photon beams from a synchrotron source. The new method uses thermal gradients in the crystal to control the shape of the surface of the crystal in two dimensions and allows one to generate both spherical and ellipsoidal surface shapes. In this work the thermal gradient was generated by core drilling two sets of cooling channels in a silicon crystal so that cooling or heating fluids could be circulated through the crystal at two different levels. The first set of channels is close to the surface of the crystal where the photon beam strikes it. The second set of channels is equal distant from the back surface. If a concave surface is desired, the fluid in the channels just below the surface exposed to the beam is cooler than the fluid circulating through the channels near the back surface. If a convex surface is desired, then the cooling fluid in the upper channels near the surface exposed to the incident photon beam, is warmer than the fluid in the lower channels. The focal length of the crystal lens is varied by varying the thermal gradient in the crystal. This approach can also be applied to the first crystal in a high power synchrotron beam line to eliminate the bowing and other thermal distortions of the crystal caused by the high heat load. 6 refs., 8 figs., 3 tabs.

  17. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  18. Accurate free energy calculation along optimized paths.

    PubMed

    Chen, Changjun; Xiao, Yi

    2010-05-01

    The path-based methods of free energy calculation, such as thermodynamic integration and free energy perturbation, are simple in theory, but difficult in practice because in most cases smooth paths do not exist, especially for large molecules. In this article, we present a novel method to build the transition path of a peptide. We use harmonic potentials to restrain its nonhydrogen atom dihedrals in the initial state and set the equilibrium angles of the potentials as those in the final state. Through a series of steps of geometrical optimization, we can construct a smooth and short path from the initial state to the final state. This path can be used to calculate free energy difference. To validate this method, we apply it to a small 10-ALA peptide and find that the calculated free energy changes in helix-helix and helix-hairpin transitions are both self-convergent and cross-convergent. We also calculate the free energy differences between different stable states of beta-hairpin trpzip2, and the results show that this method is more efficient than the conventional molecular dynamics method in accurate free energy calculation.

  19. Accurate SHAPE-directed RNA structure determination

    PubMed Central

    Deigan, Katherine E.; Li, Tian W.; Mathews, David H.; Weeks, Kevin M.

    2009-01-01

    Almost all RNAs can fold to form extensive base-paired secondary structures. Many of these structures then modulate numerous fundamental elements of gene expression. Deducing these structure–function relationships requires that it be possible to predict RNA secondary structures accurately. However, RNA secondary structure prediction for large RNAs, such that a single predicted structure for a single sequence reliably represents the correct structure, has remained an unsolved problem. Here, we demonstrate that quantitative, nucleotide-resolution information from a SHAPE experiment can be interpreted as a pseudo-free energy change term and used to determine RNA secondary structure with high accuracy. Free energy minimization, by using SHAPE pseudo-free energies, in conjunction with nearest neighbor parameters, predicts the secondary structure of deproteinized Escherichia coli 16S rRNA (>1,300 nt) and a set of smaller RNAs (75–155 nt) with accuracies of up to 96–100%, which are comparable to the best accuracies achievable by comparative sequence analysis. PMID:19109441

  20. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  1. Fast and Provably Accurate Bilateral Filtering.

    PubMed

    Chaudhury, Kunal N; Dabhade, Swapnil D

    2016-06-01

    The bilateral filter is a non-linear filter that uses a range filter along with a spatial filter to perform edge-preserving smoothing of images. A direct computation of the bilateral filter requires O(S) operations per pixel, where S is the size of the support of the spatial filter. In this paper, we present a fast and provably accurate algorithm for approximating the bilateral filter when the range kernel is Gaussian. In particular, for box and Gaussian spatial filters, the proposed algorithm can cut down the complexity to O(1) per pixel for any arbitrary S . The algorithm has a simple implementation involving N+1 spatial filterings, where N is the approximation order. We give a detailed analysis of the filtering accuracy that can be achieved by the proposed approximation in relation to the target bilateral filter. This allows us to estimate the order N required to obtain a given accuracy. We also present comprehensive numerical results to demonstrate that the proposed algorithm is competitive with the state-of-the-art methods in terms of speed and accuracy. PMID:27093722

  2. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  3. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  4. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  5. Accurate adiabatic correction in the hydrogen molecule.

    PubMed

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10(-12) at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10(-7) cm(-1), which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels. PMID:25494728

  6. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  7. Towards accurate observation and modelling of Antarctic glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    King, M.

    2012-04-01

    The response of the solid Earth to glacial mass changes, known as glacial isostatic adjustment (GIA), has received renewed attention in the recent decade thanks to the Gravity Recovery and Climate Experiment (GRACE) satellite mission. GRACE measures Earth's gravity field every 30 days, but cannot partition surface mass changes, such as present-day cryospheric or hydrological change, from changes within the solid Earth, notably due to GIA. If GIA cannot be accurately modelled in a particular region the accuracy of GRACE estimates of ice mass balance for that region is compromised. This lecture will focus on Antarctica, where models of GIA are hugely uncertain due to weak constraints on ice loading history and Earth structure. Over the last years, however, there has been a step-change in our ability to measure GIA uplift with the Global Positioning System (GPS), including widespread deployments of permanent GPS receivers as part of the International Polar Year (IPY) POLENET project. I will particularly focus on the Antarctic GPS velocity field and the confounding effect of elastic rebound due to present-day ice mass changes, and then describe the construction and calibration of a new Antarctic GIA model for application to GRACE data, as well as highlighting areas where further critical developments are required.

  8. Retroreflection Focusing Schlieren System

    NASA Technical Reports Server (NTRS)

    Heineck, James T. (Inventor)

    1996-01-01

    A retroreflective type focusing schlieren system which permits the light source to be positioned on the optic side of the system is introduced. The system includes an extended light source, as opposed to a point source, located adjacent to a beam splitter which projects light through the flow field onto a reflecting grating in the form of a grid which generates sheets of light that are directed back through the flow field and the beam splitter onto a primary lens behind which is located a cut-off grid having a grid pattern which corresponds to the grid pattern of the reflecting grating. The cut-off grid is adjustably positioned behind the primary lens and an image plane for imaging the turbulence is adjustably located behind the cut-off grid.

  9. Focused Ultrasound and Lithotripsy.

    PubMed

    Ikeda, Teiichiro; Yoshizawa, Shin; Koizumi, Norihiro; Mitsuishi, Mamoru; Matsumoto, Yoichiro

    2016-01-01

    Shock wave lithotripsy has generally been a first choice for kidney stone removal. The shock wave lithotripter uses an order of microsecond pulse durations and up to a 100 MPa pressure spike triggered at approximately 0.5-2 Hz to fragment kidney stones through mechanical mechanisms. One important mechanism is cavitation. We proposed an alternative type of lithotripsy method that maximizes cavitation activity to disintegrate kidney stones using high-intensity focused ultrasound (HIFU). Here we outline the method according to the previously published literature (Matsumoto et al., Dynamics of bubble cloud in focused ultrasound. Proceedings of the second international symposium on therapeutic ultrasound, pp 290-299, 2002; Ikeda et al., Ultrasound Med Biol 32:1383-1397, 2006; Yoshizawa et al., Med Biol Eng Comput 47:851-860, 2009; Koizumi et al., A control framework for the non-invasive ultrasound the ragnostic system. Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), pp 4511-4516, 2009; Koizumi et al., IEEE Trans Robot 25:522-538, 2009). Cavitation activity is highly unpredictable; thus, a precise control system is needed. The proposed method comprises three steps of control in kidney stone treatment. The first step is control of localized high pressure fluctuation on the stone. The second step is monitoring of cavitation activity and giving feedback on the optimized ultrasound conditions. The third step is stone tracking and precise ultrasound focusing on the stone. For the high pressure control we designed a two-frequency wave (cavitation control (C-C) waveform); a high frequency ultrasound pulse (1-4 MHz) to create a cavitation cloud, and a low frequency trailing pulse (0.5 MHz) following the high frequency pulse to force the cloud into collapse. High speed photography showed cavitation collapse on a kidney stone and shock wave emission from the cloud. We also conducted in-vitro erosion tests of model and natural

  10. Focused Ultrasound and Lithotripsy.

    PubMed

    Ikeda, Teiichiro; Yoshizawa, Shin; Koizumi, Norihiro; Mitsuishi, Mamoru; Matsumoto, Yoichiro

    2016-01-01

    Shock wave lithotripsy has generally been a first choice for kidney stone removal. The shock wave lithotripter uses an order of microsecond pulse durations and up to a 100 MPa pressure spike triggered at approximately 0.5-2 Hz to fragment kidney stones through mechanical mechanisms. One important mechanism is cavitation. We proposed an alternative type of lithotripsy method that maximizes cavitation activity to disintegrate kidney stones using high-intensity focused ultrasound (HIFU). Here we outline the method according to the previously published literature (Matsumoto et al., Dynamics of bubble cloud in focused ultrasound. Proceedings of the second international symposium on therapeutic ultrasound, pp 290-299, 2002; Ikeda et al., Ultrasound Med Biol 32:1383-1397, 2006; Yoshizawa et al., Med Biol Eng Comput 47:851-860, 2009; Koizumi et al., A control framework for the non-invasive ultrasound the ragnostic system. Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), pp 4511-4516, 2009; Koizumi et al., IEEE Trans Robot 25:522-538, 2009). Cavitation activity is highly unpredictable; thus, a precise control system is needed. The proposed method comprises three steps of control in kidney stone treatment. The first step is control of localized high pressure fluctuation on the stone. The second step is monitoring of cavitation activity and giving feedback on the optimized ultrasound conditions. The third step is stone tracking and precise ultrasound focusing on the stone. For the high pressure control we designed a two-frequency wave (cavitation control (C-C) waveform); a high frequency ultrasound pulse (1-4 MHz) to create a cavitation cloud, and a low frequency trailing pulse (0.5 MHz) following the high frequency pulse to force the cloud into collapse. High speed photography showed cavitation collapse on a kidney stone and shock wave emission from the cloud. We also conducted in-vitro erosion tests of model and natural

  11. Alliance-focused training.

    PubMed

    Eubanks-Carter, Catherine; Muran, J Christopher; Safran, Jeremy D

    2015-06-01

    Alliance-focused training (AFT) aims to increase therapists' ability to recognize, tolerate, and negotiate alliance ruptures by increasing the therapeutic skills of self-awareness, affect regulation, and interpersonal sensitivity. In AFT, therapists are encouraged to draw on these skills when metacommunicating about ruptures with patients. In this article, we present the 3 main supervisory tasks of AFT: videotape analysis of rupture moments, awareness-oriented role-plays, and mindfulness training. We describe the theoretical and empirical support for each supervisory task, provide examples based on actual supervision sessions, and present feedback about the usefulness of the techniques from trainees in our program. We also note some of the challenges involved in conducting AFT and the importance of maintaining a strong supervisory alliance when using this training approach.

  12. Alliance-focused training.

    PubMed

    Eubanks-Carter, Catherine; Muran, J Christopher; Safran, Jeremy D

    2015-06-01

    Alliance-focused training (AFT) aims to increase therapists' ability to recognize, tolerate, and negotiate alliance ruptures by increasing the therapeutic skills of self-awareness, affect regulation, and interpersonal sensitivity. In AFT, therapists are encouraged to draw on these skills when metacommunicating about ruptures with patients. In this article, we present the 3 main supervisory tasks of AFT: videotape analysis of rupture moments, awareness-oriented role-plays, and mindfulness training. We describe the theoretical and empirical support for each supervisory task, provide examples based on actual supervision sessions, and present feedback about the usefulness of the techniques from trainees in our program. We also note some of the challenges involved in conducting AFT and the importance of maintaining a strong supervisory alliance when using this training approach. PMID:25150677

  13. Focusing on customer service.

    PubMed

    1996-01-01

    This booklet is devoted to a consideration of how good customer service in family planning programs can generate demand for products and services, bring customers back, and reduce costs. Customer service is defined as increasing client satisfaction through continuous concern for client preferences, staff accountability to clients, and respect for the rights of clients. Issues discussed include the introduction of a customer service approach and gaining staff commitment. The experience of PROSALUD in Bolivia in recruiting appropriate staff, supervising staff, soliciting client feedback, and marketing services is offered as an example of a successful customer service approach. The key customer service functions are described as 1) establishing a welcoming atmosphere, 2) streamlining client flow, 3) personalizing client services, and 4) organizing and providing clear information to clients. The role of the manager in developing procedures is explored, and the COPE (Client-Oriented Provider-Efficient) process is presented as a good way to begin to make improvements. Techniques in staff training in customer service include brainstorming, role playing, using case studies (examples of which are provided), and engaging in practice sessions. Training also leads to the development of effective customer service attitudes, and the differences between these and organizational/staff-focused attitudes are illustrated in a chart. The use of communication skills (asking open-ended questions, helping clients express their concerns, engaging in active listening, and handling difficult situations) is considered. Good recovery skills are important when things go wrong. Gathering and using client feedback is the next topic considered. This involves identifying, recording, and discussing customer service issues as well as taking action on these issues and evaluating the results. The booklet ends by providing a sample of customer service indicators, considering the maintenance of a

  14. Focused shock spark discharge drill using multiple electrodes

    DOEpatents

    Moeny, William M.; Small, James G.

    1988-01-01

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  15. Central line infections - hospitals

    MedlinePlus

    ... infection; CVC - infection; Central venous device - infection; Infection control - central line infection; Nosocomial infection - central line infection; Hospital acquired infection - central line infection; Patient safety - central ...

  16. Accurate bs and w testing important for crude-oil custody transfer

    SciTech Connect

    Williams, J. )

    1990-11-12

    This paper discusses how monitoring crude-oil sediment and water content at the field production site is essential in accurate crude-oil custody transfer operations. This is accomplished by manual methods, or on-line devices like capacitance, density, or energy-absorption analyzers. For custody-transfer purposes, sediment and water is determined by a test which follows one of the API manuals of petroleum measurement standards (MPMS). Typically, this test is conducted in the field by the field centrifuge method which, if performed properly, yields very accurate results. Laboratory tests can be performed, but sample handling becomes even more critical.

  17. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  18. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  19. Accurate Thermal Conductivities from First Principles

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian

    2015-03-01

    In spite of significant research efforts, a first-principles determination of the thermal conductivity at high temperatures has remained elusive. On the one hand, Boltzmann transport techniques that include anharmonic effects in the nuclear dynamics only perturbatively become inaccurate or inapplicable under such conditions. On the other hand, non-equilibrium molecular dynamics (MD) methods suffer from enormous finite-size artifacts in the computationally feasible supercells, which prevent an accurate extrapolation to the bulk limit of the thermal conductivity. In this work, we overcome this limitation by performing ab initio MD simulations in thermodynamic equilibrium that account for all orders of anharmonicity. The thermal conductivity is then assessed from the auto-correlation function of the heat flux using the Green-Kubo formalism. Foremost, we discuss the fundamental theory underlying a first-principles definition of the heat flux using the virial theorem. We validate our approach and in particular the techniques developed to overcome finite time and size effects, e.g., by inspecting silicon, the thermal conductivity of which is particularly challenging to converge. Furthermore, we use this framework to investigate the thermal conductivity of ZrO2, which is known for its high degree of anharmonicity. Our calculations shed light on the heat resistance mechanism active in this material, which eventually allows us to discuss how the thermal conductivity can be controlled by doping and co-doping. This work has been performed in collaboration with R. Ramprasad (University of Connecticut), C. G. Levi and C. G. Van de Walle (University of California Santa Barbara).

  20. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  1. Mechanism for accurate, protein-assisted DNA annealing by Deinococcus radiodurans DdrB.

    PubMed

    Sugiman-Marangos, Seiji N; Weiss, Yoni M; Junop, Murray S

    2016-04-19

    Accurate pairing of DNA strands is essential for repair of DNA double-strand breaks (DSBs). How cells achieve accurate annealing when large regions of single-strand DNA are unpaired has remained unclear despite many efforts focused on understanding proteins, which mediate this process. Here we report the crystal structure of a single-strand annealing protein [DdrB (DNA damage response B)] in complex with a partially annealed DNA intermediate to 2.2 Å. This structure and supporting biochemical data reveal a mechanism for accurate annealing involving DdrB-mediated proofreading of strand complementarity. DdrB promotes high-fidelity annealing by constraining specific bases from unauthorized association and only releases annealed duplex when bound strands are fully complementary. To our knowledge, this mechanism provides the first understanding for how cells achieve accurate, protein-assisted strand annealing under biological conditions that would otherwise favor misannealing.

  2. Accurate Delayed Matching-to-Sample Responding without Rehearsal: An Unintentional Demonstration with Children.

    PubMed

    Ratkos, Thom; Frieder, Jessica E; Poling, Alan

    2016-06-01

    Research on joint control has focused on mediational responses, in which simultaneous stimulus control from two sources leads to the emission of a single response, such as choosing a comparison stimulus in delayed matching-to-sample. Most recent studies of joint control examined the role of verbal mediators (i.e., rehearsal) in evoking accurate performance. They suggest that mediation is a necessity for accurate delayed matching-to-sample responding. We designed an experiment to establish covert rehearsal responses in young children. Before participants were taught such responses; however, we observed that they responded accurately at delays of 15 and 30 s without overt rehearsal. These findings suggest that in some cases, rehearsal is not necessary for accurate responding in such tasks. PMID:27606223

  3. Focus on olanzapine.

    PubMed

    Green, B

    1999-01-01

    Olanzapine (2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5] benzodiazepine) is a novel antipsychotic agent of the theinobenzodiazepine class developed by Eli Lilly & Co. It has a pleotrophic pharmacology and affects the dopaminergic, serotonergic, muscarinic and adrenergic systems. The therapeutic advantage of recent antipsychotics (so-called atypical antipsychotics) has been attributed to additional serotonergic effects. Clinical studies and trials suggest that olanzapine is comparable or superior to haloperidol and may be superior to risperidone in terms of efficacy and side-effect profiles. The starting dose of olanzapine is a single dose of 10 mg. The drug reaches peak plasma levels in 5-8 h, and has a half-life of about 35 h, depending on metabolism. The recommended maximum dose is 20 mg daily, but higher doses have been employed. Abnormalities of the QTc interval on ECG are unlikely to occur and so there is no need for a baseline ECG as with sertindole, which has recently been withdrawn. The most common side-effects are somnolence and weight gain. About 40% of patients in clinical trials gain weight--especially if they are on a high starting dose and if they were underweight pre-treatment. Reported evidence to date suggests that olanzapine is relatively less likely to produce sexual dysfunction. In general, weight gain and sexual dysfunction are of great concern to people taking antipsychotics and the side-effect profile of any antipsychotic may affect compliance. Olanzapine's general efficacy and side-effect profile suggest that, unforeseen post-marketing complications notwithstanding, olanzapine deserves a major place in the first-line management of psychotic disorders. PMID:10494490

  4. Focus on olanzapine.

    PubMed

    Green, B

    1999-01-01

    Olanzapine (2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5] benzodiazepine) is a novel antipsychotic agent of the theinobenzodiazepine class developed by Eli Lilly & Co. It has a pleotrophic pharmacology and affects the dopaminergic, serotonergic, muscarinic and adrenergic systems. The therapeutic advantage of recent antipsychotics (so-called atypical antipsychotics) has been attributed to additional serotonergic effects. Clinical studies and trials suggest that olanzapine is comparable or superior to haloperidol and may be superior to risperidone in terms of efficacy and side-effect profiles. The starting dose of olanzapine is a single dose of 10 mg. The drug reaches peak plasma levels in 5-8 h, and has a half-life of about 35 h, depending on metabolism. The recommended maximum dose is 20 mg daily, but higher doses have been employed. Abnormalities of the QTc interval on ECG are unlikely to occur and so there is no need for a baseline ECG as with sertindole, which has recently been withdrawn. The most common side-effects are somnolence and weight gain. About 40% of patients in clinical trials gain weight--especially if they are on a high starting dose and if they were underweight pre-treatment. Reported evidence to date suggests that olanzapine is relatively less likely to produce sexual dysfunction. In general, weight gain and sexual dysfunction are of great concern to people taking antipsychotics and the side-effect profile of any antipsychotic may affect compliance. Olanzapine's general efficacy and side-effect profile suggest that, unforeseen post-marketing complications notwithstanding, olanzapine deserves a major place in the first-line management of psychotic disorders.

  5. Determination of DICD best focus by top-down CD-SEM

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhan; Lim, Hui Kow; Ng, Teng H.

    2002-07-01

    As critical-dimension shrink below 0.18 micrometers , the SPC (Statistical Process Control) based CD (Critical Dimension) control in lithography process becomes more difficult. Increasing requirements of a shrinking process window have called on the need for more accurate decision of process window center. However in practical fabrication, we found that top-down CD-SEM showed its limitations in process window center determination, especially for the best focus. For instance, in some extreme focus situation, resist pattern will show a severe undercutting profile which will affect the DICD reading by top-down CD-SEM with fixed measurement algorithm. This kind of DICD measurement error will finally affect the process window center determination (especially best focus) and in-line DICD monitoring, which will lead to the cost of scrap and loss of time for trouble-shooting. In this paper, we will present a detailed study of DICD best focus determination in case of top-down DICD by experiment and simulation. Further a possible solution to this problem will be described in the latter part of this paper.

  6. Line-by-line spectroscopic simulations on graphics processing units

    NASA Astrophysics Data System (ADS)

    Collange, Sylvain; Daumas, Marc; Defour, David

    2008-01-01

    We report here on software that performs line-by-line spectroscopic simulations on gases. Elaborate models (such as narrow band and correlated-K) are accurate and efficient for bands where various components are not simultaneously and significantly active. Line-by-line is probably the most accurate model in the infrared for blends of gases that contain high proportions of H 2O and CO 2 as this was the case for our prototype simulation. Our implementation on graphics processing units sustains a speedup close to 330 on computation-intensive tasks and 12 on memory intensive tasks compared to implementations on one core of high-end processors. This speedup is due to data parallelism, efficient memory access for specific patterns and some dedicated hardware operators only available in graphics processing units. It is obtained leaving most of processor resources available and it would scale linearly with the number of graphics processing units in parallel machines. Line-by-line simulation coupled with simulation of fluid dynamics was long believed to be economically intractable but our work shows that it could be done with some affordable additional resources compared to what is necessary to perform simulations on fluid dynamics alone. Program summaryProgram title: GPU4RE Catalogue identifier: ADZY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 62 776 No. of bytes in distributed program, including test data, etc.: 1 513 247 Distribution format: tar.gz Programming language: C++ Computer: x86 PC Operating system: Linux, Microsoft Windows. Compilation requires either gcc/g++ under Linux or Visual C++ 2003/2005 and Cygwin under Windows. It has been tested using gcc 4.1.2 under Ubuntu Linux 7.04 and using Visual C

  7. Focusing on flu

    PubMed Central

    Short, Mary B; Middleman, Amy B

    2014-01-01

    Introduction: To describe adolescents' perspectives regarding the use of school-located immunization programs (SLIP) for influenza vaccination. More importantly, adolescents were asked what factors would make them more or less likely to use a SLIP offering influenza vaccine. Results: Participants were generally found to be knowledgeable about influenza and to have positive attitudes toward receiving the vaccine via SLIP. Students were more willing to participate in a SLIP if it were low cost or free, less time-consuming than going to a doctor, and if they felt they could trust vaccinators. Overall, high school and middle school students ranked the benefits of SLIP similarly to each other. Methods: Focus groups using nominal group method were conducted with middle and high school students in a large, urban school district. Responses were recorded by each school, and then, responses were ranked across all participating schools for each question. Conclusions: A wide range of issues are important to middle and high school students when considering participation in SLIPs including convenience, public health benefits, trust in the program, program safety, and sanitary issues. Further research will be needed regarding the generalizability of these findings to larger populations of students. PMID:24018398

  8. Locally focused MRI

    NASA Astrophysics Data System (ADS)

    Yao, Lian; Cao, Y.; Levin, David N.

    1995-08-01

    Conventional magnetic resonance images are reconstructed by Fourier transformation and have uniform spatial resolution across the entire field of view (FOV). This paper describes a way of creating MR images which have higher spatial resolution in some areas than others. High resolution imaging can be confined to just those areas where it is necessary to resolve strong edges without truncation artifacts. Such locally focused images can be acquired in less scan time than required to image the entire FOV with uniformly high resolution. After the user specifies the spatial resolution in each portion of the FOV, the algorithm automatically generates image basis functions which oscillate most rapidly in the regions with highest resolution. Images are reconstructed by summing image projection onto these basis functions. These projections are calculated from a subset of the usual phase-encoded signals required to create a uniformly well-resolved image. The algorithm also determines which phase-encodings are optimal for this purpose, and these are usually nonuniformly scattered in k-space. Thus, both data acquisition and image reconstruction are optimized. Functional and interventional imaging may benefit from this technique, which makes it possible to acquire a rapid series of dynamical images which have high resolution in areas of expected changes and lower resolution elsewhere. Spectroscopic images may be improved by using high resolution in the neighborhood of sharp edges which might otherwise cause truncation artifacts.

  9. Focus point supersymmetry redux

    NASA Astrophysics Data System (ADS)

    Feng, Jonathan L.; Matchev, Konstantin T.; Sanford, David

    2012-04-01

    Recent results from Higgs boson and supersymmetry searches at the Large Hadron Collider provide strong new motivations for supersymmetric theories with heavy superpartners. We reconsider focus point supersymmetry (FP SUSY), in which all squarks and sleptons may have multi-TeV masses without introducing fine-tuning in the weak scale with respect to variations in the fundamental SUSY-breaking parameters. We examine both FP SUSY and its familiar special case, the FP region of minimal supergravity, also known as the constrained minimal supersymmetric standard model (mSUGRA/CMSSM), and show that they are beautifully consistent with all particle, astroparticle, and cosmological data, including Higgs boson mass limits, null results from SUSY searches, electric dipole moments, b→sγ, Bs→μ+μ-, the thermal relic density of neutralinos, and dark matter searches. The observed deviation of the muon’s anomalous magnetic moment from its standard model value may also be explained in FP SUSY, although not in the FP region of mSUGRA/CMSSM. In light of recent data, we advocate refined searches for FP SUSY and related scenarios with heavy squarks and sleptons, and we present a simplified parameter space within mSUGRA/CMSSM to aid such analyses.

  10. COMPRENDO: Focus and Approach

    PubMed Central

    Schulte-Oehlmann, Ulrike; Albanis, Triantafyllos; Allera, Axel; Bachmann, Jean; Berntsson, Pia; Beresford, Nicola; Carnevali, Daniela Candia; Ciceri, Francesca; Dagnac, Thierry; Falandysz, Jerzy; Galassi, Silvana; Hala, David; Janer, Gemma; Jeannot, Roger; Jobling, Susan; King, Isabella; Klingmüller, Dietrich; Kloas, Werner; Kusk, Kresten Ole; Levada, Ramon; Lo, Susan; Lutz, Ilka; Oehlmann, Jörg; Oredsson, Stina; Porte, Cinta; Rand-Weaver, Marian; Sakkas, Vasilis; Sugni, Michela; Tyler, Charles; van Aerle, Ronny; van Ballegoy, Christoph; Wollenberger, Leah

    2006-01-01

    Tens of thousands of man-made chemicals are in regular use and discharged into the environment. Many of them are known to interfere with the hormonal systems in humans and wildlife. Given the complexity of endocrine systems, there are many ways in which endocrine-disrupting chemicals (EDCs) can affect the body’s signaling system, and this makes unraveling the mechanisms of action of these chemicals difficult. A major concern is that some of these EDCs appear to be biologically active at extremely low concentrations. There is growing evidence to indicate that the guiding principle of traditional toxicology that “the dose makes the poison” may not always be the case because some EDCs do not induce the classical dose–response relationships. The European Union project COMPRENDO (Comparative Research on Endocrine Disrupters—Phylogenetic Approach and Common Principles focussing on Androgenic/Antiandrogenic Compounds) therefore aims to develop an understanding of potential health problems posed by androgenic and antiandrogenic compounds (AACs) to wildlife and humans by focusing on the commonalities and differences in responses to AACs across the animal kingdom (from invertebrates to vertebrates). PMID:16818253

  11. Accurate theoretical chemistry with coupled pair models.

    PubMed

    Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan

    2009-05-19

    Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now

  12. Method for out-of-focus camera calibration.

    PubMed

    Bell, Tyler; Xu, Jing; Zhang, Song

    2016-03-20

    State-of-the-art camera calibration methods assume that the camera is at least nearly in focus and thus fail if the camera is substantially defocused. This paper presents a method which enables the accurate calibration of an out-of-focus camera. Specifically, the proposed method uses a digital display (e.g., liquid crystal display monitor) to generate fringe patterns that encode feature points into the carrier phase; these feature points can be accurately recovered, even if the fringe patterns are substantially blurred (i.e., the camera is substantially defocused). Experiments demonstrated that the proposed method can accurately calibrate a camera regardless of the amount of defocusing: the focal length difference is approximately 0.2% when the camera is focused compared to when the camera is substantially defocused.

  13. The SILAC Fly Allows for Accurate Protein Quantification in Vivo*

    PubMed Central

    Sury, Matthias D.; Chen, Jia-Xuan; Selbach, Matthias

    2010-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is widely used to quantify protein abundance in tissue culture cells. Until now, the only multicellular organism completely labeled at the amino acid level was the laboratory mouse. The fruit fly Drosophila melanogaster is one of the most widely used small animal models in biology. Here, we show that feeding flies with SILAC-labeled yeast leads to almost complete labeling in the first filial generation. We used these “SILAC flies” to investigate sexual dimorphism of protein abundance in D. melanogaster. Quantitative proteome comparison of adult male and female flies revealed distinct biological processes specific for each sex. Using a tudor mutant that is defective for germ cell generation allowed us to differentiate between sex-specific protein expression in the germ line and somatic tissue. We identified many proteins with known sex-specific expression bias. In addition, several new proteins with a potential role in sexual dimorphism were identified. Collectively, our data show that the SILAC fly can be used to accurately quantify protein abundance in vivo. The approach is simple, fast, and cost-effective, making SILAC flies an attractive model system for the emerging field of in vivo quantitative proteomics. PMID:20525996

  14. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2016-08-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  15. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  16. Personalized Orthodontic Accurate Tooth Arrangement System with Complete Teeth Model.

    PubMed

    Cheng, Cheng; Cheng, Xiaosheng; Dai, Ning; Liu, Yi; Fan, Qilei; Hou, Yulin; Jiang, Xiaotong

    2015-09-01

    The accuracy, validity and lack of relation information between dental root and jaw in tooth arrangement are key problems in tooth arrangement technology. This paper aims to describe a newly developed virtual, personalized and accurate tooth arrangement system based on complete information about dental root and skull. Firstly, a feature constraint database of a 3D teeth model is established. Secondly, for computed simulation of tooth movement, the reference planes and lines are defined by the anatomical reference points. The matching mathematical model of teeth pattern and the principle of the specific pose transformation of rigid body are fully utilized. The relation of position between dental root and alveolar bone is considered during the design process. Finally, the relative pose relationships among various teeth are optimized using the object mover, and a personalized therapeutic schedule is formulated. Experimental results show that the virtual tooth arrangement system can arrange abnormal teeth very well and is sufficiently flexible. The relation of position between root and jaw is favorable. This newly developed system is characterized by high-speed processing and quantitative evaluation of the amount of 3D movement of an individual tooth.

  17. Vertical hydrodynamic focusing in glass microchannels

    PubMed Central

    Lin, Tony A.; Hosoi, A. E.; Ehrlich, Daniel J.

    2009-01-01

    Vertical hydrodynamic focusing in microfluidic devices is investigated through simulation and through direct experimental verification using a confocal microscope and a novel form of stroboscopic imaging. Optimization for microfluidic cytometry of biological cells is examined. By combining multiple crossing junctions, it is possible to confine cells to a single analytic layer of interest. Subtractive flows are investigated as a means to move the analysis layer vertically in the channel and to correct the flatness of this layer. The simulation software (ADINA and Coventor) is shown to accurately capture the complex dependencies of the layer interfaces, which vary strongly with channel geometry and relative flow rates. PMID:19693394

  18. ACCURATE CHARACTERIZATION OF HIGH-DEGREE MODES USING MDI OBSERVATIONS

    SciTech Connect

    Korzennik, S. G.; Rabello-Soares, M. C.; Schou, J.; Larson, T. P.

    2013-08-01

    We present the first accurate characterization of high-degree modes, derived using the best Michelson Doppler Imager (MDI) full-disk full-resolution data set available. A 90 day long time series of full-disk 2 arcsec pixel{sup -1} resolution Dopplergrams was acquired in 2001, thanks to the high rate telemetry provided by the Deep Space Network. These Dopplergrams were spatially decomposed using our best estimate of the image scale and the known components of MDI's image distortion. A multi-taper power spectrum estimator was used to generate power spectra for all degrees and all azimuthal orders, up to l = 1000. We used a large number of tapers to reduce the realization noise, since at high degrees the individual modes blend into ridges and thus there is no reason to preserve a high spectral resolution. These power spectra were fitted for all degrees and all azimuthal orders, between l = 100 and l = 1000, and for all the orders with substantial amplitude. This fitting generated in excess of 5.2 Multiplication-Sign 10{sup 6} individual estimates of ridge frequencies, line widths, amplitudes, and asymmetries (singlets), corresponding to some 5700 multiplets (l, n). Fitting at high degrees generates ridge characteristics, characteristics that do not correspond to the underlying mode characteristics. We used a sophisticated forward modeling to recover the best possible estimate of the underlying mode characteristics (mode frequencies, as well as line widths, amplitudes, and asymmetries). We describe in detail this modeling and its validation. The modeling has been extensively reviewed and refined, by including an iterative process to improve its input parameters to better match the observations. Also, the contribution of the leakage matrix on the accuracy of the procedure has been carefully assessed. We present the derived set of corrected mode characteristics, which includes not only frequencies, but line widths, asymmetries, and amplitudes. We present and discuss

  19. Automatically high accurate and efficient photomask defects management solution for advanced lithography manufacture

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Chen, Lijun; Ma, Lantao; Li, Dejian; Jiang, Wei; Pan, Lihong; Shen, Huiting; Jia, Hongmin; Hsiang, Chingyun; Cheng, Guojie; Ling, Li; Chen, Shijie; Wang, Jun; Liao, Wenkui; Zhang, Gary

    2014-04-01

    Defect review is a time consuming job. Human error makes result inconsistent. The defects located on don't care area would not hurt the yield and no need to review them such as defects on dark area. However, critical area defects can impact yield dramatically and need more attention to review them such as defects on clear area. With decrease in integrated circuit dimensions, mask defects are always thousands detected during inspection even more. Traditional manual or simple classification approaches are unable to meet efficient and accuracy requirement. This paper focuses on automatic defect management and classification solution using image output of Lasertec inspection equipment and Anchor pattern centric image process technology. The number of mask defect found during an inspection is always in the range of thousands or even more. This system can handle large number defects with quick and accurate defect classification result. Our experiment includes Die to Die and Single Die modes. The classification accuracy can reach 87.4% and 93.3%. No critical or printable defects are missing in our test cases. The missing classification defects are 0.25% and 0.24% in Die to Die mode and Single Die mode. This kind of missing rate is encouraging and acceptable to apply on production line. The result can be output and reloaded back to inspection machine to have further review. This step helps users to validate some unsure defects with clear and magnification images when captured images can't provide enough information to make judgment. This system effectively reduces expensive inline defect review time. As a fully inline automated defect management solution, the system could be compatible with current inspection approach and integrated with optical simulation even scoring function and guide wafer level defect inspection.

  20. How to obtain accurate resist simulations in very low-k1 era?

    NASA Astrophysics Data System (ADS)

    Chiou, Tsann-Bim; Park, Chan-Ha; Choi, Jae-Seung; Min, Young-Hong; Hansen, Steve; Tseng, Shih-En; Chen, Alek C.; Yim, Donggyu

    2006-03-01

    A procedure for calibrating a resist model iteratively adjusts appropriate parameters until the simulations of the model match the experimental data. The tunable parameters may include the shape of the illuminator, the geometry and transmittance/phase of the mask, light source and scanner-related parameters that affect imaging quality, resist process control and most importantly the physical/chemical factors in the resist model. The resist model can be accurately calibrated by measuring critical dimensions (CD) of a focus-exposure matrix (FEM) and the technique has been demonstrated to be very successful in predicting lithographic performance. However, resist model calibration is more challenging in the low k1 (<0.3) regime because numerous uncertainties, such as mask and resist CD metrology errors, are becoming too large to be ignored. This study demonstrates a resist model calibration procedure for a 0.29 k1 process using a 6% halftone mask containing 2D brickwall patterns. The influence of different scanning electron microscopes (SEM) and their wafer metrology signal analysis algorithms on the accuracy of the resist model is evaluated. As an example of the metrology issue of the resist pattern, the treatment of a sidewall angle is demonstrated for the resist line ends where the contrast is relatively low. Additionally, the mask optical proximity correction (OPC) and corner rounding are considered in the calibration procedure that is based on captured SEM images. Accordingly, the average root-mean-square (RMS) error, which is the difference between simulated and experimental CDs, can be improved by considering the metrological issues. Moreover, a weighting method and a measured CD tolerance are proposed to handle the different CD variations of the various edge points of the wafer resist pattern. After the weighting method is implemented and the CD selection criteria applied, the RMS error can be further suppressed. Therefore, the resist CD and process window can

  1. Approaches for the accurate definition of geological time boundaries

    NASA Astrophysics Data System (ADS)

    Schaltegger, Urs; Baresel, Björn; Ovtcharova, Maria; Goudemand, Nicolas; Bucher, Hugo

    2015-04-01

    Which strategies lead to the most precise and accurate date of a given geological boundary? Geological units are usually defined by the occurrence of characteristic taxa and hence boundaries between these geological units correspond to dramatic faunal and/or floral turnovers and they are primarily defined using first or last occurrences of index species, or ideally by the separation interval between two consecutive, characteristic associations of fossil taxa. These boundaries need to be defined in a way that enables their worldwide recognition and correlation across different stratigraphic successions, using tools as different as bio-, magneto-, and chemo-stratigraphy, and astrochronology. Sedimentary sequences can be dated in numerical terms by applying high-precision chemical-abrasion, isotope-dilution, thermal-ionization mass spectrometry (CA-ID-TIMS) U-Pb age determination to zircon (ZrSiO4) in intercalated volcanic ashes. But, though volcanic activity is common in geological history, ashes are not necessarily close to the boundary we would like to date precisely and accurately. In addition, U-Pb zircon data sets may be very complex and difficult to interpret in terms of the age of ash deposition. To overcome these difficulties we use a multi-proxy approach we applied to the precise and accurate dating of the Permo-Triassic and Early-Middle Triassic boundaries in South China. a) Dense sampling of ashes across the critical time interval and a sufficiently large number of analysed zircons per ash sample can guarantee the recognition of all system complexities. Geochronological datasets from U-Pb dating of volcanic zircon may indeed combine effects of i) post-crystallization Pb loss from percolation of hydrothermal fluids (even using chemical abrasion), with ii) age dispersion from prolonged residence of earlier crystallized zircon in the magmatic system. As a result, U-Pb dates of individual zircons are both apparently younger and older than the depositional age

  2. EDITORIAL: Focus on Graphene

    NASA Astrophysics Data System (ADS)

    Peres, N. M. R.; Ribeiro, Ricardo M.

    2009-09-01

    Graphene physics is currently one of the most active research areas in condensed matter physics. Countless theoretical and experimental studies have already been performed, targeting electronic, magnetic, thermal, optical, structural and vibrational properties. Also, studies that modify pristine graphene, aiming at finding new physics and possible new applications, have been considered. These include patterning nanoribbons and quantum dots, exposing graphene's surface to different chemical species, studying multilayer systems, and inducing strain and curvature (modifying in this way graphene's electronic properties). This focus issue includes many of the latest developments on graphene research. Focus on Graphene Contents Electronic properties of graphene and graphene nanoribbons with 'pseudo-Rashba' spin-orbit coupling Tobias Stauber and John Schliemann Strained graphene: tight-binding and density functional calculations R M Ribeiro, Vitor M Pereira, N M R Peres, P R Briddon and A H Castro Neto The effect of sublattice symmetry breaking on the electronic properties of doped graphene A Qaiumzadeh and R Asgari Interfaces within graphene nanoribbons J Wurm, M Wimmer, I Adagideli, K Richter and H U Baranger Weak localization and transport gap in graphene antidot lattices J Eroms and D Weiss Electronic properties of graphene antidot lattices J A Fürst, J G Pedersen, C Flindt, N A Mortensen, M Brandbyge, T G Pedersen and A-P Jauho Splitting of critical energies in the n=0 Landau level of graphene Ana L C Pereira Double-gated graphene-based devices S Russo, M F Craciun, M Yamamoto, S Tarucha and A F Morpurgo Pinning and switching of magnetic moments in bilayer graphene Eduardo V Castro, M P López-Sancho and M A H Vozmediano Electronic transport properties of graphene nanoribbons Katsunori Wakabayashi, Yositake Takane, Masayuki Yamamoto and Manfred Sigrist Many-body effects on out-of-plane phonons in graphene J González and E Perfetto Graphene zigzag ribbons, square

  3. Prostate Focused Ultrasound Therapy.

    PubMed

    Chapelon, Jean-Yves; Rouvière, Olivier; Crouzet, Sébastien; Gelet, Albert

    2016-01-01

    The tremendous progress in engineering and computing power coupled with ultrasound transducer technology and imaging modalities over the past 20 years have encouraged a revival of clinical interest in ultrasound therapy, mainly in High-Intensity Focused Ultrasound (HIFU). So far, the most extensive results from HIFU obtained in urology involve transrectal prostate ablation, which appears to be an effective therapeutic alternative for patients with malignant prostate tumors. Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men. Several treatment options with different therapeutic approaches exist, including HIFU for localized PCa that has been in use for over 15 years. Since the early 2000s, two systems have been marketed for this application, and other devices are currently in clinical trials. HIFU treatment can be used either alone or in combination with (before- or after-) external beam radiotherapy (EBRT) (before or after HIFU) and can be repeated multiple times. HIFU treatment is performed under real-time monitoring with ultrasound or guided by MRI. Two indications are validated today: Primary care treatment and EBRT failure. The results of HIFU for primary care treatment are similar to standard conformal EBRT, even though no randomized comparative studies have been performed and no 10-year follow up data is yet available for HIFU. Salvage HIFU after EBRT failure is increasing with oncological outcomes, similar to those achieved with surgery but with the advantage of fewer adverse effects. HIFU is an evolving technology perfectly adapted for focal treatment. Thus, HIFU focal therapy is another pathway that must be explored when considering the accuracy and reliability for PCa mapping techniques. HIFU would be particularly suited for such a therapy since it is clear that HIFU outcomes and toxicity are relative to the volume of prostate treated.

  4. The historical pathway towards more accurate homogenisation

    NASA Astrophysics Data System (ADS)

    Domonkos, P.; Venema, V.; Auer, I.; Mestre, O.; Brunetti, M.

    2012-03-01

    In recent years increasing effort has been devoted to objectively evaluate the efficiency of homogenisation methods for climate data; an important effort was the blind benchmarking performed in the COST Action HOME (ES0601). The statistical characteristics of the examined series have significant impact on the measured efficiencies, thus it is difficult to obtain an unambiguous picture of the efficiencies, relying only on numerical tests. In this study the historical methodological development with focus on the homogenisation of surface temperature observations is presented in order to view the progress from the side of the development of statistical tools. The main stages of this methodological progress, such as for instance the fitting optimal step-functions when the number of change-points is known (1972), cutting algorithm (1995), Caussinus - Lyazrhi criterion (1997), are recalled and their effects on the quality-improvement of homogenisation is briefly discussed. This analysis of the theoretical properties together with the recently published numerical results jointly indicate that, MASH, PRODIGE, ACMANT and USHCN are the best statistical tools for homogenising climatic time series, since they provide the reconstruction and preservation of true climatic variability in observational time series with the highest reliability. On the other hand, skilled homogenizers may achieve outstanding reliability also with the combination of simple statistical methods such as the Craddock-test and visual expert decisions. A few efficiency results of the COST HOME experiments are presented to demonstrate the performance of the best homogenisation methods.

  5. Attentional Focus Effects in Standing Long Jump Performance: Influence of a Broad and Narrow Internal Focus.

    PubMed

    Becker, Kevin A; Smith, Peter J K

    2015-07-01

    The content of instructions that strength coaches give can have a significant impact on how an athlete or client performs. Research on motor learning has shown an advantage of instructions focusing on the effects of movements (external focus) over those focusing on the movements themselves (internal focus) in the performance of motor skills. Internally focused cues are abundant in coaching, therefore the purpose of this study was to test whether some internally focused cues might be more helpful than others. Participants (68) were randomly assigned to either an external focus (EX), broad internal focus (B-IN), narrow internal focus (N-IN), or a control group (CON), and performed 5 standing long jumps. All groups were instructed that the goal was to jump as far as possible. In addition, the EX group was told to "jump as far past the start line as possible." The B-IN group was told to "use your legs." The N-IN group was told to "extend your knees as rapidly as possible," and the CON group received no additional instruction. An analysis of covariance showed that the EX group (198.09 ± 31.89 cm) jumped significantly farther than both the B-IN group (173.74 ± 35.36 cm), p = 0.010 and the N-IN group (178.53 ± 31.17 cm), p = 0.049, with no group different from the CON group. The results suggest that a broad internal focus is no more effective than a narrow internal focus, and that an external focus leads to the greatest jump distance. Strength and conditioning professionals should carefully word their instructions to induce an external focus of attention whenever possible.

  6. Auto-measuring system of aero-camera lens focus using linear CCD

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ye; Zhao, Yu-liang; Wang, Shu-juan

    2014-09-01

    The automatic and accurate focal length measurement of aviation camera lens is of great significance and practical value. The traditional measurement method depends on the human eye to read the scribed line on the focal plane of parallel light pipe by means of reading microscope. The method is of low efficiency and the measuring results are influenced by artificial factors easily. Our method used linear array solid-state image sensor instead of reading microscope to transfer the imaging size of specific object to be electrical signal pulse width, and used computer to measure the focal length automatically. In the process of measurement, the lens to be tested placed in front of the object lens of parallel light tube. A couple of scribed line on the surface of the parallel light pipe's focal plane were imaging on the focal plane of the lens to be tested. Placed the linear CCD drive circuit on the image plane, the linear CCD can convert the light intensity distribution of one dimension signal into time series of electrical signals. After converting, a path of electrical signals is directly brought to the video monitor by image acquisition card for optical path adjustment and focusing. The other path of electrical signals is processed to obtain the pulse width corresponding to the scribed line by electrical circuit. The computer processed the pulse width and output focal length measurement result. Practical measurement results showed that the relative error was about 0.10%, which was in good agreement with the theory.

  7. Subwavelength focusing and guiding of surface plasmons.

    PubMed

    Yin, Leilei; Vlasko-Vlasov, Vitali K; Pearson, John; Hiller, Jon M; Hua, Jiong; Welp, Ulrich; Brown, Dennis E; Kimball, Clyde W

    2005-07-01

    The constructive interference of surface plasmon polaritons (SPP) launched by nanometric holes allows us to focus SPP into a spot of high near-field intensity having subwavelength width. Near-field scanning optical microscopy is used to map the local SPP intensity. The resulting SPP patterns and their polarization dependence are accurately described in model calculations based on a dipolar model for the SPP emission at each hole. Furthermore, we show that the high SPP intensity in the focal spot can be launched and propagated on a Ag strip guide with a 250 x 50 nm2 cross section, thus overcoming the diffraction limit of conventional optics. The combination of focusing arrays and nano-waveguides may serve as a basic element in planar nano-photonic circuits.

  8. 77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... COMMISSION Accurate NDE & Inspection, LLC; Confirmatory Order In the Matter of Accurate NDE & Docket: 150... request ADR with the NRC in an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28,...

  9. Accurate determination of atomic structure of multiwalled carbon nanotubes by nondestructive nanobeam electron diffraction

    SciTech Connect

    Liu Zejian; Zhang Qi; Qin Luchang

    2005-05-09

    We report a method that allows direct, systematic, and accurate determination of the atomic structure of multiwalled carbon nanotubes by analyzing the scattering intensities on the nonequatorial layer lines in the electron diffraction pattern. Complete structure determination of a quadruple-walled carbon nanotube is described as an example, and it was found that the intertubular distance varied from 0.36 nm to 0.5 nm with a mean value of 0.42 nm.

  10. Beyond the Mainstream: New Possibilities for Learning On-Line.

    ERIC Educational Resources Information Center

    Barty, Karin

    2000-01-01

    Discusses on-line learning and whether it will become popular in Australia. Focuses on the availability of on-line courses, interaction in the virtual classroom, the need for direct contact, flexible learning, and learning outcomes. (Author/VWL)

  11. Final Focus Test Team Alighment - A Draft Proposal -

    SciTech Connect

    Fischer, G.E.; /SLAC

    2005-08-12

    In its present form, the Final Focus Test Beam (FFTB) is a transport line designed to transmit 50 GeV electron beams of SLC emittance (3 x 10{sup -10} radian-meters) straight through the central arm of the Beam Switchyard (BSY C line) with a final focus point out in the Research Yard but relatively near the end of the switchyard tunnel. The axis of the incident beam coincides with that of the SLAC linear accelerator; the final focus, some 300 meters downstream of the end of the accelerator, is displaced from this axis by about 2 meters horizontally.

  12. MRI guidance for focused ultrasound surgery

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan; Hynynen, Kullervo

    2005-09-01

    Magnetic resonance imaging (MRI) based monitoring has been shown in recent years to enhance the effectiveness of minimally or noninvasive thermal therapy techniques, such as focused ultrasound surgery. MR imaging's unique soft tissue contrast and ability to image in three dimensions and in any orientation make it extremely useful for treatment planning and for imaging the tissue response to the therapy. The temperature sensitivity of several intrinsic parameters enables MRI to visualize and quantify the progress an ongoing thermal treatment. The most useful temperature-sensitive parameter appears to be the proton resonant frequency, which allows for precise and accurate temperature measurements in water-based tissues. By acquiring a time series of quantitative temperature images, it is possible to monitor the accumulated thermal dose delivered to the target tissue and accurately predict the areas that are thermally ablated, while at the same time ensuring nearby critical structures are not heated. The method is currently used in an FDA approved focused ultrasound device for the treatment of uterine fibroids. Our research and clinical experience with these techniques will be reviewed.

  13. In pursuit of accurate timekeeping: Liverpool and Victorian electrical horology.

    PubMed

    Ishibashi, Yuto

    2014-10-01

    This paper explores how nineteenth-century Liverpool became such an advanced city with regard to public timekeeping, and the wider impact of this on the standardisation of time. From the mid-1840s, local scientists and municipal bodies in the port city were engaged in improving the ways in which accurate time was communicated to ships and the general public. As a result, Liverpool was the first British city to witness the formation of a synchronised clock system, based on an invention by Robert Jones. His method gained a considerable reputation in the scientific and engineering communities, which led to its subsequent replication at a number of astronomical observatories such as Greenwich and Edinburgh. As a further key example of developments in time-signalling techniques, this paper also focuses on the time ball established in Liverpool by the Electric Telegraph Company in collaboration with George Biddell Airy, the Astronomer Royal. This is a particularly significant development because, as the present paper illustrates, one of the most important technologies in measuring the accuracy of the Greenwich time signal took shape in the experimental operation of the time ball. The inventions and knowledge which emerged from the context of Liverpool were vital to the transformation of public timekeeping in Victorian Britain.

  14. Progress in fast, accurate multi-scale climate simulations

    SciTech Connect

    Collins, W. D.; Johansen, H.; Evans, K. J.; Woodward, C. S.; Caldwell, P. M.

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enabling improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.

  15. Progress in fast, accurate multi-scale climate simulations

    DOE PAGES

    Collins, W. D.; Johansen, H.; Evans, K. J.; Woodward, C. S.; Caldwell, P. M.

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enablingmore » improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  16. Progress in Fast, Accurate Multi-scale Climate Simulations

    SciTech Connect

    Collins, William D; Johansen, Hans; Evans, Katherine J; Woodward, Carol S.; Caldwell, Peter

    2015-01-01

    We present a survey of physical and computational techniques that have the potential to con- tribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enabling improved accuracy and fidelity in simulation of dynamics and allow more complete representations of climate features at the global scale. At the same time, part- nerships with computer science teams have focused on taking advantage of evolving computer architectures, such as many-core processors and GPUs, so that these approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.

  17. Accurate calculation of field and carrier distributions in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo

    2012-06-01

    We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.

  18. Novel Cortical Thickness Pattern for Accurate Detection of Alzheimer's Disease.

    PubMed

    Zheng, Weihao; Yao, Zhijun; Hu, Bin; Gao, Xiang; Cai, Hanshu; Moore, Philip

    2015-01-01

    Brain network occupies an important position in representing abnormalities in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Currently, most studies only focused on morphological features of regions of interest without exploring the interregional alterations. In order to investigate the potential discriminative power of a morphological network in AD diagnosis and to provide supportive evidence on the feasibility of an individual structural network study, we propose a novel approach of extracting the correlative features from magnetic resonance imaging, which consists of a two-step approach for constructing an individual thickness network with low computational complexity. Firstly, multi-distance combination is utilized for accurate evaluation of between-region dissimilarity; and then the dissimilarity is transformed to connectivity via calculation of correlation function. An evaluation of the proposed approach has been conducted with 189 normal controls, 198 MCI subjects, and 163 AD patients using machine learning techniques. Results show that the observed correlative feature suggests significant promotion in classification performance compared with cortical thickness, with accuracy of 89.88% and area of 0.9588 under receiver operating characteristic curve. We further improved the performance by integrating both thickness and apolipoprotein E ɛ4 allele information with correlative features. New achieved accuracies are 92.11% and 79.37% in separating AD from normal controls and AD converters from non-converters, respectively. Differences between using diverse distance measurements and various correlation transformation functions are also discussed to explore an optimal way for network establishment. PMID:26444768

  19. The Global Geodetic Infrastructure for Accurate Monitoring of Earth Systems

    NASA Astrophysics Data System (ADS)

    Weston, Neil; Blackwell, Juliana; Wang, Yan; Willis, Zdenka

    2014-05-01

    The National Geodetic Survey (NGS) and the Integrated Ocean Observing System (IOOS), two Program Offices within the National Ocean Service, NOAA, routinely collect, analyze and disseminate observations and products from several of the 17 critical systems identified by the U.S. Group on Earth Observations. Gravity, sea level monitoring, coastal zone and ecosystem management, geo-hazards and deformation monitoring and ocean surface vector winds are the primary Earth systems that have active research and operational programs in NGS and IOOS. These Earth systems collect terrestrial data but most rely heavily on satellite-based sensors for analyzing impacts and monitoring global change. One fundamental component necessary for monitoring via satellites is having a stable, global geodetic infrastructure where an accurate reference frame is essential for consistent data collection and geo-referencing. This contribution will focus primarily on system monitoring, coastal zone management and global reference frames and how the scientific contributions from NGS and IOOS continue to advance our understanding of the Earth and the Global Geodetic Observing System.

  20. In pursuit of accurate timekeeping: Liverpool and Victorian electrical horology.

    PubMed

    Ishibashi, Yuto

    2014-10-01

    This paper explores how nineteenth-century Liverpool became such an advanced city with regard to public timekeeping, and the wider impact of this on the standardisation of time. From the mid-1840s, local scientists and municipal bodies in the port city were engaged in improving the ways in which accurate time was communicated to ships and the general public. As a result, Liverpool was the first British city to witness the formation of a synchronised clock system, based on an invention by Robert Jones. His method gained a considerable reputation in the scientific and engineering communities, which led to its subsequent replication at a number of astronomical observatories such as Greenwich and Edinburgh. As a further key example of developments in time-signalling techniques, this paper also focuses on the time ball established in Liverpool by the Electric Telegraph Company in collaboration with George Biddell Airy, the Astronomer Royal. This is a particularly significant development because, as the present paper illustrates, one of the most important technologies in measuring the accuracy of the Greenwich time signal took shape in the experimental operation of the time ball. The inventions and knowledge which emerged from the context of Liverpool were vital to the transformation of public timekeeping in Victorian Britain. PMID:25508512

  1. In pursuit of accurate timekeeping: Liverpool and Victorian electrical horology.

    PubMed

    Ishibashi, Yuto

    2014-10-01

    This paper explores how nineteenth-century Liverpool became such an advanced city with regard to public timekeeping, and the wider impact of this on the standardisation of time. From the mid-1840s, local scientists and municipal bodies in the port city were engaged in improving the ways in which accurate time was communicated to ships and the general public. As a result, Liverpool was the first British city to witness the formation of a synchronised clock system, based on an invention by Robert Jones. His method gained a considerable reputation in the scientific and engineering communities, which led to its subsequent replication at a number of astronomical observatories such as Greenwich and Edinburgh. As a further key example of developments in time-signalling techniques, this paper also focuses on the time ball established in Liverpool by the Electric Telegraph Company in collaboration with George Biddell Airy, the Astronomer Royal. This is a particularly significant development because, as the present paper illustrates, one of the most important technologies in measuring the accuracy of the Greenwich time signal took shape in the experimental operation of the time ball. The inventions and knowledge which emerged from the context of Liverpool were vital to the transformation of public timekeeping in Victorian Britain. PMID:25470885

  2. Accurate multiple network alignment through context-sensitive random walk

    PubMed Central

    2015-01-01

    Background Comparative network analysis can provide an effective means of analyzing large-scale biological networks and gaining novel insights into their structure and organization. Global network alignment aims to predict the best overall mapping between a given set of biological networks, thereby identifying important similarities as well as differences among the networks. It has been shown that network alignment methods can be used to detect pathways or network modules that are conserved across different networks. Until now, a number of network alignment algorithms have been proposed based on different formulations and approaches, many of them focusing on pairwise alignment. Results In this work, we propose a novel multiple network alignment algorithm based on a context-sensitive random walk model. The random walker employed in the proposed algorithm switches between two different modes, namely, an individual walk on a single network and a simultaneous walk on two networks. The switching decision is made in a context-sensitive manner by examining the current neighborhood, which is effective for quantitatively estimating the degree of correspondence between nodes that belong to different networks, in a manner that sensibly integrates node similarity and topological similarity. The resulting node correspondence scores are then used to predict the maximum expected accuracy (MEA) alignment of the given networks. Conclusions Performance evaluation based on synthetic networks as well as real protein-protein interaction networks shows that the proposed algorithm can construct more accurate multiple network alignments compared to other leading methods. PMID:25707987

  3. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  4. Understanding Slag Freeze Linings

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2014-09-01

    Slag freeze linings, the formation of protective deposit layers on the inner walls of furnaces and reactors, are increasingly used in industrial pyrometallurgical processes to ensure that furnace integrity is maintained in these aggressive, high-temperature environments. Most previous studies of freeze-linings have analyzed the formation of slag deposits based solely on heat transfer considerations. These thermal models have assumed that the interface between the stationary frozen layer and the agitated molten bath at steady-state deposit thickness consists of the primary phase, which stays in contact with the bulk liquid at the liquidus temperature. Recent experimental studies, however, have clearly demonstrated that the temperature of the deposit/liquid bath interface can be lower than the liquidus temperature of the bulk liquid. A conceptual framework has been proposed to explain the observations and the factors influencing the microstructure and the temperature of the interface at steady-state conditions. The observations are consistent with a dynamic steady state that is a balance between (I) the rate of nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and (II) the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. It is argued that the assumption that the interface temperature is the liquidus of the bulk material represents only a limiting condition, and that the interface temperature can be between T liquidus and T solidus depending on the process conditions and bath chemistry. These findings have implications for the modeling approach and boundary conditions required to accurately describe these systems. They also indicate the opportunity to integrate considerations of heat and mass flows with the selection of melt chemistries in the design of future high temperature industrial reactors.

  5. Automatic dynamic depth focusing for NDT

    NASA Astrophysics Data System (ADS)

    Camacho, Jorge; Cruza, Jorge F.; Fritsch, Carlos; Moreno, José M.

    2014-02-01

    Automatic Dynamic Depth Focusing (ADDF) is a function currently not available in state of the art phased array NDT instruments. However, it would be a valuable tool to inspect arbitrarily shaped parts or when the part-array geometry is not accurately known. ADDF will avoid the burden of computing and programming focal laws, the complications of CAD-based geometry descriptions and is an effective tool to adapt to changes in the probe-part geometry during the inspection. Furthermore, the dynamic depth focusing feature will yield the best possible image quality with phased array technology. This work proposes an ADDF technique based on a procedure that automatically obtains the array-part geometry and sets up all the required focusing parameters. The array-part geometry is estimated from the first echo time of arrival using a few trigger shots. A virtual array that operates in the second medium only allows computing the initial values for a real-time dynamic depth focusing hardware. This technique is well adapted to inspect parts of unknown or variable geometry, or when the distance and/or the alignment of the array probe with the part changes during the inspection. The overall procedure is relatively fast (about 2 seconds using standard computers), even faster than currently available geometry-based focal law calculators.

  6. A surface diffusion model for Dip Pen Nanolithography line writing

    NASA Astrophysics Data System (ADS)

    Saha, Sourabh K.; Culpepper, Martin L.

    2010-06-01

    Dip Pen Nanolithography is a direct write process that creates nanoscale dots and lines. Models typically predict dot and line size via assumption of constant ink flow rate from tip to substrate. This is appropriate for dot writing. It is however well-known, though models rarely reflect, that the ink flow rate depends upon writing speed during line writing. Herein, we explain the physical phenomenon that governs line writing and use this to model tip-substrate diffusion in line writing. We accurately predict (i) the increase in flow rate with writing speed and (ii) line width within 12.5%.

  7. (Aerodynamic focusing of particles and heavy molecules)

    SciTech Connect

    de la Mora, J.F.

    1990-01-08

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m{sub p} some 3.6 {times} 10{sup 5} times larger than the molecular mass m of the carrier gas (diameters above some 100{angstrom}), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 {mu}m. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5{radical}(m/m{sub p}) times the nozzle diameter d{sub n}. But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs.

  8. Dual focus diffractive optical element with extended depth of focus

    NASA Astrophysics Data System (ADS)

    Uno, Katsuhiro; Shimizu, Isao

    2014-09-01

    A dual focus property and an extended depth of focus were verified by a new type of diffractive lens displaying on liquid crystal on silicon (LCoS) devices. This type of lens is useful to read information on multilayer optical discs and tilted discs. The radial undulation of the phase groove on the diffractive lens gave the dual focus nature. The focal extension was performed by combining the dual focus lens with the axilens that was invented for expanding the depth of focus. The number of undulations did not affect the intensity along the optical axis but the central spot of the diffraction pattern.

  9. A programmable-delay line.

    PubMed

    Schiano, J L; Trahiotis, C

    1987-01-01

    A relatively simple circuit is described which delays audio signals in 5 microseconds steps from 0 microsecond to 4000 microseconds. Delays are programmed via twelve TTL-level data lines. The magnitude response is flat and the phase response is linear from DC to 5 kHz. The gain of the circuit is fixed and independent of the selected delay. Delays are accurate to within 1 microsecond of the programmed value. The device is a nice alternative to other methods which have diverse shortcomings.

  10. A fast GNU method to draw accurate scientific illustrations for taxonomy.

    PubMed

    Montesanto, Giuseppe

    2015-01-01

    Nowadays only digital figures are accepted by the most important journals of taxonomy. These may be produced by scanning conventional drawings, made with high precision technical ink-pens, which normally use capillary cartridge and various line widths. Digital drawing techniques that use vector graphics, have already been described in literature to support scientists in drawing figures and plates for scientific illustrations; these techniques use many different software and hardware devices. The present work gives step-by-step instructions on how to make accurate line drawings with a new procedure that uses bitmap graphics with the GNU Image Manipulation Program (GIMP). This method is noteworthy: it is very accurate, producing detailed lines at the highest resolution; the raster lines appear as realistic ink-made drawings; it is faster than the traditional way of making illustrations; everyone can use this simple technique; this method is completely free as it does not use expensive and licensed software and it can be used with different operating systems. The method has been developed drawing figures of terrestrial isopods and some examples are here given.

  11. A fast GNU method to draw accurate scientific illustrations for taxonomy

    PubMed Central

    Montesanto, Giuseppe

    2015-01-01

    Abstract Nowadays only digital figures are accepted by the most important journals of taxonomy. These may be produced by scanning conventional drawings, made with high precision technical ink-pens, which normally use capillary cartridge and various line widths. Digital drawing techniques that use vector graphics, have already been described in literature to support scientists in drawing figures and plates for scientific illustrations; these techniques use many different software and hardware devices. The present work gives step-by-step instructions on how to make accurate line drawings with a new procedure that uses bitmap graphics with the GNU Image Manipulation Program (GIMP). This method is noteworthy: it is very accurate, producing detailed lines at the highest resolution; the raster lines appear as realistic ink-made drawings; it is faster than the traditional way of making illustrations; everyone can use this simple technique; this method is completely free as it does not use expensive and licensed software and it can be used with different operating systems. The method has been developed drawing figures of terrestrial isopods and some examples are here given. PMID:26261449

  12. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  13. Using the H-β Emission Line as a Means of Mass Determination for Spiral Galaxy AGNs

    NASA Astrophysics Data System (ADS)

    Cameron, Thomas; Ratz, Lucus; Burris, Debra L.

    2016-01-01

    This study focuses on the AGN of spiral galaxies in hopes to use the H-β line to determine the mass of the central black hole. We are replicating the method of Vestergaard and Peterson by extinction correcting emission spectra from these black holes, both for cosmic redshift and for FeII emissions using IRAF. From there we can accurately measure the full width half max of the H-beta line in these spectrum as well as the lumosity and these paired with the OIII lines give us an estimate on the mass of the black hole. The purpose of this is to compare it to the values to pitch angle measurements and to explore the Mass-Pitch Angle relation as outlined by J. Kennefick from the University of Arkansas.

  14. Semantic Focus and Sentence Comprehension.

    ERIC Educational Resources Information Center

    Cutler, Anne; Fodor, Jerry A.

    1979-01-01

    Reaction time to detect a phoneme target in a sentence was faster when the target-containing word formed part of the semantic focus of the sentence. Sentence understanding was facilitated by rapid identification of focused information. Active search for accented words can be interpreted as a search for semantic focus. (Author/RD)

  15. Focusing Electron Beams at SLAC.

    ERIC Educational Resources Information Center

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  16. Accurate, low-cost 3D-models of gullies

    NASA Astrophysics Data System (ADS)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  17. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  18. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future.

  19. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future. PMID:26831987

  20. Highly accurate SNR measurement using the covariance of two SEM images with the identical view.

    PubMed

    Oho, Eisaku; Suzuki, Kazuhiko

    2012-01-01

    Quality of an SEM image is strongly influenced by the extent of noise. As a well-known method in the field of SEM, the covariance is applied to measure the signal-to-noise ratio (SNR). This method has potential ability for highly accurate measurement of the SNR, which is hardly known until now. If the precautions discussed in this article are adopted, that method can demonstrate its real ability. These precautions are strongly related to "proper acquisition of two images with the identical view," "alignment of an aperture diaphragm," "reduction of charging phenomena," "elimination of particular noises," and "accurate focusing," As necessary, characteristics in SEM signal and noise are investigated from a few standpoints. When using the maximum performance of this measurement, SNR of many SEM images obtained in a variety of the SEM operating conditions and specimens can be measured accurately.

  1. Peripheral intravenous line - infants

    MedlinePlus

    PIV - infants; Peripheral IV - infants; Peripheral line - infants; Peripheral line - neonatal ... A peripheral intravenous line (PIV) is a small, short, plastic tube, called a catheter. A health care provider puts ...

  2. Accurate description of calcium solvation in concentrated aqueous solutions.

    PubMed

    Kohagen, Miriam; Mason, Philip E; Jungwirth, Pavel

    2014-07-17

    Calcium is one of the biologically most important ions; however, its accurate description by classical molecular dynamics simulations is complicated by strong electrostatic and polarization interactions with surroundings due to its divalent nature. Here, we explore the recently suggested approach for effectively accounting for polarization effects via ionic charge rescaling and develop a new and accurate parametrization of the calcium dication. Comparison to neutron scattering and viscosity measurements demonstrates that our model allows for an accurate description of concentrated aqueous calcium chloride solutions. The present model should find broad use in efficient and accurate modeling of calcium in aqueous environments, such as those encountered in biological and technological applications.

  3. Transmission line relay mis-operation detection based on time-synchronized field data

    SciTech Connect

    Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen

    2015-05-04

    In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such, it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.

  4. Transmission line relay mis-operation detection based on time-synchronized field data

    DOE PAGES

    Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen

    2015-05-04

    In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such,more » it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.« less

  5. EDITORIAL: Focus on Quantum Control

    NASA Astrophysics Data System (ADS)

    Rabitz, Herschel

    2009-10-01

    represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses M A Montgomery and N H Damrauer Accurate and efficient implementation of the von Neumann representation for laser pulses with discrete and finite spectra Frank Dimler, Susanne Fechner, Alexander Rodenberg, Tobias Brixner and David J Tannor Coherent strong-field control of multiple states by a single chirped femtosecond laser pulse M Krug, T Bayer, M Wollenhaupt, C Sarpe-Tudoran, T Baumert, S S Ivanov and N V Vitanov Quantum-state measurement of ionic Rydberg wavepackets X Zhang and R R Jones On the paradigm of coherent control: the phase-dependent light-matter interaction in the shaping window Tiago Buckup, Jurgen Hauer and Marcus Motzkus Use of the spatial phase of a focused laser beam to yield mechanistic information about photo-induced chemical reactions V J Barge, Z Hu and R J Gordon Coherent control of multiple vibrational excitations for optimal detection S D McGrane, R J Scharff, M Greenfield and D S Moore Mode selectivity with polarization shaping in the mid-IR David B Strasfeld, Chris T Middleton and Martin T Zanni Laser-guided relativistic quantum dynamics Chengpu Liu, Markus C Kohler, Karen Z Hatsagortsyan, Carsten Muller and Christoph H Keitel Continuous quantum error correction as classical hybrid control Hideo Mabuchi Quantum filter reduction for measurement-feedback control via unsupervised manifold learning Anne E B Nielsen, Asa S Hopkins and Hideo Mabuchi Control of the temporal profile of the local electromagnetic field near metallic nanostructures Ilya Grigorenko and Anatoly Efimov Laser-assisted molecular orientation in gaseous media: new possibilities and applications Dmitry V Zhdanov and Victor N Zadkov Optimization of laser field-free orientation of a state-selected NO molecular sample Arnaud Rouzee, Arjan Gijsbertsen, Omair Ghafur, Ofer M Shir, Thomas Back, Steven Stolte and Marc J J Vrakking Controlling the sense of molecular rotation Sharly Fleischer

  6. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  7. Line shapes in sub-Doppler DAVLL in the 87Rb-D2 line

    NASA Astrophysics Data System (ADS)

    Choi, Gyeong-Won; Noh, Heung-Ryoul

    2016-05-01

    We present a theoretical and experimental study of the sub-Doppler dichroic atomic vapor laser lock (DAVLL) for the D2 transition line of 87Rb atoms. The experimental results of the sub-Doppler DAVLL spectra are compared with calculated results using both accurate density matrix equations and approximate rate equations. We find good agreement between the experimental and calculated results. In particular, the coherence effect must be included in the signal for the cycling transition line.

  8. Double Bifurcation of Nilpotent Focus

    NASA Astrophysics Data System (ADS)

    Liu, Yirong; Li, Feng

    In this paper, an interesting bifurcation phenomenon is investigated — a 3-multiple nilpotent focus of the planar dynamical systems could be broken into two element focuses and an element saddle, and the limit cycles could bifurcate out from two element focuses. As an example, a class of cubic systems with 3-multiple nilpotent focus O(0, 0) is investigated, we prove that nine limit cycles with the scheme 7 ⊃ (1 ∪ 1) could bifurcate out from the origin when the origin is a weak focus of order 8. At the end of this paper, the double bifurcations of a class of Z2 equivalent cubic system with 3-multiple nilpotent focus or center O(0, 0) are investigated.

  9. Focus Groups Help To Focus the Marketing Strategy.

    ERIC Educational Resources Information Center

    Ashar, Hanna; Lane, Maureen

    1996-01-01

    A university-based degree completion program for adults conducted focus group research to refine market positioning and promotion. Focus groups averaged five current students and recent graduates who reflected, demographically, the current student population. Results gave insight into reasons for selecting the university, aspects of the program…

  10. Pharmacometrics: Focus on the Patient

    PubMed Central

    Dumitrescu, T Pene; Fossler, MJ; Schmith, VD

    2015-01-01

    Pharmacometrics, whether using simple or complex models, has contributed to rational and efficient drug development,1–3 with the main focus on early drug development.4 This article describes why opportunities more directly focused on the patient abound in late stage development, illustrating the concept with three innovative examples which focus on benefits to patients, enabling drugs that are truly efficacious to reach the market faster in diseases with high unmet medical needs, while maintaining adequate safety. PMID:26225220

  11. Tube dimpling tool assures accurate dip-brazed joints

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.

    1968-01-01

    Portable, hand-held dimpling tool assures accurate brazed joints between tubes of different diameters. Prior to brazing, the tool performs precise dimpling and nipple forming and also provides control and accurate measuring of the height of nipples and depth of dimples so formed.

  12. 31 CFR 205.24 - How are accurate estimates maintained?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are accurate estimates maintained... Treasury-State Agreement § 205.24 How are accurate estimates maintained? (a) If a State has knowledge that an estimate does not reasonably correspond to the State's cash needs for a Federal assistance...

  13. 78 FR 34604 - Submitting Complete and Accurate Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... COMMISSION 10 CFR Part 50 Submitting Complete and Accurate Information AGENCY: Nuclear Regulatory Commission... accurate information as would a licensee or an applicant for a license.'' DATES: Submit comments by August... may submit comments by any of the following methods (unless this document describes a different...

  14. Comparison of back side chrome focus monitor to focus self-metrology of an immersion scanner

    NASA Astrophysics Data System (ADS)

    D'havé, Koen; Machida, Takahiro; Laidler, David; Cheng, Shaunee

    2007-03-01

    Monitoring of the focus performance is recognized to be an important part of a periodic scanner health check, but can one simply apply all techniques that have been used for dry scanners to immersion scanners? And if so how do such techniques compare to scanner self-metrology tests that are used to set up the tool? In this paper we look at one specific off-line focus characterization technique, Back Side Chrome (BSC), which we then try to match with results obtained from two self-metrology focus tests, available on the scanner chosen for this work. The latter tests are also used to set up the immersion scanner. We point out a few concerns, discuss their effect and indicate that for each generation of immersion tool one should redo the entire exercise.

  15. Abstract Line Designs

    ERIC Educational Resources Information Center

    Nevinskas, Nancy

    2011-01-01

    In this article, the author describes a unit on the exploration of line. The unit was composed of two individual line lessons. In the first lesson, students were introduced to line as an element of design. They were asked to describe different types of lines, and look for them in art reproductions. The second lesson in the unit involved painting…

  16. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  17. Measurement of Fracture Geometry for Accurate Computation of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Chae, B.; Ichikawa, Y.; Kim, Y.

    2003-12-01

    Fluid flow in rock mass is controlled by geometry of fractures which is mainly characterized by roughness, aperture and orientation. Fracture roughness and aperture was observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wavelength of laser is 488nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The system improves resolution in the light axis (namely z) direction because of the confocal optics. The sampling is managed in a spacing 2.5 μ m along x and y directions. The highest measurement resolution of z direction is 0.05 μ m, which is the more accurate than other methods. For the roughness measurements, core specimens of coarse and fine grained granites were provided. Measurements were performed along three scan lines on each fracture surface. The measured data were represented as 2-D and 3-D digital images showing detailed features of roughness. Spectral analyses by the fast Fourier transform (FFT) were performed to characterize on the roughness data quantitatively and to identify influential frequency of roughness. The FFT results showed that components of low frequencies were dominant in the fracture roughness. This study also verifies that spectral analysis is a good approach to understand complicate characteristics of fracture roughness. For the aperture measurements, digital images of the aperture were acquired under applying five stages of uniaxial normal stresses. This method can characterize the response of aperture directly using the same specimen. Results of measurements show that reduction values of aperture are different at each part due to rough geometry of fracture walls. Laboratory permeability tests were also conducted to evaluate changes of hydraulic conductivities related to aperture variation due to different stress levels. The results showed non-uniform reduction of hydraulic conductivity under increase of the normal stress and different values of

  18. Conducting Qualitative Data Analysis: Reading Line-by-Line, but Analyzing by Meaningful Qualitative Units

    ERIC Educational Resources Information Center

    Chenail, Ronald J.

    2012-01-01

    In the first of a series of "how-to" essays on conducting qualitative data analysis, Ron Chenail points out the challenges of determining units to analyze qualitatively when dealing with text. He acknowledges that although we may read a document word-by-word or line-by-line, we need to adjust our focus when processing the text for purposes of…

  19. CTE's Focus on Continuous Improvement

    ERIC Educational Resources Information Center

    Foster, John; Kelley, Patricia; Pritz, Sandy; Hodes, Carol

    2011-01-01

    Just one of the ways career and technical education (CTE) is revamping its image is through increased attention to data-driven instructional techniques as a means of improving and focusing instruction on what matters most. Accountability and data have increasingly become a core focus of research, news, and commentary about education in recent…

  20. Physical and Numerical Model Studies of Cross-flow Turbines Towards Accurate Parameterization in Array Simulations

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2014-12-01

    Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of

  1. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics.

    PubMed

    Stanley, Jeffrey R; Adkins, Joshua N; Slysz, Gordon W; Monroe, Matthew E; Purvine, Samuel O; Karpievitch, Yuliya V; Anderson, Gordon A; Smith, Richard D; Dabney, Alan R

    2011-08-15

    Current algorithms for quantifying peptide identification confidence in the accurate mass and time (AMT) tag approach assume that the AMT tags themselves have been correctly identified. However, there is uncertainty in the identification of AMT tags, because this is based on matching LC-MS/MS fragmentation spectra to peptide sequences. In this paper, we incorporate confidence measures for the AMT tag identifications into the calculation of probabilities for correct matches to an AMT tag database, resulting in a more accurate overall measure of identification confidence for the AMT tag approach. The method is referenced as Statistical Tools for AMT Tag Confidence (STAC). STAC additionally provides a uniqueness probability (UP) to help distinguish between multiple matches to an AMT tag and a method to calculate an overall false discovery rate (FDR). STAC is freely available for download, as both a command line and a Windows graphical application.

  2. Optimal focusing conditions of lenses using Gaussian beams

    NASA Astrophysics Data System (ADS)

    Franco, Juan Manuel; Cywiak, Moisés; Cywiak, David; Mourad, Idir

    2016-07-01

    By using the analytical equations of the propagation of Gaussian beams in which truncation exhibits negligible consequences, we describe a method that uses the value of the focal length of a focusing lens to classify its focusing performance. We show that for different distances between a laser and a focusing lens there are different planes where best focusing conditions can be obtained and we demonstrate how the value of the focal length impacts the lens focusing properties. To perform the classification we introduce the term delimiting focal length. As the value of the focal length used in wave propagation theory is nominal and difficult to measure accurately, we describe an experimental approach to calculate its value matching our analytical description. Finally, we describe possible applications of the results for characterizing Gaussian sources, for measuring focal lengths and/or alternatively for characterizing piston-like movements.

  3. Application of the spectrally integrated Voigt function to line-by-line radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Quine, B. M.; Abrarov, S. M.

    2013-09-01

    We show that a new approach based on the spectrally integrated Voigt function (SIVF) enables the computation of line-by-line (LBL) radiative transfer at reduced spectral resolution without loss of accuracy. The algorithm provides rapid and accurate computation of area under the Voigt function in a way that preserves spectral radiance and, consequently, radiant intensity. The error analysis we provide shows the high-accuracy of the proposed SIVF approximations. A comparison of the performance of the method with that of the traditional LBL approach is presented. Motivations for the use and advantage of the SIVF as a replacement for conventional line function computations in radiative transfer are discussed.

  4. Accurate calculation of diffraction-limited encircled and ensquared energy.

    PubMed

    Andersen, Torben B

    2015-09-01

    Mathematical properties of the encircled and ensquared energy functions for the diffraction-limited point-spread function (PSF) are presented. These include power series and a set of linear differential equations that facilitate the accurate calculation of these functions. Asymptotic expressions are derived that provide very accurate estimates for the relative amount of energy in the diffraction PSF that fall outside a square or rectangular large detector. Tables with accurate values of the encircled and ensquared energy functions are also presented. PMID:26368873

  5. Plutonium focus area: Technology summary

    SciTech Connect

    1996-03-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  6. FOCUSing on Innovative Solar Technologies

    ScienceCinema

    Rohlfing, Eric; Holman, Zak, Angel, Roger

    2016-07-12

    Many of ARPA-E’s technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-E’s Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.

  7. Compact electron beam focusing column

    SciTech Connect

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  8. In-focus quantitative intensity and phase imaging with the numerical focusing transport of intensity equation method

    NASA Astrophysics Data System (ADS)

    Tian, Xiaolin; Meng, Xin; Yu, Wei; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-10-01

    Microscopy combined with the transport of intensity equation is capable of retrieving both intensity and phase distributions of samples from both in-focus and defocus intensities. However, during measurements, the focal plane is often decided artificially and the improper choice may induce errors in quantitative intensity and phase retrieval. In order to obtain accurate in-focus information, quantitative intensity and phase imaging with the numerical focusing transport of intensity equation method combined with cellular duty ratio criterion and numerical wavefront propagation is introduced in this paper. Both numerical simulations and experimental measurements are provided proving this designed method can increase both retrieved in-focus intensity and phase accuracy and reduce dependence of focal plane determination in transport of intensity equation measurements. It is believed that the proposed method can be potentially applied in various fields as in-focus compensation for quantitative phase imaging and automatic focal plane determination, etc.

  9. FAST TRACK COMMUNICATION Accurate estimate of α variation and isotope shift parameters in Na and Mg+

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2010-12-01

    We present accurate calculations of fine-structure constant variation coefficients and isotope shifts in Na and Mg+ using the relativistic coupled-cluster method. In our approach, we are able to discover the roles of various correlation effects explicitly to all orders in these calculations. Most of the results, especially for the excited states, are reported for the first time. It is possible to ascertain suitable anchor and probe lines for the studies of possible variation in the fine-structure constant by using the above results in the considered systems.

  10. A Fabry-Perot interferometer for accurate measurement of temporal changes in stellar Doppler shift

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. S.; Smith, P. H.; Frecker, J. E.; Merline, W. J.; Perry, M. L.

    1986-01-01

    The scrambling of incident light by an optical filter, and the stability obtainable through wavelength calibration by means of a tilt-tunable Fabry-Perot etalon, allow the accurate observation of Doppler shift changes in stellar absorption lines. Distinct, widely spaced monochromatic images of the entrance aperture are formed in the focal plane of the camera through a sampling of about 350 points on the profile of the stellar spectrum by successive orders of interferometric transmission through the etalon. Changes in Doppler shift modify the relative intensities of these images, in proportion to the slope of the spectral profile at each point sampled.

  11. Nuclear reactor overflow line

    DOEpatents

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  12. Best focus shift mitigation for extending the depth of focus

    NASA Astrophysics Data System (ADS)

    Szucs, A.; Planchot, J.; Farys, V.; Yesilada, E.; Alleaume, C.; Depre, L.; Dover, R.; Gourgon, C.; Besacier, M.; Nachtwein, A.; Rusu, P.

    2013-04-01

    The low-k1 domain of immersion lithography tends to result in much smaller depths of focus (DoF) compared to prior technology nodes. For 28 nm technology and beyond it is a challenge since (metal) layers have to deal with a wide range of structures. Beside the high variety of features, the reticle induced (mask 3D) effects became non-negligible. These mask 3D effects lead to best focus shift. In order to enhance the overlapping DoF, so called usable DoF (uDoF), alignment of each individual features best focus is required. So means the mitigation of the best focus shift. This study investigates the impact of mask 3D effects and the ability to correct the wavefront in order to extend the uDoF. The generation of the wavefront correction map is possible by using computational lithographic such Tachyon simulations software (from Brion). And inside the scanner the wavefront optimization is feasible by applying a projection lens modulator, FlexWaveTM (by ASML). This study explores both the computational lithography and scanner wavefront correction capabilities. In the first part of this work, simulations are conducted based on the determination and mitigation of best focus shift (coming from mask 3D effects) so as to improve the uDoF. In order to validate the feasibility of best focus shift decrease by wavefront tuning and mitigation results, the wavefront optimization provided correction maps are introduced into a rigorous simulator. Finally these results on best focus shift and uDoF are compared to wafers exposed using FlexWave then measured by scanning electron microscopy (SEM).

  13. Animal board invited review: precision livestock farming for dairy cows with a focus on oestrus detection.

    PubMed

    Mottram, T

    2016-10-01

    Dairy cows are high value farm animals requiring careful management to achieve the best results. Since the advent of robotic and high throughput milking, the traditional few minutes available for individual human attention daily has disappeared and new automated technologies have been applied to improve monitoring of dairy cow production, nutrition, fertility, health and welfare. Cows milked by robots must meet legal requirements to detect healthy milk. This review focuses on emerging technical approaches in those areas of high cost to the farmer (fertility, metabolic disorders, mastitis, lameness and calving). The availability of low cost tri-axial accelerometers and wireless telemetry has allowed accurate models of behaviour to be developed and sometimes combined with rumination activity detected by acoustic sensors to detect oestrus; other measures (milk and skin temperature, electronic noses, milk yield) have been abandoned. In-line biosensors have been developed to detect markers for ovulation, pregnancy, lactose, mastitis and metabolic changes. Wireless telemetry has been applied to develop boluses for monitoring the rumen pH and temperature to detect metabolic disorders. Udder health requires a multisensing approach due to the varying inflammatory responses collectively described as mastitis. Lameness can be detected by walk over weigh cells, but also by various types of video image analysis and speed measurement. Prediction and detection of calving time is an area of active research mostly focused on behavioural change.

  14. Wolter Optics for Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Mildner, D. F. R.; Gubarev, M. V.

    2010-01-01

    Focusing optics based on Wolter optical geometries developed for x-ray grazing incidence beams can be designed for neutron beams. Wolter optics are formed by grazing incidence reflections from two concentric conic sections (for example, a paraboloid and a hyperboloid). This has transformed observational X-ray astronomy by increasing the sensitivity by many orders of magnitude for research in astrophysics and cosmology. To increase the collection area, many reflecting mirrors of different diameters are nested with a common focal plane. These mirrors are fabricated using nickel-electroformed replication techniques. We apply these ideas to neutron focusing using nickel mirrors. We show an initial test of a conical mirror using a beam of cold neutrons. key words: electroformed nickel replication, focusing optics, grazing angle incidence, mirror reflection, neutron focusing, Wolter optics

  15. Wayside Teaching: Focusing on Relationships

    ERIC Educational Resources Information Center

    Powell, Sara Davis

    2011-01-01

    Wayside teaching focuses on building and maintaining positive relationships with students. Teachers can implement certain wayside teaching practices to end the year in a positive way and begin preparing for the next school year.

  16. Focusing liquid microjets with nozzles

    NASA Astrophysics Data System (ADS)

    Acero, A. J.; Ferrera, C.; Montanero, J. M.; Gañán-Calvo, A. M.

    2012-06-01

    The stability of flow focusing taking place in a converging-diverging nozzle, as well as the size of the resulting microjets, is examined experimentally in this paper. The results obtained in most aspects of the problem are similar to those of the classical plate-orifice configuration. There is, however, a notable difference between flow focusing in nozzles and in the plate-orifice configuration. In the former case, the liquid meniscus oscillates laterally (global whipping) for a significant area of the control parameter plane, a phenomenon never observed when focusing with the plate-orifice configuration. Global whipping may constitute an important drawback of flow focusing with nozzles because it reduces the robustness of the technique.

  17. Focusing light through living tissue

    NASA Astrophysics Data System (ADS)

    Vellekoop, I. M.; Aegerter, C. M.

    2010-02-01

    Tissues such as skin, fat or cuticle are non-transparent because inhomogeneities in the tissue scatter light. We demonstrate experimentally that light can be focused through turbid layers of living tissue, in spite of scattering. Our method is based on the fact that coherent light forms an interference pattern, even after hundreds of scattering events. By spatially shaping the wavefront of the incident laser beam, this interference pattern was modified to make the scattered light converge to a focus. In contrast to earlier experiments, where light was focused through solid objects, we focused light through living pupae of Drosophila melanogaster. We discuss a dynamic wavefront shaping algorithm that follows changes due to microscopic movements of scattering particles in real time. We relate the performance of the algorithm to the measured timescale of the changes in the speckle pattern and analyze our experiment in the light of Laser Doppler flowmetry. Applications in particle tracking, imaging, and optical manipulation are discussed.

  18. Accurate determination of fiber water-retaining capability at process conditions by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; He, Liang

    2016-09-16

    This work reports on a method for the accurate determination of fiber water-retaining capability at process conditions by headspace gas chromatography (HS-GC) method. The method was based the HS-GC measurement of water vapor on a set closed vials containing in a given amount pulp with different amounts of water addition, from under-saturation to over-saturation. By plotting the equilibrated water vapor signal vs. the amount of water added in pulp, two different trend lines can be observed, in which the transition of the lines corresponds to fiber water-retaining capability. The results showed that the HS-GC method has good measurement precision (much better than the reference method) and good accuracy. The present method can be also used for determining pulp fiber water-retaining capability at the process temperatures in both laboratory research and mill applications. PMID:27554029

  19. A fast and accurate PCA based radiative transfer model: Extension to the broadband shortwave region

    NASA Astrophysics Data System (ADS)

    Kopparla, Pushkar; Natraj, Vijay; Spurr, Robert; Shia, Run-Lie; Crisp, David; Yung, Yuk L.

    2016-04-01

    Accurate radiative transfer (RT) calculations are necessary for many earth-atmosphere applications, from remote sensing retrieval to climate modeling. A Principal Component Analysis (PCA)-based spectral binning method has been shown to provide an order of magnitude increase in computational speed while maintaining an overall accuracy of 0.01% (compared to line-by-line calculations) over narrow spectral bands. In this paper, we have extended the PCA method for RT calculations over the entire shortwave region of the spectrum from 0.3 to 3 microns. The region is divided into 33 spectral fields covering all major gas absorption regimes. We find that the RT performance runtimes are shorter by factors between 10 and 100, while root mean square errors are of order 0.01%.

  20. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  1. Peripheral intravenous line (image)

    MedlinePlus

    A peripheral intravenous line is a small, short plastic catheter that is placed through the skin into a vein, ... or foot, but occasionally in the head. A peripheral intravenous line is used to give fluids and ...

  2. Peripheral arterial line (image)

    MedlinePlus

    A peripheral arterial line is a small, short plastic catheter placed through the skin into an artery of the arm or leg. The purpose of a peripheral arterial line is to allow continuous monitoring of ...

  3. Visualizing the gravitational lensing and vortex and tendex lines of colliding black holes

    NASA Astrophysics Data System (ADS)

    Khan, Haroon; Lovelace, Geoffery; SXS Collaboration

    2016-03-01

    Gravitational waves (GW's) are ripples of space and time that are created when the universe unleashes its violent nature in the presence of strong gravity. Merging black holes (BH) are one of the most promising sources of GW's. In order to detect and physically study the GW's emitted by merging BH with ground based detectors such as Advanced LIGO, we must accurately predict how the waveforms look and behave. This can only be done by numerically simulating BH mergers on supercomputers, because all analytical approximations fail near the time of merger. This poster focuses on using these simulations to answer the question of ``What do merging BH look like''? I will present visualizations made using the Spectral Einstein Code (SpEC) and in particular a raytracing lensing code, developed by the SXS Lensing team, that shows how merging BH bend the light around them. I will also present visualizations of the vortex and tendex lines for a binary BH system, using SpEC. Vortex lines describe how an observer will be twisted by the BH and the tendex lines describe how much an observer would be stretched and squeezed. I am exploring how these lines change with time.

  4. Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy.

    PubMed

    Durst, M E; Zhu, G; Xu, C

    2008-04-01

    Simultaneous spatial and temporal focusing (SSTF), when combined with nonlinear microscopy, can improve the axial excitation confinement of wide-field and line-scanning imaging. Because two-photon excited fluorescence depends inversely on the pulse width of the excitation beam, SSTF decreases the background excitation of the sample outside of the focal volume by broadening the pulse width everywhere but at the geometric focus of the objective lens. This review theoretically describes the beam propagation within the sample using Fresnel diffraction in the frequency domain, deriving an analytical expression for the pulse evolution. SSTF can scan the temporal focal plane axially by adjusting the GVD in the excitation beam path. We theoretically define the axial confinement for line-scanning SSTF imaging using a time-domain understanding and conclude that line-scanning SSTF is similar to the temporally-decorrelated multifocal multiphoton imaging technique. Recent experiments on the temporal focusing effect and its axial confinement, as well as the axial scanning of the temporal focus by tuning the GVD, are presented. We further discuss this technique for axial-scanning multiphoton fluorescence fiber probes without any moving parts at the distal end. The temporal focusing effect in SSTF essentially replaces the focusing of one spatial dimension in conventional wide-field and line-scanning imaging. Although the best axial confinement achieved by SSTF cannot surpass that of a regular point-scanning system, this trade-off between spatial and temporal focusing can provide significant advantages in applications such as high-speed imaging and remote axial scanning in an endoscopic fiber probe.

  5. Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy

    PubMed Central

    Durst, M. E.; Zhu, G.; Xu, C.

    2008-01-01

    Simultaneous spatial and temporal focusing (SSTF), when combined with nonlinear microscopy, can improve the axial excitation confinement of wide-field and line-scanning imaging. Because two-photon excited fluorescence depends inversely on the pulse width of the excitation beam, SSTF decreases the background excitation of the sample outside of the focal volume by broadening the pulse width everywhere but at the geometric focus of the objective lens. This review theoretically describes the beam propagation within the sample using Fresnel diffraction in the frequency domain, deriving an analytical expression for the pulse evolution. SSTF can scan the temporal focal plane axially by adjusting the GVD in the excitation beam path. We theoretically define the axial confinement for line-scanning SSTF imaging using a time-domain understanding and conclude that line-scanning SSTF is similar to the temporally-decorrelated multifocal multiphoton imaging technique. Recent experiments on the temporal focusing effect and its axial confinement, as well as the axial scanning of the temporal focus by tuning the GVD, are presented. We further discuss this technique for axial-scanning multiphoton fluorescence fiber probes without any moving parts at the distal end. The temporal focusing effect in SSTF essentially replaces the focusing of one spatial dimension in conventional wide-field and line-scanning imaging. Although the best axial confinement achieved by SSTF cannot surpass that of a regular point-scanning system, this trade-off between spatial and temporal focusing can provide significant advantages in applications such as high-speed imaging and remote axial scanning in an endoscopic fiber probe. PMID:18496597

  6. Using Guidelines to Support Quality Moderation of Focus Group Interviews

    ERIC Educational Resources Information Center

    Archer, Thomas M.

    2007-01-01

    A Focus Group Interview (FGI) involves 6-9 people guided through a pre-thought line of questioning for 1-2 hours by a trained Moderator. The Moderator gives participants the opportunity to express ideas, thoughts, and views. This is a robust qualitative data collection method IF there is a skilled FGI Moderator. The Moderator sets the tone,…

  7. Focus cues affect perceived depth

    PubMed Central

    Watt, Simon J.; Akeley, Kurt; Ernst, Marc O.; Banks, Martin S.

    2007-01-01

    Depth information from focus cues—accommodation and the gradient of retinal blur—is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space. PMID:16441189

  8. ALFA: an automated line fitting algorithm

    NASA Astrophysics Data System (ADS)

    Wesson, R.

    2016-03-01

    I present the automated line fitting algorithm, ALFA, a new code which can fit emission line spectra of arbitrary wavelength coverage and resolution, fully automatically. In contrast to traditional emission line fitting methods which require the identification of spectral features suspected to be emission lines, ALFA instead uses a list of lines which are expected to be present to construct a synthetic spectrum. The parameters used to construct the synthetic spectrum are optimized by means of a genetic algorithm. Uncertainties are estimated using the noise structure of the residuals. An emission line spectrum containing several hundred lines can be fitted in a few seconds using a single processor of a typical contemporary desktop or laptop PC. I show that the results are in excellent agreement with those measured manually for a number of spectra. Where discrepancies exist, the manually measured fluxes are found to be less accurate than those returned by ALFA. Together with the code NEAT, ALFA provides a powerful way to rapidly extract physical information from observations, an increasingly vital function in the era of highly multiplexed spectroscopy. The two codes can deliver a reliable and comprehensive analysis of very large data sets in a few hours with little or no user interaction.

  9. Multi-focus cluster labeling.

    PubMed

    Eikvil, Line; Jenssen, Tor-Kristian; Holden, Marit

    2015-06-01

    Document collections resulting from searches in the biomedical literature, for instance, in PubMed, are often so large that some organization of the returned information is necessary. Clustering is an efficient tool for organizing search results. To help the user to decide how to continue the search for relevant documents, the content of each cluster can be characterized by a set of representative keywords or cluster labels. As different users may have different interests, it can be desirable with solutions that make it possible to produce labels from a selection of different topical categories. We therefore introduce the concept of multi-focus cluster labeling to give users the possibility to get an overview of the contents through labels from multiple viewpoints. The concept for multi-focus cluster labeling has been established and has been demonstrated on three different document collections. We illustrate that multi-focus visualizations can give an overview of clusters along axes that general labels are not able to convey. The approach is generic and should be applicable to any biomedical (or other) domain with any selection of foci where appropriate focus vocabularies can be established. A user evaluation also indicates that such a multi-focus concept is useful.

  10. Broad-line active galactic nuclei rotate faster than narrow-line ones.

    PubMed

    Kollatschny, Wolfram; Zetzl, Matthias

    2011-02-17

    The super-massive black holes of 10(6)M(⊙) to 10(9)M(⊙) that reside in the nuclei of active galaxies (AGN) are surrounded by a region emitting broad lines, probably associated with an accretion disk. The diameters of the broad-line regions range from a few light-days to more than a hundred light-days, and cannot be resolved spatially. The relative significance of inflow, outflow, rotational or turbulent motions in the broad-line regions as well as their structure (spherical, thin or thick accretion disk) are unknown despite intensive studies over more than thirty years. Here we report a fundamental relation between the observed emission linewidth full-width at half-maximum (FWHM) and the emission line shape FWHM/σ(line) in AGN spectra. From this relation we infer that the predominant motion in the broad-line regions is Keplerian rotation in combination with turbulence. The geometry of the inner region varies systematically with the rotation velocity: it is flattest for the fast-rotating broad-line objects, whereas slow-rotating narrow-line AGN have a more spherical structure. Superimposed is the trend that the line-emitting region becomes geometrically thicker towards the centre within individual galaxies. Knowing the rotational velocities, we can derive the central black-hole masses more accurately; they are two to ten times smaller than has been estimated previously.

  11. Focusing on Pronouns: Consequences of Subjecthood, Pronominalisation, and Contrastive Focus

    ERIC Educational Resources Information Center

    Kaiser, Elsi

    2011-01-01

    We report two visual-world eye-tracking experiments that investigated the effects of subjecthood, pronominalisation, and contrastive focus on the interpretation of pronouns in subsequent discourse. By probing the effects of these factors on real-time pronoun interpretation, we aim to contribute to our understanding of how topicality-related…

  12. Particle Image Velocimetry Measurements in an Anatomically-Accurate Scaled Model of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent

    2013-11-01

    The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.

  13. The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.

  14. A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments

    SciTech Connect

    Leng, Wei; Ju, Lili; Gunzburger, Max; Price, Stephen; Ringler, Todd

    2012-01-01

    The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.

  15. Scrubber lining betterment

    SciTech Connect

    Cmiel, R. )

    1990-01-01

    This article is intended to provide guidance in the selection, qualification, and application of corrosion-resistant coatings and linings in electrical generating plants with emphasis on flue gas desulfurization (FGD) scrubber maintenance. Guidance is included here especially for those facing a lining project. This article describes scrubber outlet duct vinyl ester lining installation at San Miguel Electric. This lining is also being used in scrubber waste slurry thickeners and in the scrubber absorber vessel to overcoat existing flakeglass linings providing useful life extension.

  16. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  17. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  18. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  19. Generation of an incident focused light pulse in FDTD

    PubMed Central

    Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim

    2009-01-01

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas. PMID:19582013

  20. Gamma ray line astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1984-01-01

    The interpretations and implications of the astrophysical observations of gamma-ray lines are reviewed. At the Galactic Center e(+)-e(-) pairs from a compact object produce an annihilation line that shows no redshift, indicating an annihilation site far removed from this object. In the jets of SS433, gamma-ray lines are produced by inelastic excitations, probably in dust grains, although line emission from fusion reactions has also been considered. Observations of diffuse galactic line emission reveal recently synthesized radioactive aluminum in the interstellar medium. In gamma-ray bursts, redshifted pair annihilation lines are consistent with a neutron star origin for the bursts. In solar flares, gamma-ray line emission reveals the prompt acceleration of protons and nuclei, in close association with the flare energy release mechanism.

  1. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  2. Certification of Superconducting Solenoid-Based Focusing Lenses

    SciTech Connect

    DiMarco, E.Joseph; Hemmati, Ali M.; Orris, Darryl F.; Page, Thomas M.; Rabehl, Roger H.; Tartaglia, Michael A.; Terechkine, Iouri; Tompkins, John C.

    2010-07-29

    The first production focusing lens for the HINS beam line at Fermilab has been assembled into a cryostat and tested. A total of 5 devices will be tested before they are installed in the low energy section of the HINS beam line, which uses copper Crossbar-H (CH) style RF cavities. One of the tested CH-section lens assemblies includes a pair of weak orthogonal steering dipoles nested within a strong focusing solenoid, and has six vapor cooled power leads. The other device has only the strong focusing solenoid, and utilizes a single pair of HTS power leads. The production test program is designed to measure the thermal performance of the cryostat, minimum cooling requirements for the HTS leads, quench performance of all superconducting components, and precise determination of the magnetic axis and field angles. Results and future plans for the first production device tests are presented.

  3. Micro focusing of fast electrons with opened cone targets

    SciTech Connect

    Liu Feng; Liu Xiaoxuan; Ding Wenjun; Du Fei; Li Yutong; Ma Jinglong; Liu Xiaolong; Chen Liming; Lu Xin; Dong Quanli; Wang Weimin; Wang Zhaohua; Wei Zhiyi; Liu Bicheng; Sheng Zhengming; Zhang Jie

    2012-01-15

    Using opened reentrant cone silicon targets, we have demonstrated the effect of micro focusing of fast electrons generated in intense laser-plasma interactions. When an intense femtosecond laser pulse is focused tightly onto one of the side walls of the cone, fast electron beam emitted along the side wall is observed. When a line focus spot, which is long enough to irradiate both of the side walls of the cone simultaneously, is used, two electron beams emitted along each side wall, respectively, are observed. The two beams should cross each other near the open tip of the cone, resulting in micro focusing. We use a two-dimensional Particle-In-Cell code to simulate the electron emission both in opened and closed cone targets. The simulation results of the opened cone targets are in agreement with the experimental observation while the results of the closed cone targets do not show the micro focusing effect.

  4. An accurate and practical method for inference of weak gravitational lensing from galaxy images

    NASA Astrophysics Data System (ADS)

    Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.

    2016-07-01

    We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.

  5. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  6. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  7. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  8. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  9. A high order accurate difference scheme for complex flow fields

    SciTech Connect

    Dexun Fu; Yanwen Ma

    1997-06-01

    A high order accurate finite difference method for direct numerical simulation of coherent structure in the mixing layers is presented. The reason for oscillation production in numerical solutions is analyzed. It is caused by a nonuniform group velocity of wavepackets. A method of group velocity control for the improvement of the shock resolution is presented. In numerical simulation the fifth-order accurate upwind compact difference relation is used to approximate the derivatives in the convection terms of the compressible N-S equations, a sixth-order accurate symmetric compact difference relation is used to approximate the viscous terms, and a three-stage R-K method is used to advance in time. In order to improve the shock resolution the scheme is reconstructed with the method of diffusion analogy which is used to control the group velocity of wavepackets. 18 refs., 12 figs., 1 tab.

  10. Staying in School. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1996

    1996-01-01

    This theme issue focuses on issues related to high Texas dropout rates among Hispanic and other minority group students and on dropout prevention strategies. "School Finance Inequities Mean Schools Are Not Ready To Teach" (Maria Robledo Montecel) deplores the recent Texas Supreme Court ruling that state educational funding is constitutional,…

  11. Technology for Education. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on technology for education to benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Coca-Cola Valued Youth Program Students Meet Peers Via Video Conference" (Linda Cantu, Leticia Lopez-De La Garza) describes how at-risk student…

  12. Strategy and Focus: Teaching Literature.

    ERIC Educational Resources Information Center

    Karolides, Nicholas J., Ed.

    1983-01-01

    The six articles in this focused journal issue are concerned with literature teaching on the secondary and college level. The titles and authors of the articles are as follows: (1) "Aesthetic Reading and Teaching: 'Candide' Revisited" (Michael G. Gauthier); (2) "Discovery: The Role of Subjective Response in Initiating the Literature Discussion"…

  13. Math Fair: Focus on Fractions

    ERIC Educational Resources Information Center

    Mokashi, Neelima A.

    2009-01-01

    This article depicts the rewarding experience of creating mathematical environments for kindergarten and elementary students by focusing on one of the most important and often difficult-to-grasp concepts (fractions) through play methods incorporated into a math fair. The basic concept of a math fair is threefold: (1) to create preplanned,…

  14. World History. Focus on Economics.

    ERIC Educational Resources Information Center

    Caldwell, Jean; Clark, James; Herscher, Walter

    This book opens with an exploration of the first economic revolution, which set the stage for the dramatic unfolding of the role economics has played in world history. The lessons focus on two topics: (1) why some economies grew and prospered while others remained stagnant or declined; and (2) what causes people to make choices that help or hinder…

  15. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  16. Evaluating Pragmatics-Focused Materials

    ERIC Educational Resources Information Center

    Crandall, Elizabeth; Basturkmen, Helen

    2004-01-01

    Learners often find the area of pragmatics (that is, using speech acts such as requesting, inviting, and complimenting) problematic. Teachers are urged to teach pragmatic aspects of language, and make use of authentic samples of spoken discourse to do so. However, information about the effectiveness of pragmatics-focused instruction of this nature…

  17. Standards and Assessment. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This newsletter includes three articles, two of which focus on standards for student evaluation and for admission to higher education. "A Measuring Stick for Standards and TEKS: Meeting the Needs of Second Language Learners" (Laura Chris Green, Adela Solis) examines beliefs embodied in the notion of standards; defines content, performance, and…

  18. Zoonotic Focus of Plague, Algeria

    PubMed Central

    Bitam, Idir; Baziz, Belkacem; Rolain, Jean-Marc; Belkaid, Miloud

    2006-01-01

    After an outbreak of human plague, 95 Xenopsylla cheopis fleas from Algeria were tested for Yersinia pestis with PCR methods. Nine fleas were definitively confirmed to be infected with Y. pestis biovar orientalis. Our results demonstrate the persistence of a zoonotic focus of Y. pestis in Algeria. PMID:17326957

  19. The Ionospheric Focused Heating experiment

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Rodriguez, P.; Haas, D. G.; Baumback, M. M.; Romero, H. A.; Solin, D. A.; Djuth, F. T.; Duncan, L. M.; Hunton, D. E.; Pollock, C. J.; Sulzer, M. P.; Tepley, C. A.; Wagner, L. S.; Goldstein, J. A.

    1995-09-01

    The Ionospheric Focused Heating rocket was launched on May 30, 1992. The sounding rocket carried an instrument and chemical payload along a trajectory that crossed the intersection of the beams from the 430-MHz incoherent scatter radar and the 5.1-MHz high-power radio wave facility near Arecibo. The release of 30 kg of CF3Br into the F region at 285 km altitude produced an ionospheric hole that acted like a convergent lens to focus the HF transmissions. The power density inside the radio beam was raised by 12 dB immediately after the release. A wide range of new processes were recorded by in situ and ground-based instruments. Measurements by instruments flying through the modified ionosphere show small-scale microcavities (<1 m) and downshifted electron plasma (Langmuir) waves inside the artificial cavity, electron density spikes at the edge of the cavity, and Langmuir waves coincident with ion gyroradius (4 m) cavities near the radio wave reflection altitude. The Arecibo incoherent scatter radar showed 20 dB or greater enhancements in ion acoustic and Langmuir wave turbulence after the 5.1-MHz radio beam was focused by the artificial lens. Enhancements in airglow from chemical reactions and, possibly, electron acceleration were recorded with optical instruments. The Ionospheric Focused Heating experiment verified some of the preflight predictions and demonstrated the value of active experiments that combine high-power radio waves with chemical releases.

  20. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  1. Work and Family. Special Focus.

    ERIC Educational Resources Information Center

    Goetz, Kathy, Ed.

    1992-01-01

    This newsletter issue focuses on issues concerning families with both parents employed outside the home and describes several employer programs designed to help employees balance their work and family life. The newsletter includes the following articles: (1) "Work and Family: 1992"; (2) "Levi Strauss and Co.--A Work/Family Program in Action"; (3)…

  2. Focus on Young Adult Programming.

    ERIC Educational Resources Information Center

    Union, Bunni; Williams, Sheila

    1996-01-01

    Presents three library youth service programs which focus on "Pizza and Politicians," a public library pizza party which gave high school students and college-aged young adults a chance to meet and question politicians; a young adult "Reading to Seniors" program; "Making Books," a public library journal-making project for middle school students.…

  3. Supporting Task-Focused Communication.

    ERIC Educational Resources Information Center

    Lipinski, Hubert; And Others

    The extension of computer based communication to the more task-focused communication required by groups involved in joint problem solving is discussed in this paper. Specifically, it addresses three areas: (1) the aspects of the joint problem solving that are most suited to computer based communication support, (2) the computer based communication…

  4. Teaching and Learning. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This theme issue includes four articles that focus on teaching and learning strategies to benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Would You Read Me a Story?: In Search of Reading Strategies That Work for the Early Childhood Classroom" (Hilaria Bauer) discusses how…

  5. Focused ion beams in biology.

    PubMed

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.

  6. Law-Focused Education: Iowa.

    ERIC Educational Resources Information Center

    University of Northern Iowa, Cedar Falls. Malcolm Price Lab. School.

    This law-focused resource booklet is intended to help secondary level students learn about the civil law portion of Iowa's judicial system. The materials are designed to help students understand how to deal with conflict in a peaceful and orderly manner and how to cope with decision making in personal law situations as related to the family, the…

  7. A planar transmission-line sensor for measuring microwave permittivity of liquid and semisolid biological materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An accurate technique for determining the permittivity of biological materials with coplanar waveguide transmission line is presented. The technique utilizes closed-form approximations that relate the material permittivity to the line propagation constant. A thru-reflect-line calibration procedure i...

  8. Focus of attention and automaticity in handwriting.

    PubMed

    MacMahon, Clare; Charness, Neil

    2014-04-01

    This study investigated the nature of automaticity in everyday tasks by testing handwriting performance under single and dual-task conditions. Item familiarity and hand dominance were also manipulated to understand both cognitive and motor components of the task. In line with previous literature, performance was superior in an extraneous focus of attention condition compared to two different skill focus conditions. This effect was found only when writing with the dominant hand. In addition, performance was superior for high familiarity compared to low familiarity items. These findings indicate that motor and cognitive familiarity are related to the degree of automaticity of motor skills and can be manipulated to produce different performance outcomes. The findings also imply that the progression of skill acquisition from novel to novice to expert levels can be traced using different dual-task conditions. The separation of motor and cognitive familiarity is a new approach in the handwriting domain, and provides insight into the nature of attentional demands during performance. PMID:24423388

  9. Quantitation of flaviviruses by fluorescent focus assay.

    PubMed

    Payne, Anne F; Binduga-Gajewska, Iwona; Kauffman, Elizabeth B; Kramer, Laura D

    2006-06-01

    An indirect immunofluorescence assay for quantitation of flaviviruses was developed as an alternative to the standard plaque assay. The assay was validated with West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and Dengue virus (DENV) types 1-4. Vero cells were plated in 8-well chamber slides, and infected with 10-fold serial dilutions of virus. About 1-3 days after infection, cells were fixed, incubated with specific monoclonal antibody, and stained with a secondary antibody labeled with a fluorescent tag. Fluorescent foci of infection were observed and counted using a fluorescence microscope, and viral titers were calculated as fluorescent focus units (FFU) per ml. The optimal time for performing the fluorescent focus assay (FFA) on Vero cells was 24 h for WNV, and 48 h for SLEV and the four DENV serotypes. In contrast, the time required to complete a standard Vero cell plaque assay for these viruses range from 3 days for WNV to 11 days for DENV-1. Thus, the FFA method of virus titration is useful for viruses whose plaques develop slowly. In addition, these viruses can be quantitated by FFA on a mosquito cell line (C6/36), which does not support plaque formation. The FFA for flaviviruses was validated for accuracy, precision, specificity, and robustness of the assay.

  10. EUV Focus Sensor: Design and Modeling

    SciTech Connect

    Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander

    2005-05-01

    We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using a single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wavelengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput optimizing the signal-to-noise ratio in the measured intensity contrast.

  11. EUV focus sensor: design and modeling

    NASA Astrophysics Data System (ADS)

    Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander

    2005-05-01

    We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using a single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wave-lengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput opti-mizing the signal-to-noise ratio in the measured intensity contrast.

  12. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  13. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  14. Comprehensive techniques to determine broadband physically-consistent material characteristics using transmission lines

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen

    Dispersion, attenuation, and crosstalk are several major challenges that both a high-speed digital and a microwave serial link must overcome to achieve their desirable performance. These phenomena are directly related to the frequency dependency of the dielectric property of the material used in package and interconnect. The dielectric property of a material is commonly measured by its manufacturer in a particular direction at a few discrete frequencies using resonator and waveguide methodology. Since the dielectric property may vary during manufacturing processing, the measurements taken by the manufacturer might be not adequate. Moreover, the dielectric property of a material in a bandwidth that covers at least the second harmonics of the fundamental operational frequency is required to accurately predict the link performance. One of the efforts in this research is to investigate the methodology of realizing broadband characteristics of the dielectric property of a material in its "as packaged" configuration using various transmission line topologies, such as microstrip line and Co-Planar Waveguide (CPW). Transitions from CPW to other transmission line topologies are mandatory if CPW probes are used to achieve broadband and repeatable measurements. Since microstrip line is one of the transmission line topologies involved in this research, a research effort is dedicated to develop a broadband CPW-to-microstrip line transition. An effort is also expended to creating casual material models that can be used in electromagnetic simulators to appropriately model the link based on the polarization mechanism of the materials. In addition to focusing on the measurement method in frequency domain, Short Pulse Propagation (SPP), a time domain method, is investigated as well. A virtual test bench is created to investigate the correlation between impedance variations in stripline structures due to fabricated tolerance and the attenuation predicted by SPP.

  15. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  16. Must Kohn-Sham oscillator strengths be accurate at threshold?

    SciTech Connect

    Yang Zenghui; Burke, Kieron; Faassen, Meta van

    2009-09-21

    The exact ground-state Kohn-Sham (KS) potential for the helium atom is known from accurate wave function calculations of the ground-state density. The threshold for photoabsorption from this potential matches the physical system exactly. By carefully studying its absorption spectrum, we show the answer to the title question is no. To address this problem in detail, we generate a highly accurate simple fit of a two-electron spectrum near the threshold, and apply the method to both the experimental spectrum and that of the exact ground-state Kohn-Sham potential.

  17. Accurate upwind-monotone (nonoscillatory) methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1992-01-01

    The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.

  18. Leap of Faith: Does serum luteinizing hormone always accurately reflect central reproductive neuroendocrine activity?

    PubMed Central

    Moenter, Suzanne M.

    2015-01-01

    Function of the central aspects of the hypothalamo-pituitary-gonadal axis has been assessed in a number of ways including direct measurements of hypothalamic output and indirect measures using gonadotropin release from the pituitary as a bioassay for reproductive neuroendocrine activity. Here, methods for monitoring these various parameters are briefly reviewed and then examples presented of both concordance and discrepancy between central and peripheral measurements, with a focus on situations in which elevated GnRH neurosecretion is not reflected accurately by pituitary luteinizing hormone release. Implications for interpretation of gonadotropin data are discussed. PMID:26278916

  19. Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

    PubMed Central

    Madebene, Bruno; Ulusoy, Inga; Mancera, Luis; Scribano, Yohann; Chulkov, Sergey

    2011-01-01

    Summary We present a theoretical framework for the computation of anharmonic vibrational frequencies for large systems, with a particular focus on determining adsorbate frequencies from first principles. We give a detailed account of our local implementation of the vibrational self-consistent field approach and its correlation corrections. We show that our approach is both robust, accurate and can be easily deployed on computational grids in order to provide an efficient computational tool. We also present results on the vibrational spectrum of hydrogen fluoride on pyrene, on the thiophene molecule in the gas phase, and on small neutral gold clusters. PMID:22003450

  20. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.