Science.gov

Sample records for accurate line focus

  1. LSM: perceptually accurate line segment merging

    NASA Astrophysics Data System (ADS)

    Hamid, Naila; Khan, Nazar

    2016-11-01

    Existing line segment detectors tend to break up perceptually distinct line segments into multiple segments. We propose an algorithm for merging such broken segments to recover the original perceptually accurate line segments. The algorithm proceeds by grouping line segments on the basis of angular and spatial proximity. Then those line segment pairs within each group that satisfy unique, adaptive mergeability criteria are successively merged to form a single line segment. This process is repeated until no more line segments can be merged. We also propose a method for quantitative comparison of line segment detection algorithms. Results on the York Urban dataset show that our merged line segments are closer to human-marked ground-truth line segments compared to state-of-the-art line segment detection algorithms.

  2. Accurate determination of membrane dynamics with line-scan FCS.

    PubMed

    Ries, Jonas; Chiantia, Salvatore; Schwille, Petra

    2009-03-04

    Here we present an efficient implementation of line-scan fluorescence correlation spectroscopy (i.e., one-dimensional spatio-temporal image correlation spectroscopy) using a commercial laser scanning microscope, which allows the accurate measurement of diffusion coefficients and concentrations in biological lipid membranes within seconds. Line-scan fluorescence correlation spectroscopy is a calibration-free technique. Therefore, it is insensitive to optical artifacts, saturation, or incorrect positioning of the laser focus. In addition, it is virtually unaffected by photobleaching. Correction schemes for residual inhomogeneities and depletion of fluorophores due to photobleaching extend the applicability of line-scan fluorescence correlation spectroscopy to more demanding systems. This technique enabled us to measure accurate diffusion coefficients and partition coefficients of fluorescent lipids in phase-separating supported bilayers of three commonly used raft-mimicking compositions. Furthermore, we probed the temperature dependence of the diffusion coefficient in several model membranes, and in human embryonic kidney cell membranes not affected by temperature-induced optical aberrations.

  3. Line-focus concentrating collector program

    NASA Technical Reports Server (NTRS)

    Dugan, V. L.

    1980-01-01

    The Line-Focus Concentrating Collector Program has emphasized the development and dissemination of concentrating solar technology in which the reflected sunlight is focused onto a linear or line receiver. Although a number of different types of line-focus concentrators were developed, the parabolic trough has gained the widest acceptance and utilization within the industrial and applications sectors. The trough is best applied for application scenarios which require temperatures between 140 and 600 F. Another concept, the bowl, is investigated for applications which may require temperatures in the range between 600 and 1200 F. Current technology emphases are upon the reduction of system installation cost and the implementation of production oriented engineering.

  4. Accurate in-line CD metrology for nanometer semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Perng, Baw-Ching; Shieh, Jyu-Horng; Jang, S.-M.; Liang, M.-S.; Huang, Renee; Chen, Li-Chien; Hwang, Ruey-Lian; Hsu, Joe; Fong, David

    2006-03-01

    The need for absolute accuracy is increasing as semiconductor-manufacturing technologies advance to sub-65nm nodes, since device sizes are reducing to sub-50nm but offsets ranging from 5nm to 20nm are often encountered. While TEM is well-recognized as the most accurate CD metrology, direct comparison between the TEM data and in-line CD data might be misleading sometimes due to different statistical sampling and interferences from sidewall roughness. In this work we explore the capability of CD-AFM as an accurate in-line CD reference metrology. Being a member of scanning profiling metrology, CD-AFM has the advantages of avoiding e-beam damage and minimum sample damage induced CD changes, in addition to the capability of more statistical sampling than typical cross section metrologies. While AFM has already gained its reputation on the accuracy of depth measurement, not much data was reported on the accuracy of CD-AFM for CD measurement. Our main focus here is to prove the accuracy of CD-AFM and show its measuring capability for semiconductor related materials and patterns. In addition to the typical precision check, we spent an intensive effort on examining the bias performance of this CD metrology, which is defined as the difference between CD-AFM data and the best-known CD value of the prepared samples. We first examine line edge roughness (LER) behavior for line patterns of various materials, including polysilicon, photoresist, and a porous low k material. Based on the LER characteristics of each patterning, a method is proposed to reduce its influence on CD measurement. Application of our method to a VLSI nanoCD standard is then performed, and agreement of less than 1nm bias is achieved between the CD-AFM data and the standard's value. With very careful sample preparations and TEM tool calibration, we also obtained excellent correlation between CD-AFM and TEM for poly-CDs ranging from 70nm to 400nm. CD measurements of poly ADI and low k trenches are also

  5. Accurate shape from focus based on focus adjustment in optical microscopy.

    PubMed

    Shim, Seong-O; Malik, Aamir Saeed; Choi, Tae-Sun

    2009-05-01

    Optical microscopy allows a magnified view of the sample while decreasing the depth of focus. Although the acquired images from limited depth of field have both blurred and focused regions, they can provide depth information. The technique to estimate the depth and 3D shape of an object from the images of the same sample obtained at different focus settings is called shape from focus (SFF). In SFF, the measure of focus--sharpness--is the crucial part for final 3D shape estimation. The conventional methods compute sharpness by applying focus measure operator on each 2D image frame of the image sequence. However, such methods do not reflect the accurate focus levels in an image because the focus levels for curved objects require information from neighboring pixels in the adjacent frames too. To address this issue, we propose a new method based on focus adjustment which takes the values of the neighboring pixels from the adjacent image frames that have approximately the same initial depth as of the center pixel and then it re-adjusts the center value accordingly. Experiments were conducted on synthetic and microscopic objects, and the results show that the proposed technique generates better shape and takes less computation time in comparison with previous SFF methods based on focused image surface (FIS) and dynamic programming.

  6. In-line sensor for accurate rf power measurements

    NASA Astrophysics Data System (ADS)

    Gahan, D.; Hopkins, M. B.

    2005-10-01

    An in-line sensor has been constructed with 50Ω characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  7. In-line sensor for accurate rf power measurements

    SciTech Connect

    Gahan, D.; Hopkins, M.B.

    2005-10-15

    An in-line sensor has been constructed with 50 {omega} characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  8. Line-focus concentrating solar collectors

    SciTech Connect

    Leonard, J. A.; Dugan, V. L.

    1980-01-01

    An overview of the line-focus concentrating solar collector technology and applications is presented. Included are a description of the collectors, some of the key features of the engineering approach, instantaneous and all-day performance and operating data, temperature capabilities and limitations for selected collectors, projected future capabilities for peak and annual performance. Projected system capital costs and annualized life cycle costs for thermal energy produced are discussed. Several existing application projects which employ line concentrating collectors are reviewed, and finally, plans for future DOE-funded line concentrating collector projects are described.

  9. Accurate oscillator strengths for interstellar ultraviolet lines of Cl I

    NASA Technical Reports Server (NTRS)

    Schectman, R. M.; Federman, S. R.; Beideck, D. J.; Ellis, D. J.

    1993-01-01

    Analyses on the abundance of interstellar chlorine rely on accurate oscillator strengths for ultraviolet transitions. Beam-foil spectroscopy was used to obtain f-values for the astrophysically important lines of Cl I at 1088, 1097, and 1347 A. In addition, the line at 1363 A was studied. Our f-values for 1088, 1097 A represent the first laboratory measurements for these lines; the values are f(1088)=0.081 +/- 0.007 (1 sigma) and f(1097) = 0.0088 +/- 0.0013 (1 sigma). These results resolve the issue regarding the relative strengths for 1088, 1097 A in favor of those suggested by astronomical measurements. For the other lines, our results of f(1347) = 0.153 +/- 0.011 (1 sigma) and f(1363) = 0.055 +/- 0.004 (1 sigma) are the most precisely measured values available. The f-values are somewhat greater than previous experimental and theoretical determinations.

  10. Spectroscopically Accurate Line Lists for Application in Sulphur Chemistry

    NASA Astrophysics Data System (ADS)

    Underwood, D. S.; Azzam, A. A. A.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    Monitoring sulphur chemistry is thought to be of great importance for exoplanets. Doing this requires detailed knowledge of the spectroscopic properties of sulphur containing molecules such as hydrogen sulphide (H2S) [1], sulphur dioxide (SO2), and sulphur trioxide (SO3). Each of these molecules can be found in terrestrial environments, produced in volcano emissions on Earth, and analysis of their spectroscopic data can prove useful to the characterisation of exoplanets, as well as the study of planets in our own solar system, with both having a possible presence on Venus. A complete, high temperature list of line positions and intensities for H32 2 S is presented. The DVR3D program suite is used to calculate the bound ro-vibration energy levels, wavefunctions, and dipole transition intensities using Radau coordinates. The calculations are based on a newly determined, spectroscopically refined potential energy surface (PES) and a new, high accuracy, ab initio dipole moment surface (DMS). Tests show that the PES enables us to calculate the line positions accurately and the DMS gives satisfactory results for line intensities. Comparisons with experiment as well as with previous theoretical spectra will be presented. The results of this study will form an important addition to the databases which are considered as sources of information for space applications; especially, in analysing the spectra of extrasolar planets, and remote sensing studies for Venus and Earth, as well as laboratory investigations and pollution studies. An ab initio line list for SO3 was previously computed using the variational nuclear motion program TROVE [2], and was suitable for modelling room temperature SO3 spectra. The calculations considered transitions in the region of 0-4000 cm-1 with rotational states up to J = 85, and includes 174,674,257 transitions. A list of 10,878 experimental transitions had relative intensities placed on an absolute scale, and were provided in a form suitable

  11. Accurate transition rates for intercombination lines of singly ionized nitrogen

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.

    2011-01-01

    The transition energies and rates for the 2s22p2 3P1,2-2s2p3 5S2o and 2s22p3s-2s22p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p3 1,3P1o and 2s22p3s 1,3P1olevels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  12. Accurate transition rates for intercombination lines of singly ionized nitrogen

    SciTech Connect

    Tayal, S. S.

    2011-01-15

    The transition energies and rates for the 2s{sup 2}2p{sup 2} {sup 3}P{sub 1,2}-2s2p{sup 3} {sup 5}S{sub 2}{sup o} and 2s{sup 2}2p3s-2s{sup 2}2p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p{sup 3} {sup 1,3}P{sub 1}{sup o} and 2s{sup 2}2p3s {sup 1,3}P{sub 1}{sup o}levels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  13. Fast and accurate line scanner based on white light interferometry

    NASA Astrophysics Data System (ADS)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  14. Fast and accurate auto-focusing algorithm based on the combination of depth from focus and improved depth from defocus.

    PubMed

    Zhang, Xuedian; Liu, Zhaoqing; Jiang, Minshan; Chang, Min

    2014-12-15

    An auto-focus method for digital imaging systems is proposed that combines depth from focus (DFF) and improved depth from defocus (DFD). The traditional DFD method is improved to become more rapid, which achieves a fast initial focus. The defocus distance is first calculated by the improved DFD method. The result is then used as a search step in the searching stage of the DFF method. A dynamic focusing scheme is designed for the control software, which is able to eliminate environmental disturbances and other noises so that a fast and accurate focus can be achieved. An experiment is designed to verify the proposed focusing method and the results show that the method's efficiency is at least 3-5 times higher than that of the traditional DFF method.

  15. Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model.

    PubMed

    Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng

    2015-06-10

    In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This simulation method could be used for fast and accurate focusing analysis of a large photon sieve.

  16. Fast and accurate auto focusing algorithm based on two defocused images using discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Park, Byung-Kwan; Kim, Sung-Su; Chung, Dae-Su; Lee, Seong-Deok; Kim, Chang-Yeong

    2008-02-01

    This paper describes the new method for fast auto focusing in image capturing devices. This is achieved by using two defocused images. At two prefixed lens positions, two defocused images are taken and defocused blur levels in each image are estimated using Discrete Cosine Transform (DCT). These DCT values can be classified into distance from the image capturing device to main object, so we can make distance vs. defocused blur level classifier. With this classifier, relation between two defocused blur levels can give the device the best focused lens step. In the case of ordinary auto focusing like Depth from Focus (DFF), it needs several defocused images and compares high frequency components in each image. Also known as hill-climbing method, the process requires about half number of images in all focus lens steps for focusing in general. Since this new method requires only two defocused images, it can save lots of time for focusing or reduce shutter lag time. Compared to existing Depth from Defocus (DFD) which uses two defocused images, this new algorithm is simple and accurate as DFF method. Because of this simplicity and accuracy, this method can also be applied to fast 3D depth map construction.

  17. Multi-tower line focus Fresnel array project

    SciTech Connect

    Mills, D.R.; Morrison, G.; Pye, J.; Le Lievre, P.

    2006-02-15

    As an alternative to conventional tracking solar thermal trough systems, one may use line focus Fresnel reflector systems. In a conventional Fresnel reflector design, each field of reflectors is directed to a single tower. However efficient systems of very high ground utilisation can be setup if a field of reflectors uses multiple receivers on different towers. This paper describes a line focus system, called the compact linear fresnel reflector system and a project to produce an initial 95 MWth solar array. The array will be used as a retrofit preheater for a coal fired generating plant.

  18. The in-focus variable line spacing plane grating monochromator

    NASA Astrophysics Data System (ADS)

    Reininger, R.

    2011-09-01

    The in-focus variable line spacing plane grating monochromator is based on only two plane optical elements, a variable line spacing plane grating and a plane pre-mirror that illuminates the grating at the angle of incidence that will focus the required photon energy. A high throughput beamline requires only a third optical element after the exit slit, an aberration corrected elliptical toroid. Since plane elements can be manufactured with the smallest figure errors, this monochromator design can achieve very high resolving power. Furthermore, this optical design can correct the deformations induced by the heat load on the optics along the dispersion plane. This should allow obtaining a resolution of 10 meV at 1 keV with currently achievable figure errors on plane optics. The position of the photon source when an insertion device center is not located at the center of the straight section, a common occurrence in new insertion device beamlines, is investigated.

  19. In-line-focus monitoring technique using lens aberration effect

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tomohiko; Sawano, Toshio; Yao, Teruyoshi; Kobayashi, Katsuyoshi; Asai, Satoru

    2005-05-01

    Process windows have become narrower as nano-processing technology has advanced. The semiconductor industry, faced with this situation, has had to impose extremely severe tool controls. Above all, with the advent of 90-nm device production, demand has arisen for strict levels of control that exceed the machine specifications of ArF exposure systems. Consequently, high-accuracy focus control and focus monitoring techniques for production wafers will be necessary in order for this to be achieved for practical use. Focus monitoring techniques that measure pattern placement errors and resist features using special reticle and mark have recently been proposed. Unfortunately, these techniques have several disadvantages. They are unable to identify the direction of a focus error, and there are limits on the illumination conditions. Furthermore, they require the use of a reticle that is more expensive than normal and they suffer from a low level of measurement accuracy. To solve these problems, the authors examined methods of focus control and focus error measurement for production wafers that utilize the lens aberration of the exposure tool system. The authors call this method FMLA (focus monitoring using lens aberration). In general, astigmatism causes a difference in the optimum focal point between the horizontal and vertical patterns in the same image plane. If a focus error occurs, regardless of the reason, a critical dimension (CD) difference arises between the sparse horizontal and vertical lines. In addition, this CD difference decreases or increases monotonously with the defocus value. That is to say, it is possible to estimate the focus errors to measure the vertical and horizontal line CD formed by exposure tool with astigmatism. In this paper, the authors examined the FMLA technique using astigmatism. First, focus monitoring accuracy was investigated. Using normal scholar type simulation, FMLA was able to detect a 32.3-nm focus error when 10-mλ astigmatism was

  20. Line focus concentrating collector for Copper Mountain Ski Resort, Colorado (Engineering Materials)

    SciTech Connect

    Not Available

    1983-06-02

    The present invention is a device which develops an accurate line focus concentrating collector by flexural bending of thin reflective materials. This method avoids the need for expensive tooling and support frame fabrication. The technical work conducted during this quarter included completion of designs for the prototype system for the Copper Mountain Ski Resort in Colorado. Evaluation of alternate tracking and drive systems and final design of the support system. These drawings accompany DOE/CS/15072--T4.

  1. ACCURATE RITZ WAVELENGTHS OF PARITY-FORBIDDEN [Co II] AND [V II] LINES OF ASTROPHYSICAL INTEREST

    SciTech Connect

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-15

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 Multiplication-Sign 10{sup -2} s{sup -1} and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  2. Development of an accurate transmission line fault locator using the global positioning system satellites

    NASA Technical Reports Server (NTRS)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  3. Rapid and Accurate Calculation of a Speed Dependent Spectral Line Shape

    NASA Astrophysics Data System (ADS)

    Beverstock, D. Reed; Weaver, Kendra Letchworth; Benner, D. Chris

    2014-06-01

    Use of the Voigt profile with the Lorentz width allowed to vary with the speed of collision has been hampered by the lack of fast accurate algorithms. Such an algorithm has been written assuming a quadratic dependence of the Lorentz width upon the speed of collision that is accurate to one part in 10 000 and is generally only a factor of four or so slower than the equivalent Voigt calculation with the Letchworth and Benner algorithm. The only exception to the accuracy is far from line center near the Doppler limit when the speed dependent parameter is quite large. At this point the spectral line has fallen by at least 17 orders of magnitude from the line center and is generally insignificant. Gauss-Hermite quadrature of third to seventeenth order, Taylor series expansion about precomputed points and spline interpolation are used in the computation of both the real and imaginary parts for various regions. Kendra L. Letchworth and D. Chris Benner, JQSRT 107 (2007) 173-192. This work was funded by the Jet Propulsion Laboratory and National Science Foundation.

  4. Accurate oscillator strengths for ultraviolet lines of Ar I - Implications for interstellar material

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Beideck, D. J.; Schectman, R. M.; York, D. G.

    1992-01-01

    Analysis of absorption from interstellar Ar I in lightly reddened lines of sight provides information on the warm and hot components of the interstellar medium near the sun. The details of the analysis are limited by the quality of the atomic data. Accurate oscillator strengths for the Ar I lines at 1048 and 1067 A and the astrophysical implications are presented. From lifetimes measured with beam-foil spectroscopy, an f-value for 1048 A of 0.257 +/- 0.013 is obtained. Through the use of a semiempirical formalism for treating singlet-triplet mixing, an oscillator strength of 0.064 +/- 0.003 is derived for 1067 A. Because of the accuracy of the results, the conclusions of York and colleagues from spectra taken with the Copernicus satellite are strengthened. In particular, for interstellar gas in the solar neighborhood, argon has a solar abundance, and the warm, neutral material is not pervasive.

  5. Focusing and matching properties of the ATR transfer line

    SciTech Connect

    Tsoupas, N.; Fischer, W.; Kewisch, J.; MacKay, W.W.; Peggs, S.; Pilat, F.; Tepikian, S.; Wei, J.

    1997-07-01

    The AGS to RHIC (AtR) beam transfer line has been constructed and will be used to transfer beam bunches from the AGS machine into the RHIC machine which is presently under construction at BNL. The original design of the AtR line has been modified. This article will present the optics of the various sections of the existing AtR beam line, as well as the matching capabilities of the AtR line to the RHIC machine.

  6. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems.

    PubMed

    Majda, Andrew J; Grote, Marcus J

    2007-01-23

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and physical instabilities on both large and small scales. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Here, explicit off-line test criteria for stable accurate discrete filtering are developed for use in the above context and mimic the classical stability analysis for finite difference schemes. First, constant coefficient partial differential equations, which are randomly forced and damped to mimic mesh scale energy spectra in the above problems are developed as off-line filtering test problems. Then mathematical analysis is used to show that under natural suitable hypothesis the time filtering algorithms for general finite difference discrete approximations to an sxs partial differential equation system with suitable observations decompose into much simpler independent s-dimensional filtering problems for each spatial wave number separately; in other test problems, such block diagonal models rigorously provide upper and lower bounds on the filtering algorithm. In this fashion, elementary off-line filtering criteria can be developed for complex spatially extended systems. The theory is illustrated for time filters by using both unstable and implicit difference scheme approximations to the stochastically forced heat equation where the combined effects of filter stability and model error are analyzed through the simpler off-line criteria.

  7. Differential Effects of Focused and Unfocused Written Correction on the Accurate Use of Grammatical Forms by Adult ESL Learners

    ERIC Educational Resources Information Center

    Sheen, Younghee; Wright, David; Moldawa, Anna

    2009-01-01

    Building on Sheen's (2007) study of the effects of written corrective feedback (CF) on the acquisition of English articles, this article investigated whether direct focused CF, direct unfocused CF and writing practice alone produced differential effects on the accurate use of grammatical forms by adult ESL learners. Using six intact adult ESL…

  8. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle

    NASA Astrophysics Data System (ADS)

    Singh, Mithun Kuniyil Ajith; Parameshwarappa, Vinay; Hendriksen, Ellen; Steenbergen, Wiendelt; Manohar, Srirang

    2016-12-01

    An important problem in minimally invasive photoacoustic (PA) imaging of brachytherapy seeds is reflection artifacts caused by the high signal from the optical fiber/needle tip reflecting off the seed. The presence of these artifacts confounds interpretation of images. In this letter, we demonstrate a recently developed concept called photoacoustic-guided focused ultrasound (PAFUSion) for the first time in the context of interstitial illumination PA imaging to identify and remove reflection artifacts. In this method, ultrasound (US) from the transducer is focused on the region of the optical fiber/needle tip identified in a first step using PA imaging. The image developed from the US diverging from the focus zone at the tip region visualizes only the reflections from seeds and other acoustic inhomogeneities, allowing identification of the reflection artifacts of the first step. These artifacts can then be removed from the PA image. Using PAFUSion, we demonstrate reduction of reflection artifacts and thereby improved interstitial PA visualization of brachytherapy seeds in phantom and ex vivo measurements on porcine tissue.

  9. Using Focused Regression for Accurate Time-Constrained Scaling of Scientific Applications

    SciTech Connect

    Barnes, B; Garren, J; Lowenthal, D; Reeves, J; de Supinski, B; Schulz, M; Rountree, B

    2010-01-28

    Many large-scale clusters now have hundreds of thousands of processors, and processor counts will be over one million within a few years. Computational scientists must scale their applications to exploit these new clusters. Time-constrained scaling, which is often used, tries to hold total execution time constant while increasing the problem size along with the processor count. However, complex interactions between parameters, the processor count, and execution time complicate determining the input parameters that achieve this goal. In this paper we develop a novel gray-box, focused median prediction errors are less than 13%. regression-based approach that assists the computational scientist with maintaining constant run time on increasing processor counts. Combining application-level information from a small set of training runs, our approach allows prediction of the input parameters that result in similar per-processor execution time at larger scales. Our experimental validation across seven applications showed that median prediction errors are less than 13%.

  10. Single R Gene Introgression Lines for Accurate Dissection of the Brassica - Leptosphaeria Pathosystem

    PubMed Central

    Larkan, Nicholas J.; Yu, Fengqun; Lydiate, Derek J.; Rimmer, S. Roger; Borhan, M. Hossein

    2016-01-01

    Seven blackleg resistance (R) genes (Rlm1, Rlm2, Rlm3, Rlm4, LepR1, LepR2 & LepR3) were each introgressed into a common susceptible B. napus doubled-haploid (DH) line through reciprocal back-crossing, producing single-R gene introgression lines (ILs) for use in the pathological and molecular study of Brassica—Leptosphaeria interactions. The genomic positions of the R genes were defined through molecular mapping and analysis with transgenic L. maculans isolates was used to confirm the identity of the introgressed genes where possible. Using L. maculans isolates of contrasting avirulence gene (Avr) profiles, we preformed extensive differential pathology for phenotypic comparison of the ILs to other B. napus varieties, demonstrating the ILs can provide for the accurate assessment of Avr-R gene interactions by avoiding non-Avr dependant alterations to resistance responses which can occur in some commonly used B. napus varieties. Whole-genome SNP-based assessment allowed us to define the donor parent introgressions in each IL and provide a strong basis for comparative molecular dissection of the pathosystem. PMID:27965684

  11. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  12. Development and preliminary validation of the focused analgesia selection test to identify accurate pain reporters

    PubMed Central

    Treister, Roi; Eaton, Thomas A; Trudeau, Jeremiah J; Elder, Harrison; Katz, Nathaniel P

    2017-01-01

    Clinical trials of analgesics have been plagued with poor assay sensitivity due, in part, to variability in subjects’ pain reporting. Herein, we develop and evaluate the focused analgesia selection test (FAST), a method to measure patients’ pain reporting skills. Subjects with osteoarthritis of the hip, knee, and/or ankle with pain intensity of ≥3/10 on a 0–10 numerical rating scale were enrolled. Subjects underwent the FAST procedure, which consists of recording subjects’ pain reports in response to repeated administration of thermal noxious stimuli of various intensities applied on the arm with the Medoc® Thermal Sensory Analyzer II. Subjects also rated non-noxious stimuli consisting of visual contrast rating. After performing an exercise task, subjects also rated clinical pain and were asked to report whether their pain had increased, decreased, or stayed the same. Overall, 88 subjects were enrolled, and 83 were included in the analyses. FAST’s outcomes including the R2, intraclass correlation coefficient (ICC), and coefficient of variation (CoV) indicated that subjects’ pain reporting skills were widely distributed. Higher FAST ICC significantly predicted greater changes in clinical pain following exercise (p=0.017), whereas the visual contrast test did not predict postexercise pain. FAST is the first method that measures subjects’ pain reporting skills. Using FAST to enrich clinical trials with “good” pain reporters (with high FAST ICC) could increase assay sensitivity. Further evaluation of FAST is ongoing. PMID:28243138

  13. Measurement of cylindrical Rayleigh surface waves using line-focused PVDF transducers and defocusing measurement method.

    PubMed

    Lin, Chun-I; Lee, Yung-Chun

    2014-08-01

    Line-focused PVDF transducers and defocusing measurement method are applied in this work to determine the dispersion curve of the Rayleigh-like surface waves propagating along the circumferential direction of a solid cylinder. Conventional waveform processing method has been modified to cope with the non-linear relationship between phase angle of wave interference and defocusing distance induced by a cylindrically curved surface. A cross correlation method is proposed to accurately extract the cylindrical Rayleigh wave velocity from measured data. Experiments have been carried out on one stainless steel and one glass cylinders. The experimentally obtained dispersion curves are in very good agreement with their theoretical counterparts. Variation of cylindrical Rayleigh wave velocity due to the cylindrical curvature is quantitatively verified using this new method. Other potential applications of this measurement method for cylindrical samples will be addressed.

  14. Reengineering a surgical service line: focusing on core process improvement.

    PubMed

    Kelly, D L; Pestotnik, S L; Coons, M C; Lelis, J W

    1997-01-01

    Integrating principles from a variety of theory has led to the development of a conceptual framework for reengineering in a clinical care delivery setting to improve the value of services provided to the customer. A conceptual framework involving the identification of three high level core processes to reengineer can provide clarity and focus for clinicians to begin directing reengineering efforts. Those core processes are: clinical management of the patient's medical needs, patient operational processes to support the clinical processes, and administrative decision-making processes to support the implementation of the clinical and operational processes. Improvement in any one of these areas has the potential to increase value, but the concurrent targeting of these core processes for reengineering has provided a synergy that has accelerated the achievement of the desired outcomes in the area of surgical services.

  15. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  16. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  17. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  18. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  19. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  20. Accurate On-Line Intervention Practices for Efficient Improvement of Reading Skills in Africa

    ERIC Educational Resources Information Center

    Marshall, Minda B.

    2016-01-01

    Lifelong learning is the only way to sustain proficient learning in a rapidly changing world. Knowledge and information are exploding across the globe. We need accurate ways to facilitate the process of drawing external factual information into an internal perceptive advantage from which to interpret and argue new information. Accurate and…

  1. An Accurate and Complete Empirical Line List for Water Vapor Between 5850 and 7920 CM-1

    NASA Astrophysics Data System (ADS)

    Mikhailenko, Semen; Mondelain, Didier; Kassi, Samir; Campargue, Alain

    2014-06-01

    An empirical line list has been constructed for "natural" water vapor at 296 K in the 5850 - 7920 wn region. It was obtained by gathering separate line lists recently published on the basis of spectra recorded by high sensitivity Continuous Wave Cavity Ring Down Spectroscopy (CW-CRDS) of natural water, complemented with literature data for the strongest lines. The list includes 38318 transitions of four major water isotopologues (H_216O, H_218O, H_217O and HD16O) with an intensity cut-off of 1x10-29 cm/molecule at 296 K. The list is made mostly complete over the whole spectral region by including a large number of weak lines with positions calculated using experimentally determined energy levels and intensities obtained from variational calculations. In addition, we provide HD18O and HD17O lists in the same region for transitions with intensities larger than 1x10-29 cm/molecule. The HD18O and HD17O lists (1972 lines in total) were obtained using empirical energy levels available in the literature and variational intensities. The global list (40290 transitions) for water including the contribution of the six major isotopologues will be adopted for the next edition of the GEISA database in the region. The advantages and drawbacks of our list are discussed in comparison with the list provided for the same region in the 2012 edition of the HITRAN database. The direct comparison of the CRDS spectra to simulations based on the HITRAN list has revealed some insufficiencies which could easily be corrected: missing HDO lines, duplicated lines, inaccurate line positions or line intensities from variational calculations.

  2. An accurate and complete empirical line list for water vapor between 5850 and 7920 cm-1

    NASA Astrophysics Data System (ADS)

    Mikhailenko, S. N.; Mondelain, D.; Kassi, S.; Campargue, A.

    2014-06-01

    An empirical line list has been constructed for “natural” water vapor at 296 K in the 5850-7920 cm-1 region. It was obtained by gathering separate line lists recently published on the basis of spectra recorded by high sensitivity Continuous Wave Cavity Ring Down Spectroscopy (CW-CRDS) of natural water, complemented with literature data for the strongest lines. The list includes 38,318 transitions of four major water isotopologues (H216O, H218O, H217O and HD16O) with an intensity cut-off of 1×10-29 cm/molecule at 296 K. The list is made mostly complete over the whole spectral region by including a large number of weak lines with positions calculated using experimentally determined energy levels and intensities obtained from variational calculations. In addition, we provide HD18O and HD17O lists in the same region for transitions with intensities larger than 1×10-29 cm/molecule. The HD18O and HD17O lists (1972 lines in total) were obtained using empirical energy levels available in the literature and variational intensities. The global list (40,290 transitions) for water including the contribution of the six major isotopologues will be adopted for the next edition of the GEISA database in the region. The advantages and drawbacks of our list are discussed in comparison with the list provided for the same region in the 2012 edition of the HITRAN database. The direct comparison of the CRDS spectra to simulations based on the HITRAN list has revealed some insufficiencies which could easily be corrected: missing HDO lines, duplicated lines, inaccurate line positions or line intensities from variational calculations.

  3. Children Can Accurately Monitor and Control Their Number-Line Estimation Performance

    ERIC Educational Resources Information Center

    Wall, Jenna L.; Thompson, Clarissa A.; Dunlosky, John; Merriman, William E.

    2016-01-01

    Accurate monitoring and control are essential for effective self-regulated learning. These metacognitive abilities may be particularly important for developing math skills, such as when children are deciding whether a math task is difficult or whether they made a mistake on a particular item. The present experiments investigate children's ability…

  4. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    PubMed

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  5. Computing Highly Accurate Spectroscopic Line Lists that Cover a Large Temperature Range for Characterization of Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Huang, X.; Schwenke, D. W.

    2013-12-01

    Over the last decade, it has become apparent that the most effective approach for determining highly accurate rotational and rovibrational line lists for molecules of interest in planetary atmospheres is through a combination of high-resolution laboratory experiments coupled with state-of-the art ab initio quantum chemistry methods. The approach involves computing the most accurate potential energy surface (PES) possible using state-of-the art electronic structure methods, followed by computing rotational and rovibrational energy levels using an exact variational method to solve the nuclear Schrödinger equation. Then, reliable experimental data from high-resolution experiments is used to refine the ab initio PES in order to improve the accuracy of the computed energy levels and transition energies. From the refinement step, we have been able to achieve an accuracy of approximately 0.015 cm-1 for rovibrational transition energies, and even better for purely rotational transitions. This combined 'experiment / theory' approach allows for determination of essentially a complete line list, with hundreds of millions of transitions, and having the transition energies and intensities be highly accurate. Our group has successfully applied this approach to determine highly accurate line lists for NH3 and CO2 (and isotopologues), and very recently for SO2 and isotopologues. Here I will report our latest results for SO2 including all isotopologues. Comparisons to the available data in HITRAN2012 and other available databases will be shown, though we note that our line lists SO2 are significantly more complete than any other databases. Since it is important to span a large temperature range in order to model the spectral signature of exoplanets, we will also demonstrate how the spectra change on going from low temperatures (100 K) to higher temperatures (500 K).

  6. Fast, Accurate and Shift-Varying Line Projections for Iterative Reconstruction Using the GPU

    PubMed Central

    Pratx, Guillem; Chinn, Garry; Olcott, Peter D.; Levin, Craig S.

    2013-01-01

    List-mode processing provides an efficient way to deal with sparse projections in iterative image reconstruction for emission tomography. An issue often reported is the tremendous amount of computation required by such algorithm. Each recorded event requires several back- and forward line projections. We investigated the use of the programmable graphics processing unit (GPU) to accelerate the line-projection operations and implement fully-3D list-mode ordered-subsets expectation-maximization for positron emission tomography (PET). We designed a reconstruction approach that incorporates resolution kernels, which model the spatially-varying physical processes associated with photon emission, transport and detection. Our development is particularly suitable for applications where the projection data is sparse, such as high-resolution, dynamic, and time-of-flight PET reconstruction. The GPU approach runs more than 50 times faster than an equivalent CPU implementation while image quality and accuracy are virtually identical. This paper describes in details how the GPU can be used to accelerate the line projection operations, even when the lines-of-response have arbitrary endpoint locations and shift-varying resolution kernels are used. A quantitative evaluation is included to validate the correctness of this new approach. PMID:19244015

  7. Accurate Intensity Velocity Phase Difference in the Potassium Resonance Line Obtained with VAMOS

    NASA Astrophysics Data System (ADS)

    Magrì, M.; Oliviero, M.; Severino, G.

    2008-01-01

    We present new results about the phase difference between the intensity and velocity fluctuations of the solar photosphere obtained with the Velocity And Magnetic Observations of the Sun (VAMOS) instrument, which uses the magneto-optical filter (MOF) technique. Before this observing run, we applied the calibration method described in Magrì, Oliviero, and Severino ( Solar Phys. 232, 159, 2005) to reduce the instrumental cross-talk which was present in previous VAMOS data. The quality of this calibration, which can be easily applied to any MOF-based instrument, has been confirmed by comparing with the MOF transmission-profile measurements obtained with a diode laser system. Finally, we discuss the new VAMOS phase-difference value in relation to data obtained by other authors in the same potassium spectral line and in other lines that can be used to study nonadiabatic effects of solar global oscillations.

  8. A new application of PVDF line-focus transducers on measuring dispersion curves of a layered medium

    NASA Astrophysics Data System (ADS)

    Lee, Yung-Chun; Ko, Shin-Pin

    2000-05-01

    In the past few years, PVDF line-focus acoustic transducers have been proven to be a useful and convenient tool for accurately measuring surface wave velocity. The transducer is very easy to construct and the measurement system can be readily established with conventional ultrasonic instruments. In this investigation, however, the capability of PVDF line-focus transducers will be further extended to the measurement of dispersion relation of surface acoustic waves of a layered medium. To achieve this, a number of line-focus transducers are first fabricated with PVDF films of various thickness so that they can operate at different frequencies. Experimental testing on these transducers shows that surface acoustic waves of frequency ranging from 2 MHz to 20 MHz can be effectively generated and detected. For the determination of surface wave velocity as a function of frequency, a new method of processing the measured waveforms during a z-direction defocusing measurements is developed. A mathematical model is given to explain how this method works. With the transducers and the analyzing method, the surface wave dispersion relation of a layer/substrate configuration have been experimentally determined. Samples include thick polymeric films as well as metal films deposited on glass, aluminum, and silicon crystal. Possibility of determining material properties of the layers from the measured dispersion curves will be discussed.

  9. Evaluation of line focus solar central power systems. Volume II. Systems evaluation

    SciTech Connect

    Not Available

    1980-03-15

    An evaluation was completed to ascertain the applicability of line focus technologies to electrical power applications and to compare their performance and cost potential with point focus central receiver power systems. It was concluded that although the high temperature line focus (SRI) and fixed mirror line focus (GA) concepts duplicate the heat source characteristics and power conversion technology of the central receiver concepts these configurations do not offer a sufficient improvement in cost to warrant full scale development. The systems are, however, less complex than their point focus counterpart and should the central receiver system development falter they provide reasonable technology alternatives. The parabolic trough concept (BDM) was found to provide a low temperature technology alternative to the central receiver concept with promising performance and cost potential. Its continued development is recommended, with special emphasis on lower temperature (< 700/sup 0/F) applications. Finally, a variety of new promising line focus power system configurations were identified for a range of utility and industrial applications and recommendations were made on their implementation. This volume contains the detailed report. (WHK)

  10. Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device.

    PubMed

    Yang, Sei Hyun; Lee, Doo Jin; Youn, Jae Ryoun; Song, Young Seok

    2017-03-06

    Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device induced by the synergetic effect of inertia and viscoelasticity. The elastic and inertial forces acting on suspended particles are manipulated by controlling the concentration of dilute polymer solution and the flow rate of a fluid. The finding shows that the confinement effects determined by the channel aspect ratio and the inlet geometry lead to the multiple-line focusing of particles in the microfluidic channel due to the fluid elasticity and hydrodynamic behavior of the fluid. A microfluidic channel with high channel aspect ratio possesses broad minimal region of the elastic force across the channel, which generates a wide particle focusing band rather than a single particle focusing at the center. The multiple-line particle focusing occurs as the inertial force outweighs the elastic force, resulting in the particle migration toward the channel sidewalls.

  11. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.

    PubMed

    Regalia, Giulia; Coelli, Stefania; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting "building blocks" into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis.

  12. Highly Accurate Semi-Empirical IR Line Lists of Asymmetric SO2 Isotopologues: SO18O and SO17O

    NASA Astrophysics Data System (ADS)

    Huang, X.; Schwenke, D.; Lee, T. J.

    2015-12-01

    Atmosphere models and simulations of Venus, Mars, and Exo-planets will greatly benefit from complete and accurate Infrared spectra data of important molecules such as SO2 and CO2. Currently, high resolution spectra data for SO2 is very limited at 296K and mainly for the primary isotopologue 626. It cannot effectively support the observed data analysis and simulations. Recently we published a semi-empirically refined potential energy surface, denoted Ames-1, and Ames-296K IR line lists for SO2 626 and a few symmetric isotopologues including 646, 636, 666 and 828. The accuracy of line positions is around 0.01 - 0.03 cm-1 for most transitions. For intensities, most deviations are less than 5-15%. Now we have carried out new potential energy surface refinements by including latest experimental data and those of isotopologues. On the newly fitted surface, for the first time we have computed 296K line lists for the two most abundant asymmetric isotopologues, SO2 628 and SO2 627. We will present the spectra simulations of SO2 628 and SO2 627, and compare it with latest high resolution experimental spectroscopy of SO2 628. A composite "natural" line list at 296K is also available with terrestial abundances. These line lists will be available to download at http://huang.seti.org.

  13. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    SciTech Connect

    Bergeron, K D; Champion, R L; Hunke, R W

    1980-04-01

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  14. On-line capillary isoelectric focusing-electrospray mass spectrometry for protein characterization

    SciTech Connect

    Tang, Qing; Harrata, K.A.; Lee, C.S.

    1996-12-31

    The integration of capillary isoelectric focusing (CIEF) with electrospray mass spectrometry (ESMS) as a two-dimensional separation system for protein characterization will be presented. Mixtures of protein variants are focused and cathodically mobilized in a polyacrylamide coated capillary. At the end of CIEF capillary, the mobilized protein zones are analyzed by mass spectrometry coupled on-line to an electrospray interface with a coaxial sheath flow configuration. The effects of carrier ampholyte concentration on the CIEF separation and the protein electrospray mass spectra will be discussed. On-line CIEF-ESMS with superior resolving power, speed, and sensitivity will be demonstrated for the analysis of hemoglobin and glycoprotein variants.

  15. SonoKnife: Feasibility of a line-focused ultrasound device for thermal ablation therapy

    PubMed Central

    Chen, Duo; Xia, Rongmin; Chen, Xin; Shafirstein, Gal; Corry, Peter M.; Griffin, Robert J.; Penagaricano, Jose A.; Tulunay-Ugur, Ozlem E.; Moros, Eduardo G.

    2011-01-01

    Purpose: To evaluate the feasibility of line-focused ultrasound for thermal ablation of superficially located tumors. Methods: A SonoKnife is a cylindrical-section ultrasound transducer designed to radiate from its concave surface. This geometry generates a line-focus or acoustic edge. The motivation for this approach was the noninvasive thermal ablation of advanced head and neck tumors and positive neck nodes in reasonable treatment times. Line-focusing may offer advantages over the common point-focusing of spherically curved radiators such as faster coverage of a target volume by scanning of the acoustic edge. In this paper, The authors report studies using numerical models and phantom and ex vivo experiments using a SonoKnife prototype. Results: Acoustic edges were generated by cylindrical-section single-element ultrasound transducers numerically, and by the prototype experimentally. Numerically, simulations were performed to characterize the acoustic edge for basic design parameters: transducer dimensions, line-focus depth, frequency, and coupling thickness. The dimensions of the acoustic edge as a function of these parameters were determined. In addition, a step-scanning simulation produced a large thermal lesion in a reasonable treatment time. Experimentally, pressure distributions measured in degassed water agreed well with acoustic simulations, and sonication experiments in gel phantoms and ex vivo porcine liver samples produced lesions similar to those predicted with acoustic and thermal models. Conclusions: Results support the feasibility of noninvasive thermal ablation with a SonoKnife. PMID:21859038

  16. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  17. Polyallelic structural variants can provide accurate, highly informative genetic markers focused on diagnosis and therapeutic targets: Accuracy vs. Precision.

    PubMed

    Roses, A D

    2016-02-01

    Structural variants (SVs) include all insertions, deletions, and rearrangements in the genome, with several common types of nucleotide repeats including single sequence repeats, short tandem repeats, and insertion-deletion length variants. Polyallelic SVs provide highly informative markers for association studies with well-phenotyped cohorts. SVs can influence gene regulation by affecting epigenetics, transcription, splicing, and/or translation. Accurate assays of polyallelic SV loci are required to define the range and allele frequency of variable length alleles.

  18. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  19. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    PubMed

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy.

  20. Measurement of circumferential Lamb waves using a line-focus poly(vinylidene fluoride) transducer and cross correlation waveform analysis.

    PubMed

    Lin, Chun-I; Lu, Yan; He, Cunfu; Song, Guorong; Lee, Yung-Chun

    2015-11-01

    This paper presents a method for measuring circumferential Lamb waves propagating on a cylindrically curved thin plate. The measurement is carried out using a wideband and line-focused poly(vinylidene fluoride) transducer along with a defocusing waveform measurement method. After synthesizing the acquired waveforms, interference patterns can be obtained and a cross correlation method is developed to accurately extract the wave velocity as a function of wave frequency. Using three stainless steel thin plates of different thicknesses (100, 150, and 300 μm) and a radius of curvature of 10 mm, dispersion curves for several fundamental and higher order modes of circumferential Lamb waves are simultaneously determined. Theoretical dispersion curves are also calculated and compared with their experimental counterparts. Very good agreements are observed, which concludes the measurement accuracy of this measurement method.

  1. Accurate and economical solution of the pressure-head form of Richards' equation by the method of lines

    NASA Astrophysics Data System (ADS)

    Tocci, Michael D.; Kelley, C. T.; Miller, Cass T.

    The pressure-head form of Richards' equation (RE) is difficult to solve accurately using standard time integration methods. For example, mass balance errors grow as the integration progresses unless very small time steps are taken. Further, RE may be solved for many problems more economically and robustly with variable-size time steps rather than with a constant time-step size, but variable step-size methods applied to date have relied upon empirical approaches to control step size, which do not explicitly control temporal truncation error of the solution. We show how a differential algebrain equation implementation of the method of lines can give solutions to RE that are accurate, have good mass balance properties, explicitly control temporal truncation error, and are more economical than standard approaches for a wide range of solution accuracy. We detail changes to a standard integrator, DASPK, that improves efficiency for the test problems considered, and we advocate the use of this approach for both RE and other problems involving subsurface flow and transport phenomena.

  2. Determination of near-surface material properties by line-focus acoustic microscopy

    SciTech Connect

    Achenbach, J.D.; Li, W.

    1996-12-31

    A line-focus acoustic microscope is used in conjunction with a multiple wave-mode method to determine elastic constants from a single V(z) measurement. V(z) curves which include contributions from different wave modes, measured using the line-focus acoustic microscope at 225 MHz, have been compared with theoretical results predicted by a V(z) measurement model. The determination of elastic constants has been achieved numerically by seeking a set of elastic constants that leads to the best fit, in the least square sense, of the theoretical results to the experimental ones. The method has been applied to isotropic materials in bulk, and plate and thin-film configurations. Elastic constants for each of these cases have been determined. The consistency, convergence, sensitivity and accuracy of the procedure have been investigated.

  3. Energy transport in plasmas produced by a high brightness krypton fluoride laser focused to a line

    SciTech Connect

    Al-Hadithi, Y.; Tallents, G.J. ); Zhang, J. ); Key, M.H.; Norreys, P.A.; Kodama, R. )

    1994-05-01

    A high brightness krypton fluoride Raman laser (wavelength 0.268 [mu]m) generating 0.3 TW, 12 ps pulses with 20 [mu]rad beam divergence and a prepulse of less than 10[sup [minus]10] has been focused to produce a 10 [mu]m wide line focus (irradiances [similar to]0.8--4[times]10[sup 15] W cm[sup [minus]2]) on plastic targets with a diagnostic sodium fluoride (NaF) layer buried within the target. Axial and lateral transport of energy has been measured by analysis of x-ray images of the line focus and from x-ray spectra emitted by the layer of NaF with varying overlay thicknesses. It is shown that the ratio of the distance between the critical density surface and the ablation surface to the laser focal width controls lateral transport in a similar manner as for previous spot focus experiments. The measured axial energy transport is compared to MEDUSA [J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, Comput. Phys. Commun. [bold 7], 271 (1974)] one-dimensional hydrodynamic code simulations with an average atom post-processor for predicting spectral line intensities. An energy absorption of [similar to]10% in the code gives agreement with the experimental axial penetration. Various measured line ratios of hydrogen- and helium-like Na and F are investigated as temperature diagnostics in the NaF layer using the RATION [R. W. Lee, B. L. Whitten, and R. E. Strout, J. Quant. Spectrosc. Radiat. Transfer [bold 32], 91 (1984)] code.

  4. Energy transport in plasmas produced by a high brightness krypton fluoride laser focused to a line

    NASA Astrophysics Data System (ADS)

    Al-Hadithi, Y.; Tallents, G. J.; Zhang, J.; Key, M. H.; Norreys, P. A.; Kodama, R.

    1994-05-01

    A high brightness krypton fluoride Raman laser (wavelength 0.268 μm) generating 0.3 TW, 12 ps pulses with 20 μrad beam divergence and a prepulse of less than 10-10 has been focused to produce a 10 μm wide line focus (irradiances ˜0.8-4×1015 W cm-2) on plastic targets with a diagnostic sodium fluoride (NaF) layer buried within the target. Axial and lateral transport of energy has been measured by analysis of x-ray images of the line focus and from x-ray spectra emitted by the layer of NaF with varying overlay thicknesses. It is shown that the ratio of the distance between the critical density surface and the ablation surface to the laser focal width controls lateral transport in a similar manner as for previous spot focus experiments. The measured axial energy transport is compared to medusa [J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, Comput. Phys. Commun. 7, 271 (1974)] one-dimensional hydrodynamic code simulations with an average atom post-processor for predicting spectral line intensities. An energy absorption of ˜10% in the code gives agreement with the experimental axial penetration. Various measured line ratios of hydrogen- and helium-like Na and F are investigated as temperature diagnostics in the NaF layer using the ration [R. W. Lee, B. L. Whitten, and R. E. Strout, J. Quant. Spectrosc. Radiat. Transfer 32, 91 (1984)] code.

  5. Mechanisms of stochastic focusing and defocusing in biological reaction networks: insight from accurate chemical master equation (ACME) solutions.

    PubMed

    Gursoy, Gamze; Terebus, Anna; Youfang Cao; Jie Liang

    2016-08-01

    Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF. Here we use the ACME method to solve the exact solution of the discrete Chemical Master Equations and to study a network where SF was reported. We showed that the level of SF depends on the degree of the fluctuations of signal molecule. We discovered that signaling noise under certain conditions in the same reaction network can lead to a decrease in the system sensitivities, thus the network can experience stochastic defocusing. These results highlight the fundamental role of stochasticity in biological reaction networks and the need for exact computation of probability landscape of the molecules in the system.

  6. The Effect of Starspots on Accurate Radius Determination of the Low-Mass Double-Lined Eclipsing Binary Gu Boo

    NASA Astrophysics Data System (ADS)

    Windmiller, G.; Orosz, J. A.; Etzel, P. B.

    2010-04-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. López-Morales & Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by López-Morales & Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, López-Morales & Ribas derived masses and radii accurate to sime2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spots in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of López-Morales & Ribas using models with and without spots. We derived a radius of the primary of 0.6329 ± 0.0026 R sun, 0.6413 ± 0.0049 R sun, and 0.6373 ± 0.0029 R sun from the CCD, photoelectric, and López-Morales & Ribas data, respectively. Each of these measurements agrees with the value reported by López-Morales & Ribas (R 1 = 0.623 ± 0.016 R sun) at the level of ≈2%. In addition, the spread in these values is ≈1%-2% from the mean. For the secondary, we derive radii of 0.6074 ± 0.0035 R sun, 0.5944 ± 0.0069 R sun, and 0.5976 ± 0.0059 R sun from the three respective data sets. The López-Morales & Ribas value is R 2 = 0.620 ± 0.020 R sun, which is ≈2%-3% larger than each of the three values we found. The spread in these values is ≈2% from the mean. The systematic difference between our three determinations of the secondary radius and that of López-Morales & Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations accurate at the ≈2% level.

  7. Diabetes therapy--focus on Asia: second-line therapy debate: insulin/secretagogues.

    PubMed

    Eldor, Roy; Raz, Itamar

    2012-12-01

    The following review is based on the second part of a debate entitled 'Diabetes therapy--focus on Asia: 2nd line therapy: GLP1/DPP4 inhibitors versus Secretagogue/insulin therapy', which was held during the '1st Asia Pacific Congress on Controversies to Consensus in Diabetes, Obesity and Hypertension (CODHy)', in Shanghai, China, 2011. As such we reviewed only insulin and secretagogue therapy despite the existence of other therapeutic options. The article aims to shed light on the circumstances most adequate for use of these as second-line agents, despite possible drawbacks. It is important to emphasize that regardless of it being a review of published evidence, it primarily represents the professional opinion of the writers.

  8. Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Naibo, Virginia; Jankowiak, Ryszard

    2010-07-01

    Accurate lineshape functions for modeling fluorescence line narrowing (FLN) difference spectra (ΔFLN spectra) in the low-fluence limit are derived and examined in terms of the physical interpretation of various contributions, including photoproduct absorption and emission. While in agreement with the earlier results of Jaaniso [Proc. Est. Acad. Sci., Phys., Math. 34, 277 (1985)] and Fünfschilling et al. [J. Lumin. 36, 85 (1986)], the derived formulas differ substantially from functions used recently [e.g., M. Rätsep et al., Chem. Phys. Lett. 479, 140 (2009)] to model ΔFLN spectra. In contrast to traditional FLN spectra, it is demonstrated that for most physically reasonable parameters, the ΔFLN spectrum reduces simply to the single-site fluorescence lineshape function. These results imply that direct measurement of a bulk-averaged single-site fluorescence lineshape function can be accomplished with no complicated extraction process or knowledge of any additional parameters such as site distribution function shape and width. We argue that previous analysis of ΔFLN spectra obtained for many photosynthetic complexes led to strong artificial lowering of apparent electron-phonon coupling strength, especially on the high-energy side of the pigment site distribution function.

  9. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  10. Energy Conversion Process in Laser Supported Detonation Waves Induced by a Line-Focusing Laser

    NASA Astrophysics Data System (ADS)

    Ushio, Masato; Kawamura, Koichi; Komurasaki, Kimiya; Katsurayama, Hiroshi; Koizumi, Hiroyuki; Arakawa, Yoshihiro

    2006-05-01

    Propagation of two-dimensional and quasi-one-dimensional Laser Supported Detonation (LSD) waves driven by a line-focusing laser beam was investigated using the shadowgraph method. As a result, fractional laser absorption during the LSD regime for 2D and quasi-1D cases was 68% and 81%, respectively, which was lower than that of three-dimensional LSD wave driven by a point-focusing beam (typically 90%.) However, the blast wave energy efficiency was found proportional to the fractional absorption. Besides, the LSD threshold intensity was apparently lowered in the quasi-1D case due to the momentum confinement effect. Comparison with the quasi-1D simulation considering the real gas effects suggests that non-equilibrium effects and radiation loss should be playing an important role in the energy conversion process in the LSD regime.

  11. Modelling and optimization of transient processes in line focusing power plants with single-phase heat transfer medium

    NASA Astrophysics Data System (ADS)

    Noureldin, K.; González-Escalada, L. M.; Hirsch, T.; Nouri, B.; Pitz-Paal, R.

    2016-05-01

    A large number of commercial and research line focusing solar power plants are in operation and under development. Such plants include parabolic trough collectors (PTC) or linear Fresnel using thermal oil or molten salt as the heat transfer medium (HTM). However, the continuously varying and dynamic solar condition represent a big challenge for the plant control in order to optimize its power production and to keep the operation safe. A better understanding of the behaviour of such power plants under transient conditions will help reduce defocusing instances, improve field control, and hence, increase the energy yield and confidence in this new technology. Computational methods are very powerful and cost-effective tools to gain such understanding. However, most simulation models described in literature assume equal mass flow distributions among the parallel loops in the field or totally decouple the flow and thermal conditions. In this paper, a new numerical model to simulate a whole solar field with single-phase HTM is described. The proposed model consists of a hydraulic part and a thermal part that are coupled to account for the effect of the thermal condition of the field on the flow distribution among the parallel loops. The model is specifically designed for large line-focusing solar fields offering a high degree of flexibility in terms of layout, condition of the mirrors, and spatially resolved DNI data. Moreover, the model results have been compared to other simulation tools, as well as experimental and plant data, and the results show very good agreement. The model can provide more precise data to the control algorithms to improve the plant control. In addition, short-term and accurate spatially discretized DNI forecasts can be used as input to predict the field behaviour in-advance. In this paper, the hydraulic and thermal parts, as well as the coupling procedure, are described and some validation results and results of simulating an example field are

  12. Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits

    PubMed Central

    Lee, Gun-Yeal; Lee, Seung-Yeol; Yun, Hansik; Park, Hyeonsoo; Kim, Joonsoo; Lee, Kyookeun; Lee, Byoungho

    2016-01-01

    The modulation of near-field signals has recently attracted considerable interest because of demands for the development of nano-scale optical devices that are capable of overcoming the diffraction limit of light. In this paper, we propose a new type of tuneable plasmonic lens that permits the foci of surface plasmon polariton (SPP) signals to be continuously steered by adjusting the input polarization state. The proposed structure consists of multi-lined nanoslit arrays, in which each array is tilted at a different angle to provide polarization sensitivity and the nanoslit size is adjusted to balance the relative amplitudes of the excited SPPs from each line. The nanoslits of each line are designed to focus SPPs at different positions; hence, the SPP focal length can be tuned by modifying the incident polarization state. Unlike in previously reported studies, our method enables plasmonic foci to be continuously varied with a smooth change in the incident linear polarization state. The proposed structures provide a novel degree of freedom in the multiplexing of near fields. Such characteristics are expected to enable the realization of active SPP modulation that can be applied in near-field imaging, optical tweezing systems, and integrated nano-devices. PMID:27620281

  13. Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits

    NASA Astrophysics Data System (ADS)

    Lee, Gun-Yeal; Lee, Seung-Yeol; Yun, Hansik; Park, Hyeonsoo; Kim, Joonsoo; Lee, Kyookeun; Lee, Byoungho

    2016-09-01

    The modulation of near-field signals has recently attracted considerable interest because of demands for the development of nano-scale optical devices that are capable of overcoming the diffraction limit of light. In this paper, we propose a new type of tuneable plasmonic lens that permits the foci of surface plasmon polariton (SPP) signals to be continuously steered by adjusting the input polarization state. The proposed structure consists of multi-lined nanoslit arrays, in which each array is tilted at a different angle to provide polarization sensitivity and the nanoslit size is adjusted to balance the relative amplitudes of the excited SPPs from each line. The nanoslits of each line are designed to focus SPPs at different positions; hence, the SPP focal length can be tuned by modifying the incident polarization state. Unlike in previously reported studies, our method enables plasmonic foci to be continuously varied with a smooth change in the incident linear polarization state. The proposed structures provide a novel degree of freedom in the multiplexing of near fields. Such characteristics are expected to enable the realization of active SPP modulation that can be applied in near-field imaging, optical tweezing systems, and integrated nano-devices.

  14. A pulsed THz imaging system with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras.

    PubMed

    Wiegand, Christian; Herrmann, Michael; Bachtler, Sebastian; Klier, Jens; Molter, Daniel; Jonuscheit, Joachim; Beigang, René

    2010-03-15

    We present a pulsed THz Imaging System with a line focus intended to speed up measurements. A balanced 1-D detection scheme working with two industrial line-scan cameras is used. The instrument is implemented without the need for an amplified laser system, increasing the industrial applicability. The instrumental characteristics are determined.

  15. Wide-aperture, line-focused ultrasonic material characterization system based on lateral scanning.

    PubMed

    Titov, Sergey; Maev, Roman; Bogatchenkov, Alexey

    2003-08-01

    We present a new wide-aperture, line-focused ultrasonic material characterization system. The foci of the transmitting and receiving transducers are located in the specimen-immersion liquid interface; and the output voltage V(x,t) of the system is recorded as a function of the lateral position of the receiving transducer. The two-dimensional spectrum of V(x, t) can be expressed as a product of the transfer function of the system and the reflectance function of the interface. In comparison with a system based on scanning in the z direction, the angular resolution of the proposed technique increases with decreasing angle of incidence. There are no geometrical restrictions on the length of the recorded spatial data and the angle of incidence in the case of lateral scanning. The temperature coefficient of the measurement error is low because of the constancy of the propagation distance of ultrasound in the immersion fluid during data acquisition.

  16. An update on the development of a line-focus refractive concentrator array

    NASA Astrophysics Data System (ADS)

    Piszczor, Michael F.; Oneill, Mark J.; Fraas, Lewis M.

    1994-09-01

    Concentrator arrays offer a number of generic benefits for space (i.e. high array efficiency, protection from space radiation effects, minimized plasma interactions, etc.). The line-focus refractive concept, however, also offers two very important advantages: (1) relaxation of precise array tracking requirements to only a single axis and (2) low-cost mass production of the lens material. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal errors for satellites having only single-axis tracking capability. New panel designs emphasize light weight, high stiffness, storability, and ease of manufacturing and assembly. This paper addresses the current status of the concentrator program with special emphasis on the design implications, and flexibility, of using a linear refractive concentrator lens as well as details recent fabrication of prototype hardware.

  17. Line focus of an elliptic cone for an x-ray crystal spectrograph

    NASA Astrophysics Data System (ADS)

    Phillion, D. W.; Hammel, B. A.

    1990-12-01

    The crystal in any flat crystal x-ray spectrograph with the film plane at any angle and any position may be bent sagittally into an elliptic conical shape such that a perfect line focus is formed on the film plane for a point source at a fixed location. However, for high spectral resolution, only a narrow strip along the cone can be utilized. This strip will be near the plane formed by the axis of the cone and the source point. The elliptic cone has mirror symmetry in this plane. The equation of this cone is determined and its properties are discussed. Any conical surface has zero intrinsic curvature since one of the two principal radii of curvature is zero, so it is no more difficult to bend a crystal to this shape than to a concave circular cylinder with the same principal radius of curvature.

  18. Feasibility, Safety, and Efficacy of Accurate Uterine Fibroid Ablation Using Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound With Shot Sonication.

    PubMed

    Xu, Yonghua; Fu, Zhongxiang; Yang, Lixia; Huang, Zili; Chen, Wen-Zhi; Wang, Zhibiao

    2015-12-01

    The aim of this study was to investigate the feasibility, safety, and efficacy of uterine fibroid treatment using magnetic resonance imaging (MRI)-guided high-intensity focused ultrasound (US) with shot sonication for accurate ablation. Forty-three patients with 51 symptomatic uterine fibroids were treated with MRI-guided high-intensity focused US with shot sonication, which was a small acoustic focus of higher intensity with a shorter time (2 seconds) of US exposure and a shorter cooling time (2-3 seconds). The treatment efficacy and adverse events were analyzed, and the changes in the severity of symptoms and the reduction in fibroid volume were assessed 3 and 6 months after the procedure. All patients were successfully treated in a single session, without major complications, and the mean nonperfused volume ratio ± SD was 84.3% ± 15.7% (range, 33.8%-100%).Complete ablation was achieved in 13 T2-hypointense fibroids from 10 patients, and partial ablation was achieved in 38 fibroids from 33 patients. The overall mean treatment time was 135.0 ± 50.9 minutes (2.2 ± 0.8 hours). The transformed symptom severity scores and mean fibroid volumes decreased significantly after treatment (P < .05). In conclusion, MRI-guided high-intensity focused US with shot sonication is a feasible, safe, and effective technique for ablation of uterine fibroids and complete ablation of T2-hypointense fibroids.

  19. Line-Focus Solar Power Plant Cost Reduction Plan (Milestone Report)

    SciTech Connect

    Kutscher, C.; Mehos, M.; Turchi, C.; Glatzmaier, G.; Moss, T.

    2010-12-01

    Line-focus solar collectors, in particular parabolic trough collectors, are the most mature and proven technology available for producing central electricity from concentrated solar energy. Because this technology has over 25 years of successful operational experience, resulting in a low perceived risk, it is likely that it will continue to be a favorite of investors for some time. The concentrating solar power (CSP) industry is developing parabolic trough projects that will cost billions of dollars, and it is supporting these projects with hundreds of millions of dollars of research and development funding. While this technology offers many advantages over conventional electricity generation -- such as utilizing plentiful domestic renewable fuel and having very low emissions of greenhouse gases and air pollutants -- it provides electricity in the intermediate power market at about twice the cost of its conventional competitor, combined cycle natural gas. The purpose of this document is to define a set of activities from fiscal year 2011 to fiscal year 2016 that will make this technology economically competitive with conventional means.

  20. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study.

    PubMed

    Liow, Ming Han Lincoln; Xia, Zhan; Wong, Merng Koon; Tay, Keng Jin; Yeo, Seng Jin; Chin, Pak Lin

    2014-12-01

    Robot-assisted Total Knee Arthroplasty (TKA) improves the accuracy and precision of component implantation and mechanical axis (MA) alignment. Joint-line restoration in robot-assisted TKA is not widely described and joint-line deviation of>5mm results in mid-flexion instability and poor outcomes. We prospectively randomised 60 patients into two groups: 31 patients (robot-assisted), 29 patients (conventional). No MA outliers (>±3° from neutral) or notching was noted in the robot-assisted group as compared with 19.4% (P=0.049) and 10.3% (P=0.238) respectively in the conventional group. The robot-assisted group had 3.23% joint-line outliers (>5mm) as compared to 20.6% in the conventional group (P=0.049). Robot-assisted TKA produces similar short-term clinical outcomes when compared to conventional methods with reduction of MA alignment and joint-line deviation outliers.

  1. Highly Accurate Infrared Line Lists of SO2 Isotopologues Computed for Atmospheric Modeling on Venus and Exoplanets

    NASA Astrophysics Data System (ADS)

    Huang, X.; Schwenke, D.; Lee, T. J.

    2014-12-01

    Last year we reported a semi-empirical 32S16O2 spectroscopic line list (denoted Ames-296K) for its atmospheric characterization in Venus and other Exoplanetary environments. In order to facilitate the Sulfur isotopic ratio and Sulfur chemistry model determination, now we present Ames-296K line lists for both 626 (upgraded) and other 4 symmetric isotopologues: 636, 646, 666 and 828. The line lists are computed on an ab initio potential energy surface refined with most reliable high resolution experimental data, using a high quality CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface. The most valuable part of our approach is to provide "truly reliable" predictions (and alternatives) for those unknown or hard-to-measure/analyze spectra. This strategy has guaranteed the lists are the best available alternative for those wide spectra region missing from spectroscopic databases such as HITRAN and GEISA, where only very limited data exist for 626/646 and no Infrared data at all for 636/666 or other minor isotopologues. Our general line position accuracy up to 5000 cm-1 is 0.01 - 0.02 cm-1 or better. Most transition intensity deviations are less than 5%, compare to experimentally measured quantities. Note that we have solved a convergence issue and further improved the quality and completeness of the main isotopologue 626 list at 296K. We will compare the lists to available models in CDMS/JPL/HITRAN and discuss the future mutually beneficial interactions between theoretical and experimental efforts.

  2. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for 32S16O2 up to 8000 cm-1

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-03-01

    A purely ab initio potential energy surface (PES) was refined with selected 32S16O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (σRMS) for all J = 0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm-1. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm-1. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%-90%. Our predictions for 34S16O2 band origins, higher energy 32S16O2 band origins and missing 32S16O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict 32/34S16O2 band origins below 5500 cm-1 with 0.01-0.03 cm-1 uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  3. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  4. At-line coupling of magnetic-nanoparticle-based extraction with gel isoelectric focusing for protein analysis.

    PubMed

    Dou, Peng; Liu, Zhen

    2011-04-01

    Sample preparation is a crucial step for protein analysis. Functionalized magnetic nanoparticle (MNP)-based extraction has been developed to be a useful sample preparation technique for proteomic analysis. In this paper, we present a strategy for at-line coupling of MNP-based extraction (MNE) with gel isoelectric focusing (IEF). The key to the at-line combination is to use an anolyte or a catholyte as the desorbing agent. Thus, functionalized MNPs can be facilely at-line coupled with gel IEF, provided that the extraction/desorption process is pH-controlled. MNPs extracted with target proteins are added to the sample well, which can function as a natural adapter. Once a focusing electric field has been applied across the gel, proton ions migrating from the anolyte or hydroxide ions migrating from the catholyte can act as a desorbing agent, releasing the proteins from the MNE probes. The released proteins are consequently focused into distinct bands where the local pH equals their pI values. The at-line combination was well demonstrated with three types of functionalized nanoparticles: (1) phenylboronic acid functionalized MNPs for extracting glycoproteins through boronate affinity; (2) carboxyl-functionalized MNPs for extracting positively charged proteins through a weak cation exchange mechanism; and (3) amino-functionalized MNPs for extracting negatively charged proteins through a weak anion exchange mechanism. The at-line combination exhibited several significant advantages, including selectivity, sensitivity, and speed.

  5. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  6. Development of design of CLA: target lens line-focusing system

    NASA Astrophysics Data System (ADS)

    Li, Xuechun; Zhu, Jianqiang

    1999-08-01

    In this paper the principle of CLA-target system to obtain focal line with homogenous intensity distribution was described. And tow new structure modal CLA used for improving the homogeneous of focal line was described and the numerical results of the classical CLA and new type CLA was also given. Those result showed that the focal line long-range intensity distribution can be improved greatly by using CLA with optimized unequal cylindrical lens element for beam with Gaussian intensity distribution and by using hybrid element CLA for the case of super-Gaussian distribution. The optimal process was treated by simulated annealing method. The intensity modulation decreased to 0.7 percent for optimized 4-element unequal width CLA system when incident laser with Gaussian section distribution.

  7. THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LATE-TYPE DOUBLE-LINED ECLIPSING BINARY OGLE SMC113.3 4007 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Graczyk, Dariusz; Pietrzynski, Grzegorz; Gieren, Wolfgang; Pilecki, Bogumil; Mennickent, Ronald E-mail: wgieren@astro-udec.cl; and others

    2012-05-10

    We have analyzed the long-period, double-lined eclipsing binary system OGLE SMC113.3 4007 (SC10 137844) in the Small Magellanic Cloud. The binary lies in the northeastern part of the galaxy and consists of two evolved, well-detached, non-active G8 giants. The orbit is eccentric with e = 0.311, and the orbital period is 371.6 days. Using extensive high-resolution spectroscopic and multi-color photometric data, we have determined a true distance modulus of the system of m - M = 18.83 {+-} 0.02 (statistical) {+-} 0.05 (systematic) mag using a surface-brightness-color relation for giant stars. This method is insensitive to metallicity and reddening corrections and depends only very little on stellar atmosphere model assumptions. Additionally, we derived very accurate, at the level of 1%-2%, physical parameters of both giant stars, particularly their masses and radii, making our results important for comparison with stellar evolution models. Our analysis underlines the high potential of late-type, double-lined detached binary systems for accurate distance determinations to nearby galaxies.

  8. New operating strategies for molten salt in line focusing solar fields - Daily drainage and solar receiver preheating

    NASA Astrophysics Data System (ADS)

    Eickhoff, Martin; Meyer-Grünefeldt, Mirko; Keller, Lothar

    2016-05-01

    Nowadays molten salt is efficiently used in point concentrating solar thermal power plants. Line focusing systems still have the disadvantage of elevated heat losses at night because of active freeze protection of the solar field piping system. In order to achieve an efficient operation of line focusing solar power plants using molten salt, a new plant design and a novel operating strategy is developed for Linear Fresnel- and Parabolic Trough power plants. Daily vespertine drainage of the solar field piping and daily matutinal refilling of the solar preheated absorber tubes eliminate the need of nocturnal heating of the solar field and reduce nocturnal heat losses to a minimum. The feasibility of this new operating strategy with all its sub-steps has been demonstrated experimentally.

  9. THz generation from optical rectification tilted-pulse-front pumping scheme with laser pulse focused to a line

    NASA Astrophysics Data System (ADS)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko

    2015-10-01

    In this study, we investigate THz pulses generated from optical rectification with tilted-pulse-front pumping scheme in which the laser beam is focused to a line in a stoichiometric lithium niobate (sLN) crystal. A cylindrical lens and a common lens are used to focus the pump laser beam to a line. The power law of THz pulse generation and the redshift induced from the sLN crystal are measured. The spectral shapes of the laser pulse are changed by inserting a filter into the pump laser beam, causing the THz radiation to change. The filter is a metal wire with 2 mm diameter. Experimental results show that this method can change the generated THz time waveforms but not their spectra. Such method offers a simple means to change and manipulate THz field generated from optical rectification with tiled-pulse-front pumping scheme.

  10. Midtemperature Solar Systems Test Facility Program for predicting thermal performance of line-focusing, concentrating solar collectors

    SciTech Connect

    Harrison, T.D.

    1980-11-01

    The program at Sandia National Laboratories, Albuquerque, for predicting the performance of line-focusing solar collectors in industrial process heat applications is described. The qualifications of the laboratories selected to do the testing and the procedure for selecting commercial collectors for testing are given. The testing program is outlined. The computer program for performance predictions is described. An error estimate for the predictions and a sample of outputs from the program are included.

  11. Measurement of surface acoustic wave velocity using a variable-line-focus polyurea thin-film ultrasonic transducer.

    PubMed

    Aoyagi, Takahiro; Nakazawa, Marie; Tabaru, Masaya; Nakamura, Kentaro; Ueha, Sadayuki

    2009-08-01

    This paper presents the novel measurement method of the surface acoustic wave velocity by the variable-line- focus transducer using a polyurea piezoelectric ultrasonic transducer. First, a multiresonant polyurea thin-film ultrasonic transducer is fabricated by the vapor deposition polymerization process using 2 monomers. Second, the measurement system of surface acoustic wave velocity modified from the V(z) curve method is established. The system uses the fabricated polyurea thin film as a variable-line-focus transducer at the 30-MHz resonance frequency. The focal length is changed by varying the radius of curvature of the film transducer. To estimate the surface acoustic wave velocities from the measured data theoretically, the photographs of the transducer bent shapes are taken by using a digital microscope, and the bent transducer curvature is modeled by the 7th-order polynomial. To examine the performances of the variable-line-focus transducer, the surface acoustic wave velocities of an aluminum and a synthesized silica glass specimen have been measured. The measured surface acoustic velocities showed good agreement with the reference values.

  12. Depth and all-in-focus images obtained by multi-line-scan light-field approach

    NASA Astrophysics Data System (ADS)

    Štolc, Svorad; Huber-Mörk, Reinhold; Holländer, Branislav; Soukup, Daniel

    2014-03-01

    We present a light-field multi-line-scan image acquisition and processing system intended for the 2.5/3-D inspection of fine surface structures, such as small parts, security print, etc. in an industrial environment. The system consists of an area-scan camera, that allows for a small number of sensor lines to be extracted at high frame rates, and a mechanism for transporting the inspected object at a constant speed. During the acquisition, the object is moved orthogonally to the camera's optical axis as well as the orientation of the sensor lines. In each time step, a predefined subset of lines is read out from the sensor and stored. Afterward, by collecting all corresponding lines acquired over time, a 3-D light field is generated, which consists of multiple views of the object observed from different viewing angles while transported w.r.t. the acquisition device. This structure allows for the construction of so-called epipolar plane images (EPIs) and subsequent EPI-based analysis in order to achieve two main goals: (i) the reliable estimation of a dense depth model and (ii) the construction of an all-in-focus intensity image. Beside specifics of our hardware setup, we also provide a detailed description of algorithmic solutions for the mentioned tasks. Two alternative methods for EPI-based analysis are compared based on artificial and real-world data.

  13. On-line analysis of urban particulate matter focusing on elevated wintertime aerosol concentrations.

    PubMed

    Tan, Phillip V; Evans, Greg J; Tsai, Julia; Owega, Sandy; Fila, Michael S; Malpica, Oscar; Brook, Jeffrey R

    2002-08-15

    A 10-day winter sampling campaign was conducted in downtown Toronto for particulate matter (PM) air pollution in the fine (<2.5 microm) size range. An aerosol laser ablation mass spectrometer (LAMS), a tapered-element oscillating microbalance (TEOM), and an aerodynamic particle sizer (APS) were operated in parallel to characterize the PM on-line. In this study, the LAMS observed differences in the chemical composition between three separate episodes with higher PM2.5 mass and APS counts. LAMS results showed that in one instance of elevated PM, organic amines were present in the particulates. Temporal analyses of this episode revealed chemical transformations as the amines, characterized by m/z peaks 58(C3HeN)+, 86(C5H2N)+, and nitrates, increased in number concentration while Ca and hydrocarbon particle classes concurrently decreased. On another day, sulfates were found to have increased significantly. The third event was only 4 h in duration and exhibited an increase in the number of submicron-sized K/hydrocarbons and sulfate-containing particles. In this last event, the hydrocarbons and a K to Fe ratio enrichment indicated there was likely a contribution from a combustion source. This work offers some of the first insights into single particle size and chemistry in a cold winter climate.

  14. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents.

    PubMed

    Rodvold, Keith A; George, Jomy M; Yoo, Liz

    2011-10-01

    The exposure-response relationship of anti-infective agents at the site of infection is currently being re-examined. Epithelial lining fluid (ELF) has been suggested as the site (compartment) of antimicrobial activity against lung infections caused by extracellular pathogens. There have been an extensive number of studies conducted during the past 20 years to determine drug penetration into ELF and to compare plasma and ELF concentrations of anti-infective agents. The majority of these studies estimated ELF drug concentrations by the method of urea dilution and involved either healthy adult subjects or patients undergoing diagnostic bronchoscopy. Antibacterial agents such as macrolides, ketolides, newer fluoroquinolones and oxazolidinones have ELF to plasma concentration ratios of >1. In comparison, β-lactams, aminoglycosides and glycopeptides have ELF to plasma concentration ratios of ≤1. Potential explanations (e.g. drug transporters, overestimation of the ELF volume, lysis of cells) for why these differences in ELF penetration occur among antibacterial classes need further investigation. The relationship between ELF concentrations and clinical outcomes has been under-studied. In vitro pharmacodynamic models, using simulated ELF and plasma concentrations, have been used to examine the eradication rates of resistant and susceptible pathogens and to explain why selected anti-infective agents (e.g. those with ELF to plasma concentration ratios of >1) are less likely to be associated with clinical treatment failures. Population pharmacokinetic modelling and Monte Carlo simulations have recently been used and permit ELF and plasma concentrations to be evaluated with regard to achievement of target attainment rates. These mathematical modelling techniques have also allowed further examination of drug doses and differences in the time courses of ELF and plasma concentrations as potential explanations for clinical and microbiological effects seen in clinical trials

  15. Analysis and potential of once-through steam generators in line focus systems - Final results of the DUKE project

    NASA Astrophysics Data System (ADS)

    Feldhoff, Jan Fabian; Hirsch, Tobias; Pitz-Paal, Robert; Valenzuela, Loreto

    2016-05-01

    The direct steam generation in line focus systems such as parabolic troughs and linear Fresnel collectors is one option for providing `solar steam' or heat. Commercial power plants use the recirculation concept, in which the steam generation is separated from the superheating by a steam drum. This paper analyzes the once-through mode as an advanced solar field concept. It summarizes the results of the DUKE project on loop design, a new temperature control strategy, thermo-mechanical stress analysis, and an overall cost analysis. Experimental results of the temperature control concept at the DISS test facility at Plataforma Solar de Almería are presented.

  16. Wave-dispersive x-ray spectrometer for simultaneous acquisition of several characteristic lines based on strongly and accurately shaped Ge crystal

    SciTech Connect

    Hayashi, Kouichi; Nakajima, Kazuo; Fujiwara, Kozo; Nishikata, Susumu

    2008-03-15

    Si and Ge are widely used as analyzing crystals for x-rays. Drastic and accurate shaping of Si or Ge gives significant advance in the x-ray field, although covalently bonded Si or Ge crystals have long been believed to be not deformable to various shapes. Recently, we developed a deformation technique for obtaining strongly and accurately shaped Si or Ge wafers of high crystal quality, and the use of the deformed wafer made it possible to produce fine-focused x-rays. In the present study, we prepared a cylindrical Ge wafer with a radius of curvature of 50 mm, and acquired fluorescent x-rays simultaneously from four elements by combining the cylindrical Ge wafer with a position-sensitive detector. The energy resolution of the x-ray fluorescence spectrum was as good as that obtained using a flat single crystal, and its gain was over 100. The demonstration of the simultaneous acquisition of high-resolution x-ray fluorescence spectra indicated various possibilities of x-ray spectrometry, such as one-shot x-ray spectroscopy and highly efficient wave-dispersive x-ray spectrometers.

  17. Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial.

    PubMed

    Iyer, Ashwin; Kremer, Peter; Eleftheriades, George

    2003-04-07

    We have previously shown that a new class of Negative Refractive Index (NRI) metamaterials can be constructed by periodically loading a host transmission line medium with inductors and capacitors in a dual (high-pass) configuration. A small planar NRI lens interfaced with a Positive Refractive Index (PRI) parallel-plate waveguide recently succeeded in demonstrating focusing of cylindrical waves. In this paper, we present theoretical and experimental data describing the focusing and dispersion characteristics of a significantly improved device that exhibits minimal edge effects, a larger NRI region permitting precise extraction of dispersion data, and a PRI region consisting of a microstrip grid, over which the fields may be observed. The experimentally obtained dispersion data exhibits excellent agreement with the theory predicted by periodic analysis, and depicts an extremely broadband region from 960MHz to 2.5GHz over which the refractive index remains negative. At the frequency at which the theory predicts a relative refractive index of -1, the measured field distribution shows a focal spot with a maximum beam width under one-half of a guide wavelength. These results are compared with field distributions obtained through mathematical simulations based on the plane-wave expansion technique, and exhibit a qualitative correspondence. The success of this experiment attests to the repeatability of the original experiment and affirms the viability of the transmission line approach to the design of NRI metamaterials.

  18. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    SciTech Connect

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-07-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE`s needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities.

  19. Line focus systems.

    SciTech Connect

    Moss, Timothy A.

    2010-05-01

    Improving the thermal performance of a trough plant will lower the LCOE: (1) Improve mirror alignment using the TOPCAT system - Current - increase optical intercept of existing trough solar power plants, Future - allows larger apertures with same receiver size in new trough solar power plants, and Increased concentration ratios/collection efficiencies & economies of scale; and (2) Improve tracking using a closed loop tracking system - Open loop tracking currently used own experience and from industry show need for a improved method. Performance testing of a Trough module and/or receiver on the rotating platform: (1) Installed costs of a trough plant are high. A significant portion of this is the material and assembly cost of the trough module. These costs need to be reduced without sacrificing performance; and (2) New receiver coatings with lower heat loss and higher absorbtivity. TOPCAT system is an optical evaluation tool for parabolic trough solar collectors. Aspects of the TOPCAT system are: (1) Practical, rapid, and cost effective; (2) Inherently aligns mirrors to the receiver of an entire solar collector array (SCA); (3) Can be used for existing installations -no equivalent tool exits; (4) Can be used during production; (5) Currently can be used on LS-2 or LS-3 configurations, but can be easily modified for any configuration; and (6)Generally, one time use.

  20. Analysis of the eigenvalue equation of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    The paper presents analysis of the eigenvalue problem of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line. An FEL model is discussed wherein diffraction effects, space charge fields and energy spread of electrons in the beam are taken into account. To take into account diffraction effects at the diaphragms we apply the rigorous impedance boundary conditions proposed by Veinstein. The rigorous solutions of the eigenvalue problem leave been found for the stepped and bounded parabolic electron beam profiles. Analytical expressions for eigenfunctions of active open waveguide and formulae of their expansion in eigenfunctions of passive open waveguide, are derived, too. Asymptotic behaviour of the obtained solutions is studied in details. The multilayer approximation method has been used to solve the eigenvalue problem for the beams with an arbitrary gradient profile of current density. This novel type of an FEL amplifier has perspective to be used for applications where high average and peak radiation power is required.

  1. Multi-stage FEL amplifier with diaphragm focusing line as direct energy driver for inertial confinement fusion

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    An FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions, namely, using of multichannel, multi-stage FEL amplifier with diaphragm focusing line, reveal a possibility to construct the FEL system operating at radiation wavelength {lambda} = 0.5 {mu}m and providing flush energy E = 1 MJ and brightness 4 x 10{sup 22} W cm{sup -2} sr{sup -1} within steering pulse duration {tau} {approximately} 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R& D.

  2. Automated on-line preconcentration of trace aqueous mercury with gold trap focusing for cold vapor atomic absorption spectrometry.

    PubMed

    Puanngam, Mahitti; Dasgupta, Purnendu K; Unob, Fuangfa

    2012-09-15

    A fully automated system for the determination of trace mercury in water by cold vapor atomic absorption spectrometry (CVAAS) is reported. The system uses preconcentration on a novel sorbent followed by liberation of the mercury and focusing by a gold trap. Mercury ions were extracted from water samples by passage through a solid phase sorbent column containing 2-(3-(2-aminoethylthio)propylthio)ethanamine modified silica gel. The captured mercury is released by thiourea and then elemental Hg is liberated by sodium borohydride. The vapor phase Hg is recaptured on a gold-plated tungsten filament. This is liberated as a sharp pulse (half-width<2 s) by directly electrically heating the tungsten filament in a dry argon stream. The mercury is measured by CVAAS; no moisture removal is needed. The effects of chloride and selected interfering ions were studied. The sample loading flow rate and argon flow rates for solution purging and filament sweeping were optimized. An overall 50-fold improvement in the limit of detection was observed relative to direct measurement by CVAAS. With a relatively modest multi-user instrument we attained a limit of detection of 35 ng L(-1) with 12% RSD at 0.20 μg L(-1) Hg level. The method was successfully applied to accurately determine sub-μg L(-1) level Hg in standard reference water samples.

  3. Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine.

    PubMed

    Ye, Xiaoyun; Kuklenyik, Zsuzsanna; Needham, Larry L; Calafat, Antonia M

    2005-08-15

    We developed a method using isotope dilution on-line solid-phase extraction (SPE) coupled to high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination in urine of nine environmental phenolic compounds: Bisphenol A; 4-tert-octylphenol; o-phenylphenol; 2,4-dichlorophenol; 2,5-dichlorophenol; 2,4,5-trichlorophenol; 2,4,6-trichlorophenol; benzophenone-3 (2-hydroxy-4-metoxybenzophenone); and triclosan (2,4,4'-trichloro-2'-hydroxyphenyl ether). A unique fully automated column-switching system, constructed using 1 autosampler, 2 HPLC pumps, and a 10-port switching valve, was designed to allow for concurrent SPE-HPLC operation with peak focusing. The phenols present in 100 microL of urine were retained and concentrated on a C18 reversed-phase size-exclusion SPE column. Then, the phenols were "back-eluted" from the SPE column and diluted through a mixing Tee before being separated from other urine matrix components using a pair of monolithic HPLC columns. The phenols were detected by negative ion-atmospheric pressure chemical ionization-MS/MS. The efficient preconcentration of the phenols by the SPE column, analyte peak focusing by the dilution, and minimal ion suppression in the LC/MS interface by the buffer-free mobile phases resulted in limits of detection as low as 0.1-0.4 ng/mL for most analytes. The method was validated on spiked pooled urine samples and on urine samples from 30 adults with no known occupational exposure to environmental phenols. The method can be used for quick and accurate analysis of large numbers of samples in epidemiologic studies for assessing the prevalence of human exposure to environmental phenols.

  4. Prevalence of the "double-line" sign when performing focused assessment with sonography in trauma (FAST) examinations.

    PubMed

    Patwa, Amy Shah; Cipot, Steven; Lomibao, Alvin; Nelson, Mathew; Bramante, Robert; Modayil, Veena; Haines, Christine; Ash, Adam; Raio, Christopher

    2015-09-01

    The double-line sign (DLS) is a wedge-shaped hypoechoic area in Morison's pouch bounded on both sides by echogenic lines. It represents a false-positive finding for free intraperitoneal fluid when performing focused assessment with sonography in trauma examinations. The purpose of this study was to determine the prevalence of DLS. Secondarily, the study will further investigate the relationship between the presence of a DLS and body mass index (BMI). This was a prospective study that enrolled patients over a 7-month period. Inclusion criteria were patients ≥ 18 years of age presenting to the Emergency Department (ED) requiring a FAST examination as part of the patient's standard medical care. Each examination was performed by one of six experienced ultrasonographers. Presence or absence of the DLS was established in real time and gender, height, weight, and BMI were recorded for each patient. The overall prevalence rate of DLS and the corresponding 95 % confidence interval were calculated, as well as the prevalence rates broken down by BMI characterized as underweight, normal weight, overweight, and obese; and age category (18-29, 30-64, and 65+). The Chi-square test and a Fisher's exact test for BMI category were used to compare the prevalence rates of positive DLS among the different demographic groups. 100 patients were enrolled in the study; the overall prevalence was 27 %. There was no statistical significance among the different demographic groups or BMI. The DLS is a prevalent finding. We believe this sign has become more apparent due to improved imaging technology and resolution.

  5. Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System

    SciTech Connect

    White, Glen R.; Molloy, S.; Woodley, M.; /SLAC

    2008-07-25

    Using a new extraction line currently under construction, the ATF2 experiment plans to test the novel compact final focus optics design with local chromaticity correction intended for use in future linear colliders. With a 1.3 GeV design beam of 30nm normalized vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical spot-size at the IP waist of 37nm. We discuss our planned strategy for tuning the ATF2 beam to meet the primary goal. Simulation studies have been performed to asses the effectiveness of the strategy, including 'static' (installation) errors and dynamical effects (ground-motion, mechanical vibration, ring extraction jitter etc.). We have simulated all steps in the tuning procedure, from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within {approx}10% of the design optics value in at least 75% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks.

  6. Focused beam reflectance method as an innovative (PAT) tool to monitor in-line granulation process in fluidized bed.

    PubMed

    Alshihabi, Firas; Vandamme, Thierry; Betz, Gabriele

    2013-02-01

    Fluidized bed granulation is a commonly used unit operation in the pharmaceutical industry. But still to obtain and control the desired granule size is challenging due to many process variables affecting the final product. Focused beam reflectance measurement (FBRM, Mettler-Toledo, Switzerland) is an increasingly popular particle growth analysis technique. FBRM tool was installed in two different locations inside a fluidized bed granulator (GPCG2, Glatt, Binzen) in order to monitor the granulation growth kinetics. An experimental design was created to study the effect of process variables using FBRM probe and comparing the results with the one's measured by sieve analysis. The probe location is of major importance to get smooth and robust curves. The excess feeding of binder solution might lead to agglomeration and thus to process collapse, however this phenomenon was clearly detected with FBRM method. On the other hand, the process variables at certain levels might affect the FBRM efficiency by blocking the probe window with sticky particles. A good correlation was obtained (R(2) = 0.95) between FBRM and sieve analysis mean particle size. The proposed in-line monitoring tool enables the operator to select appropriate process parameters and control the wet granulation process more efficiently.

  7. Steam generation in line-focus solar collectors: a comparative assessment of thermal performance, operating stability, and cost issues

    SciTech Connect

    Murphy, L.M.; May, E.K.

    1982-04-01

    The engineering and system benefits of using direct steam (in situ) generation in line-focus collectors are assessed. The major emphasis of the analysis is a detailed thermal performance comparison of in situ systems (which utilize unfired boilers). The analysis model developed for this study is discussed in detail. An analysis of potential flow stability problems is also provided along with a cursory cost analysis and an assessment of freeze protection, safety, and control issues. Results indicated a significant thermal performance advantage over the more conventional oil and flash systems and the flow stability does not appear to be a significant problem. In particular, at steam temperatures of 220/sup 0/C (430/sup 0/F) under the chosen set of assumptions, annual delivered energy predictions indicate that the in situ system can deliver 15% more energy than an oil system and 12% more energy than a flash system, with all of the systems using the same collector field. Further, the in situ system may result in a 10% capital cost reduction. Other advantages include improvement in simpler control when compared with flash systems, and fluid handling and safety enhancement when compared with oil systems.

  8. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  9. Line-focus probe excitation of Scholte acoustic waves at the liquid-loaded surfaces of periodic structures

    SciTech Connect

    Every, A.G.; Vines, R.E.; Wolfe, J.P.

    1999-10-01

    A model is introduced to explain our observation of Scholte-like ultrasonic waves traveling at the water-loaded surfaces of solids with periodically varying properties. The observations pertain to two two-dimensional superlattices: a laminated solid of alternating 0.5-mm-thick layers of aluminum and a polymer, and a hexagonal array of polymer rods of lattice spacing 1 mm in an aluminum matrix. The surface waves are generated and detected by line focus acoustic lenses aligned parallel to each other, and separated by varying distances. The acoustic fields of these lenses may be considered a superposition of plain bulk waves with wave normals contained within the angular apertures of the lenses. For homogeneous solids, phase matching constraints do not allow the Scholte wave to be coupled into with an experimental configuration of this type. This is not true for a spatially periodic solid, where coupling between bulk waves and the Scholte surface wave takes place through Umklapp processes involving a change in the wave-vector component parallel to the surface by a reciprocal lattice vector. In the experiments, the source pulse is broadband, extending up to about 6 MHz, whereas the spectrum of the observed Scholte wave is peaked at around 4 and 4.5 MHz for the layered solid and hexagonal lattice, respectively. We attribute this to a resonance in the surface response of the solid, possibly associated with a critical point in the dispersion relation of the superlattice. On rotating the solid about its surface normal, the Scholte wave displays dramatic variation in phase arrival time and, to a lesser extent, also group arrival time. This variation is well accounted for by our model. {copyright} {ital 1999} {ital The American Physical Society}

  10. Line-focus solar central power system, Phase I. Final report, 29 September 1978 to 30 April 1980. Volume II. Text

    SciTech Connect

    Slemmons, A J

    1980-04-01

    The conceptual design, parametric analysis, cost and performance analysis, and a commercial assessment of a 100-MWe high-temperature line-focus central power system are presented. Parametric analyses and conceptual design of the heliostat subsystem, receiver subsystem, heat transport subsystem, energy storage subsystem, electrical power generating subsystem, and master control subsystem are included. A market analysis and development plan are given. (WHK)

  11. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  12. Note: Alignment/focus dependent core-line sensitivity for quantitative chemical analysis in hard x-ray photoelectron spectroscopy using a hemispherical electron analyzer

    SciTech Connect

    Weiland, Conan; Browning, Raymond; Karlin, Barry A.; Fischer, Daniel A.; Woicik, Joseph C.

    2013-03-15

    X-ray photoelectron spectroscopy is an established technique for quantitative chemical analysis requiring accurate peak intensity analysis. We present evidence of focus/alignment dependence of relative peak intensities for peaks over a broad kinetic energy range with a hemispherical electron analyzer operated in a position imaging mode. A decrease of over 50% in the Ag 2p{sub 3/2} to Ag 3d ratio is observed in a Ag specimen. No focus/alignment dependence is observed when using an angular imaging mode, necessitating the use of angular mode for quantitative chemical analysis.

  13. Does It Matter How Much Time Students Spend on Line outside of School? PISA in Focus. No. 59

    ERIC Educational Resources Information Center

    OECD Publishing, 2016

    2016-01-01

    In 2012, 15-year-old students spent over two hours on line each day, on average across OECD countries. The most common online activities among 15-year-olds were browsing the Internet for fun and participating in social networks, with over 70% of students doing one of these every day or almost every day. Students who spent more than six hours per…

  14. Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells.

    PubMed

    Elschenbroich, Sarah; Ignatchenko, Vladimir; Sharma, Parveen; Schmitt-Ulms, Gerold; Gramolini, Anthony O; Kislinger, Thomas

    2009-10-01

    High-resolution peptide separation is pivotal for successful shotgun proteomics. The need for capable techniques propels invention and improvement of ever more sophisticated approaches. Recently, Agilent Technologies has introduced the OFFGEL fractionator, which conducts peptide separation by isoelectric focusing in an off-gel setup. This platform has been shown to accomplish high resolution of peptides for diverse sample types, yielding valuable advantages over comparable separation techniques. In this study, we deliver the first comparison of the newly emerging OFFGEL approach to the well-established on-line MudPIT platform. Samples from a membrane-enriched fraction isolated from murine C2C12 cells were subjected to replicate analysis by OFFGEL (12 fractions, pH 3-10) followed by RP-LC-MS/MS or 12-step on-line MudPIT. OFFGEL analyses yielded 1398 proteins (identified by 10,269 peptides), while 1428 proteins (11,078 peptides) were detected with the MudPIT approach. Thus, our data shows that both platforms produce highly comparable results in terms of protein/peptide identifications and reproducibility for the sample type analyzed. We achieve more accurate peptide focusing after OFFGEL fractionation with 88% of all peptides binned to a single fraction, as compared to 61% of peptides detected in only one step in MudPIT analyses. Our study suggests that both platforms are equally capable of high quality peptide separation of a sample with medium complexity, rendering them comparably valuable for comprehensive proteomic analyses.

  15. Solution-Focused Brief Therapy Groupwork with At-Risk Junior High School Students: Enhancing the Bottom Line

    ERIC Educational Resources Information Center

    Newsome, W. Sean

    2004-01-01

    Despite the preliminary studies that support solution-focused brief therapy, limited research has examined the model as a group intervention with students at risk for academic underachievement and school nonattendance. Therefore, the purpose of this study was to evaluate the impact of the model on school attendance and grade point average.…

  16. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.

    PubMed

    Lee, Ming-Wei; Hung, Cheng-Hung; Liao, Jung-Li; Cheng, Nan-Yu; Hou, Ming-Feng; Tseng, Sheng-Hao

    2014-10-01

    In this paper, we demonstrate that a scanning MEMS mirror can be employed to create a linear gradient line source that is equivalent to a planar source. This light source setup facilitates the use of diffusion models of increased orders of approximation having closed form solution, and thus enhance the efficiency and accuracy in sample optical properties recovery. In addition, compared with a regular planar light source, the linear gradient line source occupies much less source area and has an elevated measurement efficiency. We employed a δ-P1 diffusion equation with a closed form solution and carried out a phantom study to understand the performance of this new method in determining the absorption and scattering properties of turbid samples. Moreover, our Monte Carlo simulation results indicated that this geometry had probing depths comparable to those of the conventional diffuse reflectance measurement geometry with a source-detector separation of 3 mm. We expect that this new source setup would facilitate the investigating of superficial volumes of turbid samples in the wavelength regions where tissue absorption coefficients are comparable to scattering coefficients.

  17. On-line amino acid-based capillary isoelectric focusing-ESI-MS/MS for protein digests analysis.

    PubMed

    Zhu, Guijie; Sun, Liangliang; Yang, Ping; Dovichi, Norman J

    2012-10-31

    Six amino acids with pIs that ranged from 3.2 to 9.7 were used as ampholytes to establish a pH gradient in capillary isoelectric focusing. This amino acid-based capillary isoelectric focusing (cIEF) was coupled with ESI-MS/MS using an electrokinetically pumped sheath-flow interface for peptide analysis. Amino acid-based isoelectric focusing generates a two-order of magnitude lower background signal than commercial ampholytes in the important m/z range of 300-1800. Good focusing was achieved for insulin receptor, which produced ~10 s peak width. For 0.1 mg mL(-1) bovine serum albumin (BSA) digests, 24±1 peptides (sequence coverage 47±4%) were identified in triplicate analysis. As expected, the BSA peptides were separated according to their pI. The concentration detection limit for the BSA digests is 7 nM and the mass detection limit is 7 fmole. A solution of six bovine protein tryptic digests spanning 5 orders of magnitude in concentration was analyzed by amino acid based cIEF-ESI-MS/MS. Five proteins with a concentration range spanning 4 orders of magnitude were identified in triplicate runs. Using amino acid based cIEF-ESI-MS/MS, 112 protein groups and 303 unique peptides were identified in triplicate runs of a RAW 264.7 cell homogenate protein digest. In comparison with ampholyte based cIEF-ESI-MS/MS, amino acid based cIEF-ESI-MS/MS produces higher resolution of five acidic peptides, much cleaner mass spectra, and higher protein spectral counts.

  18. Accelerometer-Based Navigation Is as Accurate as Optical Computer Navigation in Restoring the Joint Line and Mechanical Axis After Total Knee Arthroplasty: A Prospective Matched Study.

    PubMed

    Goh, Graham Seow-Hng; Liow, Ming Han Lincoln; Lim, Winston Shang-Rong; Tay, Darren Keng-Jin; Yeo, Seng Jin; Tan, Mann Hong

    2016-01-01

    The Zimmer iASSIST system is a novel accelerometer-based navigation system for TKA. 76 patients (76 knees) were prospectively matched for age, BMI, gender, diagnosis, and pre-operative scores, and underwent TKA using the iASSIST (n=38) or optical CAS (n=38). There were no significant differences in clinical outcomes or satisfaction rates at six months post-operatively (P>0.05). Mechanical axis was 1.8±1.3° in the iASSIST cohort versus 2.1±1.6° in the CAS cohort (P=0.543). There were no significant differences in number of outliers for mechanical axis (P=1.000), coronal femoral-component angle (P=0.693), coronal tibial-component angle (P=0.204) or joint line deviation (P=1.000). The duration of surgery was significantly longer in the CAS group (P<0.001), while the added cost of accelerometer-based navigation was approximately $1000 per operation.

  19. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for {sup 32}S{sup 16}O{sub 2} up to 8000 cm{sup −1}

    SciTech Connect

    Huang, Xinchuan E-mail: Timothy.J.Lee@nasa.gov; Schwenke, David W.; Lee, Timothy J. E-mail: Timothy.J.Lee@nasa.gov

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected {sup 32}S{sup 16}O{sub 2} HITRAN data. Compared to HITRAN, the root-mean-squares error (σ{sub RMS}) for all J = 0–80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm{sup −1}. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm{sup −1}. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%–90%. Our predictions for {sup 34}S{sup 16}O{sub 2} band origins, higher energy {sup 32}S{sup 16}O{sub 2} band origins and missing {sup 32}S{sup 16}O{sub 2} IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict {sup 32/34}S{sup 16}O{sub 2} band origins below 5500 cm{sup −1} with 0.01–0.03 cm{sup −1} uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K{sub a}-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO{sub 2} IR spectral experimental analysis, as well as elimination of SO{sub 2} lines in high-resolution astronomical observations.

  20. Partner-Focused Adherence Intervention for Second-line Antiretroviral Therapy: A Multinational Randomized Trial (ACTG A5234)

    PubMed Central

    Gross, Robert; Zheng, Lu; La Rosa, Alberto; Sun, Xin; Rosenkranz, Susan L.; Cardoso, Sandra Wagner; Ssali, Francis; Camp, Rob; Godfrey, Catherine; Cohn, Susan E.; Robbins, Gregory K.; Chisada, Anthony; Wallis, Carole L.; Reynolds, Nancy R.; Lu, Darlene; Safren, Steven A.; Hosey, Lara; Severe, Patrice; Collier, Ann C.

    2015-01-01

    Background Adherence is key to antiretroviral therapy (ART) success. Enhanced partner support may benefit patients with prior treatment failure. Methods We conducted a 1:1 randomized trial of a partner-based modified directly observed therapy (mDOT) compared with standard of care (SOC) at 9 sites in 8 countries. Participants had failed a first-line regimen with HIV RNA >1000 copies/mL and a willing partner. Randomization was computer generated and balanced by site. Participants and site investigators were not masked to group assignment. ART included lopinavir/ritonavir (400/100 mg) twice daily and emtricitabine/tenofovir disoproxil fumarate (200/300 mg) once daily. Trained partners observed one ART dose daily ≥5 days/week for 24 weeks. Primary outcome was HIV RNA >400 copies/mL before or at week 48 and adherence measured with microelectronic monitors was a secondary outcome. Findings We randomized 129 participants to mDOT and 128 to SOC, 130 (51%) males, 204 (79%) of African origin, 52 (20%) Latino, with median age 38 years. Partners were parents, 57 (22%), spouses 55 (21%), siblings 50 (19%), friends 41 (16%), and others 54 (21%). Primary outcome occurred in 26% (34/129) of mDOT and 18% (23/128) of SOC participants at week 48 (p=0.13). Median adherence was similar [Q1: 95% vs. 96% p=0.38, Q2: 91% vs. 94% p=0.40, Q3: 90% vs. 93% p=0.17, Q4: 90% vs. 93% p=0.36] in mDOT and SOC, respectively. Interpretation This intervention had no effect on outcomes. Potential reasons include study visits maximizing adherence in both groups and control partners already providing sufficient support. Partner-based training with mDOT does not appear promising to enhance adherence. Intensive follow-up with clinic staff may be a viable strategy in this setting. PMID:25664336

  1. Screening method for linear alkylbenzene sulfonates in sediments based on water Soxhlet extraction assisted by focused microwaves with on-line preconcentration/derivatization/detection.

    PubMed

    Morales-Muñoz, S; Luque-García, J L; de Castro, Luque

    2004-02-13

    A screening method for linear alkylbenzene sulfonates (LAS) in sediments has been developed. Soxhlet extraction with water assisted by focused microwaves provides recoveries better (>90%) than obtained by conventional Soxhlet extraction (70-80%). Coupling of the extractor with an on-line preconcentration/derivatization/detection manifold through a flow injection (FI) interface allows a fully automated screening approach. A yes/no answer can be obtained in less than 2 h (for the whole analytical process), a short time compared with the at least 24 h of Soxhlet extraction (without final detection). Due to the use of water as leaching agent, the proposed method is environmentally friendly.

  2. Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903(+6) revealed by mitochondria-focused cDNA microarrays.

    PubMed

    Zhang, Qiuyang; Wu, Jun; Nguyen, Anhthu; Wang, Bi-Dar; He, Ping; Laurent, Georges St; Rennert, Owen M; Su, Yan A

    2008-08-01

    Human malignant melanoma cell line UACC903 is resistant to apoptosis while chromosome 6-mediated suppressed cell line UACC903(+6) is sensitive. Here, we describe identification of differential molecular pathways underlying this difference. Using our recently developed mitochondria-focused cDNA microarrays, we identified 154 differentially expressed genes including proapoptotic (BAK1 [6p21.3], BCAP31, BNIP1, CASP3, CASP6, FAS, FDX1, FDXR, TNFSF10 and VDAC1) and antiapoptotic (BCL2L1, CLN3 and MCL1) genes. Expression of these pro- and anti-apoptotic genes was higher in UACC903(+6) than in UACC903 before UV treatment and was altered after UV treatment. qRT-PCR and Western blots validated microarray results. Our bioinformatic analysis mapped these genes to differential molecular pathways that predict resistance and sensitivity of UACC903 and UACC903(+6) to apoptosis respectively. The pathways were functionally confirmed by the FAS ligand-induced cell death and by siRNA knockdown of BAK1 protein. These results demonstrated the differential molecular pathways underlying survival and apoptosis of UACC903 and UACC903(+6) cell lines.

  3. Application of In-line Focused Beam Reflectance Measurement to Brivanib Alaninate Wet Granulation Process to Enable Scale-up and Attribute-based Monitoring and Control Strategies.

    PubMed

    Narang, Ajit S; Stevens, Timothy; Macias, Kevin; Paruchuri, Srinivasa; Gao, Zhihui; Badawy, Sherif

    2017-01-01

    Application of in-line real-time process monitoring using a process analytical technology for granule size distribution can enable quality-by-design development of a drug product and enable attribute-based monitoring and control strategies. In this study, an in-line laser focused beam reflectance measurement (FBRM) C35 probe was used to investigate the effect of formulation and process parameters on the granule growth profile over time during the high shear wet granulation of a high drug load formulation of brivanib alaninate. The probe quantitatively captured changes in the granule chord length distribution (CLD) with the progress of granulation and delineated the impact of water concentration used during granulation. The results correlated well with offline particle size distribution measured by nested sieve analyses. An end point indication algorithm was developed that was able to successfully track the process time needed to reach the target CLD. Testing of the brivanib alaninate granulation through 25-fold scale-up of the batch process indicated that the FBRM CLD profile can provide a scale-independent granule attribute-based process fingerprint. These studies highlight the ability of FBRM to quantitate a granule attribute of interest during wet granulation that can be used as an attribute-based scale-up and process monitoring and control parameter.

  4. OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines.

    PubMed

    Chen, Wei-Hua; Lu, Guanting; Chen, Xiao; Zhao, Xing-Ming; Bork, Peer

    2017-01-04

    OGEE is an Online GEne Essentiality database. To enhance our understanding of the essentiality of genes, in OGEE we collected experimentally tested essential and non-essential genes, as well as associated gene properties known to contribute to gene essentiality. We focus on large-scale experiments, and complement our data with text-mining results. We organized tested genes into data sets according to their sources, and tagged those with variable essentiality statuses across data sets as conditionally essential genes, intending to highlight the complex interplay between gene functions and environments/experimental perturbations. Developments since the last public release include increased numbers of species and gene essentiality data sets, inclusion of non-coding essential sequences and genes with intermediate essentiality statuses. In addition, we included 16 essentiality data sets from cancer cell lines, corresponding to 9 human cancers; with OGEE, users can easily explore the shared and differentially essential genes within and between cancer types. These genes, especially those derived from cell lines that are similar to tumor samples, could reveal the oncogenic drivers, paralogous gene expression pattern and chromosomal structure of the corresponding cancer types, and can be further screened to identify targets for cancer therapy and/or new drug development. OGEE is freely available at http://ogee.medgenius.info.

  5. OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines

    PubMed Central

    Chen, Wei-Hua; Lu, Guanting; Chen, Xiao; Zhao, Xing-Ming; Bork, Peer

    2017-01-01

    OGEE is an Online GEne Essentiality database. To enhance our understanding of the essentiality of genes, in OGEE we collected experimentally tested essential and non-essential genes, as well as associated gene properties known to contribute to gene essentiality. We focus on large-scale experiments, and complement our data with text-mining results. We organized tested genes into data sets according to their sources, and tagged those with variable essentiality statuses across data sets as conditionally essential genes, intending to highlight the complex interplay between gene functions and environments/experimental perturbations. Developments since the last public release include increased numbers of species and gene essentiality data sets, inclusion of non-coding essential sequences and genes with intermediate essentiality statuses. In addition, we included 16 essentiality data sets from cancer cell lines, corresponding to 9 human cancers; with OGEE, users can easily explore the shared and differentially essential genes within and between cancer types. These genes, especially those derived from cell lines that are similar to tumor samples, could reveal the oncogenic drivers, paralogous gene expression pattern and chromosomal structure of the corresponding cancer types, and can be further screened to identify targets for cancer therapy and/or new drug development. OGEE is freely available at http://ogee.medgenius.info. PMID:27799467

  6. Practice and power: a review and interpretive synthesis focused on the exercise of discretionary power in policy implementation by front-line providers and managers.

    PubMed

    Gilson, Lucy; Schneider, Helen; Orgill, Marsha

    2014-12-01

    Tackling the implementation gap is a health policy concern in low- and middle-income countries (LMICs). Limited attention has so far been paid to the influence of power relations over this gap. This article presents, therefore, an interpretive synthesis of qualitative health policy articles addressing the question: how do actors at the front line of health policy implementation exercise discretionary power, with what consequences and why? The article also demonstrates the particular approach of thematic synthesis and contributes to discussion of how such work can inform future health policy research. The synthesis drew from a broader review of published research on any aspect of policy implementation in LMICs for the period 1994-2009. From an initial set of 50 articles identified as relevant to the specific review question, a sample of 16 articles were included in this review. Nine report experience around decentralization, a system-level change, and seven present experience of implementing a range of reproductive health (RH) policies (new forms of service delivery). Three reviewers were involved in a systematic process of data extraction, coding, analysis, synthesis and article writing. The review findings identify: the practices of power exercised by front-line health workers and their managers; their consequences for policy implementation and health system performance; the sources of this power and health workers' reasons for exercising power. These findings also provide the basis for an overarching synthesis of experience, highlighting the importance of actors, power relations and multiple, embedded contextual elements as dimensions of health system complexity. The significance of this synthesis lies in its insights about: the micropractices of power exercised by front-line providers; how to manage this power through local level strategies both to influence and empower providers to act in support of policy goals; and the focus and nature of future research on

  7. service line analytics in the new era.

    PubMed

    Spence, Jay; Seargeant, Dan

    2015-08-01

    To succeed under the value-based business model, hospitals and health systems require effective service line analytics that combine inpatient and outpatient data and that incorporate quality metrics for evaluating clinical operations. When developing a framework for collection, analysis, and dissemination of service line data, healthcare organizations should focus on five key aspects of effective service line analytics: Updated service line definitions. Ability to analyze and trend service line net patient revenues by payment source. Access to accurate service line cost information across multiple dimensions with drill-through capabilities. Ability to redesign key reports based on changing requirements. Clear assignment of accountability.

  8. Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (100) silicon wafer.

    PubMed

    Lu, Yan; He, Cunfu; Song, Guorong; Wu, Bin; Chung, Cheng-Hsien; Lee, Yung-Chun

    2014-01-01

    This paper investigates a new method for fabrication of broadband line-focus ultrasonic transducers by sol-gel spin-coating the poly(vinylidene difluoride-trifluroethylene) [P(VDF-TrFE)] copolymer film on a concave fine-polished beryllium copper backing. The ferroelectric hysteresis loops of the P(VDF-TrFE) films spin-coated from different molar ratios of VDF/TrFE, 77/23 and 55/45, were measured to select the better mixture. Owing to the better acoustic matching to water, compared with lead zirconate titanate (PZT), the fabricated transducers show relatively wide bandwidth of approximately 50 MHz with high central frequency of 60 MHz obtained at the focal plane when a fused-quartz acts as a reflecting target. Each one of the two finished transducers has a focal length of 5mm and a full aperture angle of 90°. After applying the specially developed digital signal processing algorithm to the defocusing experiment data, which is called V(f,z) analysis method based on two-dimensional fast Fourier transform (2-D FFT), the operating frequency can extend from several MHz to over 90 MHz. Surface acoustic wave (SAW) velocities of a typical (100) silicon wafer was measured along various directions between [100] and [010] to represent the anisotropic features.

  9. On-line capillary isoelectric focusing hyphenated to native electrospray ionization mass spectrometry for the characterization of interferon-γ and variants.

    PubMed

    Przybylski, Cédric; Mokaddem, Meriem; Prull-Janssen, Mehdi; Saesen, Els; Lortat-Jacob, Hugues; Gonnet, Florence; Varenne, Anne; Daniel, Régis

    2015-01-21

    The on-line hyphenation of Capillary IsoElectric Focusing (CIEF) with ElectroSpray Ionization Mass Spectrometry (ESI/MS) has been carried out in a non-denaturing detection mode at the CIEF-MS interface. This CIEF-MS coupling methodology relied on the use of 40% glycerol-water medium as anti-convective agent in the CE capillary and the addition of 10 mM ammonium acetate buffer, pH 5, as a volatile aqueous sheath liquid. These CIEF-MS coupling conditions allowed the characterization of the highly basic cytokine human interferon-gamma (IFN-γ) and its detection as a non-covalent homodimer (33,814.3 g mol(-1)) corresponding to the active form of this immune-regulatory protein. An experimental pI value of 9.95 was determined for the human IFN-γ homodimer in these conditions. The CIEF-MS analysis of several variants bearing punctual or deletion mutations within the two D1 and D2 basic clusters at the C-terminal end of IFN-γ revealed the different contribution of these domains to the charge properties of this heparan sulfate-binding protein.

  10. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  11. Separation and quantitation of milk whey proteins of close isoelectric points by on-line capillary isoelectric focusing--electrospray ionization mass spectrometry in glycerol-water media.

    PubMed

    Lecoeur, Marie; Gareil, Pierre; Varenne, Anne

    2010-11-12

    On-line coupling between CIEF and ESI/MS based on the use of bare fused-silica capillaries and glycerol-water media, recently developed in our laboratory, has been investigated for the separation of milk whey proteins that present close pI values. First, a new rinsing procedure, compatible with MS detection, has been developed to desorb these rather hydrophobic proteins (α-casein (α-CN), bovine serum albumin (BSA), lactoferrin (LF)) from the inner capillary wall and to avoid capillary blockages. Common hydrochloric acid washing solution was replaced by a multi-step sequence based on the use of TFA, ammonia and ethanol. To achieve the separation of major whey proteins (β-lactoglobulin A (β-LG A), β-lactoglobulin B (β-LG B), α-lactalbumin (α-LA) and BSA, which possess close pI values (4.5-5.35), CIEF parameters i.e. carrier ampholyte nature, capillary partial filling length with ampholyte/protein mixture and focusing time, have been optimized with respect to total analysis time, sensitivity and precision on pI determination. After optimization of sheath liquid composition (80:20 (v/v) methanol-water+1% HCOOH), quantitation of β-LG A, β-LG B, α-LA and BSA was performed. The limits of detection obtained from extracted ion current (EIC) and single ion monitoring (SIM) modes were in the 57-136 nM and 11-68 nM range, respectively. Finally, first results obtained from biological samples demonstrated the suitability of CIEF-MS as a potential alternative methodology to 2D-PAGE to diagnose milk protein allergies.

  12. Automated on-line column-switching HPLC-MS/MS method with peak focusing for measuring parabens, triclosan, and other environmental phenols in human milk.

    PubMed

    Ye, Xiaoyun; Bishop, Amber M; Needham, Larry L; Calafat, Antonia M

    2008-08-01

    Parabens (esters of p-hydroxybenzoic acid) and triclosan are widely used as preservatives and antimicrobial agents, respectively, in personal care products, pharmaceuticals, and food processing. Because of their widespread use and potential risk to human health, assessing human exposure to these compounds in breastfed infants is of interest. We developed a sensitive method, using a unique on-line solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry system with peak focusing feature, to measure in human milk the concentrations of five parabens (methyl-, ethyl-, propyl-, butyl-, and benzyl parabens), triclosan, and six other environmental phenols: bisphenol A (BPA); ortho-phenylphenol (OPP); 2,4-dichlorophenol; 2,5-dichlorophenol; 2,4,5-trichlorophenol; and 2-hydroxy-4-methoxybenzophenone (BP-3). The method, validated by use of breast milk pooled samples, shows good reproducibility (inter-day coefficient of variations ranging from 3.5% to 16.3%) and accuracy (spiked recoveries ranging from 84% to 119% at four spiking levels). The detection limits for most of the analytes are below 1 ng mL(-1) in 100 microL of milk. We tested the usefulness of the method by measuring the concentrations of these twelve compounds in four human milk samples. We detected methyl paraben, propyl paraben, triclosan, BPA, OPP, and BP-3 in some of the samples tested. The free species of these compounds appear to be the most prevalent in milk. Nevertheless, to demonstrate the utility of these measures for exposure and risk assessment purposes, additional data about sampling and storage of the milk, and on the stability of the analytes in milk, are needed.

  13. Note: Alignment/focus dependent core-line sensitivity for quantitative chemical analysis in hard x-ray photoelectron spectroscopy using a hemispherical electron analyzer.

    PubMed

    Weiland, Conan; Browning, Raymond; Karlin, Barry A; Fischer, Daniel A; Woicik, Joseph C

    2013-03-01

    X-ray photoelectron spectroscopy is an established technique for quantitative chemical analysis requiring accurate peak intensity analysis. We present evidence of focus∕alignment dependence of relative peak intensities for peaks over a broad kinetic energy range with a hemispherical electron analyzer operated in a position imaging mode. A decrease of over 50% in the Ag 2p₃/₂ to Ag 3d ratio is observed in a Ag specimen. No focus∕alignment dependence is observed when using an angular imaging mode, necessitating the use of angular mode for quantitative chemical analysis.

  14. Chemical and morphological characterization of Costa Rican papaya (Carica papaya L.) hybrids and lines with particular focus on their genuine carotenoid profiles.

    PubMed

    Schweiggert, Ralf M; Steingass, Christof B; Esquivel, Patricia; Carle, Reinhold

    2012-03-14

    Papaya (Carica papaya L.) F1 hybrids and inbred lines grown in Costa Rica were screened for morphological and nutritionally relevant fruit traits. The qualitative composition of carotenoids showed great similarity, being mostly composed of free and esterified β-cryptoxanthins accompanied by β-carotene, lycopene, and biosynthetic precursors. High levels of (all-E)-lycopene and its isomers were distinctive for red-fleshed hybrids, whereas yellow-fleshed fruits were virtually devoid of lycopenes. Because carotenoid levels among the investigated hybrids and lines differed significantly, this study supports the hypothesis of an exploitable genetic variability, and a potential heterotic effect regarding carotenoid expression may be instrumental in papaya-breeding programs. Due to significantly higher levels of provitamin A carotenoids and coinciding high levels of total lycopene, particularly red-fleshed hybrids might represent prospective sources of these compounds. Furthermore, the nutritional value of some genotypes was boosted by substantial amounts of ascorbic acid (up to 73 mg/100 g of fresh weight), which correlated to total soluble solids (R(2) = 0.86).

  15. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  16. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  17. Improved Log(gf) Values for Lines of Ti I and Abundance Determinations in the Photospheres of the Sun and Metal-Poor Star HD 84937 (Accurate Transition Probabilities for Ti I)

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J.

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  18. IMPROVED log(gf) VALUES FOR LINES OF Ti I AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti I)

    SciTech Connect

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J. E-mail: adrianaguzman2014@u.northwestern.edu E-mail: chris@verdi.as.utexas.edu

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  19. First-line treatment for elevated intraocular pressure (IOP) associated with open-angle glaucoma or ocular hypertension: focus on bimatoprost

    PubMed Central

    Law, Simon K

    2007-01-01

    The goal of treatment for open-angle glaucoma or ocular hypertension is to improve quality of life through reduction of intraocular pressure (IOP) to preserve visual function. Prostaglandins, as a newer class of ocular hypotensive agents, have been shown to be effective in IOP reduction by the primary mechanism of action of increase the uveoscleral outflow. Bimatoprost is a member this class, but different from the other members by having an ethyl amide group rather than an isopropyl ester at the C-1 carbon of the alpha chain. Bimatoprost used once daily has been shown to be more effect in IOP reduction than other classes of topical ocular hypotensive agents including beta-blockers, carbonic anhydrase inhibitors, and alpha agonists. Comparing with other topical prostaglandins, bimatoprost may be slightly more effective in IOP reduction, but the clinical significance is uncertain. The commonly reported adverse events associated with bimatoprost are localized to the eye and include conjunctival hyperemia, changes in the pigmentation of the periocular skin and iris, and eyelash darkening and growth. It is currently approved by the Food and Drug Administration (FDA) and the European Commission (EC) for first-line therapy for the reduction of elevated IOP in patients with open-angle glaucoma or ocular hypertension. PMID:19668476

  20. Novel on-line column extraction apparatus coupled with binary peak focusing for high-performance liquid chromatography determination of rifampicin in human plasma: a strategy for therapeutic drug monitoring.

    PubMed

    Li, Wei; Peng, Min; Long, Minghui; Qiu, Ximin; Yang, Liping

    2014-12-01

    In order to develop a method that is completely suitable for the routine therapeutic drug monitoring, a sensitive and fully automated on-line column extraction apparatus in combination with high-performance liquid chromatography allowing binary peak focusing was developed and validated for the determination of rifampicin in human plasma. Rifapentine was used as an internal standard. The analytical cycle started with the injection of 100 μL of the sample pretreated by protein precipitation in a Venusil SCX extraction column. After the elution, the analytes were transferred and concentrated in an Xtimate C18 trap column. Finally, the trapped analytes were separated by an Xtimate C18 analytical column and were analyzed by an ultraviolet detector at 336 nm. With this new strategy, continuous on-line analysis of the compounds was successfully performed. The method showed excellent performance for the analysis of rifampicin in plasma samples, including calibration curve linearity (All r were larger than 0.9996), sensitivity (lowest limit of quantification was 0.12 μg/mL), method accuracy (within 6.6% in terms of relative error), and precision (relative standard deviations of intra- and interday precision were less than 7.8%). These results demonstrated that the simple, reliable, and automatic method based on on-line column extraction and binary peak focusing is a promising approach for therapeutic drug monitoring in complex biomatrix samples.

  1. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antifungal, antitubercular and miscellaneous anti-infective agents.

    PubMed

    Rodvold, Keith A; Yoo, Liz; George, Jomy M

    2011-11-01

    Epithelial lining fluid (ELF) is often considered to be the site of extracellular pulmonary infections. During the past 25 years, a limited number of studies have evaluated the intrapulmonary penetration of antifungal, antitubercular, antiparasitic and antiviral agents. For antifungal agents, differences in drug concentrations in ELF or bronchoalveolar lavage (BAL) fluid were observed among various formulations or routes of administration, and between agents within the same class. Aerosolized doses of deoxycholate amphotericin B, liposomal amphotericin B and amphotericin B lipid complex resulted in higher concentrations in ELF or BAL fluid than after intravenous administration. The mean concentrations in ELF following intravenous administration of both anidulafungin and micafungin ranged between 0.04 and 1.38 μg/mL, and the ELF to plasma concentration ratios (based on the area under the concentration-time curve for total drug concentrations) were between 0.18 and 0.22 during the first 3 days of therapy. Among the azole agents, intravenous administration of voriconazole resulted in the highest mean ELF concentrations (range 10.1-48.3 μg/mL) and ratio of penetration (7.1). The range of mean ELF concentrations of itraconazole and posaconazole following oral administration was 0.2-1.9 μg/mL, and the ELF to plasma concentration ratios were <1. A series of studies have evaluated the intrapulmonary penetration of first- and second-line oral antitubercular agents in healthy adult subjects and patients with AIDS. The ELF to plasma concentration ratio was >1 for isoniazid, ethambutol, pyrazinamide and ethionamide. For rifampicin (rifampin) and rifapentine, the ELF to plasma concentration ratio ranged between 0.2 and 0.32, but in alveolar macrophages the concentration of rifampicin was much higher (145-738 μg/mL compared with 3.3-7.5 μg/mL in ELF). No intrapulmonary studies have been conducted for rifabutin. Sex, AIDS status or smoking history had no significant effects

  2. Bevacizumab, pemetrexed and carboplatin in first-line treatment of non-small cell lung cancer patients: Focus on patients with brain metastases

    PubMed Central

    Stefanou, Dimitra; Stamatopoulou, Sofia; Sakellaropoulou, Antigoni; Akakios, Gavriil; Gkiaouraki, Marina; Gkeka, Despina; Prevezanou, Maria; Ardavanis, Alexandros

    2016-01-01

    Data concerning bevacizumab plus pemetrexed plus carboplatin as first-line treatment for patients with non-squamous non-small cell lung cancer (NSCLC) with or without brain metastases (BM) are lacking. The present study analyzed the efficacy and safety of this combination as induction therapy, followed by maintenance therapy with bevacizumab plus pemetrexed in non-squamous NSCLC patients with or without BM. Treatment-naïve patients with advanced non-squamous NSCLC and an Eastern Cooperative Oncology Group performance status score of 0–2 were eligible. Treatment consisted of carboplatin (area under the curve of 5), pemetrexed (500 mg/m2) and bevacizumab (15 mg/kg) every 3 weeks for 6 cycles. Responders and patients with stable disease received maintenance therapy with bevacizumab plus pemetrexed until disease progression, which was evaluated every 3 cycles, or unacceptable toxicity. Kaplan-Meier median progression-free survival (PFS) and overall survival (OS) times were the primary endpoints, and safety was the secondary endpoint. In total, 39 patients, aged 44–78 years (median, 60 years), were treated; 11 (28.2%) of whom presented with BM. The majority of patients (56.4%) completed 6 cycles of induction therapy, and 26 patients continued on to maintenance therapy. The median PFS time was 8.2 months [95% confidence interval (CI), 7.05–9.35] and the median OS time was 14.0 months (95% CI, 8.46–19.54). Median PFS and OS times did not differ significantly between patients with or without BM (log rank (Mantel-Cox): PFS, P=0.748 and OS, P=0.447). The majority of patients (76.9%) did not experience adverse events during treatment. Overall, bevacizumab plus pemetrexed plus carboplatin as induction therapy, followed by bevacizumab plus pemetrexed as maintenance therapy was effective and well tolerated in advanced NSCLC, whether brain metastases were present or not. PMID:28101218

  3. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  4. Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: focus on the contribution of the AP-1 transcription factor

    PubMed Central

    Boeckx, Carolien; Blockx, Lina; de Beeck, Ken Op; Limame, Ridha; Camp, Guy Van; Peeters, Marc; Vermorken, Jan B; Specenier, Pol; Wouters, An; Baay, Marc; Lardon, Filip

    2015-01-01

    Background: After an initial response to EGFR targeted therapy, secondary resistance almost invariably ensues, thereby limiting the clinical benefit of the drug. Hence, it has been recognized that the successful implementation of targeted therapy in the treatment of HNSCC cancer is very much dependent on predictive biomarkers for patient selection. Methods: We generated an in vitro model of acquired cetuximab resistance by chronically exposing three HNSCC cell lines to increasing cetuximab doses. Gene expression profiles of sensitive parental cells and resistant daughter cells were compared using microarray analysis. Growth inhibitory experiments were performed with an HB-EGF antibody and the MMP inhibitor, both in combination with cetuximab. Characteristics of EMT were analyzed using migration and invasion assays, immunofluorescent vimentin staining and qRT-PCR for several genes involved in this process. The function of the transcription factor AP-1 was investigated using qRT-PCR for several genes upregulated or downregulated in cetuximab resistant cells. Furthermore, anchorage-independent growth was investigated using the soft agar assay. Results: Gene expression profiling shows that cetuximab resistant cells upregulate several genes, including interleukin 8, the EGFR ligand HB-EGF and the metalloproteinase ADAM19. Cytotoxicity experiments with neutralizing HB-EGF antibody could not induce any growth inhibition, whereas an MMP inhibitor inhibited cell growth in cetuximab resistant cells. However, no synergetic effects combined with cetuximab could be observed. Cetuximab resistant cells showed traits of EMT, as witnessed by increased migratory potential, increased invasive potential, increased vimentine expression and increased expression of several genes involved in EMT. Furthermore, expression of upregulated genes could be repressed by the treatment with apigenin. The cetuximab resistant LICR-HN2 R10.3 cells tend to behave differently in cell culture, forming

  5. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  6. Countercurrent chromatography separation of saponins by skeleton type from Ampelozizyphus amazonicus for off-line ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry analysis and characterisation.

    PubMed

    de Souza Figueiredo, Fabiana; Celano, Rita; de Sousa Silva, Danila; das Neves Costa, Fernanda; Hewitson, Peter; Ignatova, Svetlana; Piccinelli, Anna Lisa; Rastrelli, Luca; Guimarães Leitão, Suzana; Guimarães Leitão, Gilda

    2017-01-20

    Ampelozizyphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria, is a climbing shrub, native to the Amazonian region, with jujubogenin glycoside saponins as main compounds. The crude extract of this plant is too complex for any kind of structural identification, and HPLC separation was not sufficient to resolve this issue. Therefore, the aim of this work was to obtain saponin enriched fractions from the bark ethanol extract by countercurrent chromatography (CCC) for further isolation and identification/characterisation of the major saponins by HPLC and MS. The butanol extract was fractionated by CCC with hexane - ethyl acetate - butanol - ethanol - water (1:6:1:1:6; v/v) solvent system yielding 4 group fractions. The collected fractions were analysed by UHPLC-HRMS (ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry) and MS(n). Group 1 presented mainly oleane type saponins, and group 3 showed mainly jujubogenin glycosides, keto-dammarane type triterpene saponins and saponins with C31 skeleton. Thus, CCC separated saponins from the butanol-rich extract by skeleton type. A further purification of group 3 by CCC (ethyl acetate - ethanol - water (1:0.2:1; v/v)) and HPLC-RI was performed in order to obtain these unusual aglycones in pure form.

  7. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  8. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  9. Line Focus Receiver Infrared Temperature Survey System

    SciTech Connect

    Wendelin, Tim

    2010-06-01

    For ongoing maintenance and performance purposes, solar parabolic trough field operators desire to know that the Heat Collection Elements (HCEs) are performing properly. Measuring their temperature is one way of doing this One 30MW field can contain approximately 10,000 HCE's. This software interfaces with a GPS receiver and an infrared camera. It takes global positioning data from the GPS and uses this information to automate the infrared image capture and temperature analysis of individual solar parabolic HCEs in a solar parabolic trough field With this software system an entire 30MW field can be surveyed in 2-3 days.

  10. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  11. Ion focusing

    SciTech Connect

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  12. Electrophoretic Focusing

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    2001-01-01

    Electrophoretic focusing is a new method of continuous flow electrophoresis that introduces precision flow control to achieve high resolution separations. The electric field is applied perpendicular to an incoming sample lamina and buffer but also perpendicular to the broad faces of the thin rectangular chamber. A uniform fluid cross-flow then enters and exits the separation chamber through the same broad faces which are porous. A balance is achieved by adjusting either the electric field or the cross-flow so the desired sample fraction with its specific migration velocity encounters an opposing flow of the same velocity. Applying an electric field transverse to the incoming sample lamina and opposing this field with a carefully configured buffer flow, a sample constituent can be selected and focused into a narrow stream for subsequent analysis. Monotonically changing either electric field or buffer cross-flow will yield a scan of all constituents of the sample. Stopping the scan increases the collection time for minor constituents to improve their analysis. Using the high voltage gradients and/or cross-flow to rapidly deflect extraneous sample through the porous screens and into either of the side (purge) chambers, the selected sample is focused in the center plane of the separation chamber and collected without contact or interaction with the separation chamber walls. Results will be presented on the separation of a range of materials including dyes, proteins, and monodisperse polystyrene latexes. Sources of sample dispersion inherent in other electrokinetic techniques will be shown to be negligible for a variety of sample concentrations, buffer properties and operating conditions.

  13. Chemical composition characterization of Ca3Ta(Ga0.5Al0.5)3Si2O14 single crystal by the line-focus-beam ultrasonic material characterization system

    NASA Astrophysics Data System (ADS)

    Ohashi, Yuji; Kudo, Tetsuo; Yokota, Yuui; Shoji, Yasuhiro; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2016-10-01

    A new method for evaluation of homogeneity of Ca3Ta(Ga0.5Al0.5)3Si2O14 (CTGAS) single crystals was established based on leaky surface acoustic wave (LSAW) velocity measurements performed by the line-focus-beam ultrasonic material characterization (LFB-UMC) system. Three plate specimens cut perpendicular to X-, Y-, and Z-axes were prepared from the CTGAS crystal ingot and LSAW velocity distributions were examined for these specimens. LSAW velocity changes due to Al-substitution effect were successfully extracted by using a relationship between two LSAW velocities propagating along different directions for Ca3TaGa3Si2O14 (CTGS) and Al-substituted CTGS. Comparison of measured LSAW velocities and the results of chemical composition analysis performed by electron probe microanalysis (EPMA) demonstrated that LSAW velocity is mainly affected by Al-content change in CTGAS. Maximum velocity variation was observed in radial direction of the crystal ingot through the Z-axis propagating LSAW velocity measurements for Y-cut CTGAS specimen corresponding to Al-content change of 0.226 mol%. Accuracy of evaluation of Al content by velocity measurement for Y-cut Z-propagating LSAW is estimated to be ±0.0047 mol% and is superior to that by EPMA.

  14. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  15. Focus vernier for optical lithography

    NASA Astrophysics Data System (ADS)

    Arnold, William H.; Barouch, Eytan; Hollerbach, Uwe; Orszag, Steven A.

    1993-08-01

    As the depth of focus of optical steppers grows smaller, it becomes more important to determine the position of best focus accurately and quickly. This paper describes the use of phase-shifted mask technology to form a focus vernier: a phase pattern on the stepper reticle which, when imaged in resist, can give both the magnitude and the direction of the focus error. In this, the focus vernier structure is analogous to 3overlay verniers. Thus the determination of focus error can be treated as an alignment problem in the z-axis. This technique is an improvement on previous schemes for the determination of best focus from resist images as it can indicate both the magnitude of the error and its direction in a single exposure.

  16. Focusators for laser-branding

    NASA Astrophysics Data System (ADS)

    Doskolovich, L. L.; Kazanskiy, N. L.; Kharitonov, S. I.; Uspleniev, G. V.

    A new method is investigated for synthesis of computer-generated optical elements: focusators that are able to focus the radial-symmetrical laser beam into complex focal contours, in particular into alphanumeric symbols. The method is based on decomposition of the focal contour into segments of straight lines and semi-circles, following corresponding spacing out of the focusator on elementary segments (concentric rings or sectors) and solution of the inverse task of focusing from focusator segments into corresponding elements of the focal contour. The results of numerical computing of the field from synthesized focusators into the letters are presented. The theoretical efficiency of the focusators discussed is no less than 85%. The amplitude masks and the results of operational studies of synthesized focusators are presented.

  17. Transverse field focused system

    DOEpatents

    Anderson, Oscar A.

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  18. How accurately can 21cm tomography constrain cosmology?

    NASA Astrophysics Data System (ADS)

    Mao, Yi; Tegmark, Max; McQuinn, Matthew; Zaldarriaga, Matias; Zahn, Oliver

    2008-07-01

    There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 6accurate yet robust method for measuring cosmological parameters that exploits the fact that the ionization power spectra are rather smooth functions that can be accurately fit by 7 phenomenological parameters. We find that for future experiments, marginalizing over these nuisance parameters may provide constraints almost as tight on the cosmology as if 21 cm tomography measured the matter power spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and neutrino masses by up to 2 orders of magnitude, to ΔΩk≈0.0002 and Δmν≈0.007eV, and give a 4σ detection of the spectral index running predicted by the simplest inflation models.

  19. A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters.

    PubMed

    Nilsen, Erik T; Freeman, Joshua; Grene, Ruth; Tokuhisa, James

    2014-01-01

    The development of water stress resistant lines of commercial tomato by breeding or genetic engineering is possible, but will take considerable time before commercial varieties are available for production. However, grafting commercial tomato lines on drought resistant rootstock may produce drought tolerant commercial tomato lines much more rapidly. Due to changing climates and the need for commercial production of vegetables in low quality fields there is an urgent need for stress tolerant commercial lines of vegetables such as tomato. In previous observations we identified a scion root stock combination ('BHN 602' scion grafted onto 'Jjak Kkung' rootstock hereafter identified as 602/Jjak) that had a qualitative drought-tolerance phenotype when compared to the non-grafted line. Based on this initial observation, we studied photosynthesis and vegetative above-ground growth during mild-drought for the 602/Jjak compared with another scion-rootstock combination ('BHN 602' scion grafted onto 'Cheong Gang' rootstock hereafter identified as 602/Cheong) and a non-grafted control. Overall above ground vegetative growth was significantly lower for 602/Jjak in comparison to the other plant lines. Moreover, water potential reduction in response to mild drought was significantly less for 602/Jjak, yet stomatal conductance of all plant-lines were equally inhibited by mild-drought. Light saturated photosynthesis of 602/Jjak was less affected by low water potential than the other two lines as was the % reduction in mesophyll conductance. Therefore, the Jjak Kkung rootstock caused aboveground growth reduction, water conservation and increased photosynthetic tolerance of mild drought. These data show that different rootstocks can change the photosynthetic responses to drought of a high yielding, commercial tomato line. Also, this rapid discovery of one scion-rootstock combination that provided mild-drought tolerance suggests that screening more scion-rootstock combination for

  20. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  1. Software Product Lines Essentials

    DTIC Science & Technology

    2008-07-01

    improvement Technology innovation Reuse 7 Software Product Lines Linda Northrop © 2008 Carnegie Mellon University Few Systems Are Unique Most...Focus was small-grained, opportunistic, and technology -driven. Results did not meet business goals. Reuse History 9 Software Product Lines Linda...servers, storage servers, network camera and scanner servers Bold Stroke Avionics Customized solutions for transportation industries E-COM Technology

  2. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  3. Teaching Braille Line Tracking Using Stimulus Fading

    ERIC Educational Resources Information Center

    Scheithauer, Mindy C.; Tiger, Jeffrey H.

    2014-01-01

    Line tracking is a prerequisite skill for braille literacy that involves moving one's finger horizontally across a line of braille text and identifying when a line ends so the reader may reset his or her finger on the subsequent line. Current procedures for teaching line tracking are incomplete, because they focus on tracking lines with only…

  4. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  5. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  6. Accurate upper body rehabilitation system using kinect.

    PubMed

    Sinha, Sanjana; Bhowmick, Brojeshwar; Chakravarty, Kingshuk; Sinha, Aniruddha; Das, Abhijit

    2016-08-01

    The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.

  7. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  8. The roles of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and nerve growth factor during the final stage of folliculogenesis: a focus on oocyte maturation.

    PubMed

    Linher-Melville, Katja; Li, Julang

    2013-02-01

    Neurotrophic factors were first identified to promote the growth, survival or differentiation of neurons and have also been associated with the early stages of ovarian folliculogenesis. More recently, their effects on the final stage of follicular development, including oocyte maturation and early embryonic development, have been reported. Glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are expressed in numerous peripheral tissues outside of the CNS, most notably the ovary, are now known to stimulate oocyte maturation in various species, also enhancing developmental competence. The mechanisms that underlie their actions in antral follicles, as well as the targets ultimately controlled by these factors, are beginning to emerge. GDNF, BDNF and NGF, alone or in combination, could be added to the media currently utilized for in vitro oocyte maturation, thereby potentially increasing the production and/or quality of early embryos.

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  11. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  12. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. Capillary isoelectric focusing of probiotic bacteria from cow's milk in tapered fused silica capillary with off-line matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification.

    PubMed

    Horká, Marie; Karásek, Pavel; Salplachta, Jiří; Růžička, Filip; Vykydalová, Marie; Kubesová, Anna; Dráb, Vladimír; Roth, Michal; Slais, Karel

    2013-07-25

    In this study, combination of capillary isoelectric focusing (CIEF) in tapered fused silica (FS) capillary with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is presented as an efficient approach for unambiguous identification of probiotic bacteria in real sample. For this purpose, bacteria within genus Lactobacillus were selected as model bioanalytes and cow's milk was selected as a biological sample. CIEF analysis of both the cultivated bacteria and the bacteria in the milk was optimized and isoelectric points characterizing the examined bacteria were subsequently determined independently of the bacterial sample origin. The use of tapered FS capillary significantly enhanced the separation capacity and efficiency of the CIEF analyses performed. In addition, the cell number injected into the tapered FS capillary was quantified and an excellent linearity of the calibration curves was achieved which enabled quantitative analysis of the bacteria by CIEF with UV detection. The minimum detectable number of bacterial cells was 2×10(6) mL(-1). Finally, cow's milk spiked with the selected bacterium was analyzed by CIEF in tapered FS capillary, the focused and detected bacterial cells were collected from the capillary, deposited onto the cultivation medium, and identified using MALDI-TOF MS afterward. Our results have revealed that the proposed procedure can be advantageously used for unambiguous identification of probiotic bacteria in a real sample.

  15. Noninvasive hemoglobin monitoring: how accurate is enough?

    PubMed

    Rice, Mark J; Gravenstein, Nikolaus; Morey, Timothy E

    2013-10-01

    Evaluating the accuracy of medical devices has traditionally been a blend of statistical analyses, at times without contextualizing the clinical application. There have been a number of recent publications on the accuracy of a continuous noninvasive hemoglobin measurement device, the Masimo Radical-7 Pulse Co-oximeter, focusing on the traditional statistical metrics of bias and precision. In this review, which contains material presented at the Innovations and Applications of Monitoring Perfusion, Oxygenation, and Ventilation (IAMPOV) Symposium at Yale University in 2012, we critically investigated these metrics as applied to the new technology, exploring what is required of a noninvasive hemoglobin monitor and whether the conventional statistics adequately answer our questions about clinical accuracy. We discuss the glucose error grid, well known in the glucose monitoring literature, and describe an analogous version for hemoglobin monitoring. This hemoglobin error grid can be used to evaluate the required clinical accuracy (±g/dL) of a hemoglobin measurement device to provide more conclusive evidence on whether to transfuse an individual patient. The important decision to transfuse a patient usually requires both an accurate hemoglobin measurement and a physiologic reason to elect transfusion. It is our opinion that the published accuracy data of the Masimo Radical-7 is not good enough to make the transfusion decision.

  16. "Only" and Focus.

    ERIC Educational Resources Information Center

    Vallduvi, Enric

    The relationship of the word "only," one of a class of words known as scalar particles, focus adverbs, focus inducers, or focus-sensitive particles, with the "focus" of the sentence is examined. It is suggested, based on analysis of discourse structure, that this "association with focus" is not an inherent property of…

  17. Clustering instability of focused swimmers

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Nadal, Francois

    2016-12-01

    One of the hallmarks of active matter is its rich nonlinear dynamics and instabilities. Recent numerical simulations of phototactic algae showed that a thin jet of swimmers, obtained from hydrodynamic focusing inside a Poiseuille flow, was unstable to longitudinal perturbations with swimmers dynamically clustering (Jibuti L. et al., Phys. Rev. E, 90, (2014) 063019). As a simple starting point to understand these instabilities, we consider in this paper an initially homogeneous one-dimensional line of aligned swimmers moving along the same direction, and characterise its instability using both a continuum framework and a discrete approach. In both cases, we show that hydrodynamic interactions between the swimmers lead to instabilities in density for which we compute the growth rate analytically. Lines of pusher-type swimmers are predicted to remain stable while lines of pullers (such as flagellated algae) are predicted to always be unstable.

  18. The Micromechanics of the Moving Contact Line

    NASA Technical Reports Server (NTRS)

    Han, Minsub; Lichter, Seth; Lin, Chih-Yu; Perng, Yeong-Yan

    1996-01-01

    The proposed research is divided into three components concerned with molecular structure, molecular orientation, and continuum averages of discrete systems. In the experimental program, we propose exploring how changes in interfacial molecular structure generate contact line motion. Rather than rely on the electrostatic and electrokinetic fields arising from the molecules themselves, we augment their interactions by an imposed field at the solid/liquid interface. By controling the field, we can manipulate the molecular structure at the solid/liquid interface. In response to controlled changes in molecular structure, we observe the resultant contact line motion. In the analytical portion of the proposed research we seek to formulate a system of equations governing fluid motion which accounts for the orientation of fluid molecules. In preliminary work, we have focused on describing how molecular orientation affects the forces generated at the moving contact line. Ideally, as assumed above, the discrete behavior of molecules can be averaged into a continuum theory. In the numerical portion of the proposed research, we inquire whether the contact line region is, in fact, large enough to possess a well-defined average. Additionally, we ask what types of behavior distinguish discrete systems from continuum systems. Might the smallness of the contact line region, in itself, lead to behavior different from that in the bulk? Taken together, our proposed research seeks to identify and accurately account for some of the molecular dynamics of the moving contact line, and attempts to formulate a description from which one can compute the forces at the moving contact line.

  19. Transrectal high-intensity focused ultrasound ablation of prostate cancer: effective treatment requiring accurate imaging.

    PubMed

    Rouvière, Olivier; Souchon, Rémi; Salomir, Rarès; Gelet, Albert; Chapelon, Jean-Yves; Lyonnet, Denis

    2007-09-01

    Transrectal HIFU ablation has become a reasonable option for the treatment of localized prostate cancer in non-surgical patients, with 5-year disease-free survival similar to that of radiation therapy. It is also a promising salvage therapy of local recurrence after radiation therapy. These favourable results are partly due to recent improvements in prostate cancer imaging. However, further improvements are needed in patient selection, pre-operative localization of the tumor foci, assessment of the volume treated and early detection of recurrence. A better knowledge of the factors influencing the HIFU-induced tissue destruction and a better pre-operative assessment of them by imaging techniques should improve treatment outcome. Whereas prostate HIFU ablation is currently performed under transrectal ultrasound guidance, MR guidance with real-time operative monitoring of temperature will be available in the near future. If this technique will give better targeting and more uniform tissue destruction, its cost-effectiveness will have to be carefully evaluated. Finally, a recently reported synergistic effect between HIFU ablation and chemotherapy opens possibilities for treatment in high-risk or clinically advanced tumors.

  20. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  1. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  2. A simple and accurate resist parameter extraction method for sub-80-nm DRAM patterns

    NASA Astrophysics Data System (ADS)

    Lee, Sook; Hwang, Chan; Park, Dong-Woon; Kim, In-Sung; Kim, Ho-Chul; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae

    2004-05-01

    Due to the polarization effect of high NA lithography, the consideration of resist effect in lithography simulation becomes increasingly important. In spite of the importance of resist simulation, many process engineers are reluctant to consider resist effect in lithography simulation due to time-consuming procedure to extract required resist parameters and the uncertainty of measurement of some parameters. Weiss suggested simplified development model, and this model does not require the complex kinetic parameters. For the device fabrication engineers, there is a simple and accurate parameter extraction and optimizing method using Weiss model. This method needs refractive index, Dill"s parameters and development rate monitoring (DRM) data in parameter extraction. The parameters extracted using referred sequence is not accurate, so that we have to optimize the parameters to fit the critical dimension scanning electron microscopy (CD SEM) data of line and space patterns. Hence, the FiRM of Sigma-C is utilized as a resist parameter-optimizing program. According to our study, the illumination shape, the aberration and the pupil mesh point have a large effect on the accuracy of resist parameter in optimization. To obtain the optimum parameters, we need to find the saturated mesh points in terms of normalized intensity log slope (NILS) prior to an optimization. The simulation results using the optimized parameters by this method shows good agreement with experiments for iso-dense bias, Focus-Exposure Matrix data and sub 80nm device pattern simulation.

  3. Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele

    2017-04-01

    I start by providing an updated summary of the penalized pixel-fitting (PPXF) method that is used to extract the stellar and gas kinematics, as well as the stellar population of galaxies, via full spectrum fitting. I then focus on the problem of extracting the kinematics when the velocity dispersion σ is smaller than the velocity sampling ΔV that is generally, by design, close to the instrumental dispersion σinst. The standard approach consists of convolving templates with a discretized kernel, while fitting for its parameters. This is obviously very inaccurate when σ ≲ ΔV/2, due to undersampling. Oversampling can prevent this, but it has drawbacks. Here I present a more accurate and efficient alternative. It avoids the evaluation of the undersampled kernel and instead directly computes its well-sampled analytic Fourier transform, for use with the convolution theorem. A simple analytic transform exists when the kernel is described by the popular Gauss-Hermite parametrization (which includes the Gaussian as special case) for the line-of-sight velocity distribution. I describe how this idea was implemented in a significant upgrade to the publicly available PPXF software. The key advantage of the new approach is that it provides accurate velocities regardless of σ. This is important e.g. for spectroscopic surveys targeting galaxies with σ ≪ σinst, for galaxy redshift determinations or for measuring line-of-sight velocities of individual stars. The proposed method could also be used to fix Gaussian convolution algorithms used in today's popular software packages.

  4. Focus Curriculum Manual; A Focus Dissemination Project.

    ERIC Educational Resources Information Center

    Human Resource Associates, Inc., Hastings, Minn.

    This training manual is for use in preparing staff members to use the Focus Model, which is a "school within a school" for disaffected high school students. The material is designed to be used as a resource aid following participation in an in-service workshop. Information is presented to help implement a contracting system to establish…

  5. Accurate measurement of the helical twisting power of chiral dopants

    NASA Astrophysics Data System (ADS)

    Kosa, Tamas; Bodnar, Volodymyr; Taheri, Bahman; Palffy-Muhoray, Peter

    2002-03-01

    We propose a method for the accurate determination of the helical twisting power (HTP) of chiral dopants. In the usual Cano-wedge method, the wedge angle is determined from the far-field separation of laser beams reflected from the windows of the test cell. Here we propose to use an optical fiber based spectrometer to accurately measure the cell thickness. Knowing the cell thickness at the positions of the disclination lines allows determination of the HTP. We show that this extension of the Cano-wedge method greatly increases the accuracy with which the HTP is determined. We show the usefulness of this method by determining the HTP of ZLI811 in a variety of hosts with negative dielectric anisotropy.

  6. Focus Intonation in Bengali

    ERIC Educational Resources Information Center

    Hasan, Md. Kamrul

    2015-01-01

    This work attempts to investigate the role of prosody in the syntax of focus in Bangla. The aim of this study is to show the intonation pattern of Bangla in emphasis and focus. In order to do that, the author has looked at the pattern of focus without-i/o as well as with the same. Do they really pose any different focus intonation pattern from…

  7. Microstructural lines involving luminescence

    NASA Astrophysics Data System (ADS)

    Shimada, Kazuhiko

    2004-06-01

    Japanese National Printing Bureau has been focused upon the development of anti-copy lines for many years. The basic concept with regard to security measure lies in the merge of art and technology. On this basis, our originally developed anti-copy lines show flexibility to various security designs. Our newest anti-copy lines comprising from the Tri-Branched and Divided Lines shows clearer latent image effect compared to that of our other developed anti-copy lines. However, the anti-copy effect of security printing lines with microstructure is deteriorating due to the emergence of digital image techniques with higher resolution. In this situation, this paper introduces a new security measure comprising from luminescence and security printing lines with microstructure. It gives rise to a latent image effect under UV light due to the characteristic microstructure while visually same density. The principle advantage is that the combination of the anti-copy and luminescent feature strongly enhances its secure effect in documents. There is no necessity of two kinds of inks and any specially designed equipment to produce security documents with microstructural lines involving luminescence.

  8. Accurate ampacity determination: Temperature-Sag Model for operational real time ratings

    SciTech Connect

    Seppa, T.O.

    1995-07-01

    This report presents a method for determining transmission line ratings based on the relationship between the conductor`s temperature and its sag. The method is based on the Ruling Span principle and the use of transmission line tension monitoring systems. The report also presents a method of accurately calibrating the final sag of the conductor and determining the actual Ruling Span length of the line sections between deadend structures. Main error sources for two other real time methods are also examined.

  9. Alternating phase focused linacs

    DOEpatents

    Swenson, Donald A.

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  10. Accurate and Inaccurate Conceptions about Osmosis That Accompanied Meaningful Problem Solving.

    ERIC Educational Resources Information Center

    Zuckerman, June Trop

    This study focused on the knowledge of six outstanding science students who solved an osmosis problem meaningfully. That is, they used appropriate and substantially accurate conceptual knowledge to generate an answer. Three generated a correct answer; three, an incorrect answer. This paper identifies both the accurate and inaccurate conceptions…

  11. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    SciTech Connect

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  12. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  13. AXAF SIM focus mechanism study

    NASA Astrophysics Data System (ADS)

    Tananbaum, H. D.; Whitbeck, E.

    1994-02-01

    is by counting motor steps. The 'backup' method is by a pot mounted on the drive ring. Neither method provides for a direct measurement of the quantity desired (focus position). This is of concern because of the long and indirect relationship between focus and the sensed quantity (drive ring rotation). There are three sinusoidal relationships and structural stiffness in the path, and the resulting calibration is likely to be highly nonlinear. These methods would require an accurate ground calibration. (3) Ground calibration (and verification) of focus vs. drive position must be done in 1-g on the ground. This calibration will be complicated by both the structural characteristics of the bipods and the fact that the CG of the translating portion of the SIM is not on the optical axis (thereby causing unwanted rotations and changing the focus position vs. motor step and pot readout relationships). focus position sensor is questionable in terms of reliability for a five year mission. The results of SAO's study of items 1, 2 and 3 described above are presented in this report.

  14. Accurate spectral modeling for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Gupta, S. K.

    1977-01-01

    Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.

  15. World lines.

    PubMed

    Waser, Jürgen; Fuchs, Raphael; Ribicić, Hrvoje; Schindler, Benjamin; Blöschl, Günther; Gröller, Eduard

    2010-01-01

    In this paper we present World Lines as a novel interactive visualization that provides complete control over multiple heterogeneous simulation runs. In many application areas, decisions can only be made by exploring alternative scenarios. The goal of the suggested approach is to support users in this decision making process. In this setting, the data domain is extended to a set of alternative worlds where only one outcome will actually happen. World Lines integrate simulation, visualization and computational steering into a single unified system that is capable of dealing with the extended solution space. World Lines represent simulation runs as causally connected tracks that share a common time axis. This setup enables users to interfere and add new information quickly. A World Line is introduced as a visual combination of user events and their effects in order to present a possible future. To quickly find the most attractive outcome, we suggest World Lines as the governing component in a system of multiple linked views and a simulation component. World Lines employ linking and brushing to enable comparative visual analysis of multiple simulations in linked views. Analysis results can be mapped to various visual variables that World Lines provide in order to highlight the most compelling solutions. To demonstrate this technique we present a flooding scenario and show the usefulness of the integrated approach to support informed decision making.

  16. Progress toward accurate high spatial resolution actinide analysis by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.

    2010-12-01

    High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation

  17. Microfabricated particle focusing device

    DOEpatents

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  18. FOCUS: Sustainable Mathematics Successes

    ERIC Educational Resources Information Center

    Mireles, Selina V.; Acee, Taylor W.; Gerber, Lindsey N.

    2014-01-01

    The FOCUS (Fundamentals of Conceptual Understanding and Success) Co-Requisite Model Intervention (FOCUS Intervention) for College Algebra was developed as part of the Developmental Education Demonstration Projects (DEDP) in Texas. The program was designed to use multiple services, courses, and best practices to support student completion of a…

  19. Focus, 2000-2001.

    ERIC Educational Resources Information Center

    Focus, 2001

    2001-01-01

    These three issues of 2000-2001 "Focus" present a collection of papers focusing on issues related to poverty. The first issue discusses child support enforcement policy and low-income families, highlighting such issues as fragile families and child wellbeing; low-income families and the child support enforcement system; child support…

  20. Long line coupling models.

    SciTech Connect

    Warne, Larry Kevin; Chen, Kenneth C.

    2004-03-01

    This report assembles models for the response of a wire interacting with a conducting ground to an electromagnetic pulse excitation. The cases of an infinite wire above the ground as well as resting on the ground and buried beneath the ground are treated. The focus is on the characteristics and propagation of the transmission line mode. Approximations are used to simplify the description and formulas are obtained for the current. The semi-infinite case, where the short circuit current can be nearly twice that of the infinite line, is also examined.

  1. Algorithms for Labeling Focus Regions.

    PubMed

    Fink, M; Haunert, Jan-Henrik; Schulz, A; Spoerhase, J; Wolff, A

    2012-12-01

    In this paper, we investigate the problem of labeling point sites in focus regions of maps or diagrams. This problem occurs, for example, when the user of a mapping service wants to see the names of restaurants or other POIs in a crowded downtown area but keep the overview over a larger area. Our approach is to place the labels at the boundary of the focus region and connect each site with its label by a linear connection, which is called a leader. In this way, we move labels from the focus region to the less valuable context region surrounding it. In order to make the leader layout well readable, we present algorithms that rule out crossings between leaders and optimize other characteristics such as total leader length and distance between labels. This yields a new variant of the boundary labeling problem, which has been studied in the literature. Other than in traditional boundary labeling, where leaders are usually schematized polylines, we focus on leaders that are either straight-line segments or Bezier curves. Further, we present algorithms that, given the sites, find a position of the focus region that optimizes the above characteristics. We also consider a variant of the problem where we have more sites than space for labels. In this situation, we assume that the sites are prioritized by the user. Alternatively, we take a new facility-location perspective which yields a clustering of the sites. We label one representative of each cluster. If the user wishes, we apply our approach to the sites within a cluster, giving details on demand.

  2. Solving the "Hidden Line" Problem

    NASA Technical Reports Server (NTRS)

    1984-01-01

    David Hedgley Jr., a mathematician at Dryden Flight Research Center, has developed an accurate computer program that considers whether a line in a graphic model of a three dimensional object should or should not be visible. The Hidden Line Computer Code, program automatically removes superfluous lines and permits the computer to display an object from specific viewpoints, just as the human eye would see it. Users include Rowland Institute for Science in Cambridge, MA, several departments of Lockheed Georgia Co., and Nebraska Public Power District (NPPD).

  3. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    NASA Astrophysics Data System (ADS)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  4. Teaching braille line tracking using stimulus fading.

    PubMed

    Scheithauer, Mindy C; Tiger, Jeffrey H

    2014-01-01

    Line tracking is a prerequisite skill for braille literacy that involves moving one's finger horizontally across a line of braille text and identifying when a line ends so the reader may reset his or her finger on the subsequent line. Current procedures for teaching line tracking are incomplete, because they focus on tracking lines with only small gaps between characters. The current study extended previous line-tracking instruction using stimulus fading to teach tracking across larger gaps. After instruction, all participants showed improvement in line tracking, and 2 of 3 participants met mastery criteria for tracking across extended spaces.

  5. Accurate documentation, correct coding, and compliance: it's your best defense!

    PubMed

    Coles, T S; Babb, E F

    1999-07-01

    This article focuses on the need for physicians to maintain an awareness of regulatory policy and the law impacting the federal government's medical insurance programs, and to internalize and apply this knowledge in their practices. Basic information concerning selected fraud and abuse statutes and the civil monetary penalties and sanctions for noncompliance is discussed. The application of accurate documentation and correct coding principles, as well as the rationale for implementating an effective compliance plan in order to prevent fraud and abuse and/or minimize disciplinary action from government regulatory agencies, are emphasized.

  6. Focused ultrasound in ophthalmology

    PubMed Central

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007

  7. Focused ultrasound in ophthalmology.

    PubMed

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.

  8. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  9. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  10. Facility Focus: Food Service.

    ERIC Educational Resources Information Center

    College Planning & Management, 2002

    2002-01-01

    Describes the Hawthorn Court Community Center at Iowa State University, Ames, and the HUB-Robeson Center at Pennsylvania State University. Focuses on the food service offered in these new student-life buildings. Includes photographs. (EV)

  11. Focusing corner cube

    DOEpatents

    Monjes, J.A.

    1985-09-12

    This invention retortreflects and focuses a beam of light. The invention comprises a modified corner cube reflector wherein one reflective surface is planar, a second reflective surface is spherical, and the third reflective surface may be planar or convex cylindrical.

  12. Inertial Focusing in Microfluidics

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2015-01-01

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future. PMID:24905880

  13. Inertial focusing in microfluidics.

    PubMed

    Martel, Joseph M; Toner, Mehmet

    2014-07-11

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future.

  14. Final focus nomenclature

    SciTech Connect

    Erickson, R.

    1986-08-08

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number. (LEW)

  15. Final focus test beam

    SciTech Connect

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  16. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  17. High harmonics focusing undulator

    SciTech Connect

    Varfolomeev, A.A.; Hairetdinov, A.H.; Smirnov, A.V.; Khlebnikov, A.S.

    1995-12-31

    It was shown in our previous work that there exist a possibility to enhance significantly the {open_quote}natural{close_quote} focusing properties of the hybrid undulator. Here we analyze the actual undulator configurations which could provide such field structure. Numerical simulations using 2D code PANDIRA were carried out and the enhanced focusing properties of the undulator were demonstrated. The obtained results provide the solution for the beam transport in a very long (short wavelength) undulator schemes.

  18. New NLC Final Focus

    SciTech Connect

    Raimondi, P.

    2004-10-11

    A novel design of the Final Focus has recently been proposed [1] and has been adopted now for the Next Linear Collider [2]. This new design has fewer optical elements and is much shorter, nonetheless achieving better chromatic properties. In this paper, the new final focus system is briefly discussed stressing one particular characteristic of the new design--its multi TeV energy reach.

  19. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  20. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  1. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  2. Focus on Nivolumab in NSCLC

    PubMed Central

    Cortinovis, Diego L.; Canova, Stefania; Abbate, Marida; Colonese, Francesca; Bidoli, Paolo

    2016-01-01

    Immunotherapy is changing the treatment of non-small cell lung cancer (NSCLC). The PD-1 inhibitor nivolumab has demonstrated meaningful results in terms of efficacy with a good safety profile. The novel approach to treating NSCLC using immunotherapy still has unsolved questions and challenging issues. The main doubts regarding the optimal selection of the patient are the role of this drug in first line of treatment, the individualization of the correct methodology of radiologic assessment and efficacy analysis, the best management of immune-mediated adverse events, and how to overcome the immunoresistance. The aim of this review is to analyze literature data on nivolumab in lung cancer with a focus on critical aspects related to the drug in terms of safety, the use in clinical practice, and possible placement in the treatment algorithm. PMID:28018902

  3. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  4. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  5. Accurate colorimetric feedback for RGB LED clusters

    NASA Astrophysics Data System (ADS)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  6. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  7. NICMOS focus monitor

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    1997-07-01

    This proposal is used to determine and monitor the optimal focus and tilt settings for all three NICMOS cameras. It is derived from SM2/NIC 7041, but is structurally quite a bit different. This proposal is built to run NIC1/2 focus sweeps on a weekly basis, and NIC3 focus sweeps twice a week during SMOV {following the "interim" runs of the 7150}. 7043 will run for as long as it is deemed necessary to keep track of the camera focii and to monitor the dewar anomaly. After the discussion on 20/3/96, this proposal is written to run 4 complete 1-week iterations starting 3 days after the last run of the 7150 {NICMOS COARSE OPTICAL ALIGNMENT, PART 2}.

  8. Sagittal focusing Laue monochromator

    DOEpatents

    Zhong; Zhong , Hanson; Jonathan , Hastings; Jerome , Kao; Chi-Chang , Lenhard; Anthony , Siddons; David Peter , Zhong; Hui

    2009-03-24

    An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

  9. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  10. An Accurate, Simplified Model Intrabeam Scattering

    SciTech Connect

    Bane, Karl LF

    2002-05-23

    Beginning with the general Bjorken-Mtingwa solution for intrabeam scattering (IBS) we derive an accurate, greatly simplified model of IBS, valid for high energy beams in normal storage ring lattices. In addition, we show that, under the same conditions, a modified version of Piwinski's IBS formulation (where {eta}{sub x,y}{sup 2}/{beta}{sub x,y} has been replaced by {Eta}{sub x,y}) asymptotically approaches the result of Bjorken-Mtingwa.

  11. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  12. On accurate determination of contact angle

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  13. [Focused musculoskeletal sonography].

    PubMed

    Horn, Rudolf

    2015-09-16

    Even in emergent situations, focused musculoskeletal sonography must not be overlooked. It has a place in traumatology no less valuable than its place in internal medicine. It can be used to identify traumatic joint effusions, occult fractures and fissures, joint inflammation, muscle and tendon rupture; it can differentiate soft tissue swelling, locate a foreign body, or identify the location of fractures. Focused ultrasound should be performed by the attending physician directly at the patient’s bedside, in order to answer these specific questions.

  14. Electrolysis and isoelectric focusing

    NASA Astrophysics Data System (ADS)

    Choi, Y. S.; Lui, Roger; Yu, Xun

    1994-01-01

    This paper consists of two parts. In the first part, the authors prove the existence of steady-state solutions for a three-species electrolyte. The species are subject to both dissociation-association reactions inside the electrolyte and electrochemical reactions at the boundary electrodes. This is a common occurrence in electrolysis. In the second part, the authors investigate how to use this model to describe isoelectric focusing, which is a common technique used to separate large protein molecules. In particular, the isoelectric focusing point for a particular type of protein molecule is calculated using formal perturbation analysis.

  15. Towards Perfect Water Line Intensities

    NASA Astrophysics Data System (ADS)

    Lodi, L.; Tennyson, J.

    2012-06-01

    Over the last ten years the increased availability of computational resources and the steady refinement of theoretical methods have permitted more and more accurate first principle calculations of water-vapor spectra as exemplified, e.g., by the very successful BT2 line list both line positions and intensities, a reliable dipole moment surface (DMS), affecting line intensities. It is also very useful to several application to give reasonable uncertainty bars for computed quantities, an aspect which traditionally has received little attention. We report here recent progress leading to very accurate room-temperature linelists covering the range 0.05-20 000 cm-1, complete with uncertainty bars, for the H_218O and H_217O water isotopologues Line intensities were produced using a recent DMS produced by our group which is capable of giving line intensites accurate to 1% for most medium and strong transitions. Line positions are based if possible on the experimentally derived energy levels recently produced by a IUPAC task group and have a typical accuracy of 0.0002 cm-1; when experimentally derived energy levels are unavailable calculated line position are provided, with an accuracy of the order of 0.2 cm-1. An extension to the main isotopologue H_216O is currently underway. R. J. Barber, J. Tennyson, G. J. Harris and R. N. Tolchenov, Mon. Not. R. Astron. Soc. {368}, 1087-1094 (2006). L. Lodi and J. Tennyson, J. Quant. Spectrosc. Radiat. Trans. (2012), doi:10.1016/j.jqsrt.2012.02.023 L. Lodi, J. Tennyson and O. L. Polyansky, J. Chem. Phys. {135}, 034113 (2011). J. Tennyson at al., J. Quant. Spectrosc. Radiat. Trans. {110}, 573-96 (2009).

  16. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  17. Focus on Bilingual Education.

    ERIC Educational Resources Information Center

    Mayo, Donald S., Ed.

    1982-01-01

    This collection of essays focuses on issues in bilingual education. First, Elizabeth Flynn examines different kinds of bilingual programs; efforts made towards cultural pluralism in a number of countries; national benefits to be derived from bilingualism; the needs of American ethnic groups, new immigrants, and foreign students; and the pros and…

  18. Focus on First Graders.

    ERIC Educational Resources Information Center

    Schwartz, Shari S.

    The result of a collaboration between the El Paso, Texas, school district and community agencies, the Focus on First Graders program provides early intervention and prevention using a comprehensive approach to providing a variety of services at the school to at-risk first graders from low income families. Teachers and parents were surveyed to…

  19. ENC Focus Review.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    The mission of the Eisenhower National Clearinghouse (ENC) is to identify effective curriculum resources, create high-quality professional development materials, and disseminate useful information and products to improve K-12 mathematics and science teaching and learning. This issue of "ENC Focus" contains articles related to mathematics teaching…

  20. Homework. Focus On

    ERIC Educational Resources Information Center

    Rahal, Michelle Layer

    2010-01-01

    Homework has been an integral part of the educational system for over 100 years. What likely began as simple memorization tasks has evolved into complex projects and sparked an increasingly heated debate over the purpose and value of homework assignments. This "Focus On" examines the purpose of homework, how to create homework that has value,…

  1. Focus on Basics, 1997.

    ERIC Educational Resources Information Center

    Focus on Basics, 1997

    1997-01-01

    Together, these four newsletters contain 36 articles devoted to adult literacy research and practice and the relationship between them. The following articles are included: "A Productive Partnership" (Richard J. Murnane, Bob Bickerton); "Welcome to 'Focus on Basics'" (Barbara Garner); "Applying Research on the Last Frontier" (Karen Backlund, Kathy…

  2. Focus on Grandparents.

    ERIC Educational Resources Information Center

    Murphy, Linda; Della Corte, Suzanne

    1990-01-01

    Following the birth of a handicapped child, both parent and grandparent experience similar feelings of consternation, shock, and grief. The grandparents' reaction is double, however, as they suffer not only for the newborn but for their own child's pain as well. This article focuses on dealing with grief and its stages, including numbness, denial,…

  3. Focus on Phase Electives.

    ERIC Educational Resources Information Center

    Jones, Victor H., Ed.

    1976-01-01

    In this thematic issue, articles focus on the use of phase electives in the English classroom. Discussions include "Death in the Classroom,""Soapbox Operas in the English Classroom,""Language and History in Phase-Elective Programs,""Phase Electives and the Problem of Composition," and "Phase Electives and College Preparation.""Phase Electives Are…

  4. Focus on Distance Education.

    ERIC Educational Resources Information Center

    Grenzky, Janet; Maitland, Christine

    2001-01-01

    As a followup to a survey of distance education faculty, the National Education Association conducted two 3-hour focus groups with 12 higher education faculty members in June 2000. The purpose of the groups was to gain more understanding of the complexity of feelings and opinions expressed in a telephone survey conducted in March 2000. The…

  5. Focusing on the Invisible

    ERIC Educational Resources Information Center

    Haley, Tim R.

    2008-01-01

    This article seeks to answer the question of whether or not the design and development of an educational laboratory really changes when the focus is on nanotechnology. It explores current laboratory building trends and the added considerations for building a nanotechnology laboratory. The author leaves the reader with additional points to consider…

  6. Focus: International Economics.

    ERIC Educational Resources Information Center

    Lynch, Gerald J.; Watts, Michael W.; Wentworth, Donald R.

    The "Focus" series, part of the National Council on Economic Education's (NCEE) EconomicsAmerica program, uses economics to enhance learning in subjects such as history, geography, civics, and personal finance, as well as economics. Activities are interactive, reflecting the belief that students learn best through active, highly…

  7. Young Children. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on educational, cognitive, and brain research with implications for early childhood educators, including those who work with limited-English-proficient, minority, and economically disadvantaged children. "Coming to Grips with Reading Instruction at the Early Grades" (Christie L. Goodman)…

  8. Focus on Godard.

    ERIC Educational Resources Information Center

    Brown, Royal S., Ed.

    This Film Focus series presents selected information about the respected and controversial French filmmaker Jean-Luc Godard and his films. Information is documented through reports of interviews, reviews, essays, and commentaries. Included are filmographies of Godard's films, beginning in 1954 and continuing through 1972. Also, there is a selected…

  9. A FOCUS On Students.

    ERIC Educational Resources Information Center

    Fletcher, Susan

    1998-01-01

    William McKinley Middle School in Cedar Rapids, Iowa, has a parent volunteer program called FOCUS that targets average students who are not doing well academically. Program goals are to improve students' organizational skills, help them complete homework assignments, and reteach and preview lessons to increase understanding, so that students will…

  10. Focusing laser scanner

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.

    1979-01-01

    Economical laser scanner assembled from commercially available components, modulates and scans focused laser beam over area up to 5.1 by 5.1 cm. Scanner gives resolution comparable to that of conventional television. Device is highly applicable to area of analog and digital storage and retrieval.

  11. Focus on Refugees. Transcript.

    ERIC Educational Resources Information Center

    Brandel, Sarah; And Others

    This is the transcript of the "Focus on Refugees," proqram conducted by the Overseas Development Council. Remarks from the following participants are included: (1) Sarah Brandel, Associate Fellow at the Overseas Development Council; (2) Gary Perkins, Chief of Mission of the Washington Office of the United Nations High Commissioner for Refugees…

  12. Youth Leadership. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on motivating young people to learn by providing leadership opportunities in school. "Coca-Cola Valued Youth Program: Assessing Progress" (Josie Danini Supik) examines the program's success. This program, which trains high-risk middle and high school students as tutors of younger children, has dramatically…

  13. Policy Update. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on the drastic revision of the Texas education code undertaken during the 1995 state legislative session. "Education Policy Reform: Key Points for Districts" (Albert Cortez, Mikki Symonds) outlines critical issues in the legislation that have an impact on educational quality: charter schools exempt from state…

  14. Equity. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue focuses on equity in children's literature, public funding for private schools, women in educational fields, female dropouts, and the relationship between school violence and family and community violence. "Violence in Our Schools" (Bradley Scott) explores reasons for school violence (media violence, isolation from…

  15. Focusing educational initiatives

    NASA Technical Reports Server (NTRS)

    Parks, George K.

    1990-01-01

    The United States will soon be facing a critical shortage of aerospace scientists and engineers. To address this problem, Space Grant Colleges can assist in focusing interest in existing educational initiatives and in creating new educational opportunities, particularly for women and underrepresented minorities.

  16. Education Policy. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on educational policy in the Texas legislature in relation to student retention, Internet access, and sexual harassment. "1999 Texas Legislative Session--End of an Era?" (Albert Cortez, Maria Robledo Montecel) examines educational equity issues facing legislators: school funding,…

  17. School Reform. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue addresses school reform, focusing on accountability, attrition, public-supported private education, equitable education, and schoolwide reform. "School-Student Performance and Accountability" (Jose A. Cardenas) discusses what constitutes good performance in school; the shifting emphasis among the input, output, and…

  18. Bilingual Education. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue focuses on instructional practices, evaluation, and the state of bilingual education. "Effective Implementation of Bilingual Programs: Reflections from the Field" (Abelardo Villarreal, Adela Solis) describes the key characteristics of successful bilingual programs: vision and goals; program leadership; linkage to central…

  19. Instructional Technology. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This theme issue includes five articles that focus on implementing instructional technology in ways that benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Cruising the Web with English Language Learners" (Laura Chris Green) presents three scenarios using the World…

  20. Theme: Focus on Teaching.

    ERIC Educational Resources Information Center

    Connors, James J.; And Others

    1996-01-01

    Includes "The More Things Change..." (Connors); "Students--Bored of Education?" (Earle); "Yesterday, Today and Tomorrow" (Wesch et al.); "Attitude and the Value of Environment" (Foster); "Fins, Feathers and Fur" (Crank); "Greenhouse as a Focus for Agriscience" (Hurst); and "Agricultural and Environmental Education at Milton Hershey School"…

  1. Immigrant Education. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1996

    1996-01-01

    This newsletter includes five articles on immigrant education that focus on successful school programs and educational policy issues. In "Immigrant Education from the Administrators' Perspective" (Pam McCollum, Juanita Garcia), three principals of south Texas secondary schools with successful immigrant programs discuss their views on the…

  2. Lifelong Learning. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on the need for adult literacy programs, as well as recent innovations in literacy education. "Adult Literacy and Leadership: Current Innovations" (Aurelio M. Montemayor) describes an adult literacy outreach program in Texas, and discusses the importance of family literacy for parents' involvement in their…

  3. [Focus: Family Communication].

    ERIC Educational Resources Information Center

    Barnes, Richard E., Ed.

    1977-01-01

    This issue of the "Journal of the Wisconsin Communication Association" focuses on family communication and contains the following articles: "Marital Typologies: An Alternative Approach to the Study of Communication in Enduring Relations" by Mary Anne Fitzpatrick, "Intimate Communication and the Family" by Marilyn D. LaCourt, and "A Study in…

  4. Neocortical focus: experimental view.

    PubMed

    Timofeev, Igor; Chauvette, Sylvain; Soltani, Sara

    2014-01-01

    All brain normal or pathological activities occur in one of the states of vigilance: wake, slow-wave sleep, or REM sleep. Neocortical seizures preferentially occur during slow-wave sleep. We provide a description of neuronal behavior and mechanisms mediating such a behavior within neocortex taking place in natural states of vigilance as well as during seizures pointing to similarities and differences exhibited during sleep and seizures. A concept of epileptic focus is described using a model of cortical undercut, because in that model, the borders of the focus are well defined. In this model, as in other models of acquired epilepsy, the main factor altering excitability is deafferentation, which upregulates neuronal excitability that promotes generation of seizures. Periods of disfacilitation recorded during slow-wave sleep further upregulate neuronal excitability. It appears that the state of neurons and neuronal network in the epileptic focus produced by deafferentation are such that seizures cannot be generated there. Instead, seizures always start around the perimeter of the undercut cortex. Therefore, we define these areas as the seizure focus. In this zone, neuronal connectivity and excitability are moderately enhanced, lowering the threshold for seizure generation.

  5. Focus on the President.

    ERIC Educational Resources Information Center

    Optometric Education, 1996

    1996-01-01

    In an interview, the incoming president of the Association of Schools and Colleges of Optometry (ASCO), Thomas L. Lewis, discusses his goals for the association, the challenges facing optometric education in the next decade, cooperation between ASCO and other professional organizations in optometry, his mentors in the profession, his focus as a…

  6. Focus on the President.

    ERIC Educational Resources Information Center

    Optometric Education, 2000

    2000-01-01

    An interview with the new president of the Association of Schools and Colleges of Optometry, John Schoessler, considers issues the president wishes to focus on during his presidency, changes in optometry students over the years, people who influenced his educational ideas, and research currently being conducted at Ohio State University College of…

  7. Multiperspective Focus+Context Visualization.

    PubMed

    Wu, Meng-Lin; Popescu, Voicu

    2016-05-01

    Occlusions are a severe bottleneck for the visualization of large and complex datasets. Conventional images only show dataset elements to which there is a direct line of sight, which significantly limits the information bandwidth of the visualization. Multiperspective visualization is a powerful approach for alleviating occlusions to show more than what is visible from a single viewpoint. However, constructing and rendering multiperspective visualizations is challenging. We present a framework for designing multiperspective focus+context visualizations with great flexibility by manipulating the underlying camera model. The focus region viewpoint is adapted to alleviate occlusions. The framework supports multiperspective visualization in three scenarios. In a first scenario, the viewpoint is altered independently for individual image regions to avoid occlusions. In a second scenario, conventional input images are connected into a multiperspective image. In a third scenario, one or several data subsets of interest (i.e., targets) are visualized where they would be seen in the absence of occluders, as the user navigates or the targets move. The multiperspective images are rendered at interactive rates, leveraging the camera model's fast projection operation. We demonstrate the framework on terrain, urban, and molecular biology geometric datasets, as well as on volume rendered density datasets.

  8. The quest for customer focus.

    PubMed

    Gulati, Ranjay; Oldroyd, James B

    2005-04-01

    Companies have poured enormous amounts of money into customer relationship management, but in many cases the investment hasn't really paid off. That's because getting closer to customers isn't about building an information technology system. It's a learning journey-one that unfolds over four stages, requiring people and business units to coordinate in progressively more sophisticated ways. The journey begins with the creation of a companywide repository containing each interaction a customer has with the company, organized not by product, purchase, or location, but by customer. Communal coordination is what's called for at this stage, as each group contributes its information to the data pool separately from the others and then taps into it as needed. In the second stage, one-way serial coordination from centralized IT through analytical units and out to the operating units allows companies to go beyond just assembling data to drawing inferences. In stage three, companies shift their focus from past relationships to future behavior. Through symbiotic coordination, information flows back and forth between central analytic units and various organizational units like marketing, sales, and operations, as together they seek answers to questions like "How can we prevent customers from switching to a competitor?" and "Who would be most likely to buy a new product in the future"? In stage four, firms begin to move past discrete, formal initiatives and, through integral coordination, bring an increasingly sophisticated understanding oftheir customers to bear in all day-to-day operations. Skipping stages denies organizations the sure foundation they need to build a lasting customer-focused mind-set. Those that recognize this will invest their customer relationship dollars much more wisely-and will see their customer-focusing efforts pay offon the bottom line.

  9. A more accurate nonequilibrium air radiation code - NEQAIR second generation

    NASA Technical Reports Server (NTRS)

    Moreau, Stephane; Laux, Christophe O.; Chapman, Dean R.; Maccormack, Robert W.

    1992-01-01

    Two experiments, one an equilibrium flow in a plasma torch at Stanford, the other a nonequilibrium flow in a SDIO/IST Bow-Shock-Ultra-Violet missile flight, have provided the basis for modifying, enhancing, and testing the well-known radiation code, NEQAIR. The original code, herein termed NEQAIR1, lacked computational efficiency, accurate data for some species and the flexibility to handle a variety of species. The modified code, herein termed NEQAIR2, incorporates recent findings in the spectroscopic and radiation models. It can handle any number of species and radiative bands in a gas whose thermodynamic state can be described by up to four temperatures. It provides a new capability of computing very fine spectra in a reasonable CPU time, while including transport phenomena along the line of sight and the characteristics of instruments that were used in the measurements. Such a new tool should allow more accurate testing and diagnosis of the different physical models used in numerical simulations of radiating, low density, high energy flows.

  10. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  11. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  12. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  13. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  14. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.

  15. Quantum focusing conjecture

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Fisher, Zachary; Leichenauer, Stefan; Wall, Aron C.

    2016-03-01

    We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface σ that need not lie on a horizon, we define a finite generalized entropy Sgen as the area of σ in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to σ , the rate of change of Sgen per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N . This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.

  16. Focused ion beam system

    SciTech Connect

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  17. Focused Bessel beams

    SciTech Connect

    Adamson, P V

    2000-04-30

    The diffraction broadening of a focused beam with a Bessel amplitude distribution is examined. Calculations are reported not only of the traditional differential characteristics (radial distributions of the electric-energy densities and of the axial total electromagnetic energy flux in the beam), but also of integral quantities characterising the degree of transverse localisation of the radiation in a tube of specified radius within the beam. It is shown that in a large-aperture Bessel beam only a very small fraction of the total beam power is concentrated in its central core and that a focal point is also observed on intense focusing of the Bessel beam. This spot is not in the geometric-optical focal plane but is displaced from the latter by a certain distance. (laser applications and other topics in quantum electronics)

  18. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  19. Focused on Robert E

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the microscopic imager on the Mars Exploration Rover Opportunity, shows a geological feature dubbed 'Robert E.' Light from the top is illuminating the feature, which is located within the rock outcrop at Meridiani Planum, Mars. Several images, each showing a different part of 'Robert E' in good focus, were merged to produce this view. The area in this image, taken on Sol 15 of the Opportunity mission, is 2.2 centimeters (0.8 inches) across.

  20. Dense Plasma Focus Modeling

    SciTech Connect

    Li, Hui; Li, Shengtai; Jungman, Gerard; Hayes-Sterbenz, Anna Catherine

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  1. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  2. Asking questions with focus

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Xu, Yi

    2004-05-01

    This study investigates how different interrogative meanings interact with focus in determining the overall F0 profile of a question. We recorded eight native speakers of Mandarin producing statements, yes-no questions with and without a question particle, wh questions, incredulous questions, and confirmation questions. In each sentence, either the initial, medial, final, or no word was focused. The tonal components of the sentences are all high, all rising, all low, or all falling. F0 contours were extracted by measuring every complete vocal period in the initial, medial, and final disyllabic words in each sentence. Preliminary results show that in both statements and questions, the pitch range of the focused words is expanded and that of the postfocus words suppressed (compressed and lowered). However, postfocus pitch-range suppression seems less extensive in questions than in statements, and in some question types than in others. Finally, an extra F0 rise is often observed in the final syllable of a question unless the syllable is the question particle which has the neutral tone. This is indicative of a high or rising boundary tone associated with the interrogative meaning, which seems to be superimposed on the tone of the sentence-final syllable. [Work supported by NIDCD DC03902.

  3. Accurate calculation of multispar cantilever and semicantilever wings with parallel webs under direct and indirect loading

    NASA Technical Reports Server (NTRS)

    Sanger, Eugen

    1932-01-01

    In the present report the computation is actually carried through for the case of parallel spars of equal resistance in bending without direct loading, including plotting of the influence lines; for other cases the method of calculation is explained. The development of large size airplanes can be speeded up by accurate methods of calculation such as this.

  4. The design of aerial camera focusing mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Changchang; Yang, Hongtao; Niu, Haijun

    2015-10-01

    In order to ensure the imaging resolution of aerial camera and compensating defocusing caused by the changing of atmospheric temperature, pressure, oblique photographing distance and other environmental factor [1,2], and to meeting the overall design requirements of the camera for the lower mass and smaller size , the linear focusing mechanism is designed. Through the target surface support, the target surface component is connected with focusing driving mechanism. Make use of precision ball screws, focusing mechanism transforms the input rotary motion of motor into linear motion of the focal plane assembly. Then combined with the form of linear guide restraint movement, the magnetic encoder is adopted to detect the response of displacement. And the closed loop control is adopted to realize accurate focusing. This paper illustrated the design scheme for a focusing mechanism and analyzed its error sources. It has the advantages of light friction and simple transmission chain and reducing the transmission error effectively. And this paper also analyses the target surface by finite element analysis and lightweight design. Proving that the precision of focusing mechanism can achieve higher than 3um, and the focusing range is +/-2mm.

  5. Accelerated Focused Ultrasound Imaging

    PubMed Central

    White, P. Jason; Thomenius, Kai; Clement, Gregory T.

    2010-01-01

    One of the most, basic trade-offs in ultrasound imaging involves frame rate, depth, and number of lines. Achieving good spatial resolution and coverage requires a large number of lines, leading to decreases in frame rate. An even more serious imaging challenge occurs with imaging modes involving spatial compounding and 3-D/4-D imaging, which are severely limited by the slow speed of sound in tissue. The present work can overcome these traditional limitations, making ultrasound imaging many-fold faster. By emitting several beams at once, and by separating the resulting overlapped signals through spatial and temporal processing, spatial resolution and/or coverage can be increased by many-fold while leaving frame rates unaffected. The proposed approach can also be extended to imaging strategies that do not involve transmit beamforming, such as synthetic aperture imaging. Simulated and experimental results are presented where imaging speed is improved by up to 32-fold, with little impact on image quality. Object complexity has little impact on the method’s performance, and data from biological systems can readily be handled. The present work may open the door to novel multiplexed and/or multidimensional protocols considered impractical today. PMID:20040398

  6. Scanning and focusing mechanisms of METEOSAT radiometer

    NASA Technical Reports Server (NTRS)

    Jouan, J.

    1977-01-01

    The scanning and focusing mechanisms settled onboard the METEOSAT Radiometer are described. A large camera which will take line by line pictures of the earth from a geostationary satellite in the same manner as a TV picture using both the spin of the spacecraft and the tilt of a telescope is included. The scanning mechanism provides the + or - 9 degrees tilt angle of the telescope through 2,500 elementary steps of 1.256 0.0001 radian. As the radiometer image quality is closely dependent on the characteristics of the scanning law, the mechanism is required to fulfill functional performances specifications particularly severe in terms of linearity of the scan curve, accuracy of each step as well as repeatability of the short-term scanning. The focusing mechanism allows + or - 12 millimeters shift of the telescope focus by step increments of 0.140 mm. The focus adjustment is achieved by moving a dihedral reflector according to a pure straight-line motion. The main requirements of each mechanism are summarized and their design and performances are described in detail.

  7. Accurate taxonomic assignment of short pyrosequencing reads.

    PubMed

    Clemente, José C; Jansson, Jesper; Valiente, Gabriel

    2010-01-01

    Ambiguities in the taxonomy dependent assignment of pyrosequencing reads are usually resolved by mapping each read to the lowest common ancestor in a reference taxonomy of all those sequences that match the read. This conservative approach has the drawback of mapping a read to a possibly large clade that may also contain many sequences not matching the read. A more accurate taxonomic assignment of short reads can be made by mapping each read to the node in the reference taxonomy that provides the best precision and recall. We show that given a suffix array for the sequences in the reference taxonomy, a short read can be mapped to the node of the reference taxonomy with the best combined value of precision and recall in time linear in the size of the taxonomy subtree rooted at the lowest common ancestor of the matching sequences. An accurate taxonomic assignment of short reads can thus be made with about the same efficiency as when mapping each read to the lowest common ancestor of all matching sequences in a reference taxonomy. We demonstrate the effectiveness of our approach on several metagenomic datasets of marine and gut microbiota.

  8. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  9. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  10. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  11. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  12. Assembly-line Simulation Program

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.; Zendejas, Silvino; Malhotra, Shan

    1987-01-01

    Costs and profits estimated for models based on user inputs. Standard Assembly-line Manufacturing Industry Simulation (SAMIS) program generalized so useful for production-line manufacturing companies. Provides accurate and reliable means of comparing alternative manufacturing processes. Used to assess impact of changes in financial parameters as cost of resources and services, inflation rates, interest rates, tax policies, and required rate of return of equity. Most important capability is ability to estimate prices manufacturer would have to receive for its products to recover all of costs of production and make specified profit. Written in TURBO PASCAL.

  13. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  14. Focusing properties of a three-element quadrupole lens system and its stigmatic focusing behaviour

    NASA Astrophysics Data System (ADS)

    Zafar, Yu.

    The focusing properties of a three-element quadrupole lens system (triplet) have been studied in its general thick-lens form, and analytical expressions of corresponding matrix elements have been obtained. A graphical method has been utilized to determine the stigmatic focusing region of the triplet system generally, and in the special case of electrostatic triplet system installed in 'on-line SPIN-3 facility' in YASNAPP-2, JINR.

  15. Focus on 'Rue Legendre'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated image of PIA04196 Focus on 'Rue Legendre'

    Spirit used its microscopic imager to take this mosaic of the rock 'Haussmann' on martian day, or sol, 563 (August 3, 2005). The specific target is nicknamed 'Rue Legendre.' The rounded nature of the pebbles indicates that they were eroded on the surface before being embedded into the Haussmann rock. The size of the larger of the two pebbles is approximately 3 centimeters (1.2 inches). The rock probably formed from impact ejecta, consistent with other rocks Spirit discovered during its climb to the summit of 'Husband Hill.'

  16. Dielectrophoretic columnar focusing device

    DOEpatents

    James, Conrad D.; Galambos, Paul C.; Derzon, Mark S.

    2010-05-11

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting, and for separations in material control.

  17. Focused crossed Andreev reflection

    NASA Astrophysics Data System (ADS)

    Haugen, H.; Brataas, A.; Waintal, X.; Bauer, G. E. W.

    2011-03-01

    We consider non-local transport mediated by Andreev reflection in a two-dimensional electron gas (2DEG) connected to one superconducting and two normal metal terminals. A robust scheme is presented for observing crossed Andreev reflection (CAR) between the normal metal terminals based on electron focusing by weak perpendicular magnetic fields. At slightly elevated temperatures the CAR signature can be easily distinguished from a background of quantum interference fluctuations. The CAR-induced entanglement between electrons can be switched on and off over large distances by the magnetic field.

  18. Focusing of particles scattered by a surface

    NASA Astrophysics Data System (ADS)

    Babenko, P. Yu.; Zinov'ev, A. N.; Shergin, A. P.

    2015-06-01

    It has been shown by computer simulation that the coefficient of reflection of argon atoms scattered by crystalline aluminum and germanium targets at glancing angles of less than 4° is close to unity and the beam of scattered particles exhibits focusing (the angular distributions of particles are strongly compressed). Whereas beam focusing with respect to the azimuth is well known and has already been studied, sharp focusing in the surface-normal direction at small glancing angles has not been studied so far. This effect is confirmed by the experimental results. It is associated with multiple scattering of incident particles by the atomic chain. The simulation results allowed finding quite accurately the amplitude of thermal vibrations of surface atoms ((0.123 ± 0.007) Å for aluminum), which agrees well with the experiment.

  19. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  20. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  1. Accurate superimposition of perimetry data onto fundus photographs.

    PubMed

    Bek, T; Lund-Andersen, H

    1990-02-01

    A technique for accurate superimposition of computerized perimetry data onto the corresponding retinal locations seen on fundus photographs was developed. The technique was designed to take into account: 1) that the photographic field of view of the fundus camera varies with ametropia-dependent camera focusing 2) possible distortion by the fundus camera, and 3) that corrective lenses employed during perimetry magnify or minify the visual field. The technique allowed an overlay of perimetry data of the central 60 degrees of the visual field onto fundus photographs with an accuracy of 0.5 degree. The correlation of localized retinal morphology to localized retinal function was therefore limited by the spatial resolution of the computerized perimetry, which was 2.5 degrees in the Dicon AP-2500 perimeter employed for this study. The theoretical assumptions of the technique were confirmed by comparing visual field records to fundus photographs from patients with morphologically well-defined non-functioning lesions in the retina.

  2. Isoelectric focusing in space

    NASA Technical Reports Server (NTRS)

    Bier, M.; Egen, N. B.; Mosher, R. A.; Twitty, G. E.

    1982-01-01

    The potential of space electrophoresis is conditioned by the fact that all electrophoretic techniques require the suppression of gravity-caused convection. Isoelectric focusing (IEF) is a powerful variant of electrophoresis, in which amphoteric substances are separated in a pH gradient according to their isoelectric points. A new apparatus for large scale IEF, utilizing a recycling principle, has been developed. In the ground-based prototype, laminar flow is provided by a series of parallel filter elements. The operation of the apparatus is monitored by an automated array of pH and ultraviolet absorption sensors under control of a desk-top computer. The apparatus has proven to be useful for the purification of a variety of enzymes, snake venom proteins, peptide hormones, and other biologicals, including interferon produced by genetic engineering techniques. In planning for a possible space apparatus, a crucial question regarding electroosmosis needs to be addressed To solve this problem, simple focusing test modules are planned for inclusion in an early Shuttle flight.

  3. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  4. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  5. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  6. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  7. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  8. Obtaining accurate translations from expressed sequence tags.

    PubMed

    Wasmuth, James; Blaxter, Mark

    2009-01-01

    The genomes of an increasing number of species are being investigated through the generation of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and typically define incomplete transcripts, making downstream annotation difficult. Annotation would be greatly improved with robust polypeptide translations. Many current solutions for EST translation require a large number of full-length gene sequences for training purposes, a resource that is not available for the majority of EST projects. As part of our ongoing EST programs investigating these "neglected" genomes, we have developed a polypeptide prediction pipeline, prot4EST. It incorporates freely available software to produce final translations that are more accurate than those derived from any single method. We describe how this integrated approach goes a long way to overcoming the deficit in training data.

  9. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  10. Accurate radio positions with the Tidbinbilla interferometer

    NASA Technical Reports Server (NTRS)

    Batty, M. J.; Gulkis, S.; Jauncey, D. L.; Rayner, P. T.

    1979-01-01

    The Tidbinbilla interferometer (Batty et al., 1977) is designed specifically to provide accurate radio position measurements of compact radio sources in the Southern Hemisphere with high sensitivity. The interferometer uses the 26-m and 64-m antennas of the Deep Space Network at Tidbinbilla, near Canberra. The two antennas are separated by 200 m on a north-south baseline. By utilizing the existing antennas and the low-noise traveling-wave masers at 2.29 GHz, it has been possible to produce a high-sensitivity instrument with a minimum of capital expenditure. The north-south baseline ensures that a good range of UV coverage is obtained, so that sources lying in the declination range between about -80 and +30 deg may be observed with nearly orthogonal projected baselines of no less than about 1000 lambda. The instrument also provides high-accuracy flux density measurements for compact radio sources.

  11. Magnetic ranging tool accurately guides replacement well

    SciTech Connect

    Lane, J.B.; Wesson, J.P. )

    1992-12-21

    This paper reports on magnetic ranging surveys and directional drilling technology which accurately guided a replacement well bore to intersect a leaking gas storage well with casing damage. The second well bore was then used to pump cement into the original leaking casing shoe. The repair well bore kicked off from the surface hole, bypassed casing damage in the middle of the well, and intersected the damaged well near the casing shoe. The repair well was subsequently completed in the gas storage zone near the original well bore, salvaging the valuable bottom hole location in the reservoir. This method would prevent the loss of storage gas, and it would prevent a potential underground blowout that could permanently damage the integrity of the storage field.

  12. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  13. ACCURATE ESTIMATIONS OF STELLAR AND INTERSTELLAR TRANSITION LINES OF TRIPLY IONIZED GERMANIUM

    SciTech Connect

    Dutta, Narendra Nath; Majumder, Sonjoy E-mail: sonjoy@gmail.com

    2011-08-10

    In this paper, we report on weighted oscillator strengths of E1 transitions and transition probabilities of E2 transitions among different low-lying states of triply ionized germanium using highly correlated relativistic coupled cluster (RCC) method. Due to the abundance of Ge IV in the solar system, planetary nebulae, white dwarf stars, etc., the study of such transitions is important from an astrophysical point of view. The weighted oscillator strengths of E1 transitions are presented in length and velocity gauge forms to check the accuracy of the calculations. We find excellent agreement between calculated and experimental excitation energies. Oscillator strengths of few transitions, wherever studied in the literature via other theoretical and experimental approaches, are compared with our RCC calculations.

  14. The Most Accurate Path from Point A to Point B is Not Necessarily a Straight Line

    DTIC Science & Technology

    2012-08-20

    2σ2θ sin(θ) cos(θ) ≈ sin(θ̃) cos(θ̃) 1− 2σ2θ (13) 4 DISTRIBUTION A 2.4 Guidance 2.4.1 Midcourse A natural way to achieve the excitation necessary for...Air Force Research Laboratory Munitions Directorate 101 W Eglin Blvd. Eglin AFB, FL 32542 20 August 2012 FINAL REPORT...Force Base, FL 32542 AIR FORCE RESEARCH LABORATORY MUNITIONS DIRECTORATE ii Distribution A NOTICE AND SIGNATURE PAGE Using Government

  15. Focusing ultrasound with an acoustic metamaterial network.

    PubMed

    Zhang, Shu; Yin, Leilei; Fang, Nicholas

    2009-05-15

    We present the first experimental demonstration of focusing ultrasound waves through a flat acoustic metamaterial lens composed of a planar network of subwavelength Helmholtz resonators. We observed a tight focus of half-wavelength in width at 60.5 kHz by imaging a point source. This result is in excellent agreement with the numerical simulation by transmission line model in which we derived the effective mass density and compressibility. This metamaterial lens also displays variable focal length at different frequencies. Our experiment shows the promise of designing compact and lightweight ultrasound imaging elements.

  16. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  17. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  18. Alliance-focused training.

    PubMed

    Eubanks-Carter, Catherine; Muran, J Christopher; Safran, Jeremy D

    2015-06-01

    Alliance-focused training (AFT) aims to increase therapists' ability to recognize, tolerate, and negotiate alliance ruptures by increasing the therapeutic skills of self-awareness, affect regulation, and interpersonal sensitivity. In AFT, therapists are encouraged to draw on these skills when metacommunicating about ruptures with patients. In this article, we present the 3 main supervisory tasks of AFT: videotape analysis of rupture moments, awareness-oriented role-plays, and mindfulness training. We describe the theoretical and empirical support for each supervisory task, provide examples based on actual supervision sessions, and present feedback about the usefulness of the techniques from trainees in our program. We also note some of the challenges involved in conducting AFT and the importance of maintaining a strong supervisory alliance when using this training approach.

  19. Capillary Isoelectric Focusing

    NASA Astrophysics Data System (ADS)

    Markuszewski, Michał J.; Bujak, Renata; Daghir, Emilia

    Capillary isoelectric focusing (CIEF) is a widespread technique for the analysis of peptides and proteins in biological samples. CIEF is used to separate mixtures of compounds on the basis of differences in their isoelectric point. Aspects of sample preparation, capillary selection, zone mobilization procedures as well as various detection modes used have been described and discussed. Moreover CIEF, coupled to various types of detection techniques (MALDI or LIF), has increasingly been applied to the analysis of variety different high-molecular compounds. CIEF is considered as a highly specific analytical method which may be routinely used in the separation of rare hemoglobin variants. In addition, the application of CIEF in proteomic field have been discussed on the examples of analyses of glycoproteins and immunoglobins due to the meaning in clinical diagnostic.

  20. Focus on granular segregation

    NASA Astrophysics Data System (ADS)

    Daniels, Karen E.; Schröter, Matthias

    2013-03-01

    Ordinary fluids mix themselves through thermal motions, or can be even more efficiently mixed by stirring. In contrast, granular materials such as sand often unmix when they are stirred, shaken or sheared. This granular segregation is both a practical means to separate materials in industry, and a persistent challenge to uniformly mixing them. While segregation phenomena are ubiquitous, a large number of different mechanisms have been identified and the underlying physics remains the subject of much inquiry. Particle size, shape, density and even surface roughness can play significant roles. The aim of this focus issue is to provide a snapshot of the current state of the science, covering a wide range of packing densities and driving mechanisms, from thermal-like dilute systems to dense flows.

  1. Focus awards 2002.

    PubMed

    Davis, Naomi

    2003-03-22

    The dental team at Zetland House Clinic are a particularly innovative group. As a result of their parent hospital being the first to complete a whole organization clinical governance programme run by the NHS Modernization Agency, they were consequently the first dental team to do so. Now the clinic is a better place to work where the staff are proud of their clinic and the work that they do. The changes that resulted through their experiences of the program have benefited the patients and staff alike, and was such a success story that they have been taken as an example for the Modernisation Agency website to illustrate good practice in clinical governance. These changes and the way they approached their involvement in the program also earned the Zetland House team a place on the finalist list of the 2002 Focus Awards.

  2. Focusing on customer service.

    PubMed

    1996-01-01

    This booklet is devoted to a consideration of how good customer service in family planning programs can generate demand for products and services, bring customers back, and reduce costs. Customer service is defined as increasing client satisfaction through continuous concern for client preferences, staff accountability to clients, and respect for the rights of clients. Issues discussed include the introduction of a customer service approach and gaining staff commitment. The experience of PROSALUD in Bolivia in recruiting appropriate staff, supervising staff, soliciting client feedback, and marketing services is offered as an example of a successful customer service approach. The key customer service functions are described as 1) establishing a welcoming atmosphere, 2) streamlining client flow, 3) personalizing client services, and 4) organizing and providing clear information to clients. The role of the manager in developing procedures is explored, and the COPE (Client-Oriented Provider-Efficient) process is presented as a good way to begin to make improvements. Techniques in staff training in customer service include brainstorming, role playing, using case studies (examples of which are provided), and engaging in practice sessions. Training also leads to the development of effective customer service attitudes, and the differences between these and organizational/staff-focused attitudes are illustrated in a chart. The use of communication skills (asking open-ended questions, helping clients express their concerns, engaging in active listening, and handling difficult situations) is considered. Good recovery skills are important when things go wrong. Gathering and using client feedback is the next topic considered. This involves identifying, recording, and discussing customer service issues as well as taking action on these issues and evaluating the results. The booklet ends by providing a sample of customer service indicators, considering the maintenance of a

  3. Higher order accurate partial implicitization: An unconditionally stable fourth-order-accurate explicit numerical technique

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1975-01-01

    The previously obtained second-order-accurate partial implicitization numerical technique used in the solution of fluid dynamic problems was modified with little complication to achieve fourth-order accuracy. The Von Neumann stability analysis demonstrated the unconditional linear stability of the technique. The order of the truncation error was deduced from the Taylor series expansions of the linearized difference equations and was verified by numerical solutions to Burger's equation. For comparison, results were also obtained for Burger's equation using a second-order-accurate partial-implicitization scheme, as well as the fourth-order scheme of Kreiss.

  4. Dual-focus fluorescence correlation spectroscopy.

    PubMed

    Pieper, Christoph; Weiß, Kerstin; Gregor, Ingo; Enderlein, Jörg

    2013-01-01

    This chapter introduces into the technique of dual-focus fluorescence correlation spectroscopy or 2fFCS. In 2fFCS, the fluorescence signals generated in two laterally shifted but overlapping focal regions are auto- and crosscorrelated. The resulting correlation curves are then used to determine diffusion coefficients of fluorescent molecules or particles in solutions or membranes. Moreover, the technique can also be used for noninvasively measuring flow-velocity profiles in three dimensions. Because the distance between the focal regions is precisely known and not changed by most optical aberrations, this provides an accurate and immutable external length scale for determining diffusivities and velocities, making 2fFCS the method of choice for accurately measuring absolute values of these quantities at pico- to nanomolar concentration.

  5. Focused shock spark discharge drill using multiple electrodes

    DOEpatents

    Moeny, William M.; Small, James G.

    1988-01-01

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  6. Does a pneumotach accurately characterize voice function?

    NASA Astrophysics Data System (ADS)

    Walters, Gage; Krane, Michael

    2016-11-01

    A study is presented which addresses how a pneumotach might adversely affect clinical measurements of voice function. A pneumotach is a device, typically a mask, worn over the mouth, in order to measure time-varying glottal volume flow. By measuring the time-varying difference in pressure across a known aerodynamic resistance element in the mask, the glottal volume flow waveform is estimated. Because it adds aerodynamic resistance to the vocal system, there is some concern that using a pneumotach may not accurately portray the behavior of the voice. To test this hypothesis, experiments were performed in a simplified airway model with the principal dimensions of an adult human upper airway. A compliant constriction, fabricated from silicone rubber, modeled the vocal folds. Variations of transglottal pressure, time-averaged volume flow, model vocal fold vibration amplitude, and radiated sound with subglottal pressure were performed, with and without the pneumotach in place, and differences noted. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  7. Accurate thermoplasmonic simulation of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Da-Miao; Liu, Yan-Nan; Tian, Fa-Lin; Pan, Xiao-Min; Sheng, Xin-Qing

    2017-01-01

    Thermoplasmonics leads to enhanced heat generation due to the localized surface plasmon resonances. The measurement of heat generation is fundamentally a complicated task, which necessitates the development of theoretical simulation techniques. In this paper, an efficient and accurate numerical scheme is proposed for applications with complex metallic nanostructures. Light absorption and temperature increase are, respectively, obtained by solving the volume integral equation (VIE) and the steady-state heat diffusion equation through the method of moments (MoM). Previously, methods based on surface integral equations (SIEs) were utilized to obtain light absorption. However, computing light absorption from the equivalent current is as expensive as O(NsNv), where Ns and Nv, respectively, denote the number of surface and volumetric unknowns. Our approach reduces the cost to O(Nv) by using VIE. The accuracy, efficiency and capability of the proposed scheme are validated by multiple simulations. The simulations show that our proposed method is more efficient than the approach based on SIEs under comparable accuracy, especially for the case where many incidents are of interest. The simulations also indicate that the temperature profile can be tuned by several factors, such as the geometry configuration of array, beam direction, and light wavelength.

  8. Accurate Theoretical Thermochemistry for Fluoroethyl Radicals.

    PubMed

    Ganyecz, Ádám; Kállay, Mihály; Csontos, József

    2017-02-09

    An accurate coupled-cluster (CC) based model chemistry was applied to calculate reliable thermochemical quantities for hydrofluorocarbon derivatives including radicals 1-fluoroethyl (CH3-CHF), 1,1-difluoroethyl (CH3-CF2), 2-fluoroethyl (CH2F-CH2), 1,2-difluoroethyl (CH2F-CHF), 2,2-difluoroethyl (CHF2-CH2), 2,2,2-trifluoroethyl (CF3-CH2), 1,2,2,2-tetrafluoroethyl (CF3-CHF), and pentafluoroethyl (CF3-CF2). The model chemistry used contains iterative triple and perturbative quadruple excitations in CC theory, as well as scalar relativistic and diagonal Born-Oppenheimer corrections. To obtain heat of formation values with better than chemical accuracy perturbative quadruple excitations and scalar relativistic corrections were inevitable. Their contributions to the heats of formation steadily increase with the number of fluorine atoms in the radical reaching 10 kJ/mol for CF3-CF2. When discrepancies were found between the experimental and our values it was always possible to resolve the issue by recalculating the experimental result with currently recommended auxiliary data. For each radical studied here this study delivers the best heat of formation as well as entropy data.

  9. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  10. Accurate methods for large molecular systems.

    PubMed

    Gordon, Mark S; Mullin, Jonathan M; Pruitt, Spencer R; Roskop, Luke B; Slipchenko, Lyudmila V; Boatz, Jerry A

    2009-07-23

    Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.

  11. Accurate equilibrium structures for piperidine and cyclohexane.

    PubMed

    Demaison, Jean; Craig, Norman C; Groner, Peter; Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Rudolph, Heinz Dieter

    2015-03-05

    Extended and improved microwave (MW) measurements are reported for the isotopologues of piperidine. New ground state (GS) rotational constants are fitted to MW transitions with quartic centrifugal distortion constants taken from ab initio calculations. Predicate values for the geometric parameters of piperidine and cyclohexane are found from a high level of ab initio theory including adjustments for basis set dependence and for correlation of the core electrons. Equilibrium rotational constants are obtained from GS rotational constants corrected for vibration-rotation interactions and electronic contributions. Equilibrium structures for piperidine and cyclohexane are fitted by the mixed estimation method. In this method, structural parameters are fitted concurrently to predicate parameters (with appropriate uncertainties) and moments of inertia (with uncertainties). The new structures are regarded as being accurate to 0.001 Å and 0.2°. Comparisons are made between bond parameters in equatorial piperidine and cyclohexane. Another interesting result of this study is that a structure determination is an effective way to check the accuracy of the ground state experimental rotational constants.

  12. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  13. Accurate, reproducible measurement of blood pressure.

    PubMed Central

    Campbell, N R; Chockalingam, A; Fodor, J G; McKay, D W

    1990-01-01

    The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings. PMID:2192791

  14. Fast and accurate exhaled breath ammonia measurement.

    PubMed

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  15. Accurate Fission Data for Nuclear Safety

    NASA Astrophysics Data System (ADS)

    Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.

    2014-05-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

  16. Focusing on flu

    PubMed Central

    Short, Mary B; Middleman, Amy B

    2014-01-01

    Introduction: To describe adolescents' perspectives regarding the use of school-located immunization programs (SLIP) for influenza vaccination. More importantly, adolescents were asked what factors would make them more or less likely to use a SLIP offering influenza vaccine. Results: Participants were generally found to be knowledgeable about influenza and to have positive attitudes toward receiving the vaccine via SLIP. Students were more willing to participate in a SLIP if it were low cost or free, less time-consuming than going to a doctor, and if they felt they could trust vaccinators. Overall, high school and middle school students ranked the benefits of SLIP similarly to each other. Methods: Focus groups using nominal group method were conducted with middle and high school students in a large, urban school district. Responses were recorded by each school, and then, responses were ranked across all participating schools for each question. Conclusions: A wide range of issues are important to middle and high school students when considering participation in SLIPs including convenience, public health benefits, trust in the program, program safety, and sanitary issues. Further research will be needed regarding the generalizability of these findings to larger populations of students. PMID:24018398

  17. White Light Focusing Mirror

    NASA Astrophysics Data System (ADS)

    Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Sullivan, Michael; Chance, Mark; Abel, Don; Toomey, John; Hulbert, Steven

    2007-01-01

    The NSLS X28C white-light beamline is being outfitted with a focusing mirror in order to increase, as well as control, the x-ray intensity at the sample position. The new mirror is a 50 mm × 100 mm × 1100 mm single crystal silicon cylindrical 43.1mm radius substrate bendable to a toroid from infinite to 1200 m radius. The unique feature of this mirror system is the dual use of Indalloy 51 as both a mechanism for heat transfer and a buoyant support to negate the effects of gravity. The benefit of the liquid metal support is the ability to correct for minor slope errors that take the form of a parabola. A bobber mechanism is employed to displace the fluid under the mirror +/- 1.5 mm. This allows RMS slope error correction on the order of 2 urad. The unique mounting of the mirror ensures the contributions to slope error from errant mechanical stresses due to machining tolerances are virtually non-existent. After correction, the surface figure error (measured minus ideal) is <= 0.5 urad rms.

  18. Modeling line emission in PDRs

    NASA Astrophysics Data System (ADS)

    Le Bourlot, J.

    2000-11-01

    The formation of emission lines in a diluted medium results from a large number of conspiring physical processes. When trying to compute a line intensity or (harder) a line profile from first principles, one has to take into account at least three different kind of processes: Atomic or molecular physics data. An accurate knowledge of radiative and collisional transition probabilities is required to determine the population of excited levels which rules the formation of emission lines. Thermodynamical equilibrium is almost never established, so that detailed balance equations need to be solved. Unfortunately many important data are still badly known. Structure and dynamics of the emitting medium. Local emissivities at a specific point depend at least on the local temperature and density of the gas, but often also on other less accessible parameters such as the turbulence state of the gas, a magnetic field or the existence of rapidly evolving transients such as shocks. Self consistent models which would include all relevant processes are out of reach numerically, and choices must be made among the more relevant physical processes to include. Radiative transfer effects. For a few relevant interstellar lines, the opacity is small enough that the emergent emissivity is just the sum of all local emissivities along the line of sight. Unfortunately, most lines are not so easy to cope with and a minimal radiative transfer formalism must be included. Various degrees of sophistication are possible, from a simple escape probability theory to full wavelength dependent line transfer. On the whole, line modelling is still more an art than a science. One should be well aware of the various assumptions made in a model before applying it to some particular observational result.

  19. Central line infections - hospitals

    MedlinePlus

    ... infection; CVC - infection; Central venous device - infection; Infection control - central line infection; Nosocomial infection - central line infection; Hospital acquired infection - central line infection; Patient safety - central ...

  20. Method for out-of-focus camera calibration.

    PubMed

    Bell, Tyler; Xu, Jing; Zhang, Song

    2016-03-20

    State-of-the-art camera calibration methods assume that the camera is at least nearly in focus and thus fail if the camera is substantially defocused. This paper presents a method which enables the accurate calibration of an out-of-focus camera. Specifically, the proposed method uses a digital display (e.g., liquid crystal display monitor) to generate fringe patterns that encode feature points into the carrier phase; these feature points can be accurately recovered, even if the fringe patterns are substantially blurred (i.e., the camera is substantially defocused). Experiments demonstrated that the proposed method can accurately calibrate a camera regardless of the amount of defocusing: the focal length difference is approximately 0.2% when the camera is focused compared to when the camera is substantially defocused.

  1. Vertical hydrodynamic focusing in glass microchannels.

    PubMed

    Lin, Tony A; Hosoi, A E; Ehrlich, Daniel J

    2009-01-08

    Vertical hydrodynamic focusing in microfluidic devices is investigated through simulation and through direct experimental verification using a confocal microscope and a novel form of stroboscopic imaging. Optimization for microfluidic cytometry of biological cells is examined. By combining multiple crossing junctions, it is possible to confine cells to a single analytic layer of interest. Subtractive flows are investigated as a means to move the analysis layer vertically in the channel and to correct the flatness of this layer. The simulation software (ADINA and Coventor) is shown to accurately capture the complex dependencies of the layer interfaces, which vary strongly with channel geometry and relative flow rates.

  2. EDITORIAL: Focus on Graphene

    NASA Astrophysics Data System (ADS)

    Peres, N. M. R.; Ribeiro, Ricardo M.

    2009-09-01

    Graphene physics is currently one of the most active research areas in condensed matter physics. Countless theoretical and experimental studies have already been performed, targeting electronic, magnetic, thermal, optical, structural and vibrational properties. Also, studies that modify pristine graphene, aiming at finding new physics and possible new applications, have been considered. These include patterning nanoribbons and quantum dots, exposing graphene's surface to different chemical species, studying multilayer systems, and inducing strain and curvature (modifying in this way graphene's electronic properties). This focus issue includes many of the latest developments on graphene research. Focus on Graphene Contents Electronic properties of graphene and graphene nanoribbons with 'pseudo-Rashba' spin-orbit coupling Tobias Stauber and John Schliemann Strained graphene: tight-binding and density functional calculations R M Ribeiro, Vitor M Pereira, N M R Peres, P R Briddon and A H Castro Neto The effect of sublattice symmetry breaking on the electronic properties of doped graphene A Qaiumzadeh and R Asgari Interfaces within graphene nanoribbons J Wurm, M Wimmer, I Adagideli, K Richter and H U Baranger Weak localization and transport gap in graphene antidot lattices J Eroms and D Weiss Electronic properties of graphene antidot lattices J A Fürst, J G Pedersen, C Flindt, N A Mortensen, M Brandbyge, T G Pedersen and A-P Jauho Splitting of critical energies in the n=0 Landau level of graphene Ana L C Pereira Double-gated graphene-based devices S Russo, M F Craciun, M Yamamoto, S Tarucha and A F Morpurgo Pinning and switching of magnetic moments in bilayer graphene Eduardo V Castro, M P López-Sancho and M A H Vozmediano Electronic transport properties of graphene nanoribbons Katsunori Wakabayashi, Yositake Takane, Masayuki Yamamoto and Manfred Sigrist Many-body effects on out-of-plane phonons in graphene J González and E Perfetto Graphene zigzag ribbons, square

  3. Accurate bs and w testing important for crude-oil custody transfer

    SciTech Connect

    Williams, J. )

    1990-11-12

    This paper discusses how monitoring crude-oil sediment and water content at the field production site is essential in accurate crude-oil custody transfer operations. This is accomplished by manual methods, or on-line devices like capacitance, density, or energy-absorption analyzers. For custody-transfer purposes, sediment and water is determined by a test which follows one of the API manuals of petroleum measurement standards (MPMS). Typically, this test is conducted in the field by the field centrifuge method which, if performed properly, yields very accurate results. Laboratory tests can be performed, but sample handling becomes even more critical.

  4. Prostate Focused Ultrasound Therapy.

    PubMed

    Chapelon, Jean-Yves; Rouvière, Olivier; Crouzet, Sébastien; Gelet, Albert

    2016-01-01

    The tremendous progress in engineering and computing power coupled with ultrasound transducer technology and imaging modalities over the past 20 years have encouraged a revival of clinical interest in ultrasound therapy, mainly in High-Intensity Focused Ultrasound (HIFU). So far, the most extensive results from HIFU obtained in urology involve transrectal prostate ablation, which appears to be an effective therapeutic alternative for patients with malignant prostate tumors. Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men. Several treatment options with different therapeutic approaches exist, including HIFU for localized PCa that has been in use for over 15 years. Since the early 2000s, two systems have been marketed for this application, and other devices are currently in clinical trials. HIFU treatment can be used either alone or in combination with (before- or after-) external beam radiotherapy (EBRT) (before or after HIFU) and can be repeated multiple times. HIFU treatment is performed under real-time monitoring with ultrasound or guided by MRI. Two indications are validated today: Primary care treatment and EBRT failure. The results of HIFU for primary care treatment are similar to standard conformal EBRT, even though no randomized comparative studies have been performed and no 10-year follow up data is yet available for HIFU. Salvage HIFU after EBRT failure is increasing with oncological outcomes, similar to those achieved with surgery but with the advantage of fewer adverse effects. HIFU is an evolving technology perfectly adapted for focal treatment. Thus, HIFU focal therapy is another pathway that must be explored when considering the accuracy and reliability for PCa mapping techniques. HIFU would be particularly suited for such a therapy since it is clear that HIFU outcomes and toxicity are relative to the volume of prostate treated.

  5. Stress wave focusing transducers

    SciTech Connect

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  6. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).

  7. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  8. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  9. Accurate glucose detection in a small etalon

    NASA Astrophysics Data System (ADS)

    Martini, Joerg; Kuebler, Sebastian; Recht, Michael; Torres, Francisco; Roe, Jeffrey; Kiesel, Peter; Bruce, Richard

    2010-02-01

    We are developing a continuous glucose monitor for subcutaneous long-term implantation. This detector contains a double chamber Fabry-Perot-etalon that measures the differential refractive index (RI) between a reference and a measurement chamber at 850 nm. The etalon chambers have wavelength dependent transmission maxima which dependent linearly on the RI of their contents. An RI difference of ▵n=1.5.10-6 changes the spectral position of a transmission maximum by 1pm in our measurement. By sweeping the wavelength of a single-mode Vertical-Cavity-Surface-Emitting-Laser (VCSEL) linearly in time and detecting the maximum transmission peaks of the etalon we are able to measure the RI of a liquid. We have demonstrated accuracy of ▵n=+/-3.5.10-6 over a ▵n-range of 0 to 1.75.10-4 and an accuracy of 2% over a ▵nrange of 1.75.10-4 to 9.8.10-4. The accuracy is primarily limited by the reference measurement. The RI difference between the etalon chambers is made specific to glucose by the competitive, reversible release of Concanavalin A (ConA) from an immobilized dextran matrix. The matrix and ConA bound to it, is positioned outside the optical detection path. ConA is released from the matrix by reacting with glucose and diffuses into the optical path to change the RI in the etalon. Factors such as temperature affect the RI in measurement and detection chamber equally but do not affect the differential measurement. A typical standard deviation in RI is +/-1.4.10-6 over the range 32°C to 42°C. The detector enables an accurate glucose specific concentration measurement.

  10. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Astrophysics Data System (ADS)

    Wheeler, K.; Knuth, K.; Castle, P.

    2005-12-01

    and IKONOS imagery and the 3-D volume estimates. The combination of these then allow for a rapid and hopefully very accurate estimation of biomass.

  11. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  12. Attentional Focus Effects in Standing Long Jump Performance: Influence of a Broad and Narrow Internal Focus.

    PubMed

    Becker, Kevin A; Smith, Peter J K

    2015-07-01

    The content of instructions that strength coaches give can have a significant impact on how an athlete or client performs. Research on motor learning has shown an advantage of instructions focusing on the effects of movements (external focus) over those focusing on the movements themselves (internal focus) in the performance of motor skills. Internally focused cues are abundant in coaching, therefore the purpose of this study was to test whether some internally focused cues might be more helpful than others. Participants (68) were randomly assigned to either an external focus (EX), broad internal focus (B-IN), narrow internal focus (N-IN), or a control group (CON), and performed 5 standing long jumps. All groups were instructed that the goal was to jump as far as possible. In addition, the EX group was told to "jump as far past the start line as possible." The B-IN group was told to "use your legs." The N-IN group was told to "extend your knees as rapidly as possible," and the CON group received no additional instruction. An analysis of covariance showed that the EX group (198.09 ± 31.89 cm) jumped significantly farther than both the B-IN group (173.74 ± 35.36 cm), p = 0.010 and the N-IN group (178.53 ± 31.17 cm), p = 0.049, with no group different from the CON group. The results suggest that a broad internal focus is no more effective than a narrow internal focus, and that an external focus leads to the greatest jump distance. Strength and conditioning professionals should carefully word their instructions to induce an external focus of attention whenever possible.

  13. Molecular profiling in the treatment of colorectal cancer: focus on regorafenib

    PubMed Central

    Yan, Yiyi; Grothey, Axel

    2015-01-01

    Metastatic colorectal cancer (mCRC) is a highly heterogeneous disease. Its treatment outcome has been significantly improved over the last decade with the incorporation of biological targeted therapies, including anti-EGFR antibodies, cetuximab and panitumumab, and VEGF inhibitors, bevacizumab, ramucirumab, and aflibercept. The identification of predictive biomarkers has further improved the survival by accurately selecting patients who are most likely to benefit from these treatments, such as RAS mutation profiling for EGFR antibodies. Regorafenib is a multikinase inhibitor currently used as late line therapy for mCRC. The molecular and genetic markers associated with regorafenib treatment response are yet to be characterized. Here, we review currently available clinical evidence of mCRC molecular profiling, such as RAS, BRAF, and MMR testing, and its role in targeted therapies with special focus on regorafenib treatment. PMID:26508880

  14. Accurate spectral numerical schemes for kinetic equations with energy diffusion

    NASA Astrophysics Data System (ADS)

    Wilkening, Jon; Cerfon, Antoine J.; Landreman, Matt

    2015-08-01

    We examine the merits of using a family of polynomials that are orthogonal with respect to a non-classical weight function to discretize the speed variable in continuum kinetic calculations. We consider a model one-dimensional partial differential equation describing energy diffusion in velocity space due to Fokker-Planck collisions. This relatively simple case allows us to compare the results of the projected dynamics with an expensive but highly accurate spectral transform approach. It also allows us to integrate in time exactly, and to focus entirely on the effectiveness of the discretization of the speed variable. We show that for a fixed number of modes or grid points, the non-classical polynomials can be many orders of magnitude more accurate than classical Hermite polynomials or finite-difference solvers for kinetic equations in plasma physics. We provide a detailed analysis of the difference in behavior and accuracy of the two families of polynomials. For the non-classical polynomials, if the initial condition is not smooth at the origin when interpreted as a three-dimensional radial function, the exact solution leaves the polynomial subspace for a time, but returns (up to roundoff accuracy) to the same point evolved to by the projected dynamics in that time. By contrast, using classical polynomials, the exact solution differs significantly from the projected dynamics solution when it returns to the subspace. We also explore the connection between eigenfunctions of the projected evolution operator and (non-normalizable) eigenfunctions of the full evolution operator, as well as the effect of truncating the computational domain.

  15. Automatically high accurate and efficient photomask defects management solution for advanced lithography manufacture

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Chen, Lijun; Ma, Lantao; Li, Dejian; Jiang, Wei; Pan, Lihong; Shen, Huiting; Jia, Hongmin; Hsiang, Chingyun; Cheng, Guojie; Ling, Li; Chen, Shijie; Wang, Jun; Liao, Wenkui; Zhang, Gary

    2014-04-01

    Defect review is a time consuming job. Human error makes result inconsistent. The defects located on don't care area would not hurt the yield and no need to review them such as defects on dark area. However, critical area defects can impact yield dramatically and need more attention to review them such as defects on clear area. With decrease in integrated circuit dimensions, mask defects are always thousands detected during inspection even more. Traditional manual or simple classification approaches are unable to meet efficient and accuracy requirement. This paper focuses on automatic defect management and classification solution using image output of Lasertec inspection equipment and Anchor pattern centric image process technology. The number of mask defect found during an inspection is always in the range of thousands or even more. This system can handle large number defects with quick and accurate defect classification result. Our experiment includes Die to Die and Single Die modes. The classification accuracy can reach 87.4% and 93.3%. No critical or printable defects are missing in our test cases. The missing classification defects are 0.25% and 0.24% in Die to Die mode and Single Die mode. This kind of missing rate is encouraging and acceptable to apply on production line. The result can be output and reloaded back to inspection machine to have further review. This step helps users to validate some unsure defects with clear and magnification images when captured images can't provide enough information to make judgment. This system effectively reduces expensive inline defect review time. As a fully inline automated defect management solution, the system could be compatible with current inspection approach and integrated with optical simulation even scoring function and guide wafer level defect inspection.

  16. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  17. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2017-01-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  18. Personalized Orthodontic Accurate Tooth Arrangement System with Complete Teeth Model.

    PubMed

    Cheng, Cheng; Cheng, Xiaosheng; Dai, Ning; Liu, Yi; Fan, Qilei; Hou, Yulin; Jiang, Xiaotong

    2015-09-01

    The accuracy, validity and lack of relation information between dental root and jaw in tooth arrangement are key problems in tooth arrangement technology. This paper aims to describe a newly developed virtual, personalized and accurate tooth arrangement system based on complete information about dental root and skull. Firstly, a feature constraint database of a 3D teeth model is established. Secondly, for computed simulation of tooth movement, the reference planes and lines are defined by the anatomical reference points. The matching mathematical model of teeth pattern and the principle of the specific pose transformation of rigid body are fully utilized. The relation of position between dental root and alveolar bone is considered during the design process. Finally, the relative pose relationships among various teeth are optimized using the object mover, and a personalized therapeutic schedule is formulated. Experimental results show that the virtual tooth arrangement system can arrange abnormal teeth very well and is sufficiently flexible. The relation of position between root and jaw is favorable. This newly developed system is characterized by high-speed processing and quantitative evaluation of the amount of 3D movement of an individual tooth.

  19. ELODIE: A spectrograph for accurate radial velocity measurements.

    NASA Astrophysics Data System (ADS)

    Baranne, A.; Queloz, D.; Mayor, M.; Adrianzyk, G.; Knispel, G.; Kohler, D.; Lacroix, D.; Meunier, J.-P.; Rimbaud, G.; Vin, A.

    1996-10-01

    The fibre-fed echelle spectrograph of Observatoire de Haute-Provence, ELODIE, is presented. This instrument has been in operation since the end of 1993 on the 1.93 m telescope. ELODIE is designed as an updated version of the cross-correlation spectrometer CORAVEL, to perform very accurate radial velocity measurements such as needed in the search, by Doppler shift, for brown-dwarfs or giant planets orbiting around nearby stars. In one single exposure a spectrum at a resolution of 42000 (λ/{DELTA}λ) ranging from 3906A to 6811A is recorded on a 1024x1024 CCD. This performance is achieved by using a tanθ=4 echelle grating and a combination of a prism and a grism as cross-disperser. An automatic on-line data treatment reduces all the ELODIE echelle spectra and computes cross-correlation functions. The instrument design and the data reduction algorithms are described in this paper. The efficiency and accuracy of the instrument and its long term instrumental stability allow us to measure radial velocities with an accuracy better than 15m/s for stars up to 9th magnitude in less than 30 minutes exposure time. Observations of 16th magnitude stars are also possible to measure velocities at about 1km/s accuracy. For classic spectroscopic studies (S/N>100) 9th magnitude stars can be observed in one hour exposure time.

  20. Auto-measuring system of aero-camera lens focus using linear CCD

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ye; Zhao, Yu-liang; Wang, Shu-juan

    2014-09-01

    The automatic and accurate focal length measurement of aviation camera lens is of great significance and practical value. The traditional measurement method depends on the human eye to read the scribed line on the focal plane of parallel light pipe by means of reading microscope. The method is of low efficiency and the measuring results are influenced by artificial factors easily. Our method used linear array solid-state image sensor instead of reading microscope to transfer the imaging size of specific object to be electrical signal pulse width, and used computer to measure the focal length automatically. In the process of measurement, the lens to be tested placed in front of the object lens of parallel light tube. A couple of scribed line on the surface of the parallel light pipe's focal plane were imaging on the focal plane of the lens to be tested. Placed the linear CCD drive circuit on the image plane, the linear CCD can convert the light intensity distribution of one dimension signal into time series of electrical signals. After converting, a path of electrical signals is directly brought to the video monitor by image acquisition card for optical path adjustment and focusing. The other path of electrical signals is processed to obtain the pulse width corresponding to the scribed line by electrical circuit. The computer processed the pulse width and output focal length measurement result. Practical measurement results showed that the relative error was about 0.10%, which was in good agreement with the theory.

  1. Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2014-04-01

    Spatiotemporal focusing, or simultaneous spatial and temporal focusing (SSTF), has already been adopted for various applications in microscopy, photoactivation for biological studies, and laser fabrication. We investigate the effects of aberrations on focus formation in SSTF, in particular, the effects of phase aberrations related to low-order Zernike modes and a refractive index mismatch between the immersion medium and sample. By considering a line focus, we are able to draw direct comparison between the performance of SSTF and conventional spatial focusing (SF). Wide-field SSTF is also investigated and is found to be much more robust to aberrations than either line SSTF or SF. These results show the sensitivity of certain focusing methods to specific aberrations, and can inform on the necessity and benefit of aberration correction.

  2. Approaches for the accurate definition of geological time boundaries

    NASA Astrophysics Data System (ADS)

    Schaltegger, Urs; Baresel, Björn; Ovtcharova, Maria; Goudemand, Nicolas; Bucher, Hugo

    2015-04-01

    Which strategies lead to the most precise and accurate date of a given geological boundary? Geological units are usually defined by the occurrence of characteristic taxa and hence boundaries between these geological units correspond to dramatic faunal and/or floral turnovers and they are primarily defined using first or last occurrences of index species, or ideally by the separation interval between two consecutive, characteristic associations of fossil taxa. These boundaries need to be defined in a way that enables their worldwide recognition and correlation across different stratigraphic successions, using tools as different as bio-, magneto-, and chemo-stratigraphy, and astrochronology. Sedimentary sequences can be dated in numerical terms by applying high-precision chemical-abrasion, isotope-dilution, thermal-ionization mass spectrometry (CA-ID-TIMS) U-Pb age determination to zircon (ZrSiO4) in intercalated volcanic ashes. But, though volcanic activity is common in geological history, ashes are not necessarily close to the boundary we would like to date precisely and accurately. In addition, U-Pb zircon data sets may be very complex and difficult to interpret in terms of the age of ash deposition. To overcome these difficulties we use a multi-proxy approach we applied to the precise and accurate dating of the Permo-Triassic and Early-Middle Triassic boundaries in South China. a) Dense sampling of ashes across the critical time interval and a sufficiently large number of analysed zircons per ash sample can guarantee the recognition of all system complexities. Geochronological datasets from U-Pb dating of volcanic zircon may indeed combine effects of i) post-crystallization Pb loss from percolation of hydrothermal fluids (even using chemical abrasion), with ii) age dispersion from prolonged residence of earlier crystallized zircon in the magmatic system. As a result, U-Pb dates of individual zircons are both apparently younger and older than the depositional age

  3. Multiple Lines of Evidence

    SciTech Connect

    Amidan, Brett G.; Venzin, Alexander M.; Bramer, Lisa M.

    2015-06-03

    This paper discusses the process of identifying factors that influence the contamination level of a given decision area and then determining the likelihood that the area remains unacceptable. This process is referred to as lines of evidence. These lines of evidence then serve as inputs for the stratified compliance sampling (SCS) method, which requires a decision area to be divided into strata based upon contamination expectations. This is done in order to focus sampling efforts more within stratum where contamination is more likely and to use the domain knowledge about these likelihoods of the stratum remaining unacceptable to buy down the number of samples necessary, if possible. Two different building scenarios were considered as an example (see Table 3.1). SME expertise was elicited concerning four lines of evidence factors (see Table 3.2): 1) amount of contamination that was seen before decontamination, 2) post-decontamination air sampling information, 3) the applied decontaminant information, and 4) the surface material. Statistical experimental design and logistic regression modelling were used to help determine the likelihood that example stratum remained unacceptable for a given example scenario. The number of samples necessary for clearance was calculated by applying the SCS method to the example scenario, using the estimated likelihood of each stratum remaining unacceptable as was determined using the lines of evidence approach. The commonly used simple random sampling (SRS) method was also used to calculate the number of samples necessary for clearance for comparison purposes. The lines of evidence with SCS approach resulted in a 19% to 43% reduction in total number of samples necessary for clearance (see Table 3.6). The reduction depended upon the building scenario, as well as the level of percent clean criteria. A sensitivity analysis was also performed showing how changing the estimated likelihoods of stratum remaining unacceptable affect the number

  4. Visualizing and understanding vortex and tendex lines of colliding black holes

    NASA Astrophysics Data System (ADS)

    Khan, Haroon; Lovelace, Geoffery; Rodriguez, Samuel

    2017-01-01

    Gravitational waves (GWs) are ripples of spacetime. In order to detect and physically study the GW emitted by merging black holes with ground based detectors such as aLIGO, we must accurately predict how the waves look and behave. This requires numerical simulations of black hole (BH) mergers on supercomputers, because all analytical approximations fail near the time of merger. These simulations also reveal how BHs warp space and time. My project focuses on using these simulations to visualize the strongly curved space time in simulations of merging BHs. I have visualized the vortex and tendex lines for a binary BH system, using the Spectral Einstein Code. Vortex lines describe how an observer would be twisted by the curvature, and the tendex lines describe an observer would be stretched at squeezed by it. These lines are analogous to how electric and magnetic field lines describe the electromagnetic forces on an observer. Visualizing these will provide a more intuitive understanding of the nonlinear dynamics of the spacetime of merging BHs. I am exploring how these lines change with time during a simulation, to see whether they vary smoothly in time and how they depend on where they are seeded.

  5. Final Focus Test Team Alighment - A Draft Proposal -

    SciTech Connect

    Fischer, G.E.; /SLAC

    2005-08-12

    In its present form, the Final Focus Test Beam (FFTB) is a transport line designed to transmit 50 GeV electron beams of SLC emittance (3 x 10{sup -10} radian-meters) straight through the central arm of the Beam Switchyard (BSY C line) with a final focus point out in the Research Yard but relatively near the end of the switchyard tunnel. The axis of the incident beam coincides with that of the SLAC linear accelerator; the final focus, some 300 meters downstream of the end of the accelerator, is displaced from this axis by about 2 meters horizontally.

  6. 77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... COMMISSION Accurate NDE & Inspection, LLC; Confirmatory Order In the Matter of Accurate NDE & Docket: 150... request ADR with the NRC in an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28,...

  7. 2-D Simulations for Accurate Extraction of the Specific Contact Resistivity from Contact Resistance Data,

    DTIC Science & Technology

    1985-01-01

    Bridge Kelvin Resistor, the Contact End Resistor, and the Transmission pletely by its sheet resistance . We shall concentrate here on semiconduc- Line...Tap Resistor. For each particular structure, a wniversal set of curves tar to metal contacts. Since the metal sheet resistance is much lower than is...derived that allows accurate determination of V,, given the geometry Of diffusion sheet resistance , metal is considered to be an equipotential the

  8. (Aerodynamic focusing of particles and heavy molecules)

    SciTech Connect

    de la Mora, J.F.

    1990-01-08

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m{sub p} some 3.6 {times} 10{sup 5} times larger than the molecular mass m of the carrier gas (diameters above some 100{angstrom}), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 {mu}m. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5{radical}(m/m{sub p}) times the nozzle diameter d{sub n}. But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs.

  9. [Genetic algorithm application to multi-focus patterns of 256-element phased array for focused ultrasound surgery].

    PubMed

    Xu, Feng; Wan, Mingxi; Lu, Mingzhu

    2008-10-01

    The genetic optimal algorithm and sound field calculation approach for the spherical-section phased array are presented in this paper. The in-house manufactured 256-element phased array focused ultrasound surgery system is briefly described. The on-axis single focus and off-axis single focus are simulated along with the axis-symmetric six-focus patter and the axis-asymmetric four-focus pattern using a 256-element phased array and the genetic optimal algorithm and sound field calculation approach. The experimental results of the described 256-element phased array focused ultrasound surgery system acting on organic glass and phantom are also analyzed. The results of the simulations and experiments confirm the applicability of the genetic algorithm and field calculation approaches in accurately steering three dimensional foci and focus.

  10. Dual focus diffractive optical element with extended depth of focus

    NASA Astrophysics Data System (ADS)

    Uno, Katsuhiro; Shimizu, Isao

    2014-09-01

    A dual focus property and an extended depth of focus were verified by a new type of diffractive lens displaying on liquid crystal on silicon (LCoS) devices. This type of lens is useful to read information on multilayer optical discs and tilted discs. The radial undulation of the phase groove on the diffractive lens gave the dual focus nature. The focal extension was performed by combining the dual focus lens with the axilens that was invented for expanding the depth of focus. The number of undulations did not affect the intensity along the optical axis but the central spot of the diffraction pattern.

  11. Fixing the focus shift caused by 3D mask diffraction

    NASA Astrophysics Data System (ADS)

    Yenikaya, Bayram; Chuyeshov, Constantin; Bakir, Onur; Han, Youngae

    2014-03-01

    As the feature sizes printed with optical lithography get smaller, Kirchhoff's thin mask approximation used in full chip optical proximity corrections (OPC) fails to yield acceptable accuracy due to thick mask diffraction effects. One of the most observed effects of the thick mask diffraction is that it creates different focus shift for different patterns. When Bossung curves (CD plots with respect to defocus) of various patterns are observed from rigorous simulations and from actual wafer data one can notice that each pattern has a different best focus. Depending on the pattern, Bossung curves can be offset in either positive or negative direction. This significantly reduces the common depth of focus (DOF) for which all patterns print with acceptable fidelity. Even though each pattern by itself may have an acceptable DOF, the common DOF may not be acceptable. Several extensions to the thin mask approximation have been developed that model this behavior accurately, such as boundary layer approximations and domain decomposition methods. These methods provide a more accurate approximation than the thin mask model while still being computationally efficient to be useful for full chip OPC. Even though these approximations model and predict the focus shift accurately, to the best knowledge of the authors no method has been published to use these modeling capabilities to automatically fix this focus shift during OPC. In this paper we provide an optimization method to significantly reduce focus shift due to 3D mask effects during OPC. We show that our 3D mask model can predict this focus shift fairly accurately and we also demonstrate how we use this model in OPC to reduce focus shift, which significantly improves the common DOF for the entire layout.

  12. LSDCat: Line Source Detection and Cataloguing Tool

    NASA Astrophysics Data System (ADS)

    Herenz, Edmund Christian; Wistozki, Lutz

    2016-12-01

    LSDCat is a conceptually simple but robust and efficient detection package for emission lines in wide-field integral-field spectroscopic datacubes. The detection utilizes a 3D matched-filtering approach for compact single emission line objects. Furthermore, the software measures fluxes and extents of detected lines. LSDCat is implemented in Python, with a focus on fast processing of large data-volumes.

  13. Accurate data fitting for adjustments of focus position coordinates applied to cassegrain antenna's sub-reflector compensation

    NASA Astrophysics Data System (ADS)

    Hu, Kaiyu; Aili, Yusup; Xu, Xuelin; Xiang, Binbin; Liu, Qi

    2014-12-01

    Based on the rapidly progress of the Xinjiang 110 m radio telescope project, Nanshan antenna reform programme and national strategic demand for aerospace development, this paper makes a thorough study for the real-time compensation of the sub-reflector for the deformation of the large antenna's main panel. First, it presents a brief introduction to the theoretical model of sub-reflector compensation and an analysis of adjustments under certain special elevations. Then it realizes high-precision data fit using MATLAB because of its powerful numerical calculation. This paper gives two different data fit methods and model equations and compares the effects of the two fit methods from different aspects by detailed error analysis. When the fit order is 4 and computing to 15 decimal places, it calculates the error of the difference between these two data fit methods: the value is negative and the magnitude is 10-13 mm. Finally, the paper chooses the higher precision fitting method whose absolute error is minuend and uses this method to generate a partial adjustment database in the range of some special angels in order to create conditions for the entire sub-reflector compensation process which satisfies the requirements for astronomical observations and deep-space exploration for data accuracy and system reliability. The specific technology is believed to possess certain general value for applicability.

  14. NEW APPROACHES: Using a computer to graphically illustrate equipotential lines

    NASA Astrophysics Data System (ADS)

    Phongdara, Boonlua

    1998-09-01

    A simple mathematical model and computer program allow students to plot equipotential lines, for example for two terminals in a tank of water, in a way that is easier and faster but just as accurate as the traditional method.

  15. Subsurface Contaminants Focus Area annual report 1997

    SciTech Connect

    1997-12-31

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.

  16. Accurate calculation of field and carrier distributions in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo

    2012-06-01

    We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.

  17. Progress in fast, accurate multi-scale climate simulations

    DOE PAGES

    Collins, W. D.; Johansen, H.; Evans, K. J.; ...

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enablingmore » improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  18. Progress in fast, accurate multi-scale climate simulations

    SciTech Connect

    Collins, W. D.; Johansen, H.; Evans, K. J.; Woodward, C. S.; Caldwell, P. M.

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enabling improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.

  19. Accurate multiple network alignment through context-sensitive random walk

    PubMed Central

    2015-01-01

    Background Comparative network analysis can provide an effective means of analyzing large-scale biological networks and gaining novel insights into their structure and organization. Global network alignment aims to predict the best overall mapping between a given set of biological networks, thereby identifying important similarities as well as differences among the networks. It has been shown that network alignment methods can be used to detect pathways or network modules that are conserved across different networks. Until now, a number of network alignment algorithms have been proposed based on different formulations and approaches, many of them focusing on pairwise alignment. Results In this work, we propose a novel multiple network alignment algorithm based on a context-sensitive random walk model. The random walker employed in the proposed algorithm switches between two different modes, namely, an individual walk on a single network and a simultaneous walk on two networks. The switching decision is made in a context-sensitive manner by examining the current neighborhood, which is effective for quantitatively estimating the degree of correspondence between nodes that belong to different networks, in a manner that sensibly integrates node similarity and topological similarity. The resulting node correspondence scores are then used to predict the maximum expected accuracy (MEA) alignment of the given networks. Conclusions Performance evaluation based on synthetic networks as well as real protein-protein interaction networks shows that the proposed algorithm can construct more accurate multiple network alignments compared to other leading methods. PMID:25707987

  20. Progress in Fast, Accurate Multi-scale Climate Simulations

    SciTech Connect

    Collins, William D; Johansen, Hans; Evans, Katherine J; Woodward, Carol S.; Caldwell, Peter

    2015-01-01

    We present a survey of physical and computational techniques that have the potential to con- tribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enabling improved accuracy and fidelity in simulation of dynamics and allow more complete representations of climate features at the global scale. At the same time, part- nerships with computer science teams have focused on taking advantage of evolving computer architectures, such as many-core processors and GPUs, so that these approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.

  1. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  2. Quantitative proteomic analysis by accurate mass retention time pairs.

    PubMed

    Silva, Jeffrey C; Denny, Richard; Dorschel, Craig A; Gorenstein, Marc; Kass, Ignatius J; Li, Guo-Zhong; McKenna, Therese; Nold, Michael J; Richardson, Keith; Young, Phillip; Geromanos, Scott

    2005-04-01

    Current methodologies for protein quantitation include 2-dimensional gel electrophoresis techniques, metabolic labeling, and stable isotope labeling methods to name only a few. The current literature illustrates both pros and cons for each of the previously mentioned methodologies. Keeping with the teachings of William of Ockham, "with all things being equal the simplest solution tends to be correct", a simple LC/MS based methodology is presented that allows relative changes in abundance of proteins in highly complex mixtures to be determined. Utilizing a reproducible chromatographic separations system along with the high mass resolution and mass accuracy of an orthogonal time-of-flight mass spectrometer, the quantitative comparison of tens of thousands of ions emanating from identically prepared control and experimental samples can be made. Using this configuration, we can determine the change in relative abundance of a small number of ions between the two conditions solely by accurate mass and retention time. Employing standard operating procedures for both sample preparation and ESI-mass spectrometry, one typically obtains under 5 ppm mass precision and quantitative variations between 10 and 15%. The principal focus of this paper will demonstrate the quantitative aspects of the methodology and continue with a discussion of the associated, complementary qualitative capabilities.

  3. Measurement and Accurate Interpretation of the Solubility of Pharmaceutical Salts.

    PubMed

    He, Yan; Ho, Chris; Yang, Donglai; Chen, Jeane; Orton, Edward

    2017-01-30

    Salt formation is one of the primary approaches to improve the developability of ionizable poorly water-soluble compounds. Solubility determination of the salt candidates in aqueous media or biorelevant fluids is a critical step in salt screening. Salt solubility measurements can be complicated due to dynamic changes in both solution and solid phases. Because of the early implementation of salt screening in research, solubility measurements often are performed using minimal amount of material. Some salts have transient high solubility on dissolution. Recognition of these transients can be critical in developing these salts into drug products. This minireview focuses on challenges in salt solubility measurements due to the changes in solution caused by self-buffering effects of dissolved species and the changes in solid phase due to solid-state phase transformations. Solubility measurements and their accurate interpretation are assessed in the context of dissolution monitoring and solid-phase analysis technologies. A harmonized method for reporting salt solubility measurements is recommended to reduce errors and to align with the U.S. Pharmacopeial policy and Food and Drug Administration recommendations for drug products containing pharmaceutical salts.

  4. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  5. An accurate moving boundary formulation in cut-cell methods

    NASA Astrophysics Data System (ADS)

    Schneiders, Lennart; Hartmann, Daniel; Meinke, Matthias; Schröder, Wolfgang

    2013-02-01

    A cut-cell method for Cartesian meshes to simulate viscous compressible flows with moving boundaries is presented. We focus on eliminating unphysical oscillations occurring in Cartesian grid methods extended to moving-boundary problems. In these methods, cells either lie completely in the fluid or solid region or are intersected by the boundary. For the latter cells, the time dependent volume fraction lying in the fluid region can be so small that explicit time-integration schemes become unstable and a special treatment of these cells is necessary. When the boundary moves, a fluid cell may become a cut cell or a solid cell may become a small cell at the next time level. This causes an abrupt change in the discretization operator and a suddenly modified truncation error of the numerical scheme. This temporally discontinuous alteration is shown to act like an unphysical source term, which deteriorates the numerical solution, i.e., it generates unphysical oscillations in the hydrodynamic forces exerted on the moving boundary. We develop an accurate moving boundary formulation based on the varying discretization operators yielding a cut-cell method which avoids these discontinuities. Results for canonical two- and three-dimensional test cases evidence the accuracy and robustness of the newly developed scheme.

  6. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  7. Accurate color images: from expensive luxury to essential resource

    NASA Astrophysics Data System (ADS)

    Saunders, David R.; Cupitt, John

    2002-06-01

    Over ten years ago the National Gallery in London began a program to make digital images of paintings in the collection using a colorimetric imaging system. This was to provide a permanent record of the state of paintings against which future images could be compared to determine if any changes had occurred. It quickly became apparent that such images could be used not only for scientific purposes, but also in applications where transparencies were then being used, for example as source materials for printed books and catalogues or for computer-based information systems. During the 1990s we were involved in the development of a series of digital cameras that have combined the high color accuracy of the original 'scientific' imaging system with the familiarity and portability of a medium format camera. This has culminated in the program of digitization now in progress at the National Gallery. By the middle of 2001 we will have digitized all the major paintings in the collection at a resolution of 10,000 pixels along their longest dimension and with calibrated color; we are on target to digitize the whole collection by the end of 2002. The images are available on-line within the museum for consultation and so that Gallery departments can use the images in printed publications and on the Gallery's web- site. We describe the development of the imaging systems used at National Gallery and how the research we have conducted into high-resolution accurate color imaging has developed from being a peripheral, if harmless, research activity to becoming a central part of the Gallery's information and publication strategy. Finally, we discuss some outstanding issues, such as interfacing our color management procedures with the systems used by external organizations.

  8. High-resolution optical and ultraviolet absorption-line studies of interstellar gas

    NASA Technical Reports Server (NTRS)

    Cowie, Lennox L.; Songaila, Antoinette

    1986-01-01

    Recent progress in the characterization of the interstellar medium (ISM) by means of optical and UV spectral data is summarized. The gas is studied by focusing on background stars whose spectra can be accurately modeled to provide the light source for the absorption-line scans. The capabilities of earth- and space-based instruments which have been and are used for the surveys are delineated. The distributions of diffuse gas densities and characteristics of the cold, warm and hot gas in the Galaxy are described in terms of the elemental abundances, kinetics and distributions of the gas. Particular note is taken of gas in the solar neighborhood and around SNR, and of absorption-line data of cosmological significance.

  9. EDITORIAL: Focus on Quantum Control

    NASA Astrophysics Data System (ADS)

    Rabitz, Herschel

    2009-10-01

    represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses M A Montgomery and N H Damrauer Accurate and efficient implementation of the von Neumann representation for laser pulses with discrete and finite spectra Frank Dimler, Susanne Fechner, Alexander Rodenberg, Tobias Brixner and David J Tannor Coherent strong-field control of multiple states by a single chirped femtosecond laser pulse M Krug, T Bayer, M Wollenhaupt, C Sarpe-Tudoran, T Baumert, S S Ivanov and N V Vitanov Quantum-state measurement of ionic Rydberg wavepackets X Zhang and R R Jones On the paradigm of coherent control: the phase-dependent light-matter interaction in the shaping window Tiago Buckup, Jurgen Hauer and Marcus Motzkus Use of the spatial phase of a focused laser beam to yield mechanistic information about photo-induced chemical reactions V J Barge, Z Hu and R J Gordon Coherent control of multiple vibrational excitations for optimal detection S D McGrane, R J Scharff, M Greenfield and D S Moore Mode selectivity with polarization shaping in the mid-IR David B Strasfeld, Chris T Middleton and Martin T Zanni Laser-guided relativistic quantum dynamics Chengpu Liu, Markus C Kohler, Karen Z Hatsagortsyan, Carsten Muller and Christoph H Keitel Continuous quantum error correction as classical hybrid control Hideo Mabuchi Quantum filter reduction for measurement-feedback control via unsupervised manifold learning Anne E B Nielsen, Asa S Hopkins and Hideo Mabuchi Control of the temporal profile of the local electromagnetic field near metallic nanostructures Ilya Grigorenko and Anatoly Efimov Laser-assisted molecular orientation in gaseous media: new possibilities and applications Dmitry V Zhdanov and Victor N Zadkov Optimization of laser field-free orientation of a state-selected NO molecular sample Arnaud Rouzee, Arjan Gijsbertsen, Omair Ghafur, Ofer M Shir, Thomas Back, Steven Stolte and Marc J J Vrakking Controlling the sense of molecular rotation Sharly Fleischer

  10. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  11. Focusers of obliquely incident laser radiation

    NASA Astrophysics Data System (ADS)

    Goncharskiy, A. V.; Danilov, V. A.; Popov, V. V.; Prokhorov, A. M.; Sisakyan, I. N.; Sayfer, V. A.; Stepanov, V. V.

    1984-08-01

    Focusing obliquely incident laser radiation along a given line in space with a given intensity distribution is treated as a problem of synthesizing a mirror surface. The intricate shape of such a surface, characterized by a function z= z (u,v) in the approximation of geometrical optics, is determined from the equation phi (u,v,z) - phi O(u,v,z)=O, which expresses that the incident field and the reflected field have identical eikonals. Further calculations are facilitated by replacing continuous mirror with a more easily manufactured piecewise continuous one. The problem is solved for the simple case of a plane incident wave with a typical iconal phi O(u,v,z)= -z cos0 at a large angle to a focus mirror in the z-plane region. Mirrors constructed on the basis of the theoretical solution were tested in an experiment with a CO2 laser. A light beam with Gaussian intensity distribution was, upon incidence at a 45 deg angle, focused into a circle or into an ellipse with uniform intensity distribution. Improvements in amplitudinal masking and selective tanning technology should reduce energy losses at the surface which results in efficient laser focusing mirrors.

  12. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future.

  13. Focus Groups Help To Focus the Marketing Strategy.

    ERIC Educational Resources Information Center

    Ashar, Hanna; Lane, Maureen

    1996-01-01

    A university-based degree completion program for adults conducted focus group research to refine market positioning and promotion. Focus groups averaged five current students and recent graduates who reflected, demographically, the current student population. Results gave insight into reasons for selecting the university, aspects of the program…

  14. Auto-focus apparatus with digital signal processor

    NASA Astrophysics Data System (ADS)

    Li, Qi; Feng, Huajun; Xu, Zhihai

    2005-01-01

    There are two kinds of auto-focus methods in a digital imaging system: Depth from focus (DFF) and Depth from defocus (DFD). Depth from defocus is a method, which acquired distance information from blurred image. Because of necessity of establishment of defocus model and accurate calibration of imaging system, the application of DFD is confined. As a search focusing technology, Depth from focus has some advantages, such as high accuracy, robust performance, so it is adopted in our apparatus. In this paper, an auto-focus apparatus based on digital signal processor has been designed and constructed. DSP receives image series from a CMOS sensor firstly, then performs the auto-focus action with the following steps: analyzing focus measure of image, moving motorized lens and finding the best imaging position. For focus measures, the frequency spectrum functions, the gradient functions and the entropy function are analyzed in detail. In order to improve the sensitivity of focus measure curve, the weighting factor - distance between direct current component and alternating current component - was introduced into revising frequency spectrum functions. A series of focus experiments have been performed on the auto-focus apparatus, and the veracity and the reliability of the system have been proved to be excellent.

  15. Transmission line relay mis-operation detection based on time-synchronized field data

    DOE PAGES

    Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen

    2015-05-04

    In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such,more » it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.« less

  16. Transmission line relay mis-operation detection based on time-synchronized field data

    SciTech Connect

    Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen

    2015-05-04

    In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such, it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.

  17. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  18. Developments in focused ion beam metrology

    NASA Astrophysics Data System (ADS)

    Salen, Jesse A.; Athas, Gregory J.; Barnes, Drew; Bassom, Neil J.; Yansen, Don E.

    1998-09-01

    We present the ability of a focused ion beam system (FIB) to perform as an effective metrology tool. This feature is a benefit in areas where FIB technology is or can be used, or where pre-measurement cross-sectioning is required, such as the case in thin film head trimming, integrated circuit inspection, and micro-electromechanical device (MEMS) development. The FIB is a proven tool for taking high- resolution images, performing mills and depositions, and cross-sectioning samples. We demonstrate the FIB's ability to perform these tasks in a repeatable manner and take accurate measurements independently of the operator. First, we find a quantitative method for analyzing the image quality in order to remove any operator discrepancy. We show that this task can be achieved by analyzing the FIB's Modulation Transfer Function (MTF). The MTF is a proven method for measuring the quality of light optics, but has never been used as a standard in FIB imaging because sub- 100m pitch resolution targets can not easily be fabricated; however, we demonstrate a new method for obtaining the MTF. By correlating changes in FIB parameters to changes in the MTF, we have a FIB image standard, as well as an image calibration tool that is transparent to the operator. Second, we describe how current FIB software can use an automated 'measure tool' to take accurate measurements independently of the operator. We show that when using both these methods, the FIB is a repeatable metrology tool for a variety of applications.

  19. Automated detection of ocular focus.

    PubMed

    Hunter, David G; Nusz, Kevin J; Gandhi, Nainesh K; Quraishi, Imran H; Gramatikov, Boris I; Guyton, David L

    2004-01-01

    We characterize objectively the state of focus of the human eye, utilizing a bull's eye photodetector to detect the double-pass blur produced from a point source of light. A point fixation source of light illuminates the eye. Fundus-reflected light is focused by the optical system of the eye onto a bull's eye photodetector [consisting of an annulus (A) and a center (C) of approximately equal active area]. To generate focus curves, C/A is measured with a range of trial lenses in the light path. Three human eyes and a model eye are studied. In the model eye, the focus curve showed a sharp peak with a full width at half maximum (FWHM) of +/-0.25 D. In human eyes, the ratio C/A was >4 at best focus in all cases, with a FWHM of +/-1 D. The optical apparatus detects ocular focus (as opposed to refractive error) in real time. A device that can assess focus rapidly and objectively will make it possible to perform low-cost, mass screening for focusing problems such as may exist in children at risk for amblyopia.

  20. Lining seam elimination algorithm and surface crack detection in concrete tunnel lining

    NASA Astrophysics Data System (ADS)

    Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling

    2016-11-01

    Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.

  1. Dynamic Line-by-line Pulse Shaping

    NASA Astrophysics Data System (ADS)

    Willits, John Thomas

    In pursuit of optical arbitrary waveform generation (OAWG), line-by-line pulse shapers use dynamic masks that can be modulated at the repetition rate of an input pulse train. The pulse-to-pulse control of the output pulse train with the waveform fidelity provided by line-by-line pulse shaping creates the most arbitrary waveform output possible, OAWG. This thesis studies the theoretical dynamic effects of such a pulse shaper and presents efforts towards realization of OAWG. Pulse shaping theory is extended to include rapid waveform update for line-by-line pulse shaping. The fundamental tradeoff between response speed and waveform fidelity is illustrated by several examples. Line-by-line pulse shaping is demonstrated at a repetition rate of 890 MHz on a mode-locked titanium sapphire laser. This pulse shaper relies on a virtual imaged phased array (VIPA) to obtain the necessary high spectral resolution. The details of the VIPA's ideal and nonideal performance are analyzed, simulated and tested. Individual frequency modes from the mode-locked titanium sapphire laser are also resolved using the same VIPA paired with a diffraction grating creating a 2-D spectral brush with a resolution of 357 MHz. The advantages and nonideal effects of VIPA-based pulse shaping are investigated. Analysis of several high speed modulation techniques are explored. The optical system required to separate adjacent comb lines into different single mode (SM) fibers necessary for several modulation techniques is designed and tested.

  2. Optimal focusing conditions of lenses using Gaussian beams

    DOE PAGES

    Franco, Juan Manuel; Cywiak, Moisés; Cywiak, David; ...

    2016-04-02

    By using the analytical equations of the propagation of Gaussian beams in which truncation exhibits negligible consequences, we describe a method that uses the value of the focal length of a focusing lens to classify its focusing performance. In this study, we show that for different distances between a laser and a focusing lens there are different planes where best focusing conditions can be obtained and we demonstrate how the value of the focal length impacts the lens focusing properties. To perform the classification we introduce the term delimiting focal length. As the value of the focal length used inmore » wave propagation theory is nominal and difficult to measure accurately, we describe an experimental approach to calculate its value matching our analytical description. Finally, we describe possible applications of the results for characterizing Gaussian sources, for measuring focal lengths and/or alternatively for characterizing piston-like movements.« less

  3. Optimal focusing conditions of lenses using Gaussian beams

    SciTech Connect

    Franco, Juan Manuel; Cywiak, Moisés; Cywiak, David; Mourad, Idir

    2016-04-02

    By using the analytical equations of the propagation of Gaussian beams in which truncation exhibits negligible consequences, we describe a method that uses the value of the focal length of a focusing lens to classify its focusing performance. In this study, we show that for different distances between a laser and a focusing lens there are different planes where best focusing conditions can be obtained and we demonstrate how the value of the focal length impacts the lens focusing properties. To perform the classification we introduce the term delimiting focal length. As the value of the focal length used in wave propagation theory is nominal and difficult to measure accurately, we describe an experimental approach to calculate its value matching our analytical description. Finally, we describe possible applications of the results for characterizing Gaussian sources, for measuring focal lengths and/or alternatively for characterizing piston-like movements.

  4. Abstract Line Designs

    ERIC Educational Resources Information Center

    Nevinskas, Nancy

    2011-01-01

    In this article, the author describes a unit on the exploration of line. The unit was composed of two individual line lessons. In the first lesson, students were introduced to line as an element of design. They were asked to describe different types of lines, and look for them in art reproductions. The second lesson in the unit involved painting…

  5. The Language of Lines.

    ERIC Educational Resources Information Center

    Breig-Allen, Cheryl; Hill, Janet; Geismar-Ryan, Lori; Cadwell, Louise Boyd

    1998-01-01

    Describes a project about lines in the environment used with 2- and 3-year olds and based on the Reggio Emilia approach. Activities included making tracks with riding toys, drawing lines on papers, seeing cloud lines, and making lines with yarn and Cuisenaire rods. Shows how young children's observations and ongoing discoveries can uncover their…

  6. A predictable and accurate technique with elastomeric impression materials.

    PubMed

    Barghi, N; Ontiveros, J C

    1999-08-01

    A method for obtaining more predictable and accurate final impressions with polyvinylsiloxane impression materials in conjunction with stock trays is proposed and tested. Heavy impression material is used in advance for construction of a modified custom tray, while extra-light material is used for obtaining a more accurate final impression.

  7. Tube dimpling tool assures accurate dip-brazed joints

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.

    1968-01-01

    Portable, hand-held dimpling tool assures accurate brazed joints between tubes of different diameters. Prior to brazing, the tool performs precise dimpling and nipple forming and also provides control and accurate measuring of the height of nipples and depth of dimples so formed.

  8. Conducting Qualitative Data Analysis: Reading Line-by-Line, but Analyzing by Meaningful Qualitative Units

    ERIC Educational Resources Information Center

    Chenail, Ronald J.

    2012-01-01

    In the first of a series of "how-to" essays on conducting qualitative data analysis, Ron Chenail points out the challenges of determining units to analyze qualitatively when dealing with text. He acknowledges that although we may read a document word-by-word or line-by-line, we need to adjust our focus when processing the text for purposes of…

  9. Plutonium focus area: Technology summary

    SciTech Connect

    1996-03-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  10. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  11. FOCUSing on Innovative Solar Technologies

    SciTech Connect

    Rohlfing, Eric; Holman, Zak, Angel, Roger

    2016-03-02

    Many of ARPA-E’s technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-E’s Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.

  12. FOCUSing on Innovative Solar Technologies

    ScienceCinema

    Rohlfing, Eric; Holman, Zak, Angel, Roger

    2016-07-12

    Many of ARPA-E’s technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-E’s Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.

  13. Compact electron beam focusing column

    SciTech Connect

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  14. Physical and Numerical Model Studies of Cross-flow Turbines Towards Accurate Parameterization in Array Simulations

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2014-12-01

    Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of

  15. Application of the spectrally integrated Voigt function to line-by-line radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Quine, B. M.; Abrarov, S. M.

    2013-09-01

    We show that a new approach based on the spectrally integrated Voigt function (SIVF) enables the computation of line-by-line (LBL) radiative transfer at reduced spectral resolution without loss of accuracy. The algorithm provides rapid and accurate computation of area under the Voigt function in a way that preserves spectral radiance and, consequently, radiant intensity. The error analysis we provide shows the high-accuracy of the proposed SIVF approximations. A comparison of the performance of the method with that of the traditional LBL approach is presented. Motivations for the use and advantage of the SIVF as a replacement for conventional line function computations in radiative transfer are discussed.

  16. The focusing DIRC: An innovative PID detector

    NASA Astrophysics Data System (ADS)

    Borsato, M.; Arnaud, N.; Dey, B.; Nishimura, K.; Leith, D. W. G. S.; Roberts, D.; Ratcliff, B.; Va'vra, J.; Varner, G. S.

    2013-12-01

    The FDIRC (Focusing Detector of Internally Reflected Cherenkov light) is a new concept of PID (Particle IDentification) detector aimed at separating kaons from pions up to a few GeV/c. It is the successor of the BABAR DIRC and benefits from the knowledge accumulated with a first FDIRC prototype built and operated at SLAC. The FDIRC is intended to be used in an environment with a luminosity 100 times higher than for BABAR and Belle. Backgrounds will be higher as well; yet, the FDIRC has been designed to perform at least as well as the BABAR DIRC. The main improvement is a complete redesign of the photon camera, moving from a huge tank of ultra-pure water to much smaller focusing cameras with solid fused-silica optics. Furthermore, the detection chain will be 10 times faster than in BABAR to reject more background and to measure more accurately Cherenkov angles. This is achieved using H-8500 MaPMTs and a new front-end electronics (FEE) with significantly improved timing precision, higher hit rate capability, and small dead time. A full-scale FDIRC prototype covering 1/12th of the barrel azimuth is installed at SLAC and has just started recording cosmic-ray data. In this paper, we summarize the FDIRC design, present the status of the prototype test at SLAC and review the ongoing work to analyse the data.

  17. Isoelectric focusing in a drop.

    PubMed

    Weiss, Noah G; Hayes, Mark A; Garcia, Antonio A; Ansari, Rafat R

    2011-01-04

    A novel approach to molecular separations is investigated using a technique termed droplet-based isoelectric focusing. Drops are manipulated discretely on a superhydrophobic surface, subjected to low voltages for isoelectric focusing, and split-resulting in a preparative separation. A universal indicator dye demonstrates the generation of stable, reversible pH gradients (3-10) in ampholyte buffers, and these gradients lead to protein focusing within the drop length. Focusing was visually characterized, spectroscopically verified, and assessed quantitatively by noninvasive light scattering measurements. It was found to correlate with a quantitative model based on 1D steady-state theory. This work illustrates that molecular separations can be deployed within a single open drop, and the differential fractions can be separated into new discrete liquid elements.

  18. Focusing light through living tissue

    NASA Astrophysics Data System (ADS)

    Vellekoop, I. M.; Aegerter, C. M.

    2010-02-01

    Tissues such as skin, fat or cuticle are non-transparent because inhomogeneities in the tissue scatter light. We demonstrate experimentally that light can be focused through turbid layers of living tissue, in spite of scattering. Our method is based on the fact that coherent light forms an interference pattern, even after hundreds of scattering events. By spatially shaping the wavefront of the incident laser beam, this interference pattern was modified to make the scattered light converge to a focus. In contrast to earlier experiments, where light was focused through solid objects, we focused light through living pupae of Drosophila melanogaster. We discuss a dynamic wavefront shaping algorithm that follows changes due to microscopic movements of scattering particles in real time. We relate the performance of the algorithm to the measured timescale of the changes in the speckle pattern and analyze our experiment in the light of Laser Doppler flowmetry. Applications in particle tracking, imaging, and optical manipulation are discussed.

  19. Diffusiophoretic Focusing of Suspended Colloids

    NASA Astrophysics Data System (ADS)

    Shi, Nan; Nery-Azevedo, Rodrigo; Abdel-Fattah, Amr I.; Squires, Todd M.

    2016-12-01

    Using a microfluidic system to impose and maintain controlled, steady-state multicomponent p H and electrolyte gradients, we present systems where the diffusiophoretic migration of suspended colloids leads them to focus at a particular position, even in steady-state gradients. We show that naively superpositing effects of each gradient may seem conceptually and qualitatively reasonable, yet is invalid due to the coupled transport of these multicomponent electrolytes. In fact, reformulating the classic theories in terms of the flux of each species (rather than local gradients) reveals rather stringent conditions that are necessary for diffusiophoretic focusing in steady gradients. Either particle surface properties must change as a function of local composition in solution (akin to isoelectric focusing in electrophoresis), or chemical reactions must occur between electrolyte species, for such focusing to be possible. The generality of these findings provides a conceptual picture for understanding, predicting, or designing diffusiophoretic systems.

  20. Focusing on Contact Lens Safety

    MedlinePlus

    ... Consumers Home For Consumers Consumer Updates Focusing on Contact Lens Safety Share Tweet Linkedin Pin it More ... substantial consumer injury. Back to top Types of Contact Lenses General categories Soft contact lenses. These are ...

  1. Simulations of neutralized final focus

    SciTech Connect

    Welch, D.R.; Rose, D.V.; Genoni, T.C.; Yu, S.S.; Barnard, J.J.

    2005-01-18

    In order to drive an inertial fusion target or study high energy density physics with heavy ion beams, the beam radius must be focused to < 3 mm and the pulse length must be compressed to < 10 ns. The conventional scheme for temporal pulse compression makes use of an increasing ion velocity to compress the beam as it drifts and beam space charge to stagnate the compression before final focus. Beam compression in a neutralizing plasma does not require stagnation of the compression, enabling a more robust method. The final pulse shape at the target can be programmed by an applied velocity tilt. In this paper, neutralized drift compression is investigated. The sensitivity of the compression and focusing to beam momentum spread, plasma, and magnetic field conditions is studied with realistic driver examples. Using the 3D particle-in-cell code, we examine issues associated with self-field generation, stability, and vacuum-neutralized transport transition and focusing.

  2. Wolter Optics for Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Mildner, D. F. R.; Gubarev, M. V.

    2010-01-01

    Focusing optics based on Wolter optical geometries developed for x-ray grazing incidence beams can be designed for neutron beams. Wolter optics are formed by grazing incidence reflections from two concentric conic sections (for example, a paraboloid and a hyperboloid). This has transformed observational X-ray astronomy by increasing the sensitivity by many orders of magnitude for research in astrophysics and cosmology. To increase the collection area, many reflecting mirrors of different diameters are nested with a common focal plane. These mirrors are fabricated using nickel-electroformed replication techniques. We apply these ideas to neutron focusing using nickel mirrors. We show an initial test of a conical mirror using a beam of cold neutrons. key words: electroformed nickel replication, focusing optics, grazing angle incidence, mirror reflection, neutron focusing, Wolter optics

  3. Animal board invited review: precision livestock farming for dairy cows with a focus on oestrus detection.

    PubMed

    Mottram, T

    2016-10-01

    Dairy cows are high value farm animals requiring careful management to achieve the best results. Since the advent of robotic and high throughput milking, the traditional few minutes available for individual human attention daily has disappeared and new automated technologies have been applied to improve monitoring of dairy cow production, nutrition, fertility, health and welfare. Cows milked by robots must meet legal requirements to detect healthy milk. This review focuses on emerging technical approaches in those areas of high cost to the farmer (fertility, metabolic disorders, mastitis, lameness and calving). The availability of low cost tri-axial accelerometers and wireless telemetry has allowed accurate models of behaviour to be developed and sometimes combined with rumination activity detected by acoustic sensors to detect oestrus; other measures (milk and skin temperature, electronic noses, milk yield) have been abandoned. In-line biosensors have been developed to detect markers for ovulation, pregnancy, lactose, mastitis and metabolic changes. Wireless telemetry has been applied to develop boluses for monitoring the rumen pH and temperature to detect metabolic disorders. Udder health requires a multisensing approach due to the varying inflammatory responses collectively described as mastitis. Lameness can be detected by walk over weigh cells, but also by various types of video image analysis and speed measurement. Prediction and detection of calving time is an area of active research mostly focused on behavioural change.

  4. Detection of sub-horizontal flaws in concrete using the synthetic aperture focusing technique

    NASA Astrophysics Data System (ADS)

    Hosseini, Zahra

    Concrete deteriorates over time due to environmental changes and/or poor construction processes which can eventually lead to partial or total failure of a structure. Deterioration in concrete manifests itself in different forms such as: freeze and thaw, chemical attack, surface and internal flaws. Concrete and shotcrete linings are widely used as support systems in underground excavations. Surprisingly, a fragmented, damaged shotcrete support system can actually create a less stable environment than the unsupported rock mass. Detection of internal flaws remains a difficult task as they are not always observable on the surface. Yet, the potential to expand and cause damage to the structure is omnipresent. The focus of this work is to locate and characterize two main and common features in concrete structures, (1) sub-horizontal cracks; (2) rock-concrete interfaces. Traditionally, this has been difficult to detect by currently available NDT methods. To obtain high resolution images of cracks in concrete, an extension of the ultrasonic nondestructive technique known as Synthetic Aperture Focusing Technique (SAFT) has been used. However, in order to achieve our research objective, we developed a modified SAFT code in this work. The results of this study demonstrate that the resolving power of our modified 3D SAFT algorithm can provide an accurate profile of both a rock-concrete interface and/or cracks with angles varying from 5 to 15 degrees within concrete slabs having thicknesses of up to twenty centimetres.

  5. Time-Accurate Solutions of Incompressible Navier-Stokes Equations for Potential Turbopump Applications

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan

    2001-01-01

    Two numerical procedures, one based on artificial compressibility method and the other pressure projection method, are outlined for obtaining time-accurate solutions of the incompressible Navier-Stokes equations. The performance of the two method are compared by obtaining unsteady solutions for the evolution of twin vortices behind a at plate. Calculated results are compared with experimental and other numerical results. For an un- steady ow which requires small physical time step, pressure projection method was found to be computationally efficient since it does not require any subiterations procedure. It was observed that the artificial compressibility method requires a fast convergence scheme at each physical time step in order to satisfy incompressibility condition. This was obtained by using a GMRES-ILU(0) solver in our computations. When a line-relaxation scheme was used, the time accuracy was degraded and time-accurate computations became very expensive.

  6. Oculometer focus and mirror control

    NASA Technical Reports Server (NTRS)

    Guy, W. J.

    1982-01-01

    An automatic focusing system designed around an ultrasonic range measurement is described. Besides maintaining the focus, subject distance is a by-product which could lighten the NOVA computational effort. An automatic head tracking unit is also discussed. It is intended to reduce the search time required when track is lost. An X-Y ultrasonic measurement is also made in this design to control the deflection mirrors.

  7. Focusing of bistatic SAR data

    NASA Astrophysics Data System (ADS)

    Bia, Pietro; Ricci, Nicola; Zonno, Mariantonietta; Nico, Giovanni; Catalao, Joao; Tesauro, Manlio

    2014-10-01

    The problems of simulation of bistatic SAR raw data and focusing are studied. A discrete target simulator is described. The simulator introduces the scene topography and compute the integration time of general bistatic configurations providing a means to derived maps of the range and azimuth spatial resolutions. The problem of focusing of bistatic SAR data acquired in a translational-invariant bistatic configuration is studied by deriving the bistatic Point Target Reference spectrum and presenting an analytical solution for its stationary points.

  8. Accurate determination of screw position in treating fifth metatarsal base fractures to shorten radiation exposure time

    PubMed Central

    Wang, Xu; Zhang, Chao; Wang, Chen; Huang, Jia Zhang; Ma, Xin

    2016-01-01

    INTRODUCTION Anatomical markers can help to guide lag screw placement during surgery for internal fixation of fifth metatarsal base fractures. This study aimed to identify the optimal anatomical markers and thus reduce radiation exposure. METHODS A total of 50 patients in Huashan Hospital, Shanghai, China, who underwent oblique foot radiography in the lateral position were randomly selected. The angles between the fifth metatarsal axis and cuboid articular surface were measured to determine the optimal lag screw placement relative to anatomical markers. RESULTS The line connecting the styloid process of the fifth metatarsal base with the second metatarsophalangeal (MTP) joint intersected with the fifth metatarsal base fracture line at an angle of 86.85° ± 5.44°. The line connecting the fifth metatarsal base styloid with the third and fourth MTP joints intersected with the fracture line at angles of 93.28° ± 5.24° and 100.95° ± 5.00°, respectively. The proximal articular surface of the fifth metatarsal base intersected with the line connecting the styloid process of the fifth metatarsal base with the second, third and fourth MTP joints at angles of 24.02° ± 4.77°, 30.79° ± 4.53° and 38.08° ± 4.54°, respectively. CONCLUSION The fifth metatarsal base styloid and third MTP joint can be used as anatomical markers for lag screw placement in fractures involving the fifth tarsometatarsal joint. The connection line, which is normally perpendicular to the fracture line, provides sufficient mechanical stability to facilitate accurate screw placement. The use of these anatomical markers could help to reduce unnecessary radiation exposure for patients and medical staff. PMID:26767892

  9. Problems in publishing accurate color in IEEE journals.

    PubMed

    Vrhel, Michael J; Trussell, H J

    2002-01-01

    To demonstrate the performance of color image processing algorithms, it is desirable to be able to accurately display color images in archival publications. In poster presentations, the authors have substantial control of the printing process, although little control of the illumination. For journal publication, the authors must rely on professional intermediaries (printers) to accurately reproduce their results. Our previous work describes requirements for accurately rendering images using your own equipment. This paper discusses the problems of dealing with intermediaries and offers suggestions for improved communication and rendering.

  10. Fabricating an Accurate Implant Master Cast: A Technique Report.

    PubMed

    Balshi, Thomas J; Wolfinger, Glenn J; Alfano, Stephen G; Cacovean, Jeannine N; Balshi, Stephen F

    2015-12-01

    The technique for fabricating an accurate implant master cast following the 12-week healing period after Teeth in a Day® dental implant surgery is detailed. The clinical, functional, and esthetic details captured during the final master impression are vital to creating an accurate master cast. This technique uses the properties of the all-acrylic resin interim prosthesis to capture these details. This impression captures the relationship between the remodeled soft tissue and the interim prosthesis. This provides the laboratory technician with an accurate orientation of the implant replicas in the master cast with which a passive fitting restoration can be fabricated.

  11. Reconnection of vorticity lines and magnetic lines

    NASA Technical Reports Server (NTRS)

    Greene, John M.

    1993-01-01

    Magnetic field and fluid vorticity share many features. First, as divergence-free vector fields they are conveniently visualized in terms of their field lines, curves that are everywhere tangent to the field. The lines indicate direction and their density indicates field strength. The question arises of the extent to which the evolution of the fields can be treated in terms of the evolution of their field lines. Newcomb (1958) derived the general conditions on the evolution of vector fields that permit the identification of field lines from one instant to the next. The equations of evolution of the vorticity field and the magnetic field fall within Newcomb's analysis. The dynamics of the flows differ between these two systems, so that geometrically similar phenomena happen in different ways in the two systems. In this paper the geometrical similarities are emphasized. Reconnection will be defined here as evolution in which it is not possible to preserve the global identification of some field lines. There is a close relation between reconnection and the topology of the vector field lines. Nontrivial topology occurs where the field has null points or there are field lines that are closed loops.

  12. Nuclear reactor overflow line

    DOEpatents

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  13. Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy

    PubMed Central

    Durst, M. E.; Zhu, G.; Xu, C.

    2008-01-01

    Simultaneous spatial and temporal focusing (SSTF), when combined with nonlinear microscopy, can improve the axial excitation confinement of wide-field and line-scanning imaging. Because two-photon excited fluorescence depends inversely on the pulse width of the excitation beam, SSTF decreases the background excitation of the sample outside of the focal volume by broadening the pulse width everywhere but at the geometric focus of the objective lens. This review theoretically describes the beam propagation within the sample using Fresnel diffraction in the frequency domain, deriving an analytical expression for the pulse evolution. SSTF can scan the temporal focal plane axially by adjusting the GVD in the excitation beam path. We theoretically define the axial confinement for line-scanning SSTF imaging using a time-domain understanding and conclude that line-scanning SSTF is similar to the temporally-decorrelated multifocal multiphoton imaging technique. Recent experiments on the temporal focusing effect and its axial confinement, as well as the axial scanning of the temporal focus by tuning the GVD, are presented. We further discuss this technique for axial-scanning multiphoton fluorescence fiber probes without any moving parts at the distal end. The temporal focusing effect in SSTF essentially replaces the focusing of one spatial dimension in conventional wide-field and line-scanning imaging. Although the best axial confinement achieved by SSTF cannot surpass that of a regular point-scanning system, this trade-off between spatial and temporal focusing can provide significant advantages in applications such as high-speed imaging and remote axial scanning in an endoscopic fiber probe. PMID:18496597

  14. Focus cues affect perceived depth

    PubMed Central

    Watt, Simon J.; Akeley, Kurt; Ernst, Marc O.; Banks, Martin S.

    2007-01-01

    Depth information from focus cues—accommodation and the gradient of retinal blur—is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space. PMID:16441189

  15. How utilities can achieve more accurate decommissioning cost estimates

    SciTech Connect

    Knight, R.

    1999-07-01

    The number of commercial nuclear power plants that are undergoing decommissioning coupled with the economic pressure of deregulation has increased the focus on adequate funding for decommissioning. The introduction of spent-fuel storage and disposal of low-level radioactive waste into the cost analysis places even greater concern as to the accuracy of the fund calculation basis. The size and adequacy of the decommissioning fund have also played a major part in the negotiations for transfer of plant ownership. For all of these reasons, it is important that the operating plant owner reduce the margin of error in the preparation of decommissioning cost estimates. To data, all of these estimates have been prepared via the building block method. That is, numerous individual calculations defining the planning, engineering, removal, and disposal of plant systems and structures are performed. These activity costs are supplemented by the period-dependent costs reflecting the administration, control, licensing, and permitting of the program. This method will continue to be used in the foreseeable future until adequate performance data are available. The accuracy of the activity cost calculation is directly related to the accuracy of the inventory of plant system component, piping and equipment, and plant structural composition. Typically, it is left up to the cost-estimating contractor to develop this plant inventory. The data are generated by searching and analyzing property asset records, plant databases, piping and instrumentation drawings, piping system isometric drawings, and component assembly drawings. However, experience has shown that these sources may not be up to date, discrepancies may exist, there may be missing data, and the level of detail may not be sufficient. Again, typically, the time constraints associated with the development of the cost estimate preclude perfect resolution of the inventory questions. Another problem area in achieving accurate cost

  16. Controlling Hay Fever Symptoms with Accurate Pollen Counts

    MedlinePlus

    ... Library ▸ Hay fever and pollen counts Share | Controlling Hay Fever Symptoms with Accurate Pollen Counts This article has ... Pongdee, MD, FAAAAI Seasonal allergic rhinitis known as hay fever is caused by pollen carried in the air ...

  17. Digital system accurately controls velocity of electromechanical drive

    NASA Technical Reports Server (NTRS)

    Nichols, G. B.

    1965-01-01

    Digital circuit accurately regulates electromechanical drive mechanism velocity. The gain and phase characteristics of digital circuits are relatively unimportant. Control accuracy depends only on the stability of the input signal frequency.

  18. The Retention of Female Unrestricted Line Officers

    DTIC Science & Technology

    2005-03-01

    PS y• s’TANTIA PER SCIENTIAM NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS THE RETENTION OF FEMALE UNRESTRICTED LINE OFFICERS by Elena G...Title (Mix case letters) 5. FUNDING NUMBERS The Retention of Female Unrestricted Line Officers 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND...public release; distribution is unlimited. 13. ABSTRACT (maximum 200 words) This thesis analyzes the retention of female Naval officers, focusing on the

  19. Visualizing the gravitational lensing and vortex and tendex lines of colliding black holes

    NASA Astrophysics Data System (ADS)

    Khan, Haroon; Lovelace, Geoffery; SXS Collaboration

    2016-03-01

    Gravitational waves (GW's) are ripples of space and time that are created when the universe unleashes its violent nature in the presence of strong gravity. Merging black holes (BH) are one of the most promising sources of GW's. In order to detect and physically study the GW's emitted by merging BH with ground based detectors such as Advanced LIGO, we must accurately predict how the waveforms look and behave. This can only be done by numerically simulating BH mergers on supercomputers, because all analytical approximations fail near the time of merger. This poster focuses on using these simulations to answer the question of ``What do merging BH look like''? I will present visualizations made using the Spectral Einstein Code (SpEC) and in particular a raytracing lensing code, developed by the SXS Lensing team, that shows how merging BH bend the light around them. I will also present visualizations of the vortex and tendex lines for a binary BH system, using SpEC. Vortex lines describe how an observer will be twisted by the BH and the tendex lines describe how much an observer would be stretched and squeezed. I am exploring how these lines change with time.

  20. Accurate tracking of high dynamic vehicles with translated GPS

    NASA Astrophysics Data System (ADS)

    Blankshain, Kenneth M.

    The GPS concept and the translator processing system (TPS) which were developed for accurate and cost-effective tracking of various types of high dynamic expendable vehicles are described. A technique used by the translator processing system (TPS) to accomplish very accurate high dynamic tracking is presented. Automatic frequency control and fast Fourier transform processes are combined to track 100 g acceleration and 100 g/s jerk with 1-sigma velocity measurement error less than 1 ft/sec.

  1. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  2. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  3. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  4. Generation of an incident focused light pulse in FDTD.

    PubMed

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2008-11-10

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

  5. Speeding chemical reactions by focusing.

    PubMed

    Lacasta, A M; Ramírez-Piscina, L; Sancho, J M; Lindenberg, K

    2013-04-14

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, and obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate ∼t(-1/2) to very close to the perfect mixing rate, ∼t(-1).

  6. Speeding chemical reactions by focusing

    NASA Astrophysics Data System (ADS)

    Lacasta, A. M.; Ramírez-Piscina, L.; Sancho, J. M.; Lindenberg, K.

    2013-04-01

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, and obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate ˜t-1/2 to very close to the perfect mixing rate, ˜t-1.

  7. Guidelines for Establishing Coastal Survey Base Lines.

    DTIC Science & Technology

    1981-11-01

    1954) and Czerniak (1972b), that contribute to the value of a monument include marking the monument with its station along the base line and its date...foot of the original location and within ±0.05 foot of the original elevation ( Czerniak , 1972a), which is normally accurate enough. With the exception of...Memorandum C&GSTM-4, Environmental Science Services Administration, U.S. Coast and Geodetic Survey, Rockville, Md., 1968. CZERNIAK , M.T., "Review of

  8. FFAG Beam Line for nuPIL - Neutrinos from PIon Beam Line

    SciTech Connect

    Lagrange, Jean-Baptiste; Pasternak, Jaroslaw; Bross, Alan; Liu, Ao; Appleby, Robert; Tygier, Sam

    2016-06-01

    The Long Baseline Neutrino Facilities (LBNF) program aims to deliver a neutrino beam for the Deep Underground Neutrino Experiment (DUNE). The current baseline for LBNF is a conventional magnetic horn and decay pipe system. Neutrinos from PIon beam Line (nuPIL) is a part of the optimization effort to optimize the LBNF. It consists of a pion beam line after the horn to clean the beam of high energy protons and wrong-sign pions before transporting them into a decay beam line, where instrumentation could be implemented. This paper focuses on the FFAG solution for this pion beam line. The resulting neutrino flux is also presented.

  9. Auto-focusing system based on image processing

    NASA Astrophysics Data System (ADS)

    Wang, GuangLin; Chen, Dawei; Tao, Chongde; Shao, DongXiang; Niu, Hui

    1999-03-01

    In this paper, an auto-focusing system based on image processing is introduced to realize auto-focusing. Image processing method like differential coefficient, maximum variance is involved in the system to pick up the information of the edges, and the statistical rules of the information under different focusing states are used to control the focus to obtain the best focusing state. The system can automatically read the distance information of the worktable and drive the pacing motor to reach the aim of auto-focusing. This auto-focusing system is loaded on the original CCD-based microscopic measuring system an the practical measuring example is given, and it is pointed out that the way mentioned before of heightening the precision is available. It is pointed out that the higher resolution, higher precision image collection board, the CCD camera with higher resolution and the higher precision pacing motor will make the auto-focusing and the measurement of the system more accurate. It can be practical applied an the further perfection of algorithm and software will result in the system having more functions.

  10. Bonded multilayer Laue Lens for focusing hard x-rays.

    SciTech Connect

    Liu, C.; Conley, R.; Qian, J.; Kewish, C.M.; Macrander, A.T.; Maser, J.; Kang, H.C.; Yan, H.; Stephenson, G.B.; Advanced Photonics Research Institute; Gwangju Institute of Science and Technology

    2007-11-11

    We have fabricated partial Multilayer Laue Lens (MLL) linear zone plate structures with thousands of alternating WSi{sub 2} and Si layers and various outermost zone widths according to the Fresnel zone plate formula. Using partial MLL structures, we were able to focus hard X-rays to line foci with a width of 30 nm and below. Here, we describe challenges and approaches used to bond these multilayers to achieve line and point focusing. Bonding was done by coating two multilayers with AuSn and heating in a vacuum oven at 280-300 C. X-ray reflectivity measurements confirmed that there was no change in the multilayers after heating to 350 C. A bonded MLL was polished to a 5-25 {micro}m wedge without cracking. SEM image analyses found well-positioned multilayers after bonding. These results demonstrate the feasibility of a bonded full MLL for focusing hard X-rays.

  11. ALFA: an automated line fitting algorithm

    NASA Astrophysics Data System (ADS)

    Wesson, R.

    2016-03-01

    I present the automated line fitting algorithm, ALFA, a new code which can fit emission line spectra of arbitrary wavelength coverage and resolution, fully automatically. In contrast to traditional emission line fitting methods which require the identification of spectral features suspected to be emission lines, ALFA instead uses a list of lines which are expected to be present to construct a synthetic spectrum. The parameters used to construct the synthetic spectrum are optimized by means of a genetic algorithm. Uncertainties are estimated using the noise structure of the residuals. An emission line spectrum containing several hundred lines can be fitted in a few seconds using a single processor of a typical contemporary desktop or laptop PC. I show that the results are in excellent agreement with those measured manually for a number of spectra. Where discrepancies exist, the manually measured fluxes are found to be less accurate than those returned by ALFA. Together with the code NEAT, ALFA provides a powerful way to rapidly extract physical information from observations, an increasingly vital function in the era of highly multiplexed spectroscopy. The two codes can deliver a reliable and comprehensive analysis of very large data sets in a few hours with little or no user interaction.

  12. Spatial patterns of aftershocks of shallow focus earthquakes in California and implications for deep focus earthquakes

    USGS Publications Warehouse

    Michael, A.J.

    1989-01-01

    Previous workers have pioneered statistical techniques to study the spatial distribution of aftershocks with respect to the focal mechanism of the main shock. Application of these techniques to deep focus earthquakes failed to show clustering of aftershocks near the nodal planes of the main shocks. To better understand the behaviour of these statistics, this study applies them to the aftershocks of six large shallow focus earthquakes in California (August 6, 1979, Coyote Lake; May 2, 1983, Coalinga; April 24, 1984, Morgan Hill; August 4, 1985, Kettleman Hills; July 8, 1986, North Palm Springs; and October 1, 1987, Whittier Narrows). The large number of aftershocks accurately located by dense local networks allows us to treat these aftershock sequences individually instead of combining them, as was done for the deep earthquakes. The results for individual sequences show significant clustering about the closest nodal plane and the strike direction for five of the sequences and about the presumed fault plane for all six sequences. This implies that the previously developed method does work properly. The reasons for the lack of clustering about main shock nodal planes for deep focus aftershocks are discussed. -from Author

  13. Television automatic video-line tester

    NASA Astrophysics Data System (ADS)

    Ge, Zhaoxiang; Tang, Dongsheng; Feng, Binghua

    1998-08-01

    The linearity of telescope video-line is an important character for geodetic instruments and micrometer- telescopes. The instrument of 1 inch video-line tester, invented by University of Shanghai for Science and Technology, has been adopted in related instrument criterion and national metering regulation. But in optical and chemical reading with visual alignment, it can cause subjective error and can not give detailed data and so on. In this paper, the author put forward an improvement for video-line tester by using CCD for TV camera, displaying and processing CCD signal through computer, and auto-testing, with advantage of objectivity, reliability, rapid speed and less focusing error.

  14. Theme: Focus on Vocabulary Skills.

    ERIC Educational Resources Information Center

    Jund, Suzanne, Ed.

    1979-01-01

    The eight articles in this journal issue focus on vocabulary skills. The topics covered are semantic feature analysis, the use of highway survival terms in a vocabulary list, making vocabulary interesting to secondary students, word lists, the use of newspapers in creating vocabulary lists, six strategies underlying effective vocabulary programs,…

  15. Organizing for Schooling. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1996

    1996-01-01

    This newsletter focuses on schoolwide approaches to issues of major concern to educators, from the perspective of providing equal education for all children. "Supporting School Improvement in Reading through Professional Development" (Rogelio Lopez del Bosque, Abelardo Villarreal) describes a professional development program that…

  16. How the Human Eye Focuses.

    ERIC Educational Resources Information Center

    Koretz, Jane F.; Handelman, George H.

    1988-01-01

    Describes the decline in people's ability to focus their eyes as their age increases. Discusses probable causes of this effect including changes in the eye's geometry and biochemistry. Diagrammatically illustrates age related changes in the lens of the human eye. (CW)

  17. Where's the Focus on Racism?

    ERIC Educational Resources Information Center

    Canada, Benjamin O.

    1995-01-01

    America still refuses to deal with racism's effects on a child's character development. The "Focus on the Family" agenda must become part of the school's agenda, but it cannot be based on one religion's teachings, as Linda Page suggests ("A Conservative Christian View on Values," this issue). Public schools must teach the facts…

  18. Zoonotic Focus of Plague, Algeria

    PubMed Central

    Bitam, Idir; Baziz, Belkacem; Rolain, Jean-Marc; Belkaid, Miloud

    2006-01-01

    After an outbreak of human plague, 95 Xenopsylla cheopis fleas from Algeria were tested for Yersinia pestis with PCR methods. Nine fleas were definitively confirmed to be infected with Y. pestis biovar orientalis. Our results demonstrate the persistence of a zoonotic focus of Y. pestis in Algeria. PMID:17326957

  19. World History. Focus on Economics.

    ERIC Educational Resources Information Center

    Caldwell, Jean; Clark, James; Herscher, Walter

    This book opens with an exploration of the first economic revolution, which set the stage for the dramatic unfolding of the role economics has played in world history. The lessons focus on two topics: (1) why some economies grew and prospered while others remained stagnant or declined; and (2) what causes people to make choices that help or hinder…

  20. Math Fair: Focus on Fractions

    ERIC Educational Resources Information Center

    Mokashi, Neelima A.

    2009-01-01

    This article depicts the rewarding experience of creating mathematical environments for kindergarten and elementary students by focusing on one of the most important and often difficult-to-grasp concepts (fractions) through play methods incorporated into a math fair. The basic concept of a math fair is threefold: (1) to create preplanned,…

  1. Brief therapy: focused solution development.

    PubMed

    De Shazer, S; Berg, I K; Lipchik, E; Nunnally, E; Molnar, A; Gingerich, W; Weiner-Davis, M

    1986-06-01

    This article describes the form of brief therapy developed at the Brief Family Therapy Center. We have chosen a title similar to Weakland, Fisch, Watzlawick, and Bodin's classic paper, "Brief Therapy: Focused Problem Resolution" (20) to emphasize our view that there is a conceptual relationship and a developmental connection between the points of view expressed in the two papers.

  2. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  3. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  4. Technology for Education. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on technology for education to benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Coca-Cola Valued Youth Program Students Meet Peers Via Video Conference" (Linda Cantu, Leticia Lopez-De La Garza) describes how at-risk…

  5. Staying in School. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1996

    1996-01-01

    This theme issue focuses on issues related to high Texas dropout rates among Hispanic and other minority group students and on dropout prevention strategies. "School Finance Inequities Mean Schools Are Not Ready To Teach" (Maria Robledo Montecel) deplores the recent Texas Supreme Court ruling that state educational funding is…

  6. Standards and Assessment. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This newsletter includes three articles, two of which focus on standards for student evaluation and for admission to higher education. "A Measuring Stick for Standards and TEKS: Meeting the Needs of Second Language Learners" (Laura Chris Green, Adela Solis) examines beliefs embodied in the notion of standards; defines content,…

  7. Evaluating Pragmatics-Focused Materials

    ERIC Educational Resources Information Center

    Crandall, Elizabeth; Basturkmen, Helen

    2004-01-01

    Learners often find the area of pragmatics (that is, using speech acts such as requesting, inviting, and complimenting) problematic. Teachers are urged to teach pragmatic aspects of language, and make use of authentic samples of spoken discourse to do so. However, information about the effectiveness of pragmatics-focused instruction of this nature…

  8. Law-Focused Education: Iowa.

    ERIC Educational Resources Information Center

    University of Northern Iowa, Cedar Falls. Malcolm Price Lab. School.

    This law-focused resource booklet is intended to help secondary level students learn about the civil law portion of Iowa's judicial system. The materials are designed to help students understand how to deal with conflict in a peaceful and orderly manner and how to cope with decision making in personal law situations as related to the family, the…

  9. Teaching and Learning. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This theme issue includes four articles that focus on teaching and learning strategies to benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Would You Read Me a Story?: In Search of Reading Strategies That Work for the Early Childhood Classroom" (Hilaria Bauer)…

  10. The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.

  11. Accurately predicting copper interconnect topographies in foundry design for manufacturability flows

    NASA Astrophysics Data System (ADS)

    Lu, Daniel; Fan, Zhong; Tak, Ki Duk; Chang, Li-Fu; Zou, Elain; Jiang, Jenny; Yang, Josh; Zhuang, Linda; Chen, Kuang Han; Hurat, Philippe; Ding, Hua

    2011-04-01

    This paper presents a model-based Chemical Mechanical Polishing (CMP) Design for Manufacturability (DFM) () methodology that includes an accurate prediction of post-CMP copper interconnect topographies at the advanced process technology nodes. Using procedures of extensive model calibration and validation, the CMP process model accurately predicts post-CMP dimensions, such as erosion, dishing, and copper thickness with excellent correlation to silicon measurements. This methodology provides an efficient DFM flow to detect and fix physical manufacturing hotspots related to copper pooling and Depth of Focus (DOF) failures at both block- and full chip level designs. Moreover, the predicted thickness output is used in the CMP-aware RC extraction and Timing analysis flows for better understanding of performance yield and timing impact. In addition, the CMP model can be applied to the verification of model-based dummy fill flows.

  12. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  13. History and progress on accurate measurements of the Planck constant

    NASA Astrophysics Data System (ADS)

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10-34 J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, NA. As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 108 from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the improved

  14. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  15. Simple high-speed confocal line-scanning microscope.

    PubMed

    Im, Kang-Bin; Han, Sumin; Park, Hwajoon; Kim, Dongsun; Kim, Beop-Min

    2005-06-27

    Using a line scan camera and an acousto-optic deflector (AOD), we constructed a high-speed confocal laser line-scanning microscope that can generate confocal images (512 x 512 pixels) with up to 191 frames/s without any mechanically moving parts. The line scanner consists of an AOD and a cylindrical lens, which creates a line focus sweeping over the sample. The measured resolutions in z (depth), x (perpendicular to line focus), and y (direction of line focus) directions are 3.3 mum, 0.7 mum and 0.9 mum, respectively, with a 50x objective lens. This confocal microscope may be useful for analyzing fast phenomena during biological and chemical interactions and for fast 3D image reconstruction.

  16. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  17. Nonexposure Accurate Location K-Anonymity Algorithm in LBS

    PubMed Central

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR. PMID:24605060

  18. Nonexposure accurate location K-anonymity algorithm in LBS.

    PubMed

    Jia, Jinying; Zhang, Fengli

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR.

  19. Possibility of corrector plate tuning of x-ray focusing

    SciTech Connect

    Talman, Richard

    2009-05-01

    Schemes for focusing a hard x-ray beam to a small spot are described. The theoretical minimum spot size, assuming perfect mirror shape, is shown to be 4 nm FWHM, independent of x-ray wavelength. This is less than the 10 nm previously said to be the minimum achievable diffraction-limited x-ray spot size. While providing the penetrating power only possible with x rays, this approaches the resolution needed to image individual atoms or atomic layers. However, the perfect mirror assumption is physically unrealistic. This paper discusses the compensation of mirror shape errors by a corrector plate and shows that the tolerances for corrector plate shape are far looser than are tolerances for mirror shape. The full eventual success of achieving theoretical minimum resolution will require mirror shape precision considerably better than has been achieved at this time, though far looser than would be required for simpleminded paraboloidal focusing. Two variants of the scheme, subject to the same mathematical treatment, are described. (i) The ''corrector plate'' name is copied from the similarly functioning element of the same name in a Schmidt camera. The focusing is achieved using glancing, yet coherent, reflection from a high-Z paraboloidal mirror. The strategy is to obtain dominant focusing from reflection and to compensate with weak refractive focusing. The reflective focusing is strong and achromatic but insufficiently accurate. The refractive focusing is weak and chromatic but highly accurate. The corrector plate improves resolution the way eyeglasses help a person to see. It can, for example, be ''fitted'' the same trial-and-error way an optometrist establishes a prescription for glasses. Dimensional tolerances for the compensator are far looser than would be needed for a mirror to achieve the same resolution. Unlike compound refractive lenses, attenuation will be small, at least for wavelengths longer than 1 A, because the compensation layer is thin. (ii) For this

  20. Bionic Vision-Based Intelligent Power Line Inspection System

    PubMed Central

    Ma, Yunpeng; He, Feijia; Xu, Jinxin

    2017-01-01

    Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions. PMID:28203269

  1. Bionic Vision-Based Intelligent Power Line Inspection System.

    PubMed

    Li, Qingwu; Ma, Yunpeng; He, Feijia; Xi, Shuya; Xu, Jinxin

    2017-01-01

    Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions.

  2. A planar transmission-line sensor for measuring microwave permittivity of liquid and semisolid biological materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An accurate technique for determining the permittivity of biological materials with coplanar waveguide transmission line is presented. The technique utilizes closed-form approximations that relate the material permittivity to the line propagation constant. A thru-reflect-line calibration procedure i...

  3. An accurate and practical method for inference of weak gravitational lensing from galaxy images

    NASA Astrophysics Data System (ADS)

    Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.

    2016-07-01

    We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.

  4. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  5. EDITORIAL: Focus on terahertz plasmonics

    NASA Astrophysics Data System (ADS)

    Rahm, Marco; Nahata, Ajay; Akalin, Tahsin; Beruete, Miguel; Sorolla, Mario

    2015-10-01

    Plasmonics is one of the growing fields in modern photonics that has garnered increasing interest over the last few years. In this focus issue, the specific challenges concerning terahertz plasmonics have been addressed and most recent advances in this specific field have been highlighted. The articles demonstrate the diversity and the opportunities of this rich field by covering a variety of topics ranging from the propagation of surface plasmon polaritons (SPPs) on artificially structures surfaces, 2D manipulation of surface plasmons and SPPs, plasmonic focusing, plasmonic high-Q resonators for sensing applications, plasmonically enhanced terahertz antennas to terahertz field manipulation by use of plasmonic structures. The articles substantiate the impact of plasmonics and its great innovative potential for terahertz technology. In memory of Professor Mario Sorolla Ayza.

  6. Internal and External Focus of Attention in a Novice Form Sport

    ERIC Educational Resources Information Center

    Lawrence, Gavin P.; Gottwald, Vicky M.; Hardy, James; Khan, Michael A.

    2011-01-01

    In the current experiment, we examined optimal focus for novices during a movement sequence in which performance was measured on accurate movement form/technique. A novel gymnastics routine was practiced under either an internal skill-relevant, internal skill-irrelevant, external, or no attention focus. Retention and transfer tests were then…

  7. Editor's Comment on Focus Issues

    NASA Astrophysics Data System (ADS)

    Eberly, J. H.

    1998-01-01

    Focus Issues have been a key ingredient of Optics Express in the first six months, as every reader will have noticed. They are new to OSA journals, an innovation by Optics Express that was invented more or less out of thin air. I thought it would be useful to write a few paragraphs about them, since they are so new and still not familiar to most members of the optics community.

  8. Focusing, Sustaining, and Switching Attention

    DTIC Science & Technology

    2013-09-12

    scene analysis 16. SECURITY CLASSIFICATION OF: U a. REPORT u b. ABSTRACT u c. THIS PAGE u 17. LIMITATION OF ABSTRACT uu 18. NUMBER OF...humans can communicate in complex acoustic scenes , we must understand the dynamics of focusing, sustaining, and switching selective auditory ...many of whom deal with complex acoustic scenes full of competing sources (where selective auditory attention is challenging in the best of

  9. Focused Mission High Speed Combatant

    DTIC Science & Technology

    2003-05-09

    hull types to determine which hull type best meets the requirements for the Focused Mission High Speed Combatant. The first step in the analysis...MAPC, uses parametric models and scaling to create high level designs of various hull types. The inputs are desired speed , range, payload, sea state...reached 10 SWATH vessels exhibit superior seakeeping at near zero speed compared to other hull forms 5 Assumes 2 equal-sized GE Gas Turbines 11

  10. Nozzles for Focusing Aerosol Particles

    DTIC Science & Technology

    2009-10-01

    control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE ( DD -MM-YYYY) October 2009 2. REPORT TYPE Final 3. DATES...Figures Figure 1. The design of the first-generation aerodynamic focusing nozzle for aerosol particles used for SPFS and TAOS instrument prototypes...Some nozzles were fabricated in aluminum and some in steel. It has been used for SPFS and TAOS measurement technologies both in the laboratory and

  11. Physical Demands Study - Focus Groups

    DTIC Science & Technology

    2015-10-26

    BFV CAT FAASV FS3 GLPS HEl-T IOTV JAQ LLDR LRAS3 MK19 MOPMS MOS NCO SME TOW TRADOC USARIEM LIST OF ACRONYMS Armored Knight...Army Research Institute of Environmental Medicine v AKV APOBS BFV CAT FAASV FS3 GLPS HEl-T IOTV JAQ LLDR LRAS3 MK19 MOP MS MOS NCO...the Carrier Ammunition Track ( CAT ) task. Soldiers in the senior enlisted’ 138 focus group reported the most frequently performed tasks in training

  12. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  13. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  14. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  15. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  16. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.

  17. Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

    PubMed Central

    Madebene, Bruno; Ulusoy, Inga; Mancera, Luis; Scribano, Yohann; Chulkov, Sergey

    2011-01-01

    Summary We present a theoretical framework for the computation of anharmonic vibrational frequencies for large systems, with a particular focus on determining adsorbate frequencies from first principles. We give a detailed account of our local implementation of the vibrational self-consistent field approach and its correlation corrections. We show that our approach is both robust, accurate and can be easily deployed on computational grids in order to provide an efficient computational tool. We also present results on the vibrational spectrum of hydrogen fluoride on pyrene, on the thiophene molecule in the gas phase, and on small neutral gold clusters. PMID:22003450

  18. Leap of Faith: Does serum luteinizing hormone always accurately reflect central reproductive neuroendocrine activity?

    PubMed Central

    Moenter, Suzanne M.

    2015-01-01

    Function of the central aspects of the hypothalamo-pituitary-gonadal axis has been assessed in a number of ways including direct measurements of hypothalamic output and indirect measures using gonadotropin release from the pituitary as a bioassay for reproductive neuroendocrine activity. Here, methods for monitoring these various parameters are briefly reviewed and then examples presented of both concordance and discrepancy between central and peripheral measurements, with a focus on situations in which elevated GnRH neurosecretion is not reflected accurately by pituitary luteinizing hormone release. Implications for interpretation of gonadotropin data are discussed. PMID:26278916

  19. Multifeature focus exposure matrix for tool diagnosis

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyong; Burov, Anatoly Y.; Duan, Lifeng; Wang, Fan

    2011-03-01

    Lithographic tool performance is the main contributor to CDU. The tool designers and users require an accurate method to measure the tool's error factors on the wafer side in order to improve CDU. Engineers typically use the FEM method to estimate DOF and EL, and then predict the CDU. However, based on the exposure data, it is often difficult to separate systematic level physical errors, such as DOSE repeatability, focus repeatability, dynamic errors and all the other tool's imperfections. In this paper, we introduce a wafer data based method to diagnose tool's performance for CDU improvement. As the systematic errors have a specific signature, they generate a fingerprint in the exposure data. Based on the knowledge of the exposure process and process flow, multiple dimensions exposure matrix is designed to analyze and diagnose the tool's systematic error from wafer data fingerprint. For SMEE's scanner tool (SSA600/10), we use this method to diagnose tool's systematic error and improve the CDU. Some typical result is represented in this paper.

  20. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.