Science.gov

Sample records for accurate markerless motion

  1. Applications of markerless motion capture in gait recognition.

    PubMed

    Sandau, Martin

    2016-03-01

    This thesis is based on four manuscripts where two of them were accepted and two were submitted to peer-reviewed journals. The experimental work behind the thesis was conducted at the Institute of Neuroscience and Pharmacology, University of Copenhagen. The purpose of the studies was to explore the variability of human gait and to conduct new methods for precise estimation of the kinematic parameters applied in forensic gait analysis. The gait studies were conducted in a custom built gait laboratory designed to obtain optimal conditions for markerless motion analysis. The set-up consisted of eight synchronised cameras located in the corners of the laboratory, which were connected to a single computer. The captured images were processed with stereovision-based algorithms to provide accurate 3D reconstructions of the participants. The 3D reconstructions of the participants were obtained during normal walking and the kinematics were extracted with manual and automatic methods. The kinematic results from the automatic approach were compared to marker-based motion capture to validate the precision. The results showed that the proposed markerless motion capture method had a precision comparable to marker-based methods in the frontal plane and the sagittal plane. Similar markerless motion capture methods could therefore provide the basis for reliable gait recognition based on kinematic parameters. The manual annotations were compared to the actual anthropometric measurements obtained from MRI scans and the intra- and inter-observer variability was also quantified to observe the associated effect on recognition. The results showed not only that the kinematics in the lower extremities were important but also that the kinematics in the shoulders had a high discriminatory power. Likewise, the shank length was also highly discriminatory, which has not been previously reported. However, it is important that the same expert performs all annotations, as the inter

  2. Real time markerless motion tracking using linked kinematic chains

    DOEpatents

    Luck, Jason P.; Small, Daniel E.

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  3. Hybrid markerless tracking of complex articulated motion in golf swings.

    PubMed

    Fung, Sim Kwoh; Sundaraj, Kenneth; Ahamed, Nizam Uddin; Kiang, Lam Chee; Nadarajah, Sivadev; Sahayadhas, Arun; Ali, Md Asraf; Islam, Md Anamul; Palaniappan, Rajkumar

    2014-04-01

    Sports video tracking is a research topic that has attained increasing attention due to its high commercial potential. A number of sports, including tennis, soccer, gymnastics, running, golf, badminton and cricket have been utilised to display the novel ideas in sports motion tracking. The main challenge associated with this research concerns the extraction of a highly complex articulated motion from a video scene. Our research focuses on the development of a markerless human motion tracking system that tracks the major body parts of an athlete straight from a sports broadcast video. We proposed a hybrid tracking method, which consists of a combination of three algorithms (pyramidal Lucas-Kanade optical flow (LK), normalised correlation-based template matching and background subtraction), to track the golfer's head, body, hands, shoulders, knees and feet during a full swing. We then match, track and map the results onto a 2D articulated human stick model to represent the pose of the golfer over time. Our work was tested using two video broadcasts of a golfer, and we obtained satisfactory results. The current outcomes of this research can play an important role in enhancing the performance of a golfer, provide vital information to sports medicine practitioners by providing technically sound guidance on movements and should assist to diminish the risk of golfing injuries. PMID:24725790

  4. Implementation of a markerless motion analysis method to quantify hyperkinesis in males with fragile X syndrome.

    PubMed

    O'Keefe, Joan A; Espinoza Orías, Alejandro A; Khan, Hassan; Hall, Deborah A; Berry-Kravis, Elizabeth; Wimmer, Markus A

    2014-02-01

    Hyperactive behavior - and implicitly, motion - in Fragile X syndrome (FXS) has been historically described using behavioral rating scales. While rating scales are the current standard outcome measures used in clinical research, they have limitations including their qualitative nature and subjectivity. The advent of new motion capture technologies has provided the opportunity to develop quantitative methods for measuring hyperactive motion. The hypotheses for this study were that a novel markerless motion analysis method (1) can quantitatively measure kinematic parameters, (2) can differentiate the level of hyperkinesis between control and FXS populations, and (3) will correlate with blind-reviewer synchronous video-capture methods and behavioral rating scale scores. Twenty young males (7-control, 13-FXS; ages 9-32) were studied using a standardized protocol in a markerless motion analysis suite. Behavioral scale questionnaires were filled out by parents and those scores were correlated with motion parameters (frequency and total traveled distance) of body segments during 30s of story listening while standing in the observation space. The markerless system was able to track subjects and the two populations displayed significantly different quantities of motion, with larger amounts of motion in the FXS group (p < 0.05). Pearson's correlation coefficients between frequency counts obtained from the markerless system and rater-based video capture were between 0.969 and 0.996 (p < 0.001). Significant correlations between rating scale scores and motion parameters ranged from 0.462 ≤ r ≤ 0.568 (p ≤ 0.040). These results suggest feasibility and validity of a markerless system as a non-invasive method able to quantify motion in individuals with hyperkinesis. PMID:24252602

  5. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.

    PubMed

    Sandau, Martin; Koblauch, Henrik; Moeslund, Thomas B; Aanæs, Henrik; Alkjær, Tine; Simonsen, Erik B

    2014-09-01

    Estimating 3D joint rotations in the lower extremities accurately and reliably remains unresolved in markerless motion capture, despite extensive studies in the past decades. The main problems have been ascribed to the limited accuracy of the 3D reconstructions. Accordingly, the purpose of the present study was to develop a new approach based on highly detailed 3D reconstructions in combination with a translational and rotational unconstrained articulated model. The highly detailed 3D reconstructions were synthesized from an eight camera setup using a stereo vision approach. The subject specific articulated model was generated with three rotational and three translational degrees of freedom for each limb segment and without any constraints to the range of motion. This approach was tested on 3D gait analysis and compared to a marker based method. The experiment included ten healthy subjects in whom hip, knee and ankle joint were analysed. Flexion/extension angles as well as hip abduction/adduction closely resembled those obtained from the marker based system. However, the internal/external rotations, knee abduction/adduction and ankle inversion/eversion were less reliable. PMID:25085672

  6. Comparison of Markerless and Marker-Based Motion Capture Technologies through Simultaneous Data Collection during Gait: Proof of Concept

    PubMed Central

    Cobelli, Claudio

    2014-01-01

    During the last decade markerless motion capture techniques have gained an increasing interest in the biomechanics community. In the clinical field, however, the application of markerless techniques is still debated. This is mainly due to a limited number of papers dedicated to the comparison with the state of the art of marker based motion capture, in term of repeatability of the three dimensional joints' kinematics. In the present work the application of markerless technique to data acquired with a marker-based system was investigated. All videos and external data were recorded with the same motion capture system and included the possibility to use markerless and marker-based methods simultaneously. Three dimensional markerless joint kinematics was estimated and compared with the one determined with traditional marker based systems, through the evaluation of root mean square distance between joint rotations. In order to compare the performance of markerless and marker-based systems in terms of clinically relevant joint angles estimation, the same anatomical frames of reference were defined for both systems. Differences in calibration and synchronization of the cameras were excluded by applying the same wand calibration and lens distortion correction to both techniques. Best results were achieved for knee flexion-extension angle, with an average root mean square distance of 11.75 deg, corresponding to 18.35% of the range of motion. Sagittal plane kinematics was estimated better than on the other planes also for hip and ankle (root mean square distance of 17.62 deg e.g. 44.66%, and 7.17 deg e.g. 33.12%), meanwhile estimates for hip joint were the most incorrect. This technique enables users of markerless technology to compare differences with marker-based in order to define the degree of applicability of markerless technique. PMID:24595273

  7. Markerless motion capture of multiple characters using multiview image segmentation.

    PubMed

    Liu, Yebin; Gall, Juergen; Stoll, Carsten; Dai, Qionghai; Seidel, Hans-Peter; Theobalt, Christian

    2013-11-01

    Capturing the skeleton motion and detailed time-varying surface geometry of multiple, closely interacting peoples is a very challenging task, even in a multicamera setup, due to frequent occlusions and ambiguities in feature-to-person assignments. To address this task, we propose a framework that exploits multiview image segmentation. To this end, a probabilistic shape and appearance model is employed to segment the input images and to assign each pixel uniquely to one person. Given the articulated template models of each person and the labeled pixels, a combined optimization scheme, which splits the skeleton pose optimization problem into a local one and a lower dimensional global one, is applied one by one to each individual, followed with surface estimation to capture detailed nonrigid deformations. We show on various sequences that our approach can capture the 3D motion of humans accurately even if they move rapidly, if they wear wide apparel, and if they are engaged in challenging multiperson motions, including dancing, wrestling, and hugging. PMID:24051731

  8. Marker-less multi-frame motion tracking and compensation in PET-brain imaging

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Mukherjee, J. M.; Johnson, K.; Olivier, P.; Song, X.; Shao, L.; King, M. A.

    2015-03-01

    In PET brain imaging, patient motion can contribute significantly to the degradation of image quality potentially leading to diagnostic and therapeutic problems. To mitigate the image artifacts resulting from patient motion, motion must be detected and tracked then provided to a motion correction algorithm. Existing techniques to track patient motion fall into one of two categories: 1) image-derived approaches and 2) external motion tracking (EMT). Typical EMT requires patients to have markers in a known pattern on a rigid too attached to their head, which are then tracked by expensive and bulky motion tracking camera systems or stereo cameras. This has made marker-based EMT unattractive for routine clinical application. Our main contributions are the development of a marker-less motion tracking system that uses lowcost, small depth-sensing cameras which can be installed in the bore of the imaging system. Our motion tracking system does not require anything to be attached to the patient and can track the rigid transformation (6-degrees of freedom) of the patient's head at a rate 60 Hz. We show that our method can not only be used in with Multi-frame Acquisition (MAF) PET motion correction, but precise timing can be employed to determine only the necessary frames needed for correction. This can speeds up reconstruction by eliminating the unnecessary subdivision of frames.

  9. Marker-less respiratory motion modeling using the Microsoft Kinect for Windows

    NASA Astrophysics Data System (ADS)

    Tahavori, F.; Alnowami, M.; Wells, K.

    2014-03-01

    Patient respiratory motion is a major problem during external beam radiotherapy of the thoracic and abdominal regions due to the associated organ and target motion. In addition, such motion introduces uncertainty in both radiotherapy planning and delivery and may potentially vary between the planning and delivery sessions. The aim of this work is to examine subject-specific external respiratory motion and its associated drift from an assumed average cycle which is the basis for many respiratory motion compensated applications including radiotherapy treatment planning and delivery. External respiratory motion data were acquired from a group of 20 volunteers using a marker-less 3D depth camera, Kinect for Windows. The anterior surface encompassing thoracic and abdominal regions were subject to principal component analysis (PCA) to investigate dominant variations. The first principal component typically describes more than 70% of the motion data variance in the thoracic and abdominal surfaces. Across all of the subjects used in this study, 58% of subjects demonstrate largely abdominal breathing and 33% exhibited largely thoracic dominated breathing. In most cases there is observable drift in respiratory motion during the 300s capture period, which is visually demonstrated using Kernel Density Estimation. This study demonstrates that for this cohort of apparently healthy volunteers, there is significant respiratory motion drift in most cases, in terms of amplitude and relative displacement between the thoracic and abdominal respiratory components. This has implications for the development of effective motion compensation methodology.

  10. SU-E-J-26: A Novel Technique for Markerless Self-Sorted 4D-CBCT Using Patient Motion Modeling: A Feasibility Study

    SciTech Connect

    Zhang, L; Zhang, Y; Harris, W; Yin, F; Ren, L

    2015-06-15

    Purpose: To develop an automatic markerless 4D-CBCT projection sorting technique by using a patient respiratory motion model extracted from the planning 4D-CT images. Methods: Each phase of onboard 4D-CBCT is considered as a deformation of one phase of the prior planning 4D-CT. The deformation field map (DFM) is represented as a linear combination of three major deformation patterns extracted from the planning 4D-CT using principle component analysis (PCA). The coefficients of the PCA deformation patterns are solved by matching the digitally reconstructed radiograph (DRR) of the deformed volume to the onboard projection acquired. The PCA coefficients are solved for each single projection, and are used for phase sorting. Projections at the peaks of the Z direction coefficient are sorted as phase 1 and other projections are assigned into 10 phase bins by dividing phases equally between peaks. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the proposed technique. Three scenarios were simulated, with different tumor motion amplitude (3cm to 2cm), tumor spatial shift (8mm SI), and tumor body motion phase shift (2 phases) from prior to on-board images. Projections were simulated over 180 degree scan-angle for the 4D-XCAT. The percentage of accurately binned projections across entire dataset was calculated to represent the phase sorting accuracy. Results: With a changed tumor motion amplitude from 3cm to 2cm, markerless phase sorting accuracy was 100%. With a tumor phase shift of 2 phases w.r.t. body motion, the phase sorting accuracy was 100%. With a tumor spatial shift of 8mm in SI direction, phase sorting accuracy was 86.1%. Conclusion: The XCAT phantom simulation results demonstrated that it is feasible to use prior knowledge and motion modeling technique to achieve markerless 4D-CBCT phase sorting. National Institutes of Health Grant No. R01-CA184173 Varian Medical System.

  11. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.

    PubMed

    Sholukha, V; Bonnechere, B; Salvia, P; Moiseev, F; Rooze, M; Van Sint Jan, S

    2013-09-27

    Modeling tools related to the musculoskeletal system have been previously developed. However, the integration of the real underlying functional joint behavior is lacking and therefore available kinematic models do not reasonably replicate individual human motion. In order to improve our understanding of the relationships between muscle behavior, i.e. excursion and motion data, modeling tools must guarantee that the model of joint kinematics is correctly validated to ensure meaningful muscle behavior interpretation. This paper presents a model-based method that allows fusing accurate joint kinematic information with motion analysis data collected using either marker-based stereophotogrammetry (MBS) (i.e. bone displacement collected from reflective markers fixed on the subject's skin) or markerless single-camera (MLS) hardware. This paper describes a model-based approach (MBA) for human motion data reconstruction by a scalable registration method for combining joint physiological kinematics with limb segment poses. The presented results and kinematics analysis show that model-based MBS and MLS methods lead to physiologically-acceptable human kinematics. The proposed method is therefore available for further exploitation of the underlying model that can then be used for further modeling, the quality of which will depend on the underlying kinematic model. PMID:23972432

  12. Improving accuracy of markerless tracking of lung tumours in fluoroscopic video by incorporating diaphragm motion

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Teske, H.; Stoll, M.; Bendl, Rolf

    2014-03-01

    Purpose: Conformal radiation of moving tumours is a challenging task in radiotherapy. Tumour motion induced by respiration can be visualized in fluoroscopic images recorded during patients breathing. Markerless methods making use of registration techniques can be used to estimate tumour motion. However, registration methods might fail when the tumour is hidden by ribs. Using motion of anatomical surrogates, like the diaphragm, is promising to model tumour motion. Methods: A sequence of 116 fluoroscopic images was analyzed and the tumour positions were manually defined by three experts. A block matching (BM) technique is used to calculate the displacement vector relatively to a selected reference image of the first breathing cycle. An enhanced method was developed: Positions, when the tumour is not located behind a rib, are taken as valid estimations of the tumour position. Furthermore, these valid estimations are used to establish a linear model of tumour position and diaphragm motion. For invalid estimations the calculated tumour positions are not taken into consideration, and instead the model is used to determine tumour motion. Results: Enhancing BM with a model of tumour motion from diaphragm motion improves the tracking accuracy when the tumour moves behind a rib. The error (mean ± SD) in longitudinal dimension was 2.0 ± 1.5mm using only BM and 1.0 ± 1.1mm when the enhanced approach was used. Conclusion: The enhanced tracking technique is capable to improve tracking accuracy compared to BM in the case that the tumour is occluded by ribs.

  13. SU-E-J-188: Theoretical Estimation of Margin Necessary for Markerless Motion Tracking

    SciTech Connect

    Patel, R; Block, A; Harkenrider, M; Roeske, J

    2015-06-15

    Purpose: To estimate the margin necessary to adequately cover the target using markerless motion tracking (MMT) of lung lesions given the uncertainty in tracking and the size of the target. Methods: Simulations were developed in Matlab to determine the effect of tumor size and tracking uncertainty on the margin necessary to achieve adequate coverage of the target. For simplicity, the lung tumor was approximated by a circle on a 2D radiograph. The tumor was varied in size from a diameter of 0.1 − 30 mm in increments of 0.1 mm. From our previous studies using dual energy markerless motion tracking, we estimated tracking uncertainties in x and y to have a standard deviation of 2 mm. A Gaussian was used to simulate the deviation between the tracked location and true target location. For each size tumor, 100,000 deviations were randomly generated, the margin necessary to achieve at least 95% coverage 95% of the time was recorded. Additional simulations were run for varying uncertainties to demonstrate the effect of the tracking accuracy on the margin size. Results: The simulations showed an inverse relationship between tumor size and margin necessary to achieve 95% coverage 95% of the time using the MMT technique. The margin decreased exponentially with target size. An increase in tracking accuracy expectedly showed a decrease in margin size as well. Conclusion: In our clinic a 5 mm expansion of the internal target volume (ITV) is used to define the planning target volume (PTV). These simulations show that for tracking accuracies in x and y better than 2 mm, the margin required is less than 5 mm. This simple simulation can provide physicians with a guideline estimation for the margin necessary for use of MMT clinically based on the accuracy of their tracking and the size of the tumor.

  14. Kinematics differences between the flat, kick, and slice serves measured using a markerless motion capture method.

    PubMed

    Sheets, Alison L; Abrams, Geoffrey D; Corazza, Stefano; Safran, Marc R; Andriacchi, Thomas P

    2011-12-01

    Tennis injuries have been associated with serving mechanics, but quantitative kinematic measurements in realistic environments are limited by current motion capture technologies. This study tested for kinematic differences at the lower back, shoulder, elbow, wrist, and racquet between the flat, kick, and slice serves using a markerless motion capture (MMC) system. Seven male NCAA Division 1 players were tested on an outdoor court in daylight conditions. Peak racquet and joint center speeds occurred sequentially and increased from proximal (back) to distal (racquet). Racquet speeds at ball impact were not significantly different between serve types. However, there were significant differences in the direction of the racquet velocity vector between serves: the kick serve had the largest lateral and smallest forward racquet velocity components, while the flat serve had the smallest vertical component (p < 0.01). The slice serve had lateral velocity, like the kick, and large forward velocity, like the flat. Additionally, the racquet in the kick serve was positioned 8.7 cm more posterior and 21.1 cm more medial than the shoulder compared with the flat, which could suggest an increased risk of shoulder and back injury associated with the kick serve. This study demonstrated the potential for MMC for testing sports performance under natural conditions. PMID:21984513

  15. Markerless Human Motion Tracking Using Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization

    PubMed Central

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches—Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims. PMID:25978493

  16. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    PubMed

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims. PMID:25978493

  17. Combining marker-less patient setup and respiratory motion monitoring using low cost 3D camera technology

    NASA Astrophysics Data System (ADS)

    Tahavori, F.; Adams, E.; Dabbs, M.; Aldridge, L.; Liversidge, N.; Donovan, E.; Jordan, T.; Evans, PM.; Wells, K.

    2015-03-01

    Patient set-up misalignment/motion can be a significant source of error within external beam radiotherapy, leading to unwanted dose to healthy tissues and sub-optimal dose to the target tissue. Such inadvertent displacement or motion of the target volume may be caused by treatment set-up error, respiratory motion or an involuntary movement potentially decreasing therapeutic benefit. The conventional approach to managing abdominal-thoracic patient set-up is via skin markers (tattoos) and laser-based alignment. Alignment of the internal target volume with its position in the treatment plan can be achieved using Deep Inspiration Breath Hold (DIBH) in conjunction with marker-based respiratory motion monitoring. We propose a marker-less single system solution for patient set-up and respiratory motion management based on low cost 3D depth camera technology (such as the Microsoft Kinect). In this new work we assess this approach in a study group of six volunteer subjects. Separate simulated treatment mimic treatment "fractions" or set-ups are compared for each subject, undertaken using conventional laser-based alignment and with intrinsic depth images produced by Kinect. Microsoft Kinect is also compared with the well-known RPM system for respiratory motion management in terms of monitoring free-breathing and DIBH. Preliminary results suggest that Kinect is able to produce mm-level surface alignment and a comparable DIBH respiratory motion management when compared to the popular RPM system. Such an approach may also yield significant benefits in terms of patient throughput as marker alignment and respiratory motion can be automated in a single system.

  18. Joint surface reconstruction and 4D deformation estimation from sparse data and prior knowledge for marker-less Respiratory motion tracking

    SciTech Connect

    Berkels, Benjamin; Rumpf, Martin; Bauer, Sebastian; Ettl, Svenja; Arold, Oliver; Hornegger, Joachim

    2013-09-15

    Purpose: The intraprocedural tracking of respiratory motion has the potential to substantially improve image-guided diagnosis and interventions. The authors have developed a sparse-to-dense registration approach that is capable of recovering the patient's external 3D body surface and estimating a 4D (3D + time) surface motion field from sparse sampling data and patient-specific prior shape knowledge.Methods: The system utilizes an emerging marker-less and laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is recovered, which describes the spatio-temporal 4D deformation of the complete patient body surface, depending on the type and state of respiration. It yields both a reconstruction of the instantaneous patient shape and a high-dimensional respiratory surrogate for respiratory motion tracking. The method is validated on a 4D CT respiration phantom and evaluated on both real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured-light scanner.Results: In the experiments, the authors estimated surface motion fields with the proposed algorithm on 256 datasets from 16 subjects and in different respiration states, achieving a mean surface reconstruction accuracy of ±0.23 mm with respect to ground truth data—down from a mean initial surface mismatch of 5.66 mm. The 95th percentile of the local residual mesh-to-mesh distance after registration did not exceed 1.17 mm for any subject. On average, the total runtime of our proof of concept CPU implementation is 2.3 s per frame, outperforming related work substantially.Conclusions: In external beam radiation therapy, the approach holds potential for patient monitoring during treatment using the reconstructed surface, and for motion-compensated dose delivery using

  19. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    SciTech Connect

    Chao, M; Yuan, Y; Rosenzweig, K; Lo, Y; Brousmiche, S

    2015-06-15

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.

  20. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT)

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-05-01

    The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images obtained by the dual-energy subtraction technique. This study was performed to evaluate the usefulness of bone suppression image processing in image-guided radiation therapy. We demonstrated the improved accuracy of markerless motion tracking on bone suppression images. Chest fluoroscopic images of nine patients with lung nodules during respiration were obtained using a flat-panel detector system (120 kV, 0.1 mAs/pulse, 5 fps). Commercial bone suppression image processing software was applied to the fluoroscopic images to create corresponding bone suppression images. Regions of interest were manually located on lung nodules and automatic target tracking was conducted based on the template matching technique. To evaluate the accuracy of target tracking, the maximum tracking error in the resulting images was compared with that of conventional fluoroscopic images. The tracking errors were decreased by half in eight of nine cases. The average maximum tracking errors in bone suppression and conventional fluoroscopic images were 1.3   ±   1.0 and 3.3   ±   3.3 mm, respectively. The bone suppression technique was especially effective in the lower lung area where pulmonary vessels, bronchi, and ribs showed complex movements. The bone suppression technique improved tracking accuracy without special equipment and implantation of fiducial markers, and with only additional small dose to the patient. Bone suppression fluoroscopy is a potential measure for respiratory displacement of the target. This paper was presented at RSNA 2013 and was carried out at Kanazawa University, JAPAN.

  1. Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.

    PubMed

    Quesada, Luis; León, Alejandro J

    2012-10-01

    Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object. PMID:22916719

  2. WE-G-BRF-05: Feasibility of Markerless Motion Tracking Using Dual Energy Cone Beam Computed Tomography (DE-CBCT) Projections

    SciTech Connect

    Panfil, J; Patel, R; Surucu, M; Roeske, J

    2014-06-15

    Purpose: To compare markerless template-based tracking of lung tumors using dual energy (DE) cone-beam computed tomography (CBCT) projections versus single energy (SE) CBCT projections. Methods: A RANDO chest phantom with a simulated tumor in the upper right lung was used to investigate the effectiveness of tumor tracking using DE and SE CBCT projections. Planar kV projections from CBCT acquisitions were captured at 60 kVp (4 mAs) and 120 kVp (1 mAs) using the Varian TrueBeam and non-commercial iTools Capture software. Projections were taken at approximately every 0.53° while the gantry rotated. Due to limitations of the phantom, angles for which the shoulders blocked the tumor were excluded from tracking analysis. DE images were constructed using a weighted logarithmic subtraction that removed bony anatomy while preserving soft tissue structures. The tumors were tracked separately on DE and SE (120 kVp) images using a template-based tracking algorithm. The tracking results were compared to ground truth coordinates designated by a physician. Matches with a distance of greater than 3 mm from ground truth were designated as failing to track. Results: 363 frames were analyzed. The algorithm successfully tracked the tumor on 89.8% (326/363) of DE frames compared to 54.3% (197/363) of SE frames (p<0.0001). Average distance between tracking and ground truth coordinates was 1.27 +/− 0.67 mm for DE versus 1.83+/−0.74 mm for SE (p<0.0001). Conclusion: This study demonstrates the effectiveness of markerless template-based tracking using DE CBCT. DE imaging resulted in better detectability with more accurate localization on average versus SE. Supported by a grant from Varian Medical Systems.

  3. Quantitative Evaluation of 3D Mouse Behaviors and Motor Function in the Open-Field after Spinal Cord Injury Using Markerless Motion Tracking

    PubMed Central

    Sheets, Alison L.; Lai, Po-Lun; Fisher, Lesley C.; Basso, D. Michele

    2013-01-01

    Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI). Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study’s goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz). Background subtraction was used in each video frame to identify the animal’s silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal’s front Center of Volume (CoV) height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005) and rear CoV height (r = .65 p<.01) were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative measurement

  4. Fast Markerless Tracking for Augmented Reality in Planar Environment

    NASA Astrophysics Data System (ADS)

    Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim

    2015-12-01

    Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.

  5. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture

    PubMed Central

    Gao, Zhiquan; Yu, Yao; Zhou, Yu; Du, Sidan

    2015-01-01

    Accurate motion capture plays an important role in sports analysis, the medical field and virtual reality. Current methods for motion capture often suffer from occlusions, which limits the accuracy of their pose estimation. In this paper, we propose a complete system to measure the pose parameters of the human body accurately. Different from previous monocular depth camera systems, we leverage two Kinect sensors to acquire more information about human movements, which ensures that we can still get an accurate estimation even when significant occlusion occurs. Because human motion is temporally constant, we adopt a learning analysis to mine the temporal information across the posture variations. Using this information, we estimate human pose parameters accurately, regardless of rapid movement. Our experimental results show that our system can perform an accurate pose estimation of the human body with the constraint of information from the temporal domain. PMID:26402681

  6. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture.

    PubMed

    Gao, Zhiquan; Yu, Yao; Zhou, Yu; Du, Sidan

    2015-01-01

    Accurate motion capture plays an important role in sports analysis, the medical field and virtual reality. Current methods for motion capture often suffer from occlusions, which limits the accuracy of their pose estimation. In this paper, we propose a complete system to measure the pose parameters of the human body accurately. Different from previous monocular depth camera systems, we leverage two Kinect sensors to acquire more information about human movements, which ensures that we can still get an accurate estimation even when significant occlusion occurs. Because human motion is temporally constant, we adopt a learning analysis to mine the temporal information across the posture variations. Using this information, we estimate human pose parameters accurately, regardless of rapid movement. Our experimental results show that our system can perform an accurate pose estimation of the human body with the constraint of information from the temporal domain. PMID:26402681

  7. NOTE: A feasibility study of markerless fluoroscopic gating for lung cancer radiotherapy using 4DCT templates

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Cerviño, Laura I.; Jiang, Steve B.

    2009-10-01

    A major difficulty in conformal lung cancer radiotherapy is respiratory organ motion, which may cause clinically significant targeting errors. Respiratory-gated radiotherapy allows for more precise delivery of prescribed radiation dose to the tumor, while minimizing normal tissue complications. Gating based on external surrogates is limited by its lack of accuracy, while gating based on implanted fiducial markers is limited primarily by the risk of pneumothorax due to marker implantation. Techniques for fluoroscopic gating without implanted fiducial markers (markerless gating) have been developed. These techniques usually require a training fluoroscopic image dataset with marked tumor positions in the images, which limits their clinical implementation. To remove this requirement, this study presents a markerless fluoroscopic gating algorithm based on 4DCT templates. To generate gating signals, we explored the application of three similarity measures or scores between fluoroscopic images and the reference 4DCT template: un-normalized cross-correlation (CC), normalized cross-correlation (NCC) and normalized mutual information (NMI), as well as average intensity (AI) of the region of interest (ROI) in the fluoroscopic images. Performance was evaluated using fluoroscopic and 4DCT data from three lung cancer patients. On average, gating based on CC achieves the highest treatment accuracy given the same efficiency, with a high target coverage (average between 91.9% and 98.6%) for a wide range of nominal duty cycles (20-50%). AI works well for two patients out of three, but failed for the third patient due to interference from the heart. Gating based on NCC and NMI usually failed below 50% nominal duty cycle. Based on this preliminary study with three patients, we found that the proposed CC-based gating algorithm can generate accurate and robust gating signals when using 4DCT reference template. However, this observation is based on results obtained from a very limited

  8. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  9. Measuring accurate body parameters of dressed humans with large-scale motion using a Kinect sensor.

    PubMed

    Xu, Huanghao; Yu, Yao; Zhou, Yu; Li, Yang; Du, Sidan

    2013-01-01

    Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods. PMID:24064597

  10. Routine Markerless Gene Replacement in Bacillus anthracis

    PubMed Central

    Janes, Brian K.; Stibitz, Scott

    2006-01-01

    An improved genetic tool suitable for routine markerless allelic exchange in Bacillus anthracis has been constructed. Its utility was demonstrated by the introduction of insertions, deletions, and missense mutations on the chromosome and plasmid pXO1 of the Sterne strain of B. anthracis. PMID:16495572

  11. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  12. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues.

    PubMed

    Yu, Xunbo; Sang, Xinzhu; Gao, Xin; Chen, Zhidong; Chen, Duo; Duan, Wei; Yan, Binbin; Yu, Chongxiu; Xu, Daxiong

    2015-10-01

    A three-dimensional (3D) display with smooth motion parallax and large viewing angle is demonstrated, which is based on a microlens array and a coded two-dimensional (2D) image on a 50 inch liquid crystal device (LCD) panel with the resolution of 3840 × 2160. Combining with accurate depth cues expressing, the flipping images of the traditional integral imaging (II) are eliminated, and smooth motion parallax can be achieved. The image on the LCD panel is coded as an elemental image packed repeatedly, and the depth cue is determined by the repeated period of elemental image. To construct the 3D image with complex depth structure, the varying period of elemental image is required. Here, the detailed principle and coding method are presented. The shape and the texture of a target 3D image are designed by a structure image and an elemental image, respectively. In the experiment, two groups of structure images and their corresponding elemental images are utilized to construct a 3D scene with a football in a green net. The constructed 3D image exhibits obviously enhanced 3D perception and smooth motion parallax. The viewing angle is 60°, which is much larger than that of the traditional II. PMID:26480110

  13. Highly accurate analytic formulae for projectile motion subjected to quadratic drag

    NASA Astrophysics Data System (ADS)

    Turkyilmazoglu, Mustafa

    2016-05-01

    The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.

  14. Threshold adjusted calcium scoring using CT is less susceptible to cardiac motion and more accurate.

    PubMed

    Groen, J M; Dijkstra, H; Greuter, M J W; Oudkerk, M

    2009-02-01

    The purpose of this paper is to investigate calcium scoring on computed tomography (CT) using an adjusted threshold depending on the maximum Hounsfield value within the calcification (HU(peak)). The volume of 19 calcifications was retrospectively determined on 64-slice multidetector CT and dual source CT (DSCT) at different thresholds and the threshold associated with the physical volume was determined. In addition, approximately 10 000 computer simulations were done simulating the same process for calcifications with mixed density. Using these data a relation between the HU(peak) and the threshold could be established. Hereafter, this relation was assessed by scanning six calcifications in a phantom at 40-110 beats per minute using DSCT. The influence of motion was determined and the measured calcium scores were compared to the physical volumes and mass. A positive linear correlation was found between the scoring threshold and the HU(peak) of the calcifications both for the phantom measurements as for the computer simulations. Using this relation the individual threshold for each calcification could be calculated. Calcium scores of the moving calcifications determined with an adjusted threshold were approximately 30% less susceptible to cardiac motion compared to standard calcium scoring. Furthermore, these scores approximated the physical volume and mass at least 10% better than the standard calcium scores. The threshold in calcium scoring should be adjusted for each individual calcification based on the HU(peak) of the calcification. Calcium scoring using an adjusted threshold is less susceptible to cardiac motion and more accurate compared to the physical values. PMID:19291982

  15. A kernel-based method for markerless tumor tracking in kV fluoroscopic images.

    PubMed

    Zhang, Xiaoyong; Homma, Noriyasu; Ichiji, Kei; Abe, Makoto; Sugita, Norihiro; Takai, Yoshihiro; Narita, Yuichiro; Yoshizawa, Makoto

    2014-09-01

    Markerless tracking of respiration-induced tumor motion in kilo-voltage (kV) fluoroscopic image sequence is still a challenging task in real time image-guided radiation therapy (IGRT). Most of existing markerless tracking methods are based on a template matching technique or its extensions that are frequently sensitive to non-rigid tumor deformation and involve expensive computation. This paper presents a kernel-based method that is capable of tracking tumor motion in kV fluoroscopic image sequence with robust performance and low computational cost. The proposed tracking system consists of the following three steps. To enhance the contrast of kV fluoroscopic image, we firstly utilize a histogram equalization to transform the intensities of original images to a wider dynamical intensity range. A tumor target in the first frame is then represented by using a histogram-based feature vector. Subsequently, the target tracking is then formulated by maximizing a Bhattacharyya coefficient that measures the similarity between the tumor target and its candidates in the subsequent frames. The numerical solution for maximizing the Bhattacharyya coefficient is performed by a mean-shift algorithm. The proposed method was evaluated by using four clinical kV fluoroscopic image sequences. For comparison, we also implement four conventional template matching-based methods and compare their performance with our proposed method in terms of the tracking accuracy and computational cost. Experimental results demonstrated that the proposed method is superior to conventional template matching-based methods. PMID:25098382

  16. A kernel-based method for markerless tumor tracking in kV fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyong; Homma, Noriyasu; Ichiji, Kei; Abe, Makoto; Sugita, Norihiro; Takai, Yoshihiro; Narita, Yuichiro; Yoshizawa, Makoto

    2014-09-01

    Markerless tracking of respiration-induced tumor motion in kilo-voltage (kV) fluoroscopic image sequence is still a challenging task in real time image-guided radiation therapy (IGRT). Most of existing markerless tracking methods are based on a template matching technique or its extensions that are frequently sensitive to non-rigid tumor deformation and involve expensive computation. This paper presents a kernel-based method that is capable of tracking tumor motion in kV fluoroscopic image sequence with robust performance and low computational cost. The proposed tracking system consists of the following three steps. To enhance the contrast of kV fluoroscopic image, we firstly utilize a histogram equalization to transform the intensities of original images to a wider dynamical intensity range. A tumor target in the first frame is then represented by using a histogram-based feature vector. Subsequently, the target tracking is then formulated by maximizing a Bhattacharyya coefficient that measures the similarity between the tumor target and its candidates in the subsequent frames. The numerical solution for maximizing the Bhattacharyya coefficient is performed by a mean-shift algorithm. The proposed method was evaluated by using four clinical kV fluoroscopic image sequences. For comparison, we also implement four conventional template matching-based methods and compare their performance with our proposed method in terms of the tracking accuracy and computational cost. Experimental results demonstrated that the proposed method is superior to conventional template matching-based methods.

  17. Feasibility Study for Markerless Tracking of Lung Tumors in Stereotactic Body Radiotherapy

    SciTech Connect

    Richter, Anne; Wilbert, Juergen; Baier, Kurt; Flentje, Michael; Guckenberger, Matthias

    2010-10-01

    Purpose: To evaluate the feasibility and accuracy of a method for markerless tracking of lung tumors in electronic portal imaging device (EPID) movies and to analyze intra- and interfractional variations in tumor motion. Methods and Materials: EPID movies were acquired during stereotactic body radiotherapy (SBRT) given to 40 patients with 49 pulmonary targets and retrospectively analyzed. Tumor visibility and tracking accuracy were determined by three observers. Tumor motion of 30 targets was analyzed in detail via four-dimensional computed tomography (4DCT) and EPID in the superior-inferior direction for intra- and interfractional variations. Results: Tumor visibility was sufficient for markerless tracking in 47% of the EPID movies. Tumor size and visibility in the DRR were correlated with visibility in the EPID images. The difference between automatic and manual tracking was a maximum of 2 mm for 98.3% in the x direction and 89.4% in the y direction. Motion amplitudes in 4DCT images (range, 0.7-17.9 mm; median, 4.9 mm) were closely correlated with amplitudes in the EPID movies. Intrafractional and interfractional variability of tumor motion amplitude were of similar magnitude: 1 mm on average to a maximum of 4 mm. A change in moving average of more than {+-}1 mm, {+-}2 mm, and {+-}4 mm were observed in 47.1%, 17.1%, and 4.5% of treatment time for all trajectories, respectively. Mean tumor velocity was 3.4 mm/sec, to a maximum 61 mm/sec. Conclusions: Tracking of pulmonary tumors in EPID images without implanted markers was feasible in 47% of all treatment beams. 4DCT is representative of the evaluation of mean breathing motion on average, but larger deviations occurred in target motion between treatment planning and delivery effort a monitoring during delivery.

  18. TH-E-17A-10: Markerless Lung Tumor Tracking Based On Beams Eye View EPID Images

    SciTech Connect

    Chiu, T; Kearney, V; Liu, H; Jiang, L; Foster, R; Mao, W; Rozario, T; Bereg, S; Klash, S

    2014-06-15

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT corresponding curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.

  19. Markerless tracking of small lung tumors for stereotactic radiotherapy

    SciTech Connect

    Sörnsen de Koste, John R. van Dahele, Max; Senan, Suresh; Slotman, Ben J.; Verbakel, Wilko F. A. R.; Mostafavi, Hassan; Sloutsky, Alex

    2015-04-15

    Purpose: (1) To validate retrospective markerless tracking software for small lung tumors by comparing tracked motion in 4-dimensional planning computed tomography (4DCT) derived kV projection images and known tumor motion in the same 4DCT. (2) To evaluate variability of tumor motion using kV projection images from cone-beam computed tomography (CBCT) scans acquired on different days. Methods: Nonclinical tumor tracking software (TTS) used a normalized cross correlation algorithm to track the tumor on enhanced kV projection images (e.g., from a CBCT scan). The reference dataset consisted of digitally reconstructed radiographs (DRRs) from one phase of a planning 4DCT. TTS matches two in-plane coordinates and obtains the out-of-plane coordinate by triangulating with match results from other projections. (1) To validate TTS, tracking results were compared with known 4DCT tumor motion for two patients (A and B). Projection images (1 image/1°) were digitally reconstructed for each 4DCT phase. From these, kV projection series were composed simulating full breathing cycles every 20° of gantry rotation [breathing period = 20°/(6°/s) = 3.33 s]. Reference templates were 360 “tumor enhanced” DRRs from the 4DCT expiration phase. TTS-derived tumor motion was compared to known tumor motion on 4DCT. (2) For five patients, TTS-assessed motion during clinical CBCT acquisition was compared with motion on the planning 4DCT, and the motion component in the Y (cranio–caudal)-direction was compared with the motion of an external marker box (RPM, real-time position management). Results: (1) Validation results: TTS for case A (tumor 6.2 cm{sup 3}, 32 mm axial diameter) over 360° showed mean motion X (medial–lateral) = 3.4, Y = 11.5, and Z (ventral–dorsal) = 4.9 mm (1 SD < 1.0 mm). Corresponding 4DCT motion was X = 3.1, Y = 11.3, and Z = 5.1 mm. Correlation coefficients between TTS tumor motion and displacement of the tumor’s center of mass (CoM) on 4DCT were 0.64, 0

  20. Accurate motion parameter estimation for colonoscopy tracking using a regression method

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2010-03-01

    Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.

  1. Improved highly accurate localized motion imaging for monitoring high-intensity focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Qu, Xiaolei; Azuma, Takashi; Sugiyama, Ryusuke; Kanazawa, Kengo; Seki, Mika; Sasaki, Akira; Takeuchi, Hideki; Fujiwara, Keisuke; Itani, Kazunori; Tamano, Satoshi; Takagi, Shu; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-07-01

    Visualizing an area subjected to high-intensity focused ultrasound (HIFU) therapy is necessary for controlling the amount of HIFU exposure. One of the promising monitoring methods is localized motion imaging (LMI), which estimates coagulation length by detecting the change in stiffness. In this study, we improved the accuracy of our previous LMI by dynamic cross-correlation window (DCCW) and maximum vibration amount (MVA) methods. The DCCW method was used to increase the accuracy of estimating vibration amplitude, and the MVA method was employed to increase signal–noise ratio of the decrease ratio at the coagulated area. The qualitative comparison of results indicated that the two proposed methods could suppress the effect of noise. Regarding the results of the quantitative comparison, coagulation length was estimated with higher accuracy by the improved LMI method, and the root-mean-square error (RMSE) was reduced from 2.51 to 1.69 mm.

  2. Markerless 3D motion capture for animal locomotion studies

    PubMed Central

    Sellers, William Irvin; Hirasaki, Eishi

    2014-01-01

    ABSTRACT Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective. PMID:24972869

  3. Markerless 3D motion capture for animal locomotion studies.

    PubMed

    Sellers, William Irvin; Hirasaki, Eishi

    2014-01-01

    Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective. PMID:24972869

  4. Accurate Object Recognition Using Orientation Sensor with Refinement on the Lie Group of Spatial Rigid Motions

    NASA Astrophysics Data System (ADS)

    Merckel, Loic; Nishida, Toyoaki

    In this paper, we introduce a method for recognizing a subject complex object in real world environment. We use a three dimensional model described by line segments of the object and the data provided by a three-axis orientation sensor attached to the video camera. We assume that existing methods for finding line features in the image allow at least one model line segment to be detected as a single continuous segment. The method consists of two main steps: generation of pose hypotheses and then evaluation of each pose in order to select the most appropriate one. The first stage is three-fold: model visibility, line matching and pose estimation; the second stage aims to rank the poses by evaluating the similarity between the projected model lines and the image lines. Furthermore, we propose an additional step that consists of refining the best candidate pose by using the Lie group formalism of spatial rigid motions. Such a formalism provides an efficient local parameterization of the set of rigid rotation via the exponential map. A set of experiments demonstrating the robustness of this approach is presented.

  5. Accurate and portable weigh-in-motion system for manifesting air cargo

    SciTech Connect

    Nodine, R.N.; Scudiere, M.B.; Jordan, J.K.

    1995-12-01

    An automated and portable weigh-in-motion system has been developed at Oak Ridge National Laboratory for the purpose of manifesting cargo onto aircraft. The system has an accuracv range of {plus_minus} 3.0% to {plus_minus} 6.0% measuring gross vehicle weight and locating the center of balance of moving vehicles at speeds of 1 to 5 mph. This paper reviews the control/user interface system and weight determination algorithm developed to acquire, process, and interpret multiple sensor inputs. The development effort resulted in a self-zeroing, user-friendly system capable of weighing a wide range of vehicles in any random order. The control system is based on the STANDARD (STD) bus and incorporates custom-designed data acquisition and sensor fusion hardware controlled by a personal computer (PC) based single-board computer. The user interface is written in the ``C`` language to display number of axles, axle weight, axle spacing, gross weight, and center of balance. The weighing algorithm developed will function with any linear weight sensor and a set of four axle switches per sensor.

  6. Observation-driven adaptive differential evolution and its application to accurate and smooth bronchoscope three-dimensional motion tracking.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-08-01

    This paper proposes an observation-driven adaptive differential evolution algorithm that fuses bronchoscopic video sequences, electromagnetic sensor measurements, and computed tomography images for accurate and smooth bronchoscope three-dimensional motion tracking. Currently an electromagnetic tracker with a position sensor fixed at the bronchoscope tip is commonly used to estimate bronchoscope movements. The large tracking error from directly using sensor measurements, which may be deteriorated heavily by patient respiratory motion and the magnetic field distortion of the tracker, limits clinical applications. How to effectively use sensor measurements for precise and stable bronchoscope electromagnetic tracking remains challenging. We here exploit an observation-driven adaptive differential evolution framework to address such a challenge and boost the tracking accuracy and smoothness. In our framework, two advantageous points are distinguished from other adaptive differential evolution methods: (1) the current observation including sensor measurements and bronchoscopic video images is used in the mutation equation and the fitness computation, respectively and (2) the mutation factor and the crossover rate are determined adaptively on the basis of the current image observation. The experimental results demonstrate that our framework provides much more accurate and smooth bronchoscope tracking than the state-of-the-art methods. Our approach reduces the tracking error from 3.96 to 2.89 mm, improves the tracking smoothness from 4.08 to 1.62 mm, and increases the visual quality from 0.707 to 0.741. PMID:25660001

  7. Markerless surgical robotic system for intracerebral hemorrhage surgery.

    PubMed

    Shin, Sangkyun; Cho, Hyunchul; Yoon, Siyeop; Park, Kyusic; Kim, Youngjun; Park, Sehyung; Kim, Laehyun; Lee, Deukhee

    2015-01-01

    Conventional intracerebral hemorrhage (ICH) surgery uses a stereotactic frame to access an intracerebral hematoma. Using a stereotactic frame for ICH surgery requires a long preparation time. In order to resolve this problem, we propose a markerless surgical robotic system. This system uses weighted iterative closest point technology for surface registration, hand-eye calibration for needle insertion, and 3D surface scanning for registration. We need calibration to integrate the technologies: calibration of robot and needle coordinates and calibration of 3D surface scanning and needle coordinates. These calibrations are essential elements of the markerless surgical robotic system. This system has the advantages of being non-invasive, a short total operation time, and low radiation exposure compared to conventional ICH surgery. PMID:26737481

  8. Markerless tumor tracking using short kilovoltage imaging arcs for lung image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Shieh, Chun-Chien; Keall, Paul J.; Kuncic, Zdenka; Huang, Chen-Yu; Feain, Ilana

    2015-12-01

    The ability to monitor tumor motion without implanted markers is clinically advantageous for lung image-guided radiotherapy (IGRT). Existing markerless tracking methods often suffer from overlapping structures and low visibility of tumors on kV projection images. We introduce the short arc tumor tracking (SATT) method to overcome these issues. The proposed method utilizes multiple kV projection images selected from a nine-degree imaging arc to improve tumor localization, and respiratory-correlated 4D cone-beam CT (CBCT) prior knowledge to minimize the effects of overlapping anatomies. The 3D tumor position is solved as an optimization problem with prior knowledge incorporated via regularization. We retrospectively validated SATT on 11 clinical scans from four patients with central tumors. These patients represent challenging scenarios for markerless tumor tracking due to the inferior adjacent contrast. The 3D trajectories of implanted fiducial markers were used as the ground truth for tracking accuracy evaluation. In all cases, the tumors were successfully tracked at all gantry angles. Compared to standard pre-treatment CBCT guidance alone, trajectory errors were significantly smaller with tracking in all cases, and the improvements were the most prominent in the superior-inferior direction. The mean 3D tracking error ranged from 2.2-9.9 mm, which was 0.4-2.6 mm smaller compared to pre-treatment CBCT. In conclusion, we were able to directly track tumors with inferior visibility on kV projection images using SATT. Tumor localization accuracies are significantly better with tracking compared to the current standard of care of lung IGRT. Future work involves the prospective evaluation and clinical implementation of SATT.

  9. Markerless Roentgen Stereophotogrammetric Analysis for in vivo implant migration measurement using three dimensional surface models to represent bone.

    PubMed

    Seehaus, Frank; Olender, Gavin D; Kaptein, Bart L; Ostermeier, Sven; Hurschler, Christof

    2012-05-11

    Recent studies have shown that model-based RSA using implant surface models to detect in vivo migration is as accurate as the classical marker-based RSA method. Use of bone surface models would be a further advancement of the model-based method by decreasing complications arising from marker insertion. The aim of this pilot investigation was to assess the feasibility of a "completely markerless" model-based RSA in detecting migration of an implant using bone surface models instead of bone markers. A total knee arthroplasty (TKA) was performed on a human cadaver knee, which was subsequently investigated by repeated RSA measurements performed by one observer. The cadaver knee was CT scanned prior to implantation of the TKA. Tibia-fibular surface models were created using two different commercially available software packages to investigate the effect of segmentation software on the accuracy of repeated migration measures of zero displacement by one observer. Reverse engineered surface models of the TKA tibial component were created. The analysis of the RSA images was repeated 10 times by one individual observer. For the markerless method, the greatest apparent migration observed about the three anatomical axes investigated was between -2.08 and 1.35 mm (SD ≤ 0.88) for z-axis translation, and -4.57° to 7.86° (SD ≤ 3.17) for R(y)-axis rotation, which were well beyond out of the range of what is typically considered adequate for clinically relevant RSA measurements. Use of tibia-fibular surface models of the bone instead of markers could provide practical advantages in evaluating implant migration. However, we found the accuracy and precision of the markerless approach to be lower than that of marker-based RSA, to a degree which precludes the use of this method for measuring implant migration in its present form. PMID:22465625

  10. A Marker-less Monitoring System for Movement Analysis of Infants Using Video Images

    NASA Astrophysics Data System (ADS)

    Shima, Keisuke; Osawa, Yuko; Bu, Nan; Tsuji, Tokuo; Tsuji, Toshio; Ishii, Idaku; Matsuda, Hiroshi; Orito, Kensuke; Ikeda, Tomoaki; Noda, Shunichi

    This paper proposes a marker-less motion measurement and analysis system for infants. This system calculates eight types of evaluation indices related to the movement of an infant such as “amount of body motion” and “activity of body” from binary images that are extracted from video images using the background difference and frame difference. Thus, medical doctors can intuitively understand the movements of infants without long-term observations, and this may be helpful in supporting their diagnoses and detecting disabilities and diseases in the early stages. The distinctive feature of this system is that the movements of infants can be measured without using any markers for motion capture and thus it is expected that the natural and inherent tendencies of infants can be analyzed and evaluated. In this paper, the evaluation indices and features of movements between full-term infants (FTIs) and low birth weight infants (LBWIs) are compared using the developed prototype. We found that the amount of body motion and symmetry of upper and lower body movements of LBWIs became lower than those of FTIs. The difference between the movements of FTIs and LBWIs can be evaluated using the proposed system.

  11. Markerless registration for intracerebral hemorrhage surgical system using weighted Iterative Closest Point (ICP).

    PubMed

    Shin, Sangkyun; Lee, Deukhee; Kim, Youngjun; Park, Sehyung

    2012-01-01

    It is required to use a stereotactic frame on a patient's crainial surface to access an intracerebral hematoma in conventional ICH (Intracerebral Hemorrhage) removal surgery. Since ICH using a stereotactic frame is an invasive procedure and also takes a long time, we attempt to develop a robotic ICH removal procedure with a markerless registration system using an optical 3-D scanner. Preoperative planning is performed using a patient's CT (Computed Tomography) images, which include the patient's 3-D geometrical information on the hematoma and internal structures of brain. To register the preplanned data and the intraoperative patient's data, the patient's facial surface is scanned by an optical 3-D scanner on the bed in the operating room. The intraoperatively scanned facial surface is registered to the pose of the patient's preoperative facial surface. The conventional ICP (Iterative Closest Point) algorithm can be used for the registration. In this paper, we propose a weighted ICP in order to improve the accuracy of the registration results. We investigated facial regions that can be used as anatomical landmarks. The facial regions for the landmarks in the preoperative 3-D model are weighted for more accurate registration. We increase weights at the relatively undeformed facial regions, and decrease weights at the other regions. As a result, more accurate and robust registration can be achieved from the preoperative data even with local facial shape changes. PMID:23367127

  12. Accurate 3D rigid-body target motion and structure estimation by using GMTI/HRR with template information

    NASA Astrophysics Data System (ADS)

    Wu, Shunguang; Hong, Lang

    2008-04-01

    A framework of simultaneously estimating the motion and structure parameters of a 3D object by using high range resolution (HRR) and ground moving target indicator (GMTI) measurements with template information is given. By decoupling the motion and structure information and employing rigid-body constraints, we have developed the kinematic and measurement equations of the problem. Since the kinematic system is unobservable by using only one scan HRR and GMTI measurements, we designed an architecture to run the motion and structure filters in parallel by using multi-scan measurements. Moreover, to improve the estimation accuracy in large noise and/or false alarm environments, an interacting multi-template joint tracking (IMTJT) algorithm is proposed. Simulation results have shown that the averaged root mean square errors for both motion and structure state vectors have been significantly reduced by using the template information.

  13. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction. PMID:19282544

  14. Arthrodial joint markerless cross-parameterization and biomechanical visualization.

    PubMed

    Marai, G Elisabeta; Grimm, Cindy M; Laidlaw, David H

    2007-01-01

    Abstract-Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task. PMID:17622690

  15. Markerless three-dimensional tracking of masticatory movement.

    PubMed

    Tanaka, Yuto; Yamada, Takafumi; Maeda, Yoshinobu; Ikebe, Kazunori

    2016-02-01

    Conventional methods for measuring mandibular movement are expensive and require headgear and a marker attached to the mandibular incisors. These make assessment of normal chewing difficult. The aim of the present study was to test the validity of a markerless three-dimensional system for tracking masticatory movement by comparing it with a conventional method using an incisal marker. The study investigated 100 chewing cycles in 10 participants. The jaw tracking system consisted of a camera capable of recording depth and red, green, and blue data simultaneously, a laptop computer, and data analysis software. Depth data for each participant's face, tracked in real time, produced a computed 3D mask. The most prominent point of the soft tissue under the lip was defined as the chin point. A dental clasp cemented to the labial surface of the mandibular incisors was defined as the incisal point. The movement of these two measuring points was simultaneously recorded during mastication of chewing gum for 20s. To conduct the same analysis on each cycle from the two measuring points, all cycles were normalized by dividing by the corresponding vertical displacement because of their size variation. The findings showed excellent intramethod correlation for normalized horizontal displacement at every level (>0.9; except for 2 out of 19 levels; 0.896 and 0.898), and a lack of proportional bias. These findings suggest a correlation between the chewing cycles from two measuring points, the incisor and the chin, further suggesting the feasibility of a markerless system for tracking masticatory movement. PMID:26827172

  16. Studying primate carpal kinematics in three dimensions using a computed-tomography-based markerless registration method.

    PubMed

    Orr, Caley M; Leventhal, Evan L; Chivers, Spencer F; Marzke, Mary W; Wolfe, Scott W; Crisco, Joseph J

    2010-04-01

    The functional morphology of the wrist pertains to a number of important questions in primate evolutionary biology, including that of hominins. Reconstructing locomotor and manipulative capabilities of the wrist in extinct species requires a detailed understanding of wrist biomechanics in extant primates and the relationship between carpal form and function. The kinematics of carpal movement, and the role individual joints play in providing mobility and stability of the wrist, is central to such efforts. However, there have been few detailed biomechanical studies of the nonhuman primate wrist. This is largely because of the complexity of wrist morphology and the considerable technical challenges involved in tracking the movements of the many small bones that compose the carpus. The purpose of this article is to introduce and outline a method adapted from human clinical studies of three-dimensional (3D) carpal kinematics for use in a comparative context. The method employs computed tomography of primate cadaver forelimbs in increments throughout the wrist's range of motion, coupled with markerless registration of 3D polygon models based on inertial properties of each bone. The 3D kinematic principles involved in extracting motion axis parameters that describe bone movement are reviewed. In addition, a set of anatomically based coordinate systems embedded in the radius, capitate, hamate, lunate, and scaphoid is presented for the benefit of other primate functional morphologists interested in studying carpal kinematics. Finally, a brief demonstration of how the application of these methods can elucidate the mechanics of the wrist in primates illustrates the closer-packing of carpals in chimpanzees than in orangutans, which may help to stabilize the midcarpus and produce a more rigid wrist beneficial for efficient hand posturing during knuckle-walking locomotion. PMID:20235325

  17. Dense and accurate motion and strain estimation in high resolution speckle images using an image-adaptive approach

    NASA Astrophysics Data System (ADS)

    Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim

    2011-09-01

    Digital image processing methods represent a viable and well acknowledged alternative to strain gauges and interferometric techniques for determining full-field displacements and strains in materials under stress. This paper presents an image adaptive technique for dense motion and strain estimation using high-resolution speckle images that show the analyzed material in its original and deformed states. The algorithm starts by dividing the speckle image showing the original state into irregular cells taking into consideration both spatial and gradient image information present. Subsequently the Newton-Raphson digital image correlation technique is applied to calculate the corresponding motion for each cell. Adaptive spatial regularization in the form of the Geman- McClure robust spatial estimator is employed to increase the spatial consistency of the motion components of a cell with respect to the components of neighbouring cells. To obtain the final strain information, local least-squares fitting using a linear displacement model is performed on the horizontal and vertical displacement fields. To evaluate the presented image partitioning and strain estimation techniques two numerical and two real experiments are employed. The numerical experiments simulate the deformation of a specimen with constant strain across the surface as well as small rigid-body rotations present while real experiments consist specimens that undergo uniaxial stress. The results indicate very good accuracy of the recovered strains as well as better rotation insensitivity compared to classical techniques.

  18. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  19. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  20. Markerless EPID image guided dynamic multi-leaf collimator tracking for lung tumors

    NASA Astrophysics Data System (ADS)

    Rottmann, J.; Keall, P.; Berbeco, R.

    2013-06-01

    Compensation of target motion during the delivery of radiotherapy has the potential to improve treatment accuracy, dose conformity and sparing of healthy tissue. We implement an online image guided therapy system based on soft tissue localization (STiL) of the target from electronic portal images and treatment aperture adaptation with a dynamic multi-leaf collimator (DMLC). The treatment aperture is moved synchronously and in real time with the tumor during the entire breathing cycle. The system is implemented and tested on a Varian TX clinical linear accelerator featuring an AS-1000 electronic portal imaging device (EPID) acquiring images at a frame rate of 12.86 Hz throughout the treatment. A position update cycle for the treatment aperture consists of four steps: in the first step at time t = t0 a frame is grabbed, in the second step the frame is processed with the STiL algorithm to get the tumor position at t = t0, in a third step the tumor position at t = ti + δt is predicted to overcome system latencies and in the fourth step, the DMLC control software calculates the required leaf motions and applies them at time t = ti + δt. The prediction model is trained before the start of the treatment with data representing the tumor motion. We analyze the system latency with a dynamic chest phantom (4D motion phantom, Washington University). We estimate the average planar position deviation between target and treatment aperture in a clinical setting by driving the phantom with several lung tumor trajectories (recorded from fiducial tracking during radiotherapy delivery to the lung). DMLC tracking for lung stereotactic body radiation therapy without fiducial markers was successfully demonstrated. The inherent system latency is found to be δt = (230 ± 11) ms for a MV portal image acquisition frame rate of 12.86 Hz. The root mean square deviation between tumor and aperture position is smaller than 1 mm. We demonstrate the feasibility of real-time markerless DMLC

  1. Markerless EPID image guided dynamic multi-leaf collimator tracking for lung tumors.

    PubMed

    Rottmann, J; Keall, P; Berbeco, R

    2013-06-21

    Compensation of target motion during the delivery of radiotherapy has the potential to improve treatment accuracy, dose conformity and sparing of healthy tissue. We implement an online image guided therapy system based on soft tissue localization (STiL) of the target from electronic portal images and treatment aperture adaptation with a dynamic multi-leaf collimator (DMLC). The treatment aperture is moved synchronously and in real time with the tumor during the entire breathing cycle. The system is implemented and tested on a Varian TX clinical linear accelerator featuring an AS-1000 electronic portal imaging device (EPID) acquiring images at a frame rate of 12.86 Hz throughout the treatment. A position update cycle for the treatment aperture consists of four steps: in the first step at time t = t0 a frame is grabbed, in the second step the frame is processed with the STiL algorithm to get the tumor position at t = t0, in a third step the tumor position at t = ti + δt is predicted to overcome system latencies and in the fourth step, the DMLC control software calculates the required leaf motions and applies them at time t = ti + δt. The prediction model is trained before the start of the treatment with data representing the tumor motion. We analyze the system latency with a dynamic chest phantom (4D motion phantom, Washington University). We estimate the average planar position deviation between target and treatment aperture in a clinical setting by driving the phantom with several lung tumor trajectories (recorded from fiducial tracking during radiotherapy delivery to the lung). DMLC tracking for lung stereotactic body radiation therapy without fiducial markers was successfully demonstrated. The inherent system latency is found to be δt = (230 ± 11) ms for a MV portal image acquisition frame rate of 12.86 Hz. The root mean square deviation between tumor and aperture position is smaller than 1 mm. We demonstrate the feasibility of real-time markerless DMLC

  2. Pose-independent surface matching for intra-operative soft-tissue marker-less registration.

    PubMed

    dos Santos, Thiago Ramos; Seitel, Alexander; Kilgus, Thomas; Suwelack, Stefan; Wekerle, Anna-Laura; Kenngott, Hannes; Speidel, Stefanie; Schlemmer, Heinz-Peter; Meinzer, Hans-Peter; Heimann, Tobias; Maier-Hein, Lena

    2014-10-01

    One of the main challenges in computer-assisted soft tissue surgery is the registration of multi-modal patient-specific data for enhancing the surgeon's navigation capabilities by observing beyond exposed tissue surfaces. A new approach to marker-less guidance involves capturing the intra-operative patient anatomy with a range image device and doing a shape-based registration. However, as the target organ is only partially visible, typically does not provide salient features and underlies severe non-rigid deformations, surface matching in this context is extremely challenging. Furthermore, the intra-operatively acquired surface data may be subject to severe systematic errors and noise. To address these issues, we propose a new approach to establishing surface correspondences, which can be used to initialize fine surface matching algorithms in the context of intra-operative shape-based registration. Our method does not require any prior knowledge on the relative poses of the input surfaces to each other, does not rely on the detection of prominent surface features, is robust to noise and can be used for overlapping surfaces. It takes into account (1) similarity of feature descriptors, (2) compatibility of multiple correspondence pairs, as well as (3) the spatial configuration of the entire correspondence set. We evaluate the algorithm on time-of-flight (ToF) data from porcine livers in a respiratory liver motion simulator. In all our experiments the alignment computed from the established surface correspondences yields a registration error below 1cm and is thus well suited for initializing fine surface matching algorithms for intra-operative soft-tissue registration. PMID:25038492

  3. A multi-channel opto-electronic sensor to accurately monitor heart rate against motion artefact during exercise.

    PubMed

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente; Barrett, Laura; Esliger, Dale; Hayes, Matthew; Akbare, Shafique; Achart, Jérôme; Kuoch, Sylvain

    2015-01-01

    This study presents the use of a multi-channel opto-electronic sensor (OEPS) to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR) efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA), and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05); a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001); the bias of BAA 0.85 bpm, the standard deviation (SD) 9.20 bpm, and the limits of agreement (LOA) from -17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001); the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from -15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate. PMID:26473860

  4. A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise

    PubMed Central

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente; Barrett, Laura; Esliger, Dale; Hayes, Matthew; Akbare, Shafique; Achart, Jérôme; Kuoch, Sylvain

    2015-01-01

    This study presents the use of a multi-channel opto-electronic sensor (OEPS) to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR) efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA), and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05); a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001); the bias of BAA 0.85 bpm, the standard deviation (SD) 9.20 bpm, and the limits of agreement (LOA) from −17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001); the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from −15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate. PMID:26473860

  5. Establishment of a counter-selectable markerless mutagenesis system in Veillonella atypica.

    PubMed

    Zhou, Peng; Li, Xiaoli; Qi, Fengxia

    2015-05-01

    Using an alternative sigma factor ecf3 as target, we successfully established the first markerless mutagenesis system in the Veillonella genus. This system will be a valuable tool for mutagenesis of multiple genes for gene function analysis as well as for gene regulation studies in Veillonella. PMID:25771833

  6. Suitability of markerless EPID tracking for tumor position verification in gated radiotherapy

    SciTech Connect

    Serpa, Marco; Baier, Kurt; Guckenberger, Matthias; Cremers, Florian; Meyer, Juergen

    2014-03-15

    Purpose: To maximize the benefits of respiratory gated radiotherapy (RGRT) of lung tumors real-time verification of the tumor position is required. This work investigates the feasibility of markerless tracking of lung tumors during beam-on time in electronic portal imaging device (EPID) images of the MV therapeutic beam. Methods: EPID movies were acquired at ∼2 fps for seven lung cancer patients with tumor peak-to-peak motion ranges between 7.8 and 17.9 mm (mean: 13.7 mm) undergoing stereotactic body radiotherapy. The external breathing motion of the abdomen was synchronously measured. Both datasets were retrospectively analyzed inPortalTrack, an in-house developed tracking software. The authors define a three-step procedure to run the simulations: (1) gating window definition, (2) gated-beam delivery simulation, and (3) tumor tracking. First, an amplitude threshold level was set on the external signal, defining the onset of beam-on/-off signals. This information was then mapped onto a sequence of EPID images to generate stamps of beam-on/-hold periods throughout the EPID movies in PortalTrack, by obscuring the frames corresponding to beam-off times. Last, tumor motion in the superior-inferior direction was determined on portal images by the tracking algorithm during beam-on time. The residual motion inside the gating window as well as target coverage (TC) and the marginal target displacement (MTD) were used as measures to quantify tumor position variability. Results: Tumor position monitoring and estimation from beam's-eye-view images during RGRT was possible in 67% of the analyzed beams. For a reference gating window of 5 mm, deviations ranging from 2% to 86% (35% on average) were recorded between the reference and measured residual motion. TC (range: 62%–93%; mean: 77%) losses were correlated with false positives incidence rates resulting mostly from intra-/inter-beam baseline drifts, as well as sudden cycle-to-cycle fluctuations in exhale positions. Both

  7. A New Accurate 3D Measurement Tool to Assess the Range of Motion of the Tongue in Oral Cancer Patients: A Standardized Model.

    PubMed

    van Dijk, Simone; van Alphen, Maarten J A; Jacobi, Irene; Smeele, Ludwig E; van der Heijden, Ferdinand; Balm, Alfons J M

    2016-02-01

    In oral cancer treatment, function loss such as speech and swallowing deterioration can be severe, mostly due to reduced lingual mobility. Until now, there is no standardized measurement tool for tongue mobility and pre-operative prediction of function loss is based on expert opinion instead of evidence based insight. The purpose of this study was to assess the reliability of a triple-camera setup for the measurement of tongue range of motion (ROM) in healthy adults and its feasibility in patients with partial glossectomy. A triple-camera setup was used, and 3D coordinates of the tongue in five standardized tongue positions were achieved in 15 healthy volunteers. Maximum distances between the tip of the tongue and the maxillary midline were calculated. Each participant was recorded twice, and each movie was analysed three times by two separate raters. Intrarater, interrater and test-retest reliability were the main outcome measures. Secondly, feasibility of the method was tested in ten patients treated for oral tongue carcinoma. Intrarater, interrater and test-retest reliability all showed high correlation coefficients of >0.9 in both study groups. All healthy subjects showed perfect symmetrical tongue ROM. In patients, significant differences in lateral tongue movements were found, due to restricted tongue mobility after surgery. This triple-camera setup is a reliable measurement tool to assess three-dimensional information of tongue ROM. It constitutes an accurate tool for objective grading of reduced tongue mobility after partial glossectomy. PMID:26516075

  8. Fiducial marker and marker-less soft-tissue detection using fast MV fluoroscopy on a new generation EPID: Investigating the influence of pulsing artifacts and artifact suppression techniques

    SciTech Connect

    Poels, Kenneth Verellen, Dirk; Van de Vondel, Iwein; El Mazghari, Rafik; De Ridder, Mark; Depuydt, Tom

    2014-10-15

    Purpose: Because frame rates on current clinical available electronic portal imaging devices (EPID’s) are limited to 7.5 Hz, a new commercially available PerkinElmer EPID (XRD 1642 AP19) with a maximum frame rate of 30 Hz and a new scintillator (Kyokko PI200) with improved sensitivity (light output) for megavolt (MV) irradiation was evaluated. In this work, the influence of MV pulse artifacts and pulsing artifact suppression techniques on fiducial marker and marker-less detection of a lung lesion was investigated, because target localization is an important component of uncertainty in geometrical verification of real-time tumor tracking. Methods: Visicoil™ markers with a diameter of 0.05 and 0.075 cm were used for MV marker tracking with a frame rate of, respectively, 7.5, 15, and 30 Hz. A 30 Hz readout of the detector was obtained by a 2 × 2 pixel binning, reducing spatial resolution. Static marker detection was conducted in function of increasing phantom thickness. Additionally, marker-less tracking was conducted and compared with the ground-truth fiducial marker motion. Performance of MV target detection was investigated by comparing the least-square sine wave fit of the detected marker positions with the predefined sine wave motion. For fiducial marker detection, a Laplacian-of-Gaussian enhancement was applied after which normalized cross correlation was used to find the most probable marker position. Marker-less detection was performed by using the scale and orientation adaptive mean shift tracking algorithm. For each MV fluoroscopy, a free running (FR-nF) (ignoring MV pulsing during readout) acquisition mode was compared with two acquisition modes intending to reduce MV pulsing artifacts, i.e., combined wavelet-FFT filtering (FR-wF) and electronic readout synchronized with respect to MV pulses. Results: A 0.05 cm Visicoil marker resulted in an unacceptable root-mean square error (RMSE) > 0.2 cm with a maximum frame rate of 30 Hz during FR-nF readout

  9. Simple Method for Markerless Gene Deletion in Multidrug-Resistant Acinetobacter baumannii.

    PubMed

    Oh, Man Hwan; Lee, Je Chul; Kim, Jungmin; Choi, Chul Hee; Han, Kyudong

    2015-05-15

    The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii. PMID:25746991

  10. Simple Method for Markerless Gene Deletion in Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Oh, Man Hwan; Lee, Je Chul; Kim, Jungmin

    2015-01-01

    The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii. PMID:25746991

  11. High-Efficiency, Two-Step Scarless-Markerless Genome Genetic Modification in Salmonella enterica.

    PubMed

    Geng, Shizhong; Tian, Qin; An, Shuming; Pan, Zhiming; Chen, Xiang; Jiao, Xinan

    2016-06-01

    We present a two-step method for scarless-markerless genome genetic modification in Salmonella enterica based on the improved suicide plasmid pGMB152. The whole LacZYA gene can provide a lacZ-based blue/white screening strategy for fast selection of double-crossover mutants by allelic exchange. The high efficiency of this genetic engineering strategy permits the study of gene function by gene knockin, site-directed mutagenesis, and gene knockout to construct live attenuated vaccines. PMID:26883127

  12. Markerless Escherichia coli rrn Deletion Strains for Genetic Determination of Ribosomal Binding Sites.

    PubMed

    Quan, Selwyn; Skovgaard, Ole; McLaughlin, Robert E; Buurman, Ed T; Squires, Catherine L

    2015-12-01

    Single-copy rrn strains facilitate genetic ribosomal studies in Escherichia coli. Consecutive markerless deletion of rrn operons resulted in slower growth upon inactivation of the fourth copy, which was reversed by supplying transfer RNA genes encoded in rrn operons in trans. Removal of the sixth, penultimate rrn copy led to a reduced growth rate due to limited rrn gene dosage. Whole-genome sequencing of variants of single-copy rrn strains revealed duplications of large stretches of genomic DNA. The combination of selective pressure, resulting from the decreased growth rate, and the six identical remaining scar sequences, facilitating homologous recombination events, presumably leads to elevated genomic instability. PMID:26438293

  13. Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis.

    PubMed

    Rachinger, Michael; Bauch, Melanie; Strittmatter, Axel; Bongaerts, Johannes; Evers, Stefan; Maurer, Karl-Heinz; Daniel, Rolf; Liebl, Wolfgang; Liesegang, Heiko; Ehrenreich, Armin

    2013-09-20

    Conjugative shuttle vectors of the pKVM series, based on an IncP transfer origin and the pMAD vector with a temperature sensitive replication were constructed to establish a markerless gene deletion protocol for Bacilli without natural competence such as the exoenzyme producer Bacillus licheniformis. The pKVM plasmids can be conjugated to strains of B. licheniformis and B. subtilis. For chromosomal gene deletion, regions flanking the target gene are fused and cloned in a pKVM vector prior to conjugative transfer from Escherichia coli to B. licheniformis. Appropriate markers on the vector backbone allow for the identification of the integration at the target locus and thereafter the vector excision, both events taking place via homologous recombination. The functionality of the deletion system was demonstrated with B. licheniformis by a markerless 939 bp in-frame deletion of the yqfD gene and the deletion of a 31 kbp genomic segment carrying a PBSX-like prophage. PMID:23916947

  14. Development of a markerless deletion system for the fish-pathogenic bacterium Flavobacterium psychrophilum.

    PubMed

    Gómez, Esther; Álvarez, Beatriz; Duchaud, Eric; Guijarro, José A

    2015-01-01

    Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this "fastidious" bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters. PMID:25692569

  15. Contact-free physiological monitoring using a markerless optical system

    PubMed Central

    Maclaren, Julian; Aksoy, Murat; Bammer, Roland

    2015-01-01

    Purpose Physiological noise remains a major problem in MRI, particularly at higher imaging resolutions and field strengths. The aim of this work was to investigate the feasibility of using an MR-compatible in-bore camera system to perform contactless monitoring of cardiac and respiratory information during MRI of human subjects. Methods An MR-compatible camera was mounted on an 8-channel head coil. Video data of the skin was processed offline to derive cardiac and respiratory signals from the pixel signal intensity and from head motion in the patient head-feet direction. These signals were then compared to data acquired simultaneously from the pulse oximeter and the respiratory belt. Results The cardiac signal computed using the average image pixel intensity closely resembled the signal obtained using the pulse oximeter. Trigger intervals obtained from both systems matched to within 50 ms (one standard deviation). The respiratory signal computed from small in-plane movements closely matched the signal obtained from the respiratory belt. Simultaneous MR imaging did not appear to have an effect on the physiological signals acquired via the contact free monitoring system. Conclusion Contact-free monitoring of human subjects to obtain cardiac and respiratory information is feasible using a small camera and LED mounted on the head coil of an MRI scanner. PMID:25982242

  16. SU-C-18A-04: 3D Markerless Registration of Lung Based On Coherent Point Drift: Application in Image Guided Radiotherapy

    SciTech Connect

    Nasehi Tehrani, J; Wang, J; Guo, X; Yang, Y

    2014-06-01

    Purpose: This study evaluated a new probabilistic non-rigid registration method called coherent point drift for real time 3D markerless registration of the lung motion during radiotherapy. Method: 4DCT image datasets Dir-lab (www.dir-lab.com) have been used for creating 3D boundary element model of the lungs. For the first step, the 3D surface of the lungs in respiration phases T0 and T50 were segmented and divided into a finite number of linear triangular elements. Each triangle is a two dimensional object which has three vertices (each vertex has three degree of freedom). One of the main features of the lungs motion is velocity coherence so the vertices that creating the mesh of the lungs should also have features and degree of freedom of lung structure. This means that the vertices close to each other tend to move coherently. In the next step, we implemented a probabilistic non-rigid registration method called coherent point drift to calculate nonlinear displacement of vertices between different expiratory phases. Results: The method has been applied to images of 10-patients in Dir-lab dataset. The normal distribution of vertices to the origin for each expiratory stage were calculated. The results shows that the maximum error of registration between different expiratory phases is less than 0.4 mm (0.38 SI, 0.33 mm AP, 0.29 mm RL direction). This method is a reliable method for calculating the vector of displacement, and the degrees of freedom (DOFs) of lung structure in radiotherapy. Conclusions: We evaluated a new 3D registration method for distribution set of vertices inside lungs mesh. In this technique, lungs motion considering velocity coherence are inserted as a penalty in regularization function. The results indicate that high registration accuracy is achievable with CPD. This method is helpful for calculating of displacement vector and analyzing possible physiological and anatomical changes during treatment.

  17. Development of a Markerless Deletion System for the Fish-Pathogenic Bacterium Flavobacterium psychrophilum

    PubMed Central

    Gómez, Esther; Álvarez, Beatriz; Duchaud, Eric; Guijarro, José A.

    2015-01-01

    Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this “fastidious” bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters. PMID:25692569

  18. Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution

    SciTech Connect

    Wang Jun; Karen Chen Yuchen; Yuan Qingxi; Tkachuk, Andrei; Hornberger, Benjamin; Feser, Michael; Erdonmez, Can

    2012-04-02

    A full field transmission x-ray microscope (TXM) has been developed and commissioned at the National Synchrotron Light Source at Brookhaven National Laboratory. The capabilities we developed in auto-tomography, local tomography, and spectroscopic imaging that overcome many of the limitations and difficulties in existing transmission x-ray microscopes are described and experimentally demonstrated. Sub-50 nm resolution in 3-dimension (3D) with markerless automated tomography has been achieved. These capabilities open up scientific opportunities in many research fields.

  19. Automated markerless full field hard x-ray microscopic tomography at sub-50nm 3-dimension spatial resolution

    SciTech Connect

    Wang J.; Yu-chen Chen, K.; Yuan, W.; Tkachuk, A.; Erdonmez, C.

    2012-04-04

    A full field transmission x-ray microscope (TXM) has been developed and commissioned at the National Synchrotron Light Source at Brookhaven National Laboratory. The capabilities we developed in auto-tomography, local tomography, and spectroscopic imaging that overcome many of the limitations and difficulties in existing transmission x-ray microscopes are described and experimentally demonstrated. Sub-50 nm resolution in 3-dimension (3D) with markerless automated tomography has been achieved. These capabilities open up scientific opportunities in many research fields.

  20. Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Karen Chen, Yu-chen; Yuan, Qingxi; Tkachuk, Andrei; Erdonmez, Can; Hornberger, Benjamin; Feser, Michael

    2012-04-01

    A full field transmission x-ray microscope (TXM) has been developed and commissioned at the National Synchrotron Light Source at Brookhaven National Laboratory. The capabilities we developed in auto-tomography, local tomography, and spectroscopic imaging that overcome many of the limitations and difficulties in existing transmission x-ray microscopes are described and experimentally demonstrated. Sub-50 nm resolution in 3-dimension (3D) with markerless automated tomography has been achieved. These capabilities open up scientific opportunities in many research fields.

  1. Volumetric Video Motion Detection for Unobtrusive Human-Computer Interaction

    SciTech Connect

    SMALL, DANIEL E.; LUCK, JASON P.; CARLSON, JEFFREY J.

    2002-04-01

    The computer vision field has undergone a revolution of sorts in the past five years. Moore's law has driven real-time image processing from the domain of dedicated, expensive hardware, to the domain of commercial off-the-shelf computers. This thesis describes their work on the design, analysis and implementation of a Real-Time Shape from Silhouette Sensor (RT S{sup 3}). The system produces time-varying volumetric data at real-time rates (10-30Hz). The data is in the form of binary volumetric images. Until recently, using this technique in a real-time system was impractical due to the computational burden. In this thesis they review the previous work in the field, and derive the mathematics behind volumetric calibration, silhouette extraction, and shape-from-silhouette. For the sensor implementation, they use four color camera/framegrabber pairs and a single high-end Pentium III computer. The color cameras were configured to observe a common volume. This hardware uses the RT S{sup 3} software to track volumetric motion. Two types of shape-from-silhouette algorithms were implemented and their relative performance was compared. They have also explored an application of this sensor to markerless motion tracking. In his recent review of work done in motion tracking Gavrila states that results of markerless vision based 3D tracking are still limited. The method proposed in this paper not only expands upon the previous work but will also attempt to overcome these limitations.

  2. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  3. An analysis of human motion detection systems use during elder exercise routines.

    PubMed

    Alexander, Gregory L; Havens, Timothy C; Rantz, Marilyn; Keller, James; Casanova Abbott, Carmen

    2010-03-01

    Human motion analysis provides motion pattern and body pose estimations. This study integrates computer-vision techniques and explores a markerless human motion analysis system. Using human-computer interaction (HCI) methods and goals, researchers use a computer interface to provide feedback about range of motion to users. A total of 35 adults aged 65 and older perform three exercises in a public gym while human motion capture methods are used. Following exercises, participants are shown processed human motion images captured during exercises on a customized interface. Standardized questionnaires are used to elicit responses from users during interactions with the interface. A matrix of HCI goals (effectiveness, efficiency, and user satisfaction) and emerging themes are used to describe interactions. Sixteen users state the interface would be useful, but not necessarily for safety purposes. Users want better image quality, when expectations are matched satisfaction increases, and unclear meaning of motion measures decreases satisfaction. PMID:20185803

  4. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium

    PubMed Central

    Pyne, Michael E.; Bruder, Mark R.; Moo-Young, Murray; Chung, Duane A.; Chou, C. Perry

    2016-01-01

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium. PMID:27157668

  5. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.

    PubMed

    Pyne, Michael E; Bruder, Mark R; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-01-01

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium. PMID:27157668

  6. Markerless gating for lung cancer radiotherapy based on machine learning techniques

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Li, Ruijiang; Tang, Xiaoli; Dy, Jennifer G.; Jiang, Steve B.

    2009-03-01

    In lung cancer radiotherapy, radiation to a mobile target can be delivered by respiratory gating, for which we need to know whether the target is inside or outside a predefined gating window at any time point during the treatment. This can be achieved by tracking one or more fiducial markers implanted inside or near the target, either fluoroscopically or electromagnetically. However, the clinical implementation of marker tracking is limited for lung cancer radiotherapy mainly due to the risk of pneumothorax. Therefore, gating without implanted fiducial markers is a promising clinical direction. We have developed several template-matching methods for fluoroscopic marker-less gating. Recently, we have modeled the gating problem as a binary pattern classification problem, in which principal component analysis (PCA) and support vector machine (SVM) are combined to perform the classification task. Following the same framework, we investigated different combinations of dimensionality reduction techniques (PCA and four nonlinear manifold learning methods) and two machine learning classification methods (artificial neural networks—ANN and SVM). Performance was evaluated on ten fluoroscopic image sequences of nine lung cancer patients. We found that among all combinations of dimensionality reduction techniques and classification methods, PCA combined with either ANN or SVM achieved a better performance than the other nonlinear manifold learning methods. ANN when combined with PCA achieves a better performance than SVM in terms of classification accuracy and recall rate, although the target coverage is similar for the two classification methods. Furthermore, the running time for both ANN and SVM with PCA is within tolerance for real-time applications. Overall, ANN combined with PCA is a better candidate than other combinations we investigated in this work for real-time gated radiotherapy.

  7. iPhone 4s photoplethysmography: which light color yields the most accurate heart rate and normalized pulse volume using the iPhysioMeter Application in the presence of motion artifact?

    PubMed

    Matsumura, Kenta; Rolfe, Peter; Lee, Jihyoung; Yamakoshi, Takehiro

    2014-01-01

    Recent progress in information and communication technologies has made it possible to measure heart rate (HR) and normalized pulse volume (NPV), which are important physiological indices, using only a smartphone. This has been achieved with reflection mode photoplethysmography (PPG), by using a smartphone's embedded flash as a light source and the camera as a light sensor. Despite its widespread use, the method of PPG is susceptible to motion artifacts as physical displacements influence photon propagation phenomena and, thereby, the effective optical path length. Further, it is known that the wavelength of light used for PPG influences the photon penetration depth and we therefore hypothesized that influences of motion artifact could be wavelength-dependant. To test this hypothesis, we made measurements in 12 healthy volunteers of HR and NPV derived from reflection mode plethysmograms recorded simultaneously at three different spectral regions (red, green and blue) at the same physical location with a smartphone. We then assessed the accuracy of the HR and NPV measurements under the influence of motion artifacts. The analyses revealed that the accuracy of HR was acceptably high with all three wavelengths (all rs > 0.996, fixed biases: -0.12 to 0.10 beats per minute, proportional biases: r =  -0.29 to 0.03), but that of NPV was the best with green light (r = 0.791, fixed biases: -0.01 arbitrary units, proportional bias: r = 0.11). Moreover, the signal-to-noise ratio obtained with green and blue light PPG was higher than that of red light PPG. These findings suggest that green is the most suitable color for measuring HR and NPV from the reflection mode photoplethysmogram under motion artifact conditions. We conclude that the use of green light PPG could be of particular benefit in ambulatory monitoring where motion artifacts are a significant issue. PMID:24618594

  8. iPhone 4s Photoplethysmography: Which Light Color Yields the Most Accurate Heart Rate and Normalized Pulse Volume Using the iPhysioMeter Application in the Presence of Motion Artifact?

    PubMed Central

    Matsumura, Kenta; Rolfe, Peter; Lee, Jihyoung; Yamakoshi, Takehiro

    2014-01-01

    Recent progress in information and communication technologies has made it possible to measure heart rate (HR) and normalized pulse volume (NPV), which are important physiological indices, using only a smartphone. This has been achieved with reflection mode photoplethysmography (PPG), by using a smartphone’s embedded flash as a light source and the camera as a light sensor. Despite its widespread use, the method of PPG is susceptible to motion artifacts as physical displacements influence photon propagation phenomena and, thereby, the effective optical path length. Further, it is known that the wavelength of light used for PPG influences the photon penetration depth and we therefore hypothesized that influences of motion artifact could be wavelength-dependant. To test this hypothesis, we made measurements in 12 healthy volunteers of HR and NPV derived from reflection mode plethysmograms recorded simultaneously at three different spectral regions (red, green and blue) at the same physical location with a smartphone. We then assessed the accuracy of the HR and NPV measurements under the influence of motion artifacts. The analyses revealed that the accuracy of HR was acceptably high with all three wavelengths (all rs > 0.996, fixed biases: −0.12 to 0.10 beats per minute, proportional biases: r = −0.29 to 0.03), but that of NPV was the best with green light (r = 0.791, fixed biases: −0.01 arbitrary units, proportional bias: r = 0.11). Moreover, the signal-to-noise ratio obtained with green and blue light PPG was higher than that of red light PPG. These findings suggest that green is the most suitable color for measuring HR and NPV from the reflection mode photoplethysmogram under motion artifact conditions. We conclude that the use of green light PPG could be of particular benefit in ambulatory monitoring where motion artifacts are a significant issue. PMID:24618594

  9. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    SciTech Connect

    Rottmann, Joerg; Berbeco, Ross; Keall, Paul

    2013-09-15

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  10. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    SciTech Connect

    Yip, Stephen Rottmann, Joerg; Berbeco, Ross

    2014-06-15

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  11. Establishing a Markerless Genetic Exchange System for Methanosarcina mazei Strain Gö1 for Constructing Chromosomal Mutants of Small RNA Genes

    PubMed Central

    Ehlers, Claudia; Jäger, Dominik; Schmitz, Ruth A.

    2011-01-01

    A markerless genetic exchange system was successfully established in Methanosarcina mazei strain Gö1 using the hpt gene coding for hypoxanthine phosphoribosyltransferase. First, a chromosomal deletion mutant of the hpt gene was generated conferring resistance to the purine analog 8-aza-2,6-diaminopurine (8-ADP). The nonreplicating allelic exchange vector (pRS345) carrying the pac-resistance cassette for direct selection of chromosomal integration, and the hpt gene for counterselection was introduced into this strain. By a pop-in and ultimately pop-out event of the plasmid from the chromosome, allelic exchange is enabled. Using this system, we successfully generated a M. mazei deletion mutant of the gene encoding the regulatory non-coding RNA sRNA154. Characterizing M. mazeiΔsRNA154 under nitrogen limiting conditions demonstrated differential expression of at least three cytoplasmic proteins and reduced growth strongly arguing for a prominent role of sRNA154 in regulation of nitrogen fixation by posttranscriptional regulation. PMID:21941461

  12. Geometric Point Quality Assessment for the Automated, Markerless and Robust Registration of Unordered Tls Point Clouds

    NASA Astrophysics Data System (ADS)

    Weinmann, M.; Jutzi, B.

    2015-08-01

    The faithful 3D reconstruction of urban environments is an important prerequisite for tasks such as city modeling, scene interpretation or urban accessibility analysis. Typically, a dense and accurate 3D reconstruction is acquired with terrestrial laser scanning (TLS) systems by capturing several scans from different locations, and the respective point clouds have to be aligned correctly in a common coordinate frame. In this paper, we present an accurate and robust method for a keypoint-based registration of unordered point clouds via projective scan matching. Thereby, we involve a consistency check which removes unreliable feature correspondences and thus increases the ratio of inlier correspondences which, in turn, leads to a faster convergence of the RANSAC algorithm towards a suitable solution. This consistency check is fully generic and it not only favors geometrically smooth object surfaces, but also those object surfaces with a reasonable incidence angle. We demonstrate the performance of the proposed methodology on a standard TLS benchmark dataset and show that a highly accurate and robust registration may be achieved in a fully automatic manner without using artificial markers.

  13. Development of a markerless gene replacement system for Acidithiobacillus ferrooxidans and construction of a pfkB mutant.

    PubMed

    Wang, Huiyan; Liu, Xiangmei; Liu, Shuangshuang; Yu, Yangyang; Lin, Jianqun; Lin, Jianqiang; Pang, Xin; Zhao, Jian

    2012-03-01

    The extremely acidophilic, chemolithoautotrophic Acidithiobacillus ferrooxidans is an important bioleaching bacterium of great value in the metallurgical industry and environmental protection. In this report, a mutagenesis system based on the homing endonuclease I-SceI was developed to produce targeted, unmarked gene deletions in the strain A. ferrooxidans ATCC 23270. A targeted phosphofructokinase (PFK) gene (pfkB) mutant of A. ferrooxidans ATCC 23270 was constructed by homologous recombination and identified by PCR with specific primers as well as Southern blot analysis. This potential pfkB gene (AFE_1807) was also characterized by expression in PFK-deficient Escherichia coli cells, and heteroexpression of the PFKB protein demonstrated that it had functional PFK activity, though it was significantly lower (about 800-fold) than that of phosphofructokinase-2 (PFK-B) expressed by the pfkB gene from E. coli K-12. The function of the potential PFKB protein in A. ferrooxidans was demonstrated by comparing the properties of the pfkB mutant with those of the wild type. The pfkB mutant strain displayed a relatively reduced growth capacity in S(0) medium (0.5% [wt/vol] elemental sulfur in 9K basal salts solution adjusted to pH 3.0 with H(2)SO(4)), but the mutation did not completely prevent A. ferrooxidans from assimilating exogenous glucose. The transcriptional analysis of some related genes in central carbohydrate metabolism in the wild-type and mutant strains with or without supplementation of glucose was carried out by quantitative reverse transcription-PCR. This report suggests that the markerless mutagenesis strategy could serve as a model for functional studies of other genes of interest from A. ferrooxidans and multiple mutations could be made in a single A. ferrooxidans strain. PMID:22210219

  14. Validation of the Leap Motion Controller using markered motion capture technology.

    PubMed

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. PMID:27102160

  15. Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination.

    PubMed

    Luo, Xi; Yang, Yunwen; Ling, Wen; Zhuang, Hao; Li, Qin; Shang, Guangdong

    2016-02-01

    Pseudomonas putida KT2440 is a saprophytic, environmental microorganism that plays important roles in the biodegradation of environmental toxic compounds and production of polymers, chemicals and secondary metabolites. Gene deletion of KT2440 usually involves cloning of the flanking homologous fragments of the gene of interest into a suicide vector followed by transferring into KT2440 via triparental conjugation. Selection and counterselection steps are then employed to generate gene deletion mutant. However, these methods are tedious and are not suitable for the manipulation of multiple genes simultaneously. Herein, a two-step, markerless gene deletion method is presented. First, homologous armsflanked loxP-neo-loxP was knocked-in to replace the gene of interest, then the kanamycin resistance marker is removed by Cre recombinase catalyzed site-specific recombination. Both two-plasmid and one-plasmid gene systems were established. MekR/PmekA regulated gene expression system was found to be suitable for tight Cre expression in one-plasmid deletion system. The straightforward, time saving and highly efficient markerless gene deletion strategy has the potential to facilitate the genetics and functional genomics study of P. putida KT2440. PMID:26802072

  16. Visual motion integration for perception and pursuit

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Beutter, B. R.; Lorenceau, J.

    2000-01-01

    To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.

  17. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging.

    PubMed

    Eldib, Mootaz; Bini, Jason; Robson, Philip M; Calcagno, Claudia; Faul, David D; Tsoumpas, Charalampos; Fayad, Zahi A

    2015-06-21

    The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use. PMID:26020273

  18. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Eldib, Mootaz; Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Faul, David D.; Tsoumpas, Charalampos; Fayad, Zahi A.

    2015-06-01

    The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use.

  19. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  20. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    SciTech Connect

    Heß, Mirco Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P.; Gigengack, Fabian

    2015-05-15

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical {sup 18}F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was

  1. Structured light-based motion tracking in the limited view of an MR head coil

    NASA Astrophysics Data System (ADS)

    Erikshøj, M.; Olesen, O. V.; Conradsen, K.; Højgaard, L.; Larsen, R.

    2013-02-01

    A markerless motion tracking (MT) system developed for use in PET brain imaging has been tested in the limited field of view (FOV) of the MR head coil from the Siemens Biograph mMR. The system is a 3D surface scanner that uses structured light (SL) to create point cloud reconstructions of the facial surface. The point clouds are continuously realigned to a reference scan to obtain pose estimates. The system has been tested on a mannequin head performing controlled rotational and translational axial movements within the head coil outside the range of the magnetic field. The RMS of the residual error of the rotation was 0.11° and the RMS difference in the translation with the control system was 0.17 mm, within the trackable range of movement.

  2. Grading More Accurately

    ERIC Educational Resources Information Center

    Rom, Mark Carl

    2011-01-01

    Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…

  3. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  4. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  5. Circular motion

    NASA Astrophysics Data System (ADS)

    Newton, Isaac; Henry, Richard Conn

    2000-07-01

    An extraordinarily simple and transparent derivation of the formula for the acceleration that occurs in uniform circular motion is presented, and is advocated for use in high school and college freshman physics textbooks.

  6. Polar motion

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, R.

    1973-01-01

    Tracking of the Beacon Explorer-C satellite by a precision laser system was used to measure the polar motion and solid earth tide. The tidal perturbation of satellite latitude is plotted as variation in maximum latitude in seconds of arc on earth's surface as a function of the date, and polar motion is shown by plotting the variation in latitude of the laser in seconds of arc along the earth's surface as a function of date

  7. Review of tennis serve motion analysis and the biomechanics of three serve types with implications for injury.

    PubMed

    Abrams, Geoffrey D; Sheets, Alison L; Andriacchi, Thomas P; Safran, Marc R

    2011-11-01

    The tennis serve has the potential for musculoskeletal injury as it is an overhead motion and is performed repetitively during play. Early studies evaluating the biomechanics and injury potential of the tennis serve utilized skin-based marker technologies; however, markerless motion measurement systems have recently become available and have obviated some of the problems associated with the marker-based technology. The late cocking and early acceleration phases of the kinetic chain of the service motion produce the highest internal forces and pose the greatest risk of injury during the service motion. Previous biomechanical data on the tennis serve have primarily focused on the flat serve, with some data on the kick serve, and very little published data elucidating the biomechanics of the slice serve. This review discusses the injury potential of the tennis serve with respect to the four phases of the service motion, the history, and early findings of service motion evaluation, as well as biomechanical data detailing the differences between the three types of serves and how this may relate to injury prevention, rehabilitation, and return to play. PMID:22303788

  8. The Accuracy of Conventional 2D Video for Quantifying Upper Limb Kinematics in Repetitive Motion Occupational Tasks

    PubMed Central

    Chen, Chia-Hsiung; Azari, David; Hu, Yu Hen; Lindstrom, Mary J.; Thelen, Darryl; Yen, Thomas Y.; Radwin, Robert G.

    2015-01-01

    Objective Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Background Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross correlation template-matching algorithm for tracking a region of interest on the upper extremities. Methods Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. Results The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s2 for acceleration, and less than 93 mm/s for speed and 656 mm/s2 for acceleration when camera pan and tilt were within ±30 degrees. Conclusion Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value® for repetitive motion when the camera is located within ±30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764

  9. The accuracy of conventional 2D video for quantifying upper limb kinematics in repetitive motion occupational tasks.

    PubMed

    Chen, Chia-Hsiung; Azari, David P; Hu, Yu Hen; Lindstrom, Mary J; Thelen, Darryl; Yen, Thomas Y; Radwin, Robert G

    2015-01-01

    Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross-correlation template-matching algorithm for tracking a region of interest on the upper extremities. Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s(2) for acceleration, and less than 93 mm/s for speed and 656 mm/s(2) for acceleration when camera pan and tilt were within ± 30 degrees. Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary: This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value(®) for repetitive motion when the camera is located within ± 30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764

  10. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.

    PubMed

    Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar

    2009-08-30

    Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects. PMID:19505502

  11. Accurate measurement of time

    NASA Astrophysics Data System (ADS)

    Itano, Wayne M.; Ramsey, Norman F.

    1993-07-01

    The paper discusses current methods for accurate measurements of time by conventional atomic clocks, with particular attention given to the principles of operation of atomic-beam frequency standards, atomic hydrogen masers, and atomic fountain and to the potential use of strings of trapped mercury ions as a time device more stable than conventional atomic clocks. The areas of application of the ultraprecise and ultrastable time-measuring devices that tax the capacity of modern atomic clocks include radio astronomy and tests of relativity. The paper also discusses practical applications of ultraprecise clocks, such as navigation of space vehicles and pinpointing the exact position of ships and other objects on earth using the GPS.

  12. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  13. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    SciTech Connect

    Yip, S; Rottmann, J; Berbeco, R

    2014-06-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  14. Asteroid Motions

    NASA Astrophysics Data System (ADS)

    Sykes, Mary V.; Moynihan, P. Daniel

    1996-12-01

    Equations are derived which describe the apparent motion of an asteroid traveling on an elliptical orbit in geocentric ecliptic coordinates. At opposition, the equations are identical to those derived by Bowellet al. (Bowell, E., B. Skiff, and L. Wasserman 1990. InAsteroids, Comets, Meteors III(C.-I. Lagerkvist, M. Rickman, B. A. Lindblad, and M. Lindgren, Eds.), pp. 19-24. Uppsala Universitet, Uppsala, Sweden). These equations can be an important component in the optimization of search strategies for specific asteroid populations based on their apparent motions relative to other populations when observed away from opposition.

  15. Evaluation of the effect of respiratory and anatomical variables on a Fourier technique for markerless, self-sorted 4D-CBCT

    PubMed Central

    Vergalasova, I.; Cai, J.; Segars, W. P.; Yin, F. F.

    2013-01-01

    A novel technique based on Fourier Transform theory has been developed that directly extracts respiratory information from projections without the use of external surrogates. While the feasibility has been demonstrated with three patients, a more extensive validation is necessary. Therefore, the purpose of this work is to investigate the effects of a variety of respiratory and anatomical scenarios on the performance of the technique with the 4D Digital Extended Cardiac Torso phantom. FT-Phase and FT-Magnitude methods were each applied to identify peak-inspiration projections and quantitatively compared to the gold standard of visual identification. Both methods proved to be robust across the studied scenarios with average differences in respiratory phase<10% and percentage of projections assigned within 10% of the gold standard >90%, when incorporating minor modifications to region-of-interest selection and/or low-frequency location for select cases of diaphragm amplitude and lung percentage in the field-of-view of the projection. Nevertheless, in the instance where one method initially faltered, the other method prevailed and successfully identified peak-inspiration projections. This is promising because it suggests that the two methods provide complementary information to each other. To ensure appropriate clinical adaptation of markerless, self-sorted 4D-CBCT, perhaps an optimal integration of the two methods can be developed. PMID:24061289

  16. Theory of coorbital motion

    NASA Astrophysics Data System (ADS)

    Konopliv, Alexander Stephen

    The gravitational interaction of two small coorbital satellites in nearly identical orbits about a large central mass is investigated. This involves the study of the general three-body problem as well as the restricted three-body problem. Since the eccentricity is small, dynamical models are developed by expanding the equations of motion in rotating polar coordinates about a circular orbit. For numerical investigation, a combination of Hill's variables and equinoctial variables is used to find series solutions expanded in time. From these series solutions, highly accurate averaged equations are determined. To study the stability of the motion, periodic orbits are generated and the linearized stability is found from the eigenvalues of the state transition matrix.

  17. What's Motion Sickness?

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes What's Motion Sickness? KidsHealth > For Kids > What's Motion Sickness? Print ... motion sickness might get even worse. continue Avoiding Motion Sickness To avoid motion sickness: Put your best ...

  18. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  19. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery

    PubMed Central

    Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K.

    2015-01-01

    Objective To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Design Descriptive study of motion measured via 2 methods. Setting Academic cancer center oncology clinic. Participants 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Interventions Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Main Outcome Measure Correlation of motion capture with goniometry and detection of motion limitation. Results Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70–0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Conclusions Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation. PMID:26076031

  20. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli.

    PubMed

    Chiang, Chung-Jen; Chen, Po Ting; Chao, Yun-Peng

    2008-12-01

    Genetic manipulation of cells for desired traits is the most appreciable strategy implemented in the field of bioengineering. However, this approach closely relies on the use of plasmids and is commonly afflicted by the potential problem of plasmid instability and safety caution. Meanwhile, it may also lead to the spread of antibiotic-resistant markers with replicons of plasmids to the environment. However, this issue has long been neglected. In this study, we have addressed these subjects by developing replicon-free and markerless methods for chromosomal insertion of genes and controlled expression of genomic genes in Escherichia coli. For the former application, the integration vectors of conditional replication were incorporated with the prophage attachment site and duplicated FRT sites. Their utility was illustrated by site-specific insertion of target genes, the endogenous dxs gene and three heterologous genes consisting of gps, crtI, and crtB, fused to T7 promoter into E. coli genome. For the latter application, the template vectors for promoter replacement were constructed to carry a DNA cassette containing the T7 promoter linked to a selective marker flanked with the FRT site. Subsequently, it was illustrated by replacement of the native promoter of chromosomal pckA by the T7 promoter. Finally, with the aid of FLP recombinase supplied from a helper plasmid, the regions containing replicon and/or selective markers in inserted DNAs were eliminated from integrants for both approaches. As a consequence, the expression of these five genes was subject to control by one response regulator, T7 RNA polymerase, in a regulon way, resulting in a high and stable production of lycopene in the cell. This result indicates the promise of developed methods for genome engineering in E. coli. PMID:18553504

  1. Dynamic 3D scanning as a markerless method to calculate multi-segment foot kinematics during stance phase: methodology and first application.

    PubMed

    Van den Herrewegen, Inge; Cuppens, Kris; Broeckx, Mario; Barisch-Fritz, Bettina; Vander Sloten, Jos; Leardini, Alberto; Peeraer, Louis

    2014-08-22

    Multi-segmental foot kinematics have been analyzed by means of optical marker-sets or by means of inertial sensors, but never by markerless dynamic 3D scanning (D3DScanning). The use of D3DScans implies a radically different approach for the construction of the multi-segment foot model: the foot anatomy is identified via the surface shape instead of distinct landmark points. We propose a 4-segment foot model consisting of the shank (Sha), calcaneus (Cal), metatarsus (Met) and hallux (Hal). These segments are manually selected on a static scan. To track the segments in the dynamic scan, the segments of the static scan are matched on each frame of the dynamic scan using the iterative closest point (ICP) fitting algorithm. Joint rotations are calculated between Sha-Cal, Cal-Met, and Met-Hal. Due to the lower quality scans at heel strike and toe off, the first and last 10% of the stance phase is excluded. The application of the method to 5 healthy subjects, 6 trials each, shows a good repeatability (intra-subject standard deviations between 1° and 2.5°) for Sha-Cal and Cal-Met joints, and inferior results for the Met-Hal joint (>3°). The repeatability seems to be subject-dependent. For the validation, a qualitative comparison with joint kinematics from a corresponding established marker-based multi-segment foot model is made. This shows very consistent patterns of rotation. The ease of subject preparation and also the effective and easy to interpret visual output, make the present technique very attractive for functional analysis of the foot, enhancing usability in clinical practice. PMID:24998032

  2. Development of a Markerless Genetic Exchange System in Desulfovibrio vulgaris Hildenborough and Its Use in Generating a Strain with Increased Transformation Efficiency

    SciTech Connect

    Keller, Kimberly L.; Bender, Kelly S.; Wall, Judy D.

    2009-07-21

    In recent years, the genetic manipulation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough has seen enormous progress. In spite of this progress, the current marker exchange deletion method does not allow for easy selection of multiple sequential gene deletions in a single strain because of the limited number of selectable markers available in D. vulgaris. To broaden the repertoire of genetic tools for manipulation, an in-frame, markerless deletion system has been developed. The counterselectable marker that makes this deletion system possible is the pyrimidine salvage enzyme, uracil phosphoribosyltransferase, encoded by upp. In wild-type D. vulgaris, growth was shown to be inhibited by the toxic pyrimidine analog 5-fluorouracil (5-FU); whereas, a mutant bearing a deletion of the upp gene was resistant to 5-FU. When a plasmid containing the wild-type upp gene expressed constitutively from the aph(3')-II promoter (promoter for the kanamycin resistance gene in Tn5) was introduced into the upp deletion strain, sensitivity to 5-FU was restored. This observation allowed us to develop a two-step integration and excision strategy for the deletion of genes of interest. Since this inframe deletion strategy does not retain an antibiotic cassette, multiple deletions can be generated in a single strain without the accumulation of genes conferring antibiotic resistances. We used this strategy to generate a deletion strain lacking the endonuclease (hsdR, DVU1703) of a type I restriction-modification system, that we designated JW7035. The transformation efficiency of the JW7035 strain was found to be 100 to 1000 times greater than that of the wild-type strain when stable plasmids were introduced via electroporation.

  3. Independent, Synchronous Access to Color and Motion Features

    ERIC Educational Resources Information Center

    Holcombe, Alex O.; Cavanagh, Patrick

    2008-01-01

    We investigated the role of attention in pairing superimposed visual features. When moving dots alternate in color and in motion direction, reports of the perceived color and motion reveal an asynchrony: the most accurate reports occur when the motion change precedes the associated color change by approximately 100ms [Moutoussis, K., & Zeki, S.…

  4. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  5. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  6. The Effects of Grade Level, Type of Motion, Cueing Strategy, Pictorial Complexity, and Color on Children's Interpretation of Implied Motion in Pictures.

    ERIC Educational Resources Information Center

    Downs, Elizabeth; Jenkins, Stephen J.

    2001-01-01

    Examined the ability of 64 kindergarten and third-grade children to interpret implied motion in pictures accurately. Third graders were more adept at identifying implied motion. Results also show that postural motion was more effective than a flow-line condition in conveying motion, and that cues and relevant pictorial background information…

  7. Security Applications Of Computer Motion Detection

    NASA Astrophysics Data System (ADS)

    Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry

    1987-05-01

    An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.

  8. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  9. Collective motion

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  10. SU-E-J-59: Feasibility of Markerless Tumor Tracking by Sequential Dual-Energy Fluoroscopy On a Clinical Tumor Tracking System

    SciTech Connect

    Dhont, J; Poels, K; Verellen, D; Tournel, K; Gevaert, T; Steenbeke, F; Burghelea, M; De Ridder, M

    2015-06-15

    Purpose: To evaluate the feasibility of markerless tumor tracking through the implementation of a novel dual-energy imaging approach into the clinical dynamic tracking (DT) workflow of the Vero SBRT system. Methods: Two sequential 20 s (11 Hz) fluoroscopy sequences were acquired at the start of one fraction for 7 patients treated for primary and metastatic lung cancer with DT on the Vero system. Sequences were acquired using 2 on-board kV imaging systems located at ±45° from the MV beam axis, at respectively 60 kVp (3.2 mAs) and 120 kVp (2.0 mAs). Offline, a normalized cross-correlation algorithm was applied to match the high (HE) and low energy (LE) images. Per breathing phase (inhale, exhale, maximum inhale and maximum exhale), the 5 best-matching HE and LE couples were extracted for DE subtraction. A contrast analysis according to gross tumor volume was conducted based on contrast-to-noise ratio (CNR). Improved tumor visibility was quantified using an improvement ratio. Results: Using the implanted fiducial as a benchmark, HE-LE sequence matching was effective for 13 out of 14 imaging angles. Overlying bony anatomy was removed on all DE images. With the exception of two imaging angles, the DE images showed no significantly improved tumor visibility compared to HE images, with an improvement ratio averaged over all patients of 1.46 ± 1.64. Qualitatively, it was observed that for those imaging angles that showed no significantly improved CNR, the tumor tissue could not be reliably visualized on neither HE nor DE images due to a total or partial overlap with other soft tissue. Conclusion: Dual-energy subtraction imaging by sequential orthogonal fluoroscopy was shown feasible by implementing an additional LE fluoroscopy sequence. However, for most imaging angles, DE images did not provide improved tumor visibility over single-energy images. Optimizing imaging angles is likely to improve tumor visibility and the efficacy of dual-energy imaging. This work was in

  11. How to accurately bypass damage

    PubMed Central

    Broyde, Suse; Patel, Dinshaw J.

    2016-01-01

    Ultraviolet radiation can cause cancer through DNA damage — specifically, by linking adjacent thymine bases. Crystal structures show how the enzyme DNA polymerase η accurately bypasses such lesions, offering protection. PMID:20577203

  12. Auditory motion affects visual biological motion processing.

    PubMed

    Brooks, A; van der Zwan, R; Billard, A; Petreska, B; Clarke, S; Blanke, O

    2007-02-01

    The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of

  13. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, David C.; Goorvitch, D.

    1994-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schr\\"{o}dinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  14. Frame rate up conversion via Bayesian motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Ma, Siwei; Gao, Wen

    2010-07-01

    In this paper, a novel block-based motion compensated frame interpolation (MCI) algorithm is proposed to enhance the temporal resolution of video sequences. We formulated motion estimation into MAP framework, and solved it via Bayesian belief propagation. By effectively incorporating a priori knowledge of the motion field and optimizing the whole motion field synchronously, it could derive more accurate motion vectors than traditional methods. Finally, adaptive overlapped block motion compensation (OBMC) is used to reduce blocking artifacts. Experimental results show that the proposed method outperforms other methods in both objective and subjective quality.

  15. Motion parallax thresholds for unambiguous depth perception.

    PubMed

    Holmin, Jessica; Nawrot, Mark

    2015-10-01

    The perception of unambiguous depth from motion parallax arises from the neural integration of retinal image motion and extra-retinal eye movement signals. It is only recently that these parameters have been articulated in the form of the motion/pursuit ratio. In the current study, we explored the lower limits of the parameter space in which observers could accurately perform near/far relative depth-sign discriminations for a translating random-dot stimulus. Stationary observers pursued a translating random dot stimulus containing relative image motion. Their task was to indicate the location of the peak in an approximate square-wave stimulus. We measured thresholds for depth from motion parallax, quantified as motion/pursuit ratios, as well as lower motion thresholds and pursuit accuracy. Depth thresholds were relatively stable at pursuit velocities 5-20 deg/s, and increased at lower and higher velocities. The pattern of results indicates that minimum motion/pursuit ratios are limited by motion and pursuit signals, both independently and in combination with each other. At low and high pursuit velocities, depth thresholds were limited by inaccurate pursuit signals. At moderate pursuit velocities, depth thresholds were limited by motion signals. PMID:26232612

  16. Accurate dynamics in an azimuthally-symmetric accelerating cavity

    NASA Astrophysics Data System (ADS)

    Appleby, R. B.; Abell, D. T.

    2015-02-01

    We consider beam dynamics in azimuthally-symmetric accelerating cavities, using the EMMA FFAG cavity as an example. By fitting a vector potential to the field map, we represent the linear and non-linear dynamics using truncated power series and mixed-variable generating functions. The analysis provides an accurate model for particle trajectories in the cavity, reveals potentially significant and measurable effects on the dynamics, and shows differences between cavity focusing models. The approach provides a unified treatment of transverse and longitudinal motion, and facilitates detailed map-based studies of motion in complex machines like FFAGs.

  17. Analysis And Display Of Human Wrist Motion

    NASA Astrophysics Data System (ADS)

    Peterson, Steven W.; Erdman, Arthur G.

    1983-07-01

    The three-dimensional kinematic analysis of the wrist is a complex problem. A method utilizing high speed stereocinematography has been developed to accurately measure the motion of the bones in the wrist. Both relative and absolute motions can be obtained using this system. The system has been shown to accurately locate a point to +/- 0.003 inch. The three-dimensional motion characteristics of the capitate in radial ulnar deviation were analyzed using this system, and the results are presented. A computer graphics program, developed by the authors, is used to display the motion characteristics of the carpal bones. In this program, the bone surface, defined using a special stereopointer and bicubic surface fitting algorithms, is displayed along with the kinematic data.

  18. Limited range of motion

    MedlinePlus

    Limited range of motion is a term meaning that a joint or body part cannot move through its normal range of motion. ... Motion may be limited because of a problem within the joint, swelling of tissue around the joint, ...

  19. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  20. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  1. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  2. A Programmable System for Motion Control

    NASA Technical Reports Server (NTRS)

    Nowlin, Brent C.

    2003-01-01

    The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.

  3. A programmable motion phantom for quality assurance of motion management in radiotherapy.

    PubMed

    Dunn, L; Kron, T; Johnston, P N; McDermott, L N; Taylor, M L; Callahan, J; Franich, R D

    2012-03-01

    A commercially available motion phantom (QUASAR, Modus Medical) was modified for programmable motion control with the aim of reproducing patient respiratory motion in one dimension in both the anterior-posterior and superior-inferior directions, as well as, providing controllable breath-hold and sinusoidal patterns for the testing of radiotherapy gating systems. In order to simulate realistic patient motion, the DC motor was replaced by a stepper motor. A separate 'chest-wall' motion platform was also designed to accommodate a variety of surrogate marker systems. The platform employs a second stepper motor that allows for the decoupling of the chest-wall and insert motion. The platform's accuracy was tested by replicating patient traces recorded with the Varian real-time position management (RPM) system and comparing the motion platform's recorded motion trace with the original patient data. Six lung cancer patient traces recorded with the RPM system were uploaded to the motion platform's in-house control software and subsequently replicated through the phantom motion platform. The phantom's motion profile was recorded with the RPM system and compared to the original patient data. Sinusoidal and breath-hold patterns were simulated with the motion platform and recorded with the RPM system to verify the systems potential for routine quality assurance of commercial radiotherapy gating systems. There was good correlation between replicated and actual patient data (P 0.003). Mean differences between the location of maxima in replicated and patient data-sets for six patients amounted to 0.034 cm with the corresponding minima mean equal to 0.010 cm. The upgraded motion phantom was found to replicate patient motion accurately as well as provide useful test patterns to aid in the quality assurance of motion management methods and technologies. PMID:22119931

  4. Anatomically accurate individual face modeling.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2003-01-01

    This paper presents a new 3D face model of a specific person constructed from the anatomical perspective. By exploiting the laser range data, a 3D facial mesh precisely representing the skin geometry is reconstructed. Based on the geometric facial mesh, we develop a deformable multi-layer skin model. It takes into account the nonlinear stress-strain relationship and dynamically simulates the non-homogenous behavior of the real skin. The face model also incorporates a set of anatomically-motivated facial muscle actuators and underlying skull structure. Lagrangian mechanics governs the facial motion dynamics, dictating the dynamic deformation of facial skin in response to the muscle contraction. PMID:15455936

  5. Comparison of Motion Blur Measurement Methods

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    2008-01-01

    Motion blur is a significant display property for which accurate, valid measurement methods are needed. Recent measurements of a set of eight displays by a set of six measurement devices provide an opportunity to evaluate techniques of measurement and of the analysis of those measurements.

  6. Static imaging of motion: motion texture

    NASA Astrophysics Data System (ADS)

    Arimura, Koichi

    1992-05-01

    This paper describes how motion segmentation can be achieved by analyzing of a single static image that is created from a series of picture frames. The key idea is motion imaging; in other words, motion is expressed in static images by integrating, frame after frame, the spatiotemporal fluctuations of the gradient gray level at each local area. This tends to create blurred or attached line images (images with lines that show the path of movement of an object through space) on moving objects. We call this 'motion texture'. We computed motion texture images based on the animation of a natural scene and on a number of computer synthesized animations containing groups of moving objects (random dots). Moreover, we applied two different texture analyses to the motion textured images for segmentation: a texture analysis based on the local homogeneity of gray level gradation in similarly textured regions and another based on the structural feature of gray level gradation in motion texture. Experiments showed that subjective visual impressions of segmentation were quite different for these animations. The texture segmentation described here successfully grouped moving objects coincident to subjective impressions. In our random dot animations, the density of the basic motion vectors extracted from each pair of successive frames was set at a constant to compensate for the dot grouping effect based on the vector density. The dot appearance period (lifetime) is varied across the animations. In a long lifetime random dot animation, region boundaries can be more clearly perceived than in a short one. The different impressions may be explained by analyzing the motion texture elements, but can not always be represented successfully using the motion vectors between two successive frames whose density is set at a constant between the animations with the different lifetime.

  7. Visualizing and Quantifying Oceanic Motion

    NASA Astrophysics Data System (ADS)

    Rossby, T.

    2016-01-01

    Here I review the use of two highly complementary acoustical technologies for measuring currents in the ocean: acoustically tracked neutrally buoyant floats and vessel-mounted acoustic Doppler current profilers (ADCPs). The beauty of floats lies in their ability to efficiently and accurately visualize fluid motion in fronts and vortices and the dispersion caused by mesoscale eddy processes. Floats complement classical hydrography by articulating mechanisms and pathways by which waters spread out from their source region. Vessel-mounted ADCPs can profile the water column at O(1 km) horizontal resolution to depths greater than 1,000 m. These vessel-based scans capture in detail the cross-stream structure of fronts and eddies as well as the impact of bathymetry on currents. Sustained sampling along selected routes builds up valuable databases both for statistical studies of the submesoscale velocity field and for accurate estimates of fluid transport, as well as how these vary over time.

  8. Visualizing and Quantifying Oceanic Motion.

    PubMed

    Rossby, T

    2016-01-01

    Here I review the use of two highly complementary acoustical technologies for measuring currents in the ocean: acoustically tracked neutrally buoyant floats and vessel-mounted acoustic Doppler current profilers (ADCPs). The beauty of floats lies in their ability to efficiently and accurately visualize fluid motion in fronts and vortices and the dispersion caused by mesoscale eddy processes. Floats complement classical hydrography by articulating mechanisms and pathways by which waters spread out from their source region. Vessel-mounted ADCPs can profile the water column at O(1 km) horizontal resolution to depths greater than 1,000 m. These vessel-based scans capture in detail the cross-stream structure of fronts and eddies as well as the impact of bathymetry on currents. Sustained sampling along selected routes builds up valuable databases both for statistical studies of the submesoscale velocity field and for accurate estimates of fluid transport, as well as how these vary over time. PMID:26253271

  9. Integration of motion and stereo sensors in passive ranging systems

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Suorsa, Raymond

    1990-01-01

    A recursive approach is described for processing a sequence of stereo images. It will be the basis for an integrated stereo and motion method to provide more accurate range information using a passive ranging system. Results based on motion sequences of stereo images are presented. The approach is also applicable to other autonomous systems and in robotics.

  10. Comparison of motion and stereo methods in passive ranging systems

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Suorsa, Raymond

    1991-01-01

    The authors compare the estimates in passive ranging systems using motion and stereo approaches. It is shown that an integrated approach is necessary to provide better range estimates over a field-of-view (FOV) of interest in helicopter flight. The recursive approach for processing a sequence of stereo images, described together with a recursive motion algorithm (RMA), provides the basis for an integrated method to provide more accurate range information. Results based on motion sequences of stereo images are presented.

  11. Essay on Gyroscopic Motions.

    ERIC Educational Resources Information Center

    Tea, Peter L., Jr.

    1988-01-01

    Explains gyroscopic motions to college freshman or high school seniors who have learned about centripetal acceleration and the transformations of a couple. Contains several figures showing the direction of forces and motion. (YP)

  12. Guiding Center Motion

    SciTech Connect

    Blank, H.J. de

    2004-03-15

    The motion of charged particles in slowly varying electromagnetic fields is analyzed. The strength of the magnetic field is such that the gyro-period and the gyro-radius of the particle motion around field lines are the shortest time and length scales of the system. The particle motion is described as the sum of a fast gyro-motion and a slow drift velocity.

  13. moco: Fast Motion Correction for Calcium Imaging.

    PubMed

    Dubbs, Alexander; Guevara, James; Yuste, Rafael

    2016-01-01

    Motion correction is the first step in a pipeline of algorithms to analyze calcium imaging videos and extract biologically relevant information, for example the network structure of the neurons therein. Fast motion correction is especially critical for closed-loop activity triggered stimulation experiments, where accurate detection and targeting of specific cells in necessary. We introduce a novel motion-correction algorithm which uses a Fourier-transform approach, and a combination of judicious downsampling and the accelerated computation of many L 2 norms using dynamic programming and two-dimensional, fft-accelerated convolutions, to enhance its efficiency. Its accuracy is comparable to that of established community-used algorithms, and it is more stable to large translational motions. It is programmed in Java and is compatible with ImageJ. PMID:26909035

  14. moco: Fast Motion Correction for Calcium Imaging

    PubMed Central

    Dubbs, Alexander; Guevara, James; Yuste, Rafael

    2016-01-01

    Motion correction is the first step in a pipeline of algorithms to analyze calcium imaging videos and extract biologically relevant information, for example the network structure of the neurons therein. Fast motion correction is especially critical for closed-loop activity triggered stimulation experiments, where accurate detection and targeting of specific cells in necessary. We introduce a novel motion-correction algorithm which uses a Fourier-transform approach, and a combination of judicious downsampling and the accelerated computation of many L2 norms using dynamic programming and two-dimensional, fft-accelerated convolutions, to enhance its efficiency. Its accuracy is comparable to that of established community-used algorithms, and it is more stable to large translational motions. It is programmed in Java and is compatible with ImageJ. PMID:26909035

  15. Predict amine solution properties accurately

    SciTech Connect

    Cheng, S.; Meisen, A.; Chakma, A.

    1996-02-01

    Improved process design begins with using accurate physical property data. Especially in the preliminary design stage, physical property data such as density viscosity, thermal conductivity and specific heat can affect the overall performance of absorbers, heat exchangers, reboilers and pump. These properties can also influence temperature profiles in heat transfer equipment and thus control or affect the rate of amine breakdown. Aqueous-amine solution physical property data are available in graphical form. However, it is not convenient to use with computer-based calculations. Developed equations allow improved correlations of derived physical property estimates with published data. Expressions are given which can be used to estimate physical properties of methyldiethanolamine (MDEA), monoethanolamine (MEA) and diglycolamine (DGA) solutions.

  16. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  17. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  18. Low-cost respiratory motion tracking system

    NASA Astrophysics Data System (ADS)

    Goryawala, Mohammed; Del Valle, Misael; Wang, Jiali; Byrne, James; Franquiz, Juan; McGoron, Anthony

    2008-03-01

    Lung cancer is the cause of more than 150,000 deaths annually in the United States. Early and accurate detection of lung tumors with Positron Emission Tomography has enhanced lung tumor diagnosis. However, respiratory motion during the imaging period of PET results in the reduction of accuracy of detection due to blurring of the images. Chest motion can serve as a surrogate for tracking the motion of the tumor. For tracking chest motion, an optical laser system was designed which tracks the motion of a patterned card placed on the chest by illuminating the pattern with two structured light sources, generating 8 positional markers. The position of markers is used to determine the vertical, translational, and rotational motion of the card. Information from the markers is used to decide whether the patient's breath is abnormal compared to their normal breathing pattern. The system is developed with an inexpensive web-camera and two low-cost laser pointers. The experiments were carried out using a dynamic phantom developed in-house, to simulate chest movement with different amplitudes and breathing periods. Motion of the phantom was tracked by the system developed and also by a pressure transducer for comparison. The studies showed a correlation of 96.6% between the respiratory tracking waveforms by the two systems, demonstrating the capability of the system. Unlike the pressure transducer method, the new system tracks motion in 3 dimensions. The developed system also demonstrates the ability to track a sliding motion of the patient in the direction parallel to the bed and provides the potential to stop the PET scan in case of such motion.

  19. Relativistic apsidal motion in eccentric eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Claret, A.; Kotková, L.; Kučáková, H.; Kocián, R.; Brát, L.; Svoboda, P.; Šmelcer, L.

    2010-01-01

    Context. The study of apsidal motion in detached eclipsing binary systems is known to be an important source of information about stellar internal structure as well as the possibility of verifying of General Relativity outside the Solar System. Aims: As part of the long-term Ondřejov and Ostrava observational projects, we aim to measure precise times of minima for eccentric eclipsing binaries, needed for the accurate determination of apsidal motion, providing a suitable test of the effects of General Relativity. Methods: About seventy new times of minimum light recorded with photoelectric or CCD photometers were obtained for ten eccentric-orbit eclipsing binaries with significant relativistic apsidal motion. Their O-C diagrams were analysed using all reliable timings found in the literature, and new or improved elements of apsidal motion were obtained. Results: We confirm very long periods of apsidal motion for all systems. For BF Dra and V1094 Tau, we present the first apsidal-motion solution. The relativistic effects are dominant, representing up to 100% of the total observable apsidal-motion rate in several systems. The theoretical and observed values of the internal structure constant k 2 were compared for systems with lower relativistic contribution. Using the light-time effect solution, we predict a faint third component for V1094 Tau orbiting with a short period of about 8 years. Partly based on photoelectric observations secured at the Hvar Observatory, Faculty of Geodesy, Zagreb, Croatia, in October 2008.

  20. LCD motion blur: modeling, analysis, and algorithm.

    PubMed

    Chan, Stanley H; Nguyen, Truong Q

    2011-08-01

    Liquid crystal display (LCD) devices are well known for their slow responses due to the physical limitations of liquid crystals. Therefore, fast moving objects in a scene are often perceived as blurred. This effect is known as the LCD motion blur. In order to reduce LCD motion blur, an accurate LCD model and an efficient deblurring algorithm are needed. However, existing LCD motion blur models are insufficient to reflect the limitation of human-eye-tracking system. Also, the spatiotemporal equivalence in LCD motion blur models has not been proven directly in the discrete 2-D spatial domain, although it is widely used. There are three main contributions of this paper: modeling, analysis, and algorithm. First, a comprehensive LCD motion blur model is presented, in which human-eye-tracking limits are taken into consideration. Second, a complete analysis of spatiotemporal equivalence is provided and verified using real video sequences. Third, an LCD motion blur reduction algorithm is proposed. The proposed algorithm solves an l(1)-norm regularized least-squares minimization problem using a subgradient projection method. Numerical results show that the proposed algorithm gives higher peak SNR, lower temporal error, and lower spatial error than motion-compensated inverse filtering and Lucy-Richardson deconvolution algorithm, which are two state-of-the-art LCD deblurring algorithms. PMID:21292596

  1. Discovering hierarchical motion structure.

    PubMed

    Gershman, Samuel J; Tenenbaum, Joshua B; Jäkel, Frank

    2016-09-01

    Scenes filled with moving objects are often hierarchically organized: the motion of a migrating goose is nested within the flight pattern of its flock, the motion of a car is nested within the traffic pattern of other cars on the road, the motion of body parts are nested in the motion of the body. Humans perceive hierarchical structure even in stimuli with two or three moving dots. An influential theory of hierarchical motion perception holds that the visual system performs a "vector analysis" of moving objects, decomposing them into common and relative motions. However, this theory does not specify how to resolve ambiguity when a scene admits more than one vector analysis. We describe a Bayesian theory of vector analysis and show that it can account for classic results from dot motion experiments, as well as new experimental data. Our theory takes a step towards understanding how moving scenes are parsed into objects. PMID:25818905

  2. Multisensory Self-Motion Compensation During Object Trajectory Judgments

    PubMed Central

    Dokka, Kalpana; MacNeilage, Paul R.; DeAngelis, Gregory C.; Angelaki, Dora E.

    2015-01-01

    Judging object trajectory during self-motion is a fundamental ability for mobile organisms interacting with their environment. This fundamental ability requires the nervous system to compensate for the visual consequences of self-motion in order to make accurate judgments, but the mechanisms of this compensation are poorly understood. We comprehensively examined both the accuracy and precision of observers' ability to judge object trajectory in the world when self-motion was defined by vestibular, visual, or combined visual–vestibular cues. Without decision feedback, subjects demonstrated no compensation for self-motion that was defined solely by vestibular cues, partial compensation (47%) for visually defined self-motion, and significantly greater compensation (58%) during combined visual–vestibular self-motion. With decision feedback, subjects learned to accurately judge object trajectory in the world, and this generalized to novel self-motion speeds. Across conditions, greater compensation for self-motion was associated with decreased precision of object trajectory judgments, indicating that self-motion compensation comes at the cost of reduced discriminability. Our findings suggest that the brain can flexibly represent object trajectory relative to either the observer or the world, but a world-centered representation comes at the cost of decreased precision due to the inclusion of noisy self-motion signals. PMID:24062317

  3. Accurate ab Initio Spin Densities

    PubMed Central

    2012-01-01

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740]. PMID:22707921

  4. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).

  5. Motion Robust Remote-PPG in Infrared.

    PubMed

    van Gastel, Mark; Stuijk, Sander; de Haan, Gerard

    2015-05-01

    Current state-of-the-art remote photoplethysmography (rPPG) algorithms are capable of extracting a clean pulse signal in ambient light conditions using a regular color camera, even when subjects move significantly. In this study, we investigate the feasibility of rPPG in the (near)-infrared spectrum, which broadens the scope of applications for rPPG. Two camera setups are investigated: one setup consisting of three monochrome cameras with different optical filters, and one setup consisting of a single RGB camera with a visible light blocking filter. Simulation results predict the monochrome setup to be more motion robust, but this simulation neglects parallax. To verify this, a challenging benchmark dataset consisting of 30 videos is created with various motion scenarios and skin tones. Experiments show that both camera setups are capable of accurate pulse extraction in all motion scenarios, with an average SNR of +6.45 and +7.26 dB, respectively. The single camera setup proves to be superior in scenarios involving scaling, likely due to parallax of the multicamera setup. To further improve motion robustness of the RGB camera, dedicated LED illumination with two distinct wavelengths is proposed and verified. This paper demonstrates that accurate rPPG measurements in infrared are feasible, even with severe subject motion. PMID:25585411

  6. Space station rotational equations of motion

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Carroll, S. N.

    1985-01-01

    Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station.

  7. Motion Tracking System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Integrated Sensors, Inc. (ISI), under NASA contract, developed a sensor system for controlling robot vehicles. This technology would enable a robot supply vehicle to automatically dock with Earth-orbiting satellites or the International Space Station. During the docking phase the ISI-developed sensor must sense the satellite's relative motion, then spin so the robot vehicle can adjust its motion to align with the satellite and slowly close until docking is completed. ISI used the sensing/tracking technology as the basis of its OPAD system, which simultaneously tracks an object's movement in six degrees of freedom. Applications include human limb motion analysis, assembly line position analysis and auto crash dummy motion analysis. The NASA technology is also the basis for Motion Analysis Workstation software, a package to simplify the video motion analysis process.

  8. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  9. Auditory motion processing after early blindness

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Fine, Ione

    2014-01-01

    Studies showing that occipital cortex responds to auditory and tactile stimuli after early blindness are often interpreted as demonstrating that early blind subjects “see” auditory and tactile stimuli. However, it is not clear whether these occipital responses directly mediate the perception of auditory/tactile stimuli, or simply modulate or augment responses within other sensory areas. We used fMRI pattern classification to categorize the perceived direction of motion for both coherent and ambiguous auditory motion stimuli. In sighted individuals, perceived motion direction was accurately categorized based on neural responses within the planum temporale (PT) and right lateral occipital cortex (LOC). Within early blind individuals, auditory motion decisions for both stimuli were successfully categorized from responses within the human middle temporal complex (hMT+), but not the PT or right LOC. These findings suggest that early blind responses within hMT+ are associated with the perception of auditory motion, and that these responses in hMT+ may usurp some of the functions of nondeprived PT. Thus, our results provide further evidence that blind individuals do indeed “see” auditory motion. PMID:25378368

  10. Flexible synthesis of video frames based on motion hints.

    PubMed

    Naman, Aous Thabit; Taubman, David

    2014-09-01

    In this paper, we propose the use of "motion hints" to produce interframe predictions. A motion hint is a loose and global description of motion that can be communicated using metadata; it describes a continuous and invertible motion model over multiple frames, spatially overlapping other motion hints. A motion hint provides a reasonably accurate description of motion but only a loose description of where it is applicable; it is the task of the client to identify the exact locations where this motion model is applicable. The focus of this paper is a probabilistic multiscale approach to identifying these locations of applicability; the method is robust to noise, quantization, and contrast changes. The proposed approach employs the Laplacian pyramid; it generates motion hint probabilities from observations at each scale of the pyramid. These probabilities are then combined across the scales of the pyramid starting from the coarsest scale. The computational cost of the approach is reasonable, and only the neighborhood of a pixel is employed to determine a motion hint probability, which makes parallel implementation feasible. This paper also elaborates on how motion hint probabilities are exploited in generating interframe predictions. The scheme of this paper is applicable to closed-loop prediction, but it is more useful in open-loop prediction scenarios, such as using prediction in conjunction with remote browsing of surveillance footage, communicated by a JPEG2000 Interactive Protocol (JPIP) server. We show that the interframe predictions obtained using the proposed approach are good both visually and in terms of PSNR. PMID:24968173

  11. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  12. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  15. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  16. Motion compensator for holographic motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  17. Measuring mandibular motions

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Rositano, S.; Taylor, R. C.

    1977-01-01

    Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.

  18. Object motion analysis study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.

  19. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  20. Body Motion and Graphing.

    ERIC Educational Resources Information Center

    Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy

    1998-01-01

    Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…

  1. Teaching Projectile Motion

    ERIC Educational Resources Information Center

    Summers, M. K.

    1977-01-01

    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  2. Motion through Syntactic Frames

    ERIC Educational Resources Information Center

    Feist, Michele I.

    2010-01-01

    The introduction of (Talmy, 1985), (Talmy, 1985) and (Talmy, 2000) typology sparked significant interest in linguistic relativity in the arena of motion language. Through careful analysis of the conflation patterns evident in the language of motion events, Talmy noted that one class of languages, V-languages, tends to encode path along with the…

  3. Aristotle, Motion, and Rhetoric.

    ERIC Educational Resources Information Center

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of nature,…

  4. Making Sense of Motion

    ERIC Educational Resources Information Center

    King, Kenneth

    2005-01-01

    When watching a small child with a toy car, it is seen that interest in motion comes early. Children often suggest speed through sounds such as "RRRrrrRRRooooommMMMmmmm" as the toy car is made to speed up, slow down, or accelerate through a turn. Older children start to consider force and motion studies in more detail, and experiences in school…

  5. Naive Theories of Motion.

    ERIC Educational Resources Information Center

    McCloskey, Michael

    Everyday life provides individuals with countless opportunities for observing and interacting with objects in motion. Although everyone presumably has some sort of knowledge about motion, it is by no means clear what form(s) this knowledge may take. The research described in this paper determined what sorts of knowledge are in fact acquired…

  6. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  7. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  8. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  9. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  10. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  11. Brownian motion goes ballistic

    NASA Astrophysics Data System (ADS)

    Florin, Ernst-Ludwig

    2012-02-01

    It is the randomness that is considered the hallmark of Brownian motion, but already in Einstein's seminal 1905 paper on Brownian motion it is implied that this randomness must break down at short time scales when the inertia of the particle kicks in. As a result, the particle's trajectories should lose its randomness and become smooth. The characteristic time scale for this transition is given by the ratio of the particle's mass to its viscous drag coefficient. For a 1 μm glass particle in water and at room temperature, this timescale is on the order of 100 ns. Early calculations, however, neglected the inertia of the liquid surrounding the particle which induces a transition from random diffusive to non-diffusive Brownian motion already at much larger timescales. In this first non-diffusive regime, particles of the same size but with different densities still move at almost the same rate as a result of hydrodynamic correlations. To observe Brownian motion that is dominated by the inertia of the particle, i.e. ballistic motion, one has to observe the particle at significantly shorter time scales on the order of nanoseconds. Due to the lack of sufficiently fast and precise detectors, such experiments were so far not possible on individual particles. I will describe how we were able to observe the transition from hydrodynamically dominated Brownian motion to ballistic Brownian motion in a liquid. I will compare our data with current theories for Brownian motion on fast timescales that take into account the inertia of both the liquid and the particle. The newly gained ability to measure the fast Brownian motion of an individual particle paves the way for detailed studies of confined Brownian motion and Brownian motion in heterogeneous media. [4pt] [1] Einstein, A. "Uber die von der molekularkinetischen Theorie der W"arme geforderte Bewegung von in ruhenden Fl"ussigkeiten suspendierten Teilchen. Ann. Phys. 322, 549--560 (1905). [0pt] [2] Lukic, B., S. Jeney, C

  12. Cortical motion deafness.

    PubMed

    Ducommun, Christine Y; Michel, Christoph M; Clarke, Stephanie; Adriani, Michela; Seeck, Margitta; Landis, Theodor; Blanke, Olaf

    2004-09-16

    The extent to which the auditory system, like the visual system, processes spatial stimulus characteristics such as location and motion in separate specialized neuronal modules or in one homogeneously distributed network is unresolved. Here we present a patient with a selective deficit for the perception and discrimination of auditory motion following resection of the right anterior temporal lobe and the right posterior superior temporal gyrus (STG). Analysis of stimulus identity and location within the auditory scene remained intact. In addition, intracranial auditory evoked potentials, recorded preoperatively, revealed motion-specific responses selectively over the resected right posterior STG, and electrical cortical stimulation of this region was experienced by the patient as incoming moving sounds. Collectively, these data present a patient with cortical motion deafness, providing evidence that cortical processing of auditory motion is performed in a specialized module within the posterior STG. PMID:15363389

  13. Stochastic ground motion simulation

    USGS Publications Warehouse

    Rezaeian, Sanaz; Xiaodan, Sun

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  14. Robotics-based Synthesis of Human Motion

    PubMed Central

    Khatib, O.; Demircan, E.; De Sapio, V.; Sentis, L.; Besier, T.; Delp, S.

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods. PMID:19665552

  15. Robotics-based synthesis of human motion.

    PubMed

    Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods. PMID:19665552

  16. Assessment of Psychophysiological Responses During Motion Sickness Testing

    NASA Technical Reports Server (NTRS)

    Stoud, Cynthia S.; Toscano, William B.; Cowings, Patricia; Freidman, Gary

    1994-01-01

    The purpose of this investigation is to evaluate a methodology designed to accurately trace the temporal progression of motion sickness and space motion sickness symptoms. With this method, subjects continuously monitor their own motion sickness symptoms during exposure to a provocative stimulus as symptoms occur, in contrast to previous methods during which subjects report symptoms verbally at discrete time intervals. This method not only is comparable to previous methods in the type of symptoms that subjects report, but subjects report symptoms more frequently. Frequent reporting of motion sickness symptoms allows researchers to detail the waxing and waning of motion sickness symptoms for each individual. Previous research has shown that physiological responses to motion sickness stimuli are characterized by unique individual differences in response patterns. By improving our assessment of motion sickness symptoms with continuous monitoring of symptoms, the relationship between specific physiological responses and sickness levels can be more accurately determined for each individual. Results from this study show significant positive relationships between skin conductance levels and symptom levels for ten individuals; a significant positive relationship between temperature and symptom levels for 5 of 10 individuals; and both positive and negative relationships between respiration, heart rate, blood volume pulse and symptom levels. Continuous monitoring of motion sickness symptoms can be used to more accurately assess motion sickness to aid in the evaluation of countermeasures. In addition, recognition of the onset of symptoms that are strongly related to specific physiological responses could be used as cues to initiate procedures (e.g., Autogenic Feedback Training) to prevent the development of severe motion sickness symptoms.

  17. OCT Motion Correction

    NASA Astrophysics Data System (ADS)

    Kraus, Martin F.; Hornegger, Joachim

    From the introduction of time domain OCT [1] up to recent swept source systems, motion continues to be an issue in OCT imaging. In contrast to normal photography, an OCT image does not represent a single point in time. Instead, conventional OCT devices sequentially acquire one-dimensional data over a period of several seconds, capturing one beam of light at a time and recording both the intensity and delay of reflections along its path through an object. In combination with unavoidable object motion which occurs in many imaging contexts, the problem of motion artifacts lies in the very nature of OCT imaging. Motion artifacts degrade image quality and make quantitative measurements less reliable. Therefore, it is desirable to come up with techniques to measure and/or correct object motion during OCT acquisition. In this chapter, we describe the effect of motion on OCT data sets and give an overview on the state of the art in the field of retinal OCT motion correction.

  18. Motion coherence affects human perception and pursuit similarly

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    2000-01-01

    Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion

  19. Evidence for auditory-visual processing specific to biological motion.

    PubMed

    Wuerger, Sophie M; Crocker-Buque, Alexander; Meyer, Georg F

    2012-01-01

    Biological motion is usually associated with highly correlated sensory signals from more than one modality: an approaching human walker will not only have a visual representation, namely an increase in the retinal size of the walker's image, but also a synchronous auditory signal since the walker's footsteps will grow louder. We investigated whether the multisensorial processing of biological motion is subject to different constraints than ecologically invalid motion. Observers were presented with a visual point-light walker and/or synchronised auditory footsteps; the walker was either approaching the observer (looming motion) or walking away (receding motion). A scrambled point-light walker served as a control. Observers were asked to detect the walker's motion as quickly and as accurately as possible. In Experiment 1 we tested whether the reaction time advantage due to redundant information in the auditory and visual modality is specific for biological motion. We found no evidence for such an effect: the reaction time reduction was accounted for by statistical facilitation for both biological and scrambled motion. In Experiment 2, we dissociated the auditory and visual information and tested whether inconsistent motion directions across the auditory and visual modality yield longer reaction times in comparison to consistent motion directions. Here we find an effect specific to biological motion: motion incongruency leads to longer reaction times only when the visual walker is intact and recognisable as a human figure. If the figure of the walker is abolished by scrambling, motion incongruency has no effect on the speed of the observers' judgments. In conjunction with Experiment 1 this suggests that conflicting auditory-visual motion information of an intact human walker leads to interference and thereby delaying the response. PMID:22353566

  20. Region of interest motion compensation for PET image reconstruction.

    PubMed

    Qiao, Feng; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2007-05-21

    A motion-incorporated reconstruction (MIR) method for gated PET imaging has recently been developed by several authors to correct for respiratory motion artifacts in PET imaging. This method however relies on a motion map derived from images (4D PET or 4D CT) of the entire field of view (FOV). In this study we present a region of interest (ROI)-based extension to this method, whereby only the motion map of a user-defined ROI is required and motion incorporation during image reconstruction is solely performed within the ROI. A phantom study and an NCAT computer simulation study were performed to test the feasibility of this method. The phantom study showed that the ROI-based MIR produced results that are within 1.26% of those obtained by the full image-based MIR approach when using the same accurate motion information. The NCAT phantom study on the other hand, further verified that motion of features of interest in an image can be estimated more efficiently and potentially more accurately using the ROI-based approach. A reduction of motion estimation time from 450 s to 30 and 73 s was achieved for two different ROIs respectively. In addition, the ROI-based approach showed a reduction in registration error of 43% for one ROI, which effectively reduced quantification bias by 44% and 32% using mean and maximum voxel values, respectively. PMID:17473344

  1. Deblurring for spatial and temporal varying motion with optical computing

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Xue, Dongfeng; Hui, Zhao

    2016-05-01

    A way to estimate and remove spatially and temporally varying motion blur is proposed, which is based on an optical computing system. The translation and rotation motion can be independently estimated from the joint transform correlator (JTC) system without iterative optimization. The inspiration comes from the fact that the JTC system is immune to rotation motion in a Cartesian coordinate system. The work scheme of the JTC system is designed to keep switching between the Cartesian coordinate system and polar coordinate system in different time intervals with the ping-pang handover. In the ping interval, the JTC system works in the Cartesian coordinate system to obtain a translation motion vector with optical computing speed. In the pang interval, the JTC system works in the polar coordinate system. The rotation motion is transformed to the translation motion through coordinate transformation. Then the rotation motion vector can also be obtained from JTC instantaneously. To deal with continuous spatially variant motion blur, submotion vectors based on the projective motion path blur model are proposed. The submotion vectors model is more effective and accurate at modeling spatially variant motion blur than conventional methods. The simulation and real experiment results demonstrate its overall effectiveness.

  2. Generalized compliant motion primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor)

    1994-01-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  3. Motion Recognition and Modifying Motion Generation for Imitation Robot Based on Motion Knowledge Formation

    NASA Astrophysics Data System (ADS)

    Okuzawa, Yuki; Kato, Shohei; Kanoh, Masayoshi; Itoh, Hidenori

    A knowledge-based approach to imitation learning of motion generation for humanoid robots and an imitative motion generation system based on motion knowledge learning and modification are described. The system has three parts: recognizing, learning, and modifying parts. The first part recognizes an instructed motion distinguishing it from the motion knowledge database by the continuous hidden markov model. When the motion is recognized as being unfamiliar, the second part learns it using locally weighted regression and acquires a knowledge of the motion. When a robot recognizes the instructed motion as familiar or judges that its acquired knowledge is applicable to the motion generation, the third part imitates the instructed motion by modifying a learned motion. This paper reports some performance results: the motion imitation of several radio gymnastics motions.

  4. Image motion-blur-based object's speed measurement using an interlaced scan image

    NASA Astrophysics Data System (ADS)

    Ting-Fa, Xu; Peng, Zhao

    2010-07-01

    In motion-blur-based speed measurement, a key step is the calculation of the horizontal blur extent. To perform this calculation robustly and accurately when both a defocus blur and a motion blur occur, and for a moving object with irregular shape edges, we propose a novel scheme using the image matting and transparency map. This scheme can isolate the defocus blur from the motion blur effectively, and can also calculate the horizontal blur extent accurately, regardless of the object's shape. Moreover, our novel scheme can also perform speed measurement for an object with uniformly accelerated/retarded motion (i.e. a rigid body linear motion with a constant acceleration) by using one interlaced scan CCD image. Simulation and real experiments prove that our scheme not only outperforms the current scan-line algorithm for blur extent computation, but can also perform speed measurement accurately for uniformly accelerated/retarded motion.

  5. Phase informed model for motion and susceptibility.

    PubMed

    Hutton, Chloe; Andersson, Jesper; Deichmann, Ralf; Weiskopf, Nikolaus

    2013-11-01

    Field inhomogeneities caused by variations in magnetic susceptibility throughout the head lead to geometric distortions, mainly in the phase-encode direction of echo-planar images (EPI). The magnitude and spatial characteristics of the distortions depend on the orientation of the head in the magnetic field and will therefore vary with head movement. A new method is presented, based on a phase informed model for motion and susceptibility (PIMMS), which estimates the change in geometric distortion associated with head motion. This method fits a model of the head motion parameters and scanner hardware characteristics to EPI phase time series. The resulting maps of the model fit parameters are used to correct for susceptibility artifacts in the magnitude images. Results are shown for EPI-based fMRI time-series acquired at 3T, demonstrating that compared with conventional rigid body realignment, PIMMS removes residual variance associated with motion-related distortion effects. Furthermore, PIMMS can lead to a reduction in false negatives compared with the widely accepted approach which uses standard rigid body realignment and includes the head motion parameters in the statistical model. The PIMMS method can be used with any standard EPI sequence for which accurate phase information is available. PMID:22736546

  6. Motion compensated SLAM for image guided surgery.

    PubMed

    Mountney, Peter; Yang, Guang-Zhong

    2010-01-01

    The effectiveness and clinical benefits of image guided surgery are well established for procedures where there is manageable tissue motion. In minimally invasive cardiac, gastrointestinal, or abdominal surgery, large scale tissue deformation prohibits accurate registration and fusion of pre- and intraoperative data. Vision based techniques such as structure from motion and simultaneous localization and mapping are capable of recovering 3D structure and laparoscope motion. Current research in the area generally assumes the environment is static, which is difficult to satisfy in most surgical procedures. In this paper, a novel framework for simultaneous online estimation of laparoscopic camera motion and tissue deformation in a dynamic environment is proposed. The method only relies on images captured by the laparoscope to sequentially and incrementally generate a dynamic 3D map of tissue motion that can be co-registered with pre-operative data. The theoretical contribution of this paper is validated with both simulated and ex vivo data. The practical application of the technique is further demonstrated on in vivo procedures. PMID:20879352

  7. Toying with Motion.

    ERIC Educational Resources Information Center

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  8. Projectile Motion Details.

    ERIC Educational Resources Information Center

    Schnick, Jeffrey W.

    1994-01-01

    Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)

  9. A Projectile Motion Bullseye.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  10. Dizziness and Motion Sickness

    MedlinePlus

    ... special tests of eye motion after warm or cold water or air is used to stimulate the ... Get enough fluids Treat infections, including ear infections, colds, flu, sinus congestion, and other respiratory infections If ...

  11. Vision and Motion Pictures.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1998-01-01

    Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)

  12. Limited range of motion

    MedlinePlus

    ... loss of motion. Some of these disorders include: Cerebral palsy Congenital torticollis Muscular dystrophy Stroke or brain injury ... Rheumatology and musculoskeletal problems. In: Rakel RE, Rakel DP, eds. Textbook of Family Medicine . 8th ed. Philadelphia, ...

  13. Sensing human hand motions for controlling dexterous robots

    NASA Technical Reports Server (NTRS)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  14. Coupled transverse motion

    SciTech Connect

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs.

  15. Constructive Perception of Self-Motion

    PubMed Central

    Holly, Jan E.; McCollum, Gin

    2013-01-01

    This review focusses attention on a ragged edge of our knowledge of self-motion perception, where understanding ends but there are experimental results to indicate that present approaches to analysis are inadequate. Although self-motion perception displays processes of "top-down" construction, it is typically analyzed as if it is nothing more than a deformation of the stimulus, using a "bottom-up" and input/output approach beginning with the transduction of the stimulus. Analysis often focusses on the extent to which passive transduction of the movement stimulus is accurate. Some perceptual processes that deform or transform the stimulus arise from the way known properties of sensory receptors contribute to perceptual accuracy or inaccuracy. However, further constructive processes in self-motion perception that involve discrete transformations are not well understood. We introduce constructive perception with a linguistic example which displays familiar discrete properties, then look closely at self-motion perception. Examples of self-motion perception begin with cases in which constructive processes transform particular properties of the stimulus. These transformations allow the nervous system to compose whole percepts of movement; that is, self-motion perception acts at a whole-movement level of analysis, rather than passively transducing individual cues. These whole-movement percepts may be paradoxical. In addition, a single stimulus may give rise to multiple perceptions. After reviewing self-motion perception studies, we discuss research methods for delineating principles of the constructed perception of self-motion. The habit of viewing self-motion illusions only as continuous deformations of the stimulus may be blinding the field to other perceptual phenomena, including those best characterized using the mathematics of discrete transformations or mathematical relationships relating sensory modalities in novel, sometimes discrete ways. Analysis of experiments

  16. Precision grid and hand motion for accurate needle insertion in brachytherapy

    SciTech Connect

    McGill, Carl S.; Schwartz, Jonathon A.; Moore, Jason Z.; McLaughlin, Patrick W.; Shih, Albert J.

    2011-08-15

    Purpose: In prostate brachytherapy, a grid is used to guide a needle tip toward a preplanned location within the tissue. During insertion, the needle deflects en route resulting in target misplacement. In this paper, 18-gauge needle insertion experiments into phantom were performed to test effects of three parameters, which include the clearance between the grid hole and needle, the thickness of the grid, and the needle insertion speed. Measurement apparatus that consisted of two datum surfaces and digital depth gauge was developed to quantify needle deflections. Methods: The gauge repeatability and reproducibility (GR and R) test was performed on the measurement apparatus, and it proved to be capable of measuring a 2 mm tolerance from the target. Replicated experiments were performed on a 2{sup 3} factorial design (three parameters at two levels) and analysis included averages and standard deviation along with an analysis of variance (ANOVA) to find significant single and two-way interaction factors. Results: Results showed that grid with tight clearance hole and slow needle speed increased precision and accuracy of needle insertion. The tight grid was vital to enhance precision and accuracy of needle insertion for both slow and fast insertion speed; additionally, at slow speed the tight, thick grid improved needle precision and accuracy. Conclusions: In summary, the tight grid is important, regardless of speed. The grid design, which shows the capability to reduce the needle deflection in brachytherapy procedures, can potentially be implemented in the brachytherapy procedure.

  17. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  18. Traffic congestion classification using motion vector statistical features

    NASA Astrophysics Data System (ADS)

    Riaz, Amina; Khan, Shoab A.

    2013-12-01

    Due to the rapid increase in population, one of the major problems faced by the urban areas is traffic congestion. In this paper we propose a method for classifying highway traffic congestion using motion vector statistical properties. Motion vectors are estimated using pyramidal Kanada-Lucas-Tomasi (KLT) tracker algorithm. Then motion vector features are extracted and are used to classify the traffic patterns into three categories: light, medium and heavy. Classification using neural network, on publicly available dataset, shows an accuracy of 95.28%, with robustness to environmental conditions such as variable luminance. Our system provides a more accurate solution to the problem as compared to the systems previously proposed.

  19. Motion monitoring in palliative care using unobtrusive bed sensors.

    PubMed

    Holtzman, M; Goubran, R; Knoefel, F

    2014-01-01

    Palliative care needs are growing with the aging population. Ambient sensors offer patients comfortable and discreet point-of-care monitoring. In this study, two palliative care participants were monitored in a sensorized bed. Motion monitoring by a two-tier gross and fine movement detector provided accurate detection and classification of movement, compared to annotations by an observer. However, ascribing the motion to the patient rather than caregivers or visitors would require supplemental sensors. Motion was indicative of pain, with 13% of time spent moving while in pain versus 3% while not noted as in pain. PMID:25571304

  20. Experimental Study of Short-Time Brownian Motion

    NASA Astrophysics Data System (ADS)

    Mo, Jianyong; Simha, Akarsh; Riegler, David; Raizen, Mark

    2015-03-01

    We report our progress on the study of short-time Brownian motion of optically-trapped microspheres. In earlier work, we observed the instantaneous velocity of microspheres in gas and in liquid, verifying a prediction by Albert Einstein from 1907. We now report a more accurate test of the energy equipartition theorem for a particle in liquid. We also observe boundary effects on Brownian motion in liquid by setting a wall near the trapped particle, which changes the dynamics of the motion. We find that the velocity autocorrelation of the particle decreases faster as the particle gets closer to the wall.

  1. PROMOTIONS: PROper MOTION Software

    NASA Astrophysics Data System (ADS)

    Caleb Wherry, John; Sahai, R.

    2009-05-01

    We report on the development of a software tool (PROMOTIONS) to streamline the process of measuring proper motions of material in expanding nebulae. Our tool makes use of IDL's widget programming capabilities to design a unique GUI that is used to compare images of the objects from two epochs. The software allows us to first orient and register the images to a common frame of reference and pixel scale, using field stars in each of the images. We then cross-correlate specific morphological features in order to determine their proper motions, which consist of the proper motion of the nebula as a whole (PM-neb), and expansion motions of the features relative to the center. If the central star is not visible (quite common in bipolar nebulae with dense dusty waists), point-symmetric expansion is assumed and we use the average motion of high-quality symmetric pairs of features on opposite sides of the nebular center to compute PM-neb. This is then subtracted out to determine the individual movements of these and additional features relative to the nebular center. PROMOTIONS should find wide applicability in measuring proper motions in astrophysical objects such as the expanding outflows/jets commonly seen around young and dying stars. We present first results from using PROMOTIONS to successfully measure proper motions in several pre-planetary nebulae (transition objects between the red giant and planetary nebula phases), using images taken 7-10 years apart with the WFPC2 and ACS instruments on board HST. The authors are grateful to NASA's Undergradute Scholars Research Program (USRP) for supporting this research.

  2. Fast image interpolation for motion estimation using graphics hardware

    NASA Astrophysics Data System (ADS)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  3. Inter-fraction variations in respiratory motion models

    NASA Astrophysics Data System (ADS)

    McClelland, J. R.; Hughes, S.; Modat, M.; Qureshi, A.; Ahmad, S.; Landau, D. B.; Ourselin, S.; Hawkes, D. J.

    2011-01-01

    Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.

  4. Martian Landscapes in Motion

    NASA Astrophysics Data System (ADS)

    Mattson, Sarah; McEwen, Alfred; Kirk, Randolph; Howington-Kraus, Elpitha; Chojnacki, Matthew; Runyon, Kirby; Cremonese, Gabriele; Re, Cristina

    2014-05-01

    RISE orthorectified image sequences makes it possible to conduct accurate change detection studies of active processes on Mars. Some examples of studies of active landscapes on Mars using HiRISE DTMs and orthoimage sequences include: dune and ripple motion (Bridges et al., 2012, Nature), recurring slope lineae (RSL) (McEwen et al., 2011, Science; McEwen et al., 2013, Nature Geoscience), gully activity (Dundas et al., 2012, Icarus), and polar processes (Hansen et al., 2011, Science; Portyankina et al. 2013, Icarus,). These studies encompass images from multiple Mars years and seasons. Sequences of orthoimages make it possible to generate animated gifs or movies to visualize temporal changes (http://www.uahirise.org/sim/). They can also be brought into geospatial software to quantitatively map and record changes. The ability to monitor the surface of Mars at high spatial resolution with frequent repeat images has opened up our insight into seasonal and interannual changes, further increasing our understanding of Mars as an active planet.

  5. Experimental Harmonic Motion

    NASA Astrophysics Data System (ADS)

    Searle, G. F. C.

    2014-05-01

    1. Elementary theory of harmonic motion; 2. Experimental work in harmonic motion; Experiment 1. Determination of g by a simple pendulum; Experiment 2. Harmonic motion of a body suspended by a spring; Experiment 3. Harmonic motion of a rigid body suspended by a torsion wire; Experiment 4. Study of a system with variable moment of inertia; Experiment 5. Dynamical determination of ratio of couple to twist for a torsion wire; Experiment 6. Comparison of the moments of inertia of two bodies; Experiment 7. Experiment with a pair of inertia bars; Experiment 8. Determination of the moment of inertia of a rigid pendulum; Experiment 9. Experiment on a pendulum with variable moment of inertia; Experiment 10. Determination of g by a rigid pendulum; Experiment 11. Pendulum on a yielding support; Experiment 12. Determination of the radius of curvature of a concave mirror by the oscillations of a sphere rolling in it; Experiment 13. Determination of g by the oscillations of a rod rolling on a cylinder; Experiment 14. Study of a vibrating system with two degrees of freedom; Note 1. On the vibration of a body suspended from a light spring; Note 2. Periodic time of a pendulum vibrating through a finite arc; Note 3. Periodic time for finite motion; Note 4. Periodic times of a pendulum with two degrees of freedom.

  6. Space motion sickness

    NASA Technical Reports Server (NTRS)

    Homick, J. L.

    1979-01-01

    Research on the etiology, prediction, treatment and prevention of space motion sickness, designed to minimize the impact of this syndrome which was experienced frequently and with severity by individuals on the Skylab missions, on Space Shuttle crews is reviewed. Theories of the cause of space motion sickness currently under investigation by NASA include sensory conflict, which argues that motion sickness symptoms result from a mismatch between the total pattern of information from the spatial senses and that stored from previous experiences, and fluid shift, based upon the redistribution of bodily fluids that occurs upon continued exposure to weightlessness. Attempts are underway to correlate space motion sickness susceptibility to different provocative environments, vestibular and nonvestibular responses, and the rate of acquisition and length of retention of sensory adaptation. Space motion sickness countermeasures under investigation include various drug combinations, of which the equal combination of promethazine and ephedrine has been found to be as effective as the scopolomine and dexedrine combination, and vestibular adaptation and biofeedback training and autogenic therapy.

  7. Ultraslow scaled Brownian motion

    NASA Astrophysics Data System (ADS)

    Bodrova, Anna S.; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Metzler, Ralf

    2015-06-01

    We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form D(t)≃ 1/t. For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations.

  8. Accurate and efficient spin integration for particle accelerators

    NASA Astrophysics Data System (ADS)

    Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; Barber, Desmond P.

    2015-02-01

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  9. Accurate Determination of Conformational Transitions in Oligomeric Membrane Proteins

    PubMed Central

    Sanz-Hernández, Máximo; Vostrikov, Vitaly V.; Veglia, Gianluigi; De Simone, Alfonso

    2016-01-01

    The structural dynamics governing collective motions in oligomeric membrane proteins play key roles in vital biomolecular processes at cellular membranes. In this study, we present a structural refinement approach that combines solid-state NMR experiments and molecular simulations to accurately describe concerted conformational transitions identifying the overall structural, dynamical, and topological states of oligomeric membrane proteins. The accuracy of the structural ensembles generated with this method is shown to reach the statistical error limit, and is further demonstrated by correctly reproducing orthogonal NMR data. We demonstrate the accuracy of this approach by characterising the pentameric state of phospholamban, a key player in the regulation of calcium uptake in the sarcoplasmic reticulum, and by probing its dynamical activation upon phosphorylation. Our results underline the importance of using an ensemble approach to characterise the conformational transitions that are often responsible for the biological function of oligomeric membrane protein states. PMID:26975211

  10. THE FIRST ACCURATE PARALLAX DISTANCE TO A BLACK HOLE

    SciTech Connect

    Miller-Jones, J. C. A.; Jonker, P. G.; Dhawan, V.; Brisken, W.; Rupen, M. P.; Nelemans, G.; Gallo, E.

    2009-12-01

    Using astrometric VLBI observations, we have determined the parallax of the black hole X-ray binary V404 Cyg to be 0.418 +- 0.024 mas, corresponding to a distance of 2.39 +- 0.14 kpc, significantly lower than the previously accepted value. This model-independent estimate is the most accurate distance to a Galactic stellar-mass black hole measured to date. With this new distance, we confirm that the source was not super-Eddington during its 1989 outburst. The fitted distance and proper motion imply that the black hole in this system likely formed in a supernova, with the peculiar velocity being consistent with a recoil (Blaauw) kick. The size of the quiescent jets inferred to exist in this system is <1.4 AU at 22 GHz. Astrometric observations of a larger sample of such systems would provide useful insights into the formation and properties of accreting stellar-mass black holes.

  11. The Particle--Motion Problem.

    ERIC Educational Resources Information Center

    Demana, Franklin; Waits, Bert K.

    1993-01-01

    Discusses solutions to real-world linear particle-motion problems using graphing calculators to simulate the motion and traditional analytic methods of calculus. Applications include (1) changing circular or curvilinear motion into linear motion and (2) linear particle accelerators in physics. (MDH)

  12. SU-E-J-186: Using 4DCT-Based Motion Modeling to Predict Motion and Duty Cycle On Successive Days of Gated Radiotherapy

    SciTech Connect

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J

    2015-06-15

    Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumor motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to

  13. Intrinsic Feature Motion Tracking

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over timemore » can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.« less

  14. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  15. Intrinsic Feature Motion Tracking

    SciTech Connect

    Goddard, Jr., James S.

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over time can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.

  16. Diurnal polar motion

    NASA Technical Reports Server (NTRS)

    Mcclure, P.

    1973-01-01

    An analytical theory is developed to describe diurnal polar motion in the earth which arises as a forced response due to lunisolar torques and tidal deformation. Doodson's expansion of the tide generating potential is used to represent the lunisolar torques. Both the magnitudes and the rates of change of perturbations in the earth's inertia tensor are included in the dynamical equations for the polar motion so as to account for rotational and tidal deformation. It is found that in a deformable earth with Love's number k = 0.29, the angular momentum vector departs by as much as 20 cm from the rotation axis rather than remaining within 1 or 2 cm as it would in a rigid earth. This 20 cm separation is significant in the interpretation of submeter polar motion observations because it necessitates an additional coordinate transformation in order to remove what would otherwise be a 20 cm error source in the conversion between inertial and terrestrial reference systems.

  17. Motion detector and analyzer

    DOEpatents

    Unruh, W.P.

    1987-03-23

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  18. SU-E-J-189: Determination of Markerless Lung Tumor Position in Real Time: A Feasibility Study Using a Novel Tomo-Cinegraphy Imaging

    SciTech Connect

    Yi, B; Hu, E; Yu, C; Lee, M; Lasio, G

    2015-06-15

    Purpose: A Tomo-Cinegraphy (TC) is a method to generate a series of temporal tomographic images from projection images of the on-board imager (OBI) while gantry is moving. It is to test if this technique is useful to determine a lung tumor position during treatments. Methods: Tomographic image via background subtraction, TIBS uses a priori anatomical information from a previous CT scan to isolate a SOI from a planar kV image by factoring out the attenuations by tissues outside the SOI (background). This idea was extended to a TC, which enables to generate tomographic images of same geometry from the projection of different gantry angles and different breathing phases. Projection images of a lung patient for CBCT acquisition are used to generate TC images. A region of interest (ROI) is selected around a tumor adding 2cm margins. Center of mass (COM) of the ROI is traced to determine tumor position for every projection images. Results: Tumor is visible in the TC images while the OBI projections are not. The coordinates of the COMs represent the temporal tumor positions. While, it is not possible to trace the tumor motion using the projection images. A source of time delay is the time to acquire projection images, which is always less than a second. Conclusion: TC allows tracking the tumor positions without fiducial markers in real time for some lung patients, if the projection images are acquired during treatments. Partially supported by NIH R01CA133539.

  19. Mechanics of amoeboid motion

    SciTech Connect

    Dembo, M.

    1986-01-01

    The reactive flow model is a putative description of amoeboid cytoplasm based on the formalism of multifield fluid mechanics. We show by direct numerical computations that the reactive flow model is able to account for various phenomena observed in dissociated cytoplasm and/or in vitro contractile networks. These phenomena include states of relaxation or mechanical equilibrium, as well as transitions between such states, by processes of expansion or contraction. Simulations also indicate the existence of states of chaotic or turbulent cytoplasmic streaming. Finally, simulations yield steady states of coherent motion similar to motions observed in cytoplasm dissociated from the giant amoeba, Chaos carolinensis.

  20. Dislocation motion and instability

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Chapman, Stephen Jonathan; Acharya, Amit

    2013-08-01

    The Peach-Koehler expression for the stress generated by a single (non-planar) curvilinear dislocation is evaluated to calculate the dislocation self stress. This is combined with a law of motion to give the self-induced motion of a general dislocation curve. A stability analysis of a rectilinear, uniformly translating dislocation is then performed. The dislocation is found to be susceptible to a helical instability, with the maximum growth rate occurring when the dislocation is almost, but not exactly, pure screw. The non-linear evolution of the instability is determined numerically, and implications for slip band formation and non-Schmid behavior in yielding are discussed.

  1. Analysis of swimming motions.

    NASA Technical Reports Server (NTRS)

    Gallenstein, J.; Huston, R. L.

    1973-01-01

    This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.

  2. Correction for human head motion in helical x-ray CT

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Sun, T.; Alcheikh, A. R.; Kuncic, Z.; Nuyts, J.; Fulton, R.

    2016-02-01

    Correction for rigid object motion in helical CT can be achieved by reconstructing from a modified source-detector orbit, determined by the object motion during the scan. This ensures that all projections are consistent, but it does not guarantee that the projections are complete in the sense of being sufficient for exact reconstruction. We have previously shown with phantom measurements that motion-corrected helical CT scans can suffer from data-insufficiency, in particular for severe motions and at high pitch. To study whether such data-insufficiency artefacts could also affect the motion-corrected CT images of patients undergoing head CT scans, we used an optical motion tracking system to record the head movements of 10 healthy volunteers while they executed each of the 4 different types of motion (‘no’, slight, moderate and severe) for 60 s. From these data we simulated 354 motion-affected CT scans of a voxelized human head phantom and reconstructed them with and without motion correction. For each simulation, motion-corrected (MC) images were compared with the motion-free reference, by visual inspection and with quantitative similarity metrics. Motion correction improved similarity metrics in all simulations. Of the 270 simulations performed with moderate or less motion, only 2 resulted in visible residual artefacts in the MC images. The maximum range of motion in these simulations would encompass that encountered in the vast majority of clinical scans. With severe motion, residual artefacts were observed in about 60% of the simulations. We also evaluated a new method of mapping local data sufficiency based on the degree to which Tuy’s condition is locally satisfied, and observed that areas with high Tuy values corresponded to the locations of residual artefacts in the MC images. We conclude that our method can provide accurate and artefact-free MC images with most types of head motion likely to be encountered in CT imaging, provided that the motion can

  3. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  4. Remote balance weighs accurately amid high radiation

    NASA Technical Reports Server (NTRS)

    Eggenberger, D. N.; Shuck, A. B.

    1969-01-01

    Commercial beam-type balance, modified and outfitted with electronic controls and digital readout, can be remotely controlled for use in high radiation environments. This allows accurate weighing of breeder-reactor fuel pieces when they are radioactively hot.

  5. Understanding the Code: keeping accurate records.

    PubMed

    Griffith, Richard

    2015-10-01

    In his continuing series looking at the legal and professional implications of the Nursing and Midwifery Council's revised Code of Conduct, Richard Griffith discusses the elements of accurate record keeping under Standard 10 of the Code. This article considers the importance of accurate record keeping for the safety of patients and protection of district nurses. The legal implications of records are explained along with how district nurses should write records to ensure these legal requirements are met. PMID:26418404

  6. Neural correlates of facial motion perception.

    PubMed

    Girges, Christine; O'Brien, Justin; Spencer, Janine

    2016-06-01

    Several neuroimaging studies have revealed that the superior temporal sulcus (STS) is highly implicated in the processing of facial motion. A limitation of these investigations, however, is that many of them utilize unnatural stimuli (e.g., morphed videos) or those which contain many confounding spatial cues. As a result, the underlying mechanisms may not be fully engaged during such perception. The aim of the current study was to build upon the existing literature by implementing highly detailed and accurate models of facial movement. Accordingly, neurologically healthy participants viewed simultaneous sequences of rigid and nonrigid motion that was retargeted onto a standard computer generated imagery face model. Their task was to discriminate between different facial motion videos in a two-alternative forced choice paradigm. Presentations varied between upright and inverted orientations. In corroboration with previous data, the perception of natural facial motion strongly activated a portion of the posterior STS. The analysis also revealed engagement of the lingual gyrus, fusiform gyrus, precentral gyrus, and cerebellum. These findings therefore suggest that the processing of dynamic facial information is supported by a network of visuomotor substrates. PMID:26077725

  7. Apsidal motion in five eccentric eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Zasche, P.; Kučáková, H.; Lehký, M.; Svoboda, P.; Šmelcer, L.; Zejda, M.

    2013-01-01

    Aims: As part of the long-term Ondřejov and Ostrava observational projects, we aim to measure the precise times of minimum light for eccentric eclipsing binaries, needed for accurate determination of apsidal motion. Over fifty new times of minimum light recorded with CCD photometers were obtained for five early-type and eccentric-orbit eclipsing binaries: V785 Cas (P = 2.d70, e = 0.09), V821 Cas (1.d77, 0.14), V796 Cyg (1.d48, 0.07), V398 Lac (5.d41, 0.23), and V871 Per (3.d02, 0.24). Methods: O-C diagrams of binaries were analysed using all reliable timings found in the literature, and new elements of apsidal motion were obtained. Results: We derived for the first time or improved the relatively short periods of apsidal motion of about 83, 140, 33, 440, and 70 years for V785 Cas, V821 Cas, V796 Cyg, V398 Lac, and V871 Per, respectively. The internal structure constants, log k2, for V821 Cas and V398 Lac are then found to be -2.70 and -2.35, under the assumption that the component stars rotate pseudosynchronously. The relativistic effects are weak, up to 7% of the total apsidal motion rate.

  8. Effect of vertical motion on current meters

    USGS Publications Warehouse

    Kallio, Nicholas A.

    1966-01-01

    The effect of vertical motion on the performance of current meters at various stream velocities was evaluated to determine whether accurate discharge measurements can be made from a bobbing boat. Three types of current meters--Ott, Price, and vane types--were tested under conditions simulating a bobbing boat. A known frequency and amplitude of vertical motion were imparted to the current meter, and the related effect on the measured stream velocity was determined. One test of the Price meter was made under actual conditions, using a boat and standard measuring gear. The results of the test under actual conditions verified those obtained by simulating the vertical movements of a boat. The tests show that for stream velocities below 2.5 feet per second the accuracy of all three meters is significantly affected when the meters are subjected to certain conditions of vertical motion that can occur during actual field operations. Both the rate of vertical motion and the frequency of vertical oscillation affect the registration of the meter. The results of these tests, presented in the form of graphs and tables, can be used as a guide to determine whether wind and stream flow are within an acceptable range for a reliable discharge measurement from a boat.

  9. Ciliary motion modeling, and dynamic multicilia interactions

    PubMed Central

    Gueron, Shay; Liron, Nadav

    1992-01-01

    This paper presents a rigorous and accurate modeling tool for ciliary motion. The hydrodynamics analysis, originally suggested by Lighthill (1975), has been modified to remove computational problems. This approach is incorporated into a moment-balance model of ciliary motion in place of the previously used hydrodynamic analyses, known as Resistive Force Theory. The method is also developed to include the effect of a plane surface at the base of the cilium, and the effect of the flow fields produced by neighboring cilia. These extensions were not possible with previous work using the Resistive Force Theory hydrodynamics. Performing reliable simulations of a single cilium as well as modeling multicilia interactions is now possible. The result is a general method which could now be used for detailed modeling of the mechanisms for generating ciliary beat patterns and patterns of metachronal interactions in arrays of cilia. A computer animation technique was designed and applied to display the results. PMID:19431847

  10. Choosing a Motion Detector.

    ERIC Educational Resources Information Center

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  11. Planets in Motion

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

  12. A Harmonic Motion Experiment

    ERIC Educational Resources Information Center

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  13. Solar Motion from Australia

    ERIC Educational Resources Information Center

    Treschman, Keith

    2009-01-01

    At noon throughout the year the Sun has a north-south and east-west motion around the meridian. Earliest/latest sunrises and sunsets do not occur at the solstices and the effect is more pronounced with decreasing latitude. This phenomenon is calculated for 25 Australian cities and the following observations are recorded: (1) The latest sunrise…

  14. Wiimote Experiments: Circular Motion

    ERIC Educational Resources Information Center

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  15. Marbles in Motion.

    ERIC Educational Resources Information Center

    Brown, Helen; Meyers, Bernice; Schmidt, William

    1999-01-01

    Marbles were successfully used to help primary students develop concepts of motion. Marble-unit activities began with shaking and rattling inference bags and predicting by listening just how many marbles were in each bag. Students made qualitative and quantitative observations of the marbles, manipulated marbles with a partner, and observed…

  16. Projectile Motion Revisited.

    ERIC Educational Resources Information Center

    Lucie, Pierre

    1979-01-01

    Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)

  17. A world in motion

    SciTech Connect

    Boynton, J.A.

    1994-12-31

    A World in Motion is a physical science curriculum supplement for grades four, five, and six which responds to the need to promote and teach sound science and mathematics concepts. Using the A World in Motion kits, teachers work in partnership with practicing engineer or scientists volunteers to provide students with fun, exciting, and relevant hands-on science and math experiences. During the A World in Motion experience, students work together in {open_quotes}Engineering Design Teams{close_quotes} exploring physics concepts through a series of activities. Each student is assigned a role as either a facilities engineer, development engineer, test engineer, or project engineer and is given responsibilities paralleling those of engineers in industry. The program culminates in a {open_quotes}Design Review{close_quotes} where students can communicate their results, demonstrate their designs, and receive recognition for their efforts. They are given a chance to take on responsibility and build self-esteem. Since January 1991, over 12,000 volunteers engineers have been involved with the program, with a distribution of 20,000 A World in Motion kit throughout the U.S. and Canada.

  18. Theory of orthodontic motions

    NASA Technical Reports Server (NTRS)

    Pepe, S.; Pepe, W. D.; Strauss, A. M.

    1976-01-01

    A general theory of orthodontic motion is developed that can be applied to determine the forces necessary to induce a given tooth to move to the predetermined desirable position. It is assumed that the natural (nonorthodontic) forces may be represented by a periodic function and the orthodontic forces may be superimposed upon the natural forces. A simple expression is derived for the applied stress.

  19. Introducing Simple Harmonic Motion.

    ERIC Educational Resources Information Center

    Roche, John

    2002-01-01

    Explains the origin and significance of harmonic motion which is an important topic that has wide application in the world. Describes the phenomenon by using an auxiliary circle to help illustrate the key relationships between acceleration, displacement, time, velocity, and phase. (Contains 16 references.) (Author/YDS)

  20. Superluminal motion (review)

    NASA Astrophysics Data System (ADS)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  1. Linear motion valve

    NASA Technical Reports Server (NTRS)

    Chandler, J. A. (Inventor)

    1985-01-01

    The linear motion valve is described. The valve spool employs magnetically permeable rings, spaced apart axially, which engage a sealing assembly having magnetically permeable pole pieces in magnetic relationship with a magnet. The gap between the ring and the pole pieces is sealed with a ferrofluid. Depletion of the ferrofluid is minimized.

  2. Wiimote Experiments: Circular Motion

    NASA Astrophysics Data System (ADS)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-03-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.

  3. The effects of aging on the perception of depth from motion parallax.

    PubMed

    Holmin, Jessica; Nawrot, Mark

    2016-08-01

    Successful navigation in the world requires effective visuospatial processing. Unfortunately, older adults have many visuospatial deficits, which can have severe real-world consequences. Although some of these age effects are well documented, some others, such as the perception of depth from motion parallax, are poorly understood. Depth perception from motion parallax requires intact retinal image motion and pursuit eye movement processing. Decades of research have shown that both motion processing and pursuit eye movements are affected by age; it follows that older adults may also be less sensitive to depth from motion parallax. The goals of the present study were to characterize motion parallax depth thresholds in older adults, and to explain older adults' sensitivity to depth from motion parallax in terms of motion and pursuit deficits. Younger and older adults' motion thresholds and pursuit accuracy were measured. Observers' depth thresholds across several different stimulus conditions were measured, as well. Older adults had higher motion thresholds and less accurate pursuit than younger adults. They were also less sensitive to depth from motion parallax at slow and moderate pursuit speeds. Although older adults had higher motion thresholds than younger adults, they used the available motion signals optimally, and age differences in motion processing could not account for the older adults' increased depth thresholds. Rather, these age effects can be explained by changes in older adults' pursuit signals. PMID:27184057

  4. Highly Accurate Inverse Consistent Registration: A Robust Approach

    PubMed Central

    Reuter, Martin; Rosas, H. Diana; Fischl, Bruce

    2010-01-01

    The registration of images is a task that is at the core of many applications in computer vision. In computational neuroimaging where the automated segmentation of brain structures is frequently used to quantify change, a highly accurate registration is necessary for motion correction of images taken in the same session, or across time in longitudinal studies where changes in the images can be expected. This paper, inspired by Nestares and Heeger (2000), presents a method based on robust statistics to register images in the presence of differences, such as jaw movement, differential MR distortions and true anatomical change. The approach we present guarantees inverse consistency (symmetry), can deal with different intensity scales and automatically estimates a sensitivity parameter to detect outlier regions in the images. The resulting registrations are highly accurate due to their ability to ignore outlier regions and show superior robustness with respect to noise, to intensity scaling and outliers when compared to state-of-the-art registration tools such as FLIRT (in FSL) or the coregistration tool in SPM. PMID:20637289

  5. Strategy for accurate liver intervention by an optical tracking system

    PubMed Central

    Lin, Qinyong; Yang, Rongqian; Cai, Ken; Guan, Peifeng; Xiao, Weihu; Wu, Xiaoming

    2015-01-01

    Image-guided navigation for radiofrequency ablation of liver tumors requires the accurate guidance of needle insertion into a tumor target. The main challenge of image-guided navigation for radiofrequency ablation of liver tumors is the occurrence of liver deformations caused by respiratory motion. This study reports a strategy of real-time automatic registration to track custom fiducial markers glued onto the surface of a patient’s abdomen to find the respiratory phase, in which the static preoperative CT is performed. Custom fiducial markers are designed. Real-time automatic registration method consists of the automatic localization of custom fiducial markers in the patient and image spaces. The fiducial registration error is calculated in real time and indicates if the current respiratory phase corresponds to the phase of the static preoperative CT. To demonstrate the feasibility of the proposed strategy, a liver simulator is constructed and two volunteers are involved in the preliminary experiments. An ex-vivo porcine liver model is employed to further verify the strategy for liver intervention. Experimental results demonstrate that real-time automatic registration method is rapid, accurate, and feasible for capturing the respiratory phase from which the static preoperative CT anatomical model is generated by tracking the movement of the skin-adhered custom fiducial markers. PMID:26417501

  6. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  7. Anisotropic Turbulence Modeling for Accurate Rod Bundle Simulations

    SciTech Connect

    Baglietto, Emilio

    2006-07-01

    An improved anisotropic eddy viscosity model has been developed for accurate predictions of the thermal hydraulic performances of nuclear reactor fuel assemblies. The proposed model adopts a non-linear formulation of the stress-strain relationship in order to include the reproduction of the anisotropic phenomena, and in combination with an optimized low-Reynolds-number formulation based on Direct Numerical Simulation (DNS) to produce correct damping of the turbulent viscosity in the near wall region. This work underlines the importance of accurate anisotropic modeling to faithfully reproduce the scale of the turbulence driven secondary flows inside the bundle subchannels, by comparison with various isothermal and heated experimental cases. The very low scale secondary motion is responsible for the increased turbulence transport which produces a noticeable homogenization of the velocity distribution and consequently of the circumferential cladding temperature distribution, which is of main interest in bundle design. Various fully developed bare bundles test cases are shown for different geometrical and flow conditions, where the proposed model shows clearly improved predictions, in close agreement with experimental findings, for regular as well as distorted geometries. Finally the applicability of the model for practical bundle calculations is evaluated through its application in the high-Reynolds form on coarse grids, with excellent results. (author)

  8. An Accurate and Dynamic Computer Graphics Muscle Model

    NASA Technical Reports Server (NTRS)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  9. Accurate tremor locations from coherent S and P waves

    NASA Astrophysics Data System (ADS)

    Armbruster, John G.; Kim, Won-Young; Rubin, Allan M.

    2014-06-01

    Nonvolcanic tremor is an important component of the slow slip processes which load faults from below, but accurately locating tremor has proven difficult because tremor rarely contains clear P or S wave arrivals. Here we report the observation of coherence in the shear and compressional waves of tremor at widely separated stations which allows us to detect and accurately locate tremor events. An event detector using data from two stations sees the onset of tremor activity in the Cascadia tremor episodes of February 2003, July 2004, and September 2005 and confirms the previously reported south to north migration of the tremor. Event detectors using data from three and four stations give Sand P arrival times of high accuracy. The hypocenters of the tremor events fall at depths of ˜30 to ˜40 km and define a narrow plane dipping at a shallow angle to the northeast, consistent with the subducting plate interface. The S wave polarizations and P wave first motions define a source mechanism in agreement with the northeast convergence seen in geodetic observations of slow slip. Tens of thousands of locations determined by constraining the events to the plate interface show tremor sources highly clustered in space with a strongly similar pattern of sources in the three episodes examined. The deeper sources generate tremor in minor episodes as well. The extent to which the narrow bands of tremor sources overlap between the three major episodes suggests relative epicentral location errors as small as 1-2 km.

  10. Accurate camera calibration method specialized for virtual studios

    NASA Astrophysics Data System (ADS)

    Okubo, Hidehiko; Yamanouchi, Yuko; Mitsumine, Hideki; Fukaya, Takashi; Inoue, Seiki

    2008-02-01

    Virtual studio is a popular technology for TV programs, that makes possible to synchronize computer graphics (CG) to realshot image in camera motion. Normally, the geometrical matching accuracy between CG and realshot image is not expected so much on real-time system, we sometimes compromise on directions, not to come out the problem. So we developed the hybrid camera calibration method and CG generating system to achieve the accurate geometrical matching of CG and realshot on virtual studio. Our calibration method is intended for the camera system on platform and tripod with rotary encoder, that can measure pan/tilt angles. To solve the camera model and initial pose, we enhanced the bundle adjustment algorithm to fit the camera model, using pan/tilt data as known parameters, and optimizing all other parameters invariant against pan/tilt value. This initialization yields high accurate camera position and orientation consistent with any pan/tilt values. Also we created CG generator implemented the lens distortion function with GPU programming. By applying the lens distortion parameters obtained by camera calibration process, we could get fair compositing results.

  11. Do Fish Perceive Illusory Motion?

    PubMed Central

    Gori, Simone; Agrillo, Christian; Dadda, Marco; Bisazza, Angelo

    2014-01-01

    Motion illusion refers to a perception of motion that is absent or different in the physical stimulus. These illusions are a powerful non-invasive tool for understanding the neurobiology of vision because they tell us, indirectly, how we process motion. There is general agreement in ascribing motion illusion to higher-level processing in the visual cortex, but debate remains about the exact role of eye movements and cortical networks in triggering it. Surprisingly, there have been no studies investigating global illusory motion evoked by static patterns in animal species other than humans. Herein, we show that fish perceive one of the most studied motion illusions, the Rotating Snakes. Fish responded similarly to real and illusory motion. The demonstration that complex global illusory motion is not restricted to humans and can be found even in species that do not have a cortex paves the way to develop animal models to study the neurobiological bases of motion perception. PMID:25246001

  12. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  13. 3D tongue motion from tagged and cine MR images.

    PubMed

    Xing, Fangxu; Woo, Jonghye; Murano, Emi Z; Lee, Junghoon; Stone, Maureen; Prince, Jerry L

    2013-01-01

    Understanding the deformation of the tongue during human speech is important for head and neck surgeons and speech and language scientists. Tagged magnetic resonance (MR) imaging can be used to image 2D motion, and data from multiple image planes can be combined via post-processing to yield estimates of 3D motion. However, lacking boundary information, this approach suffers from inaccurate estimates near the tongue surface. This paper describes a method that combines two sources of information to yield improved estimation of 3D tongue motion. The method uses the harmonic phase (HARP) algorithm to extract motion from tags and diffeomorphic demons to provide surface deformation. It then uses an incompressible deformation estimation algorithm to incorporate both sources of displacement information to form an estimate of the 3D whole tongue motion. Experimental results show that use of combined information improves motion estimation near the tongue surface, a problem that has previously been reported as problematic in HARP analysis, while preserving accurate internal motion estimates. Results on both normal and abnormal tongue motions are shown. PMID:24505742

  14. Motion estimation for nuclear medicine: a probabilistic approach

    NASA Astrophysics Data System (ADS)

    Smith, Rhodri; Abd. Rahni, Ashrani Aizzuddin; Jones, John; Tahavori, Fatemeh; Wells, Kevin

    2014-03-01

    Accurate, Respiratory Motion Modelling of the abdominal-thoracic organs serves as a pre-requisite for motion correction of Nuclear Medicine (NM) Images. Many respiratory motion models to date build a static correspondence between a parametrized external surrogate signal and internal motion. Mean drifts in respiratory motion, changes in respiratory style and noise conditions of the external surrogate signal motivates a more adaptive approach to capture non-stationary behavior. To this effect we utilize the application of our novel Kalman model with an incorporated expectation maximization step to allow adaptive learning of model parameters with changing respiratory observations. A comparison is made with a popular total least squares (PCA) based approach. It is demonstrated that in the presence of noisy observations the Kalman framework outperforms the static PCA model, however, both methods correct for respiratory motion in the computational anthropomorphic phantom to < 2mm. Motion correction performed on 3 dynamic MRI patient datasets using the Kalman model results in correction of respiratory motion to ≍ 3mm.

  15. Neurons compute internal models of the physical laws of motion.

    PubMed

    Angelaki, Dora E; Shaikh, Aasef G; Green, Andrea M; Dickman, J David

    2004-07-29

    A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion. PMID:15282606

  16. Motion dominance in binocular rivalry depends on extraretinal motions.

    PubMed

    Nakayama, Ryohei; Motoyoshi, Isamu; Sato, Takao

    2016-01-01

    In binocular rivalry, moving stimulus is dominant over stationary stimulus. This is called motion dominance. The motion here is usually a motion defined on the retina (retinal motion). However, motion can be defined in several different coordinates. It can be defined with respect to objects in the background (object-based motion) or to observers' head or body (spatiotopic motion), as well as to the retinal coordinate. In this study, we examined the role of motions defined by these three coordinates. A dichoptic pair of gratings was presented to create a binocular rivalry, one of which was moving and the other stationary. A fixation point and a reference background were either moving with the grating or stationary, depending on the condition. Different combinations of the three types of motions were created by having the observer track the fixation point or the background when they are moving. It was found that the retinal motion does not necessarily yield motion dominance, and that the motion dominance is determined by the combination of motions defined by different coordinate systems. PMID:26943347

  17. A Study of Brownian Motion Using Light Scattering

    ERIC Educational Resources Information Center

    Clark, Noel A.; And Others

    1970-01-01

    Presents an advanced laboratory experiment and lecture demonstration by which the intensity spectrum of light scattered by a suspension of particles in a fluid can be studied. From this spectrum, it is possible to obtain quantitative information about the motion of the particles, including an accurate determination of their diffusion constant.…

  18. Towards hybrid bronchoscope tracking under respiratory motion: evaluation on a dynamic motion phantom

    NASA Astrophysics Data System (ADS)

    Luo, Xiongbiao; Feuerstein, Marco; Sugiura, Takamasa; Kitasaka, Takayuki; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori; Mori, Kensaku

    2010-02-01

    This paper presents a hybrid camera tracking method that uses electromagnetic (EM) tracking and intensitybased image registration and its evaluation on a dynamic motion phantom. As respiratory motion can significantly affect rigid registration of the EM tracking and CT coordinate systems, a standard tracking approach that initializes intensity-based image registration with absolute pose data acquired by EM tracking will fail when the initial camera pose is too far from the actual pose. We here propose two new schemes to address this problem. Both of these schemes intelligently combine absolute pose data from EM tracking with relative motion data combined from EM tracking and intensity-based image registration. These schemes significantly improve the overall camera tracking performance. We constructed a dynamic phantom simulating the respiratory motion of the airways to evaluate these schemes. Our experimental results demonstrate that these schemes can track a bronchoscope more accurately and robustly than our previously proposed method even when maximum simulated respiratory motion reaches 24 mm.

  19. Force and motion control of a constrained flexible manipulator

    NASA Astrophysics Data System (ADS)

    Hu, Fon-Lin

    1992-01-01

    This dissertation reports the results of a comprehensive research study on the combined joint motion control, vibration control, and force control of a constrained rigid-flexible robot arm. An efficient and accurate approach to modeling for controller design is provided. Both regulation and tracking problems are considered, and a modified version of a Corless-Leitmann controller is developed. Experimental studies, which demonstrate the effectiveness of the proposed methods, are presented. In this work, the dynamic modeling of a constrained spherical coordinate robot arm, whose last link is very flexible, is studied for the purpose of combined force and motion control. The model is derived using a consistent modeling procedure which accounts for the axial force effects due to contract, and the coupling due to the effects of flexible motions on the rigid body motions. These effects are shown to be important in the prediction of the vibration frequencies. Galerkin's method is employed for spatial discretization of the flexible link deflections. A convergence study is presented to evaluate the appropriateness of the spatial approximating functions and to determine the number of modes required for obtaining accurate simulation results. Linear control design methods are shown to be adequate for solving the problem of hybrid force and position regulation for the constrained flexible robot arm. However, nonlinear control strategies show advantages (i.e., good response of the joint motion and contact force, and small magnitude of the structural vibration) in the tracking control of motion and force. A modified Corless-Leitmann controller is presented to enhance the control of the flexible motion using only joint actuators. Finally, an experimental implementation is used to validate the proposed controller designs, to assess the merit of measuring and feeding back the flexible motion and the contact force, and to evaluate the feasibility of combined force and motion control

  20. The use of dual vacuum stabilization device to reduce kidney motion for stereotactic radiotherapy planning.

    PubMed

    Pham, Daniel; Kron, Tomas; Styles, Colin; Whitaker, May; Bressel, Mathias; Foroudi, Farshad; Schneider, Michal; Devereux, Thomas; Dang, Kim; Siva, Shankar

    2015-04-01

    Abdominal stereotactic ablative body radiotherapy is aided by motion management strategies to ensure accurate dose delivery as targets such as the kidney are easily influenced by breathing motion. Commercial devices such as compression plates and dual vacuum technology have been demonstrated to reduce the motion of lung and liver tumors. The aim of this study was to evaluate the effectiveness of a dual vacuum system in reducing kidney motion as well to investigate any relationship between abdominal wall motions with kidney motion. Ten healthy volunteers were set up with and without vacuum compression (Elekta BodyFIX(TM)) to simulate free and dampened breathing. Ultrasound imaging was used to visualize kidney motion at the same time an abdominal surface marker was monitored using infrared imaging (Varian, Real Time Position Management). The resulting kidney and abdominal motion tracks were imported into motion analysis (Physmo(TM)) and custom built software (Matlab) to calculate amplitude of motion independent of shifting baselines. Thirty-four kidney datasets were available for analysis, with six datasets unable to be retrieved. With vacuum compression six out of nine participants showed a mean reduction of kidney motion ranging between 1.6 and 8 mm (p < 0.050). One participant showed an increase in motion of 8.2 mm (p < 0.001) with vacuum compression. Two participants showed no significant change (<1 mm) in kidney motion. No relationship was observed for abdominal wall motion and motion changes in the left kidney (r = 0.345, p = 0.402) or right kidney (r = 0.527, p = 0.145). Vacuum compression reduced kidney motion in the majority of participants; however larger breathing motion can also result from its use. No pattern emerged regarding which patients may benefit from vacuum immobilization as abdominal wall motion was not found to be an adequate surrogate for kidney motion. PMID:24502551

  1. Human action recognition by extracting motion trajectories

    NASA Astrophysics Data System (ADS)

    Fu, Yuwen; Yang, Shangpeng

    2015-07-01

    This paper proposes a novel human action recognition framework named Hidden Markov Model (HMM) based Hybrid Event Probability Sequence (HEPS), which can recognize unlabeled actions from videos. First, motion trajectories are effectively extracted using the centers of moving objects. Secondly, the HEPS is constructed using the trajectories and represents different human actions. Finally, the improved Particle Swarm Optimization (PSO) with inertia weight is introduced to recognize human actions using HMM. The proposed methods are evaluated on UCF Human Action Dataset and achieve 76.67% accurate rate. The comparative experiments results demonstrate that the HMM got superior results with HEPS and PSO.

  2. A rigid motion correction method for helical computed tomography (CT)

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Nuyts, J.; Kyme, A.; Kuncic, Z.; Fulton, R.

    2015-03-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data.

  3. Adaptive motion mapping in pancreatic SBRT patients using Fourier transforms

    PubMed Central

    Jones, Bernard L.; Schefter, Tracey; Miften, Moyed

    2015-01-01

    Background and Purpose Recent studies suggest that 4DCT is unable to accurately measure respiratory-induced pancreatic tumor motion. In this work, we assessed the daily motion of pancreatic tumors treated with SBRT, and developed adaptive strategies to predict and account for this motion. Materials and Methods The daily motion trajectory of pancreatic tumors during CBCT acquisition was calculated using a model which reconstructs the instantaneous 3D position in each 2D CBCT projection image. We developed a metric (termed “Spectral Coherence,” SC) based on the Fourier frequency spectrum of motion in the SI direction, and analyzed the ability of SC to predict motion-based errors and classify patients according to motion characteristics. Results The amplitude of daily motion exceeded the predictions of pre-treatment 4DCT imaging by an average of 3.0 mm, 2.3 mm, and 3.5 mm in the AP/LR/SI directions. SC was correlated with daily motion differences and tumor dose coverage. In a simulated adaptive protocol, target margins were adjusted based on SC, resulting in significant increases in mean target D95, D99, and minimum dose. Conclusions Our Fourier-based approach differentiates between consistent and inconsistent motion characteristics of respiration and correlates with daily motion deviations from pre-treatment 4DCT. The feasibility of an SC-based adaptive protocol was demonstrated, and this patient-specific respiratory information was used to improve target dosimetry by expanding coverage in inconsistent breathers while shrinking treatment volumes in consistent breathers. PMID:25890573

  4. Moving object detection using motion field constraint with observer motion parameter

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroki; Ebine, Takumi; Hamada, Nozomu

    1999-10-01

    In this paper we propose a method for detecting moving objects in image sequence observed from a moving platform using optical flow. This problem is difficult because moving observer (i.e. camera) causes apparent motion in the image even for stationary environment. The method can be applied to many situations, such as a robot vision and an obstacle detection for an autonomous vehicle system. We assume that observer motion parameter (translation and rotation) is known and image system is modeled by perspective projection. For the problem, some methods have been proposed, in which the complex logarithm mapping, the estimation of Focus of Expansion and the depth of objects are used. For a given motion parameter of camera, we can formulate motion field constraint (MFC) in the image plane which is satisfied by the relative movement of stationary environment against camera motion. On the other hand, the motion vector in the image plane, which is called motion field, is estimated by the well-known optical flow constraint (OFC). Our main idea is to use the difference between two estimation results. One is the solution of minimizing least squared OFC subjected with MFC, and the other is the solution of that without MFC. For the stationary environment region, the difference between two is small and the difference tends to be large at the moving region. Therefore, the suitable criterion for these values will separate two regions precisely. In our study, two criteria are proposed and are investigated. One criterion uses squared residual of OFC with and without MFC. Another criterion uses directional error between two solutions. The validity of our method is shown through some examples, and the obtained results show the latter criterion gives more accurate estimation than the former one.

  5. Scalable sensing electronics towards a motion capture suit

    NASA Astrophysics Data System (ADS)

    Xu, Daniel; Gisby, Todd A.; Xie, Shane; Anderson, Iain A.

    2013-04-01

    Being able to accurately record body motion allows complex movements to be characterised and studied. This is especially important in the film or sport coaching industry. Unfortunately, the human body has over 600 skeletal muscles, giving rise to multiple degrees of freedom. In order to accurately capture motion such as hand gestures, elbow or knee flexion and extension, vast numbers of sensors are required. Dielectric elastomer (DE) sensors are an emerging class of electroactive polymer (EAP) that is soft, lightweight and compliant. These characteristics are ideal for a motion capture suit. One challenge is to design sensing electronics that can simultaneously measure multiple sensors. This paper describes a scalable capacitive sensing device that can measure up to 8 different sensors with an update rate of 20Hz.

  6. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  7. On a PCA-based lung motion model

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A.; Jiang, Steve B.

    2011-09-01

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  8. Automated motion correction based on target tracking for dynamic nuclear medicine studies

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Tetrault, Tracy; Fahey, Fred; Treves, Ted

    2008-03-01

    Nuclear medicine dynamic studies of kidneys, bladder and stomach are important diagnostic tools. Accurate generation of time-activity curves from regions of interest (ROIs) requires that the patient remains motionless for the duration of the study. This is not always possible since some dynamic studies may last from several minutes to one hour. Several motion correction solutions have been explored. Motion correction using external point sources is inconvenient and not accurate especially when motion results from breathing, organ motion or feeding rather than from body motion alone. Centroid-based motion correction assumes that activity distribution is only inside the single organ (without background) and uniform, but this approach is impractical in most clinical studies. In this paper, we present a novel technique of motion correction that first tracks the organ of interest in a dynamic series then aligns the organ. The implementation algorithm for target tracking-based motion correction consists of image preprocessing, target detection, target positioning, motion estimation and prediction, tracking (new search region generation) and target alignment. The targeted organ is tracked from the first frame to the last one in the dynamic series to generate a moving trajectory of the organ. Motion correction is implemented by aligning the organ ROIs in the image series to the location of the organ in the first image. The proposed method of motion correction has been applied to several dynamic nuclear medicine studies including radionuclide cystography, dynamic renal scintigraphy, diuretic renography and gastric emptying scintigraphy.

  9. Long Trajectory for the Development of Sensitivity to Global and Biological Motion

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2011-01-01

    We used a staircase procedure to test sensitivity to (1) global motion in random-dot kinematograms moving at 4 degrees and 18 degrees s[superscript -1] and (2) biological motion. Thresholds were defined as (1) the minimum percentage of signal dots (i.e. the maximum percentage of noise dots) necessary for accurate discrimination of upward versus…

  10. Computational Motion Phantoms and Statistical Models of Respiratory Motion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Klinder, Tobias; Lorenz, Cristian

    Breathing motion is not a robust and 100 % reproducible process, and inter- and intra-fractional motion variations form an important problem in radiotherapy of the thorax and upper abdomen. A widespread consensus nowadays exists that it would be useful to use prior knowledge about respiratory organ motion and its variability to improve radiotherapy planning and treatment delivery. This chapter discusses two different approaches to model the variability of respiratory motion. In the first part, we review computational motion phantoms, i.e. computerized anatomical and physiological models. Computational phantoms are excellent tools to simulate and investigate the effects of organ motion in radiation therapy and to gain insight into methods for motion management. The second part of this chapter discusses statistical modeling techniques to describe the breathing motion and its variability in a population of 4D images. Population-based models can be generated from repeatedly acquired 4D images of the same patient (intra-patient models) and from 4D images of different patients (inter-patient models). The generation of those models is explained and possible applications of those models for motion prediction in radiotherapy are exemplified. Computational models of respiratory motion and motion variability have numerous applications in radiation therapy, e.g. to understand motion effects in simulation studies, to develop and evaluate treatment strategies or to introduce prior knowledge into the patient-specific treatment planning.

  11. A highly accurate interatomic potential for argon

    NASA Astrophysics Data System (ADS)

    Aziz, Ronald A.

    1993-09-01

    A modified potential based on the individually damped model of Douketis, Scoles, Marchetti, Zen, and Thakkar [J. Chem. Phys. 76, 3057 (1982)] is presented which fits, within experimental error, the accurate ultraviolet (UV) vibration-rotation spectrum of argon determined by UV laser absorption spectroscopy by Herman, LaRocque, and Stoicheff [J. Chem. Phys. 89, 4535 (1988)]. Other literature potentials fail to do so. The potential also is shown to predict a large number of other properties and is probably the most accurate characterization of the argon interaction constructed to date.

  12. Motion restraining device

    NASA Technical Reports Server (NTRS)

    Ford, A. G. (Inventor)

    1977-01-01

    A motion-restraining device for dissipating at a controlled rate the force of a moving body is discussed. The device is characterized by a drive shaft adapted to be driven in rotation by a moving body connected to a tape wound about a reel mounted on the drive shaft, and an elongated pitman link having one end pivotally connected to the crankshaft and the opposite end thereof connected with the mass through an energy dissipating linkage. A shuttle is disposed within a slot and guided by rectilinear motion between a pair of spaced impact surfaces. Reaction forces applied at impact of the shuttle with the impact surfaces include oppositely projected force components angularly related to the direction of the applied impact forces.

  13. Visible Motion Blur

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)

    2014-01-01

    A method of measuring motion blur is disclosed comprising obtaining a moving edge temporal profile r(sub 1)(k) of an image of a high-contrast moving edge, calculating the masked local contrast m(sub1)(k) for r(sub 1)(k) and the masked local contrast m(sub 2)(k) for an ideal step edge waveform r(sub 2)(k) with the same amplitude as r(sub 1)(k), and calculating the measure or motion blur Psi as a difference function, The masked local contrasts are calculated using a set of convolution kernels scaled to simulate the performance of the human visual system, and Psi is measured in units of just-noticeable differences.

  14. Relativistic Motion in Quasars

    NASA Astrophysics Data System (ADS)

    Cohen, M. H.

    1986-02-01

    This is a summary of an article which will appear in "Highlights of Modern Astrophysics" (Cohen, 1985). The majority of strong core-dominated radio sources show superluminal motion and rapid variations in flux density. Some of them also have X-rays which are weaker than the amount predicted by the inverse-Compton effect. All these characteristics can be explained by rela tivistic motion. The superluminal motion and the unusual rapidity of the variations are kinematic effects. The radiating source nearly keeps up with its own radiation, with a consequent reduction in time scales. The weak X-rays are an artifact introduced when the inverse-Compton cal culation is based on the spectrum measured in the terrestrial coordinate system. When allowance is made for motion towards the observer,the measurements give a lower limit to the Doppler factor of the moving source. The common model uses a narrow jet pointed at angle θ to the line of sight, and carrying luminous blobs moving at Lorentz factor y. This model can explain all the above effects, and also the common core-jet radio morphology. Application of the model gives values of y between 5 and 10, and values of θ less than 200. The Doppler effect boosts t e flux density of those jets which are pointed nearly at us. The strong sources we see must therefore form a small subset of a large population of sources most of which are misdi rected and weak. It is likely that the parent population consists of the "classical double" quasars. Nearly all of the superluminal sources have low surface brightness halos, which could be the outer double radio lobes seen end-on.

  15. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  16. The Importance of Stimulus Noise Analysis for Self-Motion Studies

    PubMed Central

    Nesti, Alessandro; Beykirch, Karl A.; MacNeilage, Paul R.; Barnett-Cowan, Michael; Bülthoff, Heinrich H.

    2014-01-01

    Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator’s inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception. PMID:24755871

  17. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  18. Tethered body problems and relative motion orbit determination

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.; Wolf, H.

    1972-01-01

    Selected problems dealing with orbiting tethered body systems have been studied. In addition, a relative motion orbit determination program was developed. Results from these tasks are described and discussed. The expected tethered body motions were examined, analytically, to ascertain what influence would be played by the physical parameters of the tether, the gravity gradient and orbit eccentricity. After separating the motion modes these influences were determined; and, subsequently, the effects of oscillations and/or rotations, on tether force, were described. A study was undertaken, by examining tether motions, to see what type of control actions would be needed to accurately place a mass particle at a prescribed position relative to a main vehicle. Other applications for tethers were studied. Principally these were concerned with the producing of low-level gee forces by means of stabilized tether configurations; and, the initiation of free transfer trajectories from tether supported vehicle relative positions.

  19. Control of joint motion simulators for biomechanical research

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.

    1992-01-01

    The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.

  20. Roll motion analysis of deepwater pipelay crane vessel

    NASA Astrophysics Data System (ADS)

    You, Dandan; Sun, Liping; Qu, Zhiguo; Wang, Tao

    2013-12-01

    For a large floating vessel in waves, radiation damping is not an accurate prediction of the degree of roll unlike other degrees of freedom motion. Therefore, to get the knowledge of roll motion performance of deepwater pipelay crane vessels and to keep the vessel working safety, the paper presents the relationship between a series of dimensionless roll damping coefficients and the roll response amplitude operator (RAO). By using two kinds of empirical data, the roll damping is estimated in the calculation flow. After getting the roll damping coefficient from the model test, a prediction of roll motion in regular waves is evaluated. According to the wave condition in the working region, short term statistics of roll motion are presented under different wave parameters. Moreover, the relationship between the maximal roll response level to peak spectral wave period and the roll damping coefficient is investigated. Results may provide some reference to design and improve this kind of vessel.

  1. Tangle-Free Finite Element Mesh Motion for Ablation Problems

    NASA Technical Reports Server (NTRS)

    Droba, Justin

    2016-01-01

    Mesh motion is the process by which a computational domain is updated in time to reflect physical changes in the material the domain represents. Such a technique is needed in the study of the thermal response of ablative materials, which erode when strong heating is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic or biharmonic system whose sole purpose is to update mesh node locations in response to altering boundary heating. Simple mesh motion algorithms rely on boundary surface normals. In such schemes, evolution in time will eventually cause the mesh to intersect and "tangle" with itself, causing failure. Furthermore, such schemes are greatly limited in the problems geometries on which they will be successful. This paper presents a comprehensive and sophisticated scheme that tailors the directions of motion based on context. By choosing directions for each node smartly, the inevitable tangle can be completely avoided and mesh motion on complex geometries can be modeled accurately.

  2. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  3. Receptive fields for smooth pursuit eye movements and motion perception.

    PubMed

    Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R

    2010-12-01

    Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). PMID:20932990

  4. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-02-01

    , Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 Nobelprize.org [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  5. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  6. Nonlinear, nonlaminar - 3D computation of electron motion through the output cavity of a klystron.

    NASA Technical Reports Server (NTRS)

    Albers, L. U.; Kosmahl, H. G.

    1971-01-01

    The accurate computation is discussed of electron motion throughout the output cavity of a klystron amplifier. The assumptions are defined whereon the computation is based, and the equations of motion are reviewed, along with the space charge fields derived from a Green's function potential of a solid cylinder. The integration process is then examined with special attention to its most difficult and important aspect - namely, the accurate treatment of the dynamic effect of space charge forces on the motion of individual cell rings of equal volume and charge. The correct treatment is demonstrated upon four specific examples, and a few comments are given on the results obtained.-

  7. Aberration in proper motions for Galactic stars

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Xie, Y.; Zhu, Z.

    2014-12-01

    Accelerations of both the solar system barycenter (SSB) and stars in the MilkyWay cause a systematic observational effect on the stellar proper motions, which was first studied by J. Kovalevsky (2003). This paper intends to extend that work and aims to estimate the magnitude and significance of the aberration in proper motions of stars, especially in the region near the Galactic center (GC). We adopt two models for the Galactic rotation curve to evaluate the aberrational effect on the Galactic plane. We show that the effect of aberration in proper motions depends on the galactocentric distance of stars; it is dominated by the acceleration of stars in the central region of the Galaxy. Then we investigate the applicability of the theoretical expressions: if the orbital period of stars is only a fraction of the light time from the star to the SSB, the expression with approximation proposed by Kovalevsky is not appropriate. With a more suitable formulation, we found that the aberration has no effect on the determination of the stellar orbits on the celestial sphere. In the future this aberrational effect under consideration should be considered with high-accurate astrometry, particularly in constructing the Gaia celestial reference system realized by Galactic stars.

  8. Local form interference in biological motion perception.

    PubMed

    Kerr-Gaffney, Jess E; Hunt, Amelia R; Pilz, Karin S

    2016-07-01

    Replacing the local dots of point-light walkers with complex images leads to significant detriments to performance in biological motion detection and discrimination tasks. This detriment has previously been shown to be larger when the local elements match the global shape in object category and facing direction. In contrast, studies using Navon stimuli have demonstrated that local interference on global processing primarily occurs when local elements are dissimilar to the global form. In 3 experiments, we investigated this contradiction by replacing the local dots of a point-light walker with human images or stick figures. Participants were significantly faster and more accurate at discriminating the facing and walking direction of a walker when the local images were facing in the same direction as the global walker than when they were facing in the opposite direction. These results provide support for the idea that organization of biological motion depends on allocation of limited processing resources to the global motion information when the local elements are complex. However, there is more disruption to global form processing when the local elements and global form conflict in task-related properties. PMID:27016343

  9. A model for the pilot's use of motion cues in roll-axis tracking tasks

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.

    1977-01-01

    Simulated target-following and disturbance-regulation tasks were explored with subjects using visual-only and combined visual and motion cues. The effects of motion cues on task performance and pilot response behavior were appreciably different for the two task configurations and were consistent with data reported in earlier studies for similar task configurations. The optimal-control model for pilot/vehicle systems provided a task-independent framework for accounting for the pilot's use of motion cues. Specifically, the availability of motion cues was modeled by augmenting the set of perceptual variables to include position, rate, acceleration, and accleration-rate of the motion simulator, and results were consistent with the hypothesis of attention-sharing between visual and motion variables. This straightforward informational model allowed accurate model predictions of the effects of motion cues on a variety of response measures for both the target-following and disturbance-regulation tasks.

  10. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    SciTech Connect

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van

    2013-10-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV{sub max}) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV{sub max} up to 25% and reduce the diameter of the 50% SUV{sub max} volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions.

  11. Feedback about more accurate versus less accurate trials: differential effects on self-confidence and activation.

    PubMed

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-06-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected byfeedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On day 1, participants performed a golf putting task under one of two conditions: one group received feedback on the most accurate trials, whereas another group received feedback on the least accurate trials. On day 2, participants completed an anxiety questionnaire and performed a retention test. Shin conductance level, as a measure of arousal, was determined. The results indicated that feedback about more accurate trials resulted in more effective learning as well as increased self-confidence. Also, activation was a predictor of performance. PMID:22808705

  12. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  13. Accurate colorimetric feedback for RGB LED clusters

    NASA Astrophysics Data System (ADS)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  14. Accurate mask model for advanced nodes

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle

    2014-07-01

    Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.

  15. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  16. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  17. Accurate modeling of parallel scientific computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Townsend, James C.

    1988-01-01

    Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.

  18. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  19. The vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Hosein, Todd

    1988-01-01

    Today's flight simulators, such as NASA's multimillion dollar Vertical Motion Simulator (VMS), recreate an authentic aircraft environment, and reproduce the sensations of flight by mechanically generating true physical events. In addition to their application as a training tool for pilots, simulators have become essential in the design, construction, and testing of new aircraft. Simulators allow engineers to study an aircraft's flight performance and characteristics without the cost or risk of an actual test flight. Because of their practicality, simulators will become more and more important in the development and design of new, safer aircraft.

  20. Motion analysis report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  1. Space motion sickness

    NASA Technical Reports Server (NTRS)

    Vanderploeg, J. M.; Stewart, D. F.; Davis, J. R.

    1986-01-01

    Space motion sickness clinical characteristics, time course, prediction of susceptibility, and effectiveness of countermeasures were evaluated. Although there is wide individual variability, there appear to be typical patterns of symptom development. The duration of symptoms ranges from several hours to four days with the majority of individuals being symptom free by the end of third day. The etiology of this malady remains uncertain but evidence points to reinterpretation of otolith inputs as being a key factor in the response of the neurovestibular system. Prediction of susceptibility and severity remains unsatisfactory. Countermeasures tried include medications, preflight adaptation, and autogenic feedback training. No countermeasure is entirely successful in eliminating or alleviating symptoms.

  2. New Algorithm for Extracting Motion Information from PROPELLER Data and Head Motion Correction in T1-Weighted MRI.

    PubMed

    Feng, Yanqiu; Chen, Wufan

    2005-01-01

    PROPELLER (Periodically Rotated Overlapping ParallEl Lines with Enhanced Reconstruction) MRI, proposed by J. G. Pipe [1], offers a novel and effective means for compensating motion. For the reconstruction of PROPLLER data, algorithms to reliably and accurately extract inter-strip motion from data in central overlapped area are crucial to motion artifacts suppression. When implemented on T1-weighted MR data, the reconstruction algorithm, with motion estimated by registration based on maximizing correlation energy in frequency domain (CF), produces images with low quality due to the inaccurate estimation of motion. In this paper, a new algorithm is proposed for motion estimation based on the registration by maximizing mutual information in spatial domain (MIS). Furthermore, the optimization process is initialized by CF algorithm, so the algorithm is abbreviated as CF-MIS algorithm in this paper. With phantom and in vivo MR imaging, the CF-MIS algorithm was shown to be of higher accuracy in rotation estimation than CF algorithm. Consequently, the head motion in T1-weighted PROPELLER MRI was better corrected. PMID:17282454

  3. Effects of rotation motions on strong-motion data

    NASA Astrophysics Data System (ADS)

    Chiu, H. C.; Wu, F. J.; Lin, C. J.; Huang, H. C.; Liu, C. C.

    2012-10-01

    Rotation motion and its effects on strong-motion data, in most cases, are much smaller than that of translational motion and have been ignored in most analyses of strong-motion data. However, recent observations from near-fault and/or extreme large ground motions suggest that these effects might be underestimated and quantitative analyses seem to be necessary for improving our understating of these effects. Rotation motion-related effects include centrifugal acceleration, the effects of gravity and effects of the rotation frame. Detailed analyses of these effects based on the observed data are unavailable in the literature. In this study, we develop a numerical algorithm for estimating the effects of rotational motion on the strong-motion data using a set of six-component ground motions and apply it to a set of rotation rate-strong motion velocity data. The data were recorded during a magnitude 6.9 earthquake. The peak value of the derived acceleration and rotation rate of this dataset are about 186 cm/s/s and 0.0026 rad/s. Numerical analyses of data gives time histories of these rotational motion-related effects. Our results show that all the rotation angles are less than 0.01°. The maximum centrifugal acceleration, effect from gravity and effect of the rotation frame are about 0.03 and 0.14 cm/s/s, respectively. Both these two effects are much smaller than the peak acceleration 186 cm/s/s. This result might have been expected because our data are not near-field and wave motions are expected to be nearly plane waves. However, it is worth noticing that the centrifugal acceleration is underestimated and a small rotational effect can cause large waveform difference in acceleration data. The waveform difference before and after the correction for rotational motion can reach 16 cm/s/s (about 10 %).

  4. Role of orientation reference selection in motion sickness

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1992-01-01

    The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness

  5. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  6. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-10-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  7. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models. PMID:27111139

  8. Accurate Molecular Polarizabilities Based on Continuum Electrostatics

    PubMed Central

    Truchon, Jean-François; Nicholls, Anthony; Iftimie, Radu I.; Roux, Benoît; Bayly, Christopher I.

    2013-01-01

    A novel approach for representing the intramolecular polarizability as a continuum dielectric is introduced to account for molecular electronic polarization. It is shown, using a finite-difference solution to the Poisson equation, that the Electronic Polarization from Internal Continuum (EPIC) model yields accurate gas-phase molecular polarizability tensors for a test set of 98 challenging molecules composed of heteroaromatics, alkanes and diatomics. The electronic polarization originates from a high intramolecular dielectric that produces polarizabilities consistent with B3LYP/aug-cc-pVTZ and experimental values when surrounded by vacuum dielectric. In contrast to other approaches to model electronic polarization, this simple model avoids the polarizability catastrophe and accurately calculates molecular anisotropy with the use of very few fitted parameters and without resorting to auxiliary sites or anisotropic atomic centers. On average, the unsigned error in the average polarizability and anisotropy compared to B3LYP are 2% and 5%, respectively. The correlation between the polarizability components from B3LYP and this approach lead to a R2 of 0.990 and a slope of 0.999. Even the F2 anisotropy, shown to be a difficult case for existing polarizability models, can be reproduced within 2% error. In addition to providing new parameters for a rapid method directly applicable to the calculation of polarizabilities, this work extends the widely used Poisson equation to areas where accurate molecular polarizabilities matter. PMID:23646034

  9. Accurate phase-shift velocimetry in rock

    NASA Astrophysics Data System (ADS)

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R.; Holmes, William M.

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  10. Motion compensation technique for wide beam synthetic aperture sonar

    NASA Astrophysics Data System (ADS)

    Fernandez, Jose E.; Cook, Daniel A.; Christoff, James T.

    2002-05-01

    Optimal performance of synthetic aperture sonar (SAS) systems requires accurate motion and medium compensation. Any uncorrected deviations from those assumed during the SAS beam formation process can degrade the beam pattern of the SA in various ways (broadening and distortion of the main lobe, increased side lobes and grating lobes levels, etc.). These would manifest in the imagery in the form of degraded resolution, blurring, target ghosts, etc. An accurate technique capable of estimating motion and medium fluctuations has been developed. The concept is to adaptively track a small patch on the sea bottom, which is in the order of a resolution cell, by steering the SAS beam as the platform moves in its trajectory. Any path length differences to that patch (other than the quadratic function product of the steering process) will be due to relative displacements caused by motion and/or medium fluctuations and can be detected by cross-correlation methods. This technique has advantages over other data driven motion compensation techniques because it operates in a much higher signal-to-noise beam space domain. The wide beam motion compensation technique was implemented in MATLAB and its performance evaluated via simulations. An overview of the technique, simulation, and results obtained are presented.

  11. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  12. Waves in Motion

    NASA Astrophysics Data System (ADS)

    McGourty, L.; Rideout, K.

    2005-12-01

    "Waves in Motion" This teaching unit was created by Leslie McGourty and Ken Rideout under the Research Experience for Teachers (RET) program at MIT Haystack Observatory during the summer of 2005. The RET program is funded by a grant from the National Science Foundation. The goals of this teaching unit are to deepen students' understanding about waves, wave motion, and the electromagnetic spectrum as a whole. Specifically students will comprehend the role radio waves play in our daily lives and in the investigation of the universe. The lessons can be used in a high school physics, earth science or astronomy curriculum. The unit consists of a series of interlocking lectures, activities, and investigations that can be used as stand alone units to supplement a teacher's existing curriculum, as an independent investigation for a student, or as a long exploration into radio astronomy with a theme of waves in space: how and where they carry their information. Special emphasis is given to the Relativity theories in honor of the "World Year of Physics" to celebrate Einstein's 1905 contributions. The lessons are currently being implemented at the high school level, the preliminary results of which will be presented. At the end of the academic year, the units will be evaluated and updated, reflecting student input and peer review after which they will be posted on the internet for teachers to use in their classrooms.

  13. Stochastic blind motion deblurring.

    PubMed

    Xiao, Lei; Gregson, James; Heide, Felix; Heidrich, Wolfgang

    2015-10-01

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can, therefore, only be obtained with the help of prior information in the form of (often nonconvex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with Peak Signal-to-Noise Ratio (PSNR) values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms. PMID:25974941

  14. Tiling Motion Patches.

    PubMed

    Hyun, Kyunglyul; Kim, Manmyung; Hwang, Youngseok; Lee, Jehee

    2013-05-01

    Simulating multiple character interaction is challenging because character actions must be carefully coordinated to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting with each other in a non-trivial manner. Our tiling algorithm uses a combination of stochastic sampling and deterministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made it possible to automatically generate highly-complex animation of multiple interacting characters. We achieved the level of complexity far beyond the current state-of-the-art animation techniques could generate, in terms of the diversity of human behaviors and the spatial/temporal density of interpersonal interactions. PMID:23669532

  15. Tiling motion patches.

    PubMed

    Hyun, Kyunglyul; Kim, Manmyung; Hwang, Youngseok; Lee, Jehee

    2013-11-01

    Simulating multiple character interaction is challenging because character actions must be carefully coordinated to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting with each other in a nontrivial manner. Our tiling algorithm uses a combination of stochastic sampling and deterministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made it possible to automatically generate highly complex animation of multiple interacting characters. We achieve the level of interaction complexity far beyond the current state of the art that animation techniques could generate, in terms of the diversity of human behaviors and the spatial/temporal density of interpersonal interactions. PMID:24029911

  16. Integrated Reproduction of Human Motion Components by Motion Copying System

    NASA Astrophysics Data System (ADS)

    Tsunashima, Noboru; Katsura, Seiichiro

    Currently, the development of leading-edge technology for recording and loading human motion on the basis of haptic information is required in the field of manufacturing and human support. Human movement is an assembly of motion components. Since human movements should be supported by a robot in real time, it is necessary to integrate the morion components, which were saved earlier. Once such motion integration is realized, future technology for use in daily human life is developed. This paper proposes the integrated reproduction of the decomposed components of human motion by using a motion copying system. This system is the key technology for the realization of the acquisition, saving and reproduction of the real-world haptic information. By the proposed method, it is possible not only to achieve expert skill acquisition, skill transfer to robots, and power assist for each motion component but also to open up new areas of applications.

  17. Vection and induced visual motion

    NASA Astrophysics Data System (ADS)

    Howard, Ian P.

    1991-12-01

    When exposed to a large moving visual display, a person experiences illusory self motion (vection). Specialized devices were used to investigate the relation between illusory visual motion of stationary objects and illusory self motion induced by motion of a visual scene. In a first set of experiments, two distinct components of induced visual motion were measured: exocentric induced motion which causes a stationary object to appear to move with the self, and egocentric induced motion which causes an object to seem to move relative to the self. Another set of experiments was designed to reveal the extent to which vection depends on the presence of stationary objects in the field of view and to explore what types of relative motion between the moving display and the stationary objects most strongly induce vection. It was observed that when all stationary objects were removed, vection had a long latency and was very weak when it occurred. A third set of experiments was designed to reveal the extent to which illusory body tilt induced by viewing a tilted or rotating scene depends on the motion of a visual stimulus and on the geometrical features of the stimulus. The results reveal the relative contributions of visual polarity and visual motion to illusory body tilt and the extent to which visual stimuli can override conflicting stimuli arising from the otolith organs.

  18. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Rupert, A. H.; Reschke, M. F.; Harm, D. L.; Guedry, F. E.

    2007-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  19. Joint model of motion and anatomy for PET image reconstruction

    SciTech Connect

    Qiao Feng; Pan Tinsu; Clark, John W. Jr.; Mawlawi, Osama

    2007-12-15

    Anatomy-based positron emission tomography (PET) image enhancement techniques have been shown to have the potential for improving PET image quality. However, these techniques assume an accurate alignment between the anatomical and the functional images, which is not always valid when imaging the chest due to respiratory motion. In this article, we present a joint model of both motion and anatomical information by integrating a motion-incorporated PET imaging system model with an anatomy-based maximum a posteriori image reconstruction algorithm. The mismatched anatomical information due to motion can thus be effectively utilized through this joint model. A computer simulation and a phantom study were conducted to assess the efficacy of the joint model, whereby motion and anatomical information were either modeled separately or combined. The reconstructed images in each case were compared to corresponding reference images obtained using a quadratic image prior based maximum a posteriori reconstruction algorithm for quantitative accuracy. Results of these studies indicated that while modeling anatomical information or motion alone improved the PET image quantitation accuracy, a larger improvement in accuracy was achieved when using the joint model. In the computer simulation study and using similar image noise levels, the improvement in quantitation accuracy compared to the reference images was 5.3% and 19.8% when using anatomical or motion information alone, respectively, and 35.5% when using the joint model. In the phantom study, these results were 5.6%, 5.8%, and 19.8%, respectively. These results suggest that motion compensation is important in order to effectively utilize anatomical information in chest imaging using PET. The joint motion-anatomy model presented in this paper provides a promising solution to this problem.

  20. Fast restoration approach for motion blurred image based on deconvolution under the blurring paths

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Song, Jie; Hua, Xia

    2015-12-01

    For the real-time motion deblurring, it is of utmost importance to get a higher processing speed with about the same image quality. This paper presents a fast Richardson-Lucy motion deblurring approach to remove motion blur which rotates blurred image under blurring paths. Hence, the computational time is reduced sharply by using one-dimensional Fast Fourier Transform in one-dimensional Richardson-Lucy method. In order to obtain accurate transformational results, interpolation method is incorporated to fetch the gray values. Experiment results demonstrate that the proposed approach is efficient and effective to reduce motion blur under the blur paths.

  1. 24 CFR 26.16 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Motions. 26.16 Section 26.16... PROCEDURES Hearings Before Hearing Officers Pleadings and Motions § 26.16 Motions. (a) Motions. Requests for... a motion. All motions from the commencement of the action until the issuance of a decision shall...

  2. 24 CFR 26.16 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Motions. 26.16 Section 26.16... PROCEDURES Hearings Before Hearing Officers Pleadings and Motions § 26.16 Motions. (a) Motions. Requests for... a motion. All motions from the commencement of the action until the issuance of a decision shall...

  3. 24 CFR 26.16 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Motions. 26.16 Section 26.16... PROCEDURES Hearings Before Hearing Officers Pleadings and Motions § 26.16 Motions. (a) Motions. Requests for... a motion. All motions from the commencement of the action until the issuance of a decision shall...

  4. 24 CFR 26.16 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Motions. 26.16 Section 26.16... PROCEDURES Hearings Before Hearing Officers Pleadings and Motions § 26.16 Motions. (a) Motions. Requests for... a motion. All motions from the commencement of the action until the issuance of a decision shall...

  5. 24 CFR 26.16 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Motions. 26.16 Section 26.16... PROCEDURES Hearings Before Hearing Officers Pleadings and Motions § 26.16 Motions. (a) Motions. Requests for... a motion. All motions from the commencement of the action until the issuance of a decision shall...

  6. How Accurate Are Transition States from Simulations of Enzymatic Reactions?

    PubMed Central

    2015-01-01

    The rate expression of traditional transition state theory (TST) assumes no recrossing of the transition state (TS) and thermal quasi-equilibrium between the ground state and the TS. Currently, it is not well understood to what extent these assumptions influence the nature of the activated complex obtained in traditional TST-based simulations of processes in the condensed phase in general and in enzymes in particular. Here we scrutinize these assumptions by characterizing the TSs for hydride transfer catalyzed by the enzyme Escherichia coli dihydrofolate reductase obtained using various simulation approaches. Specifically, we compare the TSs obtained with common TST-based methods and a dynamics-based method. Using a recently developed accurate hybrid quantum mechanics/molecular mechanics potential, we find that the TST-based and dynamics-based methods give considerably different TS ensembles. This discrepancy, which could be due equilibrium solvation effects and the nature of the reaction coordinate employed and its motion, raises major questions about how to interpret the TSs determined by common simulation methods. We conclude that further investigation is needed to characterize the impact of various TST assumptions on the TS phase-space ensemble and on the reaction kinetics. PMID:24860275

  7. Two Types of Motor Strategy for Accurate Dart Throwing

    PubMed Central

    Nasu, Daiki; Matsuo, Tomoyuki; Kadota, Koji

    2014-01-01

    This study investigated whether expert dart players utilize hand trajectory patterns that can compensate for the inherent variability in their release timing. In this study, we compared the timing error and hand trajectory patterns of expert players with those of novices. Eight experts and eight novices each made 60 dart throws, aiming at the bull’s-eye. The movements of the dart and index finger were captured using seven 480-Hz cameras. The data were interpolated using a cubic spline function and analyzed by the millisecond. The estimated vertical errors on the dartboard were calculated as a time-series by using the state variables of the index finger (position, velocity, and direction of motion). This time-series error represents the hand trajectory pattern. Two variables assessing the performance outcome in the vertical plane and two variables related to the timing control were quantified on the basis of the time-series error. The results revealed two typical types of motor strategies in the expert group. The timing error of some experts was similar to that of novices; however, these experts had a longer window of time in which to release an accurately thrown dart. These subjects selected hand trajectory patterns that could compensate for the timing error. Other experts did not select the complementary hand trajectories, but greatly reduced their error in release timing. PMID:24533102

  8. Deterministic Brownian Motion

    NASA Astrophysics Data System (ADS)

    Trefan, Gyorgy

    1993-01-01

    The goal of this thesis is to contribute to the ambitious program of the foundation of developing statistical physics using chaos. We build a deterministic model of Brownian motion and provide a microscopic derivation of the Fokker-Planck equation. Since the Brownian motion of a particle is the result of the competing processes of diffusion and dissipation, we create a model where both diffusion and dissipation originate from the same deterministic mechanism--the deterministic interaction of that particle with its environment. We show that standard diffusion which is the basis of the Fokker-Planck equation rests on the Central Limit Theorem, and, consequently, on the possibility of deriving it from a deterministic process with a quickly decaying correlation function. The sensitive dependence on initial conditions, one of the defining properties of chaos insures this rapid decay. We carefully address the problem of deriving dissipation from the interaction of a particle with a fully deterministic nonlinear bath, that we term the booster. We show that the solution of this problem essentially rests on the linear response of a booster to an external perturbation. This raises a long-standing problem concerned with Kubo's Linear Response Theory and the strong criticism against it by van Kampen. Kubo's theory is based on a perturbation treatment of the Liouville equation, which, in turn, is expected to be totally equivalent to a first-order perturbation treatment of single trajectories. Since the boosters are chaotic, and chaos is essential to generate diffusion, the single trajectories are highly unstable and do not respond linearly to weak external perturbation. We adopt chaotic maps as boosters of a Brownian particle, and therefore address the problem of the response of a chaotic booster to an external perturbation. We notice that a fully chaotic map is characterized by an invariant measure which is a continuous function of the control parameters of the map

  9. Tvashtar in Motion

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This five-frame sequence of New Horizons images captures the giant plume from Io's Tvashtar volcano. Snapped by the probe's Long Range Reconnaissance Imager (LORRI) as the spacecraft flew past Jupiter earlier this year, this first-ever 'movie' of an Io plume clearly shows motion in the cloud of volcanic debris, which extends 330 kilometers (200 miles) above the moon's surface. Only the upper part of the plume is visible from this vantage point -- the plume's source is 130 kilometers (80 miles) below the edge of Io's disk, on the far side of the moon.

    The appearance and motion of the plume is remarkably similar to an ornamental fountain on Earth, replicated on a gigantic scale. The knots and filaments that allow us to track the plume's motion are still mysterious, but this movie is likely to help scientists understand their origin, as well as provide unique information on the plume dynamics.

    Io's hyperactive nature is emphasized by the fact that two other volcanic plumes are also visible off the edge of Io's disk: Masubi at the 7 o'clock position, and a very faint plume, possibly from the volcano Zal, at the 10 o'clock position. Jupiter illuminates the night side of Io, and the most prominent feature visible on the disk is the dark horseshoe shape of the volcano Loki, likely an enormous lava lake. Boosaule Mons, which at 18 kilometers (11 miles) is the highest mountain on Io and one of the highest mountains in the solar system, pokes above the edge of the disk on the right side.

    The five images were obtained over an 8-minute span, with two minutes between frames, from 23:50 to 23:58 Universal Time on March 1, 2007. Io was 3.8 million kilometers (2.4 million miles) from New Horizons; the image is centered at Io coordinates 0 degrees north, 342 degrees west.

    The pictures were part of a sequence designed to look at Jupiter's rings, but planners included Io in the sequence because the moon was passing behind Jupiter's rings at the time.

  10. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity

  11. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  12. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  13. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  14. Are Kohn-Sham conductances accurate?

    PubMed

    Mera, H; Niquet, Y M

    2010-11-19

    We use Fermi-liquid relations to address the accuracy of conductances calculated from the single-particle states of exact Kohn-Sham (KS) density functional theory. We demonstrate a systematic failure of this procedure for the calculation of the conductance, and show how it originates from the lack of renormalization in the KS spectral function. In certain limits this failure can lead to a large overestimation of the true conductance. We also show, however, that the KS conductances can be accurate for single-channel molecular junctions and systems where direct Coulomb interactions are strongly dominant. PMID:21231333

  15. Accurate density functional thermochemistry for larger molecules.

    SciTech Connect

    Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.

    1997-06-20

    Density functional methods are combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. Seven different density functionals are assessed for the evaluation of heats of formation, Delta H 0 (298 K), for a test set of 40 molecules composed of H, C, O and N. The use of bond separation energies results in a dramatic improvement in the accuracy of all the density functionals. The B3-LYP functional has the smallest mean absolute deviation from experiment (1.5 kcal mol/f).

  16. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material. PMID:11366835

  17. Perturbed motion at small eccentricities

    NASA Astrophysics Data System (ADS)

    Emel'yanov, N. V.

    2015-09-01

    In the study of the motion of planets and moons, it is often necessary to have a simple approximate analytical motion model, which takes into account major perturbations and preserves almost the same accuracy at long time intervals. A precessing ellipse model is used for this purpose. In this paper, it is shown that for small eccentricities this model of the perturbed orbit does not correspond to body motion characteristics. There is perturbed circular motion with a constant zero mean anomaly. The corresponding solution satisfies the Lagrange equations with respect to Keplerian orbital elements. There are two families of solutions with libration and circulation changes in the mean anomaly close to this particular solution. The paper shows how the eccentricity and mean anomaly change in these solutions. Simple analytical models of the motion of the four closest moons of Jupiter consistent with available ephemerides are proposed, which in turn are obtained by the numerical integration of motion equations and are refined by observations.

  18. Confining collective motion

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis; Bricard, Antoine; Caussin, Jean-Baptiste; Savoie, Charles; Das, Debasish; Chepizhko, Oleskar; Peruani, Fernando; Saintillan, David

    2014-11-01

    It is well established that geometrical confinement have a significant impact on the structure and the flow properties of complex fluids. Prominent examples include the formation of topological defects in liquid crystals, and the flow instabilities of viscoelastic fluids in curved geometries. In striking contrast very little is known about the macroscopic behavior of confined active fluids. In this talk we show how to motorize plastic colloidal beads and turn them into self-propelled particles. Using microfluidic geometries we demonstrate how confinement impacts their collective motion. Combining quantitative experiments, analytical theory and numerical simulations we show how a population of motile bodies interacting via alignement and repulsive interactions self-organizes into a single heterogeneous macroscopic vortex that lives on the verge of a phase separation.

  19. Multivariate respiratory motion prediction

    NASA Astrophysics Data System (ADS)

    Dürichen, R.; Wissel, T.; Ernst, F.; Schlaefer, A.; Schweikard, A.

    2014-10-01

    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation.

  20. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  1. Managing space motion sickness.

    PubMed

    Jennings, R T

    1998-01-01

    Space motion sickness is a well-recognized problem for space flight and affects 73% of crewmembers on the first 2 or 3 days of their initial flight. Illness severity is variable, but over half of cases are categorized as moderate to severe. Management has included elimination of provocative activities and delay of critical performance-related procedures such as extra-vehicular activity (EVA) or Shuttle landing during the first three days of missions. Pharmacological treatment strategies have had variable results, but intramuscular promethazine has been the most effective to date with a 90% initial response rate and important reduction in residual symptoms the next flight day. Oral prophylactic treatment of crewmembers with difficulty on prior flights has had mixed results. In order to accommodate more aggressive pharmacologic management, crew medical officers receive additional training in parenteral administration of medications. Preflight medication testing is accomplished to reduce the risk of unexpected performance decrements or idiosyncratic reactions. When possible, treatment is offered in the presleep period to mask potential treatment-related drowsiness. Another phenomenon noted by crewmembers and physicians as flights have lengthened is readaptation difficulty or motion sickness on return to Earth. These problems have included nausea, vomiting, and difficulty with locomotion or coordination upon early exposure to gravity. Since landing and egress are principal concerns during this portion of the flight, these deficits are of operational concern. Postflight therapy has been directed at nausea and vomiting, and meclizine and promethazine are the principal agents used. There has been no official attempt at prophylactic treatment prior to entry. Since there is considerable individual variation in postflight deficit and since adaptation from prior flights seems to persist, it has been recommended that commanders with prior shuttle landing experience be named to

  2. Spectroscopically Accurate Line Lists for Application in Sulphur Chemistry

    NASA Astrophysics Data System (ADS)

    Underwood, D. S.; Azzam, A. A. A.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    Monitoring sulphur chemistry is thought to be of great importance for exoplanets. Doing this requires detailed knowledge of the spectroscopic properties of sulphur containing molecules such as hydrogen sulphide (H2S) [1], sulphur dioxide (SO2), and sulphur trioxide (SO3). Each of these molecules can be found in terrestrial environments, produced in volcano emissions on Earth, and analysis of their spectroscopic data can prove useful to the characterisation of exoplanets, as well as the study of planets in our own solar system, with both having a possible presence on Venus. A complete, high temperature list of line positions and intensities for H32 2 S is presented. The DVR3D program suite is used to calculate the bound ro-vibration energy levels, wavefunctions, and dipole transition intensities using Radau coordinates. The calculations are based on a newly determined, spectroscopically refined potential energy surface (PES) and a new, high accuracy, ab initio dipole moment surface (DMS). Tests show that the PES enables us to calculate the line positions accurately and the DMS gives satisfactory results for line intensities. Comparisons with experiment as well as with previous theoretical spectra will be presented. The results of this study will form an important addition to the databases which are considered as sources of information for space applications; especially, in analysing the spectra of extrasolar planets, and remote sensing studies for Venus and Earth, as well as laboratory investigations and pollution studies. An ab initio line list for SO3 was previously computed using the variational nuclear motion program TROVE [2], and was suitable for modelling room temperature SO3 spectra. The calculations considered transitions in the region of 0-4000 cm-1 with rotational states up to J = 85, and includes 174,674,257 transitions. A list of 10,878 experimental transitions had relative intensities placed on an absolute scale, and were provided in a form suitable

  3. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  4. Accurate radiative transfer calculations for layered media.

    PubMed

    Selden, Adrian C

    2016-07-01

    Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics. PMID:27409700

  5. Fast and accurate propagation of coherent light

    PubMed Central

    Lewis, R. D.; Beylkin, G.; Monzón, L.

    2013-01-01

    We describe a fast algorithm to propagate, for any user-specified accuracy, a time-harmonic electromagnetic field between two parallel planes separated by a linear, isotropic and homogeneous medium. The analytical formulation of this problem (ca 1897) requires the evaluation of the so-called Rayleigh–Sommerfeld integral. If the distance between the planes is small, this integral can be accurately evaluated in the Fourier domain; if the distance is very large, it can be accurately approximated by asymptotic methods. In the large intermediate region of practical interest, where the oscillatory Rayleigh–Sommerfeld kernel must be applied directly, current numerical methods can be highly inaccurate without indicating this fact to the user. In our approach, for any user-specified accuracy ϵ>0, we approximate the kernel by a short sum of Gaussians with complex-valued exponents, and then efficiently apply the result to the input data using the unequally spaced fast Fourier transform. The resulting algorithm has computational complexity , where we evaluate the solution on an N×N grid of output points given an M×M grid of input samples. Our algorithm maintains its accuracy throughout the computational domain. PMID:24204184

  6. How Accurately can we Calculate Thermal Systems?

    SciTech Connect

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-04-20

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K{sub eff}, for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors.

  7. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  8. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  9. Accurate determination of characteristic relative permeability curves

    NASA Astrophysics Data System (ADS)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  10. Robust Sparse Matching and Motion Estimation Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Shahbazi, M.; Sohn, G.; Théau, J.; Ménard, P.

    2015-03-01

    In this paper, we propose a robust technique using genetic algorithm for detecting inliers and estimating accurate motion parameters from putative correspondences containing any percentage of outliers. The proposed technique aims to increase computational efficiency and modelling accuracy in comparison with the state-of-the-art via the following contributions: i) guided generation of initial populations for both avoiding degenerate solutions and increasing the rate of useful hypotheses, ii) replacing random search with evolutionary search, iii) possibility of evaluating the individuals of every population by parallel computation, iv) being performable on images with unknown internal orientation parameters, iv) estimating the motion model via detecting a minimum, however more than enough, set of inliers, v) ensuring the robustness of the motion model against outliers, degeneracy and poorperspective camera models, vi) making no assumptions about the probability distribution of inliers and/or outliers residuals from the estimated motion model, vii) detecting all the inliers by setting the threshold on their residuals adaptively with regard to the uncertainty of the estimated motion model and the position of the matches. The proposed method was evaluated both on synthetic data and real images. The results were compared with the most popular techniques from the state-of-the-art, including RANSAC, MSAC, MLESAC, Least Trimmed Squares and Least Median of Squares. Experimental results proved that the proposed approach perform better than others in terms of accuracy of motion estimation, accuracy of inlier detection and the computational efficiency.

  11. Motion perception and visual signal design in Anolis lizards

    PubMed Central

    Fleishman, Leo J.; Pallus, Adam C.

    2010-01-01

    Anolis lizards communicate with displays consisting of motion of the head and body. Early portions of long-distance displays require movements that are effective at eliciting the attention of potential receivers. We studied signal-motion efficacy using a two-dimensional visual-motion detection (2DMD) model consisting of a grid of correlation-type elementary motion detectors. This 2DMD model has been shown to accurately predict Anolis lizard behavioural response. We tested different patterns of artificially generated motion and found that an abrupt 0.3° shift of position in less than 100 ms is optimal. We quantified motion in displays of 25 individuals from five species. Four species employ near-optimal movement patterns. We tested displays of these species using the 2DMD model on scenes with and without moderate wind. Display movements can easily be detected, even in the presence of windblown vegetation. The fifth species does not typically use the most effective display movements and display movements cannot be discerned by the 2DMD model in the presence of windblown vegetation. A number of Anolis species use abrupt up-and-down head movements approximately 10 mm in amplitude in displays, and these movements appear to be extremely effective for stimulating the receiver visual system. PMID:20591869

  12. Numerical observer for cardiac motion assessment using machine learning

    NASA Astrophysics Data System (ADS)

    Marin, Thibault; Kalayeh, Mahdi M.; Pretorius, P. H.; Wernick, Miles N.; Yang, Yongyi; Brankov, Jovan G.

    2011-03-01

    In medical imaging, image quality is commonly assessed by measuring the performance of a human observer performing a specific diagnostic task. However, in practice studies involving human observers are time consuming and difficult to implement. Therefore, numerical observers have been developed, aiming to predict human diagnostic performance to facilitate image quality assessment. In this paper, we present a numerical observer for assessment of cardiac motion in cardiac-gated SPECT images. Cardiac-gated SPECT is a nuclear medicine modality used routinely in the evaluation of coronary artery disease. Numerical observers have been developed for image quality assessment via analysis of detectability of myocardial perfusion defects (e.g., the channelized Hotelling observer), but no numerical observer for cardiac motion assessment has been reported. In this work, we present a method to design a numerical observer aiming to predict human performance in detection of cardiac motion defects. Cardiac motion is estimated from reconstructed gated images using a deformable mesh model. Motion features are then extracted from the estimated motion field and used to train a support vector machine regression model predicting human scores (human observers' confidence in the presence of the defect). Results show that the proposed method could accurately predict human detection performance and achieve good generalization properties when tested on data with different levels of post-reconstruction filtering.

  13. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement. PMID:27093439

  14. Harmonic Motion Detection in a Vibrating Scattering Medium

    PubMed Central

    Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.

    2008-01-01

    Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10° or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously. PMID:18986892

  15. Motion-Matching: A Challenge Game to Generate Motion Concepts

    ERIC Educational Resources Information Center

    Schuster, David; Adams, Betty; Brookes, David; Milner-Bolotin, Marina; Undreiu, Adriana

    2009-01-01

    Motion is a topic that is taught from elementary grades through to university at various levels of sophistication. It is an area that can be challenging for learning in a conceptually meaningful way, and formal kinematics instruction can sometimes seem dry and boring. Thus, the nature of students' initial introduction to motion is important in…

  16. Motion parallax links visual motion areas and scene regions.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2016-01-15

    When we move, the retinal velocities of objects in our surrounding differ according to their relative distances and give rise to a powerful three-dimensional visual cue referred to as motion parallax. Motion parallax allows us to infer our surrounding's 3D structure as well as self-motion based on 2D retinal information. However, the neural substrates mediating the link between visual motion and scene processing are largely unexplored. We used fMRI in human observers to study motion parallax by means of an ecologically relevant yet highly controlled stimulus that mimicked the observer's lateral motion past a depth-layered scene. We found parallax selective responses in parietal regions IPS3 and IPS4, and in a region lateral to scene selective occipital place area (OPA). The traditionally defined scene responsive regions OPA, the para-hippocampal place area (PPA) and the retrosplenial cortex (RSC) did not respond to parallax. During parallax processing, the occipital parallax selective region entertained highly specific functional connectivity with IPS3 and with scene selective PPA. These results establish a network linking dorsal motion and ventral scene processing regions specifically during parallax processing, which may underlie the brain's ability to derive 3D scene information from motion parallax. PMID:26515906

  17. Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging

    PubMed Central

    Guérin, B.; Cho, S.; Chun, S. Y.; Zhu, X.; Alpert, N. M.; El Fakhri, G.; Reese, T.; Catana, C.

    2011-01-01

    Purpose: We propose a novel approach for PET respiratory motion correction using tagged-MRI and simultaneous PET-MRI acquisitions.Methods: We use a tagged-MRI acquisition followed by motion tracking in the phase domain to estimate the nonrigid deformation of biological tissues during breathing. In order to accurately estimate motion even in the presence of noise and susceptibility artifacts, we regularize the traditional HARP tracking strategy using a quadratic roughness penalty on neighboring displacement vectors (R-HARP). We then incorporate the motion fields estimated with R-HARP in the system matrix of an MLEM PET reconstruction algorithm formulated both for sinogram and list-mode data representations. This approach allows reconstruction of all detected coincidences in a single image while modeling the effect of motion both in the emission and the attenuation maps. At present, tagged-MRI does not allow estimation of motion in the lungs and our approach is therefore limited to motion correction in soft tissues. Since it is difficult to assess the accuracy of motion correction approaches in vivo, we evaluated the proposed approach in numerical simulations of simultaneous PET-MRI acquisitions using the NCAT phantom. We also assessed its practical feasibility in PET-MRI acquisitions of a small deformable phantom that mimics the complex deformation pattern of a lung that we imaged on a combined PET-MRI brain scanner.Results: Simulations showed that the R-HARP tracking strategy accurately estimated realistic respiratory motion fields for different levels of noise in the tagged-MRI simulation. In simulations of tumors exhibiting increased uptake, contrast estimation was 20% more accurate with motion correction than without. Signal-to-noise ratio (SNR) was more than 100% greater when performing motion-corrected reconstruction which included all counts, compared to when reconstructing only coincidences detected in the first of eight gated frames. These results were

  18. Structure Sensor for mobile markerless augmented reality

    NASA Astrophysics Data System (ADS)

    Kilgus, T.; Bux, R.; Franz, A. M.; Johnen, W.; Heim, E.; Fangerau, M.; Müller, M.; Yen, K.; Maier-Hein, L.

    2016-03-01

    3D Visualization of anatomical data is an integral part of diagnostics and treatment in many medical disciplines, such as radiology, surgery and forensic medicine. To enable intuitive interaction with the data, we recently proposed a new concept for on-patient visualization of medical data which involves rendering of subsurface structures on a mobile display that can be moved along the human body. The data fusion is achieved with a range imaging device attached to the display. The range data is used to register static 3D medical imaging data with the patient body based on a surface matching algorithm. However, our previous prototype was based on the Microsoft Kinect camera and thus required a cable connection to acquire color and depth data. The contribution of this paper is two-fold. Firstly, we replace the Kinect with the Structure Sensor - a novel cable-free range imaging device - to improve handling and user experience and show that the resulting accuracy (target registration error: 4.8+/-1.5 mm) is comparable to that achieved with the Kinect. Secondly, a new approach to visualizing complex 3D anatomy based on this device, as well as 3D printed models of anatomical surfaces, is presented. We demonstrate that our concept can be applied to in vivo data and to a 3D printed skull of a forensic case. Our new device is the next step towards clinical integration and shows that the concept cannot only be applied during autopsy but also for presentation of forensic data to laypeople in court or medical education.

  19. Motion-Matching: A Challenge Game to Generate Motion Concepts

    NASA Astrophysics Data System (ADS)

    Schuster, David; Adams, Betty; Brookes, David; Milner-Bolotin, Marina; Undreiu, Adriana

    2009-10-01

    Motion is a topic that is taught from elementary grades through to university at various levels of sophistication. It is an area that can be challenging for learning in a conceptually meaningful way, and formal kinematics instruction can sometimes seem dry and boring. Thus, the nature of students' initial introduction to motion is important in sparking their interest, shaping their perspective, and developing conceptual understanding of motion. The kinematic concepts we want students to acquire for basic motions are: position, time, speed, direction, velocity, velocity change, change rate, and acceleration, all with respect to a frame of reference. In this article we describe a challenge game used as an "opener" to motion, in which students themselves essentially generate these concepts, in everyday language, from a perceived need for them.

  20. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  1. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  2. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  3. The thermodynamic cost of accurate sensory adaptation

    NASA Astrophysics Data System (ADS)

    Tu, Yuhai

    2015-03-01

    Living organisms need to obtain and process environment information accurately in order to make decisions critical for their survival. Much progress have been made in identifying key components responsible for various biological functions, however, major challenges remain to understand system-level behaviors from the molecular-level knowledge of biology and to unravel possible physical principles for the underlying biochemical circuits. In this talk, we will present some recent works in understanding the chemical sensory system of E. coli by combining theoretical approaches with quantitative experiments. We focus on addressing the questions on how cells process chemical information and adapt to varying environment, and what are the thermodynamic limits of key regulatory functions, such as adaptation.

  4. Accurate numerical solutions of conservative nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Khan, Najeeb Alam; Nasir Uddin, Khan; Nadeem Alam, Khan

    2014-12-01

    The objective of this paper is to present an investigation to analyze the vibration of a conservative nonlinear oscillator in the form u" + lambda u + u^(2n-1) + (1 + epsilon^2 u^(4m))^(1/2) = 0 for any arbitrary power of n and m. This method converts the differential equation to sets of algebraic equations and solve numerically. We have presented for three different cases: a higher order Duffing equation, an equation with irrational restoring force and a plasma physics equation. It is also found that the method is valid for any arbitrary order of n and m. Comparisons have been made with the results found in the literature the method gives accurate results.

  5. Accurate Telescope Mount Positioning with MEMS Accelerometers

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate, and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the subarcminute range which is considerably smaller than the field-of-view of conventional imaging telescope systems. Here we present how this subarcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  6. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception. PMID:24549293

  7. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  8. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  9. Toward Accurate and Quantitative Comparative Metagenomics.

    PubMed

    Nayfach, Stephen; Pollard, Katherine S

    2016-08-25

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  10. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †.

    PubMed

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird's-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  11. The importance of accurate atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Payne, Dylan; Schroeder, John; Liang, Pang

    2014-11-01

    This paper will focus on the effect of atmospheric conditions on EO sensor performance using computer models. We have shown the importance of accurately modeling atmospheric effects for predicting the performance of an EO sensor. A simple example will demonstrated how real conditions for several sites in China will significantly impact on image correction, hyperspectral imaging, and remote sensing. The current state-of-the-art model for computing atmospheric transmission and radiance is, MODTRAN® 5, developed by the US Air Force Research Laboratory and Spectral Science, Inc. Research by the US Air Force, Navy and Army resulted in the public release of LOWTRAN 2 in the early 1970's. Subsequent releases of LOWTRAN and MODTRAN® have continued until the present. Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns. The paper will demonstrate the importance of using validated models and local measured meteorological, atmospheric and aerosol conditions to accurately simulate the atmospheric transmission and radiance. Frequently default conditions are used which can produce errors of as much as 75% in these values. This can have significant impact on remote sensing applications.

  12. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities. PMID:12747164

  13. Accurate Weather Forecasting for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  14. Topographic Structure from Motion

    NASA Astrophysics Data System (ADS)

    Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J.; Carbonneau, P.

    2011-12-01

    The production of high-resolution topographic datasets is of increasing concern and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) generally requires a significant investment in personnel time, hardware and/or software. However, image-based methods such as digital photogrammetry have steadily been decreasing in costs. Initially developed for the purpose of rapid, inexpensive and easy three dimensional surveys of buildings or small objects, the "structure from motion" photogrammetric approach (SfM) is a purely image based method which could deliver a step-change if transferred to river remote sensing, and requires very little training and is extremely inexpensive. Using the online SfM program Microsoft Photosynth, we have created high-resolution digital elevation models (DEM) of rivers from ordinary photographs produced from a multi-step workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three-dimensional space. One of the products of the SfM process is a three-dimensional point cloud of features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected via GPS in the field. The georeferenced point cloud can then be used to create a variety of digital elevation model products. Among several study sites, we examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand-held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low-altitude platforms can produce point clouds with point densities considerably better than airborne LiDAR, with

  15. Highly accurate fast lung CT registration

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd

    2013-03-01

    Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.

  16. Dynamic transitions in dislocation motion

    NASA Astrophysics Data System (ADS)

    Bulatov, Vasily; Cai, Wei; Marian, Jaime

    2003-03-01

    In a series of Molecular Dynamics simulations, we observe that, depending on stress, temperature and line length, screw dislocations in BCC iron move in three strikingly different regimes. Under low stress, the dislocations move smoothly via formation and migration of atomic-sized kinks; although widely believed, such motion mechanism has never been directly observed in full dynamic detail. Then, at a higher stress, dislocation motion suddenly becomes rough: the line becomes rugged and its motion becomes jerky producing in its wake a large amount of debris in the form of lattice vacancies and interstitial clusters. Remarkably, this bizarre behavior is not caused by any external factors, such as dislocation interaction with other crystal defects: the roughening transition is intrinsic to the dislocation itself. Under increasing stress the line raggedness and the amount of debris its motion produces continue to increase until, at some point, another dynamic transition takes place. The dislocation is now seen to cease at once its turbulent motion through the lattice and to initiate a thin plate of sheared crystal, a twin. The twin plate picks up where the dislocation just left off - it extends very fast in the same direction as dislocation motion and increases, gradually, in thickness. Notably, no more debris is produced during the twinning motion. The origin of these dynamic transitions, the underlying atomistic mechanisms of dislocation motion in all three regimes and their implication for strength of shocked materials are discussed.

  17. Motion sickness on tilting trains

    PubMed Central

    Cohen, Bernard; Dai, Mingjia; Ogorodnikov, Dmitri; Laurens, Jean; Raphan, Theodore; Müller, Philippe; Athanasios, Alexiou; Edmaier, Jürgen; Grossenbacher, Thomas; Stadtmüller, Klaus; Brugger, Ueli; Hauser, Gerald; Straumann, Dominik

    2011-01-01

    Trains that tilt on curves can go faster, but passengers complain of motion sickness. We studied the control signals and tilts to determine why this occurs and how to maintain speed while eliminating motion sickness. Accelerometers and gyros monitored train and passenger yaw and roll, and a survey evaluated motion sickness. The experimental train had 3 control configurations: an untilted mode, a reactive mode that detected curves from sensors on the front wheel set, and a predictive mode that determined curves from the train's position on the tracks. No motion sickness was induced in the untilted mode, but the train ran 21% slower than when it tilted 8° in either the reactive or predictive modes (113 vs. 137 km/h). Roll velocities rose and fell faster in the predictive than the reactive mode when entering and leaving turns (0.4 vs. 0.8 s for a 4°/s roll tilt, P<0.001). Concurrently, motion sickness was greater (P<0.001) in the reactive mode. We conclude that the slower rise in roll velocity during yaw rotations on entering and leaving curves had induced the motion sickness. Adequate synchronization of roll tilt with yaw velocity on curves will reduce motion sickness and improve passenger comfort on tilting trains.—Cohen, B., Dai, M., Ogorodnikov, D., Laurens, J., Raphan, T., Müller, P., Athanasios, A., Edmaier, J., Grossenbacher, T., Stadtmüller, K., Brugger, U., Hauser, G., Straumann, D. Motion sickness on tilting trains. PMID:21788449

  18. Statistical description of tectonic motions

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    1993-01-01

    This report summarizes investigations regarding tectonic motions. The topics discussed include statistics of crustal deformation, Earth rotation studies, using multitaper spectrum analysis techniques applied to both space-geodetic data and conventional astrometric estimates of the Earth's polar motion, and the development, design, and installation of high-stability geodetic monuments for use with the global positioning system.

  19. An open architecture motion controller

    NASA Technical Reports Server (NTRS)

    Rossol, Lothar

    1994-01-01

    Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.

  20. Blind Prediction of Near-Fault Strong Ground Motions

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Graves, R.; Zeng, Y.; Somerville, P.

    2002-12-01

    The Mw 7.9 Alaska earthquake provides an unprecedented opportunity to analyze strong ground motion recordings obtained very close to a large magnitude crustal earthquake. Several strong motion sites are located along the route of the Alaska Pipeline which crosses roughly perpendicular to the fault rupture about 85 km east of the epicenter. The closest site is located about 3 km from the fault. Prior to the release of these data, we conducted a blind prediction experiment to estimate the ground motion waveforms at this closest recording site. Ground motions are computed using the both one realization of the stochastic composite source simulation methodology of Zeng (1994) and the deterministic simulation of Somerville et al. (1994). Both techniques utilize full waveform Greens functions calculated for plane layered velocity structures. Due to uncertainty in the distribution of slip during the event, the deterministic simulation used both uniform and heterogeneous models of the slip distribution. Predictions were made without accurate knowledge of site conditions or fault-station geometry. In all cases, the simulated motions are characterized by pulse-like motions that exhibit strong rupture directivity effects. Peak fault-normal ground velocities and displacements are about twice as large as corresponding peak fault-parallel motions. For the heterogeneous slip models, peak velocities for the two simulation methodologies are 50-95 cm/s, and peak dynamic displacements are 60-150 cm. In addition, these simulations predict static horizontal offsets of 50-170 cm, depending on the component. Plots of the simulated motions and more detailed descriptions of the parameterizations can be found at http://www.seismo.unr.edu/blind.

  1. Insights into mechanism kinematics for protein motion simulation

    PubMed Central

    2014-01-01

    Background The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein’s movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. Results In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. Conclusions The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion. PMID:24923224

  2. Descriptor for spatial distribution of motion activity for compressed video

    NASA Astrophysics Data System (ADS)

    Divakaran, Ajay; Sun, Huifang

    1999-12-01

    In this paper we present a new descriptor for spatial distribution of motion activity in video sequences. We use the magnitude of the motion vectors as a measure of the intensity of motion cavity in a macro-block. We construct a matrix Cmv consisting of the magnitudes of the motion vector for each macro-block of a given P frame. We compute the average magnitude of the motion vector per macro-block Cavg, and then use Cavg as a threshold on the matrix C by setting the elements of C that are less than Cavg to zero. We classify the runs of zeros into three categories based on length, and count the number of runs of each category in the matrix C. Our activity descriptor for a frame thus consists of four parameters viz. the average magnitude of the motion vectors and the numbers of runs of short, medium and long length. Since the feature extraction is in the compressed domain and simple, it is extremely fast. We have tested it on the MPEG-7 test content set, which consists of approximately 14 hours of MPEG-1 encoded video content of different kinds. We find that our descriptor enables fast and accurate indexing of video. It is robust to noise and changes in encoding parameters such as frame size, frame rate, encoding bit rate, encoding format etc. It is a low-level non-semantic descriptor that gives semantic matches within the same program, and is thus very suitable for applications such as video program browsing. We also find that indirect and computationally simpler measures of the magnitude of the motion vectors such as bits taken to encode the motion vectors, though less effective, also can be used in our run-length framework.

  3. Ego-motion based on EM for bionic navigation

    NASA Astrophysics Data System (ADS)

    Yue, Xiaofeng; Wang, L. J.; Liu, J. G.

    2015-12-01

    Researches have proved that flying insects such as bees can achieve efficient and robust flight control, and biologists have explored some biomimetic principles regarding how they control flight. Based on those basic studies and principles acquired from the flying insects, this paper proposes a different solution of recovering ego-motion for low level navigation. Firstly, a new type of entropy flow is provided to calculate the motion parameters. Secondly, EKF, which has been used for navigation for some years to correct accumulated error, and estimation-Maximization, which is always used to estimate parameters, are put together to determine the ego-motion estimation of aerial vehicles. Numerical simulation on MATLAB has proved that this navigation system provides more accurate position and smaller mean absolute error than pure optical flow navigation. This paper has done pioneering work in bionic mechanism to space navigation.

  4. Wadaiko performance enhances synchronized motion of mentally disabled persons.

    PubMed

    Mizuno, Eriko; Sakuma, Haruo

    2013-02-01

    People with mental disabilities tend to lack communication skills and have difficulty with interpersonal relationships. Interpersonal communication skills were examined in two people with Down Syndrome with regard to playing wadaiko (Japanese drum). Motion analysis compared single play and two-person play in which one participant was more skillful than the other. The effect of wadaiko play was quantified using two different methodologies: motion delay and hit-timing analysis and visual analog-scale (VAS) ratings before and after play. The motion analysis indicated that the study participants became mutually synchronized in playing wadaiko, and that a participant played more accurately when he played with a senior member. VAS ratings indicated that participants felt more positive after practicing wadaiko than before and self-confidence improved. Synchronized gestures of wadaiko performance may be an effective therapy for people with limited communication skills. PMID:23829145

  5. Learning Projectile Motion with the Computer Game ``Scorched 3D``

    NASA Astrophysics Data System (ADS)

    Jurcevic, John S.

    2008-01-01

    For most of our students, video games are a normal part of their lives. We should take advantage of this medium to teach physics in a manner that is engrossing for our students. In particular, modern video games incorporate accurate physics in their game engines, and they allow us to visualize the physics through flashy and captivating graphics. I recently used the game "Scorched 3D" to help my students understand projectile motion.

  6. Recognizing People in Motion.

    PubMed

    Yovel, Galit; O'Toole, Alice J

    2016-05-01

    Natural movements of the face and body, as well as voice, provide converging cues to a person's identity. To date, person recognition has been studied primarily with static images of faces. Face recognition, however, is part of a larger system, whose preeminent goal is to efficiently recognize dynamic familiar people in unconstrained environments. We present a comprehensive framework for understanding person recognition as it happens in the real world. In this framework, dynamic information plays the central role in binding multi-modal information from the face, body, and the voice to achieve robust and highly accurate recognition. The superior temporal sulcus (STS) integrates multisensory, dynamic information from the whole person for recognition, thereby complementing its role in social cognition. PMID:27016844

  7. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  8. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  9. Synchronous motion modulates animacy perception.

    PubMed

    Takahashi, Kohske; Watanabe, Katsumi

    2015-01-01

    Visual motion serves as a cue for high-level percepts. The present study reports novel modulation of animacy perception through synchronous motion. A target dot moving along a random trajectory was presented. The trajectory was generated based on a variant of 1/f noise; hence, the dot could be perceived as animate. Participants were asked to rate the strength of perceived animacy and perceived intention from the target dot. Several task-irrelevant dots surrounding the target were also presented. Results indicated that perceived animacy and intention were drastically weakened when surrounding dots created synchronous motion with the target dot as compared to when surrounding dots did not create synchronous motion. A series of follow-up experiments replicated these results and revealed specific characteristics of this modulation. The present findings suggest synchronous visual motion serves as a strong modulator of animacy perception. PMID:26114680

  10. Forces in rotary motion systems

    NASA Astrophysics Data System (ADS)

    Tilsch, Markus K.; Elliott, Gregory K.

    2008-09-01

    In many coating chambers substrates are moved by simple or planetary rotary motion systems. Isaac Newton already taught that an object in uniform motion tends to stay in uniform motion unless acted upon by a net external force. To move a substrate on a rotary trajectory, centripetal and gravitational forces must act upon the substrate. The substrate must be somehow confined. Confinement options range from firm attachment to a fixture to loose placement in a pocket. Depending on the rotary motion pattern, a loosely held substrate may slide once against a confinement boundary and then stay, or may constantly slide around. 'Rattling around' may be undesirable as it could lead to edge destruction, debris formation, precession of the substrate, and other adverse effects. Firm attachment is advantageous in most cases, but often adds process complexity. We examine the forces present on substrates in typical rotary motion systems and discuss the implications of different confinement methods.

  11. Retinal Adaptation to Object Motion

    PubMed Central

    Ölveczky, Bence P.; Baccus, Stephen A.; Meister, Markus

    2007-01-01

    Summary Due to fixational eye movements, the image on the retina is always in motion, even when one views a stationary scene. When an object moves within the scene, the corresponding patch of retina experiences a different motion trajectory than the surrounding region. Certain retinal ganglion cells respond selectively to this condition, when the motion in the cell’s receptive field center is different from that in the surround. Here we show that this response is strongest at the very onset of differential motion, followed by gradual adaptation with a time course of several seconds. Different subregions of a ganglion cell’s receptive field can adapt independently. The circuitry responsible for differential motion adaptation lies in the inner retina. Several candidate mechanisms were tested, and the adaptation most likely results from synaptic depression at the synapse from bipolar to ganglion cell. Similar circuit mechanisms may act more generally to emphasize novel features of a visual stimulus. PMID:18031685

  12. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  13. The Perception of Auditory Motion.

    PubMed

    Carlile, Simon; Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  14. Ageing single file motion

    NASA Astrophysics Data System (ADS)

    Metzler, R.; Sanders, L.; Lomholt, M. A.; Lizana, L.; Fogelmark, K.; Ambjörnsson, Tobias

    2014-12-01

    The mean squared displacement of a tracer particle in a single file of identical particles with excluded volume interactions shows the famed Harris scaling ≃ K1/2t1/2 as function of time. Here we study what happens to this law when each particle of the single file interacts with the environment such that it is transiently immobilised for times τ with a power-law distribution ψ(τ) ≃ (τ★)α, and different ranges of the exponent α are considered. We find a dramatic slow-down of the motion of a tracer particle from Harris' law to an ultraslow, logarithmic time evolution ≃ K0 log 1/2(t) when 0 < α < 1. In the intermediate case 1 < α < 2, we observe a power-law form for the mean squared displacement, with a modified scaling exponent as compared to Harris' law. Once α is larger than two, the Brownian single file behaviour and thus Harris' law are restored. We also point out that this process is weakly non-ergodic in the sense that the time and ensemble averaged mean squared displacements are disparate.

  15. Quaternion correlation for tracking crystal motions

    NASA Astrophysics Data System (ADS)

    Shi, Qiwei; Latourte, Félix; Hild, François; Roux, Stéphane

    2016-09-01

    During in situ mechanical tests performed on polycrystalline materials in a scanning electron microscope, crystal orientation maps may be recorded at different stages of deformation from electron backscattered diffraction (EBSD). The present study introduces a novel correlation technique that exploits the crystallographic orientation field as a surface pattern to measure crystal motions. Introducing a quaternion-based formalism reveals crystal symmetry that is very convenient to handle and orientation extraction. Spatial regularization is provided by a penalty to deviation of displacement fields from being the solution to a homogeneous linear elastic problem. This procedure allows the large scale features of the displacement field to be captured, mostly from grain boundaries, and a fair interpolation of the displacement to be obtained within the grains. From these data, crystal rotations can be estimated very accurately. Both synthetic and real experimental cases are considered to illustrate the method.

  16. Human heading estimation during visually simulated curvilinear motion

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Perrone, J. A.

    1997-01-01

    Recent studies have suggested that humans cannot estimate their direction of forward translation (heading) from the resulting retinal motion (flow field) alone when rotation rates are higher than approximately 1 deg/sec. It has been argued that either oculomotor or static depth cues are necessary to disambiguate the rotational and translational components of the flow field and, thus, to support accurate heading estimation. We have re-examined this issue using visually simulated motion along a curved path towards a layout of random points as the stimulus. Our data show that, in this curvilinear motion paradigm, five of six observers could estimate their heading relatively accurately and precisely (error and uncertainty < approximately 4 deg), even for rotation rates as high as 16 deg/sec, without the benefit of either oculomotor or static depth cues signaling rotation rate. Such performance is inconsistent with models of human self-motion estimation that require rotation information from sources other than the flow field to cancel the rotational flow.

  17. Higher order accurate partial implicitization: An unconditionally stable fourth-order-accurate explicit numerical technique

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1975-01-01

    The previously obtained second-order-accurate partial implicitization numerical technique used in the solution of fluid dynamic problems was modified with little complication to achieve fourth-order accuracy. The Von Neumann stability analysis demonstrated the unconditional linear stability of the technique. The order of the truncation error was deduced from the Taylor series expansions of the linearized difference equations and was verified by numerical solutions to Burger's equation. For comparison, results were also obtained for Burger's equation using a second-order-accurate partial-implicitization scheme, as well as the fourth-order scheme of Kreiss.

  18. Decoding the direction of auditory motion in blind humans.

    PubMed

    Wolbers, Thomas; Zahorik, Pavel; Giudice, Nicholas A

    2011-05-15

    Accurate processing of nonvisual stimuli is fundamental to humans with visual impairments. In this population, moving sounds activate an occipito-temporal region thought to encompass the equivalent of monkey area MT+, but it remains unclear whether the signal carries information beyond the mere presence of motion. To address this important question, we tested whether the processing in this region retains functional properties that are critical for accurate motion processing and that are well established in the visual modality. Specifically, we focussed on the property of 'directional selectivity', because MT+ neurons in non-human primates fire preferentially to specific directions of visual motion. Recent neuroimaging studies have revealed similar properties in sighted humans by successfully decoding different directions of visual motion from fMRI activation patterns. Here we used fMRI and multivariate pattern classification to demonstrate that the direction in which a sound is moving can be reliably decoded from dorsal occipito-temporal activation in the blind. We also show that classification performance is at chance (i) in a control region in posterior parietal cortex and (ii) when motion information is removed and subjects only hear a sequence of static sounds presented at the same start and end positions. These findings reveal that information about the direction of auditory motion is present in dorsal occipito-temporal responses of blind humans. As such, this area, which appears consistent with the hMT+ complex in the sighted, provides crucial information for the generation of a veridical percept of moving non-visual stimuli. PMID:20451630

  19. Accurate, low-cost 3D-models of gullies

    NASA Astrophysics Data System (ADS)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  20. Abnormal behaviors detection using particle motion model

    NASA Astrophysics Data System (ADS)

    Chen, Yutao; Zhang, Hong; Cheng, Feiyang; Yuan, Ding; You, Yuhu

    2015-03-01

    Human abnormal behaviors detection is one of the most challenging tasks in the video surveillance for the public security control. Interaction Energy Potential model is an effective and competitive method published recently to detect abnormal behaviors, but their model of abnormal behaviors is not accurate enough, so it has some limitations. In order to solve this problem, we propose a novel Particle Motion model. Firstly, we extract the foreground to improve the accuracy of interest points detection since the complex background usually degrade the effectiveness of interest points detection largely. Secondly, we detect the interest points using the graphics features. Here, the movement of each human target can be represented by the movements of detected interest points of the target. Then, we track these interest points in videos to record their positions and velocities. In this way, the velocity angles, position angles and distance between each two points can be calculated. Finally, we proposed a Particle Motion model to calculate the eigenvalue of each frame. An adaptive threshold method is proposed to detect abnormal behaviors. Experimental results on the BEHAVE dataset and online videos show that our method could detect fight and robbery events effectively and has a promising performance.

  1. The equation of motion for sperm flagella.

    PubMed

    Rikmenspoel, R

    1978-08-01

    The equation of motion for sperm flagella, in which the elastic bending moment and the active contractile moment are balanced by the moment from the viscous resistance of the surrounding fluid, is solved for a wave solution that superimposes partial solutions. Substitution of the expression for the wave solution into the equation leads to an expression for the active contractile moment. This active moment can be decomposed into two parts. The first part describes an active moment that travels over the flagellum with the mechanical flagellar wave, the second part represents a moment in phase over the entire length of the flagellum, which decreases linearly towards the distal tip. The linear synchronous moment, to which an amount of traveling moment has been added as a perturbation, leads to wave solutions that closely resemble flagellar waves. Properties such as wavelength and wave amplitudes and also the shape of the waves in sea urchin sperm flagella at different frequencies are accurately described by the theory. The change in wave shape in sea urchin sperm flagella at raised viscosity is predicted well by the theory. The different wave properties caused in bull sperm flagella by different boundary conditions at the proximal junction are explained. When only a traveling active moment is present in a flagellum, the wave solutions describe waves of a small wave length in a long flagellum. Some properties of the wave motion of sperm flagella are derived from the theory and verified experimentally. PMID:687760

  2. Thermal motion of the STIS optical bench

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Taylor, Mary Jane; Shaw, Richard; Robinson, Richard; Hill, Robert S.

    1997-01-01

    Various tests have been done of the Space Telescope Imaging Spectrograph (STIS) using internal wavecals to measure thermal motion of the spectral format on the detectors. In most cases, the spectral format moves less than the specification not to exceed 0.2 pixels per hour. Primary causes of the motion are (1) changes to the thermal design dictated by the warmer Aft Shroud environment and (2) on-orbit power cycling of Multi-Anode Microchannel Arrays (MAMA) electronics to minimize the effects of radiation hits on the MAMA detectors. The rear portion of the STIS optical bench is too warm to be held at a constant temperature by internal heaters. Electronics swing in temperature with an orbital and daily frequency. The thermal drift of the optical formats is not negligible, but is well behaved in most circumstances. The observer is advised to examine the trade-off between the most accurate wavelengths with best spectral/spatial resolutions versus increased overheads that directly affect the observing times. A long term concern is that the Aft Shroud thermal environment is predicted to heat up as much as one Centigrade degree per year. Progressively more of the bench would move out of thermal control. Thus the external cooler for STIS, being considered for the Third Servicing Mission is of major importance to the long term operation of STIS.

  3. 24 CFR 180.430 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Motions. 180.430 Section 180.430....430 Motions. (a) Motions. Any application for an order or other request shall be made by a motion... relief requested and the basis therefor. Motions made during an appearance before the ALJ shall be...

  4. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response...

  5. 22 CFR 224.28 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Motions. 224.28 Section 224.28 Foreign....28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall... ALJ and served on all other parties. (b) Except for motions made during a prehearing conference or...

  6. 45 CFR 672.9 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Motions. 672.9 Section 672.9 Public Welfare... PROCEDURES § 672.9 Motions. (a) General. All motions, except those made orally on the record during a hearing... memorandum relied upon. (b) Response to motions. A party must file a response to any written motion...

  7. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made..., and shall be filed with the hearing clerk and served on all parties. (b) Response to motions....

  8. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made..., and shall be filed with the hearing clerk and served on all parties. (b) Response to motions....

  9. 7 CFR 1.327 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Motions. 1.327 Section 1.327 Agriculture Office of the... Program Fraud Civil Remedies Act of 1986 § 1.327 Motions. (a) Motions shall state the relief sought, the... parties. (b) Except for motions made during a prehearing conference or at the hearing, all motions...

  10. 29 CFR 102.65 - Motions; interventions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Motions; interventions. 102.65 Section 102.65 Labor... Act § 102.65 Motions; interventions. (a) All motions, including motions for intervention pursuant to... on the record and shall briefly state the order or relief sought and the grounds for such motion....

  11. 5 CFR 185.130 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Motions. 185.130 Section 185.130... § 185.130 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  12. 7 CFR 1.327 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Motions. 1.327 Section 1.327 Agriculture Office of the... Program Fraud Civil Remedies Act of 1986 § 1.327 Motions. (a) Motions shall state the relief sought, the... parties. (b) Except for motions made during a prehearing conference or at the hearing, all motions...

  13. 20 CFR 498.213 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Motions. 498.213 Section 498.213 Employees... § 498.213 Motions. (a) An application to the ALJ for an order or ruling will be by motion. Motions will... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  14. 45 CFR 672.9 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Motions. 672.9 Section 672.9 Public Welfare... PROCEDURES § 672.9 Motions. (a) General. All motions, except those made orally on the record during a hearing... memorandum relied upon. (b) Response to motions. A party must file a response to any written motion...

  15. 5 CFR 185.130 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Motions. 185.130 Section 185.130... § 185.130 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  16. 22 CFR 1422.10 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Motions. 1422.10 Section 1422.10 Foreign... § 1422.10 Motions. (a) General. (1) A motion shall state briefly the order or relief sought and the grounds for the motion: Provided, however, That a motion to intervene will not be entertained by...

  17. 12 CFR 1081.212 - Dispositive motions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Dispositive motions. 1081.212 Section 1081.212... Initiation of Proceedings and Prehearing Rules § 1081.212 Dispositive motions. (a) Dispositive motions. This section governs the filing of motions to dismiss and motions for summary disposition. The filing of...

  18. 22 CFR 224.28 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Motions. 224.28 Section 224.28 Foreign....28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall... ALJ and served on all other parties. (b) Except for motions made during a prehearing conference or...

  19. 43 CFR 35.28 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Motions. 35.28 Section 35.28 Public Lands... STATEMENTS § 35.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a pre-hearing...

  20. 22 CFR 224.28 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Motions. 224.28 Section 224.28 Foreign....28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall... ALJ and served on all other parties. (b) Except for motions made during a prehearing conference or...

  1. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response...

  2. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made..., and shall be filed with the hearing clerk and served on all parties. (b) Response to motions....

  3. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response...

  4. 22 CFR 1422.10 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Motions. 1422.10 Section 1422.10 Foreign... § 1422.10 Motions. (a) General. (1) A motion shall state briefly the order or relief sought and the grounds for the motion: Provided, however, That a motion to intervene will not be entertained by...

  5. 43 CFR 35.28 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Motions. 35.28 Section 35.28 Public Lands... STATEMENTS § 35.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a pre-hearing...

  6. 29 CFR 1603.208 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Motions. 1603.208 Section 1603.208 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.208 Motions. (a) All motions shall state the specific relief requested. All motions shall be in writing, except that a motion may be made orally during...

  7. 29 CFR 1603.208 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Motions. 1603.208 Section 1603.208 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.208 Motions. (a) All motions shall state the specific relief requested. All motions shall be in writing, except that a motion may be made orally during...

  8. 45 CFR 81.56 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Motions. 81.56 Section 81.56 Public Welfare... 80 OF THIS TITLE Proceedings Prior to Hearing § 81.56 Motions. Motions and petitions shall state the... as a formal motion. Motions, answers, and replies shall be addressed to the presiding officer, if...

  9. 24 CFR 180.430 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Motions. 180.430 Section 180.430....430 Motions. (a) Motions. Any application for an order or other request shall be made by a motion... relief requested and the basis therefor. Motions made during an appearance before the ALJ shall be...

  10. 20 CFR 498.213 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Motions. 498.213 Section 498.213 Employees... § 498.213 Motions. (a) An application to the ALJ for an order or ruling will be by motion. Motions will... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  11. 22 CFR 1422.10 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Motions. 1422.10 Section 1422.10 Foreign... § 1422.10 Motions. (a) General. (1) A motion shall state briefly the order or relief sought and the grounds for the motion: Provided, however, That a motion to intervene will not be entertained by...

  12. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made..., and shall be filed with the hearing clerk and served on all parties. (b) Response to motions....

  13. 24 CFR 180.430 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Motions. 180.430 Section 180.430....430 Motions. (a) Motions. Any application for an order or other request shall be made by a motion... relief requested and the basis therefor. Motions made during an appearance before the ALJ shall be...

  14. 22 CFR 1422.10 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Motions. 1422.10 Section 1422.10 Foreign... § 1422.10 Motions. (a) General. (1) A motion shall state briefly the order or relief sought and the grounds for the motion: Provided, however, That a motion to intervene will not be entertained by...

  15. 45 CFR 81.56 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Motions. 81.56 Section 81.56 Public Welfare... 80 OF THIS TITLE Proceedings Prior to Hearing § 81.56 Motions. Motions and petitions shall state the... as a formal motion. Motions, answers, and replies shall be addressed to the presiding officer, if...

  16. 45 CFR 672.9 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Motions. 672.9 Section 672.9 Public Welfare... PROCEDURES § 672.9 Motions. (a) General. All motions, except those made orally on the record during a hearing... memorandum relied upon. (b) Response to motions. A party must file a response to any written motion...

  17. 45 CFR 81.56 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Motions. 81.56 Section 81.56 Public Welfare... 80 OF THIS TITLE Proceedings Prior to Hearing § 81.56 Motions. Motions and petitions shall state the... as a formal motion. Motions, answers, and replies shall be addressed to the presiding officer, if...

  18. 20 CFR 498.213 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Motions. 498.213 Section 498.213 Employees... § 498.213 Motions. (a) An application to the ALJ for an order or ruling will be by motion. Motions will... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  19. 5 CFR 185.130 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Motions. 185.130 Section 185.130... § 185.130 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  20. 22 CFR 1423.22 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Motions. 1423.22 Section 1423.22 Foreign... PROCEEDINGS § 1423.22 Motions. (a) Filing of Motions. (1) Motions made prior to a hearing and any response... issuance of a complaint by the Regional Director any motion to postpone the hearing should be filed...

  1. 22 CFR 224.28 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Motions. 224.28 Section 224.28 Foreign....28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall... ALJ and served on all other parties. (b) Except for motions made during a prehearing conference or...

  2. 22 CFR 1423.22 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Motions. 1423.22 Section 1423.22 Foreign... PROCEEDINGS § 1423.22 Motions. (a) Filing of Motions. (1) Motions made prior to a hearing and any response... issuance of a complaint by the Regional Director any motion to postpone the hearing should be filed...

  3. 5 CFR 185.130 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Motions. 185.130 Section 185.130... § 185.130 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  4. 43 CFR 35.28 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Motions. 35.28 Section 35.28 Public Lands... STATEMENTS § 35.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a pre-hearing...

  5. 22 CFR 1423.22 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Motions. 1423.22 Section 1423.22 Foreign... PROCEEDINGS § 1423.22 Motions. (a) Filing of Motions. (1) Motions made prior to a hearing and any response... issuance of a complaint by the Regional Director any motion to postpone the hearing should be filed...

  6. 20 CFR 498.213 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Motions. 498.213 Section 498.213 Employees... § 498.213 Motions. (a) An application to the ALJ for an order or ruling will be by motion. Motions will... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  7. 22 CFR 1423.22 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Motions. 1423.22 Section 1423.22 Foreign... PROCEEDINGS § 1423.22 Motions. (a) Filing of Motions. (1) Motions made prior to a hearing and any response... issuance of a complaint by the Regional Director any motion to postpone the hearing should be filed...

  8. 7 CFR 1.327 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Motions. 1.327 Section 1.327 Agriculture Office of the... Program Fraud Civil Remedies Act of 1986 § 1.327 Motions. (a) Motions shall state the relief sought, the... parties. (b) Except for motions made during a prehearing conference or at the hearing, all motions...

  9. 24 CFR 180.430 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Motions. 180.430 Section 180.430....430 Motions. (a) Motions. Any application for an order or other request shall be made by a motion... relief requested and the basis therefor. Motions made during an appearance before the ALJ shall be...

  10. 22 CFR 1422.10 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Motions. 1422.10 Section 1422.10 Foreign... § 1422.10 Motions. (a) General. (1) A motion shall state briefly the order or relief sought and the grounds for the motion: Provided, however, That a motion to intervene will not be entertained by...

  11. 29 CFR 1603.208 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Motions. 1603.208 Section 1603.208 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.208 Motions. (a) All motions shall state the specific relief requested. All motions shall be in writing, except that a motion may be made orally during...

  12. 22 CFR 1423.22 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Motions. 1423.22 Section 1423.22 Foreign... PROCEEDINGS § 1423.22 Motions. (a) Filing of Motions. (1) Motions made prior to a hearing and any response... issuance of a complaint by the Regional Director any motion to postpone the hearing should be filed...

  13. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made..., and shall be filed with the hearing clerk and served on all parties. (b) Response to motions....

  14. 22 CFR 224.28 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Motions. 224.28 Section 224.28 Foreign....28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall... ALJ and served on all other parties. (b) Except for motions made during a prehearing conference or...

  15. 24 CFR 180.430 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Motions. 180.430 Section 180.430....430 Motions. (a) Motions. Any application for an order or other request shall be made by a motion... relief requested and the basis therefor. Motions made during an appearance before the ALJ shall be...

  16. 5 CFR 185.130 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Motions. 185.130 Section 185.130... § 185.130 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  17. 7 CFR 1.327 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Motions. 1.327 Section 1.327 Agriculture Office of the... Program Fraud Civil Remedies Act of 1986 § 1.327 Motions. (a) Motions shall state the relief sought, the... parties. (b) Except for motions made during a prehearing conference or at the hearing, all motions...

  18. 22 CFR 521.28 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Motions. 521.28 Section 521.28 Foreign... Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall state the... served on all other parties. (b) Except for motions made during a prehearing conference or at the...

  19. 20 CFR 498.213 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Motions. 498.213 Section 498.213 Employees... § 498.213 Motions. (a) An application to the ALJ for an order or ruling will be by motion. Motions will... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  20. 45 CFR 672.9 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Motions. 672.9 Section 672.9 Public Welfare... PROCEDURES § 672.9 Motions. (a) General. All motions, except those made orally on the record during a hearing... memorandum relied upon. (b) Response to motions. A party must file a response to any written motion...

  1. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response...

  2. 45 CFR 81.56 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Motions. 81.56 Section 81.56 Public Welfare... 80 OF THIS TITLE Proceedings Prior to Hearing § 81.56 Motions. Motions and petitions shall state the... as a formal motion. Motions, answers, and replies shall be addressed to the presiding officer, if...

  3. 45 CFR 81.56 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Motions. 81.56 Section 81.56 Public Welfare... 80 OF THIS TITLE Proceedings Prior to Hearing § 81.56 Motions. Motions and petitions shall state the... as a formal motion. Motions, answers, and replies shall be addressed to the presiding officer, if...

  4. 29 CFR 1603.208 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Motions. 1603.208 Section 1603.208 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.208 Motions. (a) All motions shall state the specific relief requested. All motions shall be in writing, except that a motion may be made orally during...

  5. 45 CFR 672.9 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Motions. 672.9 Section 672.9 Public Welfare... PROCEDURES § 672.9 Motions. (a) General. All motions, except those made orally on the record during a hearing... memorandum relied upon. (b) Response to motions. A party must file a response to any written motion...

  6. 43 CFR 35.28 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Motions. 35.28 Section 35.28 Public Lands... STATEMENTS § 35.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a pre-hearing...

  7. 7 CFR 1.327 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Motions. 1.327 Section 1.327 Agriculture Office of the... Program Fraud Civil Remedies Act of 1986 § 1.327 Motions. (a) Motions shall state the relief sought, the... parties. (b) Except for motions made during a prehearing conference or at the hearing, all motions...

  8. 43 CFR 35.28 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Motions. 35.28 Section 35.28 Public Lands... STATEMENTS § 35.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a pre-hearing...

  9. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response...

  10. 29 CFR 1603.208 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Motions. 1603.208 Section 1603.208 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.208 Motions. (a) All motions shall state the specific relief requested. All motions shall be in writing, except that a motion may be made orally during...

  11. Mab's orbital motion explained

    NASA Astrophysics Data System (ADS)

    Kumar, K.; de Pater, I.; Showalter, M. R.

    2015-07-01

    We explored the hypothesis that Mab's anomalous orbital motion, as deduced from Hubble Space Telescope (HST) data (Showalter, M.R., Lissauer, J.J. [2006]. Science (New York, NY) 311, 973-977), is the result of gravitational interactions with a putative suite of large bodies in the μ-ring. We conducted simulations to compute the gravitational effect of Mab (a recently discovered Uranian moon) on a cloud of test particles. Subsequently, by employing the data extracted from the test particle simulations, we executed random walk simulations to compute the back-reaction of nearby perturbers on Mab. By generating simulated observation metrics, we compared our results to the data retrieved from the HST. Our results indicate that the longitude residual change noted in the HST data (Δλr,Mab ≈ 1 deg) is well matched by our simulations. The eccentricity variations (ΔeMab ≈10-3) are however typically two orders of magnitude too small. We present a variety of reasons that could account for this discrepancy. The nominal scenario that we investigated assumes a perturber ring mass (mring) of 1 mMab (Mab's mass) and a perturber ring number density (ρn,ring) of 10 perturbers per 3 RHill,Mab (Mab's Hill radius). This effectively translates to a few tens of perturbers with radii of approximately 2-3 km, depending on the albedo assumed. The results obtained also include an interesting litmus test: variations of Mab's inclination on the order of the eccentricity changes should be observable. Our work provides clues for further investigation into the tantalizing prospect that the Mab/μ-ring system is undergoing re-accretion after a recent catastrophic disruption.

  12. Accurate Fission Data for Nuclear Safety

    NASA Astrophysics Data System (ADS)

    Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.

    2014-05-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

  13. Fast and Provably Accurate Bilateral Filtering

    NASA Astrophysics Data System (ADS)

    Chaudhury, Kunal N.; Dabhade, Swapnil D.

    2016-06-01

    The bilateral filter is a non-linear filter that uses a range filter along with a spatial filter to perform edge-preserving smoothing of images. A direct computation of the bilateral filter requires $O(S)$ operations per pixel, where $S$ is the size of the support of the spatial filter. In this paper, we present a fast and provably accurate algorithm for approximating the bilateral filter when the range kernel is Gaussian. In particular, for box and Gaussian spatial filters, the proposed algorithm can cut down the complexity to $O(1)$ per pixel for any arbitrary $S$. The algorithm has a simple implementation involving $N+1$ spatial filterings, where $N$ is the approximation order. We give a detailed analysis of the filtering accuracy that can be achieved by the proposed approximation in relation to the target bilateral filter. This allows us to to estimate the order $N$ required to obtain a given accuracy. We also present comprehensive numerical results to demonstrate that the proposed algorithm is competitive with state-of-the-art methods in terms of speed and accuracy.

  14. Accurate Prediction of Docked Protein Structure Similarity.

    PubMed

    Akbal-Delibas, Bahar; Pomplun, Marc; Haspel, Nurit

    2015-09-01

    One of the major challenges for protein-protein docking methods is to accurately discriminate nativelike structures. The protein docking community agrees on the existence of a relationship between various favorable intermolecular interactions (e.g. Van der Waals, electrostatic, desolvation forces, etc.) and the similarity of a conformation to its native structure. Different docking algorithms often formulate this relationship as a weighted sum of selected terms and calibrate their weights against specific training data to evaluate and rank candidate structures. However, the exact form of this relationship is unknown and the accuracy of such methods is impaired by the pervasiveness of false positives. Unlike the conventional scoring functions, we propose a novel machine learning approach that not only ranks the candidate structures relative to each other but also indicates how similar each candidate is to the native conformation. We trained the AccuRMSD neural network with an extensive dataset using the back-propagation learning algorithm. Our method achieved predicting RMSDs of unbound docked complexes with 0.4Å error margin. PMID:26335807

  15. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  16. Fast and Provably Accurate Bilateral Filtering.

    PubMed

    Chaudhury, Kunal N; Dabhade, Swapnil D

    2016-06-01

    The bilateral filter is a non-linear filter that uses a range filter along with a spatial filter to perform edge-preserving smoothing of images. A direct computation of the bilateral filter requires O(S) operations per pixel, where S is the size of the support of the spatial filter. In this paper, we present a fast and provably accurate algorithm for approximating the bilateral filter when the range kernel is Gaussian. In particular, for box and Gaussian spatial filters, the proposed algorithm can cut down the complexity to O(1) per pixel for any arbitrary S . The algorithm has a simple implementation involving N+1 spatial filterings, where N is the approximation order. We give a detailed analysis of the filtering accuracy that can be achieved by the proposed approximation in relation to the target bilateral filter. This allows us to estimate the order N required to obtain a given accuracy. We also present comprehensive numerical results to demonstrate that the proposed algorithm is competitive with the state-of-the-art methods in terms of speed and accuracy. PMID:27093722

  17. How Accurate are SuperCOSMOS Positions?

    NASA Astrophysics Data System (ADS)

    Schaefer, Adam; Hunstead, Richard; Johnston, Helen

    2014-02-01

    Optical positions from the SuperCOSMOS Sky Survey have been compared in detail with accurate radio positions that define the second realisation of the International Celestial Reference Frame (ICRF2). The comparison was limited to the IIIaJ plates from the UK/AAO and Oschin (Palomar) Schmidt telescopes. A total of 1 373 ICRF2 sources was used, with the sample restricted to stellar objects brighter than BJ = 20 and Galactic latitudes |b| > 10°. Position differences showed an rms scatter of 0.16 arcsec in right ascension and declination. While overall systematic offsets were < 0.1 arcsec in each hemisphere, both the systematics and scatter were greater in the north.

  18. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  19. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  20. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.