Science.gov

Sample records for accurate mass balance

  1. Remote balance weighs accurately amid high radiation

    NASA Technical Reports Server (NTRS)

    Eggenberger, D. N.; Shuck, A. B.

    1969-01-01

    Commercial beam-type balance, modified and outfitted with electronic controls and digital readout, can be remotely controlled for use in high radiation environments. This allows accurate weighing of breeder-reactor fuel pieces when they are radioactively hot.

  2. Greenland Ice Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Reeh, N.

    1984-01-01

    Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined.

  3. Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1997-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers. The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  4. Mass balance assessment using GPS

    NASA Technical Reports Server (NTRS)

    Hulbe, Christina L.

    1993-01-01

    Mass balance is an integral part of any comprehensive glaciological investigation. Unfortunately, it is hard to determine at remote locations where there is no fixed reference. The Global Positioning System (GPS) offers a solution. Simultaneous GPS observations at a known location and the remote field site, processed differentially, will accurately position the camp site. From there, a monument planted in the firn atop the ice can also be accurately positioned. Change in the monument's vertical position is a direct indicator of ice thickness change. Because the monument is not connected to the ice, its motion is due to both mass balance change and to the settling of firn as it densifies into ice. Observations of relative position change between the monument and anchors at various depths within the firn are used to remove the settling effect. An experiment to test this method has begun at Byrd Station on the West Antarctic Ice Sheet and the first epoch of observations was made. Analysis indicates that positioning errors will be very small. It appears likely that the largest errors involved with this technique will arise from ancillary data needed to determine firn settling.

  5. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    proteins can also be extensively modified by PTMs26-31 or by their interactions with other biomolecules or small molecules.32,33 Thus, it is highly desirable that proteins, the primary functional macromolecules involved in almost all biological activities, can be studied directly and systematically to determine their diverse properties and interplay. Such proteome-wide analysis is expected to provide a wealth of biological information, such as sequence, quantity, PTMs, interactions, activities, subcellular distribution and structure of proteins, which is critical to the comprehensive understanding of the biological systems. However, the de novo analysis of proteins isolated from cells, tissues or bodily fluids poses significant challenges due to the tremendous complexity and depth of the proteome, which necessitates high-throughput and highly sensitive analytical techniques. It is therefore not surprising that mass spectrometry (MS) has become an indispensable technology for proteome analysis.

  6. Microbalance accurately measures extremely small masses

    NASA Technical Reports Server (NTRS)

    Patashnick, H.

    1970-01-01

    Oscillating fiber microbalance has a vibrating quartz fiber as balance arm to hold the mass to be weighed. Increasing fiber weight decreases its resonant frequency. Scaler and timer measure magnitude of the shift. This instrument withstands considerable physical abuse and has calibration stability at normal room temperatures.

  7. Accurate measurements of mass and center of mass

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Trubert, M. R.

    1979-01-01

    Object is measured for mass and center of mass with accuracies of 0.01% and 0.14 respectively, using method that eliminates errors in alignment, leveling, and calibration. Method is applied to scientific instruments, recorder turntables, flywheels, and other devices that require precise balancing.

  8. Surface Mass Balance of the Columbia Glacier, Alaska, 1978 and 2010 Balance Years

    USGS Publications Warehouse

    O'Neel, Shad

    2012-01-01

    Although Columbia Glacier is one of the largest sources of glacier mass loss in Alaska, surface mass balance measurements are sparse, with only a single data set available from 1978. The dearth of surface mass-balance data prohibits partitioning of the total mass losses between dynamics and surface forcing; however, the accurate inclusion of calving glaciers into predictive models requires both dynamic and climatic forcing of total mass balance. During 2010, the U.S. Geological Survey collected surface balance data at several locations distributed over the surface of Columbia Glacier to estimate the glacier-wide annual balance for balance year 2010 using the 2007 area-altitude distribution. This report also summarizes data collected in 1978, calculates the 1978 annual surface balance, and uses these observations to constrain the 2010 values, particularly the shape of the balance profile. Both years exhibit balances indicative of near-equilibrium surface mass-balance conditions, and demonstrate the importance of dynamic processes during the rapid retreat.

  9. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass...

  10. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass...

  11. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass...

  12. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass...

  13. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass...

  14. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass...

  15. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass...

  16. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass...

  17. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass...

  18. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass...

  19. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass...

  20. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass...

  1. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass...

  2. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass...

  3. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass...

  4. Mass balancing of hollow fan blades

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.

    1986-01-01

    A typical section model is used to analytically investigate the effect of mass balancing as applied to hollow, supersonic fan blades. A procedure to determine the best configuration of an internal balancing mass to provide flutter alleviation is developed. This procedure is applied to a typical supersonic shroudless fan blade which is unstable in both the solid configuration and when it is hollow with no balancing mass. The addition of an optimized balancing mass is shown to stabilize the blade at the design condition.

  5. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  6. Miniature Piezoelectric Macro-Mass Balance

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert G.; Bar-Cohen, Yoseph

    2010-01-01

    Mass balances usually use a strain gauge that requires an impedance measurement and is susceptible to noise and thermal drift. A piezoelectric balance can be used to measure mass directly by monitoring the voltage developed across the piezoelectric balance, which is linear with weight or it can be used in resonance to produce a frequency change proportional to the mass change (see figure). The piezoelectric actuator/balance is swept in frequency through its fundamental resonance. If a small mass is added to the balance, the resonance frequency shifts down in proportion to the mass. By monitoring the frequency shift, the mass can be determined. This design allows for two independent measurements of mass. Additionally, more than one sample can be verified because this invention allows for each sample to be transported away from the measuring device upon completion of the measurement, if required. A piezoelectric actuator, or many piezoelectric actuators, was placed between the collection plate of the sampling system and the support structure. As the sample mass is added to the plate, the piezoelectrics are stressed, causing them to produce a voltage that is proportional to the mass and acceleration. In addition, a change in mass delta m produces a change in the resonance frequency with delta f proportional to delta m. In a microgravity environment, the spacecraft could be accelerated to produce a force on the piezoelectric actuator that would produce a voltage proportional to the mass and acceleration. Alternatively, the acceleration could be used to force the mass on the plate, and the inertial effects of the mass on the plate would produce a shift in the resonance frequency with the change in frequency related to the mass change. Three prototypes of the mass balance mechanism were developed. These macro-mass balances each consist of a solid base and an APA 60 Cedrat flextensional piezoelectric actuator supporting a measuring plate. A similar structure with 3 APA

  7. Improving Mass Balance Modeling of Benchmark Glaciers

    NASA Astrophysics Data System (ADS)

    van Beusekom, A. E.; March, R. S.; O'Neel, S.

    2009-12-01

    The USGS monitors long-term glacier mass balance at three benchmark glaciers in different climate regimes. The coastal and continental glaciers are represented by Wolverine and Gulkana Glaciers in Alaska, respectively. Field measurements began in 1966 and continue. We have reanalyzed the published balance time series with more modern methods and recomputed reference surface and conventional balances. Addition of the most recent data shows a continuing trend of mass loss. We compare the updated balances to the previously accepted balances and discuss differences. Not all balance quantities can be determined from the field measurements. For surface processes, we model missing information with an improved degree-day model. Degree-day models predict ablation from the sum of daily mean temperatures and an empirical degree-day factor. We modernize the traditional degree-day model as well as derive new degree-day factors in an effort to closer match the balance time series and thus better predict the future state of the benchmark glaciers. For subsurface processes, we model the refreezing of meltwater for internal accumulation. We examine the sensitivity of the balance time series to the subsurface process of internal accumulation, with the goal of determining the best way to include internal accumulation into balance estimates.

  8. Radionuclide mass balance for the TMI-2 accident: data-base system and preliminary mass balance. Volume 1

    SciTech Connect

    Goldman, M I; Davis, R J; Strahl, J F; Arcieri, W C; Tonkay, D W

    1983-04-01

    After the accident at Three Mile Island, Unit 2 (TMI-2), on March 28, 1979, GEND stated its intention to support an effort to determine, as accurately as possible, the current mass balances of significant radiological toxic species. GEND gave two primary reasons for support this effort: (1) such exercises guarantee completeness of the studies, and (2) mass balance determinations ensure that all important sinks and attentuation mechanisms have been identified. The primary objective of the studies conducted by NUS Corporation was to support the goals of the GEND planners and to continue the mass balance effort by generating a preliminary accounting of key radioactive species following the TMI-2 accident. As a result of these studies, secondary objectives, namely a computerized data base and recommendations, have been achieved to support future work in this area.

  9. LAKE MICHIGAN MASS BALANCE ATRAZINE DATA

    EPA Science Inventory

    The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...

  10. LAKE MICHIGAN MASS BALANCE: MODELING PROCESS

    EPA Science Inventory

    The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...

  11. LAKE MICHIGAN MASS BALANCE PCB DATA

    EPA Science Inventory

    The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...

  12. Automated balance for determining true mass

    SciTech Connect

    Meyer, J.E.

    1982-08-08

    An automated weighing system utilizing a precision electronic balance and a small desktop computer is described. An example of a computer program demonstrating some of the capabilities attainable with this system is included. The program demonstrates a substitution weighing technique with true mass determination for the object being weighed.

  13. When Equal Masses Don't Balance

    ERIC Educational Resources Information Center

    Newburgh, Ronald; Peidle, Joseph; Rueckner, Wolfgang

    2004-01-01

    We treat a modified Atwood's machine in which equal masses do not balance because of being in an accelerated frame of reference. Analysis of the problem illuminates the meaning of inertial forces, d'Alembert's principle, the use of free-body diagrams and the selection of appropriate systems for the diagrams. In spite of the range of these…

  14. Invited Article: Time accurate mass flow measurements of solid-fueled systems

    NASA Astrophysics Data System (ADS)

    Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  15. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved. PMID:19044695

  16. MBA, mass balance area user guide

    SciTech Connect

    Russell, V.K.

    1994-09-22

    This document presents the Mass BAlance (MBA) database system user instructions which explain how to record the encapsulation activity from the K Basin as it is being performed on the computer, activity associated with keeping the work area safe from going critical, and administrative functions associated with the system. This document includes the user instructions, which also serve as the software requirements specification for the system implemented on the microcomputer. This includes suggested user keystrokes, examples of screens displayed by the system, and reports generated by the system. It shows how the system is organized, via menus and screens. It does not explain system design nor provide programmer instructions. MBA was written to equip the personnel performing K-Basin encapsulation tasks with a conservative estimate of accumulated mass during the processing of canisters into and out of the chute, primarily in the K-East basin.

  17. Greenland ice sheet mass balance: a review.

    PubMed

    Khan, Shfaqat A; Aschwanden, Andy; Bjørk, Anders A; Wahr, John; Kjeldsen, Kristian K; Kjær, Kurt H

    2015-04-01

    Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance and to ice discharge, which are forced by internal or external (atmospheric/oceanic/basal) fluctuations. Regardless of the measurement method, observations over the last two decades show an increase in ice loss rate, associated with speeding up of glaciers and enhanced melting. However, both ice discharge and melt-induced mass losses exhibit rapid short-term fluctuations that, when extrapolated into the future, could yield erroneous long-term trends. In this paper we review the GrIS mass loss over more than a century by combining satellite altimetry, airborne altimetry, interferometry, aerial photographs and gravimetry data sets together with modelling studies. We revisit the mass loss of different sectors and show that they manifest quite different sensitivities to atmospheric and oceanic forcing. In addition, we discuss recent progress in constructing coupled ice-ocean-atmosphere models required to project realistic future sea-level changes. PMID:25811969

  18. Mass balance study of gravitational mass movements in proglacial systems

    NASA Astrophysics Data System (ADS)

    Rohn, Joachim; Vehling, Lucas; Moser, Michael

    2013-04-01

    In the framework of the DFG joint research project PROSA (high resoluted measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps), mass movements are investigated geotechnically and process rates will be determined. As result, the actual mass balance for gravitational mass movements will be investigated exemplarily in an alpine glacier foreland in this PROSA sub-project. Alpine glacier forelands are defined as the area between the edge of the glacier and the moraines of the latest maximum in 1850. Since then, the region has become ice free due to the retreat of the glaciers. Because of this recent development, the glacier foreland differs considerably from the surrounding landscape and exhibits a rapid morphodynamic development. Mass movements like landslides and rock falls contribute a remarkable portion to total sediment transport in this area. As study area the region between Gepatschferner and Gepatsch backwater was choosen. The study area encompasses 62,5 km², lies at altitudes between 1759 and 3539 m a.s.l. and around 30 % are covered by glacier. Basic prerequisite is the geotechnical inventory-taking including the production of a geotechnical map. All mass balance studies for gravitational mass movements will base on this data collection. Short term behaviour during extreme meteorological events will be investigated as well, as the long term behaviour of the alpine slopes. The results of repeated high-resolution airborne laser scanning will contribute to a complete area-wide detection of surface changes. Detailed periodical terrestrial laser scanning of steep rock walls and their scree cones, as well as of slopes with soft rock will complete the data set. Spot tests with nets collecting the rock fall material, constructed on elected scree cones, allow the control and verification of the collected data. Mass movements in hard rock apart from rock fall processes, like rock creep, rock sliding and sagging will be monitored

  19. Balancing The Books - A Statistical Theory of Mass Balances

    NASA Astrophysics Data System (ADS)

    O'Kane, J. P.

    Mass budgets, without a theory, are an empirical "method of choice" in the environ- mental sciences. There is however a difficulty. Budgets are usually presented as perfect balances with no closing error, justified by the law of mass conservation. Neverthe- less, there is always a closing error! Declaring the error, e, simply raises the question of the acceptability of the budget. To answer this we need a reference quantity against which to compare e. This quantity can only be provided by theory and must also be a mathematical function of all the budget data. Two statistical techniques provide the theory and the function: (1) Probability sampling for estimating the terms of the bud- get, the closing error and their sampling precision, and (2) Hypothesis testing that any particular value of e is due to chance alone. Both techniques must satisfy R.A. Fisher's "vital requirement that the actual and physical conduct of experiments should govern the statistical procedure of their interpretation". Probability sampling is any sampling procedure governed by sets of random numbers. Applying the calculus of probability to the chosen procedure, delivers the theoretical probability distribution of the terms of the budget, and the closing error e', on the assumption that there are no systematic errors of measurement or missing fluxes. In the simplest case, we may use simple or stratified random sampling, defined on a spatio- temporal sampling frame, which covers the duration of the budget on the space-filling object. When the number of independent measurements (samples) is statistically large, the central limit theorem implies that e' is normally distributed. The assumption that there are no systematic errors of measurement, sampling bias, or missing fluxes, and the law of mass conservation, together imply that E(e') = 0. Unbiased, independent sampling of the terms of the budget makes the variance Var(e') equal to the sum of the sampling variances of the individual terms in the

  20. Glacier Mass Balance measurements in Bhutan

    NASA Astrophysics Data System (ADS)

    Jackson, Miriam; Tenzin, Sangay; Tashi, Tshering

    2014-05-01

    Long-term glacier measurements are scarce in the Himalayas, partly due to lack of resources as well as inaccessibility of most of the glaciers. There are over 600 glaciers in Bhutan in the Eastern Himalayas, but no long-term measurements. However, such studies are an important component of hydrological modelling, and especially relevant to the proposed expansion of hydropower resources in this area. Glaciological studies are also critical to understanding the risk of jøkulhlaups or GLOFS (glacier lake outburst floods) from glaciers in this region. Glacier mass balance measurements have been initiated on a glacier in the Chamkhar Chu region in central Bhutan by the Department of Hydro-Met Services in co-operation with the Norwegian Water Resources and Energy Directorate. Chamkhar Chu is the site of two proposed hydropower plants that will each generate over 700 MW, although the present and future hydrological regimes in this basin, and especially the contribution from glaciers, are not well-understood at present. There are about 94 glaciers in the Chamkhar Chhu basin and total glacier area is about 75 sq. km. The glaciers are relatively accessible for the Himalayas, most of them can be reached after only 4-5 days walk from the nearest road. One of the largest, Thana glacier, has been chosen as a mass balance glacier and measurements were initiated in 2013. The glacier area is almost 5 sq. km. and the elevation range is 500 m (5071 m a.s.l. to 5725 m a.s.l.) making it suitable as a benchmark glacier. Preliminary measurements on a smaller, nearby glacier that was visited in 2012 and 2013 showed 1 m of firn loss (about 0.6 m w.eq.) over 12 months.

  1. Sedimentation rate determination by radionuclides mass balances

    NASA Astrophysics Data System (ADS)

    Cazala, C.; Reyss, J. L.; Decossas, J. L.; Royer, A.

    2003-04-01

    In the past, uranium mining activity took place in the area around Limoges, France. Even nowadays, this activity results in an increase in the input and availability of radionuclides in aquifer reservoirs, making of this area a suitable site to better understand the behaviour of radionuclides in the surficial environment. Water was sampled monthly over the entire year 2001 in a brook that collects mine water and in a lake fed by this brook. Samples were filtered through 0.45μm filters to remove particles. Activities of 238U, 226Ra, 210Pb, 228Th and 228Ra were measured on particulate (>0.45μm), dissolved (<0.45μm) and total (unfiltered) fractions by gamma spectrometry in the well of a high efficiency, low background, germanium detector settled in an underground laboratory, protected from cosmic rays by 1700 m of rocks (LSM, CNRS-CEA, French Alps). Activities measured in particulate and dissolved fractions were summed and compared to the one measured in unfiltered water to test the filtration yield. No significant loss or contamination were detected. In the brook water, 70% of 238U, 60% of 226Ra and 80% of 210Pb are associated with particles. Activities associated with particles decrease drastically along with the velocity of current when the stream enters the lake. An annual mass balance of radionuclides carried by particles from the stream to the lake was used to determine the sedimentation rate in the lake. The flux of particles deduced from mass balance calculations based on five isotopes corresponds to the thickness of sediment accumulated since the creation of this artificial lake (that is, 1976). This study emphasises the usefulness of radionuclides as tracers for environmental investigations.

  2. Stable isotope mass balance of lakes: a contemporary perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; Birks, S. J.; YI, Y.; Jasechko, S.

    2013-12-01

    Stable isotopes are widely used in paleoclimate studies of lakes to reconstruct water balance and/or climatic conditions, but there are a variety of assumptions that are often made to simplify and operationalize the isotope transfer functions. Based on recent studies conducted on a wide range of lakes across North America, as well as a comprehensive compilation of existing data from around the globe, we present contemporary examples of stable-isotope mass-balance studies based on site-specific to regional lake datasets. We illustrate the need in most cases to understand and characterize the local climate and hydrological setting to accurately model the observed isotopic enrichment, as well as the importance of amount-weighting liquid fluxes and evaporation-flux-weighting vapour fluxes. Potential complications due to atmospheric feedback are also explored by presenting a new analysis of the Laurentian Great Lakes where we apply a model that considers the timing of evaporation, which occurs mainly in the winter, and accounts for downwind lake effects, humidity and isotopic build-up in the boundary layer. One future opportunity of lake-based paleoclimate research may be to develop controlled studies that allow for specific atmospheric or water-balance processes to be targeted and reconstructed. We also show relationships between selected water quality indicators and isotope-based water balance indicators that should, in principle, be preserved in the lake sediment record.

  3. A nitrogen mass balance for California

    NASA Astrophysics Data System (ADS)

    Liptzin, D.; Dahlgren, R. A.

    2010-12-01

    Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows

  4. Automated chemical mass balance receptor modeling

    SciTech Connect

    Hanrahan, P.L.; Core, J.E.

    1986-09-01

    Chemical mass balance (CMB) receptor modeling provides alternative or complementary methods to dispersion models for apportioning particulate source impacts. This method estimates particulate source contributions at a receptor by comparing the chemistry of the ambient aerosol to the chemistry of the emissions from the various sources. To minimize demands on the analyst and facilitate the processing of large volumes of data, an initial version of an automated CMB model has been developed and is operational on an IBM personal computer as well as on a Harris mini-mainframe computer. Although it currently does not have all the features of the more interactive manual model, it does show promise for reducing man-power demands. The automated model is based on an early version of the EPA CMB model, which has been converted to run on an IBM-PC or compatible microcomputer. It uses the effective variance method. The interactive manual model is also undergoing modifications under an EPA contract. Some of these new features of the EPA model have been included in one version of the automated model.

  5. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  6. Mass balance and exergy analysis of a fast pyrolysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass balance closure and exergetic efficiency is evaluated for a bench scale fast pyrolysis system. The USDA Agricultural Research Service (ARS) has developed this system for processing energy crops and agricultural residues for bio-oil (pyrolysis oil or pyrolysis liquids) production. Mass balance c...

  7. Accurate mass spectrometry based protein quantification via shared peptides.

    PubMed

    Dost, Banu; Bandeira, Nuno; Li, Xiangqian; Shen, Zhouxin; Briggs, Steven P; Bafna, Vineet

    2012-04-01

    In mass spectrometry-based protein quantification, peptides that are shared across different protein sequences are often discarded as being uninformative with respect to each of the parent proteins. We investigate the use of shared peptides which are ubiquitous (~50% of peptides) in mass spectrometric data-sets for accurate protein identification and quantification. Different from existing approaches, we show how shared peptides can help compute the relative amounts of the proteins that contain them. Also, proteins with no unique peptide in the sample can still be analyzed for relative abundance. Our article uses shared peptides in protein quantification and makes use of combinatorial optimization to reduce the error in relative abundance measurements. We describe the topological and numerical properties required for robust estimates, and use them to improve our estimates for ill-conditioned systems. Extensive simulations validate our approach even in the presence of experimental error. We apply our method to a model of Arabidopsis thaliana root knot nematode infection, and investigate the differential role of several protein family members in mediating host response to the pathogen. PMID:22414154

  8. DEVELOPMENT OF A CONTAMINANT TRANSPORT AND FATE MASS BALANCE CALIBRATION MODEL FOR LAKE MICHIGAN MASS BALANCE PROJECT (LMMBP)

    EPA Science Inventory

    Lake Michigan Mass Balance Project (LMMBP) was initiated to directly support the development of a lakewide management plan (LaMP) for Lake Michigan. A mass balance modeling approach is proposed for the project to addrss the realtionship between sources of toxic chemicals and thei...

  9. Assessing streamflow sensitivity to variations in glacier mass balance

    USGS Publications Warehouse

    O'Neel, Shad; Hood, Eran; Arendt, Anthony; Sass, Louis

    2014-01-01

    The purpose of this paper is to evaluate relationships among seasonal and annual glacier mass balances, glacier runoff and streamflow in two glacierized basins in different climate settings. We use long-term glacier mass balance and streamflow datasets from the United States Geological Survey (USGS) Alaska Benchmark Glacier Program to compare and contrast glacier-streamflow interactions in a maritime climate (Wolverine Glacier) with those in a continental climate (Gulkana Glacier). Our overall goal is to improve our understanding of how glacier mass balance processes impact streamflow, ultimately improving our conceptual understanding of the future evolution of glacier runoff in continental and maritime climates.

  10. Assessing streamflow sensitivity to variations in glacier mass balance

    NASA Astrophysics Data System (ADS)

    Oneel, S.; Hood, E. W.; Arendt, A. A.; Sass, L. C.; March, R. S.

    2013-12-01

    We examine long-term streamflow and mass balance data from two Alaskan glaciers located in climatically distinct basins: Gulkana Glacier, a continental glacier located in the Alaska Range, and Wolverine Glacier, a maritime glacier located in the Kenai Mountains. Both glaciers lost mass, primarily as a result of summer warming, and both basins exhibit increasing streamflow over the 1966-2011 study interval. We estimated total glacier runoff via summer mass balance, and separated the fraction related to annual mass imbalances. In both climates, the fraction of streamflow related to annual mass balance averages less than 20%, substantially smaller than the fraction related to total summer mass loss (>50%), which occurs even in years of glacier growth. The streamflow fraction related to changes in annual mass balance has increased only in the continental environment. In the maritime climate, where deep winter snowpacks and frequent rain events drive consistently high runoff, the magnitude of this streamflow fraction is small and highly variable, precluding detection of any existing trend. Changes in streamflow related to annual balance are often masked by interannual variability of maritime glacier mass balance, such that predicted scenarios of continued glacier recession are more likely to impact the quality and timing of runoff than the total basin water yield.

  11. Juneau Icefield Mass Balance Program 1946-2011

    NASA Astrophysics Data System (ADS)

    Pelto, M.; Kavanaugh, J.; McNeil, C.

    2013-05-01

    The mass balance records of the Lemon Creek Glacier and Taku Glacier observed by the Juneau Icefield Research Program are the longest continuous glacier mass balance data sets in North America. On Taku Glacier annual mass balance averaged +0.40 m a-1 from 1946-1985 and -0.08 m a-1 from 1986-2011. The recent mass balance decline has resulted in the cessation of the long term thickening of the glacier. Mean annual mass balance on Lemon Creek Glacier has declined from -0.30 m a-1 for the 1953-1985 period to -0.60 m a-1 during the 1986-2011 period. The overall mass balance change is -26.6 m water equivalent, a 29 m of ice thinning over the 55 yr. Probing transects above the transient snow line (TSL) indicate a consistent balance gradient from year to year. Observations of the rate of summer TSL rise on Lemon Creek and Taku Glacier indicate a comparatively consistent rate of 3.8 to 4.1 m d-1. The relationship between TSL on Lemon Creek and Taku Glacier to other Juneau Icefield glaciers, Norris, Mendenhall, Herbert, and Eagle, is strong with correlations exceeding 0.82 in all cases. doi:10.5065/D6NZ85N3

  12. Identifying Dynamically Induced Variability in Glacier Mass-Balance Records

    NASA Astrophysics Data System (ADS)

    Christian, J. E.; Siler, N.; Koutnik, M. R.; Roe, G.

    2015-12-01

    Glacier mass-balance (i.e., accumulation vs. ablation) provides a direct indicator of a glacier's relationship with climate. However, mass-balance records contain noise due to internal climate variability (i.e., from stochastic fluctuations in large-scale atmospheric circulation), which can obscure or bias trends in these relatively short timeseries. This presents a challenge in correctly identifying the signature of anthropogenic change. "Dynamical adjustment" is a technique that identifies patterns of variance shared between a climate timeseries of interest (e.g., mass-balance) and independent "predictor" variables associated with large-scale circulation (e.g., Sea Level Pressure, SLP, or Sea Surface Temperature, SST). Extracting the component of variance due to internal variability leaves a residual timeseries for which trends can more confidently be attributed to external forcing. We apply dynamical adjustments based on Partial Least Squares Regression to mass-balance records from South Cascade Glacier in Washington State and Wolverine and Gulkana Glaciers in Alaska, independently analyzing seasonal balance records to assess the dynamical influences on winter accumulation and summer ablation. Seasonally averaged North Pacific SLP and SST fields perform comparably as predictor variables, explaining 50-60% of the variance in winter balance and 30-40% of variance in summer balance for South Cascade and Wolverine Glaciers. Gulkana glacier, located further inland than the other two glaciers, is less closely linked to North Pacific climate variability, with the predictors explaining roughly one-third of variance in its winter and summer balance. We analyze the significance of linear trends in the raw and adjusted mass-balance records, and find that for all three glaciers, a) summer balance shows a statistically significant downward trend that is not substantially altered when dynamically induced variability is removed, and b) winter balance shows no statistically

  13. Enforcing elemental mass and energy balances for reduced order models

    SciTech Connect

    Ma, J.; Agarwal, K.; Sharma, P.; Lang, Y.; Zitney, S.; Gorton, I.; Agawal, D.; Miller, D.

    2012-01-01

    Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length, as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a

  14. Understanding the Role of Wind in Reducing the Surface Mass Balance Estimates over East Antarctica

    NASA Astrophysics Data System (ADS)

    Das, I.; Scambos, T. A.; Koenig, L.; Creyts, T. T.; Bell, R. E.; van den Broeke, M. R.; Lenaerts, J.; Paden, J. D.

    2014-12-01

    Accurate quantification of surface snow-accumulation over Antarctica is important for mass balance estimates and climate studies based on ice core records. An improved estimate of surface mass balance must include the significant role near-surface wind plays in the sublimation and redistribution of snow across Antarctica. We have developed an empirical model based on airborne radar and lidar observations, and modeled surface mass balance and wind fields to produce a continent-wide prediction of wind-scour zones over Antarctica. These zones have zero to negative surface mass balance, are located over locally steep ice sheet areas (>0.002) and controlled by bedrock topography. The near-surface winds accelerate over these zones, eroding and sublimating the surface snow. This scouring results in numerous localized regions (≤ 200 km2) with reduced surface accumulation. Each year, tens of gigatons of snow on the Antarctic ice sheet are ablated by persistent near-surface katabatic winds over these wind-scour zones. Large uncertainties remain in the surface mass balance estimates over East Antarctica as climate models do not adequately represent the small-scale physical processes that lead to mass loss through sublimation or redistribution over the wind-scour zones. In this study, we integrate Operation IceBridge's snow radar over the Recovery Ice Stream with a series of ice core dielectric and depth-density profiles for improved surface mass balance estimates that reflect the mass loss over the wind-scour zones. Accurate surface mass balance estimates from snow radars require spatially variable depth-density profiles. Using an ensemble of firn cores, MODIS-derived surface snow grain size, modeled accumulation rates and surface temperatures from RACMO2, we assemble spatially variable depth-density profiles and use our mapping of snow density variations to estimate layer mass and net accumulation rates from snow radar layer data. Our study improves the quantification of

  15. BTD building uranium mass balance study

    SciTech Connect

    Sutter, S.L.; Johnston, J.W.; Glissmeyer, J.A.; Athey, G.F.

    1985-01-01

    Fifteen test firings of depleted uranium (DU) munitions were made during the qualification study of the new target building at the BTD Range operated by the US Army Combat Systems Test Activity (CSTA) at Aberdeen Proving Ground, Maryland. Following these test firings, the total mass and mass distribution of DU inside the BTD facility was determined to define decontamination requirements for the new target building. 4 references, 17 figures, 17 tables.

  16. Mass balance of the Antarctic ice sheet.

    PubMed

    Wingham, D J; Shepherd, A; Muir, A; Marshall, G J

    2006-07-15

    The Antarctic contribution to sea-level rise has long been uncertain. While regional variability in ice dynamics has been revealed, a picture of mass changes throughout the continental ice sheet is lacking. Here, we use satellite radar altimetry to measure the elevation change of 72% of the grounded ice sheet during the period 1992-2003. Depending on the density of the snow giving rise to the observed elevation fluctuations, the ice sheet mass trend falls in the range -5-+85Gtyr-1. We find that data from climate model reanalyses are not able to characterise the contemporary snowfall fluctuation with useful accuracy and our best estimate of the overall mass trend-growth of 27+/-29Gtyr-1-is based on an assessment of the expected snowfall variability. Mass gains from accumulating snow, particularly on the Antarctic Peninsula and within East Antarctica, exceed the ice dynamic mass loss from West Antarctica. The result exacerbates the difficulty of explaining twentieth century sea-level rise. PMID:16782603

  17. Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, U.S.A

    USGS Publications Warehouse

    Cox, L.H.; March, R.S.

    2004-01-01

    The net mass balance on Gulkana Glacier, Alaska, U.S.A., has been measured since 1966 by the glaciological method, in which seasonal balances are measured at three index sites and extrapolated over large areas of the glacier. Systematic errors can accumulate linearly with time in this method. Therefore, the geodetic balance, in which errors are less time-dependent, was calculated for comparison with the glaciological method. Digital elevation models of the glacier in 1974, 1993 and 1999 were prepared using aerial photographs, and geodetic balances were computed, giving - 6.0??0.7 m w.e. from 1974 to 1993 and - 11.8??0.7 m w.e. from 1974 to 1999. These balances are compared with the glaciological balances over the same intervals, which were - 5.8??0.9 and -11.2??1.0 m w.e. respectively; both balances show that the thinning rate tripled in the 1990s. These cumulative balances differ by <6%. For this close agreement, the glaciologically measured mass balance of Gulkana Glacier must be largely free of systematic errors and be based on a time-variable area-altitude distribution, and the photography used in the geodetic method must have enough contrast to enable accurate photogrammetry.

  18. A Simple Watt Balance for the Absolute Determination of Mass

    ERIC Educational Resources Information Center

    Quinn, Terry; Quinn, Lucas; Davis, Richard

    2013-01-01

    A watt balance is an electromechanical device that allows a mass to be determined in terms of measurable electrical and mechanical quantities, themselves traceable to the fundamental constants of physics. International plans are well advanced to redefine the unit of mass, the kilogram, in terms of a fixed numerical value for the Planck constant. A…

  19. Modelling mass balance and temperature sensitivity on Shallap glacier, Peru

    NASA Astrophysics Data System (ADS)

    Gurgiser, W.; Marzeion, B.; Nicholson, L. I.; Ortner, M.; Kaser, G.

    2013-12-01

    Due to pronounced dry seasons in the tropical Andes of Peru glacier melt water is an important factor for year-round water availability for the local society. Andean glaciers have been shrinking during the last decades but present day's magnitudes of glacier mass balance and sensitivities to changes in atmospheric drivers are not well known. Therefore we have calculated spatial distributed glacier mass and energy balance of Shallap glacier (4700 m - 5700 m, 9°S), Cordillera Blanca, Peru, on hourly time steps for the period Sept. 2006 to Aug. 2008 with records from an AWS close to the glacier as model input. Our model evaluation against measured surface height change in the ablation zone of the glacier yields our model results to be reasonable and within an expectable error range. For the mass balance characteristics we found similar vertical gradients and accumulation area ratios but markedly differences in specific mass balance from year to year. The differences were mainly caused by large differences in annual ablation in the glacier area below 5000m. By comparing the meteorological conditions in both years we found for the year with more negative mass balance that total precipitation was only slightly lower but mean annual temperature was higher, thus the fraction of liquid precipitation and the snow line altitude too. As shortwave net energy turned out to be the key driver of ablation in all seasons the deviations in snow line altitude and surface albedo explain most of the deviations in available melt energy. Hence, mass balance of tropical Shallap glacier was not only sensitive to precipitation but also to temperature which has not been expected for glaciers in the Peruvian Andes before. We furthermore have investigated impacts of increasing temperature due to its multiple effects on glacier mass and energy balance (fraction of liquid precipitation, long wave incoming radiation, sensible and latent heat flux). Presenting these results should allow for better

  20. Compact Sensitive Piezoelectric Mass Balance for Measurement of Unconsolidated Materials in Space

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert; Bar-Cohen, Yoseph; Yen, Jesse T.

    2010-01-01

    In many in-situ instruments information about the mass of the sample could aid in the interpretation of the data and portioning instruments might require an accurate sizing of the sample mass before dispensing the sample. In addition, on potential sample return missions a method to directly assess the captured sample size would be required to determine if the sampler could return or needs to continue attempting to acquire sample. In an effort to meet these requirements piezoelectric balances were developed using flextensional actuators which are capable of monitoring the mass using two methods. A piezoelectric balance could be used to measure mass directly by monitoring the voltage developed across the piezoelectric which is linear with force, or it could be used in resonance to produce a frequency change proportional to the mass change. In this case of the latter, the piezoelectric actuator/balance would be swept in frequency through its fundamental resonance. If a mass is added to the balance the resonance frequency would shift down proportionally to the mass. By monitoring the frequency shift the mass could be determined. This design would allow for two independent measurements of the mass. In microgravity environments spacecraft thrusters could be used to provide acceleration in order to produce the required force for the first technique or to bring the mass into contact with the balance in the second approach. In addition, the measuring actuators, if driven at higher voltages, could be used to fluidize the powder to aid sample movement. In this paper, we outline some of our design considerations and present the results of a few prototype balances that we have developed.

  1. CMB8: New software for chemical mass balance receptor modeling

    SciTech Connect

    Lewis, C.W.

    1997-12-31

    The Chemical Mass Balance (CMB) method for receptor modeling of ambient air pollutants has been in use for over two decades. over the past year the U.S. Environmental Protection Agency`s Office of Research and Development and Office of Air Quality Planning and standards have jointly sponsored the development of a new generation of CMB software, CMB8. Developmental work has been performed by the Desert Research Institute, Reno, NV. Changes embodied in CMB8 include (1) switch from a DOS-based to a Windows-based environment, (2) increased attention to volatile organic compounds (VOC) applications, (3) correction of some flaws in the previous version (CMB7), (4) more options for input and output data formats, (5) addition of a more accurate least squares computational algorithm, (6) a new treatment of source collinearity, (7) multiple defaults for sources and fitting species, and (8) choice of fitting criteria. Details of the changes and the procedure for obtaining CMB8 are given.

  2. Accurate Mass Determinations in Decay Chains with Missing Energy

    SciTech Connect

    Cheng, H.-C; Gunion, John F.; Han Zhenyu; Engelhardt, Dalit; McElrath, Bob

    2008-06-27

    Many beyond the standard model theories include a stable dark matter candidate that yields missing or invisible energy in collider detectors. If observed at the CERN Large Hadron Collider, we must determine if its mass and other properties (and those of its partners) predict the correct dark matter relic density. We give a new procedure for determining its mass with small error.

  3. Accurate mass determinations in decay chains with missing energy.

    PubMed

    Cheng, Hsin-Chia; Engelhardt, Dalit; Gunion, John F; Han, Zhenyu; McElrath, Bob

    2008-06-27

    Many beyond the standard model theories include a stable dark matter candidate that yields missing or invisible energy in collider detectors. If observed at the CERN Large Hadron Collider, we must determine if its mass and other properties (and those of its partners) predict the correct dark matter relic density. We give a new procedure for determining its mass with small error. PMID:18643654

  4. 50 years of mass balance observations at Vernagtferner, Eastern Alps

    NASA Astrophysics Data System (ADS)

    Braun, Ludwig; Mayer, Christoph

    2016-04-01

    The determination and monitoring of the seasonal and annual glacier mass balances of Vernagtferner, Austria, started in 1964 by the Commission of Glaciology, Bavarian Academy of Sciences. Detailed and continuous climate- and runoff measurements complement this mass balance series since 1974. Vernagtferner attracted the attention of scientists since the beginning of the 17th century due to its rapid advances and the resulting glacier lake outburst floods in the Ötztal valley. This is one reason for the first photogrammetric survey in 1889, which was followed by frequent topographic surveys, adding up to more than ten digital elevation models of the glacier until today. By including the known maximum glacier extent at the end of the Little Ice Age in 1845, the geodetic glacier volume balances cover a time span of almost 170 years. The 50 years of glacier mass balance and 40 years of water balance in the drainage basin are therefore embedded in a considerably longer period of glacier evolution, allowing an interpretation within an extended frame of climatology and ice dynamics. The direct mass balance observations cover not only the period of alpine-wide strong glacier mass loss since the beginning of the 1990s. The data also contain the last period of glacier advances between 1970 and 1990. The combination of the observed surface mass exchange and the determined periodic volumetric changes allows a detailed analysis of the dynamic reaction of the glacier over the period of half a century. The accompanying meteorological observations are the basis for relating these reactions to the climatic changes during this period. Vernagtferner is therefore one of the few glaciers in the world, where a very detailed glacier-climate reaction was observed for many decades and can be realistically reconstructed back to the end of the Little Ice Age.

  5. Juneau Icefield Mass Balance Program 1946-2011

    NASA Astrophysics Data System (ADS)

    Pelto, M.; Kavanaugh, J.; McNeil, C.

    2013-11-01

    The annual surface mass balance records of the Lemon Creek Glacier and Taku Glacier observed by the Juneau Icefield Research Program are the longest continuous glacier annual mass balance data sets in North America. Annual surface mass balance (Ba) measured on Taku Glacier averaged +0.40 m a-1 from 1946-1985, and -0.08 m a-1 from 1986-2011. The recent annual mass balance decline has resulted in the cessation of the long-term thickening of the glacier. Mean Ba on Lemon Creek Glacier has declined from -0.30 m a-1 for the 1953-1985 period to -0.60 m a-1 during the 1986-2011 period. The cumulative change in annual surface mass balance is -26.6 m water equivalent, a 29 m of ice thinning over the 55 yr. Snow-pit measurements spanning the accumulation zone, and probing transects above the transient snow line (TSL) on Taku Glacier, indicate a consistent surface mass balance gradient from year to year. Observations of the rate of TSL rise on Lemon Creek Glacier and Taku Glacier indicate a comparatively consistent migration rate of 3.8 to 4.1 m d-1. The relationship between TSL on Lemon Creek Glacier and Taku Glacier to other Juneau Icefield glaciers (Norris, Mendenhall, Herbert, and Eagle) is strong, with correlations exceeding 0.82 in all cases. doi:10.5065/D6NZ85N3

  6. Accurate mass tag retention time database for urine proteome analysis by chromatography--mass spectrometry.

    PubMed

    Agron, I A; Avtonomov, D M; Kononikhin, A S; Popov, I A; Moshkovskii, S A; Nikolaev, E N

    2010-05-01

    Information about peptides and proteins in urine can be used to search for biomarkers of early stages of various diseases. The main technology currently used for identification of peptides and proteins is tandem mass spectrometry, in which peptides are identified by mass spectra of their fragmentation products. However, the presence of the fragmentation stage decreases sensitivity of analysis and increases its duration. We have developed a method for identification of human urinary proteins and peptides. This method based on the accurate mass and time tag (AMT) method does not use tandem mass spectrometry. The database of AMT tags containing more than 1381 AMT tags of peptides has been constructed. The software for database filling with AMT tags, normalizing the chromatograms, database application for identification of proteins and peptides, and their quantitative estimation has been developed. The new procedures for peptide identification by tandem mass spectra and the AMT tag database are proposed. The paper also lists novel proteins that have been identified in human urine for the first time. PMID:20632944

  7. A highly accurate method for the determination of mass and center of mass of a spacecraft

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Trubert, M. R.; Egwuatu, A.

    1978-01-01

    An extremely accurate method for the measurement of mass and the lateral center of mass of a spacecraft has been developed. The method was needed for the Voyager spacecraft mission requirement which limited the uncertainty in the knowledge of lateral center of mass of the spacecraft system weighing 750 kg to be less than 1.0 mm (0.04 in.). The method consists of using three load cells symmetrically located at 120 deg apart on a turntable with respect to the vertical axis of the spacecraft and making six measurements for each load cell. These six measurements are taken by cyclic rotations of the load cell turntable and of the spacecraft, about the vertical axis of the measurement fixture. This method eliminates all alignment, leveling, and load cell calibration errors for the lateral center of mass determination, and permits a statistical best fit of the measurement data. An associated data reduction computer program called MASCM has been written to implement this method and has been used for the Voyager spacecraft.

  8. LAKE MICHIGAN MASS BALANCE: ATRAZINE MODELING AND LOADS

    EPA Science Inventory

    The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...

  9. Mass balance approaches to understanding evolution of dripwater chemistry

    NASA Astrophysics Data System (ADS)

    Fairchild, I. J.; Baker, A.; Andersen, M. S.; Treble, P. C.

    2015-12-01

    Forward and inverse modelling of dripwater chemistry is a fast-developing area in speleothem science. Such approaches can incorporate theoretical, parameterized or observed relationships between forcing factors and water composition, but at the heart is mass balance: a fundamental principle that provides important constraints. Mass balance has been used in speleothem studies to trace the evolution of dissolved inorganic carbon and carbon isotopes from soil to cave, and to characterize the existence and quantification of prior calcite precipitation (PCP) based on ratios of Mg and Sr to Ca. PCP effects can dominate slow drips, whereas fast drips are more likely to show a residual variability linked to soil-biomass processes. A possible configuration of a more complete mass balance model is illustrated in the figure. Even in humid temperate climates, evapotranspiration can be 50% of total atmospheric precipitation leading to substantially raised salt contents and there can be significant exchange with biomass. In more arid settings, at least seasonal soil storage of salts is likely. Golgotha Cave in SW Australia is in a Mediterranean climate with a strong summer soil moisture deficit. The land surface is forested leading to large ion fluxes related to vegetation. There are also periodic disturbances related to fire. Mass balance approaches have been applied to an 8-year monitoring record. Inter-annual trends of elements coprecipitated in speleothems from fast drips are predicted to be dominated by biomass effects.

  10. LAKE MICHIGAN MASS BALANCE STUDY: PROGNOSIS FOR PCBS

    EPA Science Inventory

    The Lake Michigan Mass Balance Study was conducted to measure and model nutrients, atrazine, PCBs, trans-nonachlor, and mercury to gain a better understanding of the transport and fate of these substances within the system and to aid managers in the environmental decision-making ...

  11. MODELLING SEDIMENT TRANSPORT FOR THE LAKE MICHIGAN MASS BALANCE PROJECT

    EPA Science Inventory

    A sediment transport model is one component of the overall ensemble of models being developed for the Lake Michigan Mass Balance. The SEDZL model is being applied to simulate the fine-grained sediment transport in Lake Michigan for the 1982-1983 and 1994-1995 periods. Model perf...

  12. CHEMICAL MASS BALANCE MODEL: EPA-CMB8.2

    EPA Science Inventory

    The Chemical Mass Balance (CMB) method has been a popular approach for receptor modeling of ambient air pollutants for over two decades. For the past few years the U.S. Environmental Protection Agency's Office of Research and Development (ORD) and Office of Air Quality Plannin...

  13. A surface mass balance model for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Bougamont, Marion; Bamber, Jonathan L.; Greuell, Wouter

    2005-12-01

    A surface mass balance model aimed at being coupled to a Global Circulation Model (GCM) for future climate prediction is described and tested for the Greenland Ice Sheet. The model builds on previous modeling designed to be forced by automatic weather station data, and includes surface energy balance as well as processes occurring near the surface such as water percolation and refreezing. Surface albedo is calculated with a new scheme that differentiates the timescale for aging of wet and dry snow and incorporates the effect of a thin layer of water and/or fresh snow at the surface. The model was driven with automatic weather station data from two sites located in the ablation zone in the Kangerlussuaq area (West Greenland), and calculated reasonable annual mass balance values (within 10% in seven out of eight cases) for four individual and consecutive years (1998-2001), using both measured and calculated albedo. This implies that the albedo parameterization is adequate and climate feedbacks affecting the mass balance are well captured. The model was then applied to a distributed 20-km-resolution grid covering the whole ice sheet, and forced with 10 years of the European Centre for Medium-range Weather Forecast (ECMWF) reanalysis (ERA-40) data. With the aim of coupling the model to a GCM, this study focuses on the ability to model the interannual variability in mass balance rather than to assess the present state of balance of the ice sheet. Modeled spatial and temporal wet zone extent compares well with information derived from passive microwave satellite data.

  14. Accurate, reliable control of process gases by mass flow controllers

    SciTech Connect

    Hardy, J.; McKnight, T.

    1997-02-01

    The thermal mass flow controller, or MFC, has become an instrument of choice for the monitoring and controlling of process gas flow throughout the materials processing industry. These MFCs are used on CVD processes, etching tools, and furnaces and, within the semiconductor industry, are used on 70% of the processing tools. Reliability and accuracy are major concerns for the users of the MFCs. Calibration and characterization technologies for the development and implementation of mass flow devices are described. A test facility is available to industry and universities to test and develop gas floe sensors and controllers and evaluate their performance related to environmental effects, reliability, reproducibility, and accuracy. Additional work has been conducted in the area of accuracy. A gravimetric calibrator was invented that allows flow sensors to be calibrated in corrosive, reactive gases to an accuracy of 0.3% of reading, at least an order of magnitude better than previously possible. Although MFCs are typically specified with accuracies of 1% of full scale, MFCs may often be implemented with unwarranted confidence due to the conventional use of surrogate gas factors. Surrogate gas factors are corrections applied to process flow indications when an MFC has been calibrated on a laboratory-safe surrogate gas, but is actually used on a toxic, or corrosive process gas. Previous studies have indicated that the use of these factors may cause process flow errors of typically 10%, but possibly as great as 40% of full scale. This paper will present possible sources of error in MFC process gas flow monitoring and control, and will present an overview of corrective measures which may be implemented with MFC use to significantly reduce these sources of error.

  15. The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere-glacier mass balance model

    NASA Astrophysics Data System (ADS)

    Aas, Kjetil S.; Dunse, Thorben; Collier, Emily; Schuler, Thomas V.; Berntsen, Terje K.; Kohler, Jack; Luks, Bartłomiej

    2016-05-01

    In this study we simulate the climatic mass balance of Svalbard glaciers with a coupled atmosphere-glacier model with 3 km grid spacing, from September 2003 to September 2013. We find a mean specific net mass balance of -257 mm w.e. yr-1, corresponding to a mean annual mass loss of about 8.7 Gt, with large interannual variability. Our results are compared with a comprehensive set of mass balance, meteorological, and satellite measurements. Model temperature biases of 0.19 and -1.9 °C are found at two glacier automatic weather station sites. Simulated climatic mass balance is mostly within about 100 mm w.e. yr-1 of stake measurements, and simulated winter accumulation at the Austfonna ice cap shows mean absolute errors of 47 and 67 mm w.e. yr-1 when compared to radar-derived values for the selected years 2004 and 2006. Comparison of modeled surface height changes from 2003 to 2008, and satellite altimetry reveals good agreement in both mean values and regional differences. The largest deviations from observations are found for winter accumulation at Hansbreen (up to around 1000 mm w.e. yr-1), a site where sub-grid topography and wind redistribution of snow are important factors. Comparison with simulations using 9 km grid spacing reveal considerable differences on regional and local scales. In addition, 3 km grid spacing allows for a much more detailed comparison with observations than what is possible with 9 km grid spacing. Further decreasing the grid spacing to 1 km appears to be less significant, although in general precipitation amounts increase with resolution. Altogether, the model compares well with observations and offers possibilities for studying glacier climatic mass balance on Svalbard both historically as well as based on climate projections.

  16. Method of Manufacturing a Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1999-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers.The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  17. A Reconciled Estimate of Ice-Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Shepherd, Andrew; Ivins, Erik R.; Geruo, A.; Barletta, Valentia R.; Bentley, Mike J.; Bettadpur, Srinivas; Briggs, Kate H.; Bromwich, David H.; Forsberg, Rene; Galin, Natalia; Horwath, Martin; Jacobs, Stan; Joughin, Ian; King, Matt A.; Lenaerts, Jan T. M.; Li, Jilu; Ligtenberg, Stefan R. M.; Luckman, Adrian; Luthcke, Scott B.; McMillan, Malcolm; Meister, Rakia; Milne, Glenn; Mouginot, Jeremie; Muir, Alan; Nicolas,Julien P.; Paden, John; Payne, Antony J.; Pritchard, Hamish; Rignot, Eric; Rott, Helmut; Sorensen, Louise Sandberg; Scambos, Ted A.; Yi, Dohngui; Zwally, H. Jay

    2012-01-01

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup -1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup -1) to the rate of global sea-level rise.

  18. A reconciled estimate of ice-sheet mass balance.

    PubMed

    Shepherd, Andrew; Ivins, Erik R; A, Geruo; Barletta, Valentina R; Bentley, Mike J; Bettadpur, Srinivas; Briggs, Kate H; Bromwich, David H; Forsberg, René; Galin, Natalia; Horwath, Martin; Jacobs, Stan; Joughin, Ian; King, Matt A; Lenaerts, Jan T M; Li, Jilu; Ligtenberg, Stefan R M; Luckman, Adrian; Luthcke, Scott B; McMillan, Malcolm; Meister, Rakia; Milne, Glenn; Mouginot, Jeremie; Muir, Alan; Nicolas, Julien P; Paden, John; Payne, Antony J; Pritchard, Hamish; Rignot, Eric; Rott, Helmut; Sørensen, Louise Sandberg; Scambos, Ted A; Scheuchl, Bernd; Schrama, Ernst J O; Smith, Ben; Sundal, Aud V; van Angelen, Jan H; van de Berg, Willem J; van den Broeke, Michiel R; Vaughan, David G; Velicogna, Isabella; Wahr, John; Whitehouse, Pippa L; Wingham, Duncan J; Yi, Donghui; Young, Duncan; Zwally, H Jay

    2012-11-30

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year(-1) to the rate of global sea-level rise. PMID:23197528

  19. Alignment of capillary electrophoresis-mass spectrometry datasets using accurate mass information.

    PubMed

    Nevedomskaya, Ekaterina; Derks, Rico; Deelder, André M; Mayboroda, Oleg A; Palmblad, Magnus

    2009-12-01

    Capillary electrophoresis-mass spectrometry (CE-MS) is a powerful technique for the analysis of small soluble compounds in biological fluids. A major drawback of CE is the poor migration time reproducibility, which makes it difficult to combine data from different experiments and correctly assign compounds. A number of alignment algorithms have been developed but not all of them can cope with large and irregular time shifts between CE-MS runs. Here we present a genetic algorithm designed for alignment of CE-MS data using accurate mass information. The utility of the algorithm was demonstrated on real data, and the results were compared with one of the existing packages. The new algorithm showed a significant reduction of elution time variation in the aligned datasets. The importance of mass accuracy for the performance of the algorithm was also demonstrated by comparing alignments of datasets from a standard time-of-flight (TOF) instrument with those from the new ultrahigh resolution TOF maXis (Bruker Daltonics). PMID:19826795

  20. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  1. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  2. Isospin effects on the mass dependence of the balance energy

    SciTech Connect

    Gautam, Sakshi; Sood, Aman D.

    2010-07-15

    We study the effect of isospin degree of freedom on balance energy throughout the mass range between 50 and 350 for two sets of isotopic systems with N/A= 0.54 and 0.57 as well as isobaric systems with N/A= 0.5 and 0.58. Our findings indicate that different values of balance energy for two isobaric systems may be mainly due to the Coulomb repulsion. We also demonstrate clearly the dominance of Coulomb repulsion over symmetry energy.

  3. Mass-balance Approach to Interpreting Weathering Reactions in Watershed Systems

    NASA Astrophysics Data System (ADS)

    Bricker, O. P.; Jones, B. F.; Bowser, C. J.

    2003-12-01

    The mass-balance approach is conceptually simple and has found widespread applications in many fields over the years. For example, chemists use mass balance (Stumm and Morgan, 1996) to sum the various species containing an element in order to determine the total amount of that element in the system (free ion, complexes). Glaciologists use mass balance to determine the changes in mass of glaciers ( Mayo et al., 1972 and references therein). Groundwater hydrologists use this method to interpret changes in water balance in groundwater systems ( Rasmussen and Andreasen, 1959; Bredehoeft et al., 1982; Heath, 1983; Konikow and Mercer, 1988; Freeze and Cherry, 1979; Ingebritsen and Sanford, 1998). This method has also been used to determine changes in chemistry along a flow path ( Plummer et al., 1983; Bowser and Jones, 1990) and to quantify lake hydrologic budgets using stable isotopes ( Krabbenhoft et al., 1994). Blum and Erel (see Chapter 5.12) discuss the use of strontium isotopes, Chapelle (see Chapter 5.14) treats carbon isotopes in groundwater, and Kendall and Doctor (see Chapter 5.11) and Kendall and McDonnell (1998) discuss the use of stable isotopes in mass balance. Although the method is conceptually simple, the parameters that define a mass balance are not always easy to measure. Watershed investigators use mass balance to determine physical and chemical changes in watersheds ( Garrels and Mackenzie, 1967; Plummer et al., 1991; O'Brien et al., 1997; Drever, 1997). Here we focus on describing the mass-balance approach to interpret weathering reactions in watershed systems including shallow groundwater.Because mass balance is simply an accounting of the flux of material into a system minus the flux of material out of the system, the geochemical mass-balance approach is well suited to interpreting weathering reactions in watersheds (catchments) and in other environmental settings (Drever, 1997). It is, perhaps, the most accurate and reliable way of defining

  4. Origin of howardites, diogenites and eucrites - A mass balance constraint

    NASA Technical Reports Server (NTRS)

    Warren, P. H.

    1985-01-01

    Two petrogenetic models for the noncumulate-basaltic parts of howardite meteorites are discussed. A mass balance constraint is developed which indicates that more than half of the basaltic components in howardites formed as residual liquids from fractional crystallization of melts that had earlier produced diogentelike pyroxene cumulate components. Other model constriants involving scandium trends, clustering near olivine-pyroxene-plagioclase peritectic, and MgO/(MgO + FeO) ratios are discussed.

  5. Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    NASA Technical Reports Server (NTRS)

    Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (< or = 200 sq km) with reduced surface accumulation. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.

  6. The Ice Sheet Mass Balance Inter-comparison Exercise

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Ivins, E. R.

    2015-12-01

    Fluctuations in the mass of ice stored in Antarctica and Greenland are of considerable societal importance. The Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) is a joint-initiative of ESA and NASA aimed at producing a single estimate of the global sea level contribution to polar ice sheet losses. Within IMBIE, estimates of ice sheet mass balance are developed from a variety of satellite geodetic techniques using a common spatial and temporal reference frame and a common appreciation of the contributions due to external signals. The project brings together the laboratories and space agencies that have been instrumental in developing independent estimates of ice sheet mass balance to date. In its first phase, IMBIE involved 27 science teams, and delivered a first community assessment of ice sheet mass imbalance to replace 40 individual estimates. The project established that (i) there is good agreement between the three main satellite-based techniques for estimating ice sheet mass balance, (ii) combining satellite data sets leads to significant improvement in certainty, (iii) the polar ice sheets contributed 11 ± 4 mm to global sea levels between 1992 and 2012, and (iv) that combined ice losses from Antarctica and Greenland have increased over time, rising from 10% of the global trend in the early 1990's to 30% in the late 2000's. Demand for an updated assessment has grown, and there are now new satellite missions, new geophysical corrections, new techniques, and new teams producing data. The period of overlap between independent satellite techniques has increased from 5 to 12 years, and the full period of satellite data over which an assessment can be performed has increased from 19 to 40 years. It is also clear that multiple satellite techniques are required to confidently separate mass changes associated with snowfall and ice dynamical imbalance - information that is of critical importance for climate modelling. This presentation outlines the approach

  7. DeconMSn: A Software Tool for accurate parent ion monoisotopic mass determination for tandem mass spectra

    SciTech Connect

    Mayampurath, Anoop M.; Jaitly, Navdeep; Purvine, Samuel O.; Monroe, Matthew E.; Auberry, Kenneth J.; Adkins, Joshua N.; Smith, Richard D.

    2008-04-01

    We present a new software tool for tandem MS analyses that: • accurately calculates the monoisotopic mass and charge of high–resolution parent ions • accurately operates regardless of the mass selected for fragmentation • performs independent of instrument settings • enables optimal selection of search mass tolerance for high mass accuracy experiments • is open source and thus can be tailored to individual needs • incorporates a SVM-based charge detection algorithm for analyzing low resolution tandem MS spectra • creates multiple output data formats (.dta, .MGF) • handles .RAW files and .mzXML formats • compatible with SEQUEST, MASCOT, X!Tandem

  8. Selenium mass balance in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Naftz, D.L.

    2009-01-01

    A mass balance for Se in the south arm of the Great Salt Lake was developed for September 2006 to August 2007 of monitoring for Se loads and removal flows. The combined removal flows (sedimentation and volatilization) totaled to a geometric mean value of 2079??kg Se/yr, with the estimated low value being 1255??kg Se/yr, and an estimated high value of 3143??kg Se/yr at the 68% confidence level. The total (particulates + dissolved) loads (via runoff) were about 1560??kg Se/yr, for which the error is expected to be ?? 15% for the measured loads. Comparison of volatilization to sedimentation flux demonstrates that volatilization rather than sedimentation is likely the major mechanism of selenium removal from the Great Salt Lake. The measured loss flows balance (within the range of uncertainties), and possibly surpass, the measured annual loads. Concentration histories were modeled using a simple mass balance, which indicated that no significant change in Se concentration was expected during the period of study. Surprisingly, the measured total Se concentration increased during the period of the study, indicating that the removal processes operate at their low estimated rates, and/or there are unmeasured selenium loads entering the lake. The selenium concentration trajectories were compared to those of other trace metals to assess the significance of selenium concentration trends. ?? 2008 Elsevier B.V.

  9. Mass and energy balance of the cold Io torus

    NASA Technical Reports Server (NTRS)

    Moreno, M. A.; Barbosa, D. D.

    1986-01-01

    A new model of the cold Io torus is described. Ions and energy are injected into the system by independent processes so that the mass balance is isolated from the energy balance. The primary source of energy is local ionization and acceleration of hot pickup ions resulting from charge exchange between thermal ions and an extended cloud of Iogenic sulfur and oxygen atoms. The primary energy loss mechanism of the plasma is collisionally excited line emission at optical wavelengths. The primary ion source is radial diffusion inward from the hot torus on a time scale of 140-710 days. The primary ion loss mechanism is a novel two-step enhanced recombination mechanism involving charge exchange between thermal ions and an extended cloud of neutral SO2 molecules, followed by rapid dissociative recombination of the resultant molecular ion. The model provides a self-consistent solution which reconciles a number of diverse observations with known physical processes.

  10. Leg mass characteristics of accurate and inaccurate kickers--an Australian football perspective.

    PubMed

    Hart, Nicolas H; Nimphius, Sophia; Cochrane, Jodie L; Newton, Robert U

    2013-01-01

    Athletic profiling provides valuable information to sport scientists, assisting in the optimal design of strength and conditioning programmes. Understanding the influence these physical characteristics may have on the generation of kicking accuracy is advantageous. The aim of this study was to profile and compare the lower limb mass characteristics of accurate and inaccurate Australian footballers. Thirty-one players were recruited from the Western Australian Football League to perform ten drop punt kicks over 20 metres to a player target. Players were separated into accurate (n = 15) and inaccurate (n = 16) groups, with leg mass characteristics assessed using whole body dual energy x-ray absorptiometry (DXA) scans. Accurate kickers demonstrated significantly greater relative lean mass (P ≤ 0.004) and significantly lower relative fat mass (P ≤ 0.024) across all segments of the kicking and support limbs, while also exhibiting significantly higher intra-limb lean-to-fat mass ratios for all segments across both limbs (P ≤ 0.009). Inaccurate kickers also produced significantly larger asymmetries between limbs than accurate kickers (P ≤ 0.028), showing considerably lower lean mass in their support leg. These results illustrate a difference in leg mass characteristics between accurate and inaccurate kickers, highlighting the potential influence these may have on technical proficiency of the drop punt. PMID:23687978

  11. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  12. Accurate Mass Searching of Individual Lipid Species Candidate from High-resolution Mass Spectra for Shotgun Lipidomics

    PubMed Central

    Wang, Miao; Huang, Yingying; Han, Xianlin

    2014-01-01

    RATIONALE With the increased mass accuracy and resolution in commercialized mass spectrometers, new development on shotgun lipidomics could be expected with increased speed, dynamic range, and coverage over lipid species and classes. However, we found that the major issue by using high mass accuracy/resolution instruments to search lipid species is the partial overlap between the two 13C atom-containing isotopologue of a species M (i.e., M+2 isotopologue) and the ion of a species less a double bond than M (assigned here as L). This partial overlap alone could cause a mass shift of the species L to the lower mass end up to 12 ppm around m/z 750 as well as significant peak broadening. METHODS We developed an approach for accurate mass searching by exploring one of the major features of shotgun lipidomics data that lipid species of a class are present in ion clusters where neighboring masses from different species differ by one or a few double bonds. In the approach, a mass-searching window of 18 ppm (from −15 to 3 ppm) was first searched for an entire group of species of a lipid class. Then accurate mass searching of the plus one 13C isotopologue of individual species was used to eliminate the potential false positive. RESULTS The approach was extensively validated through comparing with the species determined by the multi-dimensional MS-based shotgun lipidomics platform. The newly developed strategy of accurate mass search enables identifying the overlapped L species and acquiring the corresponding peak intensities. CONCLUSIONS We believe that this novel approach could substantially broaden the applications of high mass accurate/resolution mass spectrometry for shotgun lipidomics. PMID:25178724

  13. The mass balance of earthquakes and earthquake sequences

    NASA Astrophysics Data System (ADS)

    Marc, O.; Hovius, N.; Meunier, P.

    2016-04-01

    Large, compressional earthquakes cause surface uplift as well as widespread mass wasting. Knowledge of their trade-off is fragmentary. Combining a seismologically consistent model of earthquake-triggered landsliding and an analytical solution of coseismic surface displacement, we assess how the mass balance of single earthquakes and earthquake sequences depends on fault size and other geophysical parameters. We find that intermediate size earthquakes (Mw 6-7.3) may cause more erosion than uplift, controlled primarily by seismic source depth and landscape steepness, and less so by fault dip and rake. Such earthquakes can limit topographic growth, but our model indicates that both smaller and larger earthquakes (Mw < 6, Mw > 7.3) systematically cause mountain building. Earthquake sequences with a Gutenberg-Richter distribution have a greater tendency to lead to predominant erosion, than repeating earthquakes of the same magnitude, unless a fault can produce earthquakes with Mw > 8 or more.

  14. Evaluation of a mass-balance approach to determine consumptive water use in northeastern Illinois

    USGS Publications Warehouse

    Mills, Patrick C.; Duncker, James J.; Over, Thomas M.; Marian Domanski; Marian Domanski; Engel, Frank

    2014-01-01

    Under ideal conditions, accurate quantification of consumptive use at the sewershed scale by the described mass-balance approach might be possible. Under most prevailing conditions, quantification likely would be more costly and time consuming than that of the present study, given the freely contributed technical support of the host community and relatively appropriate conditions of the study area. Essentials to quantification of consumptive use are a fully cooperative community, storm and sanitary sewers that are separate, and newer sewer infrastructure and (or) a robust program for limiting infiltration, exfiltration, and inflow.

  15. Energy and Mass Balance At Gran Campo Nevado, Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Kilian, R.; Casassa, G.

    The Gran Campo Nevado (GCN) Ice Cap on Peninsula Muñoz Gamero, Chile, is lo- cated in the southernmost part of the Patagonian Andes at 53S. It comprises an ice cap and numerous outlet glaciers which mostly end in proglacial lakes at sea level. The total ice covered area sums up to approximately 250 km2. GCN forms the only major ice body between the Southern Patagonian Icefield and the Street of Magallan. Its almost unique location in the zone of the all-year westerlies makes it a region of key interest in terms of glacier and climate change studies of the westwind zone of the Southern Hemisphere. Mean annual temperature of approximately +5C at sea level and high precipitation of about 8.000 mm per year lead to an extreme turn-over of ice mass from the accumulation area of the GCN Ice Cap to the ablation areas of the outlet glaciers. Since October 1999 an automated weather station (AWS) is run continuously in the area at Bahia Bahamondes for monitoring climate parameters. From February to April 2000 an additional AWS was operated on Glaciar Lengua a small outlet glacier of GCN to the north-west. Ablation has been measured at stakes during the same pe- riod. The aim of this study, was to obtain point energy and mass balance on Glaciar Lengua. The work was conducted as part of the international and interdisciplinary working group SGran Campo NevadoT and supported by the German Research Foun- & cedil;dation (DFG). Energy balance was calculated using the bulk approach formulas and calibrated to the measured ablation. It turns out, that sensible heat transfer is the major contribution to the energy balance. Since high cloud cover rates prevail, air tempera- ture is the key factor for the energy balance of the glacier. Despite high rain fall rates, energy input from rain fall is of only minor importance to the overall energy balance. From the energy balance computed, it was possible to derive summer-time degree-day factors for Glaciar Lengua. With data from the nearby

  16. Estimating nutrient loadings using chemical mass balance approach.

    PubMed

    Jain, C K; Singhal, D C; Sharma, M K

    2007-11-01

    The river Hindon is one of the important tributaries of river Yamuna in western Uttar Pradesh (India) and carries pollution loads from various municipal and industrial units and surrounding agricultural areas. The main sources of pollution in the river include municipal wastes from Saharanpur, Muzaffarnagar and Ghaziabad urban areas and industrial effluents of sugar, pulp and paper, distilleries and other miscellaneous industries through tributaries as well as direct inputs. In this paper, chemical mass balance approach has been used to assess the contribution from non-point sources of pollution to the river. The river system has been divided into three stretches depending on the land use pattern. The contribution of point sources in the upper and lower stretches are 95 and 81% respectively of the total flow of the river while there is no point source input in the middle stretch. Mass balance calculations indicate that contribution of nitrate and phosphate from non-point sources amounts to 15.5 and 6.9% in the upper stretch and 13.1 and 16.6% in the lower stretch respectively. Observed differences in the load along the river may be attributed to uncharacterized sources of pollution due to agricultural activities, remobilization from or entrainment of contaminated bottom sediments, ground water contribution or a combination of these sources. PMID:17616829

  17. Mass balance assessment for mercury in Lake Champlain

    USGS Publications Warehouse

    Gao, N.; Armatas, N.G.; Shanley, J.B.; Kamman, N.C.; Miller, E.K.; Keeler, G.J.; Scherbatskoy, T.; Holsen, T.M.; Young, T.; McIlroy, L.; Drake, S.; Olsen, Bill; Cady, C.

    2006-01-01

    A mass balance model for mercury in Lake Champlain was developed in an effort to understand the sources, inventories, concentrations, and effects of mercury (Hg) contamination in the lake ecosystem. To construct the mass balance model, air, water, and sediment were sampled as a part of this project and other research/monitoring projects in the Lake Champlain Basin. This project produced a STELLA-based computer model and quantitative apportionments of the principal input and output pathways of Hg for each of 13 segments in the lake. The model Hg concentrations in the lake were consistent with measured concentrations. Specifically, the modeling identified surface water inflows as the largest direct contributor of Hg into the lake. Direct wet deposition to the lake was the second largest source of Hg followed by direct dry deposition. Volatilization and sedimentation losses were identified as the two major removal mechanisms. This study significantly improves previous estimates of the relative importance of Hg input pathways and of wet and dry deposition fluxes of Hg into Lake Champlain. It also provides new estimates of volatilization fluxes across different lake segments and sedimentation loss in the lake. ?? 2006 American Chemical Society.

  18. Prescribing hemodialysis using a weekly urea mass balance model.

    PubMed

    Leypoldt, J K; Kablitz, C; Gregory, M C; Senekjian, H O; Cheung, A K

    1991-01-01

    Prescribing hemodialysis by monitoring only predialysis BUN concentrations is not sufficient to guarantee adequate therapy. Results from the National Cooperative Dialysis Study have suggested that hemodialysis therapy is adequate if the protein catabolic rate is maintained greater than 1 g/day/kg body weight and simultaneously if sufficient hemodialysis is prescribed to maintain either a time-averaged BUN concentration (TACurea) less than 50 mg/dl or a value of Kt/V greater than unity. In the present study mathematical relationships were derived from a weekly urea mass balance model that permit an evaluation of TACurea and of protein catabolism via the urea generation rate (G) without the need for conventional urea kinetic modeling. The parameters TACurea and G were simply calculated from a midweek predialysis BUN concentration (BUNMW) by: TACurea = 0.7 BUNMW G = 0.7 BUNMW(Kr + Kd tau/T) where Kr, Kd, tau and T denote residual renal urea clearance, dialyzer urea clearance, number of minutes of hemodialysis per week, and number of minutes total in a week, respectively. Clinical results from 139 modeling sessions on 91 patients demonstrated that TACurea and G derived from urea kinetic modeling correlated highly with those calculated from the above equations (r = 0.96 and 0.94, respectively). It is concluded that individualized hemodialysis prescription and adequacy of therapy can be assessed by monitoring TACurea and G by calculation from a weekly urea mass balance model. PMID:1819316

  19. A Novel and Low Cost Sea Ice Mass Balance Buoy.

    NASA Astrophysics Data System (ADS)

    Jackson, Keith; Meldrum, David; Wilkinson, Jeremy; Maksym, Ted; Beckers, Justin; Haas, Christian

    2013-04-01

    Understanding of sea ice mass balance processes requires continuous monitoring of the seasonal evolution of ice thickness. While autonomous ice mass balance buoys (IMBs) deployed over the past two decades have contributed to our understanding of ice growth and decay processes, deployment has been limited, in part, by the cost of such systems. Routine, basin-wide monitoring of the ice cover is realistically achievable through a network of reliable and affordable autonomous instrumentation. We describe the development of a novel autonomous platform and sensor that replaces the traditional thermistors string for monitoring temperature profiles in the ice and snow using a chain of inexpensive digital temperature chip sensors linked by a single-wire data bus. By incorporating a heating element on each sensor, the instrument is capable of resolving material interfaces (e.g. air-snow and ice-ocean boundaries) even under isothermal conditions. The instrument is small, low-cost and easy to deploy. Field and laboratory tests of the sensor chain demonstrate that the technology can reliably resolve material boundaries to within a few centimetres and over 50 scientific deployments have been made with encouraging results. The discrimination between different media based on sensor thermal response is weak in some deployments and efforts to optimise the measurement continue.

  20. Deducing high-altitude precipitation from glacier mass balance measurements

    NASA Astrophysics Data System (ADS)

    Giesen, Rianne H.; Immerzeel, Walter W.; Wanders, Niko

    2016-04-01

    The spatial distribution of precipitation in mountainous terrain is generally not well known due to underrepresentation of gauge observations at higher elevations. Precipitation tends to increase with elevation, but since observations are mainly performed in the valleys, the vertical precipitation gradient cannot be deduced from these measurements. Furthermore, the spatial resolution of gridded meteorological data is often too coarse to resolve individual mountain chains. Still, a reliable estimate of high-elevation precipitation is required for many hydrological applications. We present a method to determine the vertical precipitation gradient in mountainous terrain, making use of glacier mass balance observations. These measurements have the advantage that they provide a basin-wide precipitation estimate at high elevations. The precipitation gradient is adjusted until the solid precipitation over the glacier area combined with the calculated melt gives the measured annual glacier mass balance. Results for the glacierized regions in Central Europe and Scandinavia reveal spatially coherent patterns, with predominantly positive precipitation gradients ranging from -4 to +28 % (100 m)‑1. In some regions, precipitation amounts at high elevations are up to four times as large as in the valleys. A comparison of the modelled winter precipitation with observed snow accumulation on glaciers shows a good agreement. Precipitation measured at the few high-altitude meteorological stations is generally lower than our estimate, which may result from precipitation undercatch. Our findings will improve the precipitation forcing for glacier modelling and hydrological studies in mountainous terrain.

  1. Mass balance of dioxins over a cement kiln in China.

    PubMed

    Li, Yeqing; Chen, Tong; Zhang, Jiang; Meng, Weijie; Yan, Mi; Wang, Huanzhong; Li, Xiaodong

    2015-02-01

    The cement production process may be a potential source of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, "dioxins"), due to the widespread distribution of dioxins and potential precursors in raw materials and to conditions favorable to de novo formation in the heat exchangers. The emission, gas/particle distribution, and mass balance of PCDD/Fs were investigated at a typical state-of-the-art Chinese cement kiln. Input and output inventories were established for three campaigns, including two in normal operation and one while co-processing refuse derived fuel (RDF). Sample analysis from stack gas, cement kiln dust, raw meal, fly dust and clinker for the analysis of PCDD/Fs were reported in this study. Dioxins were also analyzed at various positions in the pre-heater, presenting an adsorption-desorption circulation process of PCDD/Fs. The over-all dioxin mass balance was negative, indicating that this cement kiln is not a source but a sink process of dioxins. PMID:25532674

  2. Mass Balance of Perfluoroalkyl Acids in the Baltic Sea

    PubMed Central

    2013-01-01

    A mass balance was assembled for perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDA), and perfluorooctanesulfonic acid (PFOS) in the Baltic Sea. Inputs (from riverine discharge, atmospheric deposition, coastal wastewater discharges, and the North Sea) and outputs (to sediment burial, transformation of the chemical, and the North Sea), as well as the inventory in the Baltic Sea, were estimated from recently published monitoring data. Formation of the chemicals in the water column from precursors was not considered. River inflow and atmospheric deposition were the dominant inputs, while wastewater treatment plant (WWTP) effluents made a minor contribution (<5%). A mass balance of the Oder River watershed was assembled to explore the sources of the perfluoroalkyl acids (PFAAs) in the river inflow. It indicated that WWTP effluents made only a moderate contribution to riverine discharge (21% for PFOA, 6% for PFOS), while atmospheric deposition to the watershed was 1–2 orders of magnitude greater than WWTP discharges. The input to the Baltic Sea exceeded the output for all four PFAAs, suggesting that inputs were higher during 2005–2010 than during the previous 20 years despite efforts to reduce emissions of PFAAs. One possible explanation is the retention and delayed release of PFAAs from atmospheric deposition in the soils and groundwater of the watershed. PMID:23528236

  3. Atmospheric methyl bromide: Trends and global mass balance

    SciTech Connect

    Khalil, M.A.K.; Rasmussen, R.A.; Gunawardena, R. )

    1993-02-20

    Atmospheric methyl bromide is of considerable environmental importance as the largest reservoir of gaseous bromine in the atmosphere. Bromine gases can catalytically destroy stratospheric ozone. Since agricultural activities, automobiles, biomass burning, and other human activities produce CH[sub 3]Br, it is of interest to know its global mass balance and particularly the specific sources and sinks. In this paper the authors provide a decadal time series of global CH[sub 3]Br concentrations in the Earth's atmosphere. The data show that average concentrations are about 10 pptv and during the last 4 years may be increasing at 0.3 [plus minus] 0.1 pptv/yr (3%/yr [plus minus] 1%/yr). They estimate that the atmospheric lifetime of CH[sub 3]Br that is due to reaction with OH, is about 2 years, resulting in a calculated global emission rate of about 100 Gy/yr. Ocean supersaturations of 140-180% are observed, and atmospheric concentrations over the open oceans are higher than at comparably located coastal sites. The ocean source is estimated to be about 35 Gg/yr. The remaining emissions must come from other natural sources and anthropogenic activities. The results are based on some 2,200 samples obtained over more than a decade. Mass balance calculations explain most aspects of the present data but other implications are not easily reconciled, leaving open the possibility of undiscovered sources and sinks. 20 refs., 5 figs., 4 tabs.

  4. Meta-Analysis of Mass Balances Examining Chemical Fate during Wastewater Treatment

    PubMed Central

    2008-01-01

    Mass balances are an instructive means for investigating the fate of chemicals during wastewater treatment. In addition to the aqueous-phase removal efficiency (Φ), they can inform on chemical partitioning, transformation, and persistence, as well as on the chemical loading to streams and soils receiving, respectively, treated effluent and digested sewage sludge (biosolids). Release rates computed on a per-capita basis can serve to extrapolate findings to a larger scale. This review examines over a dozen mass balances conducted for various organic wastewater contaminants, including prescription drugs, estrogens, fragrances, antimicrobials, and surfactants of differing sorption potential (hydrophobicity), here expressed as the 1-octanol−water partition coefficient (KOW) and the organic carbon normalized sorption coefficient (KOC). Major challenges to mass balances are the collection of representative samples and accurate quantification of chemicals in sludge. A meta-analysis of peer-reviewed data identified sorption potential as the principal determinant governing chemical persistence in biosolids. Occurrence data for organic wastewater compounds detected in digested sludge followed a simple nonlinear model that required only KOW or KOC as the input and yielded a correlation coefficient of 0.9 in both instances. The model predicted persistence in biosolids for the majority (>50%) of the input load of organic wastewater compounds featuring a log10KOW value of greater than 5.2 (log10KOC > 4.4). In contrast, hydrophobicity had no or only limited value for estimating, respectively, Φ and the overall persistence of a chemical during conventional wastewater treatment. PMID:18800497

  5. Using an SLR inversion to measure the mass balance of Greenland before and during GRACE

    NASA Astrophysics Data System (ADS)

    Bonin, Jennifer

    2016-04-01

    The GRACE mission has done an admirable job of measuring large-scale mass changes over Greenland since its launch in 2002. However before that time, measurements of large-scale ice mass balance were few and far between, leading to a lack of baseline knowledge. High-quality Satellite Laser Ranging (SLR) data existed a decade earlier, but normally has too low a spatial resolution to be used for this purpose. I demonstrate that a least squares inversion technique can reconstitute the SLR data and use it to measure ice loss over Greenland. To do so, I first simulate the problem by degrading today's GRACE data to a level comparable with SLR, then demonstrating that the inversion can re-localize Greenland's contribution to the low-resolution signal, giving an accurate time series of mass change over all of Greenland which compares well with the full-resolution GRACE estimates. I then utilize that method on the actual SLR data, resulting in an independent 1994-2014 time series of mass change over Greenland. I find favorable agreement between the pure-SLR inverted results and the 2012 Ice-sheet Mass Balance Inter-comparison Exercise (IMBIE) results, which are largely based on the "input-output" modeling method before GRACE's launch.

  6. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  7. DETERMINING ION COMPOSITIONS USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER

    EPA Science Inventory

    For the past decade, we have used double focusing mass spectrometers to determine
    compositions of ions observed in mass spectra produced from compounds introduced by GC
    based on measured exact masses of the ions and their +1 and +2 isotopic profiles arising from atoms of ...

  8. Assessment Of Errors In Long-Term Mass Balance Records From Alaska, USA

    NASA Astrophysics Data System (ADS)

    March, R. S.; van Beusekom, A. E.; O'Neel, S.

    2009-12-01

    The USGS maintains a long-term glacier mass balance monitoring program at Gulkana and Wolverine glaciers in Alaska. The records produced by this program are a major component of the world’s mountain glacier balance inventory due to the scarcity of such long-term measurements. Recent data that show rapid glacier volume loss in Alaska further emphasize the importance of these records. An integral part of the long-term mass balance program is repeated assessment of the validity of the methods because bias errors in mass balance data are cumulative. Long-term glacier mass balance records in Alaska have previously been shown to be in good agreement with geodetically determined volume changes despite a minimal network of mass balance stakes. Because the rates of negative mass balance and change in glacier geometry have recently increased, this work reassess whether or not the existing stake networks and method of determining glacier-average balance are still working adequately.

  9. Accurate on-line mass flow measurements in supercritical fluid chromatography.

    PubMed

    Tarafder, Abhijit; Vajda, Péter; Guiochon, Georges

    2013-12-13

    This work demonstrates the possible advantages and the challenges of accurate on-line measurements of the CO2 mass flow rate during supercritical fluid chromatography (SFC) operations. Only the mass flow rate is constant along the column in SFC. The volume flow rate is not. The critical importance of accurate measurements of mass flow rates for the achievement of reproducible data and the serious difficulties encountered in supercritical fluid chromatography for its assessment were discussed earlier based on the physical properties of carbon dioxide. In this report, we experimentally demonstrate the problems encountered when performing mass flow rate measurements and the gain that can possibly be achieved by acquiring reproducible data using a Coriolis flow meter. The results obtained show how the use of a highly accurate mass flow meter permits, besides the determination of accurate values of the mass flow rate, a systematic, constant diagnosis of the correct operation of the instrument and the monitoring of the condition of the carbon dioxide pump. PMID:24210558

  10. BALANCE: Towards a Usable Pervasive Wellness Application with Accurate Activity Inference

    PubMed Central

    Denning, Tamara; Andrew, Adrienne; Chaudhri, Rohit; Hartung, Carl; Lester, Jonathan; Borriello, Gaetano; Duncan, Glen

    2010-01-01

    Technology offers the potential to objectively monitor people’s eating and activity behaviors and encourage healthier lifestyles. BALANCE is a mobile phone-based system for long term wellness management. The BALANCE system automatically detects the user’s caloric expenditure via sensor data from a Mobile Sensing Platform unit worn on the hip. Users manually enter information on foods eaten via an interface on an N95 mobile phone. Initial validation experiments measuring oxygen consumption during treadmill walking and jogging show that the system’s estimate of caloric output is within 87% of the actual value. Future work will refine and continue to evaluate the system’s efficacy and develop more robust data input and activity inference methods. PMID:20445819

  11. Is scintillometer measurement accurate enough for evaluating remote sensing based energy balance ET models?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three evapotranspiration (ET) measurement/retrieval techniques used in this study, lysimeter, scintillometer and remote sensing vary in their level of complexity, accuracy, resolution and applicability. The lysimeter with its point measurement is the most accurate and direct method to measure ET...

  12. The utility of accurate mass and LC elution time information in the analysis of complex proteomes

    SciTech Connect

    Norbeck, Angela D.; Monroe, Matthew E.; Adkins, Joshua N.; Anderson, Kevin K.; Daly, Don S.; Smith, Richard D.

    2005-08-01

    Theoretical tryptic digests of all predicted proteins from the genomes of three organisms of varying complexity were evaluated for specificity and possible utility of combined peptide accurate mass and predicted LC normalized elution time (NET) information. The uniqueness of each peptide was evaluated using its combined mass (+/- 5 ppm and 1 ppm) and NET value (no constraint, +/- 0.05 and 0.01 on a 0-1 NET scale). The set of peptides both underestimates actual biological complexity due to the lack of specific modifications, and overestimates the expected complexity since many proteins will not be present in the sample or observable on the mass spectrometer because of dynamic range limitations. Once a peptide is identified from an LCMS/MS experiment, its mass and elution time is representative of a unique fingerprint for that peptide. The uniqueness of that fingerprint in comparison to that for the other peptides present is indicative of the ability to confidently identify that peptide based on accurate mass and NET measurements. These measurements can be made using HPLC coupled with high resolution MS in a high-throughput manner. Results show that for organisms with comparatively small proteomes, such as Deinococcus radiodurans, modest mass and elution time accuracies are generally adequate for peptide identifications. For more complex proteomes, increasingly accurate easurements are required. However, the majority of proteins should be uniquely identifiable by using LC-MS with mass accuracies within +/- 1 ppm and elution time easurements within +/- 0.01 NET.

  13. Rising river flows and glacial mass balance in central Karakoram

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Biswajit; Khan, Asif

    2014-05-01

    glacial mass balance in central Karakoram is nearly neutral. The rising river flows accompanying non-negative glacier mass balance are consistent with predicted future river flows derived from hydrologic modeling coupled with a climate projection suggesting increasing temperature and precipitation with unchanged glacier covers. This investigation reconciles two apparently contradictory observations namely rising river flows and either zero or slightly positive mass balance of central Karakoram glaciers.

  14. Mass balance model parameter transferability on a tropical glacier

    NASA Astrophysics Data System (ADS)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  15. Main-Sequence Effective Temperatures from a Revised Mass-Luminosity Relation Based on Accurate Properties

    NASA Astrophysics Data System (ADS)

    Eker, Z.; Soydugan, F.; Soydugan, E.; Bilir, S.; Yaz Gökçe, E.; Steer, I.; Tüysüz, M.; Şenyüz, T.; Demircan, O.

    2015-04-01

    The mass-luminosity (M-L), mass-radius (M-R), and mass-effective temperature (M-{{T}eff}) diagrams for a subset of galactic nearby main-sequence stars with masses and radii accurate to ≤slant 3% and luminosities accurate to ≤slant 30% (268 stars) has led to a putative discovery. Four distinct mass domains have been identified, which we have tentatively associated with low, intermediate, high, and very high mass main-sequence stars, but which nevertheless are clearly separated by three distinct break points at 1.05, 2.4, and 7 {{M}⊙ } within the studied mass range of 0.38-32 {{M}⊙ }. Further, a revised mass-luminosity relation (MLR) is found based on linear fits for each of the mass domains identified. The revised, mass-domain based MLRs, which are classical (L\\propto {{M}α }), are shown to be preferable to a single linear, quadratic, or cubic equation representing an alternative MLR. Stellar radius evolution within the main sequence for stars with M\\gt 1 {{M}⊙ } is clearly evident on the M-R diagram, but it is not clear on the M-{{T}eff} diagram based on published temperatures. Effective temperatures can be calculated directly using the well known Stephan-Boltzmann law by employing the accurately known values of M and R with the newly defined MLRs. With the calculated temperatures, stellar temperature evolution within the main sequence for stars with M\\gt 1 {{M}⊙ } is clearly visible on the M-{{T}eff} diagram. Our study asserts that it is now possible to compute the effective temperature of a main-sequence star with an accuracy of ˜6%, as long as its observed radius error is adequately small (\\lt 1%) and its observed mass error is reasonably small (\\lt 6%).

  16. Dual Polarity Accurate Mass Calibration for ESI and MALDI Mass Spectrometry Using Maltooligosaccharides

    PubMed Central

    Clowers, Brian H.; Dodds, Eric D.; Seipert, Richard R.; Lebrilla, Carlito B.

    2009-01-01

    In view of the fact that memory effects associated with instrument calibration hinder the use of many m/z and tuning standards, identification of robust, comprehensive, inexpensive, and memory-free calibration standards are of particular interest to the mass spectrometry community. Glucose and its isomers are known to have a residue mass of 162.05282 Da; therefore, both linear and branched forms of poly-hexose oligosaccharides possess well defined masses making them ideal candidates for mass calibration. Using a wide range of maltooligosaccharides (MOS) derived from commercially available beers, ions with m/z ratios from ~500 Da to 2500 Da or more have been observed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and time of flight mass spectrometry (TOF-MS). The mixtures of MOS were further characterized using infrared multiphoton dissociation (IRMPD) and nano-liquid chromatography/mass spectrometry (nano-LC/MS). In addition to providing well defined series of positive and negative calibrant ions using either ESI or MALDI, the MOS are not encumbered by memory effects and are thus well suited mass calibration and instrument tuning standards for carbohydrate analysis. PMID:18655765

  17. Balancing mass and momentum in the Local Group

    NASA Astrophysics Data System (ADS)

    Diaz, J. D.; Koposov, S. E.; Irwin, M.; Belokurov, V.; Evans, N. W.

    2014-09-01

    In the rest frame of the Local Group (LG), the total momentum of the Milky Way (MW) and Andromeda (M31) should balance to zero. We use this fact to constrain new solutions for the solar motion with respect to the LG centre of mass, the total mass of the LG, and the individual masses of M31 and the MW. Using the set of remote LG galaxies at >350 kpc from the MW and M31, we find that the solar motion has amplitude V⊙ = 299 ± 15 km s-1 in a direction pointing towards galactic longitude l⊙ = 98.4° ± 3.6° and galactic latitude b⊙ = -5.9° ± 3.0°. The velocities of M31 and the MW in this rest frame give a direct measurement of their mass ratio, for which we find log10(MM31/MMW) = 0.36 ± 0.29. We combine these measurements with the virial theorem to estimate the total mass within the LG as MLG = (2.5 ± 0.4) × 1012 M⊙. Our value for MLG is consistent with the sum of literature values for MMW and MM31. This suggests that the mass of the LG is almost entirely located within the two largest galaxies rather than being dispersed on larger scales or in a background medium. The outskirts of the LG are seemingly rather empty. Combining our measurement for MLG and the mass ratio, we estimate the individual masses of the MW and M31 to be MMW = (0.8 ± 0.5) × 1012 M⊙ and MM31 = (1.7 ± 0.3) × 1012 M⊙, respectively. Our analysis favours M31 being more massive than the MW by a factor of ˜2.3, and the uncertainties allow only a small probability (9.8 per cent) that the MW is more massive. This is consistent with other properties such as the maximum rotational velocities, total stellar content, and numbers of globular clusters and dwarf satellites, which all suggest that MM31/MMW > 1.

  18. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    SciTech Connect

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  19. Melting standardized aluminum scrap: A mass balance model for europe

    NASA Astrophysics Data System (ADS)

    Boin, U. M. J.; Bertram, M.

    2005-08-01

    Although individual aluminum recycling companies have good knowledge of scrap in terms of its characteristic metal yield during melting, an overall view of this industry is still missing. An aluminum mass balance for the aluminum recycling industry in the European Union member states from 1995 to 2004 (EU-15) has been carried out. The objective was to increase the transparency of the complex recycling system and to determine how resource-conservative the industry is when melting aluminum scrap. Results show that in 2002, about 7 million tonnes of purchased, tolled, and internal scrap—with a metal content of 94%—were recycled in the EU-15. By comparing the net metal input to the final product, the study finds a very respectable metal recovery rate of 98%.

  20. Maintaining Atmospheric Mass and Water Balance Within Reanalysis

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo

    2015-01-01

    This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.

  1. Mass-balance model for predicting nitrate in ground water

    USGS Publications Warehouse

    Frimpter, Michael H.; Donohue, John J.; Rapacz, Michael V.

    1990-01-01

    A mass-balance accounting model can be used to guide the management of septic systems and fertilizers to control the degradation of ground-water quality in zones of an aquifer that contribute water to public-supply wells. The nitrate concentration of the mixture in the well can be predicted for steady-state conditions by calculating the concentration that results from the total weight of nitrogen and total volume of water entering the zone of contribution to the well. These calculations will allow water-quality managers to predict the nitrate concentrations that would be produced by different types and levels of development, and to plan development accordingly. Computations for different development schemes provide a technical basis for planners and managers to compare water-quality effects and to select alternatives that limit nitrate concentration in wells.

  2. Distributed simulation of snowcover mass- and energy-balance in the boreal forest

    NASA Astrophysics Data System (ADS)

    Link, Timothy; Marks, Danny

    1999-10-01

    The accurate distributed simulation of snowpack deposition and ablation beneath forest canopies is complicated by the fact that vegetation canopies strongly affect the snow surface energy balance. The canopy alters the radiation balance of the snowcover and reduces the wind speed at the snow surface. Simple canopy adjustment algorithms for solar and thermal radiation and wind speed are used in conjunction with commonly available land cover classifications to spatially distribute sub-canopy solar and thermal radiation, air and soil temperature, humidity, wind speed, and precipitation. The distributed climate surfaces are used to drive a two-layer coupled energy- and mass-balance snowmelt model over two areas within the BOREAS study region for the 1994-1995 snow season. Model results are validated using both automatic and manually collected snow depth data. The simulated timing and rate of snowpack development and ablation at both study areas are well represented beneath the canopy types where validation data are present. Rigorous evaluation of model performance beneath the full range of canopy types requires information regarding the spatial distribution of snow covered area during the ablation period. This study demonstrates that given basic landcover parameters, relatively simple canopy adjustments coupled with an energy balance model can be used to estimate climate conditions and snowcover processes across a range of boreal forest covers.

  3. Accurate mass determination of short-lived isotopes by a tandem Penning-trap mass spectrometer

    SciTech Connect

    Stolzenberg, H.; Becker, S.; Bollen, G.; Kern, F.; Kluge, H.; Otto, T.; Savard, G.; Schweikhard, L. ); Audi, G. ); Moore, R.B. ); The ISOLDE Collaboration

    1990-12-17

    A mass spectrometer consisting of two Penning traps has been set up for short-lived isotopes at the on-line mass separator ISOLDE at CERN. The ion beam is collected and cooled in the first trap. After delivery to the second trap, high-accuracy direct mass measurements are made by determining the cyclotron frequency of the stored ions. Measurements have been performed for {sup 118}Cs--{sup 137}Cs. A resolving power of over 10{sup 6} and an accuracy of 1.4{times}10{sup {minus}7} have been achieved, corresponding to about 20 keV.

  4. Sustainability of algae derived biodiesel: a mass balance approach.

    PubMed

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term. PMID:20933402

  5. Geochemical mass balances of major elements in Lake Baikal

    USGS Publications Warehouse

    Callender, E.; Granina, L.

    1997-01-01

    Major element mass balances for Lake Baikal are calculated with mostly previously published data for soluble fluxes and new, unpublished data for riverine suspended particulate matter chemistry. Physical transport seems to be the most important riverine process. The elements Ca, Mg, and Na seem to be very mobile in the weathering mantle and K and Si seem to be relatively mobile. A comparison of elemental input-output budgets and mass accumulation rates (MAR) in bottom sediments shows that most major elements, except Ca, Si, and Mn, have comparable riverine particulate matter fluxes and MARs. The addition of wet atmospheric deposition fluxes results in an excess of Ca, Mg, and Na entering the lake. The additive effect of these excess inputs during a 40-year period amounts to undetectable concentration increases in the water column. If erosion of weathered bedrock is the source of most dissolved and all particulate matter transported to the lake, theoretical elemental fluxes can be calculated with Al as the conservative element. Flux ratios (observed/theoretical) range from 0.7 to 2.2, but most fall within the acceptable range of 0.7-1.5. Major rock-forming elements are carried by rivers as weathering products and there are minimal biogeochemical processes that modify these inputs as suspended particulate matter accumulates in the bottom sediments of the lake.

  6. Mass balance of Icelandic ice caps from CryoSat swath mode altimetry

    NASA Astrophysics Data System (ADS)

    Foresta, L.; Gourmelen, N.; Pálsson, F.; Willis, I. C.; Nienow, P. W.; Shepherd, A.

    2015-12-01

    Satellite altimetry has been traditionally used in the past to infer elevation of land ice, quantify changes in ice topography and infer mass balance over large and remote areas such as the Greenland and Antarctic ice sheets. Radar Altimetry (RA) is particularly well suited to this task due to its all-weather year-round capability for observing the ice surface. However, monitoring of ice caps has proven more challenging. The large footprint of a conventional radar altimeter and relatively coarse ground track coverage are less suited to monitoring comparatively small regions with complex topography, so that mass balance estimates from RA rely on extrapolation methods to regionalize elevation change.Since 2010, the Synthetic Interferometric Radar Altimeter (SIRAL) on board the ESA radar altimetry CryoSat mission has collected ice elevation measurements over ice caps. Ground track interspacing (~4km at 60°) is one order of magnitude smaller than ERS/ENVISAT missions and half of ICESAT's, providing dense spatial coverage. Additionally the Synthetic Aperture Radar Interferometric (SARIn) mode of CryoSat provides a reduced footprint and the ability to locate accurately the position of the surface reflection. Conventional altimetry provides the elevation of the Point Of Closest Approach (POCA) within each waveform, every 250 m along the flight path. Time evolution of POCA elevation is then used to investigate ice elevation change.Here, we present an assessment of the geodetic mass balance of Icelandic ice caps using a novel processing approach, swath altimetry, applied to CryoSat SARIn mode data. In swath mode altimetry, elevation beyond the POCA is extracted from the waveform when coherent echoes are present providing between one and two orders of magnitude more elevations when compared to POCA. We generate maps of ice elevation change that are then used to compute geodetic mass balance for the period 2010 to 2015. We compare our results to estimates generated using

  7. Nitrogen mass balances for pilot-scale biofilm stabilization ponds under tropical conditions.

    PubMed

    Babu, M A; van der Steen, N P; Hooijmans, C M; Gijzen, H J

    2011-02-01

    Nitrogen removal in biofilm waste stabilization ponds were modeled using nitrogen mass balance equations. Four pilot-scale biofilm maturation ponds were constructed in Uganda. Pond 1 was control; the others had 15 baffles in each of them. Two loading conditions were investigated (period 1, 18.2g and period 2, 26.8 g NH(4)-Nd(-1)). Total nitrogen and TKN mass balances were made. Bulk water and biofilm nitrification rates were determined and used in the TKN mass balance. Results for total nitrogen mass balance showed that for both periods, denitrification was the major removal mechanism. Nitrogen uptake by algae was more important during period 1 than in period 2. The TKN mass balance predicted well effluent TKN for period 2 than period 1. This could be due to fluctuations in algae density and ammonia uptake during period 1, no conclusions on reliability of mass balance model in period 1 was made. PMID:21183339

  8. A California Nitrogen Mass Balance: Uncertainties and information needs

    NASA Astrophysics Data System (ADS)

    Liptzin, D.; Dahlgren, R. A.

    2011-12-01

    The goal of the California Nitrogen (N) Assessment (CNA) is to evaluate the current state of N science, practice, and policy in the state of California. One component is to develop a N mass balance for the state. Because the CNA is an assessment, evaluating the data quality and quantifying uncertainty are also part of the mass balance . We estimate that a total of 1500 Gg of new reactive N is added to California every year. Of this new N, only about half of the N leaves the state while the rest is retained. The main inputs of new reactive N to California are, in order of importance: synthetic N fertilizer, fossil fuel combustion, and biological N fixation. The three largest N outputs from the state are, in order of importance, atmospheric advection, wastewater discharge to the ocean, and riverine discharge to the ocean. Approximately half of the stored N leaches to groundwater, with the other half divided between soils and vegetation, reservoirs, and urban landscapes. These N flows vary not just in magnitude, but also in the uncertainty associated with them. There was no trend in the tonnage of fertilizer sold from 1981-2001, but the 2002-2007 average has remained higher (760 Gg N) than the long-term average (520 Gg N). Bottom up calculations based on crop acreage and fertilization rates are more consistent with the 1980-2001 average suggesting a problem with the sales data. The emission of NOx from fossil fuel burning is one of the most well established flows of N. The production of ammonia and nitrous oxide from fossil fuel combustion is significantly lower than NOx, but there is less evidence to support the emissions inventories. Rates of biological N fixation are speculative with evidence more limited in natural lands than croplands. For most crops it appears that N fixation rates are strongly related to plant production, suggesting that using a single rate across large regions may be inappropriate. In addition, many studies either only measure aboveground N

  9. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: identification of ethoxylated surfactants.

    PubMed

    Thurman, E Michael; Ferrer, Imma; Blotevogel, Jens; Borch, Thomas

    2014-10-01

    Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3-EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly and doubly charged forms. A structural model of adduct formation is presented, and binding constants are calculated, which is based on a spherical cagelike conformation, where the central cation (NH4(+) or Na(+)) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over 500 accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate "fingerprinting", in a first application to monitor water quality that results from fluids used in hydraulic fracturing. PMID:25164376

  10. Modeling interactions between Antarctic Instability and Surface Mass Balance.

    NASA Astrophysics Data System (ADS)

    Ritz, Catherine; Agosta, Cecile; Peyaud, Vincent; Durand, Gael; Fettweis, Xavier; Favier, Vincent; Gallée, Hubert

    2015-04-01

    In the context of future global warming, Antarctic contribution to sea level rise (SLR) depends on several processes leading to opposite impacts. First, under a warming climate, precipitation is supposed to increase, inducing a plausible negative impact on SLR. Contrary to the Greenland ice sheet case, ablation should stay a marginal process at least on grounded ice. Second, oceanic warming and/or surface ponding on ice shelves may trigger a Marine Ice Sheet Instability by reducing the backforce they exert on outlet glaciers. Once engaged on such a self-entertained retreat a large positive contribution to SLR may be expected. This dynamic process is already going on in the Admundsen sea sector. Although these two processes (surface mass balance -- SMB -- and ice dynamics) have been modeled separately to infer sea level contribution, little work has been done to study their interactions. In this presentation we focus on how grounding line retreat can affect estimation of SMB in the future and the related contribution to sea level change. To evaluate the shift of precipitation pattern while the steep surface slope region migrates inward due to the grounding line retreat, we simulate surface mass balance on various surface topographies of the Antarctic ice sheet. Each ice sheet topography is obtained with an ice sheet model (GRISLI) in which grounding line retreat is parameterized according to glaciological considerations. Because we are looking at coastal changes, a high resolution is needed for the atmospheric model and here we use the regional circulation model MAR with a resolution of 40 km. The preliminary results show that the topographic change induces a shift in the precipitation pattern as high accumulation regions tend to follow the slope break at the ice sheet / shelf transition. This affects the calculation of total SMB on the grounded ice sheet (and sea level contribution) and its amplitude is related to the amplitude of the retreat. In our simulations

  11. Accurate physical laws can permit new standard units: The two laws F→=ma→ and the proportionality of weight to mass

    NASA Astrophysics Data System (ADS)

    Saslow, Wayne M.

    2014-04-01

    Three common approaches to F→=ma→ are: (1) as an exactly true definition of force F→ in terms of measured inertial mass m and measured acceleration a→; (2) as an exactly true axiom relating measured values of a→, F→ and m; and (3) as an imperfect but accurately true physical law relating measured a→ to measured F→, with m an experimentally determined, matter-dependent constant, in the spirit of the resistance R in Ohm's law. In the third case, the natural units are those of a→ and F→, where a→ is normally specified using distance and time as standard units, and F→ from a spring scale as a standard unit; thus mass units are derived from force, distance, and time units such as newtons, meters, and seconds. The present work develops the third approach when one includes a second physical law (again, imperfect but accurate)—that balance-scale weight W is proportional to m—and the fact that balance-scale measurements of relative weight are more accurate than those of absolute force. When distance and time also are more accurately measurable than absolute force, this second physical law permits a shift to standards of mass, distance, and time units, such as kilograms, meters, and seconds, with the unit of force—the newton—a derived unit. However, were force and distance more accurately measurable than time (e.g., time measured with an hourglass), this second physical law would permit a shift to standards of force, mass, and distance units such as newtons, kilograms, and meters, with the unit of time—the second—a derived unit. Therefore, the choice of the most accurate standard units depends both on what is most accurately measurable and on the accuracy of physical law.

  12. Estimates of Regional Equilibrium Line Altitudes and Net Mass Balance from MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Shea, J. M.; Menounos, B.; Moore, R. D.

    2011-12-01

    Glacier mass balance is a key variable used to assess the health of glaciers and ice sheets. Estimates of glacier mass balance are required to model the dynamic response of glaciers and ice sheets to climate change, estimate sea-level contribution from surface melt, and document the response of glaciers to climate forcing. Annually resolved estimates of regional mass balance for mountain ranges is often inferred from a sparse network of ground-based measurements of mass balance for individual glaciers. Given that net mass balance is highly correlated with the annual equilibrium line altitude (ELA), we develop an automated approach to estimate the ELA, and by inference net mass balance, on large glaciers and icefields using MODIS 250 m imagery (MOD02QKM). We discriminate areas of bare ice and snow/firn using the product of MODIS' red (0.620 - 0.670 μ m) and near infrared (0.841 - 0.876 μ m) bands. To assess the skill in estimating glacier ELAs, we compare ELAs derived from (1) manual delineation and (2) unsupervised classification of the band product to ground-based observations of ELA and net mass balance at seven long term mass-balance monitoring sites in western North America (Gulkana, Wolverine, Lemon Creek, Taku, Place, Peyto, and South Cascade). Spatial and temporal variations in MODIS-derived ELAs provide an opportunity to validate regional mass-balance models, estimate surface melt contributions to sea-level rise, and examine the cryospheric response to climate change.

  13. Considerations affecting the additional weight required in mass balance of ailerons

    NASA Technical Reports Server (NTRS)

    Diehl, W S

    1937-01-01

    This paper is essentially a consideration of mass balance of ailerons from a preliminary design standpoint, in which the extra weight of the mass counterbalance is the most important phase of the problem. Equations are developed for the required balance weight for a simple aileron and this weight is correlated with the mass-balance coefficient. It is concluded the location of the c.g. of the basic aileron is of paramount importance and that complete mass balance imposes no great weight penalty if the aileron is designed to have its c.g. inherently near to the hinge axis.

  14. Fe and Cu isotope mass balances in the human body

    NASA Astrophysics Data System (ADS)

    Balter, V.; Albarede, F.; Jaouen, K.

    2011-12-01

    The ranges of the Fe and Cu isotope compositions in the human body are large, i.e. ~3% and ~2%, respectively. Both isotopic fractionations appear to be mainly controlled by redox conditions. The Fe and Cu isotope compositions of the tissues analyzed so far plot on a mixing hyperbolae between a reduced and an oxidized metals pools. The reduced metals pool is composed by erythrocytes, where Fe is bounded to hemoglobin as Fe(II) and Cu to superoxide-dismutase as Cu(I). The oxidized metals pool is composed by hepatocytes, where Fe and Cu are stored as Fe(III) ferritin and as Cu(II) ceruloplasmine, respectively. The position of each biological component in the δ56Fe-δ65Cu diagram therefore reflects the oxidation state of Fe and Cu of the predominant metal carrier protein and allows to quantify Fe and Cu fluxes between organs using mass balance calculations. For instance, serum and clot Fe and Cu isotope compositions show that current biological models of erythropoiesis violates mass conservation requirements, and suggest hidden Fe and Cu pathways during red blood cells synthesis. The results also show that a coupled Fe-Cu strong gender isotopic effect is observed in various organs. The isotopic difference between men and women is unlikely to be due to differential dietary uptake or endometrium loss, but rather reflects the effect of menstrual losses and a correlative solicitation of hepatic stores. We speculate that thorough studies of the metabolism of stable isotopes in normal conditions is a prerequisite for the understanding of the pathological dysregulations.

  15. Glacier crevasses: Observations, models, and mass balance implications

    NASA Astrophysics Data System (ADS)

    Colgan, William; Rajaram, Harihar; Abdalati, Waleed; McCutchan, Cheryl; Mottram, Ruth; Moussavi, Mahsa S.; Grigsby, Shane

    2016-03-01

    We review the findings of approximately 60 years of in situ and remote sensing studies of glacier crevasses, as well as the three broad classes of numerical models now employed to simulate crevasse fracture. The relatively new insight that mixed-mode fracture in local stress equilibrium, rather than downstream advection alone, can introduce nontrivial curvature to crevasse geometry may merit the reinterpretation of some key historical observation studies. In the past three decades, there have been tremendous advances in the spatial resolution of satellite imagery, as well as fully automated algorithms capable of tracking crevasse displacements between repeat images. Despite considerable advances in developing fully transient three-dimensional ice flow models over the past two decades, both the zero stress and linear elastic fracture mechanics crevasse models have remained fundamentally unchanged over this time. In the past decade, however, multidimensional and transient formulations of the continuum damage mechanics approach to simulating ice fracture have emerged. The combination of employing damage mechanics to represent slow upstream deterioration of ice strength and fracture mechanics to represent rapid failure at downstream termini holds promise for implementation in large-scale ice sheet models. Finally, given the broad interest in the sea level rise implications of recent and future cryospheric change, we provide a synthesis of 10 mechanisms by which crevasses can influence glacier mass balance.

  16. Oxalate Mass Balance During Chemical Cleaning in Tank 5F

    SciTech Connect

    Poirier, M.; Fink, S.

    2011-07-08

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

  17. Biogeochemical phosphorus mass balance for Lake Baikal, southeastern Siberia, Russia

    USGS Publications Warehouse

    Callender, E.; Granina, L.

    1997-01-01

    Extensive data for Lake Baikal have been synthesized into a geochemical mass balance for phosphorus (P). Some of the P budget and internal cycling terms for Baikal have been compared to similar terms for oligotrophic Lake Superior, mesotrophic Lake Michigan and the Baltic Sea, and the Ocean. Lake Baikal has a large external source of fluvial P compared to the Laurentian upper Great Lakes and the Ocean. The major tributary to Lake Baikal has experienced substantial increases in organic P loading during the past 25 years. This, coupled with potential P inputs from possible phosphorite mining, may threaten Baikal's oligotrophic status in the future. Water-column remineralization of particulate organic P is substantially greater in Lake Baikal than in the Laurentian Great Lakes. This is probably due to the great water depths of Lake Baikal. There is a gradient in P burial efficiency, with very high values (80%) for Lake Baikal and Lake Superior, lower values (50%) for Lake Michigan and the Baltic Sea, and a low value (13%) for the Ocean. The accumulation rate of P in Lake Baikal sediments is somewhat greater than that in the Laurentian upper Great Lakes and the Baltic Sea, and much greater than in the Ocean. Benthic regeneration rates are surprisingly similar for large lacustrine and marine environments and supply less than 10% of the P utilized for primary production in these aquatic environments.

  18. Stable isotope mass balance of lakes: a contemporary perspective

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; Birks, S. J.; Yi, Y.

    2016-01-01

    The theoretical basis for application of stable isotope mass balance of lakes is described for a range of climatic situations including low latitude, high latitude, high altitude, continental and coastal systems, as well as cases where the atmospheric boundary layer is significantly modified by the lake evaporation process. The effects of seasonality on isotopic offset between precipitation and atmospheric vapour and the slope of the local evaporation line are described. Atmospheric feedback and its role in labelling the isotopic composition of the Laurentian Great Lakes and tropical lakes is discussed. Several important considerations are suggested to improve parameterization of quantitative paleoclimatic reconstructions including use of assumptions that are appropriate for the climatic setting, for the atmospheric feedback situation, for salinity, and headwater setting. Potential for use of dual-isotopes to trace past changes in seasonality and input, and a dual-lake index method that can potentially be used to trace connectivity of lakes are presented. In cases where modern or paleo-evaporation systems may be under-defined there are inherent limitations in the degree of quantification that can be attained.

  19. Mass and energy balance in the 1973 August 9 flare

    NASA Technical Reports Server (NTRS)

    Dere, K. P.; Cook, J. W.

    1983-01-01

    The mass and energy balance of the thermal plasma during the decay phase of the solar flare of August 9, 1973, are studied. The analysis is based on observationally determined values for the differential emission measure, density, turbulent and bulk velocities, and physical dimensions. The total particle content and total thermal energy content of the flare plasmas with temperatures above 100,000 K and their variation with time are calculated. The particle loss and the energy losses through radiation, conduction, and convection are evaluated. The decrease in total particle content can be accounted for by the convective losses through the loop footprints at 100,000 K. Radiation is the dominant energy loss mechanism although convective losses at 100,000 K can be important. Conductive losses at 100,000 K into cooler chromospheric material appear to be negligible. The decrease in the total energy content during the decay phase is equal to the sum of the energy losses over the period of observation. No requirement is found for continued heating during the decay phase.

  20. Diet modification to reduce phosphorus surpluses: a mass balance approach.

    PubMed

    Maguire, R O; Crouse, D A; Hodges, S C

    2007-01-01

    Diet modification to reduce phosphorus (P) concentrations in manures has been developed in response to environmental concerns over P losses from animal agriculture to surface waters. We used USDA-NASS statistics on animal numbers and crop production to calculate county scale mass balances for manure P production, P removed in harvested portion of crops, and the potential effects of diet modification. Although spreading manure evenly over all crop acreage within a county is unlikely to occur, these calculations give a good indication as to the impact diet modification to reduce P can have at a regional or national scale. There was a high degree of regional variability in manure P surpluses (e.g., with the large crop acreages in the grain belt leading to large P offtake in crops preventing most P surpluses). In 89% of counties, there was a deficit of manure P relative to crop P removal; therefore there was a manure P surplus in 11% of counties. Diet modification decreased the percentage of states with a manure P surplus from 11 to 8%, a decrease of approximately 27%. Diet modification decreased the percentage of counties with the greatest surpluses of manure P (>30 kg ha(-1)) from 3% of all counties to 1%. Diet modification to decrease manure P is an important part of strategies to alleviate environmental concerns associated with surplus manure P in many areas, but additional strategies to deal with manure P surpluses are needed in some areas. PMID:17636283

  1. Mass balance and composition analysis of shredder residue.

    SciTech Connect

    Pomykala, J. A., Jr.; Jody, B. J.; Spangenberger, J. S.; Daniels, E. J.; Energy Systems

    2007-01-01

    The process of shredding end-of-life vehicles to recover metals results in a byproduct commonly referred to as shredder residue. The four-and-a-half million metric tons of shredder residue produced annually in the United States is presently land filled. To meet the challenges of automotive materials recycling, the U.S. Department of Energy is supporting research at Argonne National Laboratory in cooperation with the Vehicle Recycling Partnership (VRP) of the United States Council for Automotive Research (USCAR) and the American Plastics Council. This paper presents the results of a study that was conducted by Argonne to determine variations in the composition of shredder residue from different shredders. Over 90 metric tons of shredder residues were processed through the Argonne pilot plant. The contents of the various separated streams were quantitatively analyzed to determine their composition and to identify materials that should be targeted for recovery. The analysis established a reliable mass balance for the different materials in shredder residue.

  2. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.

    PubMed

    Ning, Kang; Ng, Hoong Kee; Leong, Hon Wai

    2007-01-01

    Peptide identification by tandem mass spectrometry (MS/MS) is one of the most important problems in proteomics. Recent advances in high throughput MS/MS experiments result in huge amount of spectra. Unfortunately, identification of these spectra is relatively slow, and the accuracies of current algorithms are not high with the presence of noises and post-translational modifications (PTMs). In this paper, we strive to achieve high accuracy and efficiency for peptide identification problem, with special concern on identification of peptides with PTMs. This paper expands our previous work on PepSOM with the introduction of two accurate modified scoring functions: Slambda for peptide identification and Slambda* for identification of peptides with PTMs. Experiments showed that our algorithm is both fast and accurate for peptide identification. Experiments on spectra with simulated and real PTMs confirmed that our algorithm is accurate for identifying PTMs. PMID:18546510

  3. Application of the accurate mass and time tag approach in studies of the human blood lipidome

    SciTech Connect

    Ding, Jie; Sorensen, Christina M.; Jaitly, Navdeep; Jiang, Hongliang; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Metz, Thomas O.

    2008-08-15

    We report a preliminary demonstration of the accurate mass and time (AMT) tag approach for lipidomics. Initial data-dependent LC-MS/MS analyses of human plasma, erythrocyte, and lymphocyte lipids were performed in order to identify lipid molecular species in conjunction with complementary accurate mass and isotopic distribution information. Identified lipids were used to populate initial lipid AMT tag databases containing 250 and 45 entries for those species detected in positive and negative electrospray ionization (ESI) modes, respectively. The positive ESI database was then utilized to identify human plasma, erythrocyte, and lymphocyte lipids in high-throughput quantitative LC-MS analyses based on the AMT tag approach. We were able to define the lipid profiles of human plasma, erythrocytes, and lymphocytes based on qualitative and quantitative differences in lipid abundance. In addition, we also report on the optimization of a reversed-phase LC method for the separation of lipids in these sample types.

  4. Runoff, precipitation, mass balance, and ice velocity measurements at South Cascade Glacier, Washington, 1993 balance year

    USGS Publications Warehouse

    Krimmel, R.M.

    1994-01-01

    Winter snow accumulation and summer snow, firn, and ice ablation were measured at South Cascade Glacier, Wash., to determine the winter and net balance for the 1993 balance year. The 1993 winter balance, averaged over the glacier, was 1.98 meters, and the net balance was -1.23 meters. This negative valance continued a trend of negative balance years beginning in 1977. Air temperature, barometric pressure, and runoff from this glacier basin and an adjacent non-glacierized basin were also continuously measured. Surface ice velocity was measured over an annual period. This report makes all these data available to users throughout the glaciological and climato1ogical community.

  5. The Use of Accurate Mass Tags for High-Throughput Microbial Proteomics

    SciTech Connect

    Smith, Richard D. ); Anderson, Gordon A. ); Lipton, Mary S. ); Masselon, Christophe D. ); Pasa Tolic, Ljiljana ); Shen, Yufeng ); Udseth, Harold R. )

    2002-08-01

    We describe and demonstrate a global strategy that extends the sensitivity, dynamic range, comprehensiveness, and throughput of proteomic measurements based upon the use of peptide accurate mass tags (AMTs) produced by global protein enzymatic digestion. The two-stage strategy exploits Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry to validate peptide AMTs for a specific organism, tissue or cell type from potential mass tags identified using conventional tandem mass spectrometry (MS/MS) methods, providing greater confidence in identifications as well as the basis for subsequent measurements without the need for MS/MS, and thus with greater sensitivity and increased throughput. A single high resolution capillary liquid chromatography separation combined with high sensitivity, high resolution and ac-curate FT-ICR measurements has been shown capable of characterizing peptide mixtures of significantly more than 10 5 components with mass accuracies of -1 ppm, sufficient for broad protein identification using AMTs. Other attractions of the approach include the broad and relatively unbiased proteome coverage, the capability for exploiting stable isotope labeling methods to realize high precision for relative protein abundance measurements, and the projected potential for study of mammalian proteomes when combined with additional sample fractionation. Using this strategy, in our first application we have been able to identify AMTs for 60% of the potentially expressed proteins in the organism Deinococcus radiodurans.

  6. Fast and accurate mock catalogue generation for low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Koda, Jun; Blake, Chris; Beutler, Florian; Kazin, Eyal; Marin, Felipe

    2016-06-01

    We present an accurate and fast framework for generating mock catalogues including low-mass haloes, based on an implementation of the COmoving Lagrangian Acceleration (COLA) technique. Multiple realisations of mock catalogues are crucial for analyses of large-scale structure, but conventional N-body simulations are too computationally expensive for the production of thousands of realizations. We show that COLA simulations can produce accurate mock catalogues with a moderate computation resource for low- to intermediate-mass galaxies in 1012 M⊙ haloes, both in real and redshift space. COLA simulations have accurate peculiar velocities, without systematic errors in the velocity power spectra for k ≤ 0.15 h Mpc-1, and with only 3-per cent error for k ≤ 0.2 h Mpc-1. We use COLA with 10 time steps and a Halo Occupation Distribution to produce 600 mock galaxy catalogues of the WiggleZ Dark Energy Survey. Our parallelized code for efficient generation of accurate halo catalogues is publicly available at github.com/junkoda/cola_halo.

  7. iPE-MMR: An integrated approach to accurately assign monoisotopic precursor masses to tandem mass spectrometric data

    PubMed Central

    Jung, Hee-Jung; Purvine, Samuel O.; Kim, Hokeun; Petyuk, Vladislav A.; Hyung, Seok-Won; Monroe, Matthew E.; Mun, Dong-Gi; Kim, Kyong-Chul; Park, Jong-Moon; Kim, Su-Jin; Tolic, Nikola; Slysz, Gordon W.; Moore, Ronald J.; Zhao, Rui; Adkins, Joshua N.; Anderson, Gordon A.; Lee, Hookeun; Camp, David G.; Yu, Myeong-Hee; Smith, Richard D.; Lee, Sang-Won

    2010-01-01

    Accurate assignment of monoisotopic precursor masses to tandem mass spectrometric (MS/MS) data is a fundamental and critically important step for successful peptide identifications in mass spectrometry based proteomics. Here we describe an integrated approach that combines three previously reported methods of treating MS/MS data for precursor mass refinement. This combined method, “integrated Post-Experiment Monoisotopic Mass Refinement” (iPE-MMR), integrates steps: 1) generation of refined MS/MS data by DeconMSn; 2) additional refinement of the resultant MS/MS data by a modified version of PE-MMR; 3) elimination of systematic errors of precursor masses using DtaRefinery. iPE-MMR is the first method that utilizes all MS information from multiple MS scans of a precursor ion including multiple charge states, in an MS scan, to determine precursor mass. By combining these methods, iPE-MMR increases sensitivity in peptide identification and provides increased accuracy when applied to complex high-throughput proteomics data. PMID:20863060

  8. Mass spectrometry-based protein identification with accurate statistical significance assignment

    PubMed Central

    Alves, Gelio; Yu, Yi-Kuo

    2015-01-01

    Motivation: Assigning statistical significance accurately has become increasingly important as metadata of many types, often assembled in hierarchies, are constructed and combined for further biological analyses. Statistical inaccuracy of metadata at any level may propagate to downstream analyses, undermining the validity of scientific conclusions thus drawn. From the perspective of mass spectrometry-based proteomics, even though accurate statistics for peptide identification can now be achieved, accurate protein level statistics remain challenging. Results: We have constructed a protein ID method that combines peptide evidences of a candidate protein based on a rigorous formula derived earlier; in this formula the database P-value of every peptide is weighted, prior to the final combination, according to the number of proteins it maps to. We have also shown that this protein ID method provides accurate protein level E-value, eliminating the need of using empirical post-processing methods for type-I error control. Using a known protein mixture, we find that this protein ID method, when combined with the Sorić formula, yields accurate values for the proportion of false discoveries. In terms of retrieval efficacy, the results from our method are comparable with other methods tested. Availability and implementation: The source code, implemented in C++ on a linux system, is available for download at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbp/qmbp_ms/RAId/RAId_Linux_64Bit. Contact: yyu@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25362092

  9. Mass balance, meteorological, and runoff measurements at South Cascade Glacier, Washington, 1992 balance year

    USGS Publications Warehouse

    Krimmel, R.M.

    1993-01-01

    Values of winter snow accumulation and summer snow, firn, and ice ablation were measured at South Cascade Glacier, WA, to determine the winter and net balance for the 1992 balance year. The 1992 winter balance, averaged over the glacier, was 1.91 m, and the net balance was -2.01 m. This extremely negative balance continued a trend of negative balance years beginning in 1977. Air temperature (at 1,615 m and 1,867 m), barometric pressure, precipitation, and runoff from this glacier basin and an adjacent non-glacierized basin were also continuously measured. This report makes all these data, in tabular, graphical, and machine-readable forms, available to users.

  10. Comparison of glaciological and geodetic mass balance at Urumqi Glacier No. 1, Tian Shan, Central Asia

    NASA Astrophysics Data System (ADS)

    Wang, Puyu; Li, Zhongqin; Li, Huilin

    2016-04-01

    Glaciological and geodetic measurements are two methods to determine glacier mass balances. The mass balance of Urumqi Glacier No. 1 has been measured since 1959 by the glaciological method using ablation stakes and snowpits, except during the period 1967-1979 when the observations were interrupted. Moreover, topographic surveys have been carried out at various time intervals since the beginning of the glacier observations. Therefore, glacier volume changes are calculated by comparing topographic maps of different periods during nearly 50 years. Between 1962 and 2009, Urumqi Glacier No. 1 lost an ice volume of 29.51×106 m3, which corresponds to a cumulative ice thickness loss of 8.9 m and a mean annual loss of 0.2 m. The results are compared with glaciological mass balances over the same time intervals. The differences are 2.3%, 2.8%, 4.6%, 4.7% and 5.9% for the period 1981-86, 1986-94, 1994-2001, 2001-06 and 2006-09, respectively. For the mass balance measured with the glaciological method, the systematic errors accumulate linearly with time, whereas the errors are random for the geodetic mass balance. The geodetic balance is within the estimated error of the glaciological balance. In conclusion, the geodetic and glaciological mass balances are of high quality and therefore, there is no need to calibrate the mass balance series of Urumqi Glacier No. 1.

  11. High-resolution accurate mass spectrometry as a technique for characterization of complex lysimeter leachate samples.

    PubMed

    Hand, Laurence H; Marshall, Samantha J; Saeed, Mansoor; Earll, Mark; Hadfield, Stephen T; Richardson, Kevan; Rawlinson, Paul

    2016-06-01

    Lysimeter studies can be used to identify and quantify soil degradates of agrochemicals (metabolites) that have the potential to leach to groundwater. However, the apparent metabolic profile of such lysimeter leachate samples will often be significantly more complex than would be expected in true groundwater samples. This is particularly true for S-metolachlor, which has an extremely complex metabolic pathway. Consequently, it was not practically possible to apply a conventional analytical approach to identify all metabolites in an S-metolachlor lysimeter study, because there was insufficient mass to enable the use of techniques such as nuclear magnetic resonance. Recent advances in high-resolution accurate mass spectrometry, however, allow innovative screening approaches to characterize leachate samples to a greater extent than previously possible. Leachate from the S-metolachlor study was screened for accurate masses (±5 ppm of the nominal mass) corresponding to more than 400 hypothetical metabolite structures. A refined list of plausible metabolites was constructed from these data to provide a comprehensive description of the most likely metabolites present. The properties of these metabolites were then evaluated using a principal component analysis model, based on molecular descriptors, to visualize the entire chemical space and to cluster the metabolites into a number of subclasses. This characterization and principal component analysis evaluation enabled the selection of suitable representative metabolites that were subsequently used as exemplars to assess the toxicological relevance of the leachate as a whole. Environ Toxicol Chem 2016;35:1401-1412. © 2015 SETAC. PMID:26627902

  12. Chloride-Mass-Balance: Cautions in Predicting Increased Recharge Rates

    SciTech Connect

    Gee, Glendon W.; Zhang, Z. F.; Tyler , S. W.; Albright , W. H.; Singleton , M. J.

    2005-02-01

    The chloride-mass-balance (CMB) method has been used extensively to estimate recharge in arid and semi-arid environments. Required data include estimates of annual precipitation, total chloride input (from dry fallout and precipitation), and pore-water chloride concentrations. Typically, CMB has been used to estimate ancient recharge but recharge from recent land-use change has also been documented. Recharge rates below a few mm/yr are reliably detected with CMB; however, estimates above a few mm/yr appear to be less reliable. We tested the CMB method against 26 years of drainage from a 7.6 m deep lysimeter at a simulated waste-burial ground, located on the Department of Energy’s Hanford Site in southeastern Washington State, USA where land-use change has increased recharge rates. Measured drainage from the lysimeter for the past 26 years averaged 62 mm/yr. Precipitation averaged 190 mm/yr with an estimated chloride input of 0.225 mg/L. Initial pore-water chloride concentration was 88 mg/L and decreased to about 6 mg/L after 26 years, while the drainage water decreased to less than 1 mg/L. A recharge estimate made using chloride concentrations in drain water was within 20% of the measured drainage rate. In contrast, recharge estimates using 1:1 (water: soil) extracts were lower than actual by factors ranging from 2 to 8 or more. The results suggest that when recharge is above a few mm/yr, soil water extracts can lead to unreliable estimates of recharge. For conditions of elevated recharge, direct sampling of pore water is the preferred method, because chloride concentrations are often 20 to 50 times higher in directly-sampled pore water than in pore-water extracts.

  13. Mass balance investigation of alpine glaciers through LANDSAT TM data

    NASA Technical Reports Server (NTRS)

    Bayr, Klaus J.

    1989-01-01

    An analysis of LANDSAT Thematic Mapper (TM) data of the Pasterze Glacier and the Kleines Fleisskees in the Austrian Alps was undertaken and compared with meteorological data of nearby weather stations. Alpine or valley glaciers can be used to study regional and worldwide climate changes. Alpine glaciers respond relatively fast to a warming or cooling trend in temperature through an advance or a retreat of the terminus. In addition, the mass balance of the glacier is being affected. Last year two TM scenes of the Pasterze Glacier of Aug. 1984 and Aug. 1986 were used to study the difference in reflectance. This year, in addition to the scenes from last year, one MSS scene of Aug. 1976 and a TM scene from 1988 were examined for both the Pasterze Glacier and the Kleines Fleisskees. During the overpass of the LANDSAT on 6 Aug. 1988 ground truthing on the Pasterze Glacier was undertaken. The results indicate that there was considerable more reflectance in 1976 and 1984 than in 1986 and 1988. The climatological data of the weather stations Sonnblick and Rudolfshuette were examined and compared with the results found through the LANDSAT data. There were relations between the meteorological and LANDSAT data: the average temperature over the last 100 years showed an increase of .4 C, the snowfall was declining during the same time period but the overall precipitation did not reveal any significant change over the same period. With the use of an interactive image analysis computer, the LANDSAT scenes were studied. The terminus of the Pasterze Glacier retreated 348 m and the terminus of the Kleines Fleisskees 121 m since 1965. This approach using LANDSAT MSS and TM digital data in conjunction with meteorological data can be effectively used to monitor regional and worldwide climate changes.

  14. The formation of a clinopyroxene corona — Mass balance considerations

    NASA Astrophysics Data System (ADS)

    Zingg, Andrew J.

    1992-06-01

    The formation of a Cpx-corona is discussed from the viewpoint of continuous reaction techniques. Two cases are distinguished: a closed and open system. The first case is based on the equation eOl w + aPl u = bPl v + Opx x + cCpx y + dSpl y Plagioclase is assumed to be a solid solution between anorthite and albite (Na uCa 1-wAl 2-uSi 2+uO 8). The other minerals are solutions of their Fe- and Mg-end-members [e.g. (Mg wFe 1-w) 2SiO 4 for olivine]. Spinel forms a ternary system of hercynite-spinel-magnetite. Stoichiometric coefficients are expressed in terms of the exchange parameters t, u, v, w, x, y and z. According to stoichiometries, the net molar quantity of phaligioclase consumed equals the number of moles of clinopyroxene and spinel produced. For each mole of olivine consumed there is one mole of opx produced. A closed system is suggested by the ability to predict one of the mineral compositions in terms of the others using one of the six mass balances (Na, Ca, Mg, Fe, Al, Si) left from the calculation of five stoichiometric coefficients. This model allows the calculation of mass transfer between different shells and explains coronas from the Adirondacks, Scandinavia and the Niquelândia layered complex (Brazil). In the second case the system is open and is described by the equation. Opx x + aPl u + kCa 2+ + hSi 4+ + fFe 2+ = cCpx y + lNa + + lAl 3 + gMg 2+ The compositional variation of orthopyroxene and clinopyroxene allows the determination of c(Cpx), -(Fe 2+) and g(Mg 2+) which are interdependent. With a known value of c and assuming a constant volume of reaction the value of a may be determined. The final equation, for a plagioclase composition of XAn = 0.75, is 1 Opx + 0.35 Pl + 0.74 Ca 2+ + 0.21 Si 4+ + 0.10 Mg 2+ = 1 Cpx + 0.61 Al 3+ + 0.10 Fe 2+ + 0.09 Na + This is the reaction responsible for the formation of Cpx-coronas in the Bushveld complex.

  15. The impact of supraglacial debris on the mass balance and dynamics of Khumbu Glacier, Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Rowan, Ann; Quincey, Duncan; Glasser, Neil; Egholm, David; Gibson, Morgan; Irvine-Fynn, Tristram; Porter, Philip

    2015-04-01

    Rapid changes in glacier volumes and dynamics have been observed in the monsoon-influenced Himalaya over recent decades, with marked consequences for the hydrological budgets and glacial hazard potential of catchments such as the Dudh Kosi, a tributary of the Ganges River. For many large glaciers such as Khumbu Glacier in eastern Nepal, supraglacial rock debris modifies the thermal properties of the ice surface and mass balance variations in response to climatic change. Ice flow dynamics vary dramatically with supraglacial debris thickness -- the debris-covered section of Khumbu Glacier appears stagnant, while the clean-ice section reaches velocities exceeding 50 m per year -- resulting in spatial variation in the drivers of mass transfer and loss. However, the relative importance of supraglacial debris in modifying mass balance compared to external forcing by the summer monsoon is poorly understood, and as a result quantifying the sensitivity of this glacier to climatic change is challenging. To calculate ablation across the glacier we need to incorporate the thermal properties of the debris layer and how these vary with altitude and time into a mass balance calculation. We made field observations describing debris thickness and sub-debris melt rates on Khumbu Glacier. At four different sites, we measured vertical temperature profiles through the supraglacial debris and at the ice surface, debris thickness, and 1 m air temperature through the summer monsoon, and calculated ablation rates following the method of Nicholson and Benn (2006, J. Glacio.). These data were used with local meteorological data to calculate the spatial and temporal variability in the surface energy balance of Khumbu Glacier. To investigate the sensitivity of Khumbu Glacier to climatic change, we developed a numerical model of this glacier from our field data. Our higher-order flow model (Egholm et al., 2011; JGR) reproduces accurately the variations in ice velocity observed using feature

  16. A MASS BALANCE OF SURFACE WATER GENOTOXICITY IN PROVIDENCE RIVER (RHODE ISLAND USA)

    EPA Science Inventory

    White and Rasmussen (Mutation Res. 410:223-236) used a mass balance approach to demonstrate that over 85% of the total genotoxic loading to the St. Lawrence River at Montreal is non-industrial. To validate the mass balance approach and investigate the sources of genotoxins in sur...

  17. Mass balance, energy and exergy analysis of bio-oil production by fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass, energy and exergy balances are analyzed for bio-oil production in a bench scale fast pyrolysis system developed by the USDA’s Agricultural Research Service (ARS) for the processing of commodity crops to fuel intermediates. Because mass balance closure is difficult to achieve due, in part, to ...

  18. Results of the Lake Michigan Mass Balance Project: Atrazine Modeling Report

    EPA Science Inventory

    This report covers an overview of chemical properties, measurements in air and water, model construct and assumptions, and results of mathematical mass balance modeling of the herbicide atrazine in the Lake Michigan basin. Within the context of the mass balance, an overview of a...

  19. MS2Analyzer: A Software for Small Molecule Substructure Annotations from Accurate Tandem Mass Spectra

    PubMed Central

    2015-01-01

    Systematic analysis and interpretation of the large number of tandem mass spectra (MS/MS) obtained in metabolomics experiments is a bottleneck in discovery-driven research. MS/MS mass spectral libraries are small compared to all known small molecule structures and are often not freely available. MS2Analyzer was therefore developed to enable user-defined searches of thousands of spectra for mass spectral features such as neutral losses, m/z differences, and product and precursor ions from MS/MS spectra in MSP/MGF files. The software is freely available at http://fiehnlab.ucdavis.edu/projects/MS2Analyzer/. As the reference query set, 147 literature-reported neutral losses and their corresponding substructures were collected. This set was tested for accuracy of linking neutral loss analysis to substructure annotations using 19 329 accurate mass tandem mass spectra of structurally known compounds from the NIST11 MS/MS library. Validation studies showed that 92.1 ± 6.4% of 13 typical neutral losses such as acetylations, cysteine conjugates, or glycosylations are correct annotating the associated substructures, while the absence of mass spectra features does not necessarily imply the absence of such substructures. Use of this tool has been successfully demonstrated for complex lipids in microalgae. PMID:25263576

  20. Glacier mass balance and runoff research in the U.S.A.

    USGS Publications Warehouse

    Mayo, L.R.

    1984-01-01

    Research on glacier mass balance began in the USA about 50 years ago. More complete studies of climate, snow and ice balance, and the hydrology of glaciers were initiated for the IGY in 1957 and the IHD in 1966. Investigations included the magnitude and geographic distribution of normal mass balance processes and unusual phenomena such as outbursting, accumulation of ice by freezing of water in firn, and ablation of glacier ice by volcanic activity and by calving. -from Author

  1. Net mass balance calculations for the Shirase Drainage Basin, east Antarctica, using the mass budget method

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuki; Yamanokuchi, Tsutomu; Doi, Koichiro; Shibuya, Kazuo

    2016-06-01

    We quantify the mass budget of the Shirase drainage basin (SHI), Antarctica, by separately estimating snow accumulation (surface mass balance; SMB) and glacier ice mass discharge (IMD). We estimated the SMB in the SHI, using a regional atmospheric climate model (RACMO2.1). The SMB of the mainstream A flow region was 12.1 ± 1.5 Gt a-1 for an area of 1.985 × 105 km2. Obvious overestimation of the model round the coast, ∼0.5 Gt a-1, was corrected for. For calculating the IMD, we employed a 15-m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with a digital elevation model (DEM) to determine the heights at the grounding line (GL), after comparison with the interpolated Bamber DEM grid heights; the results of this are referred to as the measured heights. Ice thickness data at the GL were inferred by using a free-board relationship between the measured height and the ice thickness, and considering the measured firn depth correction (4.2 m with the reference ice density of 910 kg m-3) for the nearby blue-ice area. The total IMD was estimated to be 14.0 ± 1.8 Gt a-1. Semi-empirical firn densification model gives the estimate within 0.1-0.2 Gt a-1 difference. The estimated net mass balance, -1.9 Gt a-1, has a two-σ uncertainty of ±3.3 Gt a-1, and probable melt water discharge strongly suggests negative NMB, although the associated uncertainty is large.

  2. Proteome Analyses Using Accurate Mass and Elution Time Peptide Tags with Capillary LC Time-of-Flight Mass Spectrometry

    SciTech Connect

    Strittmatter, Eric F.; Ferguson, Patrick L.; Tang, Keqi; Smith, Richard D.

    2003-09-01

    We describe the application of capillary liquid chromatography (LC) time-of-flight (TOF) mass spectrometric instrumentation for the rapid characterization of microbial proteomes. Previously (Lipton et al. Proc. Natl Acad. Sci. USA, 99, 2002, 11049) the peptides from a series of growth conditions of Deinococcus radiodurans have been characterized using capillary LC MS/MS and accurate mass measurements which are logged in an accurate mass and time (AMT) tag database. Using this AMT tag database, detected peptides can be assigned using measurements obtained on a TOF due to the additional use of elution time data as a constraint. When peptide matches are obtained using AMT tags (i.e. using both constraints) unique matches of a mass spectral peak occurs 88% of the time. Not only are AMT tag matches unique in most cases, the coverage of the proteome is high; {approx}3500 unique peptide AMT tags are found on average per capillary LC run. From the results of the AMT tag database search, {approx}900 ORFs detected using LC-TOFMS, with {approx}500 ORFs covered by at least two AMT tags. These results indicate that AMT databases searches with modest mass and elution time criteria can provide proteomic information for approximately one thousand proteins in a single run of <3 hours. The advantage of this method over using MS/MS based techniques is the large number of identifications that occur in a single experiment as well as the basis for improved quantitation. For MS/MS experiments, the number of peptide identifications is severely restricted because of the time required to dissociate the peptides individually. These results demonstrate the utility of the AMT tag approach using capillary LC-TOF MS instruments, and also show that AMT tags developed using other instrumentation can be effectively utilized.

  3. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  4. How many stakes are required to measure the mass balance of a glacier?

    USGS Publications Warehouse

    Fountain, A.G.; Vecchia, A.

    1999-01-01

    Glacier mass balance is estimated for South Cascade Glacier and Maclure Glacier using a one-dimensional regression of mass balance with altitude as an alternative to the traditional approach of contouring mass balance values. One attractive feature of regression is that it can be applied to sparse data sets where contouring is not possible and can provide an objective error of the resulting estimate. Regression methods yielded mass balance values equivalent to contouring methods. The effect of the number of mass balance measurements on the final value for the glacier showed that sample sizes as small as five stakes provided reasonable estimates, although the error estimates were greater than for larger sample sizes. Different spatial patterns of measurement locations showed no appreciable influence on the final value as long as different surface altitudes were intermittently sampled over the altitude range of the glacier. Two different regression equations were examined, a quadratic, and a piecewise linear spline, and comparison of results showed little sensitivity to the type of equation. These results point to the dominant effect of the gradient of mass balance with altitude of alpine glaciers compared to transverse variations. The number of mass balance measurements required to determine the glacier balance appears to be scale invariant for small glaciers and five to ten stakes are sufficient.

  5. Influence of mass resolution on species matching in accurate mass and retention time (AMT) tag proteomics experiments.

    PubMed

    Masselon, Christophe D; Kieffer-Jaquinod, Sylvie; Brugière, Sabine; Dupierris, Véronique; Garin, Jérôme

    2008-04-01

    Diverse mass spectrometric instruments have been used to provide data for accurate mass and retention time (AMT) tag proteomics analyses, including ion trap, quadrupole time-of-flight, and Fourier transform mass spectrometry (FTMS). An important attribute of these instruments, beside mass accuracy, is their spectral resolution. In fact, the ability to separate peaks with close m/z values is likely to play a major role in enabling species identification and matching in analyses of very complex proteomics samples. In FTMS, resolution is directly proportional to the detection period and can therefore be easily tuned. We took advantage of this feature to investigate the effect of resolution on species identification and matching in an AMT tag experiment. Using an Arabidopsis thaliana chloroplast protein extract as prototypical 'real-life' sample, we have compared the number of detected features, the optimal mass tolerance for species matching, the number of matched species and the false discovery rate obtained at various resolution settings. It appears that while the total number of matches is not significantly affected by a reduction of resolution in the range investigated, the confidence level of identifications significantly drops as evidenced by the estimated false discovery rate. PMID:18320544

  6. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  7. Surface mass balance reanalysis of Taku and Lemon Creek glaciers, Alaska: 1946-2015

    NASA Astrophysics Data System (ADS)

    McNeil, Christopher

    We reanalyzed geodetic and glaciological surface mass balance records of Taku and Lemon Creek glaciers for the period 1946--2015 to determine what has driven the contradictory behavior of these glaciers. During the past century, Taku Glacier has been increasing in area and mass, while Lemon Creek Glacier has simultaneously shrunk in area and mass. Between 1948 and 1999 geodetic mass balance rates are +0.33+/-0.34 m w.e. a--1 for Taku Glacier and 0.61+/-0.34 m w.e. a--1 for Lemon Creek Glacier. Geodetic mass balance rates decreased to +0.01+/-0.23 m w.e. a--1 and --0.65 +/-0.23 m w.e. a--1 for Taku and Lemon Creek glaciers respectively, between 1999 and 2013. We updated the glaciological analysis of annual field data, and found no significant difference between updated and previous annual mass balance solutions (p--value < 0.001). We used the geodetic mass balance to calibrate annual glaciological estimates between 1946 and 2015, removing systematic biases of +0.06 m w.e. a--1 from the Taku Glacier record and --0.06 m w.e. a --1 from the Lemon Creek Glacier record. Comparing mass balance anomalies we determined inter--annual variability of surface mass balance is the same for Taku and Lemon Creek glaciers. However, differences in glacier specific hypsometry and mass balance profile drive systematic differences in both annual and long--term glacier mass balance rates.

  8. Modeling the mass balance of the Wolverine Glacier Alaska USA using the PTAA model

    NASA Astrophysics Data System (ADS)

    Korn, D.

    2010-12-01

    Glaciers in Alaska have been increasingly losing mass over the last several decades. This trend is especially apparent in South-Central Alaska where many glaciers are undergoing rapid changes and contributing substantially to rising sea levels (Arendt et al., 2002). It is important to understand the rates at which these glaciers are losing mass as well as the important climatic drivers to better prepare for what the future holds in this region and the rest of the world. This work compares glacier mass balance data modeled through the Precipitation-Temperature Area Altitude (PTAA) mass balance model for the Wolverine Glacier in the Kenai Peninsula in South-Central Alaska to observed data from the USGS “benchmark” glacier program in order to help validate the model. The mass balance data are also correlated with climate data in order to understand the main climatic drivers of the glacier mass balance in this region.

  9. Glacier modeling in support of field observations of mass balance at South Cascade Glacier, Washington, USA

    USGS Publications Warehouse

    Josberger, Edward G.; Bidlake, William R.

    2010-01-01

    The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  10. Comparative glacio-climatological analysis of mass balance variability along the geographical margin of Europe

    NASA Astrophysics Data System (ADS)

    Lehoczky, Annamária; Kern, Zoltán; Pongrácz, Rita

    2014-05-01

    Glacio-climatological studies recognise glacier mass balance changes as high-confident climate indicators. The climatic sensitivity of a glacier does not simply depend on regional climate variability but also influenced via large- and mesoscale atmospheric circulation patterns. This study focuses on recent changes in the mass balance using records from three border regions of Europe, and investigates the relationships between the seasonal mass balance components, regional climatic conditions, and distant atmospheric forcing. Since glaciers in different macro-climatological conditions (i.e., mid-latitudes or high-latitudes, dry-continental or maritime regions) may present strongly diverse mass balance characteristics, the three analysed regions were selected from different glacierised macroregions (using the database of the World Glacier Monitoring Service). These regions belong to the Caucasus Mountains (Central Europe macroregion), the Polar Ural (Northern Asia macroregion), and Svalbard (Arctic Islands macroregion). The analysis focuses on winter, summer, and annual mass balance series of eight glaciers. The climatic variables (atmospheric pressure, air temperature, precipitation) and indices of teleconnection patterns (e.g., North Atlantic Oscillation, Pacific Decadal Oscillation) are used from the gridded databases of the University of East Anglia, Climatic Research Unit and the National Oceanic and Atmospheric Administration, National Center for Environmental Prediction. However, the period and length of available mass balance data in the selected regions vary greatly (the first full record is in 1958, Polar Ural; the last is in 2010, Caucasus Mountains), a comparative analysis can be carried out for the period of 1968-1981. Since glaciers from different regions respond to large- and mesoscale climatic forcings differently, and because the mass balance of glaciers within a region often co-vary, our specific objectives are (i) to examine the variability and the

  11. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags

    PubMed Central

    Lipton, Mary S.; Paša-Tolić, Ljiljana; Anderson, Gordon A.; Anderson, David J.; Auberry, Deanna L.; Battista, John R.; Daly, Michael J.; Fredrickson, Jim; Hixson, Kim K.; Kostandarithes, Heather; Masselon, Christophe; Markillie, Lye Meng; Moore, Ronald J.; Romine, Margaret F.; Shen, Yufeng; Stritmatter, Eric; Tolić, Nikola; Udseth, Harold R.; Venkateswaran, Amudhan; Wong, Kwong-Kwok; Zhao, Rui; Smith, Richard D.

    2002-01-01

    Understanding biological systems and the roles of their constituents is facilitated by the ability to make quantitative, sensitive, and comprehensive measurements of how their proteome changes, e.g., in response to environmental perturbations. To this end, we have developed a high-throughput methodology to characterize an organism's dynamic proteome based on the combination of global enzymatic digestion, high-resolution liquid chromatographic separations, and analysis by Fourier transform ion cyclotron resonance mass spectrometry. The peptides produced serve as accurate mass tags for the proteins and have been used to identify with high confidence >61% of the predicted proteome for the ionizing radiation-resistant bacterium Deinococcus radiodurans. This fraction represents the broadest proteome coverage for any organism to date and includes 715 proteins previously annotated as either hypothetical or conserved hypothetical. PMID:12177431

  12. Accurate prediction of the ammonia probes of a variable proton-to-electron mass ratio

    NASA Astrophysics Data System (ADS)

    Owens, A.; Yurchenko, S. N.; Thiel, W.; Špirko, V.

    2015-07-01

    A comprehensive study of the mass sensitivity of the vibration-rotation-inversion transitions of 14NH3, 15NH3, 14ND3 and 15ND3 is carried out variationally using the TROVE approach. Variational calculations are robust and accurate, offering a new way to compute sensitivity coefficients. Particular attention is paid to the Δk = ±3 transitions between the accidentally coinciding rotation-inversion energy levels of the ν2 = 0+, 0-, 1+ and 1- states, and the inversion transitions in the ν4 = 1 state affected by the `giant' l-type doubling effect. These transitions exhibit highly anomalous sensitivities, thus appearing as promising probes of a possible cosmological variation of the proton-to-electron mass ratio μ. Moreover, a simultaneous comparison of the calculated sensitivities reveals a sizeable isotopic dependence which could aid an exclusive ammonia detection.

  13. Accurate mass - time tag library for LC/MS-based metabolite profiling of medicinal plants

    PubMed Central

    Cuthbertson, Daniel J.; Johnson, Sean R.; Piljac-Žegarac, Jasenka; Kappel, Julia; Schäfer, Sarah; Wüst, Matthias; Ketchum, Raymond E. B.; Croteau, Rodney B.; Marques, Joaquim V.; Davin, Laurence B.; Lewis, Norman G.; Rolf, Megan; Kutchan, Toni M.; Soejarto, D. Doel; Lange, B. Markus

    2013-01-01

    We report the development and testing of an accurate mass – time (AMT) tag approach for the LC/MS-based identification of plant natural products (PNPs) in complex extracts. An AMT tag library was developed for approximately 500 PNPs with diverse chemical structures, detected in electrospray and atmospheric pressure chemical ionization modes (both positive and negative polarities). In addition, to enable peak annotations with high confidence, MS/MS spectra were acquired with three different fragmentation energies. The LC/MS and MS/MS data sets were integrated into online spectral search tools and repositories (Spektraris and MassBank), thus allowing users to interrogate their own data sets for the potential presence of PNPs. The utility of the AMT tag library approach is demonstrated by the detection and annotation of active principles in 27 different medicinal plant species with diverse chemical constituents. PMID:23597491

  14. Modeling Past and Future Surface Mass Balance of the Patagonian Icefields

    NASA Astrophysics Data System (ADS)

    Schaefer, M.; Casassa, G., Sr.; Machguth, H.; Falvey, M. J.

    2014-12-01

    We present surface mass balance simulations of the Patagonian Icefield that were driven by global climate data (reanalysis/GCM) which were downscaled using the regional climate model Weather Research and Forecasting (WRF) and statistical downscaling methods. The special climatic situation in the region with sharp climate gradients introduced by the blocking of the westerlies by the high peaks of the Icefield are reproduced by downscaled climatic data. The mass balance simulations were validated and interpreted using geodetic mass balances, measured point balances and a complete velocity field of the Southern Patagonia Icefield (SPI) from spring 2004. The high measured accumulation of snow as well as the high measured ablation values are reproduced by the model. Subtracting the modeled surface mass balance from the geodetic balances, calving fluxes of major outlet glaciers were inferred. Good agreement with calving fluxes estimated from velocity data was obtained in many cases however on several glaciers the inferred calving fluxes seem to overestimate the measured calving fluxes. The measured calving fluxes exhibit large uncertainties due to mostly unknown ice thickness data and evolution of glacier velocities through time. The accumulation of snow and its redistribution due to wind drift present the mayor uncertainties in the modeled surface mass balance. Assuming no substantial changes in ice flow, the surface mass balance model driven by ECHAM5 data in the A1B scenario predicts a contribution of the Patagonian Icefields to sea-level rise in the 21st century of 7.3 mm.

  15. High-resolution accurate mass measurements of biomolecules using a new electrospray ionization ion cyclotron resonance mass spectrometer.

    PubMed

    Winger, B E; Hofstadler, S A; Bruce, J E; Udseth, H R; Smith, R D

    1993-07-01

    A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10(-9) torr. The increased pumping speed attainable with cryopumping (> 10(5) L/s) allowed brief pressure excursions to above 10(-4) torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10-25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4(+) charge state (m/z 1434) of insulin. PMID:24227643

  16. A Statistical Method for Assessing Peptide Identification Confidence in Accurate Mass and Time Tag Proteomics

    SciTech Connect

    Stanley, Jeffrey R.; Adkins, Joshua N.; Slysz, Gordon W.; Monroe, Matthew E.; Purvine, Samuel O.; Karpievitch, Yuliya V.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2011-07-15

    High-throughput proteomics is rapidly evolving to require high mass measurement accuracy for a variety of different applications. Increased mass measurement accuracy in bottom-up proteomics specifically allows for an improved ability to distinguish and characterize detected MS features, which may in turn be identified by, e.g., matching to entries in a database for both precursor and fragmentation mass identification methods. Many tools exist with which to score the identification of peptides from LC-MS/MS measurements or to assess matches to an accurate mass and time (AMT) tag database, but these two calculations remain distinctly unrelated. Here we present a statistical method, Statistical Tools for AMT tag Confidence (STAC), which extends our previous work incorporating prior probabilities of correct sequence identification from LC-MS/MS, as well as the quality with which LC-MS features match AMT tags, to evaluate peptide identification confidence. Compared to existing tools, we are able to obtain significantly more high-confidence peptide identifications at a given false discovery rate and additionally assign confidence estimates to individual peptide identifications. Freely available software implementations of STAC are available in both command line and as a Windows graphical application.

  17. Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

    NASA Astrophysics Data System (ADS)

    Little, James L.; Williams, Antony J.; Pshenichnov, Alexey; Tkachenko, Valery

    2012-01-01

    In many cases, an unknown to an investigator is actually known in the chemical literature, a reference database, or an internet resource. We refer to these types of compounds as "known unknowns." ChemSpider is a very valuable internet database of known compounds useful in the identification of these types of compounds in commercial, environmental, forensic, and natural product samples. The database contains over 26 million entries from hundreds of data sources and is provided as a free resource to the community. Accurate mass mass spectrometry data is used to query the database by either elemental composition or a monoisotopic mass. Searching by elemental composition is the preferred approach. However, it is often difficult to determine a unique elemental composition for compounds with molecular weights greater than 600 Da. In these cases, searching by the monoisotopic mass is advantageous. In either case, the search results are refined by sorting the number of references associated with each compound in descending order. This raises the most useful candidates to the top of the list for further evaluation. These approaches were shown to be successful in identifying "known unknowns" noted in our laboratory and for compounds of interest to others.

  18. ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS

    SciTech Connect

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.

    2009-12-10

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance LAMBDACDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and LAMBDACDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the LAMBDACDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass

  19. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance.

    PubMed

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Suffredini, Anthony F; Sacks, David B; Yu, Yi-Kuo

    2016-02-01

    Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple 'fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ. PMID:26510657

  20. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y.; Drake, Steven K.; Gucek, Marjan; Suffredini, Anthony F.; Sacks, David B.; Yu, Yi-Kuo

    2016-02-01

    Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple `fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

  1. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for β-cell mass assessments

    PubMed Central

    Eter, Wael A.; Parween, Saba; Joosten, Lieke; Frielink, Cathelijne; Eriksson, Maria; Brom, Maarten; Ahlgren, Ulf; Gotthardt, Martin

    2016-01-01

    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM. Alternative methods are therefore warranted to cross-validate β-cell imaging using radiotracers. In this study, we introduce multimodal SPECT - optical projection tomography (OPT) imaging as an accurate approach to cross-validate radionuclide-based imaging of β-cells. Uptake of a promising radiotracer for β-cell imaging by SPECT, 111In-exendin-3, was measured by ex vivo-SPECT and cross evaluated by 3D quantitative OPT imaging as well as with histology within healthy and alloxan-treated Brown Norway rat pancreata. SPECT signal was in excellent linear correlation with OPT data as compared to histology. While histological determination of islet spatial distribution was challenging, SPECT and OPT revealed similar distribution patterns of 111In-exendin-3 and insulin positive β-cell volumes between different pancreatic lobes, both visually and quantitatively. We propose ex vivo SPECT-OPT multimodal imaging as a highly accurate strategy for validating the performance of β-cell radiotracers. PMID:27080529

  2. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for β-cell mass assessments.

    PubMed

    Eter, Wael A; Parween, Saba; Joosten, Lieke; Frielink, Cathelijne; Eriksson, Maria; Brom, Maarten; Ahlgren, Ulf; Gotthardt, Martin

    2016-01-01

    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM. Alternative methods are therefore warranted to cross-validate β-cell imaging using radiotracers. In this study, we introduce multimodal SPECT - optical projection tomography (OPT) imaging as an accurate approach to cross-validate radionuclide-based imaging of β-cells. Uptake of a promising radiotracer for β-cell imaging by SPECT, (111)In-exendin-3, was measured by ex vivo-SPECT and cross evaluated by 3D quantitative OPT imaging as well as with histology within healthy and alloxan-treated Brown Norway rat pancreata. SPECT signal was in excellent linear correlation with OPT data as compared to histology. While histological determination of islet spatial distribution was challenging, SPECT and OPT revealed similar distribution patterns of (111)In-exendin-3 and insulin positive β-cell volumes between different pancreatic lobes, both visually and quantitatively. We propose ex vivo SPECT-OPT multimodal imaging as a highly accurate strategy for validating the performance of β-cell radiotracers. PMID:27080529

  3. Annual and seasonal mass balances of Chhota Shigri Glacier (benchmark glacier, Western Himalaya), India

    NASA Astrophysics Data System (ADS)

    Mandal, Arindan; Ramanathan, Alagappan; Farooq Azam, Mohd; Wagnon, Patrick; Vincent, Christian; Linda, Anurag; Sharma, Parmanand; Angchuk, Thupstan; Bahadur Singh, Virendra; Pottakkal, Jose George; Kumar, Naveen; Soheb, Mohd

    2015-04-01

    Several studies on Himalayan glaciers have been recently initiated as they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring program was initiated on Chhota Shigri Glacier (15.7 square km, 9 km long, 6263-4050 m a.s.l.) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon-arid transition zone (western Himalaya) and is a representative glacier in Lahaul and Spiti Valley. While annual mass balances have been measured continuously since 2002 using the glaciological method, seasonal scale observations began in 2009. The annual and seasonal mass balances were then analyzed along with meteorological conditions in order to understand the role of winter and summer balances on annual glacier-wide mass balance of Chhota Shigri glacier. During the period 2002-2013, the glacier experienced a negative glacier-wide mass balance of -0.59±0.40 m w.e. a-1 with a cumulative glaciological mass balance of -6.45 m w.e. Annual glacier-wide mass balances were negative except for four years (2004/05, 2008/09, 2009/10 and 2010/11) where it was generally close to balanced conditions. Equilibrium line altitude (ELA) for steady state condition is calculated as 4950 m a.s.l. corresponding to an accumulation area ratio (AAR) of 62% using annual glacier-wide mass balance, ELA and AAR data between 2002 and 2013. The winter glacier-wide mass balance between 2009 and 2013 ranges from a maximum value of 1.38 m w.e. in 2009/10 to a minimum value of 0.89 in 2012/13 year whereas the summer glacier-wide mass balance varies from the highest value of -0.95 m w.e. in 2010/11 to the lowest value of -1.72 m w.e. in 2011/12 year. The mean vertical mass balance gradient between 2002 and 2013 was 0.66 m w.e. (100 m)-1 quite similar to Alps, Nepalese Himalayas etc. Over debris covered area, the gradients are highly variable with a negative mean value of -2.15 m w.e. (100 m)-1 over 2002

  4. A better GRACE solution for improving the regional Greenland mass balance

    NASA Astrophysics Data System (ADS)

    Schrama, E.; Xu, Z.

    2012-04-01

    In most GRACE based researches, a variety of smoothing methods is employed to remove alternating bands of positive and negative stripes stretching in the north-south direction. Many studies have suggested to smooth the GRACE maps, on which mass variations are represented as equivalent water height (EWH). Such maps are capable of exposing the redistribution of earth surface mass over time. In Greenland the shrinking of the ice cap becomes significant in the last decade. Our present study confirms that the dominating melting trends are in the east and southeast coastal zones, however, the smoothed signals along the coastline in these areas do not represent the original but averaged measurements from GRACE satellites which means the signal strength indicating that negative mass variations are mixed with some positive signals that are very close to this area. An exact identification of the topographic edge is not possible and visually the EWH maps appear to be blurred. To improve this, we firstly used spherical harmonic coefficients of GRACE level-2 data from CSR-RL04 and produced a smoothed EWH map. Empirical Orthogonal Functions(EOF)/Principal Component Analysis(PCA) have been introduced as well, in order to extract the melting information associated with the recent warming climate. Next, the Greenland area is redefined by 16 basins and the corresponding melting zones are quantified respectively. Least Squares methods are invoked to interpolate the mass distribution function on each basin. In this way we are able to estimate more accurately regional ice melting rate and we sharpen the EWH map. After comparing our results with a hydrological model the combination SMB - D is established which contains the surface mass balance (SMB) and ice-discharge (D). A general agreement can be reached and it turns out this method is capable to enhance our understanding of the shrinking global cryosphere

  5. Mass-Balance Fluctuations of Glaciers in the Pacific Northwest and Alaska, USA

    NASA Astrophysics Data System (ADS)

    Josberger, E. G.; Bidlake, W. R.; March, R. S.; Kennedy, B. W.

    2006-12-01

    The mass balance of mid-latitude glaciers of the Pacific Northwest and southern Alaska fluctuates in response to changes in the regional and global atmospheric climate. More than 40 years of net and seasonal mass balance records by the U.S. Geological Survey for South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, show annual and inter-annual fluctuations that reflect the controlling climatic conditions. South Cascade and Wolverine Glaciers are strongly affected by the warm and wet maritime climate of the Northeast Pacific Ocean, and the winter balances are strongly related to the Pacific Decadal Oscillations (PDO). Gulkana Glacier is more isolated from maritime influences and the net balance variation is more closely linked to the summer balance. By the late 1970's, mass-balance records for the three were long enough to reflect the 1976-77 shift in PDO from negative to positive. Both maritime glaciers responded, with net balance of South Cascade Glacier becoming consistently negative and that of Wolverine Glacier becoming predominantly positive. The overall trend of negative mass balance continued through 2004 for South Cascade Glacier, where the 1977 to 2004 cumulative net balance was about -22 meters water equivalent (mweq). After a gain of about 7 mweq, the trend of positive net balance for Wolverine Glacier ended in 1989. Beginning in 1989, the net balance trend for Wolverine Glacier became predominantly negative and the cumulative net balance for 1989 to 2004 was about -14 mweq. Net balance of Gulkana Glacier did not respond appreciably to the 1976-77 PDO shift. The cumulative net balance for Gulkana Glacier from the beginning of the record (1966) through 1988 was about -3 mweq. The major change in trend of mass balance occurred in 1989, when net balance became almost exclusively negative. The cumulative net balance during 1989 through 2004 was about 13 mweq. As a result trends in net balance had become strongly negative for more

  6. Re-establishing seasonal mass balance observation at Abramov Glacier, Kyrgyzstan, from 1968 - 2012

    NASA Astrophysics Data System (ADS)

    Barandun, Martina; Huss, Matthias; Azisov, Erlan; Gafurov, Abror; Hoelzle, Martin; Merkushkin, Aleksandr; Salzmann, Nadine; Usubaliev, Ryskul

    2013-04-01

    The Abramov Glacier, located in the Pamir Alay in Kyrgyzstan, was subject to intense studies in the frame of various scientific programs under the former USSR. With the breakdown of the Soviet Union, the monitoring was abruptly abandoned in the late nineties. Well documented and continuous seasonal mass balance observations are available for 1968-1994. However, some inconsistencies between different publications lead to in-homogeneous data sets. Recently, the project CATCOS (Capacity Building and Twinning for Climate Observing Systems) was launched, aiming among other goals to re-establish mass balance observation on selected glaciers in Kyrgyzstan. At Abramov Glacier, a new stake network, an automatic weather station (AWS) and two automatic terrestrial cameras with instantaneous data transfer over satellite were installed in 2011. Measurements were repeated and intensified in 2012 and will be subject of a third field campaign in summer 2013. A complete re-analysis of the long-term mass balance series from 1968 to 1994 delivers corrected mass balance data for Abramov Glacier. To homogenize in-situ mass balance records, a spatially distributed mass balance model driven with local daily temperature and precipitation data was calibrated to each seasonal mass balance survey. The model resolves seasonal mass-balance measurements to a daily timescale and performs spatial inter- and extrapolation of data points based on a consistent algorithm, taking into account the principal factors of mass balance distribution. Summarizing the annually optimized parameters over the entire study period provides a robust model parameter set for years with less extensive direct measurements. From 1994 to 2011, neither direct point measurements nor meteorological data are available. In order to run the calibrated model developed for the 1960's to 90's, climate input variables were taken from bias corrected Re-analysis data (NCEP/NCAR and JRA). Evaluation of the model results was achieved

  7. A simple, mass balance model of carbon flow in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1989-01-01

    Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.

  8. A possible change in mass balance of Greenland and Antarctic ice sheets in the coming century

    SciTech Connect

    Ohmura, A.; Wild, M.; Bengtsson, L.

    1996-09-01

    A high-resolution GCM is found to simulate precipitation and surface energy balance of high latitudes with high accuracy. This opens new possibilities to investigate the future mass balance of polar glaciers and its effect on sea level. The surface mass balance of the Greenland and the Antarctic ice sheets is simulated using the ECHAM3 GCM with T106 horizontal resolution. With this model, two 5-year integrations for the present and doubled carbon dioxide conditions based on the boundary conditions provided by the ECHAM1/T21 transient to what extent the effect of climate change on the mass balance on the two largest glaciers of the world can differ. On Greenland one sees a slight decrease in accumulation and a substantial increase in melt, while on Antarctica a large increase in accumulation without melt is projected. Translating the mass balances into terms of sea-level equivalent, the Greenland discharge causes a sea level rise of 1.1 mm yr{sup {minus}1}, while the accumulation on Antarctica tends to lower it by 0.9 mm yr{sup {minus}1}. The change in the combined mass balance of the two continents is almost zero. The sea level change of the next century can be affected more effectively by the thermal expansion of seawater and the mass balance of smaller glaciers outside of Greenland and Antarctica. 24 refs., 11 figs., 2 tabs.

  9. Global application of a surface mass balance model using gridded climate data

    NASA Astrophysics Data System (ADS)

    Giesen, R. H.; Oerlemans, J.

    2012-04-01

    Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a simple surface mass balance model that only requires air temperature and precipitation as input data, to glaciers in different regions. In contrast to other models used in global applications, this model separately calculates the contributions of net solar radiation and the temperature-dependent fluxes to the energy balance. We derive a relation for these temperature-dependent fluxes using automatic weather station (AWS) measurements from glaciers in different climates. With local, hourly input data, the model is well able to simulate the observed seasonal variations in the surface energy and mass balance at the AWS sites. Replacing the hourly local data by monthly gridded climate data removes summer snowfall and winter melt events and hence influences the modelled mass balance most on locations with a small seasonal temperature cycle. Representative values for the multiplication factor and vertical gradient of precipitation are determined by fitting modelled winter mass balance profiles to observations on 80 glaciers in different regions. For 72 of the 80 glaciers, the precipitation provided by the climate data set has to be multiplied with a factor above unity; the median factor is 2.55. The vertical precipitation gradient ranges from negative to positive values, with more positive values for maritime glaciers and a median value of 1.5 mm a-1 m. With calibrated precipitation, the modelled annual mass balance gradient closely resembles the observations on the 80 glaciers, the absolute values are matched by adjusting either the incoming solar radiation, the temperature-dependent flux or the air temperature. The mass balance sensitivity to changes in temperature is

  10. Calibration of a surface mass balance model for global-scale applications

    NASA Astrophysics Data System (ADS)

    Giesen, R. H.; Oerlemans, J.

    2012-12-01

    Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a simple surface mass balance model that only requires air temperature and precipitation as input data, to glaciers in different regions. In contrast to other models used in global applications, this model separately calculates the contributions of net solar radiation and the temperature-dependent fluxes to the energy balance. We derive a relation for these temperature-dependent fluxes using automatic weather station (AWS) measurements from glaciers in different climates. With local, hourly input data, the model is well able to simulate the observed seasonal variations in the surface energy and mass balance at the AWS sites. Replacing the hourly local data by monthly gridded climate data removes summer snowfall and winter melt events and, hence, influences the modelled mass balance most on locations with a small seasonal temperature cycle. Modelled winter mass balance profiles are fitted to observations on 82 glaciers in different regions to determine representative values for the multiplication factor and vertical gradient of precipitation. For 75 of the 82 glaciers, the precipitation provided by the climate dataset has to be multiplied with a factor above unity; the median factor is 2.5. The vertical precipitation gradient ranges from negative to positive values, with more positive values for maritime glaciers and a median value of 1.5 mm a-1 m-1. With calibrated precipitation, the modelled annual mass balance gradient closely resembles the observations on the 82 glaciers, the absolute values are matched by adjusting either the incoming solar radiation, the temperature-dependent flux or the air temperature. The mass balance sensitivity to changes in temperature is

  11. Assessing temporal flux of plant hormones in stored processing potatoes using high definition accurate mass spectrometry

    PubMed Central

    Ordaz-Ortiz, José Juan; Foukaraki, Sofia; Terry, Leon Alexander

    2015-01-01

    Plant hormones are important molecules which at low concentration can regulate various physiological processes. Mass spectrometry has become a powerful technique for the quantification of multiple classes of plant hormones because of its high sensitivity and selectivity. We developed a new ultrahigh pressure liquid chromatography–full-scan high-definition accurate mass spectrometry method, for simultaneous determination of abscisic acid and four metabolites phaseic acid, dihydrophaseic acid, 7′-hydroxy-abscisic acid and abscisic acid glucose ester, cytokinins zeatin, zeatin riboside, gibberellins (GA1, GA3, GA4 and GA7) and indole-3-acetyl-L-aspartic acid. We measured the amount of plant hormones in the flesh and skin of two processing potato cvs. Sylvana and Russet Burbank stored for up to 30 weeks at 6 °C under ambient air conditions. Herein, we report for the first time that abscisic acid glucose ester seems to accumulate in the skin of potato tubers throughout storage time. The method achieved a lowest limit of detection of 0.22 ng g−1 of dry weight and a limit of quantification of 0.74 ng g−1 dry weight (zeatin riboside), and was able to recover, detect and quantify a total of 12 plant hormones spiked on flesh and skin of potato tubers. In addition, the mass accuracy for all compounds (<5 ppm) was evaluated. PMID:26504563

  12. Quantitation and accurate mass analysis of pesticides in vegetables by LC/TOF-MS.

    PubMed

    Ferrer, Imma; Thurman, E Michael; Fernández-Alba, Amadeo R

    2005-05-01

    A quantitative method consisting of solvent extraction followed by liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) analysis was developed for the identification and quantitation of three chloronicotinyl pesticides (imidacloprid, acetamiprid, thiacloprid) commonly used on salad vegetables. Accurate mass measurements within 3 ppm error were obtained for all the pesticides studied in various vegetable matrixes (cucumber, tomato, lettuce, pepper), which allowed an unequivocal identification of the target pesticides. Calibration curves covering 2 orders of magnitude were linear over the concentration range studied, thus showing the quantitative ability of TOF-MS as a monitoring tool for pesticides in vegetables. Matrix effects were also evaluated using matrix-matched standards showing no significant interferences between matrixes and clean extracts. Intraday reproducibility was 2-3% relative standard deviation (RSD) and interday values were 5% RSD. The precision (standard deviation) of the mass measurements was evaluated and it was less than 0.23 mDa between days. Detection limits of the chloronicotinyl insecticides in salad vegetables ranged from 0.002 to 0.01 mg/kg. These concentrations are equal to or better than the EU directives for controlled pesticides in vegetables showing that LC/TOF-MS analysis is a powerful tool for identification of pesticides in vegetables. Robustness and applicability of the method was validated for the analysis of market vegetable samples. Concentrations found in these samples were in the range of 0.02-0.17 mg/kg of vegetable. PMID:15859598

  13. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  14. Mass balance and hydrological contribution of glaciers in northern and central Chile

    NASA Astrophysics Data System (ADS)

    MacDonell, Shelley; Vivero, Sebastian; McPhee, James; Ayala, Alvaro; Pellicciotti, Francesca; Campos, Cristian; Caro, Dennys; Ponce, Rodrigo

    2016-04-01

    Water is a critical resource in the northern and central regions of Chile, as the area supports more than 40% of the country's population, and the regional economy depends on agricultural production and mining, which are two industries that rely heavily on a consistent water supply. Due to relatively low rates of rainfall, meltwater from snow and ice bodies in the highland areas provides a key component of the annual water supply in these areas. Consequently, accurate estimates of the rates of ablation of the cryosphere (i.e. snow and ice) are crucial for predicting current supply rates, and future projections. Whilst snow is generally a larger contributor of freshwater, during periods of drought, glaciers provide a significant source. This study aims to determine the contribution of glaciers to two catchments in northern and central Chile during a 2.5 year period, which largely consisted of extreme dry periods, but also included the recent El Niño event. This study combined field and modelling studies to understand glacier and rock glacier contributions in the Tapado (30°S), Yeso (33°S) catchments. In the field we undertook glaciological mass balance monitoring of three glaciers, monitored albedo and snow line changes using automatic cameras for three glaciers, measured discharge continuously at several points, installed six automatic weather stations and used thermistors to monitor thermal regime changes of two rock glaciers. The combination of these datasets where used to drive energy balance and hydrological models to estimate the contribution of ice bodies to streamflow in the two studied catchments. Over the course of the study all glaciers maintained a negative mass balance, however glaciers in central Chile lost more mass, which is due to the higher melt rates experienced due to lower elevations and higher temperatures. Areas free of debris generally contributed more to streamflow than sediment covered regions, and snow generally contributed more over

  15. Tree-ring based mass balance estimates along the North Pacific Rim

    NASA Astrophysics Data System (ADS)

    Malcomb, N.; Wiles, G. C.

    2009-12-01

    Glacier mass balance reconstructions provide a means of placing short-term mass balance observations into a longer-term context. In western North America, most instrumental records of mass balance are limited in duration and capture only a narrow window of glacial behavior over an interval that is dominated by warming and ablation. Tree-ring series from northwestern North America are used to reconstruct annual mass balance for Gulkana and Wolverine Glaciers in Alaska, Peyto and Place Glaciers in British Columbia, and South Cascade and Blue Glaciers in Washington State. Mass balance models rely on the temperature and precipitation sensitivity of the tree-ring chronologies and mass balance records, as well as teleconnections along the North Pacific sector. The reconstructions extend through the latter portions of the Little Ice Age (LIA) and highlight the role of decadal and secular-scale climate change in forcing mass balance. Net mass balance reconstructions are broadly consistent with the moraine record that coincides with two major intervals of positive mass balance and with cooling related to the Maunder and Dalton solar minima. Secular warming in the later portions of the 19th and the 20th centuries corresponds with a pronounced interval of negative mass balance, and model instability after 1980. These trends show that the marked changes in glacier systems over recent decades throughout the Northwestern Cordillera are unique for the last several centuries and furthermore, suggest that modest gains forced by increasing precipitation over the latter 20th century in coastal settings are not sufficient to force glacier expansion or moraine building. Reconstructed (blue) and instrumental (red) net mass balances, Northern Hemisphere Temperature anomalies (Wilson et al., 2007), and PDO index (MacDonald and Case, 2005). A= Gulkana Glacier, B=Wolverine Glacier, C=Peyto Glacier, D=Place Glacier, E=South Cascade, F=Blue Glacier, G=PDO index, and H=Northern Hemisphere

  16. Modeling and managing toxic chemicals: The Lake Michigan mass balance study

    SciTech Connect

    Endicott, D.D.; Richardson, W.L.

    1995-12-31

    The control and management of anthropogenic chemicals in the Great Lakes is an issue of great concern for 2 nations, 9 states and provinces, and 33 million people. As loadings from identified sources have been reduced, sometimes dramatic declines in toxic chemical concentrations have been observed to follow. However, human health and ecological effects from toxic chemicals remain topics of concern. There is also scientific debate regarding what factors control current toxic chemical concentrations in biotic and abiotic components of the Great lakes ecosystem. To address this latter issue, mathematical models are being developed to simulate the sources, transport, bioavailability, and bioaccumulation of four target chemicals (atrazine, mercury, PCBs, and trans-nonachlor). Preliminary modeling assessment by the authors suggested that PCB concentrations in Lake Michigan lake trout would remain greater than 1 mg/kg, even if all point and nonpoint sources in the watershed were eliminated. 2 factors control this result: (1) atmospheric sources are the largest PCB load component, and (2) the release of PCBs from the lake sediments by resuspension represents a huge internal mass flux. However, current data does not allow accurate estimation of either quantity. Because of the major ecological and economical consequences of decisions based upon the mass balance assessment, the modeling results require scientific confirmation.

  17. Mass-balance approach for assessing nitrate flux intidal wetlands -- lessons learned

    EPA Science Inventory

    Field experiments were carried out in 2010 and 2011 to assess the nitrate balance in a small tidal slough located in the Yaquina Estuary, Oregon. In 2010 we used a whole-slough, mass-balance approach, while a smaller scale, flume-like experiment in a tidal channel with a dense ...

  18. Spent Nuclear Fuel (SNF) Project Multi Canister Overpack (MCO) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-09-08

    The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference.

  19. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-05-11

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

  20. Composition of Meridiani Hematite-rich Spherules: A Mass-Balance Mixing-Model Approach

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.; Athena Science Team

    2005-03-01

    A mass-balance model using APXS data and microscopic images indicates that the composition of spherules ("blueberries"), found at the Meridiani site by the Mars Exploration Rover Opportunity and thought to be concretions, contain ~45-60 wt% hematite.

  1. Mercury mass balance in Lake Michigan--the knowns and unknowns

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  2. A GIS TECHNIQUE FOR ESTIMATING NATURAL ATTENUATION RATES AND MASS BALANCES: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA-01308 Durant, ND, Srinivasan, P, Faust, CR, Burnell, DK, Klein, KL, and Burden*, D.S. A GIS Technique for Estimating Natural Attenuation Rates and Mass Balances. Battelle's Sixth International ...

  3. Mass balance monitoring of geological CO2 storage with a superconducting gravimeter - A case study

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Woo; Neumeyer, Juergen; Kao, Ricky; Kabirzadeh, Hojjat

    2015-03-01

    Although monitoring of geological carbon dioxide (CO2) storage is possible with a number of geophysical and geodetic techniques (e.g., seismic survey), gravimetric monitoring is known to be the most accurate method for measuring total mass changes. Therefore, it can be used for detection of storage pore space content changes and migration of CO2 plumes. A superconducting gravimeter (SG) installed on the Earth's surface provides precise and continuous records of gravity variations over time for periods from minutes to decades, which are required for monitoring subsurface CO2 storage. Due to the fact that gravimeter records combine the gravity effects of surface displacement and subsurface mass change, these two effects must be separated properly for observing CO2 mass balance. The Newtonian attraction gravity effect of stored CO2 is modeled as a function of reservoir depth and CO2 mass for different locations of the gravimeter over the reservoir. The gravity effect of the surface deformation is considered according to the modeled and measured displacement above the CO2 reservoir at the gravimeter's position. For estimation of the detection threshold, an assessment is carried out for the gravity corrections, which must be subtracted from the raw gravity data before obtaining the gravity signal of the stored CO2. A CO2 signal larger than about 0.5 μGal can be detected with an SG's continuous recordings. A measured gravity profile along the reservoir can support the continuous measurements. For providing objective evidence of a CO2 stored gravity signal, real measured raw SG gravity data of the MunGyung site in Korea were superimposed with an artificial uniformly continuous gravity signal up to 1.7 μGal, representing a gravity signal from a CO2 storage site with increasing injections up to about 105 kt at a depth of 600 m. These data were analyzed, and the CO2 storage signal could be clearly identified.

  4. Uncertainty in Modeling Dust Mass Balance and Radiative Forcing from Size Parameterization

    SciTech Connect

    Zhao, Chun; Chen, Siyu; Leung, Lai-Yung R.; Qian, Yun; Kok, Jasper; Zaveri, Rahul A.; Huang, J.

    2013-11-05

    This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the aerosol size parameterization. Simulations are conducted quasi-globally (180oW-180oE and 60oS-70oN) using the WRF24 Chem model with three different approaches to represent aerosol size distribution (8-bin, 4-bin, and 3-mode). The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode pproach retains more fine dust particles but fewer coarse dust particles due to its prescribed og of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days) on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (~6000 Tg yr-1), the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg) and 25% (49.1 Tg) higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (<10%) near the surface over the dust source regions. The three size approaches also result in significantly different dry and wet deposition fluxes and number concentrations of dust. The difference in dust aerosol optical depth (AOD) (a factor of 3) among the three size approaches is much larger than their difference (25%) in dust mass loading. Compared to the 8-bin approach, the 4-bin approach yields stronger dust absorptivity, while the 3-mode

  5. Mass-balance modelling of Chhota Shigri and Patsio glacier in western Himalaya, India

    NASA Astrophysics Data System (ADS)

    Engelhardt, Markus; Kumar, Pankaj; Li, Lu; Ramanathan, Alagappan

    2016-04-01

    Projections of glacier mass-balance evolution in the Himalayas are afflicted with high uncertainty due to the diversity of the climatic conditions and the extremes in topographical relief. Large spatial variations in glacier mass balances are connected with the diverse precipitation patterns. While there are indications of recent glacier retreats in the Himalayas, only few glaciers have been monitored over long periods. In 2002, a long term continuous monitoring programme of glacier mass balance was started on Chhota Shigri glacier (15.7 km²). During the period 2002-2013, measurements show an average glacier-wide mass balance of -0.59±0.12 m w.e. after near zero annual mass balances in the 1990s. On Patsio glacier (2.3 km²) mass-balance studies were initiated in 2010. We apply a mass-balance model for the glaciers Chhota Shigri and Patsio using gridded data from two different regional climate models: 1) the Weather Research and Forecasting (WRF) Model for the period 1970-2005 (on 50 km resolution) and 1996-2005 (on 3 km resolution), and 2) the regional climate model REMO for the period and 1989-2013 (25 km resolution). The data are downscaled from its grid resolution to the glacier grid (300 m). Additional input are daily potential global radiation values, calculated using a digital elevation model (DEM) at a resolution of 30 m and considering slope, aspect and shading of the surrounding topography. The mass-balance model calculates snow accumulation, melt and runoff on a sub-daily (hourly) time scale. Calibration and validation data are the available seasonal and annual mass-balance measurements together with point measurements of temperature, precipitation and radiation. Results show that this region of the Himalayas is situated in the transition zone between areas where the annual glacier mass balance ba is controlled by summer temperature and areas where ba is controlled by winter precipitation. In addition, summer snowfalls are a major influencing factor on

  6. In-Depth Glycoproteomic Characterization of γ-Conglutin by High-Resolution Accurate Mass Spectrometry

    PubMed Central

    Schiarea, Silvia; Arnoldi, Lolita; Fanelli, Roberto; De Combarieu, Eric; Chiabrando, Chiara

    2013-01-01

    The molecular characterization of bioactive food components is necessary for understanding the mechanisms of their beneficial or detrimental effects on human health. This study focused on γ-conglutin, a well-known lupin seed N-glycoprotein with health-promoting properties and controversial allergenic potential. Given the importance of N-glycosylation for the functional and structural characteristics of proteins, we studied the purified protein by a mass spectrometry-based glycoproteomic approach able to identify the structure, micro-heterogeneity and attachment site of the bound N-glycan(s), and to provide extensive coverage of the protein sequence. The peptide/N-glycopeptide mixtures generated by enzymatic digestion (with or without N-deglycosylation) were analyzed by high-resolution accurate mass liquid chromatography–multi-stage mass spectrometry. The four main micro-heterogeneous variants of the single N-glycan bound to γ-conglutin were identified as Man2(Xyl) (Fuc) GlcNAc2, Man3(Xyl) (Fuc) GlcNAc2, GlcNAcMan3(Xyl) (Fuc) GlcNAc2 and GlcNAc 2Man3(Xyl) (Fuc) GlcNAc2. These carry both core β1,2-xylose and core α1-3-fucose (well known Cross-Reactive Carbohydrate Determinants), but corresponding fucose-free variants were also identified as minor components. The N-glycan was proven to reside on Asn131, one of the two potential N-glycosylation sites. The extensive coverage of the γ-conglutin amino acid sequence suggested three alternative N-termini of the small subunit, that were later confirmed by direct-infusion Orbitrap mass spectrometry analysis of the intact subunit. PMID:24069245

  7. Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.

  8. Low resolution optical remote sensing applied to the monitoring of seasonal glacier mass balance.

    NASA Astrophysics Data System (ADS)

    Drolon, Vanessa; Maisongrande, Philippe; Berthier, Etienne; Swinnen, Else

    2015-04-01

    Mass balance is a key variable to describe the state of health of glaciers, their contribution to sea level rise and, in a few dry regions, their role in water resource. We explore here a new method to retrieve seasonal glacier mass balances from low resolution optical remote sensing. We derive winter and summer snow maps for each year during 1998-2014, using the Normalized Difference Snow Index (NDSI) computed from visible and SWIR channels available with SPOT/VEGETATION. The NDSI dynamic is directly linked to the area percentage of snow in the VGT kilometric pixel. The combination of 15 years of 10-daily NDSI maps with the SRTM DEM allows us to calculate the altitude of the transition between bare soil and snow. Then, we compare the interannual dynamic of this altitude with in situ measurements of mass balance available for 60 alpine glaciers (Huss et al., 2010; Zemp et al., 2009, 2013) and find promising relationships for winter mass balance. We also explore the possibility of a real-time monitoring of winter mass balance for a selection of alpine glaciers. Finally, we discuss the robustness and genericity of these relationships for their future application in regions where in situ glaciers mass balances are scarce or not available.

  9. Mass and thermal energy balance of potato processing operations

    SciTech Connect

    Chadbourne, D.L.; Heldman, D.R.

    1981-01-01

    A mass and thermal energy analysis was conducted for a potato peeling operation. Results provide insight into opportunities for process modifications leading to increased recovery of product components and thermal energy.

  10. Re-analysing eleven years of mass balance observations at Langenferner, Ortler-Cevedale Group, Italy

    NASA Astrophysics Data System (ADS)

    Galos, Stephan; Klug, Christoph; Rieg, Lorenzo; Sauter, Tobias; Gurgiser, Wolfgang; Kaser, Georg

    2016-04-01

    Long term surface mass balance records of glaciers are of peculiar scientific interest as they reflect the most direct link between the observed glacier changes and the underlying atmospheric forcing. Consequently they provide a unique source of information which is used in a wide range of different models (climate-, mass- or energy balance-, sea level rise- or run-off models). However, both inhomogeneities and unknown error ranges in the observational series limit the usefulness of respective datasets. Hence, the homogenization of long term records, as well as the availability of solid error values can significantly improve the quality of data and is therefore of crucial interest to the community. The surface mass balance of Langenferner / Vedretta Lunga, a small valley glacier in the Italian Eastern Alps, has been measured since the hydrological year 2003/04. The resulting series of annual mass balances was homogenized using a process based mass balance model in order to calculate the annual mass balance for points without stake measurements during the first observation years. A detailed error analysis was performed considering all significant sources of uncertainties involved in the mass balance determination applying the direct glaciological method. The homogenized mass balance values differ from the initial series mainly during the first measurement years when the number of measurements in the upper glacier parts was low and consequently large errors in the spatial extrapolation of measurements were made due to a lack of knowledge about changes in the upper glacier part. Hence the largest errors in mass balance calculation at Langenferner / Vedretta Lunga originate from inaccurate spatial extrapolation of point measurements, while other effects such as errors due to surface roughness play a role on the point scale but are canceled out by the high number of measurement points on the glacier wide scale. A comparison of the surface mass balance to the geodetic

  11. Modeling the surface mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard

    NASA Astrophysics Data System (ADS)

    Kohler, J.; van Pelt, W. J. J.

    2014-12-01

    A coupled modeling approach is applied to simulate the long-term (1961-2012) surface mass balance and subsurface evolution of the Kongsvegen and Holtedahlfonna glacier systems in western Svalbard. Principle aims are: 1) to quantify and analyze the distributed surface mass balance evolution, 2) to estimate the contribution of melt water refreezing and internal accumulation to the mass balance, and 3) to detect changes in firn conditions over the simulation period. In order to achieve this, HIRLAM regional climate model output for 1961-2012 is projected onto the 100-m model grid and serves as input for a coupled model surface energy balance - firn model. Available stake measurements since 1987, together with weather station data and snow profiling observations, are used for parameter estimation, as well as validation of the model results. Extensive spin-up is performed to provide initialized subsurface conditions at the start of the experiments. Results indicate a slightly positive area-averaged surface mass balance of 0.08 m w.e. yr-1, which only fractionally compensates for mass loss by calving. Melt water refreezing (spatial mean 0.30 m w.e. yr-1) provides a strong buffer for mass loss, whereas substantial internal accumulation (up to 0.22 m w.e. yr-1) adds uncertainty to mass balance observations in the accumulation zone. An increasingly negative surface mass balance over the last two decades has led to a retreat of the firn line and a substantial reduction of the firn air content. Together with a negative trend in the albedo and elevated runoff this could mark the onset of accelerated near-future mass loss.

  12. Time-of-flight accurate mass spectrometry identification of quinoline alkaloids in honey.

    PubMed

    Rodríguez-Cabo, Tamara; Moniruzzaman, Mohammed; Rodríguez, Isaac; Ramil, María; Cela, Rafael; Gan, Siew Hua

    2015-08-01

    Time-of-flight accurate mass spectrometry (TOF-MS), following a previous chromatographic (gas or liquid chromatography) separation step, is applied to the identification and structural elucidation of quinoline-like alkaloids in honey. Both electron ionization (EI) MS and positive electrospray (ESI+) MS spectra afforded the molecular ions (M(.+) and M+H(+), respectively) of target compounds with mass errors below 5 mDa. Scan EI-MS and product ion scan ESI-MS/MS spectra permitted confirmation of the existence of a quinoline ring in the structures of the candidate compounds. Also, the observed fragmentation patterns were useful to discriminate between quinoline derivatives having the same empirical formula but different functionalities, such as aldoximes and amides. In the particular case of phenylquinolines, ESI-MS/MS spectra provided valuable clues regarding the position of the phenyl moiety attached to the quinoline ring. The aforementioned spectral information, combined with retention times matching, led to the identification of quinoline and five quinoline derivatives, substituted at carbon number 4, in honey samples. An isomer of phenyquinoline was also noticed; however, its exact structure could not be established. Liquid-liquid microextraction and gas chromatography (GC) TOF-MS were applied to the screening of the aforementioned compounds in a total of 62 honeys. Species displaying higher occurrence frequencies were 4-quinolinecarbonitrile, 4-quinolinecarboxaldehyde, 4-quinolinealdoxime, and the phenylquinoline isomer. The Pearson test revealed strong correlations among the first three compounds. PMID:26041455

  13. CycloBranch: De Novo Sequencing of Nonribosomal Peptides from Accurate Product Ion Mass Spectra

    NASA Astrophysics Data System (ADS)

    Novák, Jiří; Lemr, Karel; Schug, Kevin A.; Havlíček, Vladimír

    2015-07-01

    Nonribosomal peptides have a wide range of biological and medical applications. Their identification by tandem mass spectrometry remains a challenging task. A new open-source de novo peptide identification engine CycloBranch was developed and successfully applied in identification or detailed characterization of 11 linear, cyclic, branched, and branch-cyclic peptides. CycloBranch is based on annotated building block databases the size of which is defined by the user according to ribosomal or nonribosomal peptide origin. The current number of involved nonisobaric and isobaric building blocks is 287 and 521, respectively. Contrary to all other peptide sequencing tools utilizing either peptide libraries or peptide fragment libraries, CycloBranch represents a true de novo sequencing engine developed for accurate mass spectrometric data. It is a stand-alone and cross-platform application with a graphical and user-friendly interface; it supports mzML, mzXML, mgf, txt, and baf file formats and can be run in parallel on multiple threads. It can be downloaded for free from http://ms.biomed.cas.cz/cyclobranch/, where the User's manual and video tutorials can be found.

  14. Enantiomeric separation in comprehensive two-dimensional gas chromatography with accurate mass analysis.

    PubMed

    Chin, Sung-Tong; Nolvachai, Yada; Marriott, Philip J

    2014-11-01

    Chiral comprehensive two-dimensional gas chromatography (eGC×GC) coupled to quadrupole-accurate mass time-of-flight mass spectrometry (QTOFMS) was evaluated for its capability to report the chiral composition of several monoterpenes, namely, α-pinene, β-pinene, and limonene in cardamom oil. Enantiomers in a standard mixture were fully resolved by direct enantiomeric-GC analysis with a 2,3-di-O-methyl-6-t-butylsilyl derivatized β-cyclodextrin phase; however, the (+)-(R)-limonene enantiomer in cardamom oil was overlapped with other background components including cymene and cineole. Verification of (+)-(R)-limonene components based on characteristic ions at m/z 136, 121, and 107 acquired by chiral single-dimension GC-QTOFMS in the alternate MS/MSMS mode of operation was unsuccessful due to similar parent/daughter ions generated by interfering or co-eluting cymene and cineole. Column phases SUPELCOWAX, SLB-IL111, HP-88, and SLB-IL59, were incorporated as the second dimension column ((2)D) in chiral GC×GC analysis; the SLB-IL59 offered the best resolution for the tested monoterpene enantiomers from the matrix background. Enantiomeric ratios for α-pinene, β-pinene, and limonene were determined to be 1.325, 2.703, and 1.040, respectively, in the cardamom oil sample based on relative peak area data. PMID:24420979

  15. Accurate and Efficient Resolution of Overlapping Isotopic Envelopes in Protein Tandem Mass Spectra

    PubMed Central

    Xiao, Kaijie; Yu, Fan; Fang, Houqin; Xue, Bingbing; Liu, Yan; Tian, Zhixin

    2015-01-01

    It has long been an analytical challenge to accurately and efficiently resolve extremely dense overlapping isotopic envelopes (OIEs) in protein tandem mass spectra to confidently identify proteins. Here, we report a computationally efficient method, called OIE_CARE, to resolve OIEs by calculating the relative deviation between the ideal and observed experimental abundance. In the OIE_CARE method, the ideal experimental abundance of a particular overlapping isotopic peak (OIP) is first calculated for all the OIEs sharing this OIP. The relative deviation (RD) of the overall observed experimental abundance of this OIP relative to the summed ideal value is then calculated. The final individual abundance of the OIP for each OIE is the individual ideal experimental abundance multiplied by 1 + RD. Initial studies were performed using higher-energy collisional dissociation tandem mass spectra on myoglobin (with direct infusion) and the intact E. coli proteome (with liquid chromatographic separation). Comprehensive data at the protein and proteome levels, high confidence and good reproducibility were achieved. The resolving method reported here can, in principle, be extended to resolve any envelope-type overlapping data for which the corresponding theoretical reference values are available. PMID:26439836

  16. Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry

    PubMed Central

    Tost, Jörg; Schatz, Philipp; Schuster, Matthias; Berlin, Kurt; Gut, Ivo Glynne

    2003-01-01

    As the DNA sequence of the human genome is now nearly finished, the main task of genome research is to elucidate gene function and regulation. DNA methylation is of particular importance for gene regulation and is strongly implicated in the development of cancer. Even minor changes in the degree of methylation can have severe consequences. An accurate quantification of the methylation status at any given position of the genome is a powerful diagnostic indicator. Here we present the first assay for the analysis and precise quantification of methylation on CpG positions in simplex and multiplex reactions based on matrix-assisted laser desorption/ ionisation mass spectrometry detection. Calibration curves for CpGs in two genes were established and an algorithm was developed to account for systematic fluctuations. Regression analysis gave R2 ≥ 0.99 and standard deviation around 2% for the different positions. The limit of detection was ∼5% for the minor isomer. Calibrations showed no significant differences when carried out as simplex or multiplex analyses. All variable parameters were thoroughly investigated, several paraffin-embedded tissue biopsies were analysed and results were verified by established methods like analysis of cloned material. Mass spectrometric results were also compared to chip hybridisation. PMID:12711695

  17. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF.

    PubMed

    Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A

    2016-08-01

    The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform and methanol in 2:1 ratio (v/v). Fatty acids composition of the extracted total lipids was converted to their corresponding fatty acids methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry using both electron ionization and chemical ionization techniques. Twenty-eight fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso- 17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids in C. elegans using chemical ionization compared to electron ionization which produced fragmentations of the FAMEs. PMID:27166662

  18. Accurate evolutions of inspiralling and magnetized neutron stars: Equal-mass binaries

    SciTech Connect

    Giacomazzo, Bruno; Rezzolla, Luciano; Baiotti, Luca

    2011-02-15

    By performing new, long and numerically accurate general-relativistic simulations of magnetized, equal-mass neutron-star binaries, we investigate the role that realistic magnetic fields may have in the evolution of these systems. In particular, we study the evolution of the magnetic fields and show that they can influence the survival of the hypermassive neutron star produced at the merger by accelerating its collapse to a black hole. We also provide evidence that, even if purely poloidal initially, the magnetic fields produced in the tori surrounding the black hole have toroidal and poloidal components of equivalent strength. When estimating the possibility that magnetic fields could have an impact on the gravitational-wave signals emitted by these systems either during the inspiral or after the merger, we conclude that for realistic magnetic-field strengths B < or approx. 10{sup 12} G such effects could be detected, but only marginally, by detectors such as advanced LIGO or advanced Virgo. However, magnetically induced modifications could become detectable in the case of small-mass binaries and with the development of gravitational-wave detectors, such as the Einstein Telescope, with much higher sensitivities at frequencies larger than {approx_equal}2 kHz.

  19. Combination of snowpack modelling and TLS observations to analyze small scale spatial varaiability of snowpack energy and mass balance

    NASA Astrophysics Data System (ADS)

    Revuelto, Jesús; Vionnet, Vincent; López-Moreno, Juan Ignacio; Lafaysse, Matthieu; Morin, Samuel

    2015-04-01

    Improving the comprehension on how the different energetic balance components affect the snowpack mass balance during the melting period is important from a hydrological point of view. An accurate Snow Water Equivalent (SWE) distribution is needed for this objective, but unfortunately SWE measurement over large areas is not feasible nowadays. This distribution can be provided by a snowpack model but simulations often differ from the real state, because some physical processes are not yet properly modelled. In this study, we take advantage of distributed snowpack simulations corrected throughout the snow season with several snow depth distributions measured with a Terrestrial Laser Scanner (TLS). This allows us to obtain a more realistic SWE evolution and analyse its relations with the snowpack surface energy balance during the melting period considering small scale spatial variability. For 2012, 2013 and 2014 snow seasons several intensive TLS snow depth data acquisitions were accomplished at Izas Experimental catchment; a 52ha study site located in central Spanish Pyrenees with an elevation that ranges between 2050 to 2350m above sea level. The detailed snowpack model Crocus has been used for simulating the snowpack evolution at 5m grid spacing during these three snow seasons, driven by downscaled meteorological fields from the SAFRAN reanalysis. Shadow effects on direct solar radiation are explicitly considered in the snowpack simulation. When a snow depth distribution map measured with the TLS was available, the simulation was stopped and the modelled snow depth distribution was adjusted to match observations. Afterwards the snow simulation was restarted, being subsequently simulated a more realistic snowpack distribution. Considering this improved simulation, the components of the surface energy balance simulated by Crocus were analysed in relation to the simulated mass balance dynamics during the melting period. In such a way a Principal Component Analysis

  20. Using GRACE measurements of time variable gravity, elevation changes from ICESat, OIB and ENVISAT and surface mass balance outputs from RACMO to improve ice mass balance estimates

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Csatho, B. M.; van den Broeke, M. R.; Wahr, J. M.; Flament, T.; Rezvan-Behbahani, S.; Babonis, G. S.; A, G.

    2013-12-01

    The glacial isostatic adjustment (GIA) correction represents a source of uncertainty for ice sheet mass balance estimates from the Gravity Recovery and Climate Experiment (GRACE) time variable gravity measurements. We evaluate Greenland and Antarctic GIA corrections by comparing the spatial patterns of GRACE-derived ice mass trends corrected for glacial isostatic adjustment with volume changes from ICESat (Ice, Cloud, and Land Elevation Satellite), OIB (Operation IceBridge) and ENVISAT altimetry missions, and surface mass balance (SMB) products from the Regional Atmospheric Climate Model (RACMO). We show that using the spatial and temporal characteristics of the different contributions to the ice mass balance estimates that it is possible to evaluate different GIA corrections. In Greenland, the GRACE ice mass changes obtained using the Simpson et al. (2009) and Geruo et al. (2013) GIA corrections show good agreement in the spatial patterns and amplitude. The GRACE estimate corrected using the Wu et al. (2010) GIA shows similar spatial patterns to the other two, but produces an average ice mass loss for the entire ice sheet that is 50% smaller. In Antarctica, the total magnitude and spatial structure of the GRACE-estimated ice mass change is highly dependent on the GIA correction. In key basins of East Antarctica, the interpretation of regional ice mass changes can reflect the GIA model selection as the ice mass to GIA signal ratio is smaller. We apply the same methodology used for the Greenland ice sheet in Antarctica to evaluate the different GIA corrections and check for consistency between the different techniques at a regional scale.

  1. Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA

    NASA Astrophysics Data System (ADS)

    Josberger, Edward G.; Bidlake, William R.; March, Rod S.; Kennedy, Ben W.

    2007-10-01

    The more than 40 year record of net and seasonal mass-balance records from measurements made by the United States Geological Survey on South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, shows annual and interannual fluctuations that reflect changes in the controlling climatic conditions at regional and global scales. As the mass-balance record grows in length, it is revealing significant changes in previously described glacier mass-balance behavior, and both inter-glacier and glacier-climate relationships. South Cascade and Wolverine Glaciers are strongly affected by the warm and wet maritime climate of the northeast Pacific Ocean. Their net balances have generally been controlled by winter accumulation, with fluctuations that are strongly related to the Pacific Decadal Oscillation (PDO). Recently, warm dry summers have begun to dominate the net balance of the two maritime glaciers, with a weakening of the correlation between the winter balance fluctuations and the PDO. Non-synchronous periods of positive and negative net balance for each glacier prior to 1989 were followed by a 1989-2004 period of synchronous and almost exclusively negative net balances that averaged -0.8 m for the three glaciers.

  2. Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    Josberger, E.G.; Bidlake, W.R.; March, R.S.; Kennedy, B.W.

    2007-01-01

    The more than 40 year record of net and seasonal mass-balance records from measurements made by the United States Geological Survey on South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, shows annual and interannual fluctuations that reflect changes in the controlling climatic conditions at regional and global scales. As the mass-balance record grows in length, it is revealing significant changes in previously described glacier mass-balance behavior, and both inter-glacier and glacier-climate relationships. South Cascade and Wolverine Glaciers are strongly affected by the warm and wet maritime climate of the northeast Pacific Ocean. Their net balances have generally been controlled by winter accumulation, with fluctuations that are strongly related to the Pacific Decadal Oscillation (PDO). Recently, warm dry summers have begun to dominate the net balance of the two maritime glaciers, with a weakening of the correlation between the winter balance fluctuations and the PDO. Non-synchronous periods of positive and negative net balance for each glacier prior to 1989 were followed by a 1989-2004 period of synchronous and almost exclusively negative net balances that averaged -0.8 m for the three glaciers.

  3. Recalculated mass balance record for Midre Lovénbreen, Svalbard

    NASA Astrophysics Data System (ADS)

    Kohler, J.

    2013-12-01

    Glacier mass balance has been measured since 1968 on Midre Lovénbreen, Svalbard, one of the longest high Arctic records. Available data includes areally-averaged winter, summer, and net balances. Balances by elevation, however, were not consistently reported. Here we derive a time-series of the balances as a function of elevation using original stake data from archived field notebooks and maps, graphs of balance as a function of elevation taken from old reports. We recalculate areally-averaged balances using a different fits to the data, rather than hand-drawn curves from earlier years, and adjust for changes in hypsometry. There is good agreement between in situ mass balance and geodetic changes obtained by differencing digital elevation models (DEMs) from different dates (1936, 1962, 1969, 1977, 1995, 2003, 2005). The main long-term trends over the length of the 44-yr record are that winter and net balance are decreasing overall, and that summer and net balance elevational gradients increase, the result of increasing ice loss at lower elevations.

  4. Glaciological and geodetic mass balance of ten long-term glaciers in Norway

    NASA Astrophysics Data System (ADS)

    Andreassen, L. M.; Elvehøy, H.; Kjøllmoen, B.; Engeset, R. V.

    2015-11-01

    The glaciological and geodetic methods provide independent observations of glacier mass balance. The glaciological method measures the surface mass balance, on a seasonal or annual basis, whereas the geodetic method measures surface, internal and basal mass balances, over a period of years or decades. In this paper, we reanalyse the 10 glaciers with long-term mass balance series in Norway. The reanalysis includes (i) homogenisation of both glaciological and geodetic observation series, (ii) uncertainty assessment, (iii) estimates of generic differences including estimates of internal and basal melt, (iv) validation, and (v) partly calibration of mass balance series. This study comprises an extensive set of data (454 mass balance years, 34 geodetic surveys and large volumes of supporting data, such as metadata and field notes). In total, 21 periods of data were compared and the results show discrepancies between the glaciological and geodetic methods for some glaciers, which in part are attributed to internal and basal ablation and in part to inhomogeneity in the data processing. Deviations were smaller than 0.2 m w.e. a-1 for 12 out of 21 periods. Calibration was applied to seven out of 21 periods, as the deviations were larger than the uncertainty. The reanalysed glaciological series shows a more consistent signal of glacier change over the period of observations than previously reported: six glaciers had a significant mass loss (14-22 m w.e.) and four glaciers were nearly in balance. All glaciers have lost mass after year 2000. More research is needed on the sources of uncertainty, to reduce uncertainties and adjust the observation programmes accordingly. The study confirms the value of carrying out independent high-quality geodetic surveys to check and correct field observations.

  5. Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers

    NASA Astrophysics Data System (ADS)

    Andreassen, Liss M.; Elvehøy, Hallgeir; Kjøllmoen, Bjarne; Engeset, Rune V.

    2016-03-01

    Glaciological and geodetic methods provide independent observations of glacier mass balance. The glaciological method measures the surface mass balance, on a seasonal or annual basis, whereas the geodetic method measures surface, internal, and basal mass balances, over a period of years or decades. In this paper, we reanalyse the 10 glaciers with long-term mass-balance series in Norway. The reanalysis includes (i) homogenisation of both glaciological and geodetic observation series, (ii) uncertainty assessment, (iii) estimates of generic differences including estimates of internal and basal melt, (iv) validation, and, if needed, (v) calibration of mass-balance series. This study comprises an extensive set of data (484 mass-balance years, 34 geodetic surveys, and large volumes of supporting data, such as metadata and field notes). In total, 21 periods of data were compared and the results show discrepancies between the glaciological and geodetic methods for some glaciers, which are attributed in part to internal and basal ablation and in part to inhomogeneity in the data processing. Deviations were smaller than 0.2 m w.e. a-1 for 12 out of 21 periods. Calibration was applied to 7 out of 21 periods, as the deviations were larger than the uncertainty. The reanalysed glaciological series shows a more consistent signal of glacier change over the period of observations than previously reported: six glaciers had a significant mass loss (14-22 m w.e.) and four glaciers were nearly in balance. All glaciers have lost mass after the year 2000. More research is needed on the sources of uncertainty to reduce uncertainties and adjust the observation programmes accordingly. The study confirms the value of carrying out independent high-quality geodetic surveys to check and correct field observations.

  6. Understanding Recent Mass Balance Changes of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    vanderVeen, Cornelius

    2003-01-01

    The ultimate goal of this project is to better understand the current transfer of mass between the Greenland Ice Sheet, the world's oceans and the atmosphere, and to identify processes controlling the rate of this transfer, to be able to predict with greater confidence future contributions to global sea level rise. During the first year of this project, we focused on establishing longer-term records of change of selected outlet glaciers, reevaluation of mass input to the ice sheet and analysis of climate records derived from ice cores, and modeling meltwater production and runoff from the margins of the ice sheet.

  7. A LEGO Watt balance: An apparatus to determine a mass based on the new SI

    NASA Astrophysics Data System (ADS)

    Chao, L. S.; Schlamminger, S.; Newell, D. B.; Pratt, J. R.; Seifert, F.; Zhang, X.; Sineriz, G.; Liu, M.; Haddad, D.

    2015-11-01

    A global effort to redefine our International System of Units (SI) is underway, and the change to the new system is expected to occur in 2018. Within the newly redefined SI, the present base units will still exist but be derived from fixed numerical values of seven reference constants. In particular, the unit of mass (the kilogram) will be realized through a fixed value of the Planck constant h. A so-called watt balance, for example, can then be used to realize the kilogram unit of mass within a few parts in 108. Such a balance has been designed and constructed at the National Institute of Standards and Technology. For educational outreach and to demonstrate the principle, we have constructed a LEGO tabletop watt balance capable of measuring a gram-level masses to 1% relative uncertainty. This article presents the design, construction, and performance of the LEGO watt balance and its ability to determine h.

  8. Modelling The Energy And Mass Balance Of A Black Glacier

    NASA Astrophysics Data System (ADS)

    Grossi, G.; Taschner, S.; Ranzi, R.

    A distributed energy balance hydrologic model has been implemented to simulate the melting season of the Belvedere glacier, situated in the Anza river basin (North- Western Italy) for a few years. The Belvedere Glacier is an example of SblackS glacier, ´ since the ablation zone is covered by a significant debris layer. The glacierSs termi- nus has an altitude of 1785 m asl which is very unusual for the Southern side of the European Alps. The model accounts for the energy exchange processes at the inter- face between the atmospheric boundary layer and the snow/ice/debris layer. To run the model hydrometeorological and physiographic data were collected, including the depth of the debris cover and the tritium (3H) concentration in the glacial river. Mea- surements of the soil thermal conductivity were carried out during a field campaign organised within the glaciers monitoring GLIMS project, at the time of the passage of the Landsat and the Terra satellites last 15 August 2001. A comparison of the different energy terms simulated by the model assigns a dominant role to the shortwave radia- tion, which provides the highest positive contribution to the energy available for snow- and ice-melt, while the sensible heat turns out to be the second major source of heat. Longwave radiation balance and latent heat seem to be less relevant and often nega- tive. The role of the debris cover is not negligible, since its thermal insulation causes, on average, a decrease in the ice melt volume. One of the model variables is the tem- perature of the debris cover, which can be a useful information when a black glacier is to be monitored through remote sensing techniques. The visible and near infrared radi- ation data do not always provide sufficient information to detect the glaciers' margins beneath the debris layer. For this reason the information of the different thermal sur- face characteristics (pure ice, debris covered ice, rock), proved by the energy balance model results was

  9. Surface energy budget and mass balance of Zhadang Glacier in the central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, B.; Acharya, K.; Yu, Z.; Su, F.; liang, Z.

    2011-12-01

    It is difficult to clearly investigate the surface energy budget and glacier evolution under the changed climate environments, especially on accounts of limited data set. We attempted to calculate the summer mass balance of Zhadang Glacier (5710 m above sea level), located in the central Tibetan Plateau. This small and high-altitude glacier has been retreating during the previous decades. Energy balance was calculated on a 30 m square grid on the glacier for the summer periods in 2007 and 2008. On average, net radiation contributed more than 96% of the energy gain while only less than 4% was supplied by the sensible heat flux. Most energy loss on the glacier was contributed by the turbulent heat fluxes and only roughly 30% of the total energy was available for melting. A large deficit and a surplus summer mass balance were obtained for years 2006/07 and 2007/08, respectively. The switch in mass balance from negative to positive in the summer of 2008 is caused by early precipitation (mostly snow) resulting in low temperature on the glacier. Low temperature produces less energy that contributes to melting, whereas increased snow accumulation produces higher surface albedo reflecting away incoming solar radiation. The high sensitivity of air temperature may imply that the low temperature was more important than the increased precipitation in the mass balance switch in Zhadang Glacier. Despite a continuous negative mass balance for several decades in Zhadang Glacier 2008 may have brought a temporary relief.

  10. Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar

    2016-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.

  11. Mass-balance measurements in Alaska and suggestions for simplified observation programs

    USGS Publications Warehouse

    Trabant, D.C.; March, R.S.

    1999-01-01

    US Geological Survey glacier fieldwork in Alaska includes repetitious measurements, corrections for leaning or bending stakes, an ability to reliably measure seasonal snow as deep as 10 m, absolute identification of summer surfaces in the accumulation area, and annual evaluation of internal accumulation, internal ablation, and glacier-thickness changes. Prescribed field measurement and note-taking techniques help eliminate field errors and expedite the interpretative process. In the office, field notes are transferred to computerized spread-sheets for analysis, release on the World Wide Web, and archival storage. The spreadsheets have error traps to help eliminate note-taking and transcription errors. Rigorous error analysis ends when mass-balance measurements are extrapolated and integrated with area to determine glacier and basin mass balances. Unassessable errors in the glacier and basin mass-balance data reduce the value of the data set for correlations with climate change indices. The minimum glacier mass-balance program has at least three measurement sites on a glacier and the measurements must include the seasonal components of mass balance as well as the annual balance.

  12. A high-resolution record of Greenland mass balance

    NASA Astrophysics Data System (ADS)

    McMillan, Malcolm; Leeson, Amber; Shepherd, Andrew; Briggs, Kate; Armitage, Thomas W. K.; Hogg, Anna; Kuipers Munneke, Peter; Broeke, Michiel; Noël, Brice; Berg, Willem Jan; Ligtenberg, Stefan; Horwath, Martin; Groh, Andreas; Muir, Alan; Gilbert, Lin

    2016-07-01

    We map recent Greenland Ice Sheet elevation change at high spatial (5 km) and temporal (monthly) resolution using CryoSat-2 altimetry. After correcting for the impact of changing snowpack properties associated with unprecedented surface melting in 2012, we find good agreement (3 cm/yr bias) with airborne measurements. With the aid of regional climate and firn modeling, we compute high spatial and temporal resolution records of Greenland mass evolution, which correlate (R = 0.96) with monthly satellite gravimetry and reveal glacier dynamic imbalance. During 2011-2014, Greenland mass loss averaged 269 ± 51 Gt/yr. Atmospherically driven losses were widespread, with surface melt variability driving large fluctuations in the annual mass deficit. Terminus regions of five dynamically thinning glaciers, which constitute less than 1% of Greenland's area, contributed more than 12% of the net ice loss. This high-resolution record demonstrates that mass deficits extending over small spatial and temporal scales have made a relatively large contribution to recent ice sheet imbalance.

  13. The Effects of Vegetation Canopy Processes on Snow Surface Energy and Mass Balances

    NASA Astrophysics Data System (ADS)

    Niu, G.; Yang, Z.

    2004-12-01

    This paper addresses the effects of canopy physical processes on snow mass and energy balances in boreal ecosystems. We incorporate new parameterizations of radiation transfer through the vegetation canopy, interception of snow by the vegetation canopy, and under-canopy sensible heat transfer processes into the Versatile Integrator of Surface and Atmosphere (VISA) and test the model results against the Boreal Ecosystem-Atmosphere Study (BOREAS) data observed at South Study Area, Old Jack Pine (SSA-OJP). A modified two-stream radiation transfer scheme that accounts for the three-dimensional (3-D) geometry of vegetation accurately simulates the transferring of solar radiation through the vegetation canopy when the leaf and stem area index (LSAI) is reduced to match the observed, but the simulated wintertime surface albedos are higher than the observed. This overestimation can be removed by lowering the fractional snow cover on the canopy through the introduction of a snow interception model that explicitly describes the loading and unloading of snow and the melting and refreezing of snow. VISA overestimates the downward sensible heat fluxes from the canopy to the snow surface, which leads to earlier snow ablation and a shallower snowpack than the observed. Explicitly including a canopy heat storage term in the canopy energy balance equation decreases the spuriously large amplitude of the diurnal canopy temperature variation and reduces the excessive daytime sensible heat flux from the canopy downward to the snow surface. Sensitivity tests reveal that the turbulent sensible heat flux below the vegetation canopy strongly depends on the canopy absorption coefficient of momentum. During spring, the daytime temperature difference between the snow surface and the vegetation canopy forms a strongly stable atmospheric condition, which results in a larger absorption coefficient of momentum and a weak turbulent sensible heat flux. The modeled excessive downward sensible heat

  14. Effects of vegetation canopy processes on snow surface energy and mass balances

    NASA Astrophysics Data System (ADS)

    Niu, Guo-Yue; Yang, Zong-Liang

    2004-12-01

    This paper addresses the effects of canopy physical processes on snow mass and energy balances in boreal ecosystems. We incorporate new parameterizations of radiation transfer through the vegetation canopy, interception of snow by the vegetation canopy, and under-canopy sensible heat transfer processes into the Versatile Integrator of Surface and Atmosphere (VISA) and test the model results against the Boreal Ecosystem-Atmosphere Study (BOREAS) data observed at South Study Area, Old Jack Pine. A modified two-stream radiation transfer scheme that accounts for the three-dimensional geometry of vegetation accurately simulates the transferring of solar radiation through the vegetation canopy when the leaf and stem area index is reduced to match the observed. VISA produces higher-than-observed surface albedo in wintertime. Implementation of a snow interception model that explicitly describes the loading and unloading of snow and the melting and refreezing of snow on the canopy into VISA reduces the fractional snow cover on the canopy and the surface albedo. VISA overestimates the downward sensible heat fluxes from the canopy to the snow surface, which leads to earlier snow ablation and a shallower snowpack than the observed. Explicitly including a canopy heat storage term in the canopy energy balance equation decreases the spuriously large amplitude of the diurnal canopy temperature variation and reduces the excessive daytime sensible heat flux from the canopy downward to the snow surface. Sensitivity tests reveal that the turbulent sensible heat flux below the vegetation canopy strongly depends on the canopy absorption coefficient of momentum. During spring the daytime temperature difference between the snow surface and the vegetation canopy forms a strongly stable atmospheric condition, which results in a larger absorption coefficient of momentum and a weak turbulent sensible heat flux. The modeled excessive downward sensible heat flux from the vegetation canopy to

  15. A case-study on the accuracy of mass balances for xenobiotics in full-scale wastewater treatment plants.

    PubMed

    Majewsky, Marius; Farlin, Julien; Bayerle, Michael; Gallé, Tom

    2013-04-01

    Removal efficiencies of micropollutants in wastewater treatment plants (WWTPs) are usually evaluated from mass balance calculations using a small number of observations drawn from short sampling campaigns. Since micropollutant loads can vary greatly in both influent and effluent and reactor tanks exhibit specific hydraulic residence times, these short-term approaches are particularly prone to yield erroneous removal values. A detailed investigation of micropollutant transit times at full-scale and on how this affects mass balancing results was still lacking. The present study used hydraulic residence time distributions to scrutinize the match of influent loads to effluent loads of 10 polar micropollutants with different influent dynamics in a full-scale WWTP. Prior hydraulic modeling indicated that a load sampled over one day in the effluent is composed of influent load fractions of five preceding days. Results showed that the error of the mass balance can be reduced with increasing influent sampling duration. The approach presented leads to a more reliable estimation of the removal efficiencies of those micropollutants which can be constantly detected in influents, such as pharmaceuticals, but provides no advantage for pesticides due to their sporadic occurrence. The mismatch between sampled influent and effluent loads was identified as a major error source and an explanation was provided for the occurrence of negative mass balances regularly reported. This study indicates that the accurate determination of global removal values is only feasible in full-scale investigations with sampling durations much longer than 1 day. In any case, the uncertainty of these values needs to be reported when used in removal assessment, model selection or validation. PMID:23474799

  16. Changes of the Arctic Ice Caps from ICESat and GRACE - A study of mass balance.

    NASA Astrophysics Data System (ADS)

    Nilsson, Johan; Sandberg Sørensen, Louise; Barletta, Valentina Roberta; Forsberg, René

    2013-04-01

    Data from ICESat, compared with GRACE data, were used to estimate the mass balance of the smaller Arctic ice caps on Svalbard, Iceland and the Canadian Arctic from the years 2003-2009. In this study we used the repeat track method to estimate the surface elevation change of the Arctic ice caps from ICESat altimetry. The GRACE mass balance was obtained using a point mass modeling method, which allowed a better separation of the dominant signal from the Greenland Ice Sheet. In the ICESat part of the study we used several different methods for estimating the mass balance. The methods where based on both interpolation and extrapolation of the elevation change estimates over the ice caps, using both parametric and non-parametric approaches. We found that all Arctic ice caps show a consistent negative mass balance from the year 2003-2009. Ranging from -3 to -26 Gt/yr from the ICESat estimates for the different regions, which is in good agreement with the GRACE results. Also found is that the choice of method used for the ICESat analysis can have a significant impact on the mass balance.

  17. Mass Balance. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    This module describes the process used to determine solids mass and location throughout a waste water treatment plant, explains how these values are used to determine the solids mass balance around single treatment units and the entire system, and presents calculations of solids in pounds and sludge units. The instructor's manual contains a…

  18. The mass balance approach: application to interpreting the chemical evolution of hydrologic systems.

    USGS Publications Warehouse

    Plummer, L.N.; Back, W.

    1980-01-01

    Mass balance calculations are applied to observed chemical and isotopic data of three natural water systems involving carbonate reactions in order to define mineral stoichiometry of reactants and products, relative rates of reactions, and mass transfer. One study evaluates reactions in a lagoon on the east coast of the Yucatan Peninsula, Mexico.- from Authors

  19. A 3-axis force balanced accelerometer using a single proof-mass

    SciTech Connect

    Lemkin, M.A.; Boser, B.E.; Auslander, D.; Smith, J.

    1997-04-01

    This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.

  20. Comparison of direct and geodetic mass balances on a multi-annual time scale

    NASA Astrophysics Data System (ADS)

    Fischer, A.

    2010-07-01

    Glacier mass balance is measured with the direct or the geodetic method. In this study, the geodetic mass balances of six Austrian glaciers in 19 periods between 1953 and 2006 are compared to the direct mass balances in the same periods. The mean annual geodetic mass balance for all periods is -0.5 m w.e./year. The mean difference between the geodetic and the direct data is -0.7 m w.e., the minimum -7.3 m w.e. and the maximum 5.6 m w.e. The accuracy of geodetic mass balance resulting from the accuracy of the DEMs ranges from 2 m w.e. for photogrammetric data to 0.002 m w.e. for LIDAR data. Basal melt, seasonal snow cover and density changes of the surface layer contribute up to 0.7 m w.e. for the period of 10 years to the difference to the direct method. The characteristics of published data of Griesgletscher, Gulkana Glacier, Lemon Creek glacier, South Cascade, Storbreen, Storglaciären, and Zongo Glacier is similar to these Austrian glaciers. For 26 analyzed periods with an average length of 18 years the mean difference between the geodetic and the direct data is -0.4 m w.e., the minimum -7.2 m w.e. and the maximum 3.6 m w.e. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Specific glaciers show specific trends of the difference between the direct and the geodetic data according to their type and state. In conclusion, geodetic and direct mass balance data are complementary, but differ systematically.

  1. STELLAR MASS-TO-LIGHT RATIOS FROM GALAXY SPECTRA: HOW ACCURATE CAN THEY BE?

    SciTech Connect

    Gallazzi, Anna; Bell, Eric F. E-mail: ericbell@umich.edu

    2009-12-01

    Stellar masses play a crucial role in the exploration of galaxy properties and the evolution of the galaxy population. In this paper, we explore the minimum possible uncertainties in stellar mass-to-light ratios (M {sub *}/L) from the assumed star formation history (SFH) and metallicity distribution, with the goals of providing a minimum set of requirements for observational studies. We use a large Monte Carlo library of SFHs to study as a function of galaxy spectral type and signal-to-noise ratio (S/N) the statistical uncertainties of M {sub *}/L values using either absorption-line data or broadband colors. The accuracy of M {sub *}/L estimates can be significantly improved by using metal-sensitive indices in combination with age-sensitive indices, in particular for galaxies with intermediate-age or young stellar populations. While M {sub *}/L accuracy clearly depends on the spectral S/N, there is no significant gain in improving the S/N much above 50 pixel{sup -1} and limiting uncertainties of {approx}0.03 dex are reached. Assuming that dust is accurately corrected or absent and that the redshift is known, color-based M {sub *}/L estimates are only slightly more uncertain than spectroscopic estimates (at comparable spectroscopic and photometric quality), but are more easily affected by systematic biases. This is the case in particular for galaxies with bursty SFHs (high H{delta} {sub A} at fixed D4000 {sub n}), the M {sub *}/L of which cannot be constrained any better than {approx}0.15 dex with any indicators explored here. Finally, we explore the effects of the assumed prior distribution in SFHs and metallicity, finding them to be higher for color-based estimates.

  2. Galaxy And Mass Assembly (GAMA): Accurate Panchromatic Photometry from Optical Priors using LAMBDAR

    NASA Astrophysics Data System (ADS)

    Wright, A. H.; Robotham, A. S. G.; Bourne, N.; Driver, S. P.; Dunne, L.; Maddox, S. J.; Alpaslan, M.; Andrews, S. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M.; Davies, L. J. M.; Holwerda, B. W.; Hopkins, A. M.; Jarrett, T. H.; Kafle, P. R.; Lange, R.; Liske, J.; Loveday, J.; Moffett, A. J.; Norberg, P.; Popescu, C. C.; Smith, M.; Taylor, E. N.; Tuffs, R. J.; Wang, L.; Wilkins, S. M.

    2016-04-01

    We present the Lambda Adaptive Multi-band Deblending Algorithm in R (LAMBDAR), a novel code for calculating matched aperture photometry across images that are neither pixel- nor PSF-matched, using prior aperture definitions derived from high resolution optical imaging. The development of this program is motivated by the desire for consistent photometry and uncertainties across large ranges of photometric imaging, for use in calculating spectral energy distributions. We describe the program, specifically key features required for robust determination of panchromatic photometry: propagation of apertures to images with arbitrary resolution, local background estimation, aperture normalisation, uncertainty determination and propagation, and object deblending. Using simulated images, we demonstrate that the program is able to recover accurate photometric measurements in both high-resolution, low-confusion, and low-resolution, high-confusion, regimes. We apply the program to the 21-band photometric dataset from the Galaxy And Mass Assembly (GAMA) Panchromatic Data Release (PDR; Driver et al. 2016), which contains imaging spanning the far-UV to the far-IR. We compare photometry derived from LAMBDAR with that presented in Driver et al. (2016), finding broad agreement between the datasets. Nonetheless, we demonstrate that the photometry from LAMBDAR is superior to that from the GAMA PDR, as determined by a reduction in the outlier rate and intrinsic scatter of colours in the LAMBDAR dataset. We similarly find a decrease in the outlier rate of stellar masses and star formation rates using LAMBDAR photometry. Finally, we note an exceptional increase in the number of UV and mid-IR sources able to be constrained, which is accompanied by a significant increase in the mid-IR colour-colour parameter-space able to be explored.

  3. Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using LAMBDAR

    NASA Astrophysics Data System (ADS)

    Wright, A. H.; Robotham, A. S. G.; Bourne, N.; Driver, S. P.; Dunne, L.; Maddox, S. J.; Alpaslan, M.; Andrews, S. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Clarke, C.; Cluver, M.; Davies, L. J. M.; Grootes, M. W.; Holwerda, B. W.; Hopkins, A. M.; Jarrett, T. H.; Kafle, P. R.; Lange, R.; Liske, J.; Loveday, J.; Moffett, A. J.; Norberg, P.; Popescu, C. C.; Smith, M.; Taylor, E. N.; Tuffs, R. J.; Wang, L.; Wilkins, S. M.

    2016-07-01

    We present the Lambda Adaptive Multi-Band Deblending Algorithm in R (LAMBDAR), a novel code for calculating matched aperture photometry across images that are neither pixel- nor PSF-matched, using prior aperture definitions derived from high-resolution optical imaging. The development of this program is motivated by the desire for consistent photometry and uncertainties across large ranges of photometric imaging, for use in calculating spectral energy distributions. We describe the program, specifically key features required for robust determination of panchromatic photometry: propagation of apertures to images with arbitrary resolution, local background estimation, aperture normalization, uncertainty determination and propagation, and object deblending. Using simulated images, we demonstrate that the program is able to recover accurate photometric measurements in both high-resolution, low-confusion, and low-resolution, high-confusion, regimes. We apply the program to the 21-band photometric data set from the Galaxy And Mass Assembly (GAMA) Panchromatic Data Release (PDR; Driver et al. 2016), which contains imaging spanning the far-UV to the far-IR. We compare photometry derived from LAMBDAR with that presented in Driver et al. (2016), finding broad agreement between the data sets. None the less, we demonstrate that the photometry from LAMBDAR is superior to that from the GAMA PDR, as determined by a reduction in the outlier rate and intrinsic scatter of colours in the LAMBDAR data set. We similarly find a decrease in the outlier rate of stellar masses and star formation rates using LAMBDAR photometry. Finally, we note an exceptional increase in the number of UV and mid-IR sources able to be constrained, which is accompanied by a significant increase in the mid-IR colour-colour parameter-space able to be explored.

  4. Mass balance and streamflow variability at Place Glacier, Canada, in relation to recent climate fluctuations

    NASA Astrophysics Data System (ADS)

    Moore, R. D.; Demuth, M. N.

    2001-12-01

    Although a great deal of research has focused on the hydrologic effects of climate variability and change, relatively little research has examined the effects on streamflow of interactions between climate variability and change and resulting glacier response. Place Glacier, in the southern Coast Mountains of British Columbia, Canada, has been monitored for mass balance since 1965, and a stream gauge was operated just below the glacier terminus from 1969 to 1989. This paper presents analyses of the mass balance history and streamflow variations in relation to recorded climatic variability.Place Glacier's winter and net balances are correlated with the Pacific Decadal Oscillation (PDO). Summer balance is positively correlated with summer temperature and negatively with the preceding winter balance, which enhances the effects of changes in winter balance on net balance. The well-documented post-1976 shift from the PDO cold phase to the present warm phase initiated a significant and persistent period of more negative net balance and terminal retreat. A reconstruction of net balance extending back to the 1890s, based on a regression with winter precipitation and summer temperature, displays decadal-scale fluctuations consistent with the PDO. Summer streamflow responded to interannual variations in winter snow accumulation and summer temperatures, which control the rate of rise of the glacier snowline and melt rates. After accounting for these influences via regression analysis, August streamflow displayed a negative trend in total runoff. Examination of air photographs and the reconstructed mass balance history suggest that significant firn depletion had occurred prior to 1965, such that the dominant effect of glacier changes was a reduction in ice area, resulting in decreased meltwater production.

  5. How effective are traditional methods of compositional analysis in providing an accurate material balance for a range of softwood derived residues?

    PubMed Central

    2013-01-01

    Background Forest residues represent an abundant and sustainable source of biomass which could be used as a biorefinery feedstock. Due to the heterogeneity of forest residues, such as hog fuel and bark, one of the expected challenges is to obtain an accurate material balance of these feedstocks. Current compositional analytical methods have been standardised for more homogenous feedstocks such as white wood and agricultural residues. The described work assessed the accuracy of existing and modified methods on a variety of forest residues both before and after a typical pretreatment process. Results When “traditional” pulp and paper methods were used, the total amount of material that could be quantified in each of the six softwood-derived residues ranged from 88% to 96%. It was apparent that the extractives present in the substrate were most influential in limiting the accuracy of a more representative material balance. This was particularly evident when trying to determine the lignin content, due to the incomplete removal of the extractives, even after a two stage water-ethanol extraction. Residual extractives likely precipitated with the acid insoluble lignin during analysis, contributing to an overestimation of the lignin content. Despite the minor dissolution of hemicellulosic sugars, extraction with mild alkali removed most of the extractives from the bark and improved the raw material mass closure to 95% in comparison to the 88% value obtained after water-ethanol extraction. After pretreatment, the extent of extractive removal and their reaction/precipitation with lignin was heavily dependent on the pretreatment conditions used. The selective removal of extractives and their quantification after a pretreatment proved to be even more challenging. Regardless of the amount of extractives that were originally present, the analytical methods could be refined to provide reproducible quantification of the carbohydrates present in both the starting material and

  6. Present and future mass standards for the LNE watt balance and the future dissemination of the mass unit in France

    NASA Astrophysics Data System (ADS)

    Pinot, Patrick; Beaudoux, Florian; Bentouati, Djilali; Espel, Patrick; Madec, Tanguy; Thomas, Matthieu; Silvestri, Zaccari; Ziane, Djamel; Piquemal, François

    2016-08-01

    The value of the Planck constant h was determined in 2014 by means of the LNE watt balance experiment. The relative standard uncertainty was 31 parts in 108. This first determination was performed in air with a 500 g mass standard made from XSH Alacrite. The main uncertainty components in air associated with the mass involve the calibration, the mass stability, the buoyancy correction and the magnetic interaction correction. The combined relative uncertainty due to the mass is 7.2 parts in 108. The use in 2016 of a mass standard made from platinum iridium alloy significantly reduces the component of uncertainty arising from the mass standard for a Planck constant measurement either in air or under vacuum. The relative uncertainty due to this contribution is estimated to be about 3 parts in 108 in air and one part in 108 under vacuum. The future system for the dissemination of the mass unit using the LNE watt balance will be based on a primary realization with three 500 g mass standards made from platinum–iridium alloy, pure iridium and Udimet 720 respectively, coupled with a pool of kilograms made from different materials. Pure iridium and Udimet 720 are new materials to make reference mass standards proposed by CNAM and LNE respectively and have never been used by any NMI for manufacturing mass standards until now. Some new results concerning their surface behavior are given.

  7. Multiple apolipoprotein kinetics measured in human HDL by high-resolution/accurate mass parallel reaction monitoring.

    PubMed

    Singh, Sasha A; Andraski, Allison B; Pieper, Brett; Goh, Wilson; Mendivil, Carlos O; Sacks, Frank M; Aikawa, Masanori

    2016-04-01

    Endogenous labeling with stable isotopes is used to study the metabolism of proteins in vivo. However, traditional detection methods such as GC/MS cannot measure tracer enrichment in multiple proteins simultaneously, and multiple reaction monitoring MS cannot measure precisely the low tracer enrichment in slowly turning-over proteins as in HDL. We exploited the versatility of the high-resolution/accurate mass (HR/AM) quadrupole Orbitrap for proteomic analysis of five HDL sizes. We identified 58 proteins in HDL that were shared among three humans and that were organized into five subproteomes according to HDL size. For seven of these proteins, apoA-I, apoA-II, apoA-IV, apoC-III, apoD, apoE, and apoM, we performed parallel reaction monitoring (PRM) to measure trideuterated leucine tracer enrichment between 0.03 to 1.0% in vivo, as required to study their metabolism. The results were suitable for multicompartmental modeling in all except apoD. These apolipoproteins in each HDL size mainly originated directly from the source compartment, presumably the liver and intestine. Flux of apolipoproteins from smaller to larger HDL or the reverse contributed only slightly to apolipoprotein metabolism. These novel findings on HDL apolipoprotein metabolism demonstrate the analytical breadth and scope of the HR/AM-PRM technology to perform metabolic research. PMID:26862155

  8. Toward Sensitive and Accurate Analysis of Antibody Biotherapeutics by Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    An, Bo; Zhang, Ming

    2014-01-01

    Remarkable methodological advances in the past decade have expanded the application of liquid chromatography coupled with mass spectrometry (LC/MS) analysis of biotherapeutics. Currently, LC/MS represents a promising alternative or supplement to the traditional ligand binding assay (LBA) in the pharmacokinetic, pharmacodynamic, and toxicokinetic studies of protein drugs, owing to the rapid and cost-effective method development, high specificity and reproducibility, low sample consumption, the capacity of analyzing multiple targets in one analysis, and the fact that a validated method can be readily adapted across various matrices and species. While promising, technical challenges associated with sensitivity, sample preparation, method development, and quantitative accuracy need to be addressed to enable full utilization of LC/MS. This article introduces the rationale and technical challenges of LC/MS techniques in biotherapeutics analysis and summarizes recently developed strategies to alleviate these challenges. Applications of LC/MS techniques on quantification and characterization of antibody biotherapeutics are also discussed. We speculate that despite the highly attractive features of LC/MS, it will not fully replace traditional assays such as LBA in the foreseeable future; instead, the forthcoming trend is likely the conjunction of biochemical techniques with versatile LC/MS approaches to achieve accurate, sensitive, and unbiased characterization of biotherapeutics in highly complex pharmaceutical/biologic matrices. Such combinations will constitute powerful tools to tackle the challenges posed by the rapidly growing needs for biotherapeutics development. PMID:25185260

  9. Toward an Accurate Prediction of the Arrival Time of Geomagnetic-Effective Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Shi, T.; Wang, Y.; Wan, L.; Cheng, X.; Ding, M.; Zhang, J.

    2015-12-01

    Accurately predicting the arrival of coronal mass ejections (CMEs) to the Earth based on remote images is of critical significance for the study of space weather. Here we make a statistical study of 21 Earth-directed CMEs, specifically exploring the relationship between CME initial speeds and transit times. The initial speed of a CME is obtained by fitting the CME with the Graduated Cylindrical Shell model and is thus free of projection effects. We then use the drag force model to fit results of the transit time versus the initial speed. By adopting different drag regimes, i.e., the viscous, aerodynamics, and hybrid regimes, we get similar results, with a least mean estimation error of the hybrid model of 12.9 hr. CMEs with a propagation angle (the angle between the propagation direction and the Sun-Earth line) larger than their half-angular widths arrive at the Earth with an angular deviation caused by factors other than the radial solar wind drag. The drag force model cannot be reliably applied to such events. If we exclude these events in the sample, the prediction accuracy can be improved, i.e., the estimation error reduces to 6.8 hr. This work suggests that it is viable to predict the arrival time of CMEs to the Earth based on the initial parameters with fairly good accuracy. Thus, it provides a method of forecasting space weather 1-5 days following the occurrence of CMEs.

  10. Identification of "Known Unknowns" Utilizing Accurate Mass Data and Chemical Abstracts Service Databases

    NASA Astrophysics Data System (ADS)

    Little, James L.; Cleven, Curtis D.; Brown, Stacy D.

    2011-02-01

    In many cases, an unknown to an investigator is actually known in the chemical literature. We refer to these types of compounds as "known unknowns." Chemical Abstracts Service (CAS) Registry is a particularly good source of these substances as it contains over 54 million entries. Accurate mass measurements can be used to query the CAS Registry by either molecular formulae or average molecular weights. Searching the database by the web-based version of SciFinder is the preferred approach when molecular formulae are available. However, if a definitive molecular formula cannot be ascertained, searching the database with STN Express by average molecular weights is a viable alternative. The results from either approach are refined by employing the number of associated references or minimal sample history as orthogonal filters. These approaches were shown to be successful in identifying "known unknowns" noted in LC-MS and even GC-MS analyses in our laboratory. In addition, they were demonstrated in the identification of a variety of compounds of interest to others.

  11. Estimates of Ice Sheet Mass Balance from Satellite Altimetry: Past and Future

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the 20% uncertainty in current mass balance corresponds to 1.6 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. A principal purpose of obtaining ice sheet elevation changes from satellite altimetry has been estimation of the current ice sheet mass balance. Limited information on ice sheet elevation change and their implications about mass balance have been reported by several investigators from radar altimetry (Seasat, Geosat, ERS-1&2). Analysis of ERS-1&2 data over Greenland for 7 years from 1992 to 1999 shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. Observed seasonal and interannual variations in ice surface elevation are larger than previously expected because of seasonal and interannUal variations in precipitation, melting, and firn compaction. In the accumulation zone, the variations in firn compaction are modeled as a function of temperature leaving variations in precipitation and the mass balance trend. Significant interannual variations in elevation in some locations, in particular the difference in trends from 1992 to 1995 compared to 1995 to 1999, can be explained by changes in precipitation over Greenland. Over the 7 years, trends in elevation are mostly positive at higher elevations and negative at lower elevations. In addition, trends for the winter seasons (from a trend analysis through the average winter elevations) are more positive than the corresponding trends for the summer. At lower elevations, the 7-year trends in some locations are strongly negative for summer and near zero or slightly positive for winter. These

  12. Global Trends and Variability In the Mass Balance of Mountain and Valley Glaciers

    NASA Astrophysics Data System (ADS)

    Medwedeff, W. G.; Roe, G.

    2015-12-01

    Glacier mass balance (i.e., accumulation and ablation) is the most direct connection between climate and glaciers. We perform a comprehensive evaluation of the available global network of mass-balance measurements, with a particular interest given to mountain and valley glaciers. Each mass-balance time series is decomposed into a trend and the variability about that trend. Observed variability ranges by an order of magnitude, depending on climate setting (i.e., maritime vs. continental). For the great majority of glaciers, variability is well characterized by normally distributed, random fluctuations that are uncorrelated between seasons, or in subsequent years. The magnitude of variability for both summer and winter is well correlated with mean wintertime balance, which reflects the climatic setting. Collectively, summertime variability exceeds wintertime variability, except for maritime glaciers. Trends in annual mass balance are generally negative, driven primarily by summertime changes. Approximately 25% of annual-mean records show statistically significant negative trends when judged in isolation. In aggregate, the global trend is negative and significant. We further evaluate the magnitude of trends relative to the variability. We find that, on average, trends are approximately -0.2 standard deviations per decade, although there is a broad spread among individual glaciers. Finally, for two long records we also compare mass-balance trends and variability with nearby meteorological stations. We find significant differences among stations meaning caution is warranted in interpreting any point measurement (such as mass balance) as representative of region-wide behavior. By placing observed trends in the context of natural variability, the results are useful for interpreting past glacial history, and for placing constraints on future predictability.

  13. Trends and variability in the global dataset of glacier mass balance

    NASA Astrophysics Data System (ADS)

    Medwedeff, William G.; Roe, Gerard H.

    2016-06-01

    Glacier mass balance (i.e., accumulation and ablation) is the most direct connection between climate and glaciers. We perform a comprehensive evaluation of the available global network of mass-balance measurements. Each mass-balance time series is decomposed into a trend and the variability about that trend. Observed variability ranges by an order of magnitude, depending on climate setting (i.e., maritime vs continental). For the great majority of glaciers, variability is well characterized by normally distributed, random fluctuations that are uncorrelated between seasons, or in subsequent years. The magnitude of variability for both summer and winter is well correlated with mean wintertime balance, which reflects the climatic setting. Collectively, summertime variability exceeds wintertime variability, except for maritime glaciers. Trends in annual mass balance are generally negative, driven primarily by summertime changes. Approximately 25 % of annual-mean records show statistically significant negative trends when judged in isolation. In aggregate, the global trend is negative and significant. We further evaluate the magnitude of trends relative to the variability. We find that, on average, trends are approximately -0.2 standard deviations per decade, although there is a broad spread among individual glaciers. Finally, for two long records we also compare mass-balance trends and variability with nearby meteorological stations. We find significant differences among stations meaning caution is warranted in interpreting any point measurement (such as mass balance) as representative of region-wide behavior. By placing observed trends in the context of natural variability, the results are useful for interpreting past glacial history, and for placing constraints on future predictability.

  14. Mass balance and surface velocity reconstructions of two reference Caucasus glaciers

    NASA Astrophysics Data System (ADS)

    Rybak, Oleg; Kaminskaia, Mariia; Kutuzov, Stanislav; Lavrentiev, Ivan; Morozova, Polina; Popovnin, Victor; Rybak, Elena

    2016-04-01

    Total glacial volume of the Greater Caucasus exceeds 40 cubic km and its area exceeds 1 thousand square km. During the 20th century, mountain glaciers at the Greater Caucasus were continuously degrading. According to various estimates, their area reduced more than one-third and their volume almost by half. The process of degradation was accompanied by growing population and economical development on surrounding territories. In the 21st century under proceeding global warming, a tendency of shrinking of area and volume of glaciation is obviously expected to continue. Working out of strategy of sustainable economic development of the region is the main motivation for elaboration of predictions of glaciers' evolution in the changing environment. Growing demand of fresh water is the basic challenge for the local economy, and efficient planning of water resources is impossible without knowing future state of glaciation. Therefore our research aims at obtaining accurate evaluation of probable future change of the most prominent mountain glaciers of the Greater Caucasus in forthcoming decades and at studying impacts of changing characteristics of glaciation on the run-off in the area. Initially, we focus on two so-called reference glaciers - Marukh (Western Caucasus) and Djankuat (Central Caucasus). Intensive field observations on both of them have been conducted during the last half of the century and essential amount of detailed relevant information has been collected on their geometry change and on mass balance. Besides, meteorological measurements were episodically carried out directly on the glaciers providing enough data for correlation of the local weather conditions with the data from the closest meteorological stations. That is why studying of response of Marukh and Djankuat on the environmental change can be accurately verified, which is crucial for understanding mechanisms driving evolution of large glaciated area in the Caucasus. As the instrument of research

  15. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  16. Evaporation and the mass and energy balances of the Dead Sea (Invited)

    NASA Astrophysics Data System (ADS)

    Lensky, N.; Gavrieli, I.; Gertman, I.; Nehorai, R.; Lensky, I. M.; Lyakhovsky, V.; Dvorkin, Y.

    2009-12-01

    The Dead Sea is a hypersaline terminal lake experiencing a water level drop of about 1 m/yr over the last decade. The existing estimations for the water balance of the lake are widely variable, reflecting the unknown subsurface water inflow, the rate of evaporation, and the rate of salt accumulation at the lake bottom. To estimate these we calculate the energy and mass balances for the Dead Sea utilizing measured meteorological and hydrographical data from 1996 to 2009. The data is measured from a buoy located in the Dead Sea 5, km from the nearest shore. The data includes solar radiation (incoming), long wave radiation (downward and upward looking), wind velocity, relative humidity, air temperature, air pressure and water temperature profile. Using energy balance we calculate the evaporation rate, taking into account the impact of lowered surface water activity. From mass balance considerations we calculate the salt precipitation rate, which was about 0.1 m/yr during this period. Using an overall mass balance we get the relation between water inflows, which are the least constrained quantity, and the evaporation rate. The average annual inflow is 265-325 mcm/yr, corresponding to an evaporation rate of 1.1-1.2 m/yr. Higher inflows, suggested in previous studies, call for increased evaporation rate and are therefore not in line with the energy balance. We also take into account the spatial variations and discuss how well the data measured in the buoy represent the Dead Sea surface conditions.

  17. Testing the Mass Balance of the Laurentide Ice Sheet During the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ullman, D. J.; Carlson, A. E.; Legrande, A. N.; Anslow, F. S.; Licciardi, J. M.; Caffee, M. W.

    2010-12-01

    Recent findings have suggested that the global Last Glacial Maximum occurred 26.5-20 ka. During this time, ice sheets were at their maximum extent and eustatic sea level was nearly 130 m lower than present. Such stability of Northern Hemisphere ice sheets suggests a nearly neutral net mass balance. Here we test the mass balance of the Laurentide Ice Sheet at the Last Glacial Maximum using an energy-mass balance model and two different ice sheet configurations. The energy-mass balance model is forced by simulated climate from the NASA Goddard Institute for Space Studies Model E-R, consistent with Last Glacial Maximum conditions. This coupled atmosphere-ocean global climate model contains water isotope tracers throughout the hydrologic cycle, which are used to constrain model skill against water isotopic records. Two model experiments are performed with different Laurentide Ice Sheet configurations: one using the ICE-5G geophysical reconstruction and the other using an alternative reconstruction based on a flow-line model that simulates glacier dynamics over deformable and rigid beds. These two reconstructions have widely contrasting ice sheet geometries at the Last Glacial Maximum, with the ICE-5G reconstruction having a much larger Keewatin Dome over west-central Canada, while the largest mass center according to the flow-line model is in the Labrador Dome over eastern Canada. This disparity in ice sheet geometry may result in large differences in simulated climate and net ice sheet mass balance. Initial results suggest that 1) the ICE-5G ice sheet forces a Last Glacial Maximum climate in conflict with paleoceanographic reconstructions of ocean circulation, whereas the flow-line ice sheet is in better agreement with circulation reconstructions; and 2) the initial increase in boreal summer insolation could trigger a negative mass balance for the Laurentide Ice Sheet by 21 ka, driving ice retreat. We will also compare our mass balance results with existing

  18. Improving the XAJ Model on the Basis of Mass-Energy Balance

    NASA Astrophysics Data System (ADS)

    Fang, Yuanghao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco

    2014-11-01

    The Xin’anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass balance. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both energy and mass balance to compute the ET following the energy-mass balance scheme of FEST-EWB. model.

  19. Relations between atmospheric circulation and mass balance of South Cascade Glacier, Washington, USA

    USGS Publications Warehouse

    McCabe, G.J., Jr.; Fountain, A.G.

    1995-01-01

    The yearly net mass balance of South Cascade Glacier, Washington, has decreased since the mid-1970s. Resuls show that the decrease is primarily caused by a significant decrease in the winter mass balance. Changes in atmospheric circulation indicate a decrease in the movement of storms and moisture from the Pacific Ocean into the western contiguous United States. In addition, the increase in winter mean 700-mb heights over western Canada and the northern western contiguous United States indicates an increase in subsidence, which results in a warming and drying of the air that further reduces precipitation and also increases the ratio of rain to snow during the cold season. These factors contribute to below-average winter mass balances. -from Authors

  20. Gravimetric mass balance products for the Antarctic and Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Horwath, Martin; Groh, Andreas; Horvath, Alexander; Forsberg, Rene; Meister, Rakia; Shepherd, Andrew; Hogg, Anna; Muir, Alan

    2016-04-01

    Within the framework of ESA's Climate Change Initiative (CCI) mass balance products for both the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS) have been developed by the AIS_cci and the GIS_cci project. These Gravimetric Mass Balance (GMB) products are derived from satellite gravimetry data acquired by GRACE (Gravity Recovery and Climate Experiment), which is the only sensor directly sensitive to changes in mass. Using monthly GRACE gravity field solutions covering the period from 2002 until present two different GMB products are derived: (a) time series of monthly mass changes for the entire ice sheet and for individual drainage basins, and (b) gridded mass changes covering the entire ice sheet. The gridded product depicts spatial patterns of mass changes at a formal resolution of about 50 km, although the effective resolution provided by GRACE is about 200-500km. The algorithms used for the product generation have been selected within an open round robin experiment and are optimized to account for the complex GRACE error structures, to advance the limited spatial resolution and to separate signals super-imposed to mass changes of the cryosphere. Here the first release of the ESA CCI GMB products is presented. Both the basin averaged and the gridded products are assessed regarding their signal content and error characteristics. Finally, up-to-date mass balance estimates are presented for both ice sheets. The GMB products are freely accessible through data portals hosted by the AIS_cci and the GIS_cci project.

  1. Re-analysis of Alaskan benchmark glacier mass-balance data using the index method

    USGS Publications Warehouse

    Van Beusekom, Ashely E.; O'Nell, Shad R.; March, Rod S.; Sass, Louis C.; Cox, Leif H.

    2010-01-01

    At Gulkana and Wolverine Glaciers, designated the Alaskan benchmark glaciers, we re-analyzed and re-computed the mass balance time series from 1966 to 2009 to accomplish our goal of making more robust time series. Each glacier's data record was analyzed with the same methods. For surface processes, we estimated missing information with an improved degree-day model. Degree-day models predict ablation from the sum of daily mean temperatures and an empirical degree-day factor. We modernized the traditional degree-day model and derived new degree-day factors in an effort to match the balance time series more closely. We estimated missing yearly-site data with a new balance gradient method. These efforts showed that an additional step needed to be taken at Wolverine Glacier to adjust for non-representative index sites. As with the previously calculated mass balances, the re-analyzed balances showed a continuing trend of mass loss. We noted that the time series, and thus our estimate of the cumulative mass loss over the period of record, was very sensitive to the data input, and suggest the need to add data-collection sites and modernize our weather stations.

  2. ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Maussion, F.; Gurgiser, W.; Großhauser, M.; Kaser, G.; Marzeion, B.

    2015-05-01

    The El Niño/Southern Oscillation (ENSO) is a major driver of climate variability in the tropical Andes, where recent Niño and Niña events left an observable footprint on glacier mass balance. The nature and strength of the relationship between ENSO and glacier mass balance, however, varies between regions and time periods, leaving several unanswered questions about its exact mechanisms. The starting point of this study is a four-year long time series of distributed surface energy and mass balance (SEB/SMB) calculated using a process-based model driven by observations at Shallap Glacier (Cordillera Blanca, Peru). These data are used to calibrate a regression-based downscaling model that links the local SEB/SMB fluxes to atmospheric reanalysis variables on a monthly basis, allowing an unprecedented quantification of the ENSO influence on the SEB/SMB at climatological time scales (1980-2013, ERA-Interim period). We find a stronger and steadier anti-correlation between pacific sea surface temperature (SST) and glacier mass balance than previously reported. This relationship is most pronounced during the wet season (December-May) and at low altitudes where Niño (Niña) events are accompanied with a snowfall deficit (excess) and a higher (lower) radiation energy input. We detect a weaker but significant ENSO anti-correlation with total precipitation (Niño dry signal) and positive correlation with the sensible heat flux, but find no ENSO influence on sublimation. Sensitivity analyses comparing several downscaling methods and reanalysis datasets resulted in stable mass balance correlations with pacific SST but also revealed large uncertainties in computing the mass balance trend of the last decades. The newly introduced open-source downscaling tool can be applied easily to other glaciers in the tropics, opening new research possibilities on even longer time scales.

  3. ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Maussion, F.; Gurgiser, W.; Großhauser, M.; Kaser, G.; Marzeion, B.

    2015-08-01

    The El Niño/Southern Oscillation (ENSO) is a major driver of climate variability in the tropical Andes, where recent Niño and Niña events left an observable footprint on glacier mass balance. The nature and strength of the relationship between ENSO and glacier mass balance, however, varies between regions and time periods, leaving several unanswered questions about its exact mechanisms. The starting point of this study is a 4-year long time series of distributed surface energy and mass balance (SEB/SMB) calculated using a process-based model driven by observations at Shallap Glacier (Cordillera Blanca, Peru). These data are used to calibrate a regression-based downscaling model that links the local SEB/SMB fluxes to atmospheric reanalysis variables on a monthly basis, allowing an unprecedented quantification of the ENSO influence on the SEB/SMB at climatological time scales (1980-2013, ERA-Interim period). We find a stronger and steadier anti-correlation between Pacific sea-surface temperature (SST) and glacier mass balance than previously reported. This relationship is most pronounced during the wet season (December-May) and at low altitudes where Niño (Niña) events are accompanied with a snowfall deficit (excess) and a higher (lower) radiation energy input. We detect a weaker but significant ENSO anti-correlation with total precipitation (Niño dry signal) and positive correlation with the sensible heat flux, but find no ENSO influence on sublimation. Sensitivity analyses comparing several downscaling methods and reanalysis data sets resulted in stable mass balance correlations with Pacific SST but also revealed large uncertainties in computing the mass balance trend of the last decades. The newly introduced open-source downscaling tool can be applied easily to other glaciers in the tropics, opening new research possibilities on even longer time scales.

  4. Optimization of regional constraints for estimating the Greenland mass balance with GRACE level-2 data

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Schrama, E.; van der Wal, W.

    2015-07-01

    Data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission can be used to estimate the mass change rate for separate drainage systems (DSs) of the Greenland Ice Sheet (GrIS). One approach to do so is by inversion of the level-2 spherical harmonic data to surface mass changes in predefined regions, or mascons. However, the inversion can be numerically unstable for some individual DSs. This occurs mainly for DSs with a small mass change signal that are located in the interior region of Greenland. In this study, we present a modified mascon inversion approach with an improved implementation of the constraint equations to obtain better estimates for individual DSs. We use separate constraints for mass change variability in the coastal zone, where run-off takes place, and for the ice sheet interior above 2000 m, where mass changes are smaller. A multi-objective optimization approach is used to find optimal prior variances for these two areas based on a simulation model. Correlations between adjacent DSs are suppressed when our optimized prior variances are used, while the mass balance estimates for the combination of the DSs that make up the GrIS above 2000 m are not affected significantly. The resulting mass balance estimates for some DSs in the interior are significantly improved compared to an inversion with a single constraint, as determined by a comparison with mass balance estimates from surface mass balance modelling and discharge measurements. The rate of mass change of the GrIS for the period of January 2003 to December 2012 is found to be -266.1 ± 17.2 Gt yr-1 in the coastal zone and areas below 2000 m, and +8.2 ± 8.6 Gt yr-1 in the interior region.

  5. Evaluation of three long term mass balance records in Jotunheimen, southern Norway

    NASA Astrophysics Data System (ADS)

    Andreassen, Liss M.

    2013-04-01

    The accuracy of glacier surface mass-balance measurements depends on both the accuracy of the point observations and inter- and extrapolation of point values to spatially distributed values. Long series of measurements will seldom be perfectly homogeneous because of changes in personnel and procedure, and as there will be changes in glacier area (and elevation) when averaging the data. The Jotunheimen massif is the highest area in mainland Norway. Direct surface mass balance has been measured at Storbreen since 1949 and Hellstugubreen and Gråsubreen since 1962. These three mountain glaciers are reference glaciers of the World Glacier Monitoring Service. Four more glaciers in Jotunheimen were measured for shorter periods in the 1960/1970s. Moreover, measurements started on a small ice patch in 2010. The reference glaciers have been mapped repeatedly since measurements began, latest by laser scanning in 2009. The geodetic method has been used to calculate the cumulative surface mass balance. In this study the direct and geodetic mass balance results are presented and evaluated. Measurements reveal a remarked mass balance gradient in this region with smaller mass turnover towards east. All three long term glaciers have had a cumulative mass deficit since measurements began; over 1962-2010 the mean surface mass balance was -0.34 m w.e./a. The mass deficit has accelerated over the past decade, and the mean mass balance over 2001-2010 was -0.84 m w.e./a. Storbreen has lost about 1/5 of its volume since measurements began in 1949. Results reveal that the geodetic and direct measurements compare well for the glaciers, also for the latest mapping period 1997-2009, although discrepancies occur in some periods. Calibration and correction of the direct records with the geodetic results may be appropriate for some periods. The glacier changes of the three reference glaciers are finally compared with results from other glaciers in southern Norway for evaluation of the local and

  6. Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century

    NASA Astrophysics Data System (ADS)

    Liu, Qiao; Liu, Shiyin

    2016-01-01

    Systematic differences in glacier mass balance response to climate warming are apparent in the Tianshan Mountains, which are primarily caused by different climatic regimes and glacier hypsography. Combined mass balance data of nine monitored glaciers in the Tianshan Mountains shows that most glaciers accelerated their mass losing rate since 1970s (averaged from -24.6 mm w.e. a-1 in 1957-1970 to -444.6 mm w.e. a-1 in 1971-2009), but also exhibiting discrepancy and consistency during the second half of the twentieth century. To see their climatic-mass balance relationships, we employ a simple temperature index mass balance model on five well monitored glaciers in Tianshan. The model is calibrated by the observed annual, summer and winter mass balance data over the period of 1957-1980 and validated over 1981-2002. A comparison of modeled and measured annual mass balance yields an overall standard deviation of 0.465 m w.e. during the period of model runs. The calibrated mass balance model is also used to perform sensitivity experiments, which indicates the significant differences of individual glaciers in response to climate changes. This study, for the first time, tests a temperature index mass balance model on the selected observed glaciers in the Tianshan Mountains. Although there exists considerable uncertainties, we propose its potential possibility of improvement and applicability for regional glacier mass balance reconstructions and future predictions.

  7. Mass analysis for the Space Station ECLSS using the balance spreadsheet method

    NASA Technical Reports Server (NTRS)

    Chu, Wen-Ho

    1989-01-01

    The balance spreadsheet method is applied to mass analysis of the Environmental Control and Life Support System (ECLSS). The spreadsheet layout reduces the complexity of the ECLSS analysis by concisely defining the sources, sinks, and net changes in mass for each fluid. The analysis method is illustrated by using information from the latest Space Station ECLSS Architectural Control Documents and a given Space Station assembly sequence. The analysis results are plotted and discussed.

  8. Balancing

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    At many occasions we are asked to achieve a “balance” in our lives: when it comes, for example, to work and food. Balancing is crucial in game design as well as many have pointed out. In games with a meaningful purpose, however, balancing is remarkably different. It involves the balancing of three different worlds, the worlds of Reality, Meaning, and Play. From the experience of designing Levee Patroller, I observed that different types of tensions can come into existence that require balancing. It is possible to conceive of within-worlds dilemmas, between-worlds dilemmas, and trilemmas. The first, the within-world dilemmas, only take place within one of the worlds. We can think, for example, of a user interface problem which just relates to the world of Play. The second, the between-worlds dilemmas, have to do with a tension in which two worlds are predominantly involved. Choosing between a cartoon or a realistic style concerns, for instance, a tension between Reality and Play. Finally, the trilemmas are those in which all three worlds play an important role. For each of the types of tensions, I will give in this level a concrete example from the development of Levee Patroller. Although these examples come from just one game, I think the examples can be exemplary for other game development projects as they may represent stereotypical tensions. Therefore, to achieve harmony in any of these forthcoming games, it is worthwhile to study the struggles we had to deal with.

  9. REVIEW OF VOLATILE ORGANIC COMPOUND SOURCE APPORTIONMENT BY CHEMICAL MASS BALANCE. (R826237)

    EPA Science Inventory

    The chemical mass balance (CMB) receptor model has apportioned volatile organic compounds (VOCs) in more than 20 urban areas, mostly in the United States. These applications differ in terms of the total fraction apportioned, the calculation method, the chemical compounds used ...

  10. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  11. Dynamic spatially-explicit mass-balance modeling for targeted watershed phosphorus management II: Model Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cost-effective nonpoint source phosphorus (P) control should target the land areas at greatest risk for P loss. We combined mass-balance modeling and geographic analysis to identify and map high-risk areas for P export by integrating long-term P input/output accounting with spatially variable physi...

  12. MASS BALANCE MODELLING OF PCBS IN THE FOX RIVER/GREEN BAY COMPLEX

    EPA Science Inventory

    The USEPA Office of Research and Development developed and applies a multimedia, mass balance modeling approach to the Fox River/Green Bay complex to aid managers with remedial decision-making. The suite of models were applied to PCBs due to the long history of contamination and ...

  13. Single-Pan Balances, Buoyancy, and Gravity or "A Mass of Confusion."

    ERIC Educational Resources Information Center

    Battino, Rubin; Williamson, Arthur G.

    1984-01-01

    Discusses problems and pitfalls of working with single-pan balances and methods used to advertise their accuracy. Investigated manufacturers knowledge of buoyancy effects, relating provisions and recommendations made by various companies. Provides a routine for intercalibration of weight using dummy weights of approximately known mass. (JM)

  14. LINKING GREAT WATERSHEDS WITH LAKE MICHIGAN: THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance Study -- which is focusing on atrazine, PCBs, nutrients, suspended solids, trans-nonachlor, and mercury. The relative contribution of contaminants to Lake Michigan will be examined for all major watersheds in the basin. - - - Further ...

  15. AN OVERVIEW OF THE LAKE MICHIGAN MASS BALANCE MODELING PROJECT: BACKGROUND, ACCOMPLISHMENTS, AND FUTURE WORK

    EPA Science Inventory

    Modeling associated with the Lake Michigan Mass Balance Project (LMMBP) is being conducted using WASP-type water quality models to gain a better understanding of the ecosystem transport and fate of polychlorinated biphenyls (PCBs), atrazine, mercury, and trans-nonachlor in Lake M...

  16. LM-3: A High-resolution Lake Michigan Mass Balance Water Quality Model

    EPA Science Inventory

    This report is a user’s manual that describes the high-resolution mass balance model known as LM3. LM3 has been applied to Lake Michigan to describe the transport and fate of atrazine, PCB congeners, and chloride in that system. The model has also been used to model eutrophicat...

  17. Relations between winter 700-mb height anomalies and mass balance of South Cascade Glacier, Washington

    SciTech Connect

    McCabe, G.J.; Fountain, A.G.

    1995-12-31

    The yearly net mass balance of South Cascade Glacier, Washington, decreased during the mid-1970`s. Results show that the decrease is primarily caused by a significant decrease in the winter mass balance. The decrease in winter mass balance is caused, in part, by changes in winter mean atmospheric circulation that began during the mid-1970`s. Since the mid-1970`s, there has been an increase in winter mean atmospheric pressure over western Canada and the northern western contiguous US and a decrease in winter mean atmospheric pressure in the eastern North Pacific Ocean centered near the Aleutian islands. These changes in atmospheric circulation indicate a decrease in the movement of storms and moisture from the Pacific Ocean into the western contiguous US. In addition, the increase in atmospheric pressure over western Canada and the northern western contiguous US indicates an increase in subsidence, which results in a warming and drying of the air that further reduces precipitation and also increases the ratio of rain to snow during the cold season. These factors contribute to below-average winter mass balances.

  18. Thorium Mass Balance for the Moon from Lunar Prospector and Sample Data: Implications for Thermal Evolution

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Gillis, Jeffrey J.; Haskin, Larry A.

    2000-01-01

    A global lunar mass-balance model for Th based on Lunar Prospector gamma-ray and lunar sample data is presented within the context of major crustal terranes. The consequences of strong enrichment of Th in the Procellarum KREEP Terrane are discussed.

  19. ATMOSPHERIC MERCURY DEPOSITION TO LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Study together w...

  20. Great Lakes water quality scenario models: Operational feasibility -Lake Michigan Mass Balance models

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance models were provided (eutrophication/nutrients, atrazine, mercury, and PCBs) with emphasis on the PCB model post-audit and forecast for Lake Trout. Provided were modeling construct, model description, and primary results. An assessm...

  1. Relations between atmospheric circulation and mass balance of South Cascade Glacier, Washington, U.S.A.

    SciTech Connect

    McCabe, G.J.; Fountain, A.G.

    1995-08-01

    The yearly net mass balance of South Cascade Glacier, Washington, has decreased since the mid-1970s. Results show that the decrease in winter mass balance is caused, in part, by changes in winter mean atmospheric circulation that began during the mid-1970s. Approximately 60% of the variability in winter mass balance can be explained by variations in winter mean 700-mb heights over western Canada. Since the mid-1970s, there has been an increase in winter mean 700-mb heights over western Canada and the northern western contiguous United States and a decrease in winter mean 700-mb heights in the eastern North Pacific Ocean centered near the Aleutian Islands. These changes in atmospheric circulation indicate a decrease in the movement of storms and moisture from the Pacific Ocean into the western contiguous United States. In addition, the increase in winter mean 700-mb heights over western Canada and the northern western contiguous United States indicates an increase in subsidence, which results in a warming and drying of the air that further reduces precipitation and also increases the ratio of rain to snow during the cold season. These factors contribute to below-average winter mass balances. 43 refs., 13 figs.

  2. THE LAKE MICHIGAN MASS BALANCE PROJECT: QUALITY ASSURANCE PLAN FOR MATHEMATICAL MODELLING

    EPA Science Inventory

    This report documents the quality assurance process for the development and application of the Lake Michigan Mass Balance Models. The scope includes the overall modeling framework as well as the specific submodels that are linked to form a comprehensive synthesis of physical, che...

  3. MICHTOX: A MASS BALANCE AND BIOACCUMULATION MODEL FOR TOXIC CHEMICALS IN LAKE MICHIGAN

    EPA Science Inventory

    MICHTOX is a toxic chemical mass balance and bioaccumulation model for Lake Michigan. It was developed for USEPA's Region V in support of the Lake Michigan Lake-wide Management Plan (LaMP) to provide guidance on expected water quality improvements in response to critical pollutan...

  4. Nitrogen losses from dairy manure estimated through nitrogen mass balance and chemical markers

    USGS Publications Warehouse

    Hristov, Alexander N.; Zaman, S.; Vander Pol, M.; Ndegwa, P.; Campbell, L.; Silva, S.

    2009-01-01

    Ammonia is an important air and water pollutant, but the spatial variation in its concentrations presents technical difficulties in accurate determination of ammonia emissions from animal feeding operations. The objectives of this study were to investigate the relationship between ammonia volatilization and ??15N of dairy manure and the feasibility of estimating ammonia losses from a dairy facility using chemical markers. In Exp. 1, the N/P ratio in manure decreased by 30% in 14 d as cumulative ammonia losses increased exponentially. Delta 15N of manure increased throughout the course of the experiment and ??15N of emitted ammonia increased (p < 0.001) quadratically from -31??? to -15 ???. The relationship between cumulative ammonia losses and ??15N of manure was highly significant (p < 0.001; r2 = 0.76). In Exp. 2, using a mass balance approach, approximately half of the N excreted by dairy cows (Bos taurus) could not be accounted for in 24 h. Using N/P and N/K ratios in fresh and 24-h manure, an estimated 0.55 and 0.34 (respectively) of the N excreted with feces and urine could not be accounted for. This study demonstrated that chemical markers (P, K) can be successfully used to estimate ammonia losses from cattle manure. The relationship between manure ??15N and cumulative ammonia loss may also be useful for estimating ammonia losses. Although promising, the latter approach needs to be further studied and verified in various experimental conditions and in the field. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. Waste assay and mass balance for the decontamination and volume reduction system at LANL

    SciTech Connect

    Gruetzmacher, Kathleen M.; Ferran, Scott G.; Garner, Scott E.; Romero, Mike J.; Christensen, Davis V.; Bustos, Roland M.

    2003-07-01

    The Decontamination and Volume Reduction System (DVRS) operated by the Solid Waste Operations (SWO) Group at Los Alamos National Laboratory (LANL) processes large volume, legacy radioactive waste items. Waste boxes, in sizes varying from 4 ft x 4 ft x 8 ft to 10 ft x 12 ft x 40 ft, are assayed prior to entry into the processing building. Inside the building, the waste items are removed from their container, decontaminated and/or size reduced if necessary, and repackaged for shipment to the Waste Isolation Pilot Plant (WIPP) or on-site low-level waste disposal. The repackaged items and any secondary waste produced (e.g., personal protective equipment) are assayed again at the end of the process and a mass balance is done to determine whether there is any significant hold-up material left in the DVRS building. The DVRS building is currently classed as a radiological facility, with a building limit of 0.52 Ci of Pu239 and Am241, and 0.62 Ci of Pu238, the most common radionuclides processed. This requires tight controls on the flow of nuclear material. The large volume of the initial waste packages, the (relatively) small amounts of radioactive material in them, and the tight ceiling on the building inventory require accurate field measurements of the nuclear material. This paper describes the radioactive waste measurement techniques, the computer modeling used to determine the amount of nuclear material present in a waste package, the building inventory database, and the DVRS process itself. Future plans include raising the limit on the nuclear material inventory allowed in the building to accommodate higher activity waste packages. All DOE sites performing decontamination and decommissioning of radioactive process equipment face challenges related to waste assay and inventory issues. This paper describes an ongoing operation, incorporating lessons learned over the life of the project to date.

  6. Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Trépanier, Sylvain; Mathieu, Lucie; Daigneault, Réal; Faure, Stéphane

    2016-04-01

    This study proposes an artificial neural networks-based method for predicting the unaltered (precursor) chemical compositions of hydrothermally altered volcanic rock. The method aims at predicting precursor's major components contents (SiO2, FeOT, MgO, CaO, Na2O, and K2O). The prediction is based on ratios of elements generally immobile during alteration processes; i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr, which are provided as inputs to the neural networks. Multi-layer perceptron neural networks were trained on a large dataset of least-altered volcanic rock samples that document a wide range of volcanic rock types, tectonic settings and ages. The precursors thus predicted are then used to perform mass balance calculations. Various statistics were calculated to validate the predictions of precursors' major components, which indicate that, overall, the predictions are precise and accurate. For example, rank-based correlation coefficients were calculated to compare predicted and analysed values from a least-altered test dataset that had not been used to train the networks. Coefficients over 0.87 were obtained for all components, except for Na2O (0.77), indicating that predictions for alkali might be less performant. Also, predictions are performant for most volcanic rock compositions, except for ultra-K rocks. The proposed method provides an easy and rapid solution to the often difficult task of determining appropriate volcanic precursor compositions to rocks modified by hydrothermal alteration. It is intended for large volcanic rock databases and is most useful, for example, to mineral exploration performed in complex or poorly known volcanic settings. The method is implemented as a simple C++ console program.

  7. Mass by Energy Loss Quantitation as a Practical Sub-Microgram Balance

    SciTech Connect

    Palmblad, M; Bench, G; Vogel, J S

    2004-09-28

    A simple device integrating a thin film support and a standard microcentrifuge tube can be used for making solutions of accurately known concentration of any organic compound in a single step, avoiding serial dilution and the use of microgram balances. Nanogram to microgram quantities of organic material deposited on the thin film are quantified by ion energy loss and transferred to the microcentrifuge tube with high recovery.

  8. How accurately are climatological characteristics and surface water and energy balances represented for the Colombian Caribbean Catchment Basin?

    NASA Astrophysics Data System (ADS)

    Hoyos, Isabel; Baquero-Bernal, Astrid; Hagemann, Stefan

    2013-09-01

    In Colombia, the access to climate related observational data is restricted and their quantity is limited. But information about the current climate is fundamental for studies on present and future climate changes and their impacts. In this respect, this information is especially important over the Colombian Caribbean Catchment Basin (CCCB) that comprises over 80 % of the population of Colombia and produces about 85 % of its GDP. Consequently, an ensemble of several datasets has been evaluated and compared with respect to their capability to represent the climate over the CCCB. The comparison includes observations, reconstructed data (CPC, Delaware), reanalyses (ERA-40, NCEP/NCAR), and simulated data produced with the regional climate model REMO. The capabilities to represent the average annual state, the seasonal cycle, and the interannual variability are investigated. The analyses focus on surface air temperature and precipitation as well as on surface water and energy balances. On one hand the CCCB characteristics poses some difficulties to the datasets as the CCCB includes a mountainous region with three mountain ranges, where the dynamical core of models and model parameterizations can fail. On the other hand, it has the most dense network of stations, with the longest records, in the country. The results can be summarised as follows: all of the datasets demonstrate a cold bias in the average temperature of CCCB. However, the variability of the average temperature of CCCB is most poorly represented by the NCEP/NCAR dataset. The average precipitation in CCCB is overestimated by all datasets. For the ERA-40, NCEP/NCAR, and REMO datasets, the amplitude of the annual cycle is extremely high. The variability of the average precipitation in CCCB is better represented by the reconstructed data of CPC and Delaware, as well as by NCEP/NCAR. Regarding the capability to represent the spatial behaviour of CCCB, temperature is better represented by Delaware and REMO, while

  9. Degradation of reactive dyes in wastewater from the textile industry by ozone: analysis of the products by accurate masses.

    PubMed

    Constapel, Marc; Schellenträger, Marc; Marzinkowski, Joachim Michael; Gäb, Siegmar

    2009-02-01

    The present work describes the use of ozone to degrade selected reactive dyes from the textile industry and the analysis of the resulting complex mixture by liquid chromatography/mass spectrometry (LC-MS). To allow certain identification of the substances detected in the wastewater, the original dyes were also investigated either separately or in a synthetic mixture of three dyes (trichromie). Since the reactive dyes are hydrolyzed during the dyeing process, procedures for the hydrolysis were worked out first for the individual dyes. The ozonated solutions were concentrated by solid-phase extraction, which separated very polar or ionic substances from moderately polar degradation products. The latter, which are the primary degradation products, were investigated by liquid chromatography/mass spectrometry with a tandem quadrupole time-of-flight mass analyzer. Accurate masses, which in most cases could be determined with a deviation of mass analyzer to provide UV-vis spectra of the products in the same run. With retention times, mass spectra, accurate masses, UV-vis spectra and, of course, knowledge of the structures of the original dyes, plausible structures could be proposed for most of the components of the moderately polar fraction. These structures were confirmed by 1H NMR in cases where it was practical to isolate the degradation products by preparative HPLC. PMID:19110293

  10. Accurate stellar masses for SB2 components: Interferometric observations for Gaia validation

    NASA Astrophysics Data System (ADS)

    Halbwachs, J.-L.; Boffin, H. M. J.; Le Bouquin, J.-B.; Famaey, B.; Salomon, J.-B.; Arenou, F.; Pourbaix, D.; Anthonioz, F.; Grellmann, R.; Guieu, S.; Guillout, P.; Jorissen, A.; Kiefer, F.; Lebreton, Y.; Mazeh, T.; Nebot Gómez-Morán, A.; Sana, H.; Tal-Or, L.

    2015-12-01

    A sample of about 70 double-lined spectroscopic binaries (SB2) is followed with radial velocity (RV) measurements, in order to derive the masses of their components when the astrometric measurements of Gaia will be available. A subset of 6 SB2 was observed in interferometry with VLTI/PIONIER, and the components were separated for each binary. The RV measurements already obtained were combined with the interferometric observations and the masses of the components were derived. The accuracies of the 12 masses are presently between 0.4 and 7 %, but they will still be improved in the future. These masses will be used to validate the masses which will be obtained from Gaia. In addition, the parallaxes derived from the combined visual+spectroscopic orbits are compared to that of Hipparcos, and a mass-luminosity relation is derived in the infrared H band.

  11. The seasonal in-situ mass balance, temperature and precipitation of Yala Glacier, Langtang Valley, Nepal, from 2011 to 2015

    NASA Astrophysics Data System (ADS)

    Stumm, Dorothea; Fujita, Koji; Gurung, Tika; Joshi, Sharad; Litt, Maxime; Shea, Joseph; Sherpa, Mingma; Sinisalo, Anna; Wagnon, Patrick

    2016-04-01

    In-situ glacier mass balance measurements are still scarce in the Hindu Kush Himalayan (HKH) region and little is known about the seasonal balances. The glaciers in the Nepalese Himalaya have been considered summer accumulation glacier types because of the assumption that the majority of the accumulation occurs in the summer months during the monsoon. The glacier mass balance of Yala Glacier in the Langtang Valley of Nepal has been measured using the glaciological method since autumn 2011. Stakes were measured biannually in pre- and post-monsoon, usually in early May and in November, respectively. The measured mass balance gradient for the summer balance was larger than the winter balance, which is typical for glaciers with distinct ablation and accumulation seasons. On Yala Glacier, the summer balance was negative, and the winter balance was positive in all years with measurements. However, the annual net balance was negative for all four mass balance years from 2011 to 2015. The mass balances were further compared to temperature and precipitation data measured at nearby climate stations during the same time periods. In October 2013 and 2014, the Central Himalayas received large amounts of precipitation brought by the cyclones Phailin and Hudhud. These precipitation events contributed to the summer balance since the measurements were taken after the cyclones passed. In conclusion, on Yala Glacier accumulation processes dominated ablation processes during the winter, and ablation processes dominated during the summer, which could be explained by the low elevation range of Yala Glacier and precipitation from westerlies in the winter. Hence, this should be kept in mind when using the term 'summer accumulation glacier' for Yala Glacier. For future research in the HKH region, seasonal mass balances should be measured, and the processes impacting the mass balance and the role of winter precipitation should be investigated for other glaciers in the HKH region.

  12. Mass and energy balance constraints on the biological production of chemicals from coal

    SciTech Connect

    Andrews, G.

    1990-01-01

    Several organic chemicals, including methane and ethanol, may be produced by the bioprocessing of coal. This may be done either by direct microbial attack on the coal, or indirectly by the bioprocessing of solubilized coal. As in chemical liquefaction and gasification, the relative amounts of the various products that can be produced are severely constrained by mass and energy balance considerations. The main differences in biological processing are that water is a ubiquitous reactant, carbon dioxide a common product, and that some of the carbon and nitrogen in the coal may go to the synthesis of new biomass rather than products. The conventional biotechnological yield analysis applied to coal processing has several interesting consequences. The mass balance reduces to a balance of available electrons, and coal has a similar oxidation/reduction state to both carbohydrates and biomass. This makes high product yields feasible particularly under anaerobic conditions, although leaving open the question of whether the relevant hydrolase enzymes exist. Recommendations are made on products, and combinations of two products, that may be made with high yields and economic return. The energy balance provides little extra information. A general intracellular energy balance can be written in terms of the production and consumption of ATP, but much of the necessary information on the metabolic pathways is currently not available for coal processing microorganisms. 9 refs., 2 figs., 2 tabs.

  13. Development of the ECLSS Sizing Analysis Tool and ARS Mass Balance Model Using Microsoft Excel

    NASA Technical Reports Server (NTRS)

    McGlothlin, E. P.; Yeh, H. Y.; Lin, C. H.

    1999-01-01

    The development of a Microsoft Excel-compatible Environmental Control and Life Support System (ECLSS) sizing analysis "tool" for conceptual design of Mars human exploration missions makes it possible for a user to choose a certain technology in the corresponding subsystem. This tool estimates the mass, volume, and power requirements of every technology in a subsystem and the system as a whole. Furthermore, to verify that a design sized by the ECLSS Sizing Tool meets the mission requirements and integrates properly, mass balance models that solve for component throughputs of such ECLSS systems as the Water Recovery System (WRS) and Air Revitalization System (ARS) must be developed. The ARS Mass Balance Model will be discussed in this paper.

  14. Chemical equilibrium and mass balance relationships associated with the Long Valley hydrothermal system, California, U.S.A.

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1991-01-01

    Recent drilling and sampling of hydrothermal fluids from Long Valley permit an accurate characterization of chemical concentrations and equilibrium conditions in the hydrothermal reservoir. Hydrothermal fluids are thermodynamically saturated with secondary quartz, calcite, and pyrite but are in disequilibrium with respect to aqueous sulfide-sulfate speciation. Hydrothermal fluids are enriched in 18O by approximately 1??? relative to recharge waters. 18O and Cl concentrations in well cuttings and core from high-temperature zones of the reservoir are extensively depleted relative to fresh rhyolitic tuff compositions. Approximately 80% of the Li and 50% of the B are retained in the altered reservoir rock. Cl mass balance and open-system 18O fractionation models produce similar water-rock ratios of between 1.0 and 2.5 kg kg-1. These water-rock ratios coupled with estimates of reservoir porosity and density produce a minimum fluid residence time of 1.3 ka. The low fluid Cl concentrations in Long Valley correlate with corresponding low rock concentrations. Mass balance calculations indicate that leaching of these reservoir rocks accounts for Cl losses during hydrothermal activity over the last 40 ka. ?? 1991.

  15. Snowline observations to remotely derive glacier-wide mass balance on four Kyrgyz glaciers from 2003 to 2015

    NASA Astrophysics Data System (ADS)

    Barandun, Martina; Huss, Matthias; Sold, Leo; Kienholz, Christian; Usubaliev, Ryskul; Bolch, Tobias; Hoelzle, Martin

    2016-04-01

    The monitoring of glacier mass balance in remote regions is challenging but vital for understanding the response of glaciers to climate change. Direct mass balance observations are sparse and discontinuous in the Kyrgyz Tien Shan and Pamir. The under-sampling problem of glacier change assessments limits change predictions and impact projections. In this study, we elaborate on novel approaches to derive sub-seasonal glacier mass balance based on remote snowline monitoring on four Kyrgyz glaciers for a period from 2003 to 2015. The proposed methodology is based on the information content of short-term changes in snowline elevation detected with repeated remote sensing imagery for both the quantities of winter accumulation and summer ablation. By backward modelling the observed snowline position and the glacier geometry are related to the glacier-wide mass balance. Snowline position over the glacier area is detected with a semi-automatic procedure on remote sensing images (Landsat, ASTER) and automatically on terrestrial photographs. We apply the methodology to four glaciers on which direct mass balance measurements have been (re)-initiated recently and use reanalysed and partly reconstructed mass balance series as a first source to validate our approach to remotely determine the seasonal glacier mass budget. In a second step, the derived glacier-wide mass balance is compared to geodetic mass balance calculations for the first decade of the 21st century.

  16. Gulkana Glacier, Alaska-Mass balance, meteorology, and water measurements, 1997-2001

    USGS Publications Warehouse

    March, Rod S.; O'Neel, Shad

    2011-01-01

    The measured winter snow, maximum winter snow, net, and annual balances for 1997-2001 in the Gulkana Glacier basin are determined at specific points and over the entire glacier area using the meteorological, hydrological, and glaciological data. We provide descriptions of glacier geometry to aid in estimation of conventional and reference surface mass balances and descriptions of ice motion to aid in the understanding of the glacier's response to its changing geometry. These data provide annual estimates for area altitude distribution, equilibrium line altitude, and accumulation area ratio during the study interval. New determinations of historical area altitude distributions are given for 1900 and annually from 1966 to 2001. As original weather instrumentation is nearing the end of its deployment lifespan, we provide new estimates of overlap comparisons and precipitation catch efficiency. During 1997-2001, Gulkana Glacier showed a continued and accelerated negative mass balance trend, especially below the equilibrium line altitude where thinning was pronounced. Ice motion also slowed, which combined with the negative mass balance, resulted in glacier retreat under a warming climate. Average annual runoff augmentation by glacier shrinkage for 1997-2001 was 25 percent compared to the previous average of 13 percent, in accordance with the measured glacier volume reductions.

  17. Analysis of difference between direct and geodetic mass balance measurements at South Cascade Glacier, Washington

    USGS Publications Warehouse

    Krimmel, R.M.

    1999-01-01

    Net mass balance has been measured since 1958 at South Cascade Glacier using the 'direct method,' e.g. area averages of snow gain and firn and ice loss at stakes. Analysis of cartographic vertical photography has allowed measurement of mass balance using the 'geodetic method' in 1970, 1975, 1977, 1979-80, and 1985-97. Water equivalent change as measured by these nearly independent methods should give similar results. During 1970-97, the direct method shows a cumulative balance of about -15 m, and the geodetic method shows a cumulative balance of about -22 m. The deviation between the two methods is fairly consistent, suggesting no gross errors in either, but rather a cumulative systematic error. It is suspected that the cumulative error is in the direct method because the geodetic method is based on a non-changing reference, the bedrock control, whereas the direct method is measured with reference to only the previous year's summer surface. Possible sources of mass loss that are missing from the direct method are basal melt, internal melt, and ablation on crevasse walls. Possible systematic measurement errors include under-estimation of the density of lost material, sinking stakes, or poorly represented areas.

  18. California's Snow Gun and its implications for mass balance predictions under greenhouse warming

    NASA Astrophysics Data System (ADS)

    Howat, I.; Snyder, M.; Tulaczyk, S.; Sloan, L.

    2003-12-01

    Precipitation has received limited treatment in glacier and snowpack mass balance models, largely due to the poor resolution and confidence of precipitation predictions relative to temperature predictions derived from atmospheric models. Most snow and glacier mass balance models rely on statistical or lapse rate-based downscaling of general or regional circulation models (GCM's and RCM's), essentially decoupling sub-grid scale, orographically-driven evolution of atmospheric heat and moisture. Such models invariably predict large losses in the snow and ice volume under greenhouse warming. However, positive trends in the mass balance of glaciers in some warming maritime climates, as well as at high elevations of the Greenland Ice Sheet, suggest that increased precipitation may play an important role in snow- and glacier-climate interactions. Here, we present a half century of April snowpack data from the Sierra Nevada and Cascade mountains of California, USA. This high-density network of snow-course data indicates that a gain in winter snow accumulation at higher elevations has compensated loss in snow volume at lower elevations by over 50% and has led to glacier expansion on Mt. Shasta. These trends are concurrent with a region-wide increase in winter temperatures up to 2° C. They result from the orographic lifting and saturation of warmer, more humid air leading to increased precipitation at higher elevations. Previous studies have invoked such a "Snow Gun" effect to explain contemporaneous records of Tertiary ocean warming and rapid glacial expansion. A climatological context of the California's "snow gun" effect is elucidated by correlation between the elevation distribution of April SWE observations and the phase of the Pacific Decadal Oscillation and the El Nino Southern Oscillation, both controlling the heat and moisture delivered to the U.S. Pacific coast. The existence of a significant "Snow Gun" effect presents two challenges to snow and glacier mass

  19. Generation of artificial gravity in two-mass systems without balancing

    NASA Astrophysics Data System (ADS)

    Samarov, N. G.; Skriabin, L. P.

    The use of spacecraft rotation as a method of generating artificial gravity is examined for a system consisting of a space station and an attached module (i.e., a two-mass system). It is shown that flexible coupling with nonlinear characteristics is a necessary condition for the balancing of the space station without the use of a special automatic balancing system. However, during the docking and maneuvering, the coupling between the station and the module must be rigid. A possible solution is the use of a combination coupling which allows the transition from rigid to flexible coupling and vice versa.

  20. The impact of Saharan dust events on long-term glacier mass balance in the Alps

    NASA Astrophysics Data System (ADS)

    Bauder, A.; Gabbi, J.; Huss, M.; Schwikowski, M.

    2014-12-01

    Saharan dust falls are frequently observed in the Alpine region and are easily recognized by the unique yellowish coloration of the snow surface. Such Saharan dust events contribute to a large part to the total mineral dust deposited in snow and impact the surface energy budget by reducing the snow and ice albedo. In this study we investigate the long-term effect of such Saharan dust events on the surface albedo and the glacier's mass balance. The analysis is performed over the period 1914-2013 for two field sites on Claridenfirn, Swiss Alps, where an outstanding 100-year record of seasonal mass balance measurements is available. Based on the detailed knowledge about the mass balance, annual melt and accumulation rates are derived. A firn/ice core drilled at the glacier saddle of Colle Gnifetti (Swiss Alps) provides information on the impurity concentration in precipitation over the last century. A mass balance model combined with a parameterization for snow and ice albedo based on the specific surface area of snow and the snow impurity concentration is employed to assess the dust-albedo feedback. In order to track the position and thickness of snow layers a snow density model is implemented. Atmospheric dust enters the system of snow layers by precipitation and remains in the corresponding layer as long as there is no melt. When melt occurs, the water-insoluble part of the dust of the melted snow is supposed to accumulate in the top surface layer. The upper site has experienced only positive net mass balance and dust layers are continuously buried so that the impact of strong Saharan dust events is mainly restricted to the corresponding year. In the case of the lower site, the surface albedo is more strongly influenced by dust events of previous years due to periods with negative mass balances. Model results suggest that the enhanced melting in the 1940s yield even higher dust concentrations in 1947 compared to years with exceptional high Saharan dust deposition

  1. Analysis of the mass balance time series of glaciers in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Carturan, L.; Baroni, C.; Brunetti, M.; Carton, A.; Dalla Fontana, G.; Salvatore, M. C.; Zanoner, T.; Zuecco, G.

    2015-10-01

    This work presents an analysis of the mass balance series of nine Italian glaciers, which were selected based on the length, continuity and reliability of observations. All glaciers experienced mass loss in the observation period, which is variable for the different glaciers and ranges between 10 and 47 years. The longest series display increasing mass loss rates, that were mainly due to increased ablation during longer and warmer ablation seasons. The mean annual mass balance (Ba) in the decade from 2004 to 2013 ranged from -1788 mm to -763 mm w.e. yr-1. Low-altitude glaciers with low elevation ranges are more out of balance than the higher, larger and steeper glaciers, which maintain residual accumulation areas in their upper reaches. The response of glaciers is mainly controlled by the combination of October-May precipitation and June-September temperature, but rapid geometric adjustments and atmospheric changes lead to modifications in their response to climatic variations. In particular, a decreasing correlation of Ba with the June-September temperature and an increasing correlation with October-May precipitation are observed for some glaciers. In addition, the October-May temperature tends to become significantly correlated with Ba, possibly indicating a decrease in the fraction of solid precipitation, and/or increased ablation, during the accumulation season. Because most of the monitored glaciers have no more accumulation area, their observations series are at risk due to their impending extinction, thus requiring a soon replacement.

  2. Estimation of Greenland's Ice Sheet Mass Balance Using ICESat and GRACE Data

    NASA Astrophysics Data System (ADS)

    Slobbe, D.; Ditmar, P.; Lindenbergh, R.

    2007-12-01

    Data of the GRACE gravity mission and the ICESat laser altimetry mission are used to create two independent estimates of Greenland's ice sheet mass balance over the full measurement period. For ICESat data, a processing strategy is developed using the elevation differences of geometrically overlapping footprints of both crossing and repeated tracks. The dataset is cleaned using quality flags defined by the GLAS science team. The cleaned dataset reveals some strong, spatially correlated signals that are shown to be related to physical phenomena. Different processing strategies are used to convert the observed temporal height differences to mass changes for 6 different drainage systems, further divided into a region above and below 2000 meter elevation. The results are compared with other altimetry based mass balance estimates. In general, the obtained results confirm trends discovered by others, but we also show that the choice of processing strategy strongly influences our results, especially for the areas below 2000 meter. Furthermore, GRACE based monthly variations of the Earth's gravity field as processed by CNES, CSR, GFZ and DEOS are used to estimate the mass balance change for North and South Greenland. It is shown that our results are comparable with recently published GRACE estimates (mascon solutions). On the other hand, the estimates based on GRACE data are only partly confirmed by the ICESat estimates. Possible explanations for the obvious differences will be discussed.

  3. Analysis of the mass balance time series of glaciers in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Carturan, Luca; Baroni, Carlo; Brunetti, Michele; Carton, Alberto; Dalla Fontana, Giancarlo; Salvatore, Maria Cristina; Zanoner, Thomas; Zuecco, Giulia

    2016-03-01

    This work presents an analysis of the mass balance series of nine Italian glaciers, which were selected based on the length, continuity and reliability of observations. All glaciers experienced mass loss in the observation period, which is variable for the different glaciers and ranges between 10 and 47 years. The longest series display increasing mass loss rates, which were mainly due to increased ablation during longer and warmer ablation seasons. The mean annual mass balance (Ba) in the decade from 2004 to 2013 ranged from -1788 to -763 mm w.e. yr-1. Low-altitude glaciers with low range of elevation are more out of balance than the higher, larger and steeper glaciers, which maintain residual accumulation areas in their upper reaches. The response of glaciers is mainly controlled by the combination of October-May precipitations and June-September temperatures, but rapid geometric adjustments and atmospheric changes lead to modifications in their response to climatic variations. In particular, a decreasing correlation of Ba with the June-September temperatures and an increasing correlation with October-May precipitations are observed for some glaciers. In addition, the October-May temperatures tend to become significantly correlated with Ba, possibly indicating a decrease in the fraction of solid precipitation, and/or increased ablation, during the accumulation season. Because most of the monitored glaciers have no more accumulation area, their observations series are at risk due to their impending extinction, thus requiring a replacement soon.

  4. 3D viscosity maps for Greenland and effect on GRACE mass balance estimates

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Xu, Zheng

    2016-04-01

    The GRACE satellite mission measures mass loss of the Greenland ice sheet. To correct for glacial isostatic adjustment numerical models are used. Although generally found to be a small signal, the full range of possible GIA models has not been explored yet. In particular, low viscosities due to a wet mantle and high temperatures due to the nearby Iceland hotspot could have a significant effect on GIA gravity rates. The goal of this study is to present a range of possible viscosity maps, and investigate the effect on GRACE mass balance estimates. Viscosity is derived using flow laws for olivine. Mantle temperature is computed from global seismology models, based on temperature derivatives for different mantle compositions. An indication for grain sizes is obtained by xenolith findings at a few locations. We also investigate the weakening effect of the presence of melt. To calculate gravity rates, we use a finite-element GIA model with the 3D viscosity maps and the ICE-5G loading history. GRACE mass balances for mascons in Greenland are derived with a least-squares inversion, using separate constraints for the inland and coastal areas in Greenland. Biases in the least-squares inversion are corrected using scale factors estimated from a simulation based on a surface mass balance model (Xu et al., submitted to The Cryosphere). Model results show enhanced gravity rates in the west and south of Greenland with 3D viscosity maps, compared to GIA models with 1D viscosity. The effect on regional mass balance is up to 5 Gt/year. Regional low viscosity can make present-day gravity rates sensitivity to ice thickness changes in the last decades. Therefore, an improved ice loading history for these time scales is needed.

  5. Analysing drying unit performance in a continuous pharmaceutical manufacturing line by means of mass--energy balances.

    PubMed

    Mortier, Séverine Thérèse F C; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2014-04-01

    The current trend in the pharmaceutical industry to move from batch-wise to continuous production processes strengthens the need for monitoring and controlling the process in-line. The ConsiGma™ continuous tableting line collects data of the different subunits in real-time, but these are not really used. In this paper the data of the six-segmented fluidized bed dryer in the line are used for the development and evaluation of a mass and energy balance. The objectives are multiple: (1) prediction of the moisture content of the granules leaving the dryer solely based on the currently logged data and (2) prediction of the gas outlet temperature to check the mass balances. Once a validated system is established the gas temperature in different horizontal sections of the drying unit can be predicted. Calculations are also used to identify errors in the system and to propose alternative sensor locations. A calibration is performed in order to predict the evaporation rate. The balances were able to predict both the moisture content of the granules at the end of the drying process and the gas outlet temperature quite accurately. Combining the gathered information with the height of the bed in the fluidized bed can be used to predict the gas temperature in different horizontal sections of the dryer. An extra sensor measuring the gas temperature and the humidity at the wet transfer line would increase the accuracy of the calculations. An extra gas velocity sensor at the outlet would be useful to incorporate an extra supervision of the calculations. PMID:24380678

  6. Modeling past and future mass balance and discharge of Gulkana Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Roth, A. C.; Hock, R. M.; Arendt, A. A.; Zhang, J.

    2010-12-01

    The trends of climate change indicate that glacier melt will continue to increase. It is imperative that we understand and quantify how this will affect freshwater river runoff and downstream hydrology in order to better inform local response, policy, and resource management. The purpose of this study was to calibrate a model of discharge and mass balance of Gulkana Glacier and predict the glacier’s response to climate change. Gulkana Glacier is a U.S. Geological Survey (USGS) benchmark glacier located on the south flank of the eastern Alaska Range with an area of 15 km2. Using a temperature-index model including potential clear-sky direct radiation, discharge and mass balance of Gulkana Glacier were simulated over the period of 1967-2009 with a daily time step and a 40 m resolution DEM. Input data for the model were daily temperatures and precipitation data obtained from the USGS climate station near the glacier. Model parameters including precipitation lapse rate, precipitation correction, snowfall correction, melt factor, radiation melt factor for ice, and radiation melt factor for snow, were calibrated until the best agreement between measured and simulated discharged and winter, summer, and annual mass balance data was obtained. Future climate data defined by three time slices (2010-2019, 2050-2059, and 2090-2099) were obtained by a hierarchical climate modeling system, in which the CCSM3 simulations were downscaled with the high resolution regional model Arctic MM5. The 21st century climate is based on the middle-of-the-road A1B scenario, which represents balanced fossil and non-fossil fuel use. The mean temperature difference between each time slice and the mean measured temperature for 2000-2009 was found. These values were added to the daily temperatures for 2000-2009 and the model was used to calculate future discharge and mass balance for each time slice. Precipitation input was the measured 2000-2009 data for each time slice. Compared to the 2000

  7. An experimental correction proposed for an accurate determination of mass diffusivity of wood in steady regime

    NASA Astrophysics Data System (ADS)

    Zohoun, Sylvain; Agoua, Eusèbe; Degan, Gérard; Perre, Patrick

    2002-08-01

    This paper presents an experimental study of the mass diffusion in the hygroscopic region of four temperate species and three tropical ones. In order to simplify the interpretation of the phenomena, a dimensionless parameter called reduced diffusivity is defined. This parameter varies from 0 to 1. The method used is firstly based on the determination of that parameter from results of the measurement of the mass flux which takes into account the conditions of operating standard device (tightness, dimensional variations and easy installation of samples of wood, good stability of temperature and humidity). Secondly the reasons why that parameter has to be corrected are presented. An abacus for this correction of mass diffusivity of wood in steady regime has been plotted. This work constitutes an advanced deal nowadays for characterising forest species.

  8. Alternative Filament Loading Solution for Accurate Analysis of Boron Isotopes by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2008-12-01

    The negative thermal ionization mass spectrometry technique has become the major tool for investigating boron isotopes in the environment. The high sensitivity of BO2- ionization enables measurements of ng levels of boron. However, B isotope measurement by this technique suffers from two fundamental problems (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; and (2) CNO- interference on mass 42 that is often present in some load solutions (such as B-free seawater processed through ion-exchange resin). Here we report a potentially improved methodology using an alternative filament loading solution with a recently-installed Thermo Scientific TRITON thermal ionization mass spectrometer. Our initial results suggest that this solution -- prepared by combining high-purity single- element standard solutions of Ca, Mg, Na, and K in proportions similar to those in seawater in a 5% HCl matrix -- may offer significant improvement over some other commonly used load solutions. Total loading blank is around 15pg as determined by isotope dilution (NIST952). Replicate analyses of NIST SRM951 and modern seawater thus far have yielded 11B/10B ratios of 4.0057 (±0.0008, n=14) and 4.1645 (±0.0017, n=7; δ11B=39.6 permil), respectively. Replicate analyses of samples and SRM951 yield an average standard deviation (1 σ) of approximately 0.001 (0.25 permil). Fractionation during analysis (60-90 minutes) has thus far typically been less than 0.002 (0.5 permil). The load solution delivers ionization efficiency similar to directly-loaded seawater and has negligible signal at mass 26 (CN-), a proxy for the common interfering molecular ion (CNO-) on mass 42. Standards and samples loaded with the solution behave fairly predictably during filament heating and analysis, thus allowing for the possibility of fully automated data collection.

  9. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    SciTech Connect

    Zimmer, Jennifer S.; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.

    2006-01-20

    Proteomics, and the larger field of systems biology, have recently demonstrated utility in both the understanding of cellular processes on the molecular level and the identification of potential biomarkers of various disease states. The large amount of data generated by utilizing high mass accuracy mass spectrometry for high-throughput proteomics analyses presents a challenge in data processing, analysis and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics analysis and the accompanying data processing tools that have been developed in order to interpret and display the large volumes of data produced.

  10. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  11. Mass balance-based regression modeling of PAHs accumulation in urban soils, role of urban development.

    PubMed

    Peng, Chi; Wang, Meie; Chen, Weiping; Chang, Andrew C

    2015-02-01

    We investigated the polycyclic aromatic hydrocarbons (PAHs) contents in 68 soils samples collected at housing developments that represent different length of development periods across Beijing. Based on the data, we derived a mass balanced mathematical model to simulate the dynamics of PAH accumulations in urban soils as affected by the urban developments. The key parameters were estimated by fitting the modified mass balance model to the data of PAH concentrations vs. building age of the sampling green area. The total PAH concentrations would increase from the baseline of 267 ng g(-1) to 3631 ng g(-1) during the period of 1978-2048. It showed that the dynamic changes in the rates of accumulations of light and heavy PAH species were related to the shifting of sources of fuels, combustion efficiencies, and amounts of energy consumed during the course of development. PMID:25489746

  12. Reconstruction of mass balance variations for Franz Josef Glacier, New Zealand, 1913 to 1989

    SciTech Connect

    Woo, Mingko Woo ); Fitzharris, B.B. )

    1992-11-01

    A model of mass balance is constructed for the Franz Josef Glacier on the west coast of New Zealand. It uses daily data from a nearby, but short-record climate station. The model is extended back to 1913 by creating hybrid climate data from a long-record, but more distant, climate station. Its monthly data provide long-term temperature and precipitation trends, and daily fluctuations are simulated using a stochastic approach that is tuned to the characteristics of the short-record station. The glacier model provides estimates of equilibrium-line altitudes which are in reasonable agreement with those observed, and variations of cumulative mass balance that correspond with patterns of advance and retreat of the glacier terminus.

  13. Progress toward Consensus Estimates of Regional Glacier Mass Balances for IPCC AR5

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Gardner, A. S.; Cogley, J. G.

    2011-12-01

    Glaciers are potentially large contributors to rising sea level. Since the last IPCC report in 2007 (AR4), there has been a widespread increase in the use of geodetic observations from satellite and airborne platforms to complement field observations of glacier mass balance, as well as significant improvements in the global glacier inventory. Here we summarize our ongoing efforts to integrate data from multiple sources to arrive at a consensus estimate for each region, and to quantify uncertainties in those estimates. We will use examples from Alaska to illustrate methods for combining Gravity Recovery and Climate Experiment (GRACE), elevation differencing and field observations into a single time series with related uncertainty estimates. We will pay particular attention to reconciling discrepancies between GRACE estimates from multiple processing centers. We will also investigate the extent to which improvements in the glacier inventory affect the accuracy of our regional mass balances.

  14. Base flow separation: A comparison of analytical and mass balance methods

    NASA Astrophysics Data System (ADS)

    Lott, Darline A.; Stewart, Mark T.

    2016-04-01

    Base flow is the ground water contribution to stream flow. Many activities, such as water resource management, calibrating hydrological and climate models, and studies of basin hydrology, require good estimates of base flow. The base flow component of stream flow is usually determined by separating a stream hydrograph into two components, base flow and runoff. Analytical methods, mathematical functions or algorithms used to calculate base flow directly from discharge, are the most widely used base flow separation methods and are often used without calibration to basin or gage-specific parameters other than basin area. In this study, six analytical methods are compared to a mass balance method, the conductivity mass-balance (CMB) method. The base flow index (BFI) values for 35 stream gages are obtained from each of the seven methods with each gage having at least two consecutive years of specific conductance data and 30 years of continuous discharge data. BFI is cumulative base flow divided by cumulative total discharge over the period of record of analysis. The BFI value is dimensionless, and always varies from 0 to 1. Areas of basins used in this study range from 27 km2 to 68,117 km2. BFI was first determined for the uncalibrated analytical methods. The parameters of each analytical method were then calibrated to produce BFI values as close to the CMB derived BFI values as possible. One of the methods, the power function (aQb + cQ) method, is inherently calibrated and was not recalibrated. The uncalibrated analytical methods have an average correlation coefficient of 0.43 when compared to CMB-derived values, and an average correlation coefficient of 0.93 when calibrated with the CMB method. Once calibrated, the analytical methods can closely reproduce the base flow values of a mass balance method. Therefore, it is recommended that analytical methods be calibrated against tracer or mass balance methods.

  15. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model

    USGS Publications Warehouse

    Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.

    2015-01-01

    Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.

  16. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize phytochemicals in plant extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. New methods a...

  17. Evaluating different methods for glacier mass balance interpolation on a tropical glacier

    NASA Astrophysics Data System (ADS)

    Mölg, Nico; Ceballos, Jorge Luis

    2016-04-01

    Glaciers in the inner tropics receive precipitation throughout the year while the annual temperature amplitude is small. Therefore, a seasonal distinction in accumulation and ablation season as for mid-latitude glaciers is hardly applicable. In order to better understand the sub-annual glacier development and its relation to meteorological conditions, a mass balance programme with monthly resolution was established on Conejeras Glacier in the Cordillera Central in Colombia in 2006. After almost ten years of measurements the time series has been reanalysed. The results show a mass balance of around -25 m w.e. during this period and a strong correlation to several warm and cold phases of ENSO. Reanalysis of the monthly mass balance data reveal an often low correlation between ablation/accumulation and elevation. Quality and density of the measurement network allow for the application of several different interpolation methods, recommended ones as well as "outlawed" GIS methods like Kriging. In this study we show the advantages and disadvantages of a number of possibilities and try to rank their usability according to different conditions and purposes. The application of multiple methods can also be of advantage for the estimation of uncertainty ranges.

  18. Mass Balance of Perfluorinated Alkyl Acids in a Pristine Boreal Catchment.

    PubMed

    Filipovic, Marko; Laudon, Hjalmar; McLachlan, Michael S; Berger, Urs

    2015-10-20

    Mass balances of ten individual perfluorinated alkyl acids (PFAAs) in two nested pristine catchments in Northern Sweden with different sizes and hydrological functions were assembled for 2011-2012. Concentrations of PFAAs in rain and snowmelt, as well as in streamwater at the outlet of the two watersheds were measured and used to calculate PFAA atmospheric inputs to and riverine outputs from the catchments. The results generally showed a great excess of PFAA inputs for both catchments over the whole study year. However, during the spring flood period, the inputs and outputs were within a factor of 2 for several PFAAs and the streamwater showed PFAA patterns resembling the patterns in rain (as opposed to snowmelt), suggesting that snowmelt water infiltrating the ground had displaced water from the previous summer. Comparison of PFAA mass balances between the two catchments further suggested that atmospheric inputs of short-chain (replacement) perfluoroalkyl carboxylic acids had increased in the years before sampling, while inputs of the legacy perfluorooctane sulfonic acid had decreased. Overall, the mass balances indicate that a considerable portion of the PFAAs deposited from the atmosphere are stored in soil and may be released to surface and marine water environments in the future. PMID:26390224

  19. A review of remote sensing methods for glacier mass balance determination

    NASA Astrophysics Data System (ADS)

    Bamber, Jonathan L.; Rivera, Andres

    2007-10-01

    Airborne and satellite remote sensing is the only practical approach for deriving a wide area, regional assessment of glacier mass balance. A number of remote sensing approaches are possible for inferring the mass balance from some sort of proxy estimate. Here, we review the key methods relevant, in particular to Andean glaciers, discussing their strengths and weaknesses, and data sets that could be more fully exploited. We also consider future satellite missions that will provide advances in our observational capabilities. The methods discussed include observation of elevation changes, estimation of ice flux, repeat measurement of changes in spatial extent, snowline elevation and accumulation-ablation area ratio estimation. The methods are illustrated utilising a comprehensive review of results obtained from a number of studies of South American glaciers, focusing specifically on the Patagonian Icefields. In particular, we present some new results from Glaciar Chico, Southern Patagonian Icefield, Chile, where a variety of different satellite and in-situ data have been combined to estimate mass balance using a geodetic or elevation change approach over about a 25 yr period.

  20. A Range Correction for Icesat and Its Potential Impact on Ice-sheet Mass Balance Studies

    NASA Technical Reports Server (NTRS)

    Borsa, A. A.; Moholdt, G.; Fricker, H. A.; Brunt, Kelly M.

    2014-01-01

    We report on a previously undocumented range error in NASA's Ice, Cloud and land Elevation Satellite (ICESat) that degrades elevation precision and introduces a small but significant elevation trend over the ICESat mission period. This range error (the Gaussian-Centroid or 'G-C'offset) varies on a shot-to-shot basis and exhibits increasing scatter when laser transmit energies fall below 20 mJ. Although the G-C offset is uncorrelated over periods less than1 day, it evolves over the life of each of ICESat's three lasers in a series of ramps and jumps that give rise to spurious elevation trends of -0.92 to -1.90 cm yr(exp -1), depending on the time period considered. Using ICESat data over the Ross and Filchner-Ronne ice shelves we show that (1) the G-C offset introduces significant biases in ice-shelf mass balance estimates, and (2) the mass balance bias can vary between regions because of different temporal samplings of ICESat.We can reproduce the effect of the G-C offset over these two ice shelves by fitting trends to sample-weighted mean G-C offsets for each campaign, suggesting that it may not be necessary to fully repeat earlier ICESat studies to determine the impact of the G-C offset on ice-sheet mass balance estimates.

  1. Relation between mass balance aperture and hydraulic properties from field experiments in fractured rock in Sweden

    NASA Astrophysics Data System (ADS)

    Hjerne, Calle; Nordqvist, Rune

    2014-09-01

    Results from tracer tests are often used to infer connectivity and transport properties in bedrock. However, the amount of site-specific data from tracer tests is often very limited, while data from hydraulic tests are more abundant. It is therefore of great interest for predictive transport modeling to use hydraulic data to infer transport properties. In this study, data from cross-hole tracer tests carried out in crystalline bedrock in Sweden were compiled and analysed. The tests were performed within investigations made by the Swedish Nuclear Fuel and Waste Management Company (SKB) between 1978 and 2009 at five different locations. An empirical relationship between mass balance aperture and transmissivity was found and quantified by using 74 observations. The empirical relationship deviates considerably from the cubic law aperture, as mass balance aperture is found to be at least one order of magnitude larger than cubic law aperture. Hence, usage of cubic law aperture, derived from hydraulic testing, for transport predictions is unsuitable, as the advective transport time will be considerably underestimated. Another result, from the data set studied, is that mass balance aperture appears to correlate better to apparent storativity than to transmissivity.

  2. Micrometeorological Mass Balance Measurements of Greenhouse Gas Emissions from Composting Green-waste

    NASA Astrophysics Data System (ADS)

    Kent, E. R.; Bailey, S.; Stephens, J.; Horwath, W. R.; Paw U, K.

    2013-12-01

    Managed decomposition of organic materials is increasingly being used as an alternative waste management option and the resulting compost can be used as a fertilizer and soil amendment in home gardens and agriculture. An additional benefit is the avoidance of methane emissions associated with anaerobic decomposition in landfills. Greenhouse gases are still emitted during the composting process, but few studies have measured emissions from a full-scale windrow of composting green-waste. This study uses a micrometeorological mass balance technique (upwind and downwind vertical profile measurements of trace gas concentrations and wind velocity) to calculate emissions of carbon dioxide, methane, and nitrous oxide from a pile of composting green-waste during the dry season in Northern California. The expected source pattern was observed in measured upwind-downwind concentration differences of all three gases averaged over the study period despite substantial noise seen in the half-hourly emission calculations. Sources of uncertainty are investigated and temporal patterns analyzed. An in-situ zero-source test was conducted to examine the mass balance technique when the source of emissions was removed. Results from the micrometeorological mass balance measurements are compared with measurements taken using the more common open chamber technique.

  3. Finger cooling by contact with cold aluminium surfaces--effects of pressure, mass and whole body thermal balance.

    PubMed

    Chen, F; Nilsson, H; Holmér, I

    1994-01-01

    Finger skin temperature change during contact with a cold aluminium surface was studied in 20 subjects (10 men and 10 women). Contact pressure (0.1 N, 5.9 N and 9.8 N), contact material mass (large one, mass 3559 g, small one, mass 108 g), surface temperatures (-7 degrees C, 0 degree C, +7 degrees C) and whole body thermal balance were controlled as independent factors. The contact experiments were performed in a small chamber and only the first section of the index finger of the left hand was in contact with the aluminium surface. The results indicated that all the factors studied had significant effects on the contact skin temperature change with time. The study confirmed that a modified Newtonian model with two components can accurately describe the contact skin temperature change with time. The study resulted in three predictive models for critical skin temperature when in contact with cold aluminium. The results indicated that metal surfaces in contact with bare hands should not be below 4 degrees C surface temperature. Lower temperatures require insulating material or the wearing of protective gloves. PMID:7957157

  4. Nitrogen emissions from broilers measured by mass balance over eighteen consecutive flocks.

    PubMed

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    Emission of nitrogen in the form of ammonia from poultry rearing facilities has been an important topic for the poultry industry because of concerns regarding the effects of ammonia on the environment. Sound scientific data is needed to accurately estimate air emissions from poultry operations. Many factors, such as season of the year, ambient temperature and humidity, bird health, and management practices can influence ammonia volatilization from broiler rearing facilities. Precise results are often difficult to attain from commercial facilities, particularly over long periods of time. Therefore, an experiment was conducted to determine nitrogen loss from broilers in a research facility under conditions simulating commercial production for 18 consecutive flocks. Broilers were reared to 40 to 42 d of age and fed diets obtained from a commercial broiler integrator. New rice hulls were used for litter for the first flock, and the same litter was recycled for all subsequent flocks with caked litter removed between flocks. All birds, feeds, and litter materials entering and leaving the facility were quantified, sampled, and analyzed for total nitrogen content. Nitrogen loss was calculated by the mass balance method in which loss was equal to the difference between the nitrogen inputs and the nitrogen outputs. Nitrogen partitioning as a percentage of inputs averaged 15.29, 6.84, 55.52, 1.27, and 21.08% for litter, caked litter, broiler carcasses, mortalities, and nitrogen loss, respectively, over all eighteen flocks. During the production of 18 flocks of broilers on the same recycled litter, the average nitrogen emission rate was calculated to range from 4.13 to 19.74 g of N/ kg of marketed broiler (grams of nitrogen per kilogram) and averaged 11.07 g of N/kg. Nitrogen loss was significantly (P < 0.05) greater for flocks reared in summer vs. winter. Results of this experiment have demonstrated that the rate of nitrogen volatilization from broiler grow-out facilities

  5. Mass Spectrometry Provides Accurate and Sensitive Quantitation of A2E

    PubMed Central

    Gutierrez, Danielle B.; Blakeley, Lorie; Goletz, Patrice W.; Schey, Kevin L.; Hanneken, Anne; Koutalos, Yiannis; Crouch, Rosalie K.; Ablonczy, Zsolt

    2010-01-01

    Summary Orange autofluorescence from lipofuscin in the lysosomes of the retinal pigment epithelium (RPE) is a hallmark of aging in the eye. One of the major components of lipofuscin is A2E, the levels of which increase with age and in pathologic conditions, such as Stargardt disease or age-related macular degeneration. In vitro studies have suggested that A2E is highly phototoxic and, more specifically, that A2E and its oxidized derivatives contribute to RPE damage and subsequent photoreceptor cell death. To date, absorption spectroscopy has been the primary method to identify and quantitate A2E. Here, a new mass spectrometric method was developed for the specific detection of low levels of A2E and compared to a traditional method of analysis. The new mass spectrometry method allows the detection and quantitation of approximately 10,000-fold less A2E than absorption spectroscopy and the detection and quantitation of low levels of oxidized A2E, with localization of the oxidation sites. This study suggests that identification and quantitation of A2E from tissue extracts by chromatographic absorption spectroscopyoverestimates the amount of A2E. This mass spectrometry approach makes it possible to detect low levels of A2E and its oxidized metabolites with greater accuracy than traditional methods, thereby facilitating a more exact analysis of bis-retinoids in animal models of inherited retinal degeneration as well as in normal and diseased human eyes. PMID:20931136

  6. ACCURATE MASSES FOR THE PRIMARY AND SECONDARY IN THE ECLIPSING WHITE DWARF BINARY NLTT 11748

    SciTech Connect

    Kilic, Mukremin; Brown, Warren R.; Kenyon, S. J.; Allende Prieto, Carlos; Agueeros, M. A.; Camilo, Fernando

    2010-10-01

    We measure the radial velocity curve of the eclipsing detached white dwarf binary NLTT 11748. The primary exhibits velocity variations with a semi-amplitude of 273 km s{sup -1} and an orbital period of 5.641 hr. We do not detect any spectral features from the secondary star or any spectral changes during the secondary eclipse. We use our composite spectrum to constrain the temperature and surface gravity of the primary to be T {sub eff} = 8690 {+-} 140 K and log g = 6.54 {+-} 0.05, which correspond to a mass of 0.18 M {sub sun}. For an inclination angle of 89.{sup 0}9 derived from the eclipse modeling, the mass function requires a 0.76 M {sub sun} companion. The merger time for the system is 7.2 Gyr. However, due to the extreme mass ratio of 0.24, the binary will most likely create an AM CVn system instead of a merger.

  7. Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa

    NASA Astrophysics Data System (ADS)

    Zhao, P. W.; Song, L. S.; Sun, B.; Geissel, H.; Meng, J.

    2012-12-01

    The covariant density functional theory with the point-coupling interaction PC-PK1 is compared with new and accurate experimental masses in the element range from 50 to 91. The experimental data are from a mass measurement performed with the storage ring mass spectrometry at Gesellschaft für Schwerionenforschung (GSI) [Chen , Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2012.03.002 882, 71 (2012)]. Although the microscopic theory contains only 11 parameters, it agrees well with the experimental data. The comparison is characterized by a rms deviation of 0.859 MeV. For even-even nuclei, the theory agrees within about 600 keV. Larger deviations are observed in this comparison for the odd-A and odd-odd nuclei. Improvements and possible reasons for the deviations are discussed in this contribution as well.

  8. North Cascade Glacier Annual Mass Balance Record Analysis 1984-2013

    NASA Astrophysics Data System (ADS)

    Pelto, M. S.

    2014-12-01

    The North Cascade Glacier Climate Project (NCGCP) was founded in 1983 to monitor 10 glaciers throughout the range and identify their response to climate change. The annual observations include mass balance, terminus behavior, glacier surface area and accumulation area ratio (AAR). Annual mass balance (Ba) measurements have been continued on the 8 original glaciers that still exist. Two glaciers have disappeared: the Lewis Glacier and Spider Glacier. In 1990, Easton Glacier and Sholes Glacier were added to the annual balance program to offset the loss. One other glacier Foss Glacier has declined to the extent that continued measurement will likely not be possible. Here we examine the 30 year long Ba time series from this project. All of the data have been reported to the World Glacier Monitoring Service (WGMS). This comparatively long record from glaciers in one region conducted by the same research program using the same methods offers some useful comparative data. Degree day factors for melt of 4.3 mm w.e.°C-1d-1 for snow and 6.6 mm w.e.°C-1d-1 for ice has been determined from 412 days of ablation observation. The variation in the AAR for equilibrium Ba is small ranging from 60 to 67. The mean annual balance of the glaciers from 1984-2013 is -0.45 ma-1, ranging from -0.31 to -0.57 ma-1 for individual glacier's. The correlation coefficient of Ba is above 0.80 between all glaciers including the USGS benchmark glacier, South Cascade Glacier. This indicates that the response is to regional climate change, not local factors. The mean annual balance of -0.45 ma-1 is close to the WGMS global average for this period -0.50 ma-1. The cumulative loss of 13.5 m w.e. and 15 m of ice thickness represents more than 20% of the volume of the glaciers.

  9. Glacier albedo decrease in the European Alps: potential causes and links with mass balances

    NASA Astrophysics Data System (ADS)

    Di Mauro, Biagio; Julitta, Tommaso; Colombo, Roberto

    2016-04-01

    Both mountain glaciers and polar ice sheets are losing mass all over the Earth. They are highly sensitive to climate variation, and the widespread reduction of glaciers has been ascribed to the atmospheric temperature increase. Beside this driver, also ice albedo plays a fundamental role in defining mass balance of glaciers. In fact, dark ice absorbs more energy causing faster glacier melting, and this can drive to more negative balances. Previous studies showed that the albedo of Himalayan glaciers and the Greenland Ice Sheet is decreasing with important rates. In this contribution, we tested the hypothesis that also glaciers in the European Alps are getting darker. We analyzed 16-year time series of MODIS (MODerate resolution Imaging Spectrometer) snow albedo from Terra (MOD13A1, 2000-2015) and Aqua (MYD13A1, 2002-2015) satellites. These data feature a spatial resolution of 500m and a daily temporal resolution. We evaluated the existence of a negative linear and nonlinear trend of the summer albedo values both at pixel and at glacier level. We also calculated the correlation between MODIS summer albedo and glacier mass balances (from the World Glaciological Monitoring Service, WGMS database), for all the glaciers with available mass balance during the considered period. In order to estimate the percentage of the summer albedo that can be explained by atmospheric temperature, we correlated MODIS albedo and monthly air temperature extracted from the ERA-Interim reanalysis dataset. Results show that decreasing trends exist with a strong spatial variability in the whole Alpine chain. In large glaciers, such as the Aletch (Swiss Alps), the trend varies significantly also within the glacier, showing that the trend is higher in the area across the accumulation and ablation zone. Over the 17 glaciers with mass balance available in the WGMS data set, 11 gave significant relationship with the MODIS summer albedo. Moreover, the comparison between ERA-Interim temperature

  10. Accurate mass analysis of ethanesulfonic acid degradates of acetochlor and alachlor using high-performance liquid chromatography and time-of-flight mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Parry, R.

    2002-01-01

    Degradates of acetochlor and alachlor (ethanesulfonic acids, ESAs) were analyzed in both standards and in a groundwater sample using high-performance liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. The negative pseudomolecular ion of the secondary amide of acetochlor ESA and alachlor ESA gave average masses of 256.0750??0.0049 amu and 270.0786??0.0064 amu respectively. Acetochlor and alachlor ESA gave similar masses of 314.1098??0.0061 amu and 314.1153??0.0048 amu; however, they could not be distinguished by accurate mass because they have the same empirical formula. On the other hand, they may be distinguished using positive-ion electrospray because of different fragmentation spectra, which did not occur using negative-ion electrospray.

  11. Quantification of Submarine Groundwater Discharge Using a Radon (222-Rn) Mass Balance and Hydrogeological Modelling

    NASA Astrophysics Data System (ADS)

    Petermann, Eric; Stollberg, Reiner; Scholten, Jan; Knöller, Kay; Schubert, Michael

    2016-04-01

    Apart from river and surface water runoff subsurface discharge of groundwater plays a key role in coastal water and matter budgets. Two major forms of submarine groundwater discharge (SGD) can be distinguished: (i) pure freshwater discharge from continental aquifers that are connected to the coastal sea driven by a positive hydraulic gradient (fresh SGD) and (ii) re-circulation of seawater that has penetrated permeable coastal sediments (re-circulated SGD), e.g. driven by tidal pumping. The localization of SGD zones and the quantification of SGD fluxes is of high interest for coastal water management due to potential threats related to SGD, namely (i) the detrimental impact of discharging nutrient- or contaminant-laden groundwater on coastal seawater quality, an aspect that is of relevance along coastlines which are impacted by agriculture, industry or intense urbanization, and (ii) the loss of freshwater to the ocean, an issue that is of major relevance in all coastal areas with (seasonally) limited freshwater availability. In this work, we discuss estimates for the total (fresh + re-circulated) SGD fluxes derived from a mass balance of the radioactive noble gas radon (222-Rn) with estimates of fresh SGD fluxes derived by hydrogeological modelling. The precision of the mass balance results depends on the adequate determination of the mass balance source and sink terms. These terms are calculated based on field observations of environmental tracers (salinity, δ18O, 222-Rn, 223-Ra, 224-Ra, 226-Ra) in seawater and porewater, as well as on meteorological data. The numerical hydrogeological model estimates groundwater flow based on groundwater monitoring data, river flow data, groundwater recharge estimates, tidal dynamics, and density effects along the freshwater/seawater interface. We compare these two independent methodological approaches of SGD flux estimation, discuss results regarding their relevance for the regional water balance and reason the implications of

  12. Accurate mass measurements of short-lived isotopes with the MISTRAL* rf spectrometer

    SciTech Connect

    Toader, C.; Audi, G.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Le Scornet, G.; Lunney, D.; Monsanglant, C.; Saint Simon, M. de; Thibault, C.; Borcea, C.; Duma, M.; Lebee, G.

    1999-01-15

    The MISTRAL* experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  13. Improved determination of dynamic balance using the centre of mass and centre of pressure inclination variables in a complete golf swing cycle.

    PubMed

    Choi, Ahnryul; Sim, Taeyong; Mun, Joung Hwan

    2016-01-01

    Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)-centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM-COP inclination angle, COM-COP inclination angular velocity and normalised COM-COP inclination angular jerk were used. Professional golfer group revealed a smaller COM-COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P < 0.01). In the normalised COM-COP inclination angular jerk, the professional golfer group showed a lower value than the other two groups in all directions. Professional golfers tend to exhibit improved dynamic balance, and this can be attributed to the neuromusculoskeletal system that maintains balance with proper postural control. This study has the potential to allow for an evaluation of the dynamic balance mechanism and will provide useful basic information for swing training and prevention of golf injuries. PMID:26264189

  14. Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.

    PubMed

    Halloran, John T; Bilmes, Jeff A; Noble, William S

    2016-08-01

    A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit . PMID:27397138

  15. The mid-cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2002-01-01

    A latitudinal gradient in meteoric ??18O compositions compiled from paleosol sphaerosiderites throughout the Cretaceous Western Interior Basin (KWIB) (34-75??N paleolatitude) exhibits a steeper, more depleted trend than modern (predicted) values (3.0??? [34??N latitude] to 9.7??? [75??N] lighter). Furthermore, the sphaerosiderite meteoric ??18O latitudinal gradient is significantly steeper and more depleted (5.8??? [34??N] to 13.8??? [75??N] lighter) than a predicted gradient for the warm mid-Cretaceous using modern empirical temperature-??18O precipitation relationships. We have suggested that the steeper and more depleted (relative to the modern theoretical gradient) meteoric sphaerosiderite ??18O latitudinal gradient resulted from increased air mass rainout effects in coastal areas of the KWIB during the mid-Cretaceous. The sphaerosiderite isotopic data have been used to constrain a mass balance model of the hydrologic cycle in the northern hemisphere and to quantify precipitation rates of the equable 'greenhouse' Albian Stage in the KWIB. The mass balance model tracks the evolving isotopic composition of an air mass and its precipitation, and is driven by latitudinal temperature gradients. Our simulations indicate that significant increases in Albian precipitation (34-52%) and evaporation fluxes (76-96%) are required to reproduce the difference between modern and Albian meteoric siderite ??18O latitudinal gradients. Calculations of precipitation rates from model outputs suggest mid-high latitude precipitation rates greatly exceeded modern rates (156-220% greater in mid latitudes [2600-3300 mm/yr], 99% greater at high latitudes [550 mm/yr]). The calculated precipitation rates are significantly different from the precipitation rates predicted by some recent general circulation models (GCMs) for the warm Cretaceous, particularly in the mid to high latitudes. Our mass balance model by no means replaces GCMs. However, it is a simple and effective means of obtaining

  16. Reconciling high altitude precipitation in the upper Indus Basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, W. W.; Wanders, N.; Lutz, A. F.; Shea, J. M.; Bierkens, M. F. P.

    2015-05-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high altitude precipitation. Yet direct observations of high altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high altitude precipitation in the upper Indus Basin and show that the amount of precipitation required to sustain the observed mass balances of the large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation is up to a factor ten higher than previously thought. We conclude that these findings alter the present understanding of high altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs and the regional geopolitical situation in general.

  17. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, Walter; Wanders, Niko; Lutz, Arthur; Shea, Joseph; Bierkens, Marc

    2016-04-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  18. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, W. W.; Wanders, N.; Lutz, A. F.; Shea, J. M.; Bierkens, M. F. P.

    2015-11-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high-altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  19. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    SciTech Connect

    Chen, Siyu; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Zhongwei; Bi, Jianrong; Zhang, Wu; Shi, Jinsen; Yang, Lei; Li, Deshuai; Li, Jinxin

    2014-12-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust mass balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.

  20. Antarctic Ice-Sheet Mass Balance from Satellite Altimetry 1992 to 2001

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Cornejo, Helen; Giovinetto, Mario; Saba, Jack L.; Yi, Donghui

    2003-01-01

    A major uncertainty in understanding the causes of the current rate of sea level rise is the potential contributions from mass imbalances of the Greenland and Antarctic ice sheets. Estimates of the current mass balance of the Antarctic ice sheet are derived from surface- elevation changes obtained from 9 years of ERS - 1 & 2 radar altimeter data. Elevation time-series are created from altimeter crossovers among 90-day data periods on a 50 km grid to 81.5 S. The time series are fit with a multivariate linear/sinusoidal function to give the average rate of elevation change (dH/dt). On the major Rome-Filchner, Ross, and Amery ice shelves, the W d t are small or near zero. In contrast, the ice shelves of the Antarctic Peninsula and along the West Antarctic coast appear to be thinning significantly, with a 23 +/- 3 cm per year surface elevation decrease on the Larsen ice shelf and a 65 +/- 4 cm per year decrease on the Dotson ice shelf. On the grounded ice, significant elevation decreases are obtained over most of the drainage basins of the Pine Island and Thwaites glaciers in West Antarctica and inland of Law Dome in East Antarctica. Significant elevation increases are observed within about 200 km of the coast around much of the rest of the ice sheet. Farther inland, the changes are a mixed pattern of increases and decreases with increases of a few centimeters per year at the highest elevations of the East Antarctic plateau. The derived elevation changes are combined with estimates of the bedrock uplift from several models to provide maps of ice thickness change. The ice thickness changes enable estimates of the ice mass balances for the major drainage basins, the overall mass balance, and the current contribution of the ice sheet to global sea level change.

  1. Geochemical Estimates of Paleorecharge in the Pasco Basin: Evaluation of the Chloride Mass Balance Technique

    NASA Astrophysics Data System (ADS)

    Murphy, Ellyn M.; Ginn, Timothy R.; Phillips, Jerry L.

    1996-04-01

    The Pasco Basin in southeastern Washington State provides a unique hydrogeologic setting for evaluating the chloride mass balance technique for estimating recharge. This basin was affected by late Pleistocene catastrophic floods when glacial dams in western Montana and northern Idaho were breached. It is estimated that multiple Missoula floods occurred between ˜13,000 and 15,000 years B.P. and reached a high water elevation of ˜350 m. These floods removed accumulated chloride from the sediment profile, effectively resetting the chloride mass balance clock at the beginning of the Holocene. The rate of chloride accumulation qCl in the sediments was determined by two methods and compared. The first method measured qCl by dividing the calculated natural fallout of 36Cl by a measured ratio of 36Cl/Cl in the pore water, while the second method used the total mass of chloride in the profile divided by the length of time that atmospheric chloride had accumulated since the last flood. Although the two methods are based on different approaches, they showed close agreement. In laboratory studies the sediment to water ratio for chloride extraction was sensitive to the grain size of the sediments; low extraction ratios in silt loam sediments led to significant underestimation of pore water chloride concentration. Br/Cl ratios were useful for distinguishing nonatmospheric (e.g., rock) sources of chloride. Field studies showed little spatial variability in estimated recharge at a given site within the basin but showed significant topographic control on recharge rates in this semiarid environment. An extension of the conventional chloride mass balance model was used to evaluate chloride profiles under transient, time-varying annual precipitation conditions. This model was inverted to determine the paleorecharge history for a given soil chloride profile, and the parameters of the root extraction model required to estimate paleoprecipitation

  2. Screening of the polyphenol content of tomato-based products through accurate-mass spectrometry (HPLC-ESI-QTOF).

    PubMed

    Vallverdú-Queralt, Anna; Jáuregui, Olga; Di Lecce, Giuseppe; Andrés-Lacueva, Cristina; Lamuela-Raventós, Rosa M

    2011-12-01

    Tomatoes, the second most important vegetable crop worldwide, are a key component in the so-called "Mediterranean diet" and its consumption has greatly increased worldwide over the past 2 decades, mostly due to a growing demand for tomato-based products such as ketchups, gazpachos and tomato juices. In this work, tomato-based products were analysed after a suitable work-up extraction procedure using liquid chromatography/electrospray ionisation-time of flight-mass spectrometry (HPLC-ESI-QTOF) with negative ion detection using information-dependent acquisition (IDA) to determine their phenolic composition. The compounds were confirmed by accurate mass measurements in MS and MS(2) modes. The elemental composition was selected according to the accurate masses and isotopic pattern. In this way, 47 compounds (simple phenolic and hydroxycinnamoylquinic acids and flavone, flavonol, flavanone and dihydrochalcone derivatives) were identified in tomato-based products, five of them, as far as was known, were previously unreported in tomatoes. The phenolic fingerprint showed that tomato-based products differ in phenolic composition, principally in protocatechuic acid-O-hexoside, apigenin and its glycosylated forms, quercetin-O-dihexoside, kaempferol-C-hexoside and eriodictyol-O-dihexoside. Gazpacho showed the highest number of phenolic compounds due to the vegetables added for its production. PMID:25212313

  3. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veverková, Lenka; Hradilová, Šárka; Milde, David; Panáček, Aleš; Skopalová, Jana; Kvítek, Libor; Petrželová, Kamila; Zbořil, Radek

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO3 and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl2- and AgCl32 - for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results.

  4. Energy and mass balance in the three-phase interstellar medium

    NASA Technical Reports Server (NTRS)

    Wang, Zhong; Cowie, Lennox L.

    1988-01-01

    Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.

  5. A feasibility study of UHPLC-HRMS accurate-mass screening methods for multiclass testing of organic contaminants in food.

    PubMed

    Pérez-Ortega, Patricia; Lara-Ortega, Felipe J; García-Reyes, Juan F; Gilbert-López, Bienvenida; Trojanowicz, Marek; Molina-Díaz, Antonio

    2016-11-01

    The feasibility of accurate-mass multi-residue screening methods using liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) using time-of-flight mass spectrometry has been evaluated, including over 625 multiclass food contaminants as case study. Aspects such as the selectivity and confirmation capability provided by HRMS with different acquisition modes (full-scan or full-scan combined with collision induced dissociation (CID) with no precursor ion isolation), and chromatographic separation along with main limitations such as sensitivity or automated data processing have been examined. Compound identification was accomplished with retention time matching and accurate mass measurements of the targeted ions for each analyte (mainly (de)protonated molecules). Compounds with the same nominal mass (isobaric species) were very frequent due to the large number of compounds included. Although 76% of database compounds were involved in isobaric groups, they were resolved in most cases (99% of these isobaric species were distinguished by retention time, resolving power, isotopic profile or fragment ions). Only three pairs could not be resolved with these tools. In-source CID fragmentation was evaluated in depth, although the results obtained in terms of information provided were not as thorough as those obtained using fragmentation experiments without precursor ion isolation (all ion mode). The latter acquisition mode was found to be the best suited for this type of large-scale screening method instead of classic product ion scan, as provided excellent fragmentation information for confirmatory purposes for an unlimited number of compounds. Leaving aside the sample treatment limitations, the main weaknesses noticed are basically the relatively low sensitivity for compounds which does not map well against electrospray ionization and also quantitation issues such as those produced by signal suppression due to either matrix effects from coeluting matrix or from

  6. Energy balance of stellar coronae. III - Effect of stellar mass and radius

    NASA Technical Reports Server (NTRS)

    Hammer, R.

    1984-01-01

    A homologous transformation is derived which permits the application of the numerical coronal models of Hammer from a star with solar mass and radius to other stars. This scaling requires a few approximations concerning the lower boundary conditions and the temperature dependence of the conductivity and emissivity. These approximations are discussed and found to be surprisingly mild. Therefore, the scaling of the coronal models to other stars is rather accurate; it is found to be particularly accurate for main-sequence stars. The transformation is used to derive an equation that gives the maximum temperature of open coronal regions as a function of stellar mass and radius, the coronal heating flux, and the characteristic damping length over which the corona is heated.

  7. Mass Balance of the West Antarctic Ice-Sheet from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robins, John; Saba, Jack L.; Yi, Donghui

    2011-01-01

    Mass balance estimates for 2003-2008 are derived from ICESat laser altimetry and compared with estimates for 1992-2002 derived from ERS radar altimetry. The net mass balance of 3 drainage systems (Pine Island, Thwaites/Smith, and the coast of Marie Bryd) for 2003-2008 is a loss of 100 Gt/yr, which increased from a loss of 70 Gt/yr for the earlier period. The DS including the Bindschadler and MacAyeal ice streams draining into the Ross Ice Shelf has a mass gain of 11 Gt/yr for 2003-2008, compared to an earlier loss of 70 Gt/yr. The DS including the Whillans and Kamb ice streams has a mass gain of 12 Gt/yr, including a significant thickening on the upper part of the Kamb DS, compared to a earlier gain of 6 Gt/yr (includes interpolation for a large portion of the DS). The other two DS discharging into the Ronne Ice Shelf and the northern Ellsworth Coast have a mass gain of 39 Gt/yr, compared to a gain of 4 Gt/yr for the earlier period. Overall, the increased losses of 30 Gt/yr in the Pine Island, Thwaites/Smith, and the coast of Marie Bryd DSs are exceeded by increased gains of 59 Gt/yr in the other 4 DS. Overall, the mass loss from the West Antarctic ice sheet has decreased to 38 Gt/yr from the earlier loss of 67 Gt/yr, reducing the contribution to sea level rise to 0.11 mm/yr from 0.19 mm/yr

  8. Fast and Accurate Fourier Series Solutions to Gravitational Lensing by a General Family of Two-Power-Law Mass Distributions

    NASA Astrophysics Data System (ADS)

    Chae, Kyu-Hyun

    2002-04-01

    Fourier series solutions to the deflection and magnification by a family of three-dimensional cusped two-power-law ellipsoidal mass distributions are presented. The cusped two-power-law ellipsoidal mass distributions are characterized by inner and outer power-law radial indices and a break (or transition) radius. The model family includes mass models mimicking Jaffe, Hernquist, and η models and dark matter halo profiles from numerical simulations. The Fourier series solutions for the cusped two-power-law mass distributions are relatively simple and allow a very fast calculation, even for a chosen small fractional calculational error (e.g., 10-5). These results will be particularly useful for studying lensed systems that provide a number of accurate lensing constraints and for systematic analyses of large numbers of lenses. Subroutines employing these results for the two-power-law model and the results by Chae, Khersonsky, & Turnshek for the generalized single-power-law mass model are made publicly available.

  9. Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1994 balance year

    USGS Publications Warehouse

    March, Rod S.

    1998-01-01

    The 1994 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 1.34 meters on April 29, 1994, 0.9 standard deviation above the long-term average; the maximum winter snow balance, 1.43 meters, was reached on April 18, 1994; the net balance (from September 8, 1993 to September 17, 1994) was -0.72 meter, 0.7 standard deviation below the long-term average. The annual balance (October 1, 1992, to September 30, 1993) was -0.88 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 1.93 meters averaged over the basin, approximately equal to the long-term average.

  10. Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1992 balance year

    USGS Publications Warehouse

    March, R.S.; Trabant, D.C.

    1996-01-01

    The 1992 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data measured in the basin and are reported herein. Averaged over the glacier, the measured winter snow balance was 0.97 meters on March 26, 1992; the maximum winter snow balance was 1.05 meters on May 19, 1992; the net balance (from September 8, 1991 to August 17, 1992) was -0.29 meters; and the annual balance (October 1, 1991 to September 30, 1992) was -0.38 meters. Ice surface, motion, and altitude changes measured at three index sites document seasonal changes in ice speed and glacier thickness. Annual stream runoff was 1.24 meters averaged over the basin.

  11. The Use of Accurate Mass Tags based upon High-Throughput Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Global Proteomic Characterization

    SciTech Connect

    Camp, David G.; Smith, Richard D.

    2004-07-30

    In this review, we describe the technological basis and progress towards a new global proteomics strategy that uses peptide accurate mass measurements augmented by information from separations (e.g. LC retention times) to provide large improvements in sensitivity, dynamic range, comprehensiveness and throughput. The use of ?accurate mass and time? (AMT) tags serves to eliminate the need for routine MS/MS measurements [#4109]. As the case study, we use our own research efforts to illustrate the role of AMTs within the broader context of a state-of-the-art proteomics effort. Our strategy exploits high-resolution capillary LC separations combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR). AMTs represent peptide biomarkers and can be used to confidently identify proteins based on the high mass measurement accuracy provided by FTICR combined with LC elution times. Once identified using MS/MS, these biomarkers provide the foundation for subsequent high throughput studies using only AMT tags to identify and quantify the proteins expressed within a cell system. Key attractions of this approach include the feasibility of completely automated high confidence protein identifications, extensive proteome coverage, and the capability for exploiting stable-isotope labeling methods for high precision abundance measurements [#4019]. Additional developments described in this review include methods for more effective coverage of membrane proteins [#4184], for dynamic range expansion of proteome measurements [#4012], and for multi-stage separations that promise to enable more focused analyses, further extend the quality of measurements, and also extend measurements to more complex proteomes.

  12. Faster and more accurate graphical model identification of tandem mass spectra using trellises

    PubMed Central

    Wang, Shengjie; Halloran, John T.; Bilmes, Jeff A.; Noble, William S.

    2016-01-01

    Tandem mass spectrometry (MS/MS) is the dominant high throughput technology for identifying and quantifying proteins in complex biological samples. Analysis of the tens of thousands of fragmentation spectra produced by an MS/MS experiment begins by assigning to each observed spectrum the peptide that is hypothesized to be responsible for generating the spectrum. This assignment is typically done by searching each spectrum against a database of peptides. To our knowledge, all existing MS/MS search engines compute scores individually between a given observed spectrum and each possible candidate peptide from the database. In this work, we use a trellis, a data structure capable of jointly representing a large set of candidate peptides, to avoid redundantly recomputing common sub-computations among different candidates. We show how trellises may be used to significantly speed up existing scoring algorithms, and we theoretically quantify the expected speedup afforded by trellises. Furthermore, we demonstrate that compact trellis representations of whole sets of peptides enables efficient discriminative learning of a dynamic Bayesian network for spectrum identification, leading to greatly improved spectrum identification accuracy. Contact: bilmes@uw.edu or william-noble@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307634

  13. Mass and Energy Balance Modeling of Glaciers in the Upper Susitna Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Hock, R.; Aubry-Wake, C.; Bliss, A.; Gusmeroli, A.; Liljedahl, A.; Gillispie, L.; Wolken, G. J.

    2014-12-01

    The State of Alaska is reviving analyses of the Susitna River's hydroelectric potential by supporting a multitude of field and modeling studies for the proposed Susitna-Watana Hydroelectric project. Critical to any effective hydroelectric development is a firm understanding of the basin-wide controls on river runoff and how seasonal reservoir recharge may change over the course of the structure's life-span. Effectively projecting future changes in watershed-scale stream flow for the Susitna river demands understanding and quantifying glacier melt in the Alaskan range. Our research is restricted to a sub-catchment of the upper Susitna basin that feeds the Susitna River covering 2,230 km2, of which 25% is glacierized. The goals of our study are to investigate the spatial and seasonal variations of the energy balance and its components across the glaciers and to model resulting streamflow from the catchment for the summer of 2013 using two models of different complexity. We apply DEBAM, a distributive energy balance model and DETIM, an enhanced temperature-index model, both coupled to a linear-reservoir runoff model, to simulate hourly surface energy fluxes, melt rates and glacier runoff using meteorological observations from an automated weather station located in the ablation zone of the West Fork glacier. Model results are compared to measurements of streamflow and mass balance at 20 ablation stakes across the glacierized area. The largest source of energy contributing to 85% of melt is net radiation followed by the sensible and latent heat fluxes. Both models capture well the seasonal and diurnal variations in streamflow and show good agreement with the mass balance point observations. The discrepancies between modeled and measured discharge can be attributed to the high uncertainty in precipitation and initial snow cover across the unglaciated part of the basin which accounts for over 75% of the modeled area.

  14. Mass balances and uncertainty in radionuclide transport at the SRS F-area seepage basins groundwater plume

    NASA Astrophysics Data System (ADS)

    Wiedmer, A.; Hunt, J. R.; Faybishenko, B.; Agarwal, D.; Flach, G. P.; Whiteside, T.; Bennet, P.; Bagwell, L.; Romosan, A.; Hubbard, S. S.

    2011-12-01

    The ability to accurately model and predict flow and reactive transport behavior in soil and groundwater at a radioactively contaminated site is typically constrained by data availability. Techniques for managing, analyzing, and assessing the data are needed. There is a wealth of data and experience to be leveraged from the study of existing DOE sites such as the Savannah River Site (SRS). A new data management system is being developed as part of the Advanced Simulation Capability for Environmental Management (ASCEM) program to allow faster access to data and a more unified framework to address the challenges of site selection and environmental management. The monitoring network of 274 wells surrounding the F-area recorded 350000 data points over a period of almost 60 years. This data management system was developed for data mining, visualization and exploration and was used for F-area groundwater plume mass balance calculations. Process operations at the F-area led to the discharge of more than 12×106 m3 of low-level liquid radioactive waste solutions containing tritium, uranium and fission products into the seepage basins. Between 1953 and 1989, 14 104 Ci (corrected for evaporation and decay to 1989) of tritium was released into the basins according to operational data. Starting in the 1950s, SRS monitored radioactivity in Fourmile Branch (FMB) located downgradient of the basins. Through 1989 a total of 5 104 Ci (decay-corrected to 1989) was detected in FMB, leaving an estimated inventory of 9 104 Ci in the subsurface as of 1989. The sources of uncertainty in the mass balance calculations are discussed and compared with the tritium inventory determined from groundwater monitoring data prior to remediation.

  15. Very high resolution modelling of the Surface Mass Balance of the Greenland Ice Sheet: Present day conditions and future prospects.

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Aðalgeirsdóttir, Guðfinna; Boberg, Fredrik; Hesselbjerg Christensen, Jens; Bøssing Christensen, Ole; Langen, Peter; Rodehacke, Christian; Stendel, Martin; Yang, Shuting

    2014-05-01

    Recent experiments with the Regional Climate Model (RCM) HIRHAM5 have produced new surface mass balance (SMB) estimates at the unprecedented high horizontal resolution of 0.05 degrees (~5.5km). These simulations indicate a present day SMB of 347 ± 98 Gt/year over the whole ice sheet averaged over the period 1989 - 2012 driven by the ERA-Interim reanalysis dataset. We validate accumulation rates over the ice sheet using estimates from shallow firn cores to confirm the importance of resolution to accurate estimates of accumulation. Comparison with PROMICE and GC-Net automatic weather station observations shows the model represents present day climate and climate variability well when driven by the ERA-Interim reanalysis dataset. Comparison with a simulation at 0.25 degrees (~27km) resolution from the same model shows a significantly different calculated SMB over the whole ice sheet, largely due to changes in precipitation distribution over Greenland. The very high resolution requires a more sophisticated treatment of sub-grid scale processes in the snow pack including meltwater retention and refreezing and an enhanced albedo scheme. Our results indicate retention processes account for a significant proportion of the total surface budget based on a new parameterization scheme in the model. SMB projections, driven by the EC-Earth Global Climate Model (GCM) at the boundaries for the RCP 4.5 scenario indicate a declining surface mass balance over the 21st century with some compensation for warmer summer temperatures and enhanced melt in the form of increased precipitation. A cold bias in the driving GCM for present day conditions suggests that this simulation likely underestimates the change in SMB. However, the downscaled precipitation fields compare well with those in the reanalysis driven simulations. A soon-to-be complete simulation uses driving fields from the GCM running the RCP8.5 scenario.

  16. High-Resolution Modeling of Freshwater Discharge and Glacier Mass Balance in the Gulf of Alaska Drainage

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Hill, D. F.; Arendt, A. A.; Liston, G. E.; Hood, E. W.

    2014-12-01

    A comprehensive study of the Gulf of Alaska (GOA) hydrology has been carried out in order to improve understanding of the coastal freshwater discharge (FWD) magnitude and spatial distribution, and mass changes from GOA glaciers. FWD along the coastline and surface mass balance (SMB) for all glacier surfaces in the GOA drainage were modeled using a suite of physically-based, spatially distributed weather, energy-balance snow/ice melt, and runoff-routing models at a high resolution (1-km horizontal grid; 3-h time step). SnowModel simulations of air temperature, precipitation, surface runoff, and glacier SMB were completed for the entire GOA drainage from 1979-2009. HydroFlow was used to route the SnowModel-derived runoff to the GOA coastline. Meteorological forcing was provided by the North American Regional Reanalysis (NARR) dataset. The NARR data was bias-corrected using monthly gridded climate data to more accurately reflect the strong spatial gradients in air temperature and precipitation, while retaining the temporal attributes of NARR. The most recent version of the Alaska Glacier Inventory was used to define the glacier cover for the model simulations. The modeling system was validated and calibrated in several glaciated catchments containing long-term streamflow and glacier mass balance datasets, as well as several non-glaciated catchments with only streamflow data. The overall GOA mean annual FWD volumes from HydroFlow agree well with previous estimates. Glacier SMB simulated by SnowModel from 2004-2009 produced seasonal storage changes and long term trends consistent with GRACE satellite-based estimates. Both SnowModel and GRACE data suggest a negative SMB trend which indicates that recent glacier volume loss contributes significantly to GOA FWD. The final product of this study is a 30-year record of daily streamflow at every coastal grid cell (1-km resolution) in the GOA drainage, which includes the runoff signal from glacier melt and volume loss. This

  17. Mass balance model of source apportionment, transport and fate of PAHs in Lac Saint Louis, Quebec.

    PubMed

    Mackay, D; Hickie, B

    2000-09-01

    A mass balance model has been developed and calibrated to describe the sources, transport and fate of seven polycyclic aromatic hydrocarbons (PAHs; anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, fluoranthene, phenanthrene, and pyrene) in the water and sediments of, and atmosphere over Lac Saint Louis, Quebec. The model uses specified input rates from background advective flows and emissions from the Alcan aluminum smelting facility at Beauharnois to deduce atmospheric concentrations and rates of wet and dry deposition to the three segment lake. Concentrations in water and sediment as well as relevant mass fluxes and residence times are computed and compared satisfactorily with monitoring data for five of the seven PAHs. Underestimation of concentrations for anthracene and phenanthrene is attributed to unquantified additional sources. The sources of the PAH burden in the lake are apportioned, and the implications of these results are discussed including likely response times to changes in loadings. It is suggested that this mass balance approach is more widely applicable to situations in which water bodies are impacted by a variety of contaminant sources. PMID:10834368

  18. Pharmacokinetics, biotransformation, and mass balance of edoxaban, a selective, direct factor Xa inhibitor, in humans.

    PubMed

    Bathala, Mohinder S; Masumoto, Hiroshi; Oguma, Toshihiro; He, Ling; Lowrie, Chris; Mendell, Jeanne

    2012-12-01

    This study determined the mass balance and pharmacokinetics of edoxaban in humans after oral administration of [¹⁴C]edoxaban. After oral administration of 60 mg (as active moiety) of [¹⁴C]edoxaban to six healthy male subjects, serial blood/plasma and urinary and fecal samples were collected for up to 168 h postdose. All samples were analyzed for total radioactivity by liquid scintillation counting and for concentrations of edoxaban and four metabolites in plasma, urine, and fecal samples by either high-performance liquid chromatography/tandem mass spectrometry method using multiple reaction modes, or a liquid chromatography radiometric method. The mean recovery of radioactivity was >97% of the administered radioactive dose, with 62.2% eliminated in feces and 35.4% in urine. Unchanged edoxaban accounted for the majority of radioactivity, with 49.1 and 23.8% of the dose as parent observed in feces and urine, respectively. Unchanged edoxaban was the most abundant species in plasma, with a mean area under the curve (AUC)(0-∞) of 1596 ng · h/ml. The next most abundant species was metabolite M4, with a mean AUC(0-∞) 147 ng · h/ml. The mass balance of edoxaban was well described, with unchanged edoxaban as the most abundant component of total radioactivity. Edoxaban is eliminated through multiple pathways, but each accounts for only a small amount of overall elimination. PMID:22936313

  19. Mass balance of nitrogen and potassium in urban groundwater in Central Africa, Yaounde/Cameroon.

    PubMed

    Kringel, R; Rechenburg, A; Kuitcha, D; Fouépé, A; Bellenberg, S; Kengne, I M; Fomo, M A

    2016-03-15

    Mass flow of nutrients from innumerous latrines and septic tanks was assessed to best describe the groundwater quality situation in the urban environment of Yaounde. 37 groundwater samples were taken at the end of dry season 2012 and analysed for nutrient related (NO3(-), NH4(+), NO2(-), K(+), Cl(-), HPO4(2-) and TOC) and physico-chemical ambient parameters. A survey on waste water discharge close to water points constrained point sources from sanitation. The results showed that the median of nitrate concentration exceeds the WHO limit. We realized that EC increases from the geogenic background to very high levels in the urban area within short distance, suggesting anthropogenic input. Dug wells showed nitrate and ammonium in equivalent concentrations, indicating incomplete nitrification and mandating their inclusion into water type classification. The mass turnover of nutrients in urban groundwater scales high in comparison to national statistical figures on fertilizer import for 2012. A mass N,K balance for infiltration water overestimates observed concentrations by a factor of 4.5. The marked balance gap is attributed to dynamic non-equilibrium between input and output. Unresolved questions like a) urban sanitation, b) hygiene & health and c) environmental protection urgently call for closing the nutrient cycle. In the light of Cameroonian strategies on rural development, tackling the groundwater nutrient, urban agriculture, food--NEXUS might partially restore urban and periurban ecosystem services under economical constraints and thus improve living conditions. PMID:26789374

  20. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    PubMed

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes. PMID:16782604

  1. Assessment of in vivo Bioaccessibility of Arsenic in Dietary Rice by a Mass Balance Approach

    PubMed Central

    He, Yi; Zheng, Yan

    2010-01-01

    A pilot dietary experiment was conducted over ten days to evaluate whether a simple yet often under utilized approach of constructing mass balance of arsenic metabolites can be used to assess in vivo bioaccessibility of arsenic in cooked rice. Two volunteers were involved in this study. The quantity of drinking water, food and urine samples, together with arsenic concentration and speciation of these samples were monitored to construct a mass balance of arsenic intake and excretion. In the first five days, the two volunteers on a wheat diet had an average arsenic daily intake of 15.4 ± 2.6 µg and 9.6 ± 0.7 µg, respectively. In the next five days, these volunteers switched to a rice diet, increasing the average arsenic daily intake to 36.4 ± 2.8 µg and 34.1 ± 7.7 µg, respectively. Daily excretion of urinary arsenic, mostly as dimethylarsenic acid (DMA), doubled from 9.8 ± 0.3 µg to 21.0 ± 3.0 µg, and from 6.5 ± 0.8 µg to 11.6 ± 4.5 µg, respectively. The percentage of ingested arsenic excreted in urine remained constant at ~ 58% for one volunteer before and after the rice diet, and was ~ 69 % for another. Mass balance established during a controlled dietary experiment over 10 days is shown to be a useful approach to evaluate in vivo bioaccessibility and metabolism of arsenic uptake from diet and is applicable to study with more subjects. PMID:20071009

  2. Climate, not atmospheric deposition, drives the biogeochemical mass-balance of a mountain watershed

    USGS Publications Warehouse

    Baron, Jill S.; Heath, Jared

    2014-01-01

    Watershed mass-balance methods are valuable tools for demonstrating impacts to water quality from atmospheric deposition and chemical weathering. Owen Bricker, a pioneer of the mass-balance method, began applying mass-balance modeling to small watersheds in the late 1960s and dedicated his career to expanding the literature and knowledge of complex watershed processes. We evaluated long-term trends in surface-water chemistry in the Loch Vale watershed, a 660-ha. alpine/subalpine catchment located in Rocky Mountain National Park, CO, USA. Many changes in surface-water chemistry correlated with multiple drivers, including summer or monthly temperature, snow water equivalent, and the runoff-to-precipitation ratio. Atmospheric deposition was not a significant causal agent for surface-water chemistry trends. We observed statistically significant increases in both concentrations and fluxes of weathering products including cations, SiO2, SO4 2−, and ANC, and in inorganic N, with inorganic N being primarily of atmospheric origin. These changes are evident in the individual months June, July, and August, and also in the combined June, July, and August summer season. Increasingly warm summer temperatures are melting what was once permanent ice and this may release elements entrained in the ice, stimulate chemical weathering with enhanced moisture availability, and stimulate microbial nitrification. Weathering rates may also be enhanced by sustained water availability in high snowpack years. Rapid change in the flux of weathering products and inorganic N is the direct and indirect result of a changing climate from warming temperatures and thawing cryosphere.

  3. Accurate mass and nuclear magnetic resonance identification of bisphenolic can coating migrants and their interference with liquid chromatography/tandem mass spectrometric analysis of bisphenol A.

    PubMed

    Ackerman, Luke K; Noonan, Gregory O; Begley, Timothy H; Mazzola, Eugene P

    2011-05-15

    Two unknown compounds were previously determined to be potential interferences in liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of bisphenol A (BPA) in canned infant formula. Both yielded two identical MS/MS transitions to BPA. The identities of the unknowns were investigated using accurate mass LC/MS, LC/MS/MS, and elemental formula and structures proposed. Exact identities were confirmed through purification or synthesis followed by (1)H and (13)C nuclear magnetic resonance (NMR) experiments, as well as comparisons of one unknown with commercial standards. Comparisons of negative ion electrospray ionization (ESI) MS/MS and accurate mass spectra suggested both unknowns to be structurally identical (to BPA and each other). Positive ion ESI spectra confirmed both were larger molecules, suggesting that in the negative mode they likely fragmented to the deprotonated BPA ion in the source [corrected]. Elemental composition of positive ion accurate mass spectra and NMR analysis concluded the unknowns were oxidized forms of the known epoxy can coating monomer, bisphenol A diglycidyl ether (BADGE). One of the unknowns, 2,2-[bis-4-(2,3-dihydroxypropoxy)phenyl]propane, commonly known as BADGE*2H(2)O, is widely reported as an epoxy-phenolic can coating migrant, but has not been suggested to interfere with the MS/MS analysis of BPA. The other unknown, 2-[4-(2,3-dihydroxypropoxy)phenyl]-2-[4'-hydroxyphenyl]propane, or the oxidized form of bisphenol A monoglycidyl ether (BAMGE*H(2)O), has not been previously reported in food or packaging. PMID:21488128

  4. Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  5. Mass balance, meteorological, ice motion, surface altitude, runoff, and ice thickness data at Gulkana Glacier, Alaska, 1995 balance year

    USGS Publications Warehouse

    March, Rod S.

    2000-01-01

    The 1995 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 0.94 meter on April 19, 1995, 0.6 standard deviation below the long-term average; the maximum winter snow balance, 0.94 meter, was reached on April 25, 1995; the net balance (from September 18, 1994 to August 29, 1995) was -0.70 meter, 0.76 standard deviation below the long-term average. The annual balance (October 1, 1994, to September 30, 1995) was -0.86 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 2.05 meters averaged over the basin, approximately equal to the long-term average. The 1976 ice-thickness data are reported from a single site near the highest measurement site (180 meters thick) and from two glacier cross profiles near the mid-glacier (270 meters thick on centerline) and low glacier (150 meters thick on centerline) measurement sites. A new area-altitude distribution determined from 1993 photogrammetry is reported. Area-averaged balances are reported from both the 1967 and 1993 area-altitude distribution so the reader may directly see the effect of the update. Briefly, loss of ablation area between 1967 and 1993 results in a larger weighting being applied to data from the upper glacier site and hence, increases calculated area-averaged balances. The balance increase is of the order of 15 percent for net balance.

  6. Primary mineral weathering in the central Appalachians: a mass balance approach

    NASA Astrophysics Data System (ADS)

    Furman, Tanya; Thompson, Patricia; Hatchl, Brian

    1998-09-01

    We use a mass balance approach to calculate long-term weathering rates for three forested watersheds in the southeastern USA. One watershed (Shaver Hollow) is underlain by Precambrian granodiorite, and two (White Oak Run, Deep Run) are underlain by Cambrian metasedimentary units. Each of the study areas receives high levels of acidic precipitation, and each watershed was almost completely defoliated by gypsy moth larvae for at least two consecutive years during the study period. Our analysis uses stream and precipitation chemistry obtained weekly from 1987 to 1993 for Shaver Hollow and from 1980 to 1993 for White Oak Run and Deep Run. Mass balance calculations for the granodiorite watershed indicate that plagioclase feldspar is the dominant reactant and that basalt dikes which comprise a small fraction of the catchment make a significant contribution to the base cation budget. Corresponding calculations for the metasedimentary bedrock watersheds indicate contributions from plagioclase feldspar, muscovite, and biotite. At best, the mass balance models provide an approximation of weathering processes because the soils are immature and contain few stoichiometric clay minerals such as kaolinite. Annual cation release rates from Shaver Hollow suggest soil profile ages of ˜4 ka, consistent with the observed surficial geology and the geological history of the area. Base cation efflux patterns during the period of severe defoliation differ markedly between the three watersheds and reflect a continuum of ecosystem sensitivities. The Pedlar granodiorite system is relatively robust to the effects of disturbance: calculated weathering rates and proportions change by <10% during defoliation. The Chilhowee Formation watershed White Oak Run is moderately acid-sensitive and is unstable with respect to defoliation: annual base cation export by roughly 30% during each year of larval infestation. The Deep Run watershed is superficially robust to defoliation, as base cation efflux

  7. Geochemical mass-balance relationships for selected ions in precipitation and stream water, Catoctin Mountains, Maryland.

    USGS Publications Warehouse

    Katz, B.G.; Bricker, O.P.; Kennedy, M.M.

    1985-01-01

    Results of a study of input/output mass balances for major ions based on the chemical composition of precipitation and stream-water, geochemical reactions with different loading rates of hydrogen ion, and watershed processes influencing the chemical character of stream-waters in two small watershed areas are reported with a view to predicting the effect of additions of acidic rain to the watershed systems. Geochemical weathering processes account for the observed changes in the chemistry of stream flow. Although present in bedrock in extremely small quantities, calcite plays an important role in neutralization of the total hydrogen-ion input.-M.S.

  8. Integrated configurable equipment selection and line balancing for mass production with serial-parallel machining systems

    NASA Astrophysics Data System (ADS)

    Battaïa, Olga; Dolgui, Alexandre; Guschinsky, Nikolai; Levin, Genrikh

    2014-10-01

    Solving equipment selection and line balancing problems together allows better line configurations to be reached and avoids local optimal solutions. This article considers jointly these two decision problems for mass production lines with serial-parallel workplaces. This study was motivated by the design of production lines based on machines with rotary or mobile tables. Nevertheless, the results are more general and can be applied to assembly and production lines with similar structures. The designers' objectives and the constraints are studied in order to suggest a relevant mathematical model and an efficient optimization approach to solve it. A real case study is used to validate the model and the developed approach.

  9. Mass Balance of Glaciers In Southern Chile, Based On Dems From Aster and Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Casassa, G.; Bown, F.; Fernandez, A.

    The glaciers located in the Chilean southern Andes region (41-51S) have been re- treating and shrinking during most of the last century, in response to a climate warm- ing trend recognised in many climatic stations of the country. During recent years, several calving and small mountain glaciers have been analysed, in an attempt to cor- relate the short historical glacier variation (no longer than 150 years) with long term dendrochronological series (from 300 to 1000 years). The aim of this analysis is to un- derstand climate change during the last millennia, as well as the mechanisms of glacier response to such climatic changes. In this context, mass balance studies are one of the most important approaches to determine the specific relationship of glaciers to annual and decadal climatic changes. In Chile, only one glacier (glaciar Echaurren, 33S) has been systematically measured since 1975, generating the longest mass balance series of the country. To account for the mass balance of glaciers in the southern region of Chile, a geodetic method is presented, based upon the comparison of digital elevation models (DEM) obtained from aerial photographs and ASTER imagery from different dates. This method have been applied to glaciar Chico located at 49S in the Southern Patagonia Icefield, where we have generated DEMs from aerial photographs of 1975 and 1995, as well as one DEM from an ASTER image of October 2001. The DEMs are geo-referenced to a network of GPS points, measured in several field campaigns carried out during recent years at rock outcrops and in the accumulation area of the glacier. The last campaign was done during September and October 2001, allowing a high accuracy ground control validation for DEM derived from the contemporary ASTER image. The mass balance analysis is complemented with frontal variations derived from Landsat TM imagery, as well as field data and aerial photographs. One preliminary result of this study shows a consistent ice thinning, at

  10. Well-posedness and exact controllability of the mass balance equations for an extrusion process

    NASA Astrophysics Data System (ADS)

    Diagne, Mamadou; Shang, Peipei; Wang, Zhiqiang

    2016-07-01

    In this paper, we study the well-posedness and exact controllability of a physical model for a food extrusion process in the isothermal case. The model expresses the mass balance in the extruder chamber and consists of a hyperbolic Partial Differential Equation (PDE) and a nonlinear Ordinary Differential Equation (ODE) whose dynamics describes the evolution of a moving interface. By suitable change of coordinates and fixed point arguments, we prove the existence, uniqueness and regularity of the solution, and finally the exact controllability of the coupled system.

  11. Evaluation of total phosphorus mass balance in the lower Boise River and selected tributaries, southwestern Idaho

    USGS Publications Warehouse

    Etheridge, Alexandra B.

    2013-01-01

    he U.S. Geological Survey (USGS), in cooperation with Idaho Department of Environmental Quality, developed spreadsheet mass-balance models for total phosphorus using results from three synoptic sampling periods conducted in the lower Boise River watershed during August and October 2012, and March 2013. The modeling reach spanned 46.4 river miles (RM) along the Boise River from Veteran’s Memorial Parkway in Boise, Idaho (RM 50.2), to Parma, Idaho (RM 3.8). The USGS collected water-quality samples and measured streamflow at 14 main-stem Boise River sites, two Boise River north channel sites, two sites on the Snake River upstream and downstream of its confluence with the Boise River, and 17 tributary and return-flow sites. Additional samples were collected from treated effluent at six wastewater treatment plants and two fish hatcheries. The Idaho Department of Water Resources quantified diversion flows in the modeling reach. Total phosphorus mass-balance models were useful tools for evaluating sources of phosphorus in the Boise River during each sampling period. The timing of synoptic sampling allowed the USGS to evaluate phosphorus inputs to and outputs from the Boise River during irrigation season, shortly after irrigation ended, and soon before irrigation resumed. Results from the synoptic sampling periods showed important differences in surface-water and groundwater distribution and phosphorus loading. In late August 2012, substantial streamflow gains to the Boise River occurred from Middleton (RM 31.4) downstream to Parma (RM 3.8). Mass-balance model results indicated that point and nonpoint sources (including groundwater) contributed phosphorus loads to the Boise River during irrigation season. Groundwater exchange within the Boise River in October 2012 and March 2013 was not as considerable as that measured in August 2012. However, groundwater discharge to agricultural tributaries and drains during non-irrigation season was a large source of discharge and

  12. NETPATH-WIN: an interactive user version of the mass-balance model, NETPATH

    USGS Publications Warehouse

    El-Kadi, A. I.; Plummer, L.N.; Aggarwal, P.

    2011-01-01

    NETPATH-WIN is an interactive user version of NETPATH, an inverse geochemical modeling code used to find mass-balance reaction models that are consistent with the observed chemical and isotopic composition of waters from aquatic systems. NETPATH-WIN was constructed to migrate NETPATH applications into the Microsoft WINDOWS® environment. The new version facilitates model utilization by eliminating difficulties in data preparation and results analysis of the DOS version of NETPATH, while preserving all of the capabilities of the original version. Through example applications, the note describes some of the features of NETPATH-WIN as applied to adjustment of radiocarbon data for geochemical reactions in groundwater systems.

  13. Accurate mass fragment library for rapid analysis of pesticides on produce using ambient pressure desorption ionization with high-resolution mass spectrometry.

    PubMed

    Kern, Sara E; Lin, Lora A; Fricke, Frederick L

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]⁺) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]⁺ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]⁺ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli

  14. Accurate Mass Fragment Library for Rapid Analysis of Pesticides on Produce Using Ambient Pressure Desorption Ionization with High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kern, Sara E.; Lin, Lora A.; Fricke, Frederick L.

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]+) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]+ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]+ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli. The

  15. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide.

    PubMed

    Ross, Charles W; Simonsick, William J; Bogusky, Michael J; Celikay, Recep W; Guare, James P; Newton, Randall C

    2016-01-01

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry. PMID:27367671

  16. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide

    PubMed Central

    Ross, Charles W.; Simonsick, William J.; Bogusky, Michael J.; Celikay, Recep W.; Guare, James P.; Newton, Randall C.

    2016-01-01

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry. PMID:27367671

  17. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    USGS Publications Warehouse

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  18. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

    PubMed Central

    2012-01-01

    Background Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs), still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline) cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. Results Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU) yields (% cellulose mass in starting bagasse) from the recovered solids rank as: [C2mim]OAc(83%) > >[C2mim]Cl(53%) = [C4mim]Cl(53%). Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography). Conclusions In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin remained dissolved

  19. Two methods for firn-area and mass-balance monitoring of Svalbard glaciers with SAR satellite images

    NASA Astrophysics Data System (ADS)

    König, Max; Winther, Jan-Gunnar; Kohler, Jack; König, Florian

    This paper presents two methods for glacier monitoring on Svalbard using synthetic aperture radar (SAR) satellite images. Both methods were developed on glaciers in the Kongsfjorden area. The first method monitors the firn area extent and the firn line over time by thresholding and filtering the SAR image. Manual detection of the threshold is preferable, but using a constant threshold for all images also gives adequate results. A retreat of the firn-line position is visible, especially on Kongsvegen, corresponding to consecutive years of negative mass balance. The second method applies a k-means classification to three clusters on the glacier surface. The areal extent of the resulting class on the upper part of the glacier correlates remarkably well with the independently measured mass balance of Kongsvegen, having a correlation coefficient of around 0.89 for the various glaciers. This is because the snow from the accumulation area influences the k-means classification. Thus, on glaciers where mass-balance values are available, new mass-balance values can be predicted solely from SAR images. For glaciers where no mass balance is available, the area change cannot be calibrated to absolute mass-balance values, but relative changes can be predicted.

  20. Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1993 balance year

    USGS Publications Warehouse

    March, Rod; Trabant, Dennis

    1997-01-01

    The 1993 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data measured in the basin and are reported herein. Averaged over the glacier, the measured winter snow balance was 0.81 meter on March 31, 1993, 1.2 standard deviations below the long-term average; the maximum winter snow balance, 0.84 meter, was reached on May 10, 1993 and remained until May 11, 1993; the net balance (from August 18, 1992 to September 8, 1993) was 1.80 meters, the most negative balance year on record at 2.8 standard deviations below the long-term average. The annual balance (October 1, 1992 to September 30, 1993) was 1.64 meters. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier thickness changes. Annual stream runoff was 1.996 meters averaged over the basin, 0.2 standard deviations above the long-term average.

  1. Purification of pharmaceutical preparations using thin-layer chromatography to obtain mass spectra with Direct Analysis in Real Time and accurate mass spectrometry.

    PubMed

    Wood, Jessica L; Steiner, Robert R

    2011-06-01

    Forensic analysis of pharmaceutical preparations requires a comparative analysis with a standard of the suspected drug in order to identify the active ingredient. Purchasing analytical standards can be expensive or unattainable from the drug manufacturers. Direct Analysis in Real Time (DART™) is a novel, ambient ionization technique, typically coupled with a JEOL AccuTOF™ (accurate mass) mass spectrometer. While a fast and easy technique to perform, a drawback of using DART™ is the lack of component separation of mixtures prior to ionization. Various in-house pharmaceutical preparations were purified using thin-layer chromatography (TLC) and mass spectra were subsequently obtained using the AccuTOF™- DART™ technique. Utilizing TLC prior to sample introduction provides a simple, low-cost solution to acquiring mass spectra of the purified preparation. Each spectrum was compared against an in-house molecular formula list to confirm the accurate mass elemental compositions. Spectra of purified ingredients of known pharmaceuticals were added to an in-house library for use as comparators for casework samples. Resolving isomers from one another can be accomplished using collision-induced dissociation after ionization. Challenges arose when the pharmaceutical preparation required an optimized TLC solvent to achieve proper separation and purity of the standard. Purified spectra were obtained for 91 preparations and included in an in-house drug standard library. Primary standards would only need to be purchased when pharmaceutical preparations not previously encountered are submitted for comparative analysis. TLC prior to DART™ analysis demonstrates a time efficient and cost saving technique for the forensic drug analysis community. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21548141

  2. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry.

    PubMed

    Hogenboom, A C; van Leerdam, J A; de Voogt, P

    2009-01-16

    The European Reach legislation will possibly drive producers to develop newly designed chemicals that will be less persistent, bioaccumulative or toxic. If this innovation leads to an increased use of more hydrophilic chemicals it may result in higher mobilities of chemicals in the aqueous environment. As a result, the drinking water companies may face stronger demands on removal processes as the hydrophilic compounds inherently are more difficult to remove. Monitoring efforts will also experience a shift in focus to more water-soluble compounds. Screening source waters on the presence of (emerging) contaminants is an essential step in the control of the water cycle from source to tap water. In this article, some of our experiences are presented with the hybrid linear ion trap (LTQ) FT Orbitrap mass spectrometer, in the area of chemical water analysis. A two-pronged strategy in mass spectrometric research was employed: (i) exploring effluent, surface, ground- and drinking-water samples searching for accurate masses corresponding to target compounds (and their product ions) known from, e.g. priority lists or the scientific literature and (ii) full-scan screening of water samples in search of 'unknown' or unexpected masses, followed by MS(n) experiments to elucidate the structure of the unknowns. Applications of both approaches to emerging water contaminants are presented and discussed. Results are presented for target analysis search for pharmaceuticals, benzotriazoles, illicit drugs and for the identification of unknown compounds in a groundwater sample and in a polar extract of a landfill soil sample (a toxicity identification evaluation bioassay sample). The applications of accurate mass screening and identification described in this article demonstrate that the LC-LTQ FT Orbitrap MS is well equipped to meet the challenges posed by newly emerging polar contaminants. PMID:18771771

  3. Isotopic Ratio Outlier Analysis of the S. cerevisiae Metabolome Using Accurate Mass Gas Chromatography/Time-of-Flight Mass Spectrometry: A New Method for Discovery.

    PubMed

    Qiu, Yunping; Moir, Robyn; Willis, Ian; Beecher, Chris; Tsai, Yu-Hsuan; Garrett, Timothy J; Yost, Richard A; Kurland, Irwin J

    2016-03-01

    Isotopic ratio outlier analysis (IROA) is a (13)C metabolomics profiling method that eliminates sample to sample variance, discriminates against noise and artifacts, and improves identification of compounds, previously done with accurate mass liquid chromatography/mass spectrometry (LC/MS). This is the first report using IROA technology in combination with accurate mass gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS), here used to examine the S. cerevisiae metabolome. S. cerevisiae was grown in YNB media, containing randomized 95% (13)C, or 5%(13)C glucose as the single carbon source, in order that the isotopomer pattern of all metabolites would mirror the labeled glucose. When these IROA experiments are combined, the abundance of the heavy isotopologues in the 5%(13)C extracts, or light isotopologues in the 95%(13)C extracts, follows the binomial distribution, showing mirrored peak pairs for the molecular ion. The mass difference between the (12)C monoisotopic and the (13)C monoisotopic equals the number of carbons in the molecules. The IROA-GC/MS protocol developed, using both chemical and electron ionization, extends the information acquired from the isotopic peak patterns for formulas generation. The process that can be formulated as an algorithm, in which the number of carbons, as well as the number of methoximations and silylations are used as search constraints. In electron impact (EI/IROA) spectra, the artifactual peaks are identified and easily removed, which has the potential to generate "clean" EI libraries. The combination of chemical ionization (CI) IROA and EI/IROA affords a metabolite identification procedure that enables the identification of coeluting metabolites, and allowed us to characterize 126 metabolites in the current study. PMID:26820234

  4. Glacier mass balance in high-arctic areas with anomalous gravity

    NASA Astrophysics Data System (ADS)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  5. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    NASA Technical Reports Server (NTRS)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  6. Controls on the behaviour of sediment routing systems using a mass balance approach

    NASA Astrophysics Data System (ADS)

    Whittaker, Alexander; Allen, Philip; Michael, Nikolas; Duller, Robert

    2014-05-01

    Sediment routing systems link source regions undergoing erosion with depositional sinks and involve a volumetric or mass budget. Understanding how these source-to-sink systems function is key to stratigraphic prediction, but estimation of their surface sediment discharges and depositional fluxes on geological time scales is a challenging problem. Moreover, resolving the extent to which tectono-climatic boundary conditions determine the temporal and spatial distribution of sediment characteristics remains contentious. In particular the rate of down-system fining of grain size, percentages of grain size fractions in preserved stratigraphy, position of moving boundaries, and evolution of gross depositional environments can all be related to variations in the volume of sediment supplied, the grain-size mix of the supply, and the spatial distribution of tectonic subsidence generating the accommodation. Deciphering how these factors interact to produce stratigraphy is a key challenge in the Earth Sciences. Here we compare detailed reconstructions of palaeo-sediment routing systems from the mid-late Eocene Escanilla Formation and its time-equivalents, Spanish Pyrenees, with Mio-Pliocene sediment routing systems draining the Great Plains, Central USA. Rates of grain size fining along time-lines in stratigraphy are reconstructed as a function of down-system distance and cumulative sediment volume in time and space, and are contrasted within a dimensionless mass balance framework that accounts for sediment extraction as a function of sediment volume. Use of a mass-balance framework allows for consistent, quantitative comparison across sediment routing systems of varying scales and shapes. Our results demonstrate that the position of key stratigraphic observables, such as the gravel front and rate of grain size fining, are similarly controlled by mass extraction across systems that differ in size and extent, but that selective extraction of particular size classes (e

  7. Accurate mass determination, quantification and determination of detection limits in liquid chromatography-high-resolution time-of-flight mass spectrometry: challenges and practical solutions.

    PubMed

    Vergeynst, Leendert; Van Langenhove, Herman; Joos, Pieter; Demeestere, Kristof

    2013-07-30

    Uniform guidelines for the data processing and validation of qualitative and quantitative multi-residue analysis using full-spectrum high-resolution mass spectrometry are scarce. Through systematic research, optimal mass accuracy and sensitivity are obtained after refining the post-processing of the HRMS data. For qualitative analysis, transforming the raw profile spectra to centroid spectra is recommended resulting in a 2.3 fold improved precision on the accurate mass determination of spectrum peaks. However, processing centroid data for quantitative purposes could lead to signal interruption when too narrow mass windows are applied for the construction of extracted ion chromatograms. Therefore, peak integration on the raw profile data is recommended. An optimal width of the mass window of 50 ppm, which is a trade-off between sensitivity and selectivity, was obtained for a TOF instrument providing a resolving power of 20,000 at full width at half maximum (FWHM). For the validation of HRMS analytical methods, widespread concepts such as the signal-to-noise ratios for the determination of decision limits and detection capabilities have shown to be not always applicable because in some cases almost no noise can be detected anymore. A statistical methodology providing a reliable alternative is extended and applied. PMID:23856232

  8. Robust Algorithm for Alignment of Liquid Chromatography-Mass Spectrometry Analyses in an Accurate Mass and Time Tag Data Analysis Pipeline

    SciTech Connect

    Jaitly, Navdeep; Monroe, Matthew E.; Petyuk, Vladislav A.; Clauss, Therese RW; Adkins, Joshua N.; Smith, Richard D.

    2006-11-01

    Liquid chromatography coupled to mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) has become a standard technique for analyzing complex peptide mixtures to determine composition and relative quantity. Several high-throughput proteomics techniques attempt to combine complementary results from multiple LC-MS and LC-MS/MS analyses to provide more comprehensive and accurate results. To effectively collate results from these techniques, variations in mass and elution time measurements between related analyses are corrected by using algorithms designed to align the various types of results: LC-MS/MS vs. LC-MS/MS, LC-MS vs. LC-MS/MS, and LC-MS vs. LC-MS. Described herein are new algorithms referred to collectively as Liquid Chromatography based Mass Spectrometric Warping and Alignment of Retention times of Peptides (LCMSWARP) which use a dynamic elution time warping approach similar to traditional algorithms that correct variation in elution time using piecewise linear functions. LCMSWARP is compared to a linear alignment algorithm that assumes a linear transformation of elution time between analyses. LCMSWARP also corrects for drift in mass measurement accuracies that are often seen in an LC-MS analysis due to factors such as analyzer drift. We also describe the alignment of LC-MS results and provide examples of alignment of analyses from different chromatographic systems to demonstrate more complex transformation functions.

  9. Impact of sublimation losses in the mass balance of glaciers in semi-arid mountain regions

    NASA Astrophysics Data System (ADS)

    Ayala, Alvaro; Pellicciotti, Francesca; Burlando, Paolo; MacDonell, Shelley; McPhee, James

    2016-04-01

    Glaciers in semiarid mountain regions may lose an important part of their winter snow accumulation through sublimation processes that are enhanced by the high-elevation, intense radiation and dry atmosphere of these environments. As glaciers in these regions secure freshwater resources to lower valleys during summer and drought periods, it is important to advance in a detailed quantification of their sublimation losses. However, logistical concerns and complex meteorological features make the measuring and modelling of glacier mass balances a difficult task. In this study, we estimated the spring-summer mass balances of Tapado and Juncal Norte glaciers in the semiarid Andes of north-central Chile by running a distributed energy balance model that accounts for melt, refreezing and sublimation from the surface and blowing snow. Meteorological input data were available from on-glacier Automatic Weather Stations (AWS) that were installed during the ablation season of years 2005-06, 2008-09, 2013-14 and 2014-15. Snow pits, ablation stakes and a time-lapse camera that provided surface albedo were also available. Distributed air temperature and wind speed were dynamically downscaled from NASA MERRA reanalysis using the software WINDSIM and validated against the data from the AWSs. The rest of the meteorological variables were distributed using statistical relations with air temperature derived from the AWSs data. Initial snow conditions were estimated using satellite images and distributed manual snow depth measurements. Preliminary results show that total ablation diminishes with elevation and that, during the early ablation season (October-November), melt is the main ablation component below 4500 m with sublimation dominating the ablation above this elevation. Above 4500 m an important fraction of meltwater refreezes during night. As the ablation season advances (December-February), melt extends to higher elevations, refreezing plays a smaller role and sublimation is

  10. Modern Sr isotopic mass balance and Quaternary variation in the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Page, A.; Vance, D.; Fowler, M.; Nisbet, E.

    2003-04-01

    The past chemistry of the Caspian Sea potentially provides a record of palaeoclimatic changes in eastern Europe and central Asia. We report the first Sr isotopic data for the Volga which, together with new data for smaller Caucasian rivers and data in the literature (Clauer et al. 1998), provide a relatively complete Sr mass balance for the modern Caspian. We also present preliminary Sr isotopic data for mollusc shells obtained from Plio-Pleistocene sediments which shed light on the past hydrography of the Caspian Sea. Samples of the modern Caspian Sea give an 87Sr/86Sr ratio of 0.70821, in agreement with published values (Clauer et al. 1998 C.R. Acad. Sci. Paris, 327, 17-24). Data for the Volga are below this value at 0.70802. The rivers draining the Caucusus also have Sr isotope ratios less radiogenic than the Sea, except for the small Terek river in Dagestan. The only significant source of balancing radiogenic Sr is deep fluids, which have been shown to contain large amounts of radiogenic Sr (Clauer et al. 1998). The modern Sr isotopic mass balance requires that around 0.2% of the water and 15-30% of the Sr in the modern Caspian be derived from this source. The modern Sr mass balance suggests that the residence time of Sr in the Caspian Sea is 4-5 kyr, so that Quaternary variations in the discharge rates of riverine water and deep fluids should be reflected in the Sr isotopic composition of the ancient Caspian. 20 kyr mollusc shells have an 87Sr/86Sr ratio of 0.70825 - very close to the value for the modern Caspian. However, Sr from an approximately 100 kyr old shell is more radiogenic, at 0.70842, as are background values in a time-series through latest Pliocene-Early Pleistocene sediments. The time series also exhibits periodic shifts towards much higher values (up to 0.70864). The higher background value for pre-20 kyr samples could be due to a dramatically (4-7 fold) lower river runoff or to order of magnitude higher deep water discharge. More probably, they

  11. Reconnaissance Estimates of Recharge Based on an Elevation-dependent Chloride Mass-balance Approach

    SciTech Connect

    Charles E. Russell; Tim Minor

    2002-08-31

    Significant uncertainty is associated with efforts to quantity recharge in arid regions such as southern Nevada. However, accurate estimates of groundwater recharge are necessary to understanding the long-term sustainability of groundwater resources and predictions of groundwater flow rates and directions. Currently, the most widely accepted method for estimating recharge in southern Nevada is the Maxey and Eakin method. This method has been applied to most basins within Nevada and has been independently verified as a reconnaissance-level estimate of recharge through several studies. Recharge estimates derived from the Maxey and Eakin and other recharge methodologies ultimately based upon measures or estimates of groundwater discharge (outflow methods) should be augmented by a tracer-based aquifer-response method. The objective of this study was to improve an existing aquifer-response method that was based on the chloride mass-balance approach. Improvements were designed to incorporate spatial variability within recharge areas (rather than recharge as a lumped parameter), develop a more defendable lower limit of recharge, and differentiate local recharge from recharge emanating as interbasin flux. Seventeen springs, located in the Sheep Range, Spring Mountains, and on the Nevada Test Site were sampled during the course of this study and their discharge was measured. The chloride and bromide concentrations of the springs were determined. Discharge and chloride concentrations from these springs were compared to estimates provided by previously published reports. A literature search yielded previously published estimates of chloride flux to the land surface. {sup 36}Cl/Cl ratios and discharge rates of the three largest springs in the Amargosa Springs discharge area were compiled from various sources. This information was utilized to determine an effective chloride concentration for recharging precipitation and its associated uncertainty via Monte Carlo simulations

  12. Distributed modeling of snow cover mass and energy balance in the Rheraya watershed (High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Marchane, Ahmed; Gascoin, Simon; Jarlan, Lionel; Hanich, Lahoucine

    2016-04-01

    The mountains of the High Moroccan Atlas represent an important source of water for the neighboring arid plains. Despite the importance of snow in the regional water balance, few studies were devoted to the modeling of the snow cover at the watershed scale. This type of modeling is necessary to characterize the contribution of snowmelt to water balance and understanding its sensitivity to natural and human-induced climate fluctuations. In this study, we applied a spatially-distributed model of the snowpack evolution (SnowModel, Liston & Elder 2006) on the Rheraya watershed (225 km²) in the High Atlas in order to simulate the mass and energy balance of the snow cover and the evolution of snow depth over a full season (2008-2009). The model was forced by 6 meteorological stations. The model was evaluated locally at the Oukaimeden meteorological station (3230 m asl) where snow depth is recorded continuously. To evaluate the model at the watershed scale we used the daily MODIS snow cover products and a series of 15 cloud-free optical images acquired by the FORMOSAT-2 satellite at 8-m resolution from February to June 2009. The results showed that the model is able to simulate the snow depth in the Oukaimeden station for the 2008-2009 season, and also to simulate the spatial and temporal variation of of the snow cover area in the watershed Rheraya. Based on the model output we examine the importance of the snow sublimation on the water balance at the watershed scale.

  13. Phosphorus mass balance in a surface flow constructed wetland receiving piggery wastewater effluent.

    PubMed

    Lee, S Y; Maniquiz, M C; Choi, J Y; Kang, J-H; Kim, L-H

    2012-01-01

    This research was conducted to investigate the phosphorus forms present in water, soil and sediment and to estimate the phosphorus mass balance in a surface flow constructed wetland (CW). Water quality and sediment samples were collected from each cell along the hydrologic path in the CW from October 2008 to December 2010. At the same time, three dominant plant species (e.g. common reed and cattails) were observed through the measurement of the weight, height and phosphorus content. Based on the results, the orthophosphate constituted 24-34% of total phosphorus in water for each cell. The overall average phosphorus removal efficiency of the CW was approximately 38%. The average inflow and outflow phosphorus loads during the monitoring period were 1,167 kg/yr and 408 kg/yr, respectively. The average phosphorus retention rate was 65%, was mainly contributed by the settling of TP into the bottom sediments (30%). The phosphorus uptake of plants was less than 1%. The estimated phosphorus mass balance was effective in predicting the phosphorus retention and release in the CW treating wastewater. Continuous monitoring is underway to support further assessment of the CW system and design. PMID:22766857

  14. Logs and completion data for water and mass balance wells in Mortandad and Ten Site Canyons

    SciTech Connect

    McLin, S.G.; Purtymun, W.D.; Swanton, A.S.; Koch, R.J.

    1997-10-01

    Twenty-four monitoring wells were drilled and completed in December 1994 as part of a water and mass balance study for the shallow perched aquifer in the Mortandad Canyon alluvium and in the lower part of Ten-Site Canyon. The wells penetrated the alluvium containing the aquifer and were completed into the top of the weathered tuff. Twelve of these wells encountered the Tshirege Member (Cooing Unit 1 g) of the Bandelier Tuff below the canyon alluvium, while ten wells made contact with the Cerro Toledo interval, which lies between the Tshirege and Otowi Members of the Bandelier Tuff. The remaining two wells were completed into the alluvium above the weathered tuff contact. These wells provide access for continuous water level measurement and water sampling. Data from these new wells will be used to determine changes in alluvial aquifer water storage, water quality sampling, and estimation of seepage into the unsaturated Bandelier Tuff below the alluvium. This report documents drilling activities and well completion logs for the water and mass balance study. These wells also provide critical new data for fourteen north-south vertical cross-sections constructed for the canyon alluvium.

  15. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  16. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  17. Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method

    USGS Publications Warehouse

    Krabbenhoft, David P.; Bowser, Carl J.; Anderson, Mary P.; Valley, John W.

    1990-01-01

    Groundwater inflow and outflow contributions to the hydrologic budget of lakes can be determined using a stable isotope (18O/16O) mass balance method. The stable isotope method provides a way of integrating the spatial and temporal complexities of the flow field around a lake, thereby offering an appealing alternative to the traditional time and labor intensive methods using seepage meters and an extensive piezometer network. In this paper the method is applied to a lake in northern Wisconsin, demonstrating that it can be successfully applied to lakes in the upper midwest where thousands of similar lakes exist. Inflow and outflow rates calculated for the Wisconsin lake using the isotope mass balance method are 29 and 54 cm/yr, respectively, which compare well to estimates, derived independently using a three-dimensional groundwater flow and solute transport model, of 20 and 50 cm/yr. Such a favorable comparison lends confidence to the use of the stable isotope method to estimate groundwater exchange with lakes. In addition, utilization of stable isotopes in studies of groundwater-lake systems lends insight into mixing processes occurring in the unsaturated zone and in the aquifer surrounding the lake and verifies assumed flow paths based on head measurements in piezometers.

  18. Has Natural Variability Masked the Expected Increase in Antarctic Surface Mass Balance with Global Warming?

    NASA Astrophysics Data System (ADS)

    Previdi, Michael; Polvani, Lorenzo M.

    2016-04-01

    One of the expected and rather paradoxical consequences of anthropogenic global warming is an increase in Antarctic surface mass balance (or net snow accumulation), as robustly simulated by both global and regional climate models. This surface mass balance (SMB) increase occurs because the higher moisture content of a warmer atmosphere leads to increases in precipitation, with this precipitation falling in the form of snow over Antarctica. Despite these robust model projections, however, observations indicate that there has been no significant change in Antarctic SMB during the past several decades. Here, we show that this apparent discrepancy between models and observations can be explained by the fact that the anthropogenic climate change signal is still relatively small compared to the noise associated with natural climate variability. Using an ensemble of 35 global coupled climate models to separate signal and noise, we find that the forced SMB increase due to global warming in recent decades is unlikely to be detectable in a statistical sense as a result of large natural SMB variability on interannual-to-multidecadal timescales. However, our analysis reveals that if the world continues to follow the present trajectory of greenhouse gas emissions, the anthropogenic impact on Antarctic SMB will emerge from natural variability by the middle of the current century. With this, SMB increases over Antarctica will begin to mitigate global sea-level rise, partially offsetting the effects of dynamic ice loss.

  19. Aquatic Exposure Predictions of Insecticide Field Concentrations Using a Multimedia Mass-Balance Model.

    PubMed

    Knäbel, Anja; Scheringer, Martin; Stehle, Sebastian; Schulz, Ralf

    2016-04-01

    Highly complex process-driven mechanistic fate and transport models and multimedia mass balance models can be used for the exposure prediction of pesticides in different environmental compartments. Generally, both types of models differ in spatial and temporal resolution. Process-driven mechanistic fate models are very complex, and calculations are time-intensive. This type of model is currently used within the European regulatory pesticide registration (FOCUS). Multimedia mass-balance models require fewer input parameters to calculate concentration ranges and the partitioning between different environmental media. In this study, we used the fugacity-based small-region model (SRM) to calculate predicted environmental concentrations (PEC) for 466 cases of insecticide field concentrations measured in European surface waters. We were able to show that the PECs of the multimedia model are more protective in comparison to FOCUS. In addition, our results show that the multimedia model results have a higher predictive power to simulate varying field concentrations at a higher level of field relevance. The adaptation of the model scenario to actual field conditions suggests that the performance of the SRM increases when worst-case conditions are replaced by real field data. Therefore, this study shows that a less complex modeling approach than that used in the regulatory risk assessment exhibits a higher level of protectiveness and predictiveness and that there is a need to develop and evaluate new ecologically relevant scenarios in the context of pesticide exposure modeling. PMID:26889709

  20. Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Riedo, A.; Meyer, S.; Heredia, B.; Neuland, M. B.; Bieler, A.; Tulej, M.; Leya, I.; Iakovleva, M.; Mezger, K.; Wurz, P.

    2013-10-01

    An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.

  1. Implications of (Less) Accurate Mass-Radius-Measurements for the Habitability of Extrasolar Terrestrial Planets: Why Do We Need PLATO?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Wagner, F. W.; Plesa, A.-C.; Höning, D.; Sohl, F.; Breuer, D.; Rauer, H.

    2012-04-01

    Several space missions (CoRoT, Kepler and others) already provided promising candidates for terrestrial exoplanets (i.e. with masses less than about 10 Earth masses) and thereby triggered an exciting new research branch of planetary modelling to investigate the possible habitability of such planets. Earth analogues (low-mass planets with an Earth-like structure and composition) are likely to be found in the near future with new missions such as the proposed M3 mission PLATO. Planets may be more diverse in the universe than they are in the solar system. Our neighbouring planets in the habitable zone are all terrestrial by the means of being differentiated into an iron core, a silicate mantle and a crust. To reliably determine the interior structure of an exoplanet, measurements of mass and radius have to be sufficiently accurate (around +/-2% error allowed for the radius and +/-5% for the mass). An Earth-size planet with an Earth-like mass but an expected error of ~15% in mass for example may have either a Mercury-like, an Earth-like or a Moon-like (i.e. small iron core) structure [1,2]. Even though the atmospheric escape is not strongly influenced by the interior structure, the outgassing of volatiles and the likeliness of plate tectonics and an ongoing carbon-cycle may be very different. Our investigations show, that a planet with a small silicate mantle is less likely to shift into the plate-tectonics regime, cools faster (which may lead to the loss of a magnetic field after a short time) and outgasses less volatiles than a planet with the same mass but a large silicate mantle and small iron core. To be able to address the habitability of exoplanets, space missions such as PLATO, which can lead up to 2% accuracy in radius [3], are extremely important. Moreover, information about the occurrence of different planetary types helps us to better understand the formation of planetary systems and to further constrain the Drake's equation, which gives an estimate of the

  2. Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Leesman, G. D.; Amidon, G. L.

    1993-01-01

    A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).

  3. Dual-sensor mapping of mass balance on Russia's northernmost ice caps

    NASA Astrophysics Data System (ADS)

    Nikolskiy, D.; Malinnikov, V.; Sharov, A.; Ukolova, M.

    2012-04-01

    Mass balance of Russia's northernmost ice caps is poorly known and scarcely mapped. Thorough information about glacier fluctuations in the outer periphery of Russian shelf seas is both lacking and highly desired since it may constitute the relevant benchmark for judging and projecting climate change impacts in the entire Arctic. The present study is focussed on geodetic measurements and medium-scale mapping of the mass balance on a dozen insular ice caps, some large and some smaller, homogeneously situated along the Eurasian boundary of Central Arctic Basin. The study region extends for approx. 2.200 km from Victoria and Arthur islands in the west across Rudolph, Eva-Liv, Ushakova, Schmidt and Komsomolets islands in the north to Bennett and Henrietta islands in the east thereby comprising the most distant and least studied ice caps in the Russian Arctic. The situation of insular ice masses close to the edge of summer minimum sea ice proved helpful in analysing spatial asymmetry of glacier accumulation signal. The overall mapping of glacier elevation changes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1960s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. In total, 14 ERS and 4 TanDEM-X high-quality SAR interferograms of 1995/96 and 2011 were acquired, processed in the standard 2-pass DINSAR manner, geocoded, calibrated, mosaicked and interpreted using reference elevation models and co-located ICESat altimetry data of 2003-2010. The DINSAR analysis revealed the existence of fast-flowing outlet glaciers at Arthur, Rudolph, Eva-Liv and Bennett islands. The calculation of separate mass-balance components is complicated in this case because of generally unknown glacier velocities and ice discharge values for the mid-20

  4. A Support Vector Machine model for the prediction of proteotypic peptides for accurate mass and time proteomics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.

    2008-07-01

    Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares these profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a Support Vector Machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity, and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of ~0.8 with a standard deviation of less than 0.025. Furthermore, we demonstrate that these results are achievable with a small set of 12 variables and can achieve high proteome coverage. Availability: http://omics.pnl.gov/software/STEPP.php

  5. Mass balance of Mars' residual south polar cap from CTX images and other data

    NASA Astrophysics Data System (ADS)

    Thomas, P. C.; Calvin, W.; Cantor, B.; Haberle, R.; James, P. B.; Lee, S. W.

    2016-04-01

    Erosion of pits in the residual south polar cap (RSPC) of Mars concurrent with deposition and fluctuating cap boundaries raises questions about the mass balance and long term stability of the cap. Determining a mass balance by measurement of a net gain or loss of atmospheric CO2 by direct pressure measurements (Haberle, R.M. et al. [2014]. Secular climate change on Mars: An update using one Mars year of MSL pressure data. American Geophysical Union (Fall). Abstract 3947), although perhaps the most direct method, has so far given ambiguous results. Estimating volume changes from imaging data faces challenges, and has previously been attempted only in isolated areas of the cap. In this study we use 6 m/pixel Context Imager (CTX) data from Mars year 31 to map all the morphologic units of the RSPC, expand the measurement record of pit erosion rates, and use high resolution images to place limits on vertical changes in the surface of the residual cap. We find the mass balance in Mars years 9-31 to be -6 to +4 km3/♂y, or roughly -0.039% to +0.026% of the mean atmospheric CO2 mass/♂y. The indeterminate sign results chiefly from uncertainty in the amounts of deposition or erosion on the upper surfaces of deposits (as opposed to scarp retreat). Erosion and net deposition in this period appear to be controlled by summertime planetary scale dust events, the largest occurring in MY 9, another, smaller one in MY 28. The rates of erosion and the deposition observed since MY 9 appear to be consistent with the types of deposits and erosional behavior found in most of the residual cap. However, small areas (<10%) of the cap are distinguished by their greater thickness, polygonal troughs, and embayed contacts with thinner units. These deposits may require extended periods (>100 ♂y) of depositional and/or erosional conditions different from those occurring in the period since MY 9, although these environmental differences could be subtle.

  6. Identification of Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs) in Natural Waters Using Accurate Mass Time-of-Flight Mass Spectrometry (TOFMS).

    PubMed

    Strynar, Mark; Dagnino, Sonia; McMahen, Rebecca; Liang, Shuang; Lindstrom, Andrew; Andersen, Erik; McMillan, Larry; Thurman, Michael; Ferrer, Imma; Ball, Carol

    2015-10-01

    Recent scientific scrutiny and concerns over exposure, toxicity, and risk have led to international regulatory efforts resulting in the reduction or elimination of certain perfluorinated compounds from various products and waste streams. Some manufacturers have started producing shorter chain per- and polyfluorinated compounds to try to reduce the potential for bioaccumulation in humans and wildlife. Some of these new compounds contain central ether oxygens or other minor modifications of traditional perfluorinated structures. At present, there has been very limited information published on these "replacement chemistries" in the peer-reviewed literature. In this study we used a time-of-flight mass spectrometry detector (LC-ESI-TOFMS) to identify fluorinated compounds in natural waters collected from locations with historical perfluorinated compound contamination. Our workflow for discovery of chemicals included sequential sampling of surface water for identification of potential sources, nontargeted TOFMS analysis, molecular feature extraction (MFE) of samples, and evaluation of features unique to the sample with source inputs. Specifically, compounds were tentatively identified by (1) accurate mass determination of parent and/or related adducts and fragments from in-source collision-induced dissociation (CID), (2) in-depth evaluation of in-source adducts formed during analysis, and (3) confirmation with authentic standards when available. We observed groups of compounds in homologous series that differed by multiples of CF2 (m/z 49.9968) or CF2O (m/z 65.9917). Compounds in each series were chromatographically separated and had comparable fragments and adducts produced during analysis. We detected 12 novel perfluoroalkyl ether carboxylic and sulfonic acids in surface water in North Carolina, USA using this approach. A key piece of evidence was the discovery of accurate mass in-source n-mer formation (H(+) and Na(+)) differing by m/z 21.9819, corresponding to the

  7. High resolution/accurate mass (HRMS) detection of anatoxin-a in lake water using LDTD-APCI coupled to a Q-Exactive mass spectrometer.

    PubMed

    Roy-Lachapelle, Audrey; Solliec, Morgan; Sinotte, Marc; Deblois, Christian; Sauvé, Sébastien

    2015-01-01

    A new innovative analytical method combining ultra-fast analysis time with high resolution/accurate mass detection was developed to eliminate the misidentification of anatoxin-a (ANA-a), a cyanobacterial toxin, from the natural amino acid phenylalanine (PHE). This was achieved by using the laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to the Q-Exactive, a high resolution/accurate mass spectrometer (HRMS). This novel combination, the LDTD-APCI-HRMS, allowed for an ultra-fast analysis time (<15 s/sample). A comparison of two different acquisition modes (full scan and targeted ion fragmentation) was made to determine the most rigorous analytical method using the LDTD-APCI interface. Method development focused toward selectivity and sensitivity improvement to reduce the possibility of false positives and to lower detection limits. The Q-Exactive mass spectrometer operates with resolving powers between 17500 and 140000 FWHM (m/z 200). Nevertheless, a resolution of 17500FWHM is enough to dissociate ANA-a and PHE signals. Mass accuracy was satisfactory with values below 1 ppm reaching precision to the fourth decimal. Internal calibration with standard addition was achieved with the isotopically-labeled (D5) phenylalanine with good linearity (R(2)>0.999). Enhancement of signal to noise ratios relative to a standard triple-quadrupole method was demonstrated with lower detection and quantification limit values of 0.2 and 0.6 μg/L using the Q-Exactive. Accuracy and interday/intraday relative standard deviations were below 15%. The new method was applied to 8 different lake water samples with signs of cyanobacterial blooms. This work demonstrates the possibility of using an ultra-fast LDTD-APCI sample introduction system with an HRMS hybrid instrument for quantitative purposes with high selectivity in complex environmental matrices. PMID:25476385

  8. MASS BALANCE: A KEY TO ADVANCING MONITORED AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

    SciTech Connect

    Looney, B; Karen Vangelas, K; Karen-M Adams, K; Francis H. Chappelle; Tom O. Early; Claire H. Sink

    2006-06-30

    Monitored natural attenuation (MNA) and enhanced attenuation (EA) are two environmental management strategies that rely on a variety of attenuation processes to degrade or immobilize contaminants and are implemented at appropriate sites by demonstrating that contaminant plumes have low risk and are stable or shrinking. The concept of a mass balance between the loading and attenuation of contaminants in a groundwater system is a powerful framework for conceptualizing and documenting the relative stability of a contaminant plume. As a result, this concept has significant potential to support appropriate implementation of monitored natural attenuation (MNA) and enhanced attenuation (EA). For mass balance to be useful in engineering practice, however, it is necessary to quantify it in practical ways that facilitate overall site remediation and which are consistent with existing regulatory guidance. Two divergent philosophies exist for quantifying plume stability--empirical and deterministic. The first relies on historical contaminant concentration data and bulk geochemical information from a monitoring well network and documents plume stability using trend analysis and statistical tools. This empirical approach, when feasible, provides powerful and compelling documentation of plume behavior and mass balance. It provides an interpretation on a relevant scale under field conditions. It integrates the operative attenuation processes measured by observing their actual impact on the plume. The power of the empirical approach was recognized early in the development of MNA guidance and protocols and it is currently the basis of the three lines of evidence used in MNA studies. The empirical approach has some weaknesses, however. It requires a relatively long period of undisturbed historical data. Thus it cannot be effectively applied to sites where active remediation was initiated quickly and is currently operating. It cannot be used as a tool to determine how much source

  9. Recent evolution and mass balance of Cordón Martial glaciers, Cordillera Fueguina Oriental

    NASA Astrophysics Data System (ADS)

    Strelin, Jorge; Iturraspe, Rodolfo

    2007-10-01

    Past and present glacier changes have been studied at Cordón Martial, Cordillera Fueguina Oriental, Tierra del Fuego, providing novel data for the Holocene deglaciation history of southern South America and extrapolating as well its future behavior based on predicted climatic changes. Regional geomorphologic and stratigraphic correlations indicate that the last glacier advance deposited the ice-proximal ("internal") moraines of Cordón Martial, around 330 14C yr BP, during the Late Little Ice Age (LLIA). Since then glaciers have receded slowly, until 60 years ago, when major glacier retreat started. There is a good correspondence for the past 100 years between the surface area variation of four small cirque glaciers at Cordón Martial and the annual temperature and precipitation data of Ushuaia. Between 1984 and 1998, Martial Este Glacier lost 0.64 ± 0.02 × 10 6 m 3 of ice mass (0.59 ± 0.02 × 10 6 m 3 w.e.), corresponding to an average ice thinning of 7.0 ± 0.2 m (6.4 ± 0.2 m w.e), according to repeated topographic mapping. More detailed climatic data have been obtained since 1998 at the Martial Este Glacier, including air temperature, humidity and solar radiation. These records, together with the monthly mass balance measured since March 2000, document the annual response of the Martial Este Glacier to the climate variation. Mass balances during hydrological years were positive in 2000, negative in 2001 and near equilibrium in 2002. Finally, using these data and the regional temperature trend projections, modeled for different future scenarios by the Atmosphere-Ocean Model (GISS-NASA/GSFC), potential climatic-change effects on this mountain glacier were extrapolated. The analysis shows that only the Martial Este Glacier may survive this century.

  10. Changes in Ice Flow Dynamics of Totten Glacier, East Antarctica and Impacts on Ice Mass Balance

    NASA Astrophysics Data System (ADS)

    Li, X.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.; An, L.

    2014-12-01

    Totten Glacier, East Antarctica is one of the largest glaciers in Antarctica, draining an area of 5.3*105 km2 and containing ice at an equivalent 9 m sea level rise. Lidar/radar altimetry data from 2003-2009 suggests that the glacier is thinning. Thinning is concentrated in areas of fast flow and therefore indicative of changes in ice dynamics. Here, we employ time series of ice velocity from ERS-1/2, RADARSAT-1, LANDSAT-7, ALOS PALSAR, TanDEM/TerraSAR-X and COSMO-Skymed to measure the glacier velocity from 1996 till present. We find significant temporal changes in ice velocity, especially in 1996-2007, followed by a period of slow decrease in 2010-2013. Comparing the results with RACMO2 surface mass balance in the interior suggests that the glacier mass balance was already negative in 1996 and became more negative into the 2000s. The resulting mass loss and stretching of the ice is compatible with the 1.5 m/yr thinning detected by the radar altimeters near the grounding zone. The grounding zone of the glacier includes a vast 15 km long ice plain where the glacier is only grounded a few 10m above hydrostatic equilibrium. We detect a retreat of the region of partial floatation with time, but not solid migration of the grounding line of the glacier. Inverted bathymetry results from gravity data collected offshore suggest the presence of a paleo subglacial channel conducive to the transfer of surface ocean heat, likely diluted circumpolar deep water, whose transfer to the ice shelf cavity may have affected the glacier stability. We suggest that further transfer of ocean heat to the ice shelf could trigger a rapid glacier retreat in this region.

  11. Does mechanistic modeling of filter strip pesticide mass balance and degradation processes affect environmental exposure assessments?

    PubMed

    Muñoz-Carpena, Rafael; Ritter, Amy; Fox, Garey A; Perez-Ovilla, Oscar

    2015-11-01

    Vegetative filter strips (VFS) are a widely adopted practice for limiting pesticide transport from adjacent fields to receiving waterbodies. The efficacy of VFS depends on site-specific input factors. To elucidate the complex and non-linear relationships among these factors requires a process-based modeling framework. Previous research proposed linking existing higher-tier environmental exposure models with a well-tested VFS model (VFSMOD). However, the framework assumed pesticide mass stored in the VFS was not available for transport in subsequent storm events. A new pesticide mass balance component was developed to estimate surface pesticide residue trapped in the VFS and its degradation between consecutive runoff events. The influence and necessity of the updated framework on acute and chronic estimated environmental concentrations (EECs) and percent reductions in EECs were investigated across three, 30-year U.S. EPA scenarios: Illinois corn, California tomato, and Oregon wheat. The updated framework with degradation predicted higher EECs than the existing framework without degradation for scenarios with greater sediment transport, longer VFS lengths, and highly sorbing and persistent pesticides. Global sensitivity analysis (GSA) assessed the relative importance of mass balance and degradation processes in the context of other input factors like VFS length (VL), organic-carbon sorption coefficient (Koc), and soil and water half-lives. Considering VFS pesticide residue and degradation was not important if single, large runoff events controlled transport, as is typical for higher percentiles considered in exposure assessments. Degradation processes become more important when considering percent reductions in acute or chronic EECs, especially under scenarios with lower pesticide losses. PMID:26218348

  12. Speciation distribution and mass balance of copper and zinc in urban rain, sediments, and road runoff.

    PubMed

    Zuo, Xiaojun; Fu, Dafang; Li, He

    2012-11-01

    Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments. PMID:22529005

  13. Constraining ice sheet mass balance trends using Cryosat-2 and laser altimetry

    NASA Astrophysics Data System (ADS)

    Griggs, J.; Bamber, J. L.

    2012-12-01

    The mass balance of the Antarctic and Greenland is required to assess their contribution to sea level rise as well as evaluate their sensitivities to variable future forcings. There is general agreement that the ice sheets are losing mass and that loss may be increasing. However, the range of estimates and the uncertainty in those estimates is in many cases, larger than the signal measured, particularly in a regional sense. Cryosat-2 will improve on the legacy satellite measurements from ERS-1 and -2 by using its interferometric model to determine elevation on steep slopes and through it's greater across - track resolution. The new technique will overcome many of the limitations of previous radar altimeters but elevations will still suffer from variable penetration in the firn and errors due to short-wavelength roughness. Building on previous work comparing and combining laser and radar altimeter data, we will assess the uncertainty in elevation due to these limitations. We use NASA Operation Ice Bridge airborne laser altimetry to assess biases in absolute elevation and elevation rates from Cryosat-2 data. We focus on the first 6 months of released data from the mission so that variability in penetration observed can be attributed to seasonal temperature, melt and accumulation variations can be assessed. Unfortunately, coincident airborne data is not currently available so we will assess the impact of the time difference between the datasets as well as presenting comparisons to older, longer time period, NASA ICESat satellite altimetry. The project aims to fully quantify biases and develop algorithms to correct for them and here we present our first comparisons. This will allow us to determine the likely improvement in mass balance estimates from Cryosat-2 as compared to legacy datasets.

  14. Glacial changes and glacier mass balance at Gran Campo Nevado, Chile during recent decades

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Schnirch, M.; Kilian, R.; Acuña, C.; Casassa, G.

    2003-04-01

    /2001 and 8.5 m in 2001/2002. This is in excellent accordance (+/-4%) with measurements at 12 m-long ablation stakes that have been drilled into the glacier. The DEM and a GIS layer defining glacier boundaries provide the basis for the distributed calculation of glacier mass balance. It was computed from the degree-day-model by applying elevation-corrected temperature and precipitation data to each grid point of the DEM. Furthermore, weather station data from Punta Arenas and Faro Evangelistas since 1905 enables to estimate the mass balance of Glaciar Lengua for almost one century. The derived mass balance record indicates a slightly negative mass balance during most of the 20th century. This in excellent agreement with the result obtained from aerial photography and GIS. The work was conducted as part of the international and interdisciplinary working group “Gran Campo Nevado” and was supported by the German Research Foundation (DFG).

  15. Electrolytic transformation of ordinance related compounds (ORCs) in groundwater: laboratory mass balance studies.

    PubMed

    Wani, Altaf H; O'Neal, Brenda R; Gilbert, David M; Gent, David B; Davis, Jeffrey L

    2006-02-01

    Electrolytic reactive barriers (e(-) barriers) consist of closely spaced permeable electrodes installed across a groundwater contaminant plume in a permeable reactive barrier format. Application of sufficient potential to the electrodes results in sequential oxidation and reduction of the target contaminant. The objective of this study was to quantify the mass distribution of compounds produced during sequential electrolytic oxidation and reduction of ordinance related compounds (ORCs) in a laboratory analog to an e(-) barrier. In this study, a series of column tests were conducted using RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and TNT (2,4,6-trinitrotoluene) as representative ORCs. The experimental setup consisted of a plexiglass column packed with quartz-feldspar sand to simulate aquifer conditions. A single set of porous electrodes consisting of expanded titanium-mixed metal oxide mesh was placed at the midpoint of the sand column as a one-dimensional analog to an e(-) barrier. Constant current of 20mA (variable voltage) was applied to the electrode set. Initial studies involved quantification of reaction products using unlabeled RDX and TNT. Approximately 70% of the influent concentration was transformed, in one pass, through sequential oxidation-reduction for both contaminants. Following the unlabeled studies, (14)C labeled RDX and TNT were introduced to determine the mass balance. An activity balance of up to 96% was achieved for both (14)C-RDX and (14)C-TNT. For both contaminants, approximately 21% of the influent activity was mineralized to (14)CO(2). The proportion of the initial activity in the dissolved fraction was different for the two test contaminants. Approximately 30% of the initial (14)C-RDX was recovered as unreacted in the dissolved phase. The balance of the (14)C-RDX was recovered as non-volatile, non-nitroso transformation products. None of the (14)C-RDX was sorbed to the column sand packing. For (14)C-TNT approximately 51% of the initial

  16. Multiclass semi-volatile compounds determination in wine by gas chromatography accurate time-of-flight mass spectrometry.

    PubMed

    Rodríguez-Cabo, T; Rodríguez, I; Ramil, M; Silva, A; Cela, R

    2016-04-15

    The performance of gas chromatography (GC) with accurate, high resolution mass spectrometry (HRMS) for the determination of a group of 39 semi-volatile compounds related to wine quality (pesticide residues, phenolic off-flavours, phenolic pollutants and bioactive stilbenes) is investigated. Solid-phase extraction (SPE) was used as extraction technique, previously to acetylation (phenolic compounds) and dispersive liquid-liquid microextraction (DLLME) concentration. Compounds were determined by GC coupled to a quadrupole time-of-flight (QTOF) MS system through an electron ionization (EI) source. The final method attained limits of quantification (LOQs) at the very low ng mL(-1) level, covering the range of expected concentrations for target compounds in red and white wines. For 38 out of 39 compounds, performance of sample preparation and determination steps were hardly affected by the wine matrix; thus, accurate recoveries were achieved by using pseudo-external calibration. Levels of target compounds in a set of 25 wine samples are reported. The capabilities of the described approach for the post-run identification of species not considered during method development, without retention time information, are illustrated and discussed with selected examples of compounds from different classes. PMID:26971021

  17. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate

    PubMed Central

    Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul

    2015-01-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere. PMID:26633821

  18. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate.

    PubMed

    Minyoo, Abel B; Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul; Lankester, Felix

    2015-12-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere. PMID:26633821

  19. Temperature-index modeling of mass balance and runoff in the Valdez Glacier catchment in 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Davis, Jennifer L.

    Glaciers play an important role in both storage and generation of runoff within individual watersheds. The Valdez Glacier catchment (342 km2), located in southern Alaska in the Chugach mountains off of Prince William Sound, is characterized by large annual volumes of rain- and snowfall. As Valdez Glacier and other glaciers within the catchment (comprising 58% of the catchment area) continue to melt in a warming climate, it is unclear how the runoff will be affected. Temperature-index modeling is one method used to estimate glacier mass balance and runoff in highly glacierized catchments, and may be suitable for predicting future runoff regimes. In this study, we used a combination of field measurements (air temperature, glacier mass balance, streamflow, and ground-penetrating radar (GPR)-derived snow water equivalent (SWE) from a parallel study) and modeled climate data (PRISM) to a) calibrate a temperature-index model to glacier mass balance in 2012; b) validate the model to laser altimetry; and c) calibrate a temperature-index model to runoff measurements in fall of 2012 and in spring, summer and fall of 2013. We calibrated the snow-radiation coefficient (rsnow), ice-radiation coefficient (rice), and melt factor (MF) of the temperature-index model to glacier mass balance measurements from 2012. Using the calibrated- rsnow, r ice, and MF (i.e. rsnow, rice, and MF = 0.20, 0.50 and 4.0, respectively), we calculated 2012 annual glacier mass balance (Ba) at 0.05 +/- 0.49 meters water equivalent (m w.eq.). We next validated the model to 2012 laser altimetry annual glacier mass balance estimates (Ba = 0.20 +/- 0.6 m w.eq.). We then modeled glacier mass balance in 2013 using rsnow, rice, and MF from the 2012 calibration. The model underestimated summer glacier mass balance in 2013, resulting in annual glacier mass balance (Ba = 0.55 m w.eq.) that did not fall within the 2013 laser altimetry annual balance estimate (Ba = -1.15 +0.29/-0.30 m w.eq.). We therefore re

  20. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming; 2003-07 Versus 1992-2002

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Benner, Anita C.; Beckley, Matthew; Cornejo, Helen G.; DiMarzio, John; Giovinetto, Mario B.; Neumann, Thomas A.; Robbins, John; Saba, Jack L.; Yi, Donghui; Wang, Weili

    2011-01-01

    We derive mass changes of the Greenland ice sheet (GIS) for 2003-07 from ICESat laser altimetry and compare them with results for 1992-2002 from ERS radar and airborne laser altimetry. The GIS continued to grow inland and thin at the margins during 2003 07, but surface melting and accelerated flow significantly increased the marginal thinning compared with the 1990s. The net balance changed from a small loss of 7 plus or minus 3 Gt a 1(sup -1) in the 1990s to 171 plus or minus 4 Gt a (sup -1) for 2003-07, contributing 0.5 mm a(sup -1) to recent global sea-level rise. We divide the derived mass changes into two components: (1) from changes in melting and ice dynamics and (2) from changes in precipitation and accumulation rate. We use our firn compaction model to calculate the elevation changes driven by changes in both temperature and accumulation rate and to calculate the appropriate density to convert the accumulation-driven changes to mass changes. Increased losses from melting and ice dynamics (17-206 Gt a(sup-1) are over seven times larger than increased gains from precipitation (10 35 Gt a(sup-1) during a warming period of approximately 2 K (10 a)(sup -1) over the GIS. Above 2000m elevation, the rate of gain decreased from 44 to 28 Gt a(sup-1), while below 2000m the rate of loss increased from 51 to 198 Gt a(sup-1). Enhanced thinning below the equilibrium line on outlet glaciers indicates that increased melting has a significant impact on outlet glaciers, as well as accelerating ice flow. Increased thinning at higher elevations appears to be induced by dynamic coupling to thinning at the margins on decadal timescales.

  1. Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report

    SciTech Connect

    2000-12-01

    This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demand when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and

  2. Uncertainty in alpine snow mass balance simulations due to snow model parameterisation and windflow representation

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Pomeroy, J. W.; Essery, R.; Leroux, N.

    2013-12-01

    Despite advances in alpine snow modelling there remain two fundamental areas of divergent scientific thought in estimating alpine snow mass balances: i) blowing snow sublimation losses, and ii) wind flow representation. Sublimation calculations have poorly understood humidity feedbacks that vary considerably and mathematical representations of alpine windflow vary in complexity - these differences introduce uncertainty. To better estimate and restrain this uncertainty, a variety of physically based, spatially distributed snowmelt models that consider the physics of wind redistribution and sublimation of blowing snow were evaluated for their ability to simulate seasonal snow distribution and melt patterns in a windy alpine environment in the Canadian Rockies. The primary difference in the snow models was their calculation of blowing snow sublimation losses which ranged from large to small estimates. To examine the uncertainty introduced by windflow calculations on the snow model simulations, each model was forced with output from windflow models of varying computational complexity and physical realism from a terrain-based empirical interpolation of station observations to a simple turbulence model to a computational fluid dynamics model that solves for the Navier-Stokes equations. The high-resolution snow simulations were run over a 1 km2 spatial extent centred on a ridgetop meteorological station within the Marmot Creek Research basin, Alberta, Canada. The three windflow simulations all produced reasonable results compared to wind speeds measured on two opposing slopes (bias better than ×0.3 m s-1; RMSE < 1.1 m s-1), however there was great sensitivity in SWE simulated by the snow models to the driving windflow simulation used. Specifically, there were distinct differences in the magnitude and location of snow drifts from all snow models that depended on the windflow scheme. When compared to measurements from airborne LiDAR, snow surveys, and automated snow depth

  3. Biogeochemical mass balances in a turbid tropical reservoir. Field data and modelling approach

    NASA Astrophysics Data System (ADS)

    Phuong Doan, Thuy Kim; Némery, Julien; Gratiot, Nicolas; Schmid, Martin

    2014-05-01

    The turbid tropical Cointzio reservoir, located in the Trans Mexican Volcanic Belt (TMVB), behaves as a warm monomictic water body (area = 6 km2, capacity 66 Mm3, residence time ~ 1 year). It is strategic for the drinking water supply of the city of Morelia, capital of the state of Michoacán, and for downstream irrigation during the dry season. This reservoir is a perfect example of a human-impacted system since its watershed is mainly composed of degraded volcanic soils and is subjected to high erosion processes and agricultural loss. The reservoir is threatened by sediment accumulation and nutrients originating from untreated waters in the upstream watershed. The high content of very fine clay particles and the lack of water treatment plants lead to serious episodes of eutrophication (up to 70 μg chl. a L-1), high levels of turbidity (Secchi depth < 30 cm) and a long period of anoxia (from May to October). Based on intensive field measurements in 2009 (deposited sediment, benthic chamber, water vertical profiles, reservoir inflow and outflow) we determined suspended sediment (SS), carbon (C), nitrogen (N) and phosphorus (P) mass balances. Watershed SS yields were estimated at 35 t km2 y-1 of which 89-92 % were trapped in the Cointzio reservoir. As a consequence the reservoir has already lost 25 % of its initial storage capacity since its construction in 1940. Nutrient mass balances showed that 50 % and 46 % of incoming P and N were retained by sedimentation, and mainly eliminated through denitrification respectively. Removal of C by 30 % was also observed both by sedimentation and through gas emission. To complete field data analyses we examined the ability of vertical one dimensional (1DV) numerical models (Aquasim biogeochemical model coupled with k-ɛ mixing model) to reproduce the main biogeochemical cycles in the Cointzio reservoir. The model can describe all the mineralization processes both in the water column and in the sediment. The values of the

  4. Application of terrestrial photogrammetry for the mass balance calculation on Montasio Occidentale Glacier (Julian Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Carturan, Luca; Calligaro, Simone; Blasone, Giacomo; Guarnieri, Alberto; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio

    2014-05-01

    Digital elevation models (DEMs) of glaciated terrain are commonly used to measure changes in geometry and hence infer the mass balance of glaciers. Different tools and methods exist to obtain information about the 3D geometry of terrain. Recent improvements on the quality and performance of digital cameras for close-range photogrammetry, and the development of automatic digital photogrammetric processing makes the 'structure from motion' photogrammetric technique (SfM) competitive for high quality 3D models production, compared to efficient but also expensive and logistically-demanding survey technologies such as airborn and terrestrial laser scanner (TLS). The purpose of this work is to test the SfM approach, using a consumer-grade SLR camera and the low-cost computer vision-based software package Agisoft Photoscan (Agisoft LLC), to monitor the mass balance of Montasio Occidentale glacier, a 0.07km2, low-altitude, debris-covered glacier located in the Eastern Italian Alps. The quality of the 3D models produced by the SfM process has been assessed by comparison with digital terrain models obtained through TLS surveys carried out at the same dates. TLS technique has indeed proved to be very effective in determining the volume change of this glacier in the last years. Our results shows that the photogrammetric approach can produce point cloud densities comparable to those derived from TLS measurements. Furthermore, the horizontal and vertical accuracies are also of the same order of magnitude as for TLS (centimetric to decimetric). The effect of different landscape characteristics (e.g. distance from the camera or terrain gradient) and of different substrata (rock, debris, ice, snow and firn) was also evaluated in terms of SfM reconstruction's accuracy vs. TLS. Given the good results obtained on the Montasio Occidentale glacier, it can be concluded that the terrestrial photogrammetry, with the advantageous features of portability, ease of use and above all low costs

  5. Radar Interferometry Studies of the Mass Balance of Polar Ice Sheets

    NASA Technical Reports Server (NTRS)

    Rignot, Eric (Editor)

    1999-01-01

    The objectives of this work are to determine the current state of mass balance of the Greenland and Antarctic Ice Sheets. Our approach combines different techniques, which include satellite synthetic-aperture radar interferometry (InSAR), radar and laser altimetry, radar ice sounding, and finite-element modeling. In Greenland, we found that 3.5 times more ice flows out of the northern part of the Greenland Ice Sheet than previously accounted for. The discrepancy between current and past estimates is explained by extensive basal melting of the glacier floating sections in the proximity of the grounding line where the glacier detaches from its bed and becomes afloat in the ocean. The inferred basal melt rates are very large, which means that the glaciers are very sensitive to changes in ocean conditions. Currently, it appears that the northern Greenland glaciers discharge more ice than is being accumulated in the deep interior, and hence are thinning. Studies of temporal changes in grounding line position using InSAR confirm the state of retreat of northern glaciers and suggest that thinning is concentrated at the lower elevations. Ongoing work along the coast of East Greenland reveals an even larger mass deficit for eastern Greenland glaciers, with thinning affecting the deep interior of the ice sheet. In Antarctica, we found that glaciers flowing into a large ice shelf system, such as the Ronne Ice Shelf in the Weddell Sea, exhibit an ice discharge in remarkable agreement with mass accumulation in the interior, and the glacier grounding line positions do not migrate with time. Glaciers flowing rapidly into the Amudsen Sea, unrestrained by a major ice shelf, are in contrast discharging more ice than required to maintain a state of mass balance and are thinning quite rapidly near the coast. The grounding line of Pine Island glacier (see diagram) retreated 5 km in 4 years, which corresponds to a glacier thinning rate of 3.5 m/yr. Mass imbalance is even more negative

  6. Low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream

    NASA Astrophysics Data System (ADS)

    DeTemple, B.; Wilcock, P.

    2011-12-01

    In an alluvial, gravel-bed stream governed by a plane-bed bedload transport regime, the physicochemical properties, size distribution, and granular architecture of the sediment grains that constitute the streambed surface influence many hydrodynamic, geomorphic, chemical, and ecological processes. Consequently, the abilities to accurately characterize the morphology and model the morphodynamics of the streambed surface and its interaction with the bedload above and subsurface below are necessary for a more complete understanding of how sediment, flow, organisms, and biogeochemistry interact. We report on our progress in the bottom-up development of low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream. These balance laws are assembled in a four stage process. First, the stream sediment-water system is conceptually abstracted as a nested, multi-phase, multi-species, structured continuum. Second, the granular surface of an aggregate of sediment grains is mathematically defined. Third, an integral approach to mass balance, founded in the continuum theory of multiphase flow, is used to formulate primordial, differential, instantaneous, local, continuum, mass balance laws applicable at any material point within a gravel-bed stream. Fourth, area averaging and time-after-area averaging, employing planform, low-pass filtering expressed as correlation or convolution integrals and based on the spatial and temporal filtering techniques found in the fields of multiphase flow, porous media flow, and large eddy simulation of turbulent fluid flow, are applied to smooth the primordial equations while maximizing stratigraphic resolution and preserving the definitions of relevant morphodynamic surfaces. Our approach unifies, corrects, contextualizes, and generalizes prior efforts at developing stream sediment continuity equations, including the top-down derivations of the surface layer (or "active layer") approach of Hirano

  7. Development and evaluation of a liquid chromatography-mass spectrometry method for rapid, accurate quantitation of malondialdehyde in human plasma.

    PubMed

    Sobsey, Constance A; Han, Jun; Lin, Karen; Swardfager, Walter; Levitt, Anthony; Borchers, Christoph H

    2016-09-01

    Malondialdhyde (MDA) is a commonly used marker of lipid peroxidation in oxidative stress. To provide a sensitive analytical method that is compatible with high throughput, we developed a multiple reaction monitoring-mass spectrometry (MRM-MS) approach using 3-nitrophenylhydrazine chemical derivatization, isotope-labeling, and liquid chromatography (LC) with electrospray ionization (ESI)-tandem mass spectrometry assay to accurately quantify MDA in human plasma. A stable isotope-labeled internal standard was used to compensate for ESI matrix effects. The assay is linear (R(2)=0.9999) over a 20,000-fold concentration range with a lower limit of quantitation of 30fmol (on-column). Intra- and inter-run coefficients of variation (CVs) were <2% and ∼10% respectively. The derivative was stable for >36h at 5°C. Standards spiked into plasma had recoveries of 92-98%. When compared to a common LC-UV method, the LC-MS method found near-identical MDA concentrations. A pilot project to quantify MDA in patient plasma samples (n=26) in a study of major depressive disorder with winter-type seasonal pattern (MDD-s) confirmed known associations between MDA concentrations and obesity (p<0.02). The LC-MS method provides high sensitivity and high reproducibility for quantifying MDA in human plasma. The simple sample preparation and rapid analysis time (5x faster than LC-UV) offers high throughput for large-scale clinical applications. PMID:27437618

  8. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    PubMed

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the

  9. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds.

    PubMed

    Zimmo, O R; van der Steen, N P; Gijzen, H J

    2004-02-01

    Nitrogen removal processes and nitrogen mass balances in algae-based ponds (ABPs) and duckweed (Lemna gibba)-based ponds (DBPs) were assessed during periods of 4 months, each under different operational conditions. During periods 1 and 2, the effect of cold and warm temperature was studied. During periods 2 and 3, the effect of low- and high-system organic loading (OL) was studied in warm seasons operation. The pilot-scale systems consisted of four similar ponds in series fed with domestic sewage with hydraulic retention time of 7 days in each pond. Overall nitrogen removal was higher during warm temperature in both ABPs and DBPs, but similar during periods 2 and 3. Nitrogen removal in DBPs was lower than in ABPs by 20%, 12% and 8% during cold temperature, warm temperature and high-OL periods, respectively. Depending on temperature and OL rate, ABPs showed higher nitrogen removal via sedimentation (46-245% higher) compared to DBPs. Also, ABPs also showed higher nitrogen removal via denitrification (7-37% higher) compared to DBPs. Ammonia volatilisation in both systems did not exceed 1.1% of influent total nitrogen during the entire experimental period. N uptake by duckweed corresponds to 30% of the influent nitrogen during warm/low OL period and decreased to 10% and 19% during the cold and warm/high OL period, respectively. Predictive models for nitrogen removal presented a good reflection of nitrogen fluxes on overall nitrogen balance under the prevailing experimental conditions. PMID:14769411

  10. Cloud effects on the surface energy and mass balance of Brewster Glacier, New Zealand

    NASA Astrophysics Data System (ADS)

    Conway, J. P.; Cullen, N. J.

    2015-02-01

    A thorough understanding of the influence of clouds on glacier surface energy balance (SEB) and surface mass balance (SMB) is critical for forward and backward modelling of glacier-climate interactions. A validated 22 month time series of SEB/SMB was constructed for the ablation zone of the Brewster Glacier, using high quality radiation data to carefully evaluate SEB terms and define clear-sky and overcast conditions. A fundamental change in glacier SEB in cloudy conditions was driven by increased effective sky emissivity and surface vapour pressure, rather than the minimal change in air temperature and wind speed. During overcast conditions, positive net longwave radiation and latent heat fluxes allowed melt to be maintained through a much greater length of time compared to clear-sky conditions, and led to similar melt in each sky condition. The sensitivity of SMB to changes in air temperature was greatly enhanced in overcast compared to clear-sky conditions due to more frequent melt and the occurrence of precipitation, which enabled a strong accumulation-albedo feedback. During the spring and autumn seasons, the sensitivity during overcast conditions was strongest. There is a need to include the effects of atmospheric moisture (vapour, cloud and precipitation) on melt processes when modelling glacier-climate interactions.

  11. Quantifying in-stream retention of nitrate at catchment scales using a practical mass balance approach.

    PubMed

    Schwientek, Marc; Selle, Benny

    2016-02-01

    As field data on in-stream nitrate retention is scarce at catchment scales, this study aimed at quantifying net retention of nitrate within the entire river network of a fourth-order stream. For this purpose, a practical mass balance approach combined with a Lagrangian sampling scheme was applied and seasonally repeated to estimate daily in-stream net retention of nitrate for a 17.4 km long, agriculturally influenced, segment of the Steinlach River in southwestern Germany. This river segment represents approximately 70% of the length of the main stem and about 32% of the streambed area of the entire river network. Sampling days in spring and summer were biogeochemically more active than in autumn and winter. Results obtained for the main stem of Steinlach River were subsequently extrapolated to the stream network in the catchment. It was demonstrated that, for baseflow conditions in spring and summer, in-stream nitrate retention could sum up to a relevant term of the catchment's nitrogen balance if the entire stream network was considered. PMID:26801154

  12. Mass balances on selected polycyclic aromatic hydrocarbons in the New York-New Jersey Harbor.

    PubMed

    Rodenburg, Lisa A; Valle, Sandra N; Panero, Marta A; Muñoz, Gabriela R; Shor, Leslie M

    2010-01-01

    Mass balances on 10 polycyclic aromatic hydrocarbons (PAHs) in the New York-New Jersey Harbor (hereafter "the Harbor") were constructed using monitoring data from the water column, sediment, and atmosphere. Inputs considered included tributaries, atmospheric deposition, wastewater treatment plant discharges, combined sewer overflows (CSOs), and stormwater runoff. Removal processes examined included tidal exchange between the Harbor and the coastal Bight and Long Island Sound, volatilization, and accumulation or burial of sediment-bound PAHs in the Harbor. The PAHs investigated were fluorene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, benzo[a]pyrene, perylene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene. The results show inputs and outputs are fairly well balanced for most compounds, a finding that suggests aerobic biodegradation may not be a key loss process in this Harbor, as has been assumed in other systems. The main pathway for inputs of all PAHs is stormwater runoff. Atmospheric deposition is an important conveyor of PAHs with molecular weights < or =202 g mol(-1). A principal objective of this report is to expose key data gaps, which include the need for comprehensive monitoring of both flow and PAH concentrations in stormwater and CSOs. An improved understanding of the key transmission routes of nonpoint source pollutants is essential for sustainable management of urban water resources. PMID:20176837

  13. Aqueous gradient by balancing diffusive and convective mass transport (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Habhab, Mohammed-Baker I.; Ismail, Tania; Lo, Joe F.; Haque, Arefa

    2016-03-01

    In wounds, cells secret biomolecules such as vascular endothelial growth factor (VEGF), a protein that controls many processes in healing. VEGF protein is expressed in a gradient in tissue, and its shape will be affected by the tissue injury sustained during wounding. In order to study the responses of keratinocyte cell migration to VEGF gradients and the geometric factors on wound healing, we designed a microfluidic gradient device that can generate large area gradients (1.5 cm in diameter) capable of mimicking arbitrary wound shapes. Microfluidic devices offer novel techniques to address biological and biomedical issues. Different from other gradient microfluidics, our device balances diffusion of biomolecules versus the convective clearance by a buffer flow on the opposite ends of the gradient. This allows us to create a large area gradient within shorter time scales by actively driving mass transport. In addition, the microfluidic device makes use of a porous filter membrane to create this balance as well as to deliver the resulting gradient to a culture of cells. The culture of cells are seeded above the gradient in a gasket chamber. However, Keratinocytes do not migrate effectively on filter paper. Therefore, in order to improve the motility of cells on the surface, we coated the filter paper with a 30m thick layer of gelatin type B. after observation under the microscope we found that the gelatin coated sample showed cells with more spread out morphology, with 97% viability, suggesting better adhesion than the non-coated sample.

  14. Tree carbon allocation dynamics determined using a carbon mass balance approach.

    PubMed

    Klein, Tamir; Hoch, Günter

    2015-01-01

    Tree internal carbon (C) fluxes between compound and compartment pools are difficult to measure directly. Here we used a C mass balance approach to decipher these fluxes and provide a full description of tree C allocation dynamics. We collected independent measurements of tree C sinks, source and pools in Pinus halepensis in a semi-arid forest, and converted all fluxes to g C per tree d(-1) . Using this data set, a process flowchart was created to describe and quantify the tree C allocation on diurnal to annual time-scales. The annual C source of 24.5 kg C per tree yr(-1) was balanced by C sinks of 23.5 kg C per tree yr(-1) , which partitioned into 70%, 17% and 13% between respiration, growth, and litter (plus export to soil), respectively. Large imbalances (up to 57 g C per tree d(-1) ) were observed as C excess during the wet season, and as C deficit during the dry season. Concurrent changes in C reserves (starch) were sufficient to buffer these transient C imbalances. The C pool dynamics calculated using the flowchart were in general agreement with the observed pool sizes, providing confidence regarding our estimations of the timing, magnitude, and direction of the internal C fluxes. PMID:25157793

  15. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates.

    PubMed

    Surawski, N C; Sullivan, A L; Roxburgh, S H; Meyer, C P Mick; Polglase, P J

    2016-01-01

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on 'consumed biomass', which is an approximation to the biogeochemically correct 'burnt carbon' approach. Here we show that applying the 'consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the 'burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the 'burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon. PMID:27146785

  16. Evaluation of glacier mass balance by observing variations in transient snowline positions. [Jostedalsbreen ice cap, Norway

    NASA Technical Reports Server (NTRS)

    Oestrem, G. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The transient snowline on five outlet glaciers from the Jostedalsbreen ice-cap in Southwestern Norway could be determined from ERTS-1 image 1336-10260, when bands MSS 5, 6, and 7 were combined in an additive color viewer. The snowline was situated at a very low altitude at the time of imagery (24 June 1973) indicating that glacier melt was behind normal schedule, a fact that has a hydrologic bearing: one could expect less melt water in the streams. The idea to use ERTS-1 imagery in snowline determinations proved realistic and relatively easy to apply in practice. The method will be useful to estimate the glaciers' mass balance for large areas, provided some ground truth observations are made. Images from the end of the melt season are of course vital in this work.

  17. Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate.

    PubMed

    Sawaittayothin, Variga; Polprasert, Chongrak

    2007-02-01

    Experiments were conducted to investigate the feasibility of applying constructed wetlands to treat a sanitary landfill leachate containing high nitrogen and bacterial contents. Under a tropical condition (temperature of about 30 degrees C), the constructed wetland units operating at the hydraulic retention time of 8d yielded the best treatment efficiencies with BOD(5), TN and fecal coliforms removal of 91%, 96% and more than 99%, respectively. Cadmium removal in the SFCW bed was 99.7%. Mass balance analysis, based on total nitrogen contents of the plant biomass and dissolved oxygen and oxidation-reduction potential values, suggested that 88% of the input total nitrogen were uptaken by the plant biomass. Fluorescence in situ hybridization results revealed the predominance of bacteria, including heterotrophic and autotrophic, responsible for BOD(5) removal. Nitrifying bacteria was not present in the constructed wetland beds. PMID:16546377

  18. Columbia Glacier stake location, mass balance, glacier surface altitude, and ice radar data, 1978 measurement year

    USGS Publications Warehouse

    Mayo, L.R.; Trabant, D.C.; March, Rod; Haeberli, Wilfried

    1979-01-01

    A 1 year data-collection program on Columbia Glacier, Alaska has produced a data set consisting of near-surface ice kinematics, mass balance, and altitude change at 57 points and 34 ice radar soundings. These data presented in two tables, are part of the basic data required for glacier dynamic analysis, computer models, and predictions of the number and size of icebergs which Columbia Glacier will calve into shipping lanes of eastern Prince William Sound. A metric, sea-level coordinate system was developed for use in surveying throughout the basin. Its use is explained and monument coordinates listed. A series of seven integrated programs for calculators were used in both the field and office to reduce the surveying data. These programs are thoroughly documented and explained in the report. (Kosco-USGS)

  19. BALANCE : a computer program for calculating mass transfer for geochemical reactions in ground water

    USGS Publications Warehouse

    Parkhurst, David L.; Plummer, L. Niel; Thorstenson, Donald C.

    1982-01-01

    BALANCE is a Fortran computer designed to define and quantify chemical reactions between ground water and minerals. Using (1) the chemical compositions of two waters along a flow path and (2) a set of mineral phases hypothesized to be the reactive constituents in the system, the program calculates the mass transfer (amounts of the phases entering or leaving the aqueous phase) necessary to account for the observed changes in composition between the two waters. Additional constraints can be included in the problem formulation to account for mixing of two end-member waters, redox reactions, and, in a simplified form, isotopic composition. The computer code and a description of the input necessary to run the program are presented. Three examples typical of ground-water systems are described. (USGS)

  20. Variability in winter mass balance of Northern Hemisphere glaciers and relations with atmospheric circulation

    USGS Publications Warehouse

    McCabe, G.J.; Fountain, A.G.; Dyurgerov, M.

    2000-01-01

    An analysis of variability in the winter mass balance (WMB) of 22 glaciers in the Northern Hemisphere indicates two primary modes of variability that explain 46% of the variability among all glaciers. The first mode of variability characterizes WMB variability in Northern and Central Europe and the second mode primarily represents WMB variability in northwestern North America, but also is related to variability in WMB of one glacier in Europe and one in Central Asia. These two modes of WMB variability are explained by variations in mesoscale atmospheric circulation which are driving forces of variations in surface temperature and precipitation. The first mode is highly correlated with the Arctic Oscillation Index, whereas the second mode is highly correlated with the Southern Oscillation Index. In addition, the second mode of WMB variability is highly correlated with variability in global winter temperatures. This result suggests some connection between global temperature trends and WMB for some glaciers.

  1. Aqueous alteration in carbonaceous chondrites - Mass balance constraints on matrix mineralogy

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1987-01-01

    Bulk chemical compositions of matrix material were determined in eleven Antarctic CM chondrites and five non-Antarctic CM and CI chondrites, using microprobe defocused-beam technique. The results, along with previously published data, are used to provide mass balance constraints on the relative proportions of intergrown and intermixed phyllosilicate phases in carbonaceous chondrite matrices. In terms of Fe, Si, and Mg, the CM matrix bulk compositions plot within a triangle defined by the compositions of PCP (a mixture of 25 percent tochilinite and 75 percent cronstedtite), Mg-rich serpentine, and Fe-rich serpentine. Results indicate differing amounts of PCP and serpentines in individual CM matrices. The discrepancies found between predicted and measured S and Ni values require additional sulfide phases. CI matrices were found to contain little, if any, PCP; they consist mostly of serpentine and montmorillonite.

  2. Mass balance of polychlorinated biphenyls and other organochlorine compounds in a lactating cow

    SciTech Connect

    McLachlan, M.S. )

    1993-03-01

    A contaminant mass balance was conducted of a lactating cow in its natural state. PCBs, HDHs, DDE, DDT, HCB, and several other chlorinated substances were investigated. It was found that virtually all of the cow's exposure was through feed. The contaminant absorption in the cow and hence the carry-over rate of persistent compounds was found to be a function of K[sub ow], with approximately constant values up to a log K[sub ow] of 6.5 and thereafter rapidly decreasing absorption with increasing lipophilicity of the contaminant. The key to PCB persistence in the cow was the 4,4[prime] substitution pattern. The 2,3,5 substitution was a less effective hindrance for PCB metabolism. 33 refs., 2 figs., 7 tabs.

  3. Regional ice mass balance for Greenland from GRACE and ICESat modelled by radial basis functions

    NASA Astrophysics Data System (ADS)

    Eicker, A.; Springer, A.; Jensen, L.; Kusche, J.

    2012-04-01

    This contribution presents a tailored regional mass balance for the Greenland ice sheet from GRACE and ICESat observations. A regional gravity field trend model is calculated directly from the GRACE level 1B observations using the short arc method. The gravity field model is parameterized by harmonic space localizing radial basis functions that can be tailored to the specific signal characteristics in Greenland. The ICESat along-track ice elevation changes are co-estimated together with the local topography in order to be independent from external elevation models. The along-track observations are then evaluated without any necessary gridding consistently with the GRACE processing in the same basis of radial basis functions. This allows further joint analysis of the two data sets in this same basis.

  4. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates

    NASA Astrophysics Data System (ADS)

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, C. P. Mick; Polglase, P. J.

    2016-05-01

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on `consumed biomass', which is an approximation to the biogeochemically correct `burnt carbon' approach. Here we show that applying the `consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the `burnt carbon' approach. The required correction is significant and represents ~9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the `burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon.

  5. Accurate measurement of pancreatic islet β-cell mass using a second-generation fluorescent exendin-4 analog

    PubMed Central

    Reiner, Thomas; Thurber, Greg; Gaglia, Jason; Vinegoni, Claudio; Liew, Chong Wee; Upadhyay, Rabi; Kohler, Rainer H.; Kulkarni, Rohit N.; Benoist, Christophe; Mathis, Diane; Weissleder, Ralph

    2011-01-01

    The hallmark of type 1 diabetes is autoimmune destruction of the insulin-producing β-cells of the pancreatic islets. Autoimmune diabetes has been difficult to study or treat because it is not usually diagnosed until substantial β-cell loss has already occurred. Imaging agents that permit noninvasive visualization of changes in β-cell mass remain a high-priority goal. We report on the development and testing of a near-infrared fluorescent β-cell imaging agent. Based on the amino acid sequence of exendin-4, we created a neopeptide via introduction of an unnatural amino acid at the K12 position, which could subsequently be conjugated to fluorophores via bioorthogonal copper-catalyzed click-chemistry. Cell assays confirmed that the resulting fluorescent probe (E4×12-VT750) had a high binding affinity (∼3 nM). Its in vivo properties were evaluated using high-resolution intravital imaging, histology, whole-pancreas visualization, and endoscopic imaging. According to intravital microscopy, the probe rapidly bound to β-cells and, as demonstrated by confocal microscopy, it was internalized. Histology of the whole pancreas showed a close correspondence between fluorescence and insulin staining, and there was an excellent correlation between imaging signals and β-cell mass in mice treated with streptozotocin, a β-cell toxin. Individual islets could also be visualized by endoscopic imaging. In short, E4×12-VT750 showed strong and selective binding to glucose-like peptide-1 receptors and permitted accurate measurement of β-cell mass in both diabetic and nondiabetic mice. This near-infrared imaging probe, as well as future radioisotope-labeled versions of it, should prove to be important tools for monitoring diabetes, progression, and treatment in both experimental and clinical contexts. PMID:21768367

  6. A Proteomic Study of the HUPO Plasma Proteome Project's Pilot Samples using an Accurate Mass and Time Tag Strategy

    SciTech Connect

    Adkins, Joshua N.; Monroe, Matthew E.; Auberry, Kenneth J.; Shen, Yufeng; Jacobs, Jon M.; Camp, David G.; Vitzthum, Frank; Rodland, Karin D.; Zangar, Richard C.; Smith, Richard D.; Pounds, Joel G.

    2005-08-01

    Characterization of the human blood plasma proteome is critical to the discovery of routinely useful clinical biomarkers. We used an Accurate Mass and Time (AMT) tag strategy with high-resolution mass accuracy capillary liquid chromatography Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (cLC-FTICR MS) to perform a global proteomic analysis of pilot study samples as part of the HUPO Plasma Proteome Project. HUPO reference serum and citrated plasma samples from African Americans, Asian Americans, and Caucasian Americans were analyzed, in addition to a Pacific Northwest National Laboratory reference serum and plasma. The AMT tag strategy allowed us to leverage two previously published “shotgun” proteomics experiments to perform global analyses on these samples in triplicate in less than 4 days total analysis time. A total of 722 (22% with multiple peptide identifications) International Protein Index (IPI) redundant proteins, or 377 protein families by ProteinProphet, were identified over the 6 individual HUPO serum and plasma samples. The samples yielded a similar number of identified redundant proteins in the plasma samples (average 446 +/-23) as found in the serum samples (average 440+/-20). These proteins were identified by an average of 956+/-35 unique peptides in plasma and 930+/-11 unique peptides in serum. In addition to this high-throughput analysis, the AMT tag approach was used with a Z-score normalization to compare relative protein abundances. This analysis highlighted both known differences in serum and citrated plasma such as fibrinogens, and reproducible differences in peptide abundances from proteins such as soluble activin receptor-like kinase 7b and glycoprotein m6b. The AMT tag strategy not only improved our sample throughput, and provided a basis for estimated quantitation.

  7. Measurement error models in chemical mass balance analysis of air quality data

    NASA Astrophysics Data System (ADS)

    Christensen, William F.; Gunst, Richard F.

    The chemical mass balance (CMB) equations have been used to apportion observed pollutant concentrations to their various pollution sources. Typical analyses incorporate estimated pollution source profiles, estimated source profile error variances, and error variances associated with the ambient measurement process. Often the CMB model is fit to the data using an iteratively re-weighted least-squares algorithm to obtain the effective variance solution. We consider the chemical mass balance model within the framework of the statistical measurement error model (e.g., Fuller, W.A., Measurement Error Models, Wiley, NewYork, 1987), and we illustrate that the models assumed by each of the approaches to the CMB equations are in fact special cases of a general measurement error model. We compare alternative source contribution estimators with the commonly used effective variance estimator when standard assumptions are valid and when such assumptions are violated. Four approaches for source contribution estimation and inference are compared using computer simulation: weighted least squares (with standard errors adjusted for source profile error), the effective variance approach of Watson et al. (Atmos, Environ., 18, 1984, 1347), the Britt and Luecke (Technometrics, 15, 1973, 233) approach, and a method of moments approach given in Fuller (1987, p. 193). For the scenarios we consider, the simplistic weighted least-squares approach performs as well as the more widely used effective variance solution in most cases, and is slightly superior to the effective variance solution when source profile variability is large. The four estimation approaches are illustrated using real PM 2.5 data from Fresno and the conclusions drawn from the computer simulation are validated.

  8. A mass balance model for the hydrologic response of fine-grained hillside soils to rainfall

    SciTech Connect

    Haneberg, W.C. . New Mexico Bureau of Mines and Mineral Resources)

    1992-01-01

    For a sloping soil layer of uniform thickness D, length L, and angle of inclination B, slope-normal influx per unit breadth is given by Q[sub in] = R L cos B, where R is net recharge. Slope-parallel discharge is given by Q[sub out] = K D sin B, where K is saturated hydraulic conductivity. If the long-term ratio of discharge to influx is > 1, then the slope is self-draining. If the ratio is < 1, then the slope is self-filling. Self-filling slopes will be more susceptible to failure because they cannot easily dissipate infiltration-induced pore pressure increases. For time-variant recharge, the rate of change in volumetric soil moisture content is given by d[Theta]/dt = (R/D) cos B--(K/L) sin B. Calculations using data from a thin colluvium landslide along the Ohio River give an average annual steady-state value of Q[sub out]/Q[sub in] = 1.06. A finite difference solution of the transient mass balance equation agrees fairly well with observed daily mean pressure heads from spring 1988. Stochastic simulations using temporally uncorrelated rainfall distributions fitted to the observed data tend to produce smoother hydrographs than simulations using observed rainfall values. This is due to a mismatch between the observed and fitted distributions, which caused the frequency of large storms to be underestimated and the frequency of small storms to be overestimated. Long-term trends in the stochastic simulations, however, were self-draining in three out of five trials. The mildly self-draining nature of thin colluvium hillsides along the Ohio River may explain why these slopes are marginally stable to unstable, and the general agreement between observed and simulated values suggests that mass balance models may be useful for assessing the susceptibility of hillside soils to precipitation-induced landsliding.

  9. Transient bright "halos" on the South Polar Residual Cap of Mars: Implications for mass-balance

    NASA Astrophysics Data System (ADS)

    Becerra, Patricio; Byrne, Shane; Brown, Adrian J.

    2015-05-01

    Spacecraft imaging of Mars' south polar region during mid-southern summer of Mars year 28 (2007) observed bright halo-like features surrounding many of the pits, scarps and slopes of the heavily eroded carbon dioxide ice of the South Polar Residual Cap (SPRC). These features had not been observed before, and have not been observed since. We report on the results of an observational study of these halos, and spectral modeling of the SPRC surface at the time of their appearance. Image analysis was performed using data from MRO's Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE), as well as images from Mars Global Surveyor's (MGS) Mars Orbiter Camera (MOC). Data from MRO's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) were used for the spectral analysis of the SPRC ice at the time of the halos. These data were compared with a Hapke reflectance model of the surface to constrain their formation mechanism. We find that the unique appearance of the halos is intimately linked to a near-perihelion global dust storm that occurred shortly before they were observed. The combination of vigorous summertime sublimation of carbon dioxide ice from sloped surfaces on the SPRC and simultaneous settling of dust from the global storm, resulted in a sublimation wind that deflected settling dust particles away from the edges of these slopes, keeping these areas relatively free of dust compared to the rest of the cap. The fact that the halos were not exhumed in subsequent years indicates a positive mass-balance for flat portions of the SPRC in those years. A net accumulation mass-balance on flat surfaces of the SPRC is required to preserve the cap, as it is constantly being eroded by the expansion of the pits and scarps that populate its surface.

  10. Energy and mass balance at the snow surface on a warm temperate mountain

    NASA Astrophysics Data System (ADS)

    Sade, Rotem; Rimmer, Alon; (Iggy) Litaor, Michael; Furman, Alex

    2014-05-01

    Snowmelt is an important water source in warm temperate mountains, where natural fresh water sources are often scarce, and vapor losses from the snow-surface can greatly limit water availability. Therefore, understanding of key processes of snow dynamics in such environment is highly important. To achieve this end, we estimated the energy and mass balance of the snowpack on Mt. Hermon, Israel (35o50'E, 33o25'N), using a snow model. The forcing variables for the simulations were collected in two meteorological stations located along altitudinal gradient at 1,640 and 1,960m. We simulated the snowpack energy and mass balance during the winter of 2010/11 in a Deep Snowpack (DSP; maximum depth of 7m), and in a karstic depression known as the 'Bulan', where both windswept locations and lee-side (DSP) locations were simulated. The calibration of the model for the DSP was done using snow water equivalent (SWE) data, collected by snow-surveys. The simulation of the Bulan was calibrated against melting cycles that were measured with time-lapse cameras. Using a step function to describe wind speed over the DSP we showed that the turbulent fluxes were influenced by changes in snowpack height. The turbulent fluxes were the dominant ones at the snow surface on this warm temperate mountain site. During winter time, vapor losses varied between 46 to 82 % of the total ablation. Consequently, latent heat flux consumed much of the available energy at the snow-surface, greatly limiting melting rate to 1 mm day-1. During spring time, vapor flux was positive, enhancing condensation and resulting in an average melting flux of 86 mm day-1. The simulation of the 'Bulan' showed that the variation in the vapor flux with time created a variation in space of the available water at the bottom of the snowpack.

  11. The Thermal Circulation on Kilimanjaro, Tanzania and its Relevance to Summit Ice-Field Mass Balance.

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Duane, W. J.

    2008-12-01

    It is well known that mountains create their own climates. On Kilimanjaro, which is the tallest free standing mountain in Africa, the intense tropical sunlight generates a strong diurnal mountain circulation which transports moisture up the mountain during the day and back downslope at night. This process has strong consequences for development of cloud cover, precipitation, and hence ice-field mass balance on the summit crater. We compare surface climate (temperature, moisture and wind) measured at ten elevations on Kilimanjaro, with equivalent observations in the free atmosphere from NCEP/NCAR reanalysis data for September 2004 to July 2008. There are no simple temporal trends over this period in either surface of free- air data. Correlations between daily surface and free air temperatures are greatest below 2500 metres, meaning that synoptic (inter-diurnal) variability is the major control here. In contrast, temperatures and moisture on the higher slopes above treeline (about 3000 m) are strongly decoupled from the free atmosphere, showing intense heating/cooling by day/night (more than 5°C). The sparsely vegetated upper slopes are the focus for the most intense heating and upslope winds develop by mid-morning. The forest on the lower slopes acts as a moisture source, with large vapour pressure excesses reported (5 mb) which move upslope reaching the crater in the afternoon before subsiding downslope at night. The montane thermal circulation is more effective at upslope moisture transport during January as compared with July. Fluctuations in upper air flow strength and direction (at 500 mb) surprisingly have limited influence on the strength of surface heating and upslope moisture advection. This finding suggests that local changes in surface characteristics such as deforestation could have a strong influence on the mountain climate and the summit ice fields on Kilimanjaro, and make mass-balance somewhat divorced from larger-scale advective changes associated

  12. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study

    SciTech Connect

    Braun, J.J.; Pagel, M.; Herbillon ); Rosin, C. )

    1993-09-01

    REE-Th geochemistry and mineralogy have been studied in a lateritic profile derived from a syenite at Akongo in SW Cameroon. REE and Th mass balance calculations for the host-rock minerals show that at least 70% of the LREEs and 50% of the HREEs are contained in allanite, apatite, titanite, and epidote and at least 50% of the Th is controlled by the same accessory materials which represent about 2 wt% of the unaltered syenite. These accessory phases are destroyed during the first stages of weathering causing most of the REEs and Th to be rapidly released into the soil. Comparison of the variation in the Zr, Ti, and Th content as a function of the apparent density of the different zones of the saprolite shows that Th is the least mobile element. The presence of secondary thorianite (ThO[sub 2]), the etched surface on zircon grains, and the presence of Ti in secondary cerianite support this geochemical interpretation. The concentration of thorium was, therefore, chosen as invariant relative to the concentration of the other elements, especially the REEs, in mass balance calculations. Most of the REEs are leached in the iron-rich upper horizons (loose nodular horizon, iron crust, and top of mottled clay horizon). Where the groundwater table moves (saprolite and bottom of the mottled clay horizon), the REEs are fractionated and redistributed. There is a juxtaposition of leached and accumulation zones with precipitation of LREE aluminous hydrated phosphates. This study supports the existence of two different cycles for the redistribution of elements in the soil: (1) as dissolved ions in the saprolite horizon, and (2) as individual particles in the upper part of the profile.

  13. Climatic Forcing of Glacier Surface Mass Balance Changes Along North-Central Peru: A Modeling Perspective

    NASA Astrophysics Data System (ADS)

    Mark, B. G.; Fernandez, A.

    2015-12-01

    Most tropical glaciers are Peru, where they are key water sources for communities in mountain environments and beyond. Thus, their sustained shrinkage portrays these glaciers as archetype of global warming impacts on the local scale. However, there is still no deep understanding on the mechanism connecting temperature and these glaciers. Among others, the effect of temperature on the glacier surface mass balance (GSMB) can be expressed within accumulation regimes and hence in surface albedo, or in ablation dynamics through incoming longwave energy (LE). Here, we report a study combining statistical analyses of reanalysis data (~30km grid-cell), regional climate modeling and glacier mass balance simulations at high resolution (2km) to analyze long-term (30 years) and seasonal GSMB along north-central Peru. Our goal is to mechanistically understand climate change impact on these glaciers. Results suggest temperature as the main factor controlling GSMB changes through the lapse rate (LR). Correlations of GSMB with LR, humidity and zonal wind point to vertical homogenization of temperature, causing LE to increase, despite this flux always remaining negative. This "less negative" LE multiplies the impact of the seasonal fluctuation in albedo, thereby enhancing total ablation. As this mechanism only needs a relative increase in temperature, it may even occur in subfreezing conditions. Model output also indicates that turbulent fluxes are small, largely cancelling out. This suggests that the impact of LE is more likely to occur compared to either turbulent fluxes changes or shifts in the proportion of sublimation versus melt, which we find to be regionally stable. These findings imply that glaciers in north-central Peru are sensitive to subtle changes in temperature. We discuss the implications for process-based understanding and how this non-linear and somewhat hidden effect of temperature reduces the skill of temperature index models to simulate GSMB in the Tropics.

  14. Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China.

    PubMed

    Zhou, Li-Jun; Wu, Qinglong L; Zhang, Bei-Bei; Zhao, Yong-Gang; Zhao, Bi-Ying

    2016-04-01

    The objective of this study was to evaluate the occurrence, spatiotemporal distribution, mass balance and ecological risks of 43 commonly used human and veterinary antibiotics in both aqueous and sedimentary phases in a large subtropical shallow lake, Lake Taihu. In the aqueous phase, sulfonamides (2.64-344 ng L(-1)), lincomycin (ND to 53.8 ng L(-1)) and florfenicol (0.15-963 ng L(-1)) were the main compounds with high concentrations and detection frequencies. In the sedimentary phase, fluoroquinolones (ND to 174 ng g(-1), dry weight) and tetracyclines (ND to 39.6 ng g(-1), dry weight) were the predominant compounds. Antibiotic concentrations in Lake Taihu were generally lower relative to data documented in previous studies on China and other countries. The composition of antibiotics showed that livestock wastewater might be the main source of antibiotics in Lake Taihu, followed by domestic wastewater. Antibiotics in the lake water showed slight spatial variation in summer and significant spatial variation in winter; whereas, antibiotic concentrations in the sediments varied obviously, with high concentrations found in the sites close to potential pollution sources. Mass balance showed that sediments are an important sink and potential source for fluoroquinolones and tetracyclines. In addition to antibiotics' physicochemical properties, the spatiotemporal distribution of antibiotics in the lake was influenced by both pollution sources and lake hydrodynamics. The environmental risk assessment results showed that sulfamethoxazole could pose high risks on the algae in the aquatic ecosystem, followed by tetracyclines (algae) and fluoroquinolones (bacteria). Overall, our study reveals complex compositions and clear spatiotemporal dynamics in Lake Taihu, which were the consequence of pollution sources and lake hydrodynamics. PMID:27048777

  15. A mass balance method for non-intrusive measurements of surface-air trace gas exchange

    NASA Astrophysics Data System (ADS)

    Denmead, O. T.; Harper, L. A.; Freney, J. R.; Griffith, D. W. T.; Leuning, R.; Sharpe, R. R.

    A mass balance method is described for calculating gas production from a surface or volume source in a small test plot from measurements of differences in the horizontal fluxes of the gas across upwind and downwind boundaries. It employs a square plot, 24 m×24 m, with measurements of gas concentration at four heights (up to 3.5 m) along each of the four boundaries. Gas concentrations are multiplied by the appropriate vector winds to yield the horizontal fluxes at each height on each boundary. The difference between these fluxes integrated over downwind and upwind boundaries represents production. Illustrations of the method, which involve exchanges of methane and carbon dioxide, are drawn from experiments with landfills, pastures and grazing animals. Tests included calculation of recovery rates from known gas releases and comparisons with a conventional micrometeorological approach and a backward dispersion model. The method performed satisfactorily in all cases. Its sensitivity for measuring exchanges of CO 2, CH 4 and N 2O in various scenarios was examined. As employed by us, the mass balance method can suffer from errors arising from the large number of gas analyses required for a flux determination, and becomes unreliable when there are light winds and variable wind directions. On the other hand, it is non-disturbing, has a simple theoretical basis, is independent of atmospheric stability or the shape of the wind profile, and is appropriate for flux measurement in situations where conventional micrometeorological methods can not be used, e.g. for small plots, elevated point sources, and heterogeneous surface sources.

  16. GIA models with composite rheology and 3D viscosity: effect on GRACE mass balance in Antarctica

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Whitehouse, Pippa; Schrama, Ernst

    2014-05-01

    Most Glacial Isostatic Adjustment (GIA) models that have been used to correct GRACE data for the influence of GIA assume a radial stratification of viscosity in the Earth's mantle (1D viscosity). Seismic data in Antarctica indicate that there are large viscosity variations in the horizontal direction (3D viscosity). The purpose of this research is to determine the effect of 3D viscosity on GIA model output, and hence mass balance estimates in Antarctica. We use a GIA model with 3D viscosity and composite rheology in combination with ice loading histories ICE-5G and W12a. From comparisons with uplift and sea-level data in Fennoscandia and North America three preferred viscosity models are selected. For two of the 3D viscosity models the maximum gravity rate due to ICE-5G forcing is located over the Ronne-Filchner ice shelf. This is in contrast with the results obtained using a 1D model, in which the maximum gravity rate due to ICE-5G forcing is always located over the Ross ice shelf. This demonstrates that not all 3D viscosity models can be approximated with a 1D viscosity model. Using CSR release 5 GRACE data from February 2003 to June 2013 mass balance estimates for the three preferred viscosity models are -131 to -171 Gt/year for the ICE-5G model, and -48 to -57 Gt/year for the W12a model. The range due to Earth model uncertainty is larger than the error bar for GRACE (10 Gt/year), but smaller than the range resulting from the difference in ice loading histories.

  17. Migration and natural fate of a coal tar creosote plume. 2. Mass balance and biodegradation indicators

    NASA Astrophysics Data System (ADS)

    King, Mark W. G.; Barker, James F.; Devlin, John F.; Butler, Barbara J.

    1999-10-01

    A source of coal tar creosote was emplaced below the water table at CFB Borden to investigate natural attenuation processes for complex biodegradable mixtures. A mass balance indicated that ongoing transformation occurred for seven study compounds. Phenol migrated as a discrete slug plume and almost completely disappeared after 2 years, after being completely leached from the source early in the study. The m-xylene plume migrated outward to a maximum distance at approximately 2 years, and then receded back towards the source as the rate of mass flux out of the source decreased to below the overall rate of plume transformation. Carbazole showed similar behaviour, although the reversal in plume development occurred more slowly. The dibenzofuran plume remained relatively constant in extent and mass over the last 2 years of monitoring, despite constant source input over this period, providing evidence that the dibenzofuran plume was at steady state. Meanwhile, the naphthalene and 1-methylnaphthalene plumes continued to advance and increase in mass over the observation period, although at a decreasing rate. The phenanthrene plume was also subject to transformation, although measurement of the rate was less conclusive due to the higher proportion of sorbed mass for this compound. Three lines of evidence are presented to evaluate whether the observed plume mass loss was due to microbial biodegradation. Measurement of redox-sensitive parameters in the vicinity of the plume showed the types of changes that would be expected to occur due to plume biodegradation: dissolved oxygen and SO 42- decreased in groundwater within the plume while significant increases were noted for Fe 2+, Mn 2+ and methane. Further evidence that plume mass loss was microbially-mediated was provided by the accumulation of aromatic acids within the plume. Measurements of phospholipid fatty acids (PLFA) in aquifer material indicated that microbial biomass and turnover rate were greater within the plume

  18. Detailed comparison of the geodetic and direct glaciological mass balances on an annual time scale at Hintereisferner, Austria

    NASA Astrophysics Data System (ADS)

    Klug, Christoph; Bollmann, Erik; Galos, Stephan; Kaser, Georg; Prinz, Rainer; Rieg, Lorenzo; Sailer, Rudolf

    2016-04-01

    The quantification of glacier mass changes is fundamental for glacier monitoring and provides important information for climate change assessments, hydrological applications and sea-level changes. On Alpine glaciers two methods of measuring glacier mass changes are widely applied: the direct glaciological method and the geodetic method. Over the last decades several studies compared the mass balance estimates obtained by both methods to identify and correct stochastic and systematic errors. In almost all of these studies, the time span for comparison between the two methods is about one decade or longer. On Hintereisferner (HEF; Ötztal Alps, Austria) mass balance measurements were initiated in the glaciological year 1952/53, resulting in a consistent mass balance data set with an estimated accuracy of ±0.2 m w.e. a-1. Furthermore, 11 airborne laser scanning (ALS) campaigns were conducted between 2001 and 2011 at HEF, all consistent in accuracy as well as in precision (± 0.04 to 0.10 m for slopes ≤ 50°). This is a world-wide unique ALS dataset of a glacierized alpine catchment. Flight campaigns were performed close to the end of the hydrological year (30th September). Resulting data provide high quality topographic information to derive glacier mass changes by applying the geodetic method. On sub-decadal time-scales such method comparisons are rare, or reveal unexplainable large discrepancies between both mass balance methods. In this study we estimate stochastic and systematic uncertainties of the ALS data for processing volume changes, and quantify methodological differences, such as density assumptions, unequal measurement dates, crevasses and glacier dynamics. Hence, we present a method to compare direct glaciological and geodetic mass balances on an annual basis. In a first step, we calculate the annual geodetic mass balance of HEF between 2001 and 2011, resulting in a thickness change map of the glacier. In a second step, the snow cover, which has

  19. Thermoregulation, pacing and fluid balance during mass participation distance running in a warm and humid environment.

    PubMed

    Lee, Jason K W; Nio, Amanda Q X; Lim, Chin Leong; Teo, Eunice Y N; Byrne, Christopher

    2010-07-01

    Deep body temperature (T(c)), pacing strategy and fluid balance were investigated during a 21-km road race in a warm and humid environment. Thirty-one males (age 25.3 +/- 3.2 years; maximal oxygen uptake 59.1 +/- 4.2 ml kg(-1) min(-1)) volunteered for this study. Continuous T(c) responses were obtained in 25 runners. Research stations at approximately 3-km intervals permitted accurate assessment of split times and fluid intake. Environmental conditions averaged 26.4 degrees C dry bulb temperature and 81% relative humidity. Peak T(c) was 39.8 +/- 0.5 (38.5-40.7) degrees C with 24 runners achieving T(c) > 39.0 degrees C, 17 runners > or = 39.5 degrees C, and 10 runners > or = 40.0 degrees C. In 12 runners attaining peak T(c) > or = 39.8 degrees C, running speed did not differ significantly when T(c) was below or above this threshold (208 +/- 15 cf. 205 +/- 24 m min(-1); P = 0.532). Running velocity was the main significant predictor variable of T(c) at 21 km (R(2) = 0.42, P < 0.001) and was the main discriminating variable between hyperthermic (T(c) > or = 39.8 degrees C) and normothermic runners (T(c) < 39.8 degrees C) up to 11.8 km. A reverse J-shaped pacing profile characterised by a marked reduction in running speed after 6.9 km and evidence of an end-spurt in 16 runners was observed. Variables relating to fluid balance were not associated with any T(c) parameters or pacing. We conclude that hyperthermia, defined by a deep body temperature greater than 39.5 degrees C, is common in trained individuals undertaking outdoor distance running in environmental heat, without evidence of fatigue or heat illness. PMID:20237797

  20. Overview and Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992-2009

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.

    2011-01-01

    Mass balance estimates for the Antarctic Ice Sheet (AIS) in the 2007 report by the Intergovernmental Panel on Climate Change and in more recent reports lie between approximately ?50 to -250 Gt/year for 1992 to 2009. The 300 Gt/year range is approximately 15% of the annual mass input and 0.8 mm/year Sea Level Equivalent (SLE). Two estimates from radar altimeter measurements of elevation change by European Remote-sensing Satellites (ERS) (?28 and -31 Gt/year) lie in the upper part, whereas estimates from the Input-minus-Output Method (IOM) and the Gravity Recovery and Climate Experiment (GRACE) lie in the lower part (-40 to -246 Gt/year). We compare the various estimates, discuss the methodology used, and critically assess the results. We also modify the IOM estimate using (1) an alternate extrapolation to estimate the discharge from the non-observed 15% of the periphery, and (2) substitution of input from a field data compilation for input from an atmospheric model in 6% of area. The modified IOM estimate reduces the loss from 136 Gt/year to 13 Gt/year. Two ERS-based estimates, the modified IOM, and a GRACE-based estimate for observations within 1992 2005 lie in a narrowed range of ?27 to -40 Gt/year, which is about 3% of the annual mass input and only 0.2 mm/year SLE. Our preferred estimate for 1992 2001 is -47 Gt/year for West Antarctica, ?16 Gt/year for East Antarctica, and -31 Gt/year overall (?0.1 mm/year SLE), not including part of the Antarctic Peninsula (1.07% of the AIS area). Although recent reports of large and increasing rates of mass loss with time from GRACE-based studies cite agreement with IOM results, our evaluation does not support that conclusion

  1. An Early Formed D'' Reservoir Reconciles Geochemical Mass Balance With Whole Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Tolstikhin, I. N.; Kramers, I.

    2004-12-01

    One of the most intriguing present-day problems in Earth sciences is reconciling whole mantle convection models (that follow from seismic tomography and dynamic modeling) and the chemical and isotopic mass balance of continents and depleted mantle, which favor partial-mantle convection. Specifically, geochemical observations point to an apparently isolated, early-formed reservoir deep in the Earth. The most important of these observations are: (1) The occurrence of solar noble gases in the mantle, which is in contrast with the extreme degassing of this reservoir indicated by mantle xenology; (2) specific isotopic compositions of mantle He, Ne and Xe point to a reservoir with low U/3He and 136Xe(Pu)/129Xe(I) ratios, implying both early formation and low degassing of this reservoir. We suggest that the core-mantle transition zone (termed D'') is the reservoir indicated by these observations. The material of D'' could comprise an early gabbroic-basaltic crust loaded with chondrite-like, late-accreting matter including a solar-wind irradiated regolith. If subducted, this material should accumulate above the metal core due to an intrinsic density contrast. Provided that it was not hydrated at the surface, so that subduction did not entail volatile loss, it could have retained its geochemical characteristics. We examined the consequences of this scenario by transport models envisaging: (1) Earth accretion accompanied by mantle melting and fractionation, core segregation, formation and recycling of mafic crust, degassing, and gas loss from the atmosphere, followed by (2) crust-mantle evolution involving continent growth and recycling. Comparison of calculated and observed parameters allows a solution of the model. The D'' is formed within a time interval from 40 to 80 Ma after formation of the solar system and comprises about 20% of the BSE inventory of incompatible (including heat-producing) elements. Because the bulk of the D'' material (basalt) is fractionated, its

  2. Climatic mass balance of the ice cap Vestfonna, Svalbard: A spatially distributed assessment using ERA-Interim and MODIS data

    NASA Astrophysics Data System (ADS)

    MöLler, Marco; Finkelnburg, Roman; Braun, Matthias; Hock, Regine; Jonsell, Ulf; Pohjola, Veijo A.; Scherer, Dieter; Schneider, Christoph

    2011-09-01

    The ice cap Vestfonna in the northern Svalbard archipelago is one of the largest ice bodies of the European Arctic (˜2400 km2), but little is known about its mass balance. We model the climatic mass balance of the ice cap for the period September 2000 to August 2009 on a daily basis. Ablation is calculated by a spatially distributed temperature-radiation-index melt model. Air temperature forcing is provided by ERA-Interim data that is downscaled using data from an automatic weather station operated on the ice cap. Spatially distributed net shortwave radiation fluxes are obtained from standard trigonometric techniques combined with Moderate Resolution Imaging Spectroradiometer-based cloud cover and surface albedo information. Accumulation is derived from ERA-Interim precipitation data that are bias corrected and spatially distributed as a function of elevation. Refreezing is incorporated using the Pmax approach. Results indicate that mass balance years are characterized by short ablation seasons (June to August) and correspondingly longer accumulation periods (September to May). The modeled, annual climatic mass balance rate shows an almost balanced mean of -0.02 ± 0.20 m w.e. yr-1 (meters water equivalent per year) with an associated equilibrium line altitude of 383 ± 54 m above sea level (mean ± one standard deviation). The mean winter balance is +0.32 ± 0.06 m w.e. yr-1, and the mean summer balance -0.35 ± 0.17 m w.e. yr-1. Roughly one fourth of total surface ablation is retained by refreezing indicating that refreezing is an important component of the mass budget of Vestfonna.

  3. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  4. Critical evaluation of screening techniques for emerging environmental contaminants based on accurate mass measurements with time-of-flight mass spectrometry.

    PubMed

    Nurmi, Joonas; Pellinen, Jukka; Rantalainen, Anna-Lea

    2012-03-01

    Emerging contaminants from wastewater effluent samples were analysed, using posttarget and nontarget analysis techniques. The samples were analysed with an ultra performance liquid chromatograph-time-of-flight mass spectrometer (UPLC-TOF-MS), and the resulting data were processed with commercial deconvolution software. The method works well for posttarget analysis with prior information about the retention times of the compounds of interest. With positive polarity, 63 of 66 compounds and with negative polarity, 18 of 20 compounds were correctly identified in a spiked sample, while two compounds of a total of 88 fell out of the mass range. Furthermore, a four-stage process for identification was developed for the posttarget analysis lacking the retention time data. In the process, the number of candidate compounds was reduced by using the accurate mass of selected compounds in two steps (stages 1 and 2), structure-property relationships (stage 3) and isotope patterns of the analytes (stage 4). The process developed was validated by analysing wastewater samples spiked with 88 compounds. This procedure can be used to gain a preliminary indication of the presence of certain analytes in the samples. Nontarget analysis was tested by applying a theoretical mass spectra library for a wastewater sample spiked with six pharmaceuticals. The results showed a high number of false identifications. In addition, manual processing of the data was considered laborious and ineffective. Finally, the posttarget analysis was applied to a real wastewater sample. The analysis revealed the presence of six compounds that were afterwards confirmed with standard compounds as being correct. Three psycholeptics (nordiazepam, oxazepam and temazepam) could be tentatively identified, using the identification process developed. Posttarget analysis with UPLC-TOF-MS proved to be a promising method for analysing wastewater samples, while we concluded that the software for nontarget analysis will need

  5. Innovations in Mass Spectrometry for Precise and Accurate Isotope Ratio Determination from Very Small Analyte Quantities (Invited)

    NASA Astrophysics Data System (ADS)

    Lloyd, N. S.; Bouman, C.; Horstwood, M. S.; Parrish, R. R.; Schwieters, J. B.

    2010-12-01

    This presentation describes progress in mass spectrometry for analysing very small analyte quantities, illustrated by example applications from nuclear forensics. In this challenging application, precise and accurate (‰) uranium isotope ratios are required from 1 - 2 µm diameter uranium oxide particles, which comprise less than 40 pg of uranium. Traditionally these are analysed using thermal ionisation mass spectrometry (TIMS), and more recently using secondary ionisation mass spectrometry (SIMS). Multicollector inductively-coupled plasma mass spectrometry (MC-ICP-MS) can offer higher productivity compared to these techniques, but is traditionally limited by low efficiency of analyte utilisation (sample through to ion detection). Samples can either be introduced as a solution, or sampled directly from solid using laser ablation. Large multi-isotope ratio datasets can help identify provenance and intended use of anthropogenic uranium and other nuclear materials [1]. The Thermo Scientific NEPTUNE Plus (Bremen, Germany) with ‘Jet Interface’ option offers unparalleled MC-ICP-MS sensitivity. An analyte utilisation of c. 4% has previously been reported for uranium [2]. This high-sensitivity configuration utilises a dry high-capacity (100 m3/h) interface pump, special skimmer and sampler cones and a desolvating nebuliser system. Coupled with new acquisition methodologies, this sensitivity enhancement makes possible the analysis of micro-particles and small sample volumes at higher precision levels than previously achieved. New, high-performance, full-size and compact discrete dynode secondary electron multipliers (SEM) exhibit excellent stability and linearity over a large dynamic range and can be configured to simultaneously measure all of the uranium isotopes. Options for high abundance-sensitivity filters on two ion beams are also available, e.g. for 236U and 234U. Additionally, amplifiers with high ohm (1012 - 1013) feedback resistors have been developed to

  6. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. PMID:25568089

  7. Radionuclide mass balance for the TMI-2 accident: data through 1979 and preliminary assessment of uncertainties

    SciTech Connect

    Davis, R J; Tonkay, D W; Vissing, E A; Nguyen, T D; Shawn, L W; Goldman, M I

    1984-11-01

    A systematic data base of available information needed to calculate mass balances of key radionuclides arising from the Three-Mile Island Unit 2 (TMI-2) accident as a function of time has been assembled. The sample and analysis data represent the likely major sinks except for the solids remaining in the primary system. Surfaces in the primary system are represented only by preliminary data pertaining to cesium deposition on plenum surfaces. TMI-2 component description data are included for the reactor coolant, makeup and purification, and liquid waste systems and the reactor building. The chronology of liquid transfers through the end of 1979 is included. A mass transfer model has been developed. It is concluded that tritium and cesium released into the reactor coolant traveled with the reactor coolant without losses to other phases during transit and storage. The data also suggest that tritium and cesium were not leached from primary solids and surfaces after the accident, although strontium has gradually leached from the primary solids and surfaces over a long period. Much of the iodine transferred to the reactor building sump/basement is suspected of having transferred to surfaces or solids from the sump/basement water and was therefore not found in basement water samples.

  8. Measurements of the Absorption of Atmospheric Gases in Bulk Lithium Metal using a Mass Balance

    NASA Astrophysics Data System (ADS)

    Hart, Connor A.; Skinner, Charles H.; Capece, Angela M.; Koel, Bruce E.

    2014-10-01

    Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. However, metallic lithium is very reactive and it is important to quantify the processes leading to the passivation of lithium upon exposure to air. Passivation, as used here, refers to the absorption of atmospheric gases by lithium to ultimately form lithium species including lithium hydroxide, carbonate, and oxide. The current work uses a mass balance with microgram sensitivity to measure the mass gain during the absorption of atmospheric gases by bulk lithium. Metallic lithium films with thicknesses of 0.3 and 1.0 mm are exposed to humid air as well as dry synthetic air at atmospheric conditions in order to reproduce the environment of a tokamak exposed to air during maintenance activities and venting. The data yield the reaction rates and interdiffusion of these lithium species as functions of thickness and time. These results provide critical insight into the chemical state of a lithiated surface after air exposure. In addition, the depth of passivation versus time is of interest in determining the length of exposure required to completely passivate a lithium layer of a given thickness, making it safe to handle. Science Undergraduate Laboratory Internship funded by Department of Energy.

  9. The mass balance of soil evolution on late Quaternary marine terraces, northern California

    NASA Technical Reports Server (NTRS)

    Merritts, Dorothy J.; Chadwick, Oliver A.; Hendricks, David M.; Brimhall, George H.; Lewis, Christopher J.

    1992-01-01

    Mass-balance interpretation of a soil chronosequence provides a means of quantifying elemental addition, removal, and transformation that occur in soils from a flight of marine terraces in northern California. Six soil profiles that range in age from several to 240,000 yr are developed in unconsolidated, sandy-marine, and eolian parent material deposited on bedrock marine platforms. Soil evolution is dominated by (1) open-system depletion of Si, Ca, Mg, K, and Na; (2) open-system enrichment of P in surface soil horizons; (3) relative immobility of Fe and Al; and (4) transformation of Fe, Si, and Al in the parent material to secondary clay minerals and sesquioxides. Net mass losses of bases and Si are generally uniform with depth and substantial, in some cases approaching 100 percent; however, the rate of loss of each element differs markedly, causing the ranking of each by relative abundance to shift with time. Loss of Si from the sand fraction by dissolution and particle-size diminution, from about 100 percent to less than 35 percent over 240 ky, mirrors a similar gain in the silt and clay size fractions. The Fe originally present in the sand fraction decreases from greater than 80 percent to less than 10 percent, whereas the amount of Fe present in the clay and crystalline oxyhydroxide fractions increases to 25 percent and 70 percent, respectively.

  10. A mass balance study of the phytoremediation of perchloroethylene-contaminated groundwater

    PubMed Central

    James, C. Andrew; Xin, Gang; Doty, Sharon L.; Muiznieks, Indulis; Newman, Lee; Strand, Stuart E.

    2010-01-01

    A mass balance study was performed under controlled field conditions to investigate the phytoremediation of perchloroethylene (PCE) by hybrid poplar trees. Water containing 7–14 mg L−1 PCE was added to the test bed. Perchloroethylene, trichloroethylene, and cis-dichloroethylene were detected in the effluent at an average of 0.12 mg L−1, 3.9 mg L−1, and 1.9 mg L−1, respectively. The total mass of chlorinated ethenes in the water was reduced by 99%. Over 95% of the recovered chlorine was as free chloride in the soil, indicating near-complete dehalogenation of the PCE. Transpiration, volatilization, and accumulation in the trees were all found to be minor loss mechanisms. In contrast, 98% of PCE applied to an unplanted soil chamber was recovered as PCE in the effluent water or volatilized into the air. These results suggest that phytoremediation can be an effective method for treating PCE-contaminated groundwater in field applications. PMID:19345455

  11. Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance

    NASA Astrophysics Data System (ADS)

    Farlin, J.; Drouet, L.; Gallé, T.; Pittois, D.; Bayerle, M.; Braun, C.; Maloszewski, P.; Vanderborght, J.; Elsner, M.; Kies, A.

    2013-06-01

    A simple method to delineate the recharge areas of a series of springs draining a fractured aquifer is presented. Instead of solv