Science.gov

Sample records for accurate mass detection

  1. Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.

    PubMed

    Halloran, John T; Bilmes, Jeff A; Noble, William S

    2016-08-01

    A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit .

  2. Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.

    PubMed

    Halloran, John T; Bilmes, Jeff A; Noble, William S

    2016-08-01

    A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit . PMID:27397138

  3. Accurate mass determination, quantification and determination of detection limits in liquid chromatography-high-resolution time-of-flight mass spectrometry: challenges and practical solutions.

    PubMed

    Vergeynst, Leendert; Van Langenhove, Herman; Joos, Pieter; Demeestere, Kristof

    2013-07-30

    Uniform guidelines for the data processing and validation of qualitative and quantitative multi-residue analysis using full-spectrum high-resolution mass spectrometry are scarce. Through systematic research, optimal mass accuracy and sensitivity are obtained after refining the post-processing of the HRMS data. For qualitative analysis, transforming the raw profile spectra to centroid spectra is recommended resulting in a 2.3 fold improved precision on the accurate mass determination of spectrum peaks. However, processing centroid data for quantitative purposes could lead to signal interruption when too narrow mass windows are applied for the construction of extracted ion chromatograms. Therefore, peak integration on the raw profile data is recommended. An optimal width of the mass window of 50 ppm, which is a trade-off between sensitivity and selectivity, was obtained for a TOF instrument providing a resolving power of 20,000 at full width at half maximum (FWHM). For the validation of HRMS analytical methods, widespread concepts such as the signal-to-noise ratios for the determination of decision limits and detection capabilities have shown to be not always applicable because in some cases almost no noise can be detected anymore. A statistical methodology providing a reliable alternative is extended and applied. PMID:23856232

  4. High resolution/accurate mass (HRMS) detection of anatoxin-a in lake water using LDTD-APCI coupled to a Q-Exactive mass spectrometer.

    PubMed

    Roy-Lachapelle, Audrey; Solliec, Morgan; Sinotte, Marc; Deblois, Christian; Sauvé, Sébastien

    2015-01-01

    A new innovative analytical method combining ultra-fast analysis time with high resolution/accurate mass detection was developed to eliminate the misidentification of anatoxin-a (ANA-a), a cyanobacterial toxin, from the natural amino acid phenylalanine (PHE). This was achieved by using the laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to the Q-Exactive, a high resolution/accurate mass spectrometer (HRMS). This novel combination, the LDTD-APCI-HRMS, allowed for an ultra-fast analysis time (<15 s/sample). A comparison of two different acquisition modes (full scan and targeted ion fragmentation) was made to determine the most rigorous analytical method using the LDTD-APCI interface. Method development focused toward selectivity and sensitivity improvement to reduce the possibility of false positives and to lower detection limits. The Q-Exactive mass spectrometer operates with resolving powers between 17500 and 140000 FWHM (m/z 200). Nevertheless, a resolution of 17500FWHM is enough to dissociate ANA-a and PHE signals. Mass accuracy was satisfactory with values below 1 ppm reaching precision to the fourth decimal. Internal calibration with standard addition was achieved with the isotopically-labeled (D5) phenylalanine with good linearity (R(2)>0.999). Enhancement of signal to noise ratios relative to a standard triple-quadrupole method was demonstrated with lower detection and quantification limit values of 0.2 and 0.6 μg/L using the Q-Exactive. Accuracy and interday/intraday relative standard deviations were below 15%. The new method was applied to 8 different lake water samples with signs of cyanobacterial blooms. This work demonstrates the possibility of using an ultra-fast LDTD-APCI sample introduction system with an HRMS hybrid instrument for quantitative purposes with high selectivity in complex environmental matrices.

  5. The potential of inductively coupled plasma mass spectrometry detection for high-performance liquid chromatography combined with accurate mass measurement of organic pharmaceutical compounds.

    PubMed

    Axelsson, B O; Jörnten-Karlsson, M; Michelsen, P; Abou-Shakra, F

    2001-01-01

    Quantification of unknown components in pharmaceutical, metabolic and environmental samples is an important but difficult task. Most commonly used detectors (like UV, RI or MS) require standards of each analyte for accurate quantification. Even if the chemical structure or elemental composition is known, the response from these detectors is difficult to predict with any accuracy. In inductively coupled plasma mass spectrometry (ICP-MS) compounds are atomised and ionised irrespective of the chemical structure(s) incorporating the element of interest. Liquid chromatography coupled with inductively coupled plasma mass spectrometry (LC/ICP-MS) has been shown to provide a generic detection for structurally non-correlated compounds with common elements like phosphorus and iodine. Detection of selected elements gives a better quantification of tested 'unknowns' than UV and organic mass spectrometric detection. It was shown that the ultrasonic nebuliser did not introduce any measurable dead volume and preserves the separation efficiency of the system. ICP-MS can be used in combination with many different mobile phases ranging from 0-100% organic modifier. The dynamic range was found to exceed 2.5 orders of magnitude. The application of LC/ICP-MS to pharmaceutical drugs and formulations has shown that impurities can be quantified below the 0.1 mol-% level.

  6. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    proteins can also be extensively modified by PTMs26-31 or by their interactions with other biomolecules or small molecules.32,33 Thus, it is highly desirable that proteins, the primary functional macromolecules involved in almost all biological activities, can be studied directly and systematically to determine their diverse properties and interplay. Such proteome-wide analysis is expected to provide a wealth of biological information, such as sequence, quantity, PTMs, interactions, activities, subcellular distribution and structure of proteins, which is critical to the comprehensive understanding of the biological systems. However, the de novo analysis of proteins isolated from cells, tissues or bodily fluids poses significant challenges due to the tremendous complexity and depth of the proteome, which necessitates high-throughput and highly sensitive analytical techniques. It is therefore not surprising that mass spectrometry (MS) has become an indispensable technology for proteome analysis.

  7. Detection and quantitation of trace phenolphthalein (in pharmaceutical preparations and in forensic exhibits) by liquid chromatography-tandem mass spectrometry, a sensitive and accurate method.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2013-01-01

    Phenolphthalein, an acid-base indicator and laxative, is important as a constituent of widely used weight-reducing multicomponent food formulations. Phenolphthalein is an useful reagent in forensic science for the identification of blood stains of suspected victims and for apprehending erring officials accepting bribes in graft or trap cases. The pink-colored alkaline hand washes originating from the phenolphthalein-smeared notes can easily be determined spectrophotometrically. But in many cases, colored solution turns colorless with time, which renders the genuineness of bribe cases doubtful to the judiciary. No method is known till now for the detection and identification of phenolphthalein in colorless forensic exhibits with positive proof. Liquid chromatography-tandem mass spectrometry had been found to be most sensitive, accurate method capable of detection and quantitation of trace phenolphthalein in commercial formulations and colorless forensic exhibits with positive proof. The detection limit of phenolphthalein was found to be 1.66 pg/L or ng/mL, and the calibration curve shows good linearity (r(2) = 0.9974). PMID:23106487

  8. Accurate masses for dispersion-supported galaxies

    NASA Astrophysics Data System (ADS)

    Wolf, Joe; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj; Geha, Marla; Muñoz, Ricardo R.; Simon, Joshua D.; Avedo, Frank F.

    2010-08-01

    We derive an accurate mass estimator for dispersion-supported stellar systems and demonstrate its validity by analysing resolved line-of-sight velocity data for globular clusters, dwarf galaxies and elliptical galaxies. Specifically, by manipulating the spherical Jeans equation we show that the mass enclosed within the 3D deprojected half-light radius r1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy as long as the projected velocity dispersion profile is fairly flat near the half-light radius, as is typically observed. We find M1/2 = 3 G-1< σ2los > r1/2 ~= 4 G-1< σ2los > Re, where < σ2los > is the luminosity-weighted square of the line-of-sight velocity dispersion and Re is the 2D projected half-light radius. While deceptively familiar in form, this formula is not the virial theorem, which cannot be used to determine accurate masses unless the radial profile of the total mass is known a priori. We utilize this finding to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of a mass of approximately 3 × 109 Msolar, assuming a Λ cold dark matter cosmology. The faintest MW dSphs seem to have formed in dark matter haloes that are at least as massive as those of the brightest MW dSphs, despite the almost five orders of magnitude spread in luminosity between them. We expand our analysis to the full range of observed dispersion-supported stellar systems and examine their dynamical I-band mass-to-light ratios ΥI1/2. The ΥI1/2 versus M1/2 relation for dispersion-supported galaxies follows a U shape, with a broad minimum near ΥI1/2 ~= 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to ΥI1/2 ~= 3200 for ultra-faint dSphs and a more shallow rise to ΥI1/2 ~= 800 for galaxy cluster spheroids.

  9. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  10. DeconMSn: A Software Tool for accurate parent ion monoisotopic mass determination for tandem mass spectra

    SciTech Connect

    Mayampurath, Anoop M.; Jaitly, Navdeep; Purvine, Samuel O.; Monroe, Matthew E.; Auberry, Kenneth J.; Adkins, Joshua N.; Smith, Richard D.

    2008-04-01

    We present a new software tool for tandem MS analyses that: • accurately calculates the monoisotopic mass and charge of high–resolution parent ions • accurately operates regardless of the mass selected for fragmentation • performs independent of instrument settings • enables optimal selection of search mass tolerance for high mass accuracy experiments • is open source and thus can be tailored to individual needs • incorporates a SVM-based charge detection algorithm for analyzing low resolution tandem MS spectra • creates multiple output data formats (.dta, .MGF) • handles .RAW files and .mzXML formats • compatible with SEQUEST, MASCOT, X!Tandem

  11. How to accurately detect autobiographical events.

    PubMed

    Sartori, Giuseppe; Agosta, Sara; Zogmaister, Cristina; Ferrara, Santo Davide; Castiello, Umberto

    2008-08-01

    We describe a new method, based on indirect measures of implicit autobiographical memory, that allows evaluation of which of two contrasting autobiographical events (e.g., crimes) is true for a given individual. Participants were requested to classify sentences describing possible autobiographical events by pressing one of two response keys. Responses were faster when sentences related to truly autobiographical events shared the same response key with other sentences reporting true events and slower when sentences related to truly autobiographical events shared the same response key with sentences reporting false events. This method has possible application in forensic settings and as a lie-detection technique.

  12. Accurately Detecting Students' Lies regarding Relational Aggression by Correctional Instructions

    ERIC Educational Resources Information Center

    Dickhauser, Oliver; Reinhard, Marc-Andre; Marksteiner, Tamara

    2012-01-01

    This study investigates the effect of correctional instructions when detecting lies about relational aggression. Based on models from the field of social psychology, we predict that correctional instruction will lead to a less pronounced lie bias and to more accurate lie detection. Seventy-five teachers received videotapes of students' true denial…

  13. Accurate and reproducible determination of lignin molar mass by acetobromination.

    PubMed

    Asikkala, Janne; Tamminen, Tarja; Argyropoulos, Dimitris S

    2012-09-12

    The accurate and reproducible determination of lignin molar mass by using size exclusion chromatography (SEC) is challenging. The lignin association effects, known to dominate underivatized lignins, have been thoroughly addressed by reaction with acetyl bromide in an excess of glacial acetic acid. The combination of a concerted acetylation with the introduction of bromine within the lignin alkyl side chains is thought to be responsible for the observed excellent solubilization characteristics acetobromination imparts to a variety of lignin samples. The proposed methodology was compared and contrasted to traditional lignin derivatization methods. In addition, side reactions that could possibly be induced under the acetobromination conditions were explored with native softwood (milled wood lignin, MWL) and technical (kraft) lignin. These efforts lend support toward the use of room temperature acetobromination being a facile, effective, and universal lignin derivatization medium proposed to be employed prior to SEC measurements. PMID:22870925

  14. Accurate mobile malware detection and classification in the cloud.

    PubMed

    Wang, Xiaolei; Yang, Yuexiang; Zeng, Yingzhi

    2015-01-01

    As the dominator of the Smartphone operating system market, consequently android has attracted the attention of s malware authors and researcher alike. The number of types of android malware is increasing rapidly regardless of the considerable number of proposed malware analysis systems. In this paper, by taking advantages of low false-positive rate of misuse detection and the ability of anomaly detection to detect zero-day malware, we propose a novel hybrid detection system based on a new open-source framework CuckooDroid, which enables the use of Cuckoo Sandbox's features to analyze Android malware through dynamic and static analysis. Our proposed system mainly consists of two parts: anomaly detection engine performing abnormal apps detection through dynamic analysis; signature detection engine performing known malware detection and classification with the combination of static and dynamic analysis. We evaluate our system using 5560 malware samples and 6000 benign samples. Experiments show that our anomaly detection engine with dynamic analysis is capable of detecting zero-day malware with a low false negative rate (1.16 %) and acceptable false positive rate (1.30 %); it is worth noting that our signature detection engine with hybrid analysis can accurately classify malware samples with an average positive rate 98.94 %. Considering the intensive computing resources required by the static and dynamic analysis, our proposed detection system should be deployed off-device, such as in the Cloud. The app store markets and the ordinary users can access our detection system for malware detection through cloud service. PMID:26543718

  15. Accurate mobile malware detection and classification in the cloud.

    PubMed

    Wang, Xiaolei; Yang, Yuexiang; Zeng, Yingzhi

    2015-01-01

    As the dominator of the Smartphone operating system market, consequently android has attracted the attention of s malware authors and researcher alike. The number of types of android malware is increasing rapidly regardless of the considerable number of proposed malware analysis systems. In this paper, by taking advantages of low false-positive rate of misuse detection and the ability of anomaly detection to detect zero-day malware, we propose a novel hybrid detection system based on a new open-source framework CuckooDroid, which enables the use of Cuckoo Sandbox's features to analyze Android malware through dynamic and static analysis. Our proposed system mainly consists of two parts: anomaly detection engine performing abnormal apps detection through dynamic analysis; signature detection engine performing known malware detection and classification with the combination of static and dynamic analysis. We evaluate our system using 5560 malware samples and 6000 benign samples. Experiments show that our anomaly detection engine with dynamic analysis is capable of detecting zero-day malware with a low false negative rate (1.16 %) and acceptable false positive rate (1.30 %); it is worth noting that our signature detection engine with hybrid analysis can accurately classify malware samples with an average positive rate 98.94 %. Considering the intensive computing resources required by the static and dynamic analysis, our proposed detection system should be deployed off-device, such as in the Cloud. The app store markets and the ordinary users can access our detection system for malware detection through cloud service.

  16. Accurate hydrogen depth profiling by reflection elastic recoil detection analysis

    SciTech Connect

    Verda, R. D.; Tesmer, Joseph R.; Nastasi, Michael Anthony,; Bower, R. W.

    2001-01-01

    A technique to convert reflection elastic recoil detection analysis spectra to depth profiles, the channel-depth conversion, was introduced by Verda, et al [1]. But the channel-depth conversion does not correct for energy spread, the unwanted broadening in the energy of the spectra, which can lead to errors in depth profiling. A work in progress introduces a technique that corrects for energy spread in elastic recoil detection analysis spectra, the energy spread correction [2]. Together, the energy spread correction and the channel-depth conversion comprise an accurate and convenient hydrogen depth profiling method.

  17. Detection and accurate localization of harmonic chipless tags

    NASA Astrophysics Data System (ADS)

    Dardari, Davide

    2015-12-01

    We investigate the detection and localization properties of harmonic tags working at microwave frequencies. A two-tone interrogation signal and a dedicated signal processing scheme at the receiver are proposed to eliminate phase ambiguities caused by the short signal wavelength and to provide accurate distance/position estimation even in the presence of clutter and multipath. The theoretical limits on tag detection and localization accuracy are investigated starting from a concise characterization of harmonic backscattered signals. Numerical results show that accuracies in the order of centimeters are feasible within an operational range of a few meters in the RFID UHF band.

  18. Accurate and Reliable Gait Cycle Detection in Parkinson's Disease.

    PubMed

    Hundza, Sandra R; Hook, William R; Harris, Christopher R; Mahajan, Sunny V; Leslie, Paul A; Spani, Carl A; Spalteholz, Leonhard G; Birch, Benjamin J; Commandeur, Drew T; Livingston, Nigel J

    2014-01-01

    There is a growing interest in the use of Inertial Measurement Unit (IMU)-based systems that employ gyroscopes for gait analysis. We describe an improved IMU-based gait analysis processing method that uses gyroscope angular rate reversal to identify the start of each gait cycle during walking. In validation tests with six subjects with Parkinson disease (PD), including those with severe shuffling gait patterns, and seven controls, the probability of True-Positive event detection and False-Positive event detection was 100% and 0%, respectively. Stride time validation tests using high-speed cameras yielded a standard deviation of 6.6 ms for controls and 11.8 ms for those with PD. These data demonstrate that the use of our angular rate reversal algorithm leads to improvements over previous gyroscope-based gait analysis systems. Highly accurate and reliable stride time measurements enabled us to detect subtle changes in stride time variability following a Parkinson's exercise class. We found unacceptable measurement accuracy for stride length when using the Aminian et al gyro-based biomechanical algorithm, with errors as high as 30% in PD subjects. An alternative method, using synchronized infrared timing gates to measure velocity, combined with accurate mean stride time from our angular rate reversal algorithm, more accurately calculates mean stride length.

  19. Population variability complicates the accurate detection of climate change responses.

    PubMed

    McCain, Christy; Szewczyk, Tim; Bracy Knight, Kevin

    2016-06-01

    The rush to assess species' responses to anthropogenic climate change (CC) has underestimated the importance of interannual population variability (PV). Researchers assume sampling rigor alone will lead to an accurate detection of response regardless of the underlying population fluctuations of the species under consideration. Using population simulations across a realistic, empirically based gradient in PV, we show that moderate to high PV can lead to opposite and biased conclusions about CC responses. Between pre- and post-CC sampling bouts of modeled populations as in resurvey studies, there is: (i) A 50% probability of erroneously detecting the opposite trend in population abundance change and nearly zero probability of detecting no change. (ii) Across multiple years of sampling, it is nearly impossible to accurately detect any directional shift in population sizes with even moderate PV. (iii) There is up to 50% probability of detecting a population extirpation when the species is present, but in very low natural abundances. (iv) Under scenarios of moderate to high PV across a species' range or at the range edges, there is a bias toward erroneous detection of range shifts or contractions. Essentially, the frequency and magnitude of population peaks and troughs greatly impact the accuracy of our CC response measurements. Species with moderate to high PV (many small vertebrates, invertebrates, and annual plants) may be inaccurate 'canaries in the coal mine' for CC without pertinent demographic analyses and additional repeat sampling. Variation in PV may explain some idiosyncrasies in CC responses detected so far and urgently needs more careful consideration in design and analysis of CC responses.

  20. Maximum Mass of Strange Stars and Pulsars with the Most Accurately Measured Masses

    NASA Astrophysics Data System (ADS)

    Vartanyan, Yu. L.; Grigoryan, A. K.; Shahinyan, H. A.

    2015-06-01

    Strange quark matter (SQM) is studied using a bag model in which the transition to the SQM state takes place at energy densities of no more than twice the density in atomic nuclei. Thus, low mass neutron stars with a configuration consisting of SQM form a single family on a plot of the mass M of equilibrium superdense configurations as a function of central energy density ρ c (the M(ρ c ) curve). The bag model considered here depends on three constants: the vacuum pressure B, the quark-gluon interaction constant α c , and the strange quark mass m s . Sets of values of these constants are determined, which if used in the equation of state for SQM yield a maximal mass M max of the equilibrium quark configurations which exceeds the recently accurately determined mass of 2.01 M ⊙ for the binary radio pulsar PSR J0348+0432. The mass, radius, total baryon number, and red shift from the surface of the strange star are calculated for these configurations as a function of central energy density ρ c . The values of these integrated parameters are also calculated for each series with M max > 2.01 M ⊙ for superdense configurations with masses of 2.01, 1.97, and 1.44 solar masses, which have been determined with great accuracy from observations. It turns out that, according to the resulting equations of state, all of the three pulsars with the most accurately measured masses, may be possible candidate strange stars.

  1. Application of the accurate mass and time tag approach in studies of the human blood lipidome

    SciTech Connect

    Ding, Jie; Sorensen, Christina M.; Jaitly, Navdeep; Jiang, Hongliang; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Metz, Thomas O.

    2008-08-15

    We report a preliminary demonstration of the accurate mass and time (AMT) tag approach for lipidomics. Initial data-dependent LC-MS/MS analyses of human plasma, erythrocyte, and lymphocyte lipids were performed in order to identify lipid molecular species in conjunction with complementary accurate mass and isotopic distribution information. Identified lipids were used to populate initial lipid AMT tag databases containing 250 and 45 entries for those species detected in positive and negative electrospray ionization (ESI) modes, respectively. The positive ESI database was then utilized to identify human plasma, erythrocyte, and lymphocyte lipids in high-throughput quantitative LC-MS analyses based on the AMT tag approach. We were able to define the lipid profiles of human plasma, erythrocytes, and lymphocytes based on qualitative and quantitative differences in lipid abundance. In addition, we also report on the optimization of a reversed-phase LC method for the separation of lipids in these sample types.

  2. Automatic and Accurate Shadow Detection Using Near-Infrared Information.

    PubMed

    Rüfenacht, Dominic; Fredembach, Clément; Süsstrunk, Sabine

    2014-08-01

    We present a method to automatically detect shadows in a fast and accurate manner by taking advantage of the inherent sensitivity of digital camera sensors to the near-infrared (NIR) part of the spectrum. Dark objects, which confound many shadow detection algorithms, often have much higher reflectance in the NIR. We can thus build an accurate shadow candidate map based on image pixels that are dark both in the visible and NIR representations. We further refine the shadow map by incorporating ratios of the visible to the NIR image, based on the observation that commonly encountered light sources have very distinct spectra in the NIR band. The results are validated on a new database, which contains visible/NIR images for a large variety of real-world shadow creating illuminant conditions, as well as manually labeled shadow ground truth. Both quantitative and qualitative evaluations show that our method outperforms current state-of-the-art shadow detection algorithms in terms of accuracy and computational efficiency.

  3. Continuous Simultaneous Detection in Mass Spectrometry

    SciTech Connect

    Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.; Sperline, Roger P.; Denton, M. Bonner; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2007-10-15

    In mass spectrometry, several advantages can be derived when multiple mass-to-charge values are detected simultaneously. One such advantage is an improved duty cycle, which leads to superior limits of detection, better precision, shorter analysis times, and reduced sample sizes. A second advantage is the ability to reduce correlated noise by taking the ratio of two or more simultaneously collected signals, enabling greatly enhanced isotope ratio data. A final advantage is the elimination of spectral skew, leading to more accurate transient signal analysis. Here, these advantages are demonstrated by means of a novel Faraday-strip array detector coupled to a Mattauch-Herzog mass spectrograph. The same system is used to monitor elemental fractionation phenomena in laser ablation inductively coupled plasma mass spectrometry.

  4. Building dynamic population graph for accurate correspondence detection.

    PubMed

    Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang

    2015-12-01

    In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph.

  5. Accurate mass - time tag library for LC/MS-based metabolite profiling of medicinal plants

    PubMed Central

    Cuthbertson, Daniel J.; Johnson, Sean R.; Piljac-Žegarac, Jasenka; Kappel, Julia; Schäfer, Sarah; Wüst, Matthias; Ketchum, Raymond E. B.; Croteau, Rodney B.; Marques, Joaquim V.; Davin, Laurence B.; Lewis, Norman G.; Rolf, Megan; Kutchan, Toni M.; Soejarto, D. Doel; Lange, B. Markus

    2013-01-01

    We report the development and testing of an accurate mass – time (AMT) tag approach for the LC/MS-based identification of plant natural products (PNPs) in complex extracts. An AMT tag library was developed for approximately 500 PNPs with diverse chemical structures, detected in electrospray and atmospheric pressure chemical ionization modes (both positive and negative polarities). In addition, to enable peak annotations with high confidence, MS/MS spectra were acquired with three different fragmentation energies. The LC/MS and MS/MS data sets were integrated into online spectral search tools and repositories (Spektraris and MassBank), thus allowing users to interrogate their own data sets for the potential presence of PNPs. The utility of the AMT tag library approach is demonstrated by the detection and annotation of active principles in 27 different medicinal plant species with diverse chemical constituents. PMID:23597491

  6. Accurate Low-mass Stellar Models of KOI-126

    NASA Astrophysics Data System (ADS)

    Feiden, Gregory A.; Chaboyer, Brian; Dotter, Aaron

    2011-10-01

    The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influence of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.

  7. Accurate mass tag retention time database for urine proteome analysis by chromatography--mass spectrometry.

    PubMed

    Agron, I A; Avtonomov, D M; Kononikhin, A S; Popov, I A; Moshkovskii, S A; Nikolaev, E N

    2010-05-01

    Information about peptides and proteins in urine can be used to search for biomarkers of early stages of various diseases. The main technology currently used for identification of peptides and proteins is tandem mass spectrometry, in which peptides are identified by mass spectra of their fragmentation products. However, the presence of the fragmentation stage decreases sensitivity of analysis and increases its duration. We have developed a method for identification of human urinary proteins and peptides. This method based on the accurate mass and time tag (AMT) method does not use tandem mass spectrometry. The database of AMT tags containing more than 1381 AMT tags of peptides has been constructed. The software for database filling with AMT tags, normalizing the chromatograms, database application for identification of proteins and peptides, and their quantitative estimation has been developed. The new procedures for peptide identification by tandem mass spectra and the AMT tag database are proposed. The paper also lists novel proteins that have been identified in human urine for the first time. PMID:20632944

  8. Accurate Detection of Rifampicin-Resistant Mycobacterium Tuberculosis Strains

    PubMed Central

    Song, Keum-Soo; Nimse, Satish Balasaheb; Kim, Hee Jin; Yang, Jeongseong; Kim, Taisun

    2016-01-01

    In 2013 alone, the death rate among the 9.0 million people infected with Mycobacterium tuberculosis (TB) worldwide was around 14%, which is unacceptably high. An empiric treatment of patients infected with TB or drug-resistant Mycobacterium tuberculosis (MDR-TB) strain can also result in the spread of MDR-TB. The diagnostic tools which are rapid, reliable, and have simple experimental protocols can significantly help in decreasing the prevalence rate of MDR-TB strain. We report the evaluation of the 9G technology based 9G DNAChips that allow accurate detection and discrimination of TB and MDR-TB-RIF. One hundred and thirteen known cultured samples were used to evaluate the ability of 9G DNAChip in the detection and discrimination of TB and MDR-TB-RIF strains. Hybridization of immobilized probes with the PCR products of TB and MDR-TB-RIF strains allow their detection and discrimination. The accuracy of 9G DNAChip was determined by comparing its results with sequencing analysis and drug susceptibility testing. Sequencing analysis showed 100% agreement with the results of 9G DNAChip. The 9G DNAChip showed very high sensitivity (95.4%) and specificity (100%). PMID:26999135

  9. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.

    PubMed

    Gallien, Sebastien; Domon, Bruno

    2014-08-01

    High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

  10. A highly accurate method for the determination of mass and center of mass of a spacecraft

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Trubert, M. R.; Egwuatu, A.

    1978-01-01

    An extremely accurate method for the measurement of mass and the lateral center of mass of a spacecraft has been developed. The method was needed for the Voyager spacecraft mission requirement which limited the uncertainty in the knowledge of lateral center of mass of the spacecraft system weighing 750 kg to be less than 1.0 mm (0.04 in.). The method consists of using three load cells symmetrically located at 120 deg apart on a turntable with respect to the vertical axis of the spacecraft and making six measurements for each load cell. These six measurements are taken by cyclic rotations of the load cell turntable and of the spacecraft, about the vertical axis of the measurement fixture. This method eliminates all alignment, leveling, and load cell calibration errors for the lateral center of mass determination, and permits a statistical best fit of the measurement data. An associated data reduction computer program called MASCM has been written to implement this method and has been used for the Voyager spacecraft.

  11. Accurate Peptide Fragment Mass Analysis: Multiplexed Peptide Identification and Quantification

    PubMed Central

    Weisbrod, Chad R.; Eng, Jimmy K.; Hoopmann, Michael R.; Baker, Tahmina; Bruce, James E.

    2012-01-01

    FT All Reaction Monitoring (FT-ARM) is a novel approach for the identification and quantification of peptides that relies upon the selectivity of high mass accuracy data and the specificity of peptide fragmentation patterns. An FT-ARM experiment involves continuous, data-independent, high mass accuracy MS/MS acquisition spanning a defined m/z range. Custom software was developed to search peptides against the multiplexed fragmentation spectra by comparing theoretical or empirical fragment ions against every fragmentation spectrum across the entire acquisition. A dot product score is calculated against each spectrum in order to generate a score chromatogram used for both identification and quantification. Chromatographic elution profile characteristics are not used to cluster precursor peptide signals to their respective fragment ions. FT-ARM identifications are demonstrated to be complementary to conventional data-dependent shotgun analysis, especially in cases where the data-dependent method fails due to fragmenting multiple overlapping precursors. The sensitivity, robustness and specificity of FT-ARM quantification are shown to be analogous to selected reaction monitoring-based peptide quantification with the added benefit of minimal assay development. Thus, FT-ARM is demonstrated to be a novel and complementary data acquisition, identification, and quantification method for the large scale analysis of peptides. PMID:22288382

  12. Accurate, reliable control of process gases by mass flow controllers

    SciTech Connect

    Hardy, J.; McKnight, T.

    1997-02-01

    The thermal mass flow controller, or MFC, has become an instrument of choice for the monitoring and controlling of process gas flow throughout the materials processing industry. These MFCs are used on CVD processes, etching tools, and furnaces and, within the semiconductor industry, are used on 70% of the processing tools. Reliability and accuracy are major concerns for the users of the MFCs. Calibration and characterization technologies for the development and implementation of mass flow devices are described. A test facility is available to industry and universities to test and develop gas floe sensors and controllers and evaluate their performance related to environmental effects, reliability, reproducibility, and accuracy. Additional work has been conducted in the area of accuracy. A gravimetric calibrator was invented that allows flow sensors to be calibrated in corrosive, reactive gases to an accuracy of 0.3% of reading, at least an order of magnitude better than previously possible. Although MFCs are typically specified with accuracies of 1% of full scale, MFCs may often be implemented with unwarranted confidence due to the conventional use of surrogate gas factors. Surrogate gas factors are corrections applied to process flow indications when an MFC has been calibrated on a laboratory-safe surrogate gas, but is actually used on a toxic, or corrosive process gas. Previous studies have indicated that the use of these factors may cause process flow errors of typically 10%, but possibly as great as 40% of full scale. This paper will present possible sources of error in MFC process gas flow monitoring and control, and will present an overview of corrective measures which may be implemented with MFC use to significantly reduce these sources of error.

  13. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  14. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  15. Assessing temporal flux of plant hormones in stored processing potatoes using high definition accurate mass spectrometry

    PubMed Central

    Ordaz-Ortiz, José Juan; Foukaraki, Sofia; Terry, Leon Alexander

    2015-01-01

    Plant hormones are important molecules which at low concentration can regulate various physiological processes. Mass spectrometry has become a powerful technique for the quantification of multiple classes of plant hormones because of its high sensitivity and selectivity. We developed a new ultrahigh pressure liquid chromatography–full-scan high-definition accurate mass spectrometry method, for simultaneous determination of abscisic acid and four metabolites phaseic acid, dihydrophaseic acid, 7′-hydroxy-abscisic acid and abscisic acid glucose ester, cytokinins zeatin, zeatin riboside, gibberellins (GA1, GA3, GA4 and GA7) and indole-3-acetyl-L-aspartic acid. We measured the amount of plant hormones in the flesh and skin of two processing potato cvs. Sylvana and Russet Burbank stored for up to 30 weeks at 6 °C under ambient air conditions. Herein, we report for the first time that abscisic acid glucose ester seems to accumulate in the skin of potato tubers throughout storage time. The method achieved a lowest limit of detection of 0.22 ng g−1 of dry weight and a limit of quantification of 0.74 ng g−1 dry weight (zeatin riboside), and was able to recover, detect and quantify a total of 12 plant hormones spiked on flesh and skin of potato tubers. In addition, the mass accuracy for all compounds (<5 ppm) was evaluated. PMID:26504563

  16. A Statistical Method for Assessing Peptide Identification Confidence in Accurate Mass and Time Tag Proteomics

    SciTech Connect

    Stanley, Jeffrey R.; Adkins, Joshua N.; Slysz, Gordon W.; Monroe, Matthew E.; Purvine, Samuel O.; Karpievitch, Yuliya V.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2011-07-15

    High-throughput proteomics is rapidly evolving to require high mass measurement accuracy for a variety of different applications. Increased mass measurement accuracy in bottom-up proteomics specifically allows for an improved ability to distinguish and characterize detected MS features, which may in turn be identified by, e.g., matching to entries in a database for both precursor and fragmentation mass identification methods. Many tools exist with which to score the identification of peptides from LC-MS/MS measurements or to assess matches to an accurate mass and time (AMT) tag database, but these two calculations remain distinctly unrelated. Here we present a statistical method, Statistical Tools for AMT tag Confidence (STAC), which extends our previous work incorporating prior probabilities of correct sequence identification from LC-MS/MS, as well as the quality with which LC-MS features match AMT tags, to evaluate peptide identification confidence. Compared to existing tools, we are able to obtain significantly more high-confidence peptide identifications at a given false discovery rate and additionally assign confidence estimates to individual peptide identifications. Freely available software implementations of STAC are available in both command line and as a Windows graphical application.

  17. Fast and Accurate Detection of Multiple Quantitative Trait Loci

    PubMed Central

    Nettelblad, Carl; Holmgren, Sverker

    2013-01-01

    Abstract We present a new computational scheme that enables efficient and reliable quantitative trait loci (QTL) scans for experimental populations. Using a standard brute-force exhaustive search effectively prohibits accurate QTL scans involving more than two loci to be performed in practice, at least if permutation testing is used to determine significance. Some more elaborate global optimization approaches, for example, DIRECT have been adopted earlier to QTL search problems. Dramatic speedups have been reported for high-dimensional scans. However, since a heuristic termination criterion must be used in these types of algorithms, the accuracy of the optimization process cannot be guaranteed. Indeed, earlier results show that a small bias in the significance thresholds is sometimes introduced. Our new optimization scheme, PruneDIRECT, is based on an analysis leading to a computable (Lipschitz) bound on the slope of a transformed objective function. The bound is derived for both infinite- and finite-size populations. Introducing a Lipschitz bound in DIRECT leads to an algorithm related to classical Lipschitz optimization. Regions in the search space can be permanently excluded (pruned) during the optimization process. Heuristic termination criteria can thus be avoided. Hence, PruneDIRECT has a well-defined error bound and can in practice be guaranteed to be equivalent to a corresponding exhaustive search. We present simulation results that show that for simultaneous mapping of three QTLS using permutation testing, PruneDIRECT is typically more than 50 times faster than exhaustive search. The speedup is higher for stronger QTL. This could be used to quickly detect strong candidate eQTL networks. PMID:23919387

  18. Accurate evolutions of inspiralling and magnetized neutron stars: Equal-mass binaries

    SciTech Connect

    Giacomazzo, Bruno; Rezzolla, Luciano; Baiotti, Luca

    2011-02-15

    By performing new, long and numerically accurate general-relativistic simulations of magnetized, equal-mass neutron-star binaries, we investigate the role that realistic magnetic fields may have in the evolution of these systems. In particular, we study the evolution of the magnetic fields and show that they can influence the survival of the hypermassive neutron star produced at the merger by accelerating its collapse to a black hole. We also provide evidence that, even if purely poloidal initially, the magnetic fields produced in the tori surrounding the black hole have toroidal and poloidal components of equivalent strength. When estimating the possibility that magnetic fields could have an impact on the gravitational-wave signals emitted by these systems either during the inspiral or after the merger, we conclude that for realistic magnetic-field strengths B < or approx. 10{sup 12} G such effects could be detected, but only marginally, by detectors such as advanced LIGO or advanced Virgo. However, magnetically induced modifications could become detectable in the case of small-mass binaries and with the development of gravitational-wave detectors, such as the Einstein Telescope, with much higher sensitivities at frequencies larger than {approx_equal}2 kHz.

  19. Quantitation and accurate mass analysis of pesticides in vegetables by LC/TOF-MS.

    PubMed

    Ferrer, Imma; Thurman, E Michael; Fernández-Alba, Amadeo R

    2005-05-01

    A quantitative method consisting of solvent extraction followed by liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) analysis was developed for the identification and quantitation of three chloronicotinyl pesticides (imidacloprid, acetamiprid, thiacloprid) commonly used on salad vegetables. Accurate mass measurements within 3 ppm error were obtained for all the pesticides studied in various vegetable matrixes (cucumber, tomato, lettuce, pepper), which allowed an unequivocal identification of the target pesticides. Calibration curves covering 2 orders of magnitude were linear over the concentration range studied, thus showing the quantitative ability of TOF-MS as a monitoring tool for pesticides in vegetables. Matrix effects were also evaluated using matrix-matched standards showing no significant interferences between matrixes and clean extracts. Intraday reproducibility was 2-3% relative standard deviation (RSD) and interday values were 5% RSD. The precision (standard deviation) of the mass measurements was evaluated and it was less than 0.23 mDa between days. Detection limits of the chloronicotinyl insecticides in salad vegetables ranged from 0.002 to 0.01 mg/kg. These concentrations are equal to or better than the EU directives for controlled pesticides in vegetables showing that LC/TOF-MS analysis is a powerful tool for identification of pesticides in vegetables. Robustness and applicability of the method was validated for the analysis of market vegetable samples. Concentrations found in these samples were in the range of 0.02-0.17 mg/kg of vegetable. PMID:15859598

  20. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  1. Accurate screening for synthetic preservatives in beverage using high performance liquid chromatography with time-of-flight mass spectrometry.

    PubMed

    Li, Xiu Qin; Zhang, Feng; Sun, Yan Yan; Yong, Wei; Chu, Xiao Gang; Fang, Yan Yan; Zweigenbaum, Jerry

    2008-02-11

    In this study, liquid chromatography time-of-flight mass spectrometry (HPLC/TOF-MS) is applied to qualitation and quantitation of 18 synthetic preservatives in beverage. The identification by HPLC/TOF-MS is accomplished with the accurate mass (the subsequent generated empirical formula) of the protonated molecules [M+H]+ or the deprotonated molecules [M-H]-, along with the accurate mass of their main fragment ions. In order to obtain sufficient sensitivity for quantitation purposes (using the protonated or deprotonated molecule) and additional qualitative mass spectrum information provided by the fragments ions, segment program of fragmentor voltages is designed in positive and negative ion mode, respectively. Accurate mass measurements are highly useful in the complex sample analyses since they allow us to achieve a high degree of specificity, often needed when other interferents are present in the matrix. The mass accuracy typically obtained is routinely better than 3 ppm. The 18 compounds behave linearly in the 0.005-5.0mg.kg(-1) concentration range, with correlation coefficient >0.996. The recoveries at the tested concentrations of 1.0mg.kg(-1)-100mg.kg(-1) are 81-106%, with coefficients of variation <7.5%. Limits of detection (LODs) range from 0.0005 to 0.05 mg.kg(-1), which are far below the required maximum residue level (MRL) for these preservatives in foodstuff. The method is suitable for routine quantitative and qualitative analyses of synthetic preservatives in foodstuff.

  2. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF.

    PubMed

    Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A

    2016-08-01

    The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform and methanol in 2:1 ratio (v/v). Fatty acids composition of the extracted total lipids was converted to their corresponding fatty acids methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry using both electron ionization and chemical ionization techniques. Twenty-eight fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso- 17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids in C. elegans using chemical ionization compared to electron ionization which produced fragmentations of the FAMEs.

  3. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF.

    PubMed

    Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A

    2016-08-01

    The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform and methanol in 2:1 ratio (v/v). Fatty acids composition of the extracted total lipids was converted to their corresponding fatty acids methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry using both electron ionization and chemical ionization techniques. Twenty-eight fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso- 17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids in C. elegans using chemical ionization compared to electron ionization which produced fragmentations of the FAMEs. PMID:27166662

  4. Accurate feature detection and estimation using nonlinear and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Rudin, Leonid; Osher, Stanley

    1994-11-01

    A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.

  5. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  6. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  7. Antenatal detection and management of suprarenal masses.

    PubMed

    Brame, M; Masel, J; Homsy, Y

    1999-12-01

    The indications for, and timing of, surgical intervention for suprarenal masses detected prenatally are unclear. Also, the definitive diagnosis of suprarenal masses using imaging studies is difficult at best. We report 2 cases of antenatally detected suprarenal masses. One case represents an initial cystic mass expanding and becoming solid that had benign pathologic features. The second case was a stable solid mass that, on exploration, was malignant. Management options are discussed.

  8. Novel Cortical Thickness Pattern for Accurate Detection of Alzheimer's Disease.

    PubMed

    Zheng, Weihao; Yao, Zhijun; Hu, Bin; Gao, Xiang; Cai, Hanshu; Moore, Philip

    2015-01-01

    Brain network occupies an important position in representing abnormalities in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Currently, most studies only focused on morphological features of regions of interest without exploring the interregional alterations. In order to investigate the potential discriminative power of a morphological network in AD diagnosis and to provide supportive evidence on the feasibility of an individual structural network study, we propose a novel approach of extracting the correlative features from magnetic resonance imaging, which consists of a two-step approach for constructing an individual thickness network with low computational complexity. Firstly, multi-distance combination is utilized for accurate evaluation of between-region dissimilarity; and then the dissimilarity is transformed to connectivity via calculation of correlation function. An evaluation of the proposed approach has been conducted with 189 normal controls, 198 MCI subjects, and 163 AD patients using machine learning techniques. Results show that the observed correlative feature suggests significant promotion in classification performance compared with cortical thickness, with accuracy of 89.88% and area of 0.9588 under receiver operating characteristic curve. We further improved the performance by integrating both thickness and apolipoprotein E ɛ4 allele information with correlative features. New achieved accuracies are 92.11% and 79.37% in separating AD from normal controls and AD converters from non-converters, respectively. Differences between using diverse distance measurements and various correlation transformation functions are also discussed to explore an optimal way for network establishment. PMID:26444768

  9. The utility of accurate mass and LC elution time information in the analysis of complex proteomes

    SciTech Connect

    Norbeck, Angela D.; Monroe, Matthew E.; Adkins, Joshua N.; Anderson, Kevin K.; Daly, Don S.; Smith, Richard D.

    2005-08-01

    Theoretical tryptic digests of all predicted proteins from the genomes of three organisms of varying complexity were evaluated for specificity and possible utility of combined peptide accurate mass and predicted LC normalized elution time (NET) information. The uniqueness of each peptide was evaluated using its combined mass (+/- 5 ppm and 1 ppm) and NET value (no constraint, +/- 0.05 and 0.01 on a 0-1 NET scale). The set of peptides both underestimates actual biological complexity due to the lack of specific modifications, and overestimates the expected complexity since many proteins will not be present in the sample or observable on the mass spectrometer because of dynamic range limitations. Once a peptide is identified from an LCMS/MS experiment, its mass and elution time is representative of a unique fingerprint for that peptide. The uniqueness of that fingerprint in comparison to that for the other peptides present is indicative of the ability to confidently identify that peptide based on accurate mass and NET measurements. These measurements can be made using HPLC coupled with high resolution MS in a high-throughput manner. Results show that for organisms with comparatively small proteomes, such as Deinococcus radiodurans, modest mass and elution time accuracies are generally adequate for peptide identifications. For more complex proteomes, increasingly accurate easurements are required. However, the majority of proteins should be uniquely identifiable by using LC-MS with mass accuracies within +/- 1 ppm and elution time easurements within +/- 0.01 NET.

  10. Main-Sequence Effective Temperatures from a Revised Mass-Luminosity Relation Based on Accurate Properties

    NASA Astrophysics Data System (ADS)

    Eker, Z.; Soydugan, F.; Soydugan, E.; Bilir, S.; Yaz Gökçe, E.; Steer, I.; Tüysüz, M.; Şenyüz, T.; Demircan, O.

    2015-04-01

    The mass-luminosity (M-L), mass-radius (M-R), and mass-effective temperature (M-{{T}eff}) diagrams for a subset of galactic nearby main-sequence stars with masses and radii accurate to ≤slant 3% and luminosities accurate to ≤slant 30% (268 stars) has led to a putative discovery. Four distinct mass domains have been identified, which we have tentatively associated with low, intermediate, high, and very high mass main-sequence stars, but which nevertheless are clearly separated by three distinct break points at 1.05, 2.4, and 7 {{M}⊙ } within the studied mass range of 0.38-32 {{M}⊙ }. Further, a revised mass-luminosity relation (MLR) is found based on linear fits for each of the mass domains identified. The revised, mass-domain based MLRs, which are classical (L\\propto {{M}α }), are shown to be preferable to a single linear, quadratic, or cubic equation representing an alternative MLR. Stellar radius evolution within the main sequence for stars with M\\gt 1 {{M}⊙ } is clearly evident on the M-R diagram, but it is not clear on the M-{{T}eff} diagram based on published temperatures. Effective temperatures can be calculated directly using the well known Stephan-Boltzmann law by employing the accurately known values of M and R with the newly defined MLRs. With the calculated temperatures, stellar temperature evolution within the main sequence for stars with M\\gt 1 {{M}⊙ } is clearly visible on the M-{{T}eff} diagram. Our study asserts that it is now possible to compute the effective temperature of a main-sequence star with an accuracy of ˜6%, as long as its observed radius error is adequately small (\\lt 1%) and its observed mass error is reasonably small (\\lt 6%).

  11. Simultaneous measurement in mass and mass/mass mode for accurate qualitative and quantitative screening analysis of pharmaceuticals in river water.

    PubMed

    Martínez Bueno, M J; Ulaszewska, Maria M; Gomez, M J; Hernando, M D; Fernández-Alba, A R

    2012-09-21

    A new approach for the analysis of pharmaceuticals (target and non-target) in water by LC-QTOF-MS is described in this work. The study has been designed to assess the performance of the simultaneous quantitative screening of target compounds, and the qualitative analysis of non-target analytes, in just one run. The features of accurate mass full scan mass spectrometry together with high MS/MS spectral acquisition rates - by means of information dependent acquisition (IDA) - have demonstrated their potential application in this work. Applying this analytical strategy, an identification procedure is presented based on library searching for compounds which were not included a priori in the analytical method as target compounds, thus allowing their characterization by data processing of accurate mass measurements in MS and MS/MS mode. The non-target compounds identified in river water samples were ketorolac, trazodone, fluconazole, metformin and venlafaxine. Simultaneously, this strategy allowed for the identification of other compounds which were not included in the library by screening the highest intensity peaks detected in the samples and by analysis of the full scan TOF-MS, isotope pattern and MS/MS spectra - the example of loratadine (histaminergic) is described. The group of drugs of abuse selected as target compounds for evaluation included analgesics, opioids and psychostimulants. Satisfactory results regarding sensitivity and linearity of the developed method were obtained. Limits of detection for the selected target compounds were from 0.003 to 0.01 μg/L and 0.01 to 0.5 μg/L, in MS and MS/MS mode, respectively - by direct sample injection of 100 μL.

  12. Accurate detection of blood vessels improves the detection of exudates in color fundus images.

    PubMed

    Youssef, Doaa; Solouma, Nahed H

    2012-12-01

    Exudates are one of the earliest and most prevalent symptoms of diseases leading to blindness such as diabetic retinopathy and macular degeneration. Certain areas of the retina with such conditions are to be photocoagulated by laser to stop the disease progress and prevent blindness. Outlining these areas is dependent on outlining the lesions and the anatomic structures of the retina. In this paper, we provide a new method for the detection of blood vessels that improves the detection of exudates in fundus photographs. The method starts with an edge detection algorithm which results in a over segmented image. Then the new feature-based algorithm can be used to accurately detect the blood vessels. This algorithm considers the characteristics of a retinal blood vessel such as its width range, intensities and orientations for the purpose of selective segmentation. Because of its bulb shape and its color similarity with exudates, the optic disc can be detected using the common Hough transform technique. The extracted blood vessel tree and optic disc could be subtracted from the over segmented image to get an initial estimate of exudates. The final estimation of exudates can then be obtained by morphological reconstruction based on the appearance of exudates. This method is shown to be promising since it increases the sensitivity and specificity of exudates detection to 80% and 100% respectively.

  13. Accurate mass determination of short-lived isotopes by a tandem Penning-trap mass spectrometer

    SciTech Connect

    Stolzenberg, H.; Becker, S.; Bollen, G.; Kern, F.; Kluge, H.; Otto, T.; Savard, G.; Schweikhard, L. ); Audi, G. ); Moore, R.B. ); The ISOLDE Collaboration

    1990-12-17

    A mass spectrometer consisting of two Penning traps has been set up for short-lived isotopes at the on-line mass separator ISOLDE at CERN. The ion beam is collected and cooled in the first trap. After delivery to the second trap, high-accuracy direct mass measurements are made by determining the cyclotron frequency of the stored ions. Measurements have been performed for {sup 118}Cs--{sup 137}Cs. A resolving power of over 10{sup 6} and an accuracy of 1.4{times}10{sup {minus}7} have been achieved, corresponding to about 20 keV.

  14. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: identification of ethoxylated surfactants.

    PubMed

    Thurman, E Michael; Ferrer, Imma; Blotevogel, Jens; Borch, Thomas

    2014-10-01

    Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3-EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly and doubly charged forms. A structural model of adduct formation is presented, and binding constants are calculated, which is based on a spherical cagelike conformation, where the central cation (NH4(+) or Na(+)) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over 500 accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate "fingerprinting", in a first application to monitor water quality that results from fluids used in hydraulic fracturing. PMID:25164376

  15. The Use of Accurate Mass Tags for High-Throughput Microbial Proteomics

    SciTech Connect

    Smith, Richard D. ); Anderson, Gordon A. ); Lipton, Mary S. ); Masselon, Christophe D. ); Pasa Tolic, Ljiljana ); Shen, Yufeng ); Udseth, Harold R. )

    2002-08-01

    We describe and demonstrate a global strategy that extends the sensitivity, dynamic range, comprehensiveness, and throughput of proteomic measurements based upon the use of peptide accurate mass tags (AMTs) produced by global protein enzymatic digestion. The two-stage strategy exploits Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry to validate peptide AMTs for a specific organism, tissue or cell type from potential mass tags identified using conventional tandem mass spectrometry (MS/MS) methods, providing greater confidence in identifications as well as the basis for subsequent measurements without the need for MS/MS, and thus with greater sensitivity and increased throughput. A single high resolution capillary liquid chromatography separation combined with high sensitivity, high resolution and ac-curate FT-ICR measurements has been shown capable of characterizing peptide mixtures of significantly more than 10 5 components with mass accuracies of -1 ppm, sufficient for broad protein identification using AMTs. Other attractions of the approach include the broad and relatively unbiased proteome coverage, the capability for exploiting stable isotope labeling methods to realize high precision for relative protein abundance measurements, and the projected potential for study of mammalian proteomes when combined with additional sample fractionation. Using this strategy, in our first application we have been able to identify AMTs for 60% of the potentially expressed proteins in the organism Deinococcus radiodurans.

  16. Fast and accurate mock catalogue generation for low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Koda, Jun; Blake, Chris; Beutler, Florian; Kazin, Eyal; Marin, Felipe

    2016-06-01

    We present an accurate and fast framework for generating mock catalogues including low-mass haloes, based on an implementation of the COmoving Lagrangian Acceleration (COLA) technique. Multiple realisations of mock catalogues are crucial for analyses of large-scale structure, but conventional N-body simulations are too computationally expensive for the production of thousands of realizations. We show that COLA simulations can produce accurate mock catalogues with a moderate computation resource for low- to intermediate-mass galaxies in 1012 M⊙ haloes, both in real and redshift space. COLA simulations have accurate peculiar velocities, without systematic errors in the velocity power spectra for k ≤ 0.15 h Mpc-1, and with only 3-per cent error for k ≤ 0.2 h Mpc-1. We use COLA with 10 time steps and a Halo Occupation Distribution to produce 600 mock galaxy catalogues of the WiggleZ Dark Energy Survey. Our parallelized code for efficient generation of accurate halo catalogues is publicly available at github.com/junkoda/cola_halo.

  17. iPE-MMR: An integrated approach to accurately assign monoisotopic precursor masses to tandem mass spectrometric data

    PubMed Central

    Jung, Hee-Jung; Purvine, Samuel O.; Kim, Hokeun; Petyuk, Vladislav A.; Hyung, Seok-Won; Monroe, Matthew E.; Mun, Dong-Gi; Kim, Kyong-Chul; Park, Jong-Moon; Kim, Su-Jin; Tolic, Nikola; Slysz, Gordon W.; Moore, Ronald J.; Zhao, Rui; Adkins, Joshua N.; Anderson, Gordon A.; Lee, Hookeun; Camp, David G.; Yu, Myeong-Hee; Smith, Richard D.; Lee, Sang-Won

    2010-01-01

    Accurate assignment of monoisotopic precursor masses to tandem mass spectrometric (MS/MS) data is a fundamental and critically important step for successful peptide identifications in mass spectrometry based proteomics. Here we describe an integrated approach that combines three previously reported methods of treating MS/MS data for precursor mass refinement. This combined method, “integrated Post-Experiment Monoisotopic Mass Refinement” (iPE-MMR), integrates steps: 1) generation of refined MS/MS data by DeconMSn; 2) additional refinement of the resultant MS/MS data by a modified version of PE-MMR; 3) elimination of systematic errors of precursor masses using DtaRefinery. iPE-MMR is the first method that utilizes all MS information from multiple MS scans of a precursor ion including multiple charge states, in an MS scan, to determine precursor mass. By combining these methods, iPE-MMR increases sensitivity in peptide identification and provides increased accuracy when applied to complex high-throughput proteomics data. PMID:20863060

  18. Detection and accurate identification of new or emerging bacteria in cystic fibrosis patients.

    PubMed

    Bittar, F; Rolain, J-M

    2010-07-01

    Respiratory infections remain a major threat to cystic fibrosis (CF) patients. The detection and correct identification of the bacteria implicated in these infections is critical for the therapeutic management of patients. The traditional methods of culture and phenotypic identification of bacteria lack both sensitivity and specificity because many bacteria can be missed and/or misidentified. Molecular analyses have recently emerged as useful means to resolve these problems, including molecular methods for accurate identification or detection of bacteria and molecular methods for evaluation of microbial diversity. These recent molecular technologies have increased the list of new and/or emerging pathogens and epidemic strains associated with CF patients. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of intact cells has also emerged recently as a powerful and rapid method for the routine identification of bacteria in clinical microbiology laboratories and will certainly represent the method of choice also for the routine identification of bacteria in the context of CF. Finally, recent data derived from molecular culture-independent analyses indicate the presence of a previously underestimated, complex microbial community in sputa from CF patients. Interestingly, full genome sequencing of some bacteria frequently recovered from CF patients has highlighted the fact that the lungs of CF patients are hotspots for lateral gene transfer and the adaptation of these ecosystems to a specific chronic condition.

  19. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  20. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics.

    PubMed

    Stanley, Jeffrey R; Adkins, Joshua N; Slysz, Gordon W; Monroe, Matthew E; Purvine, Samuel O; Karpievitch, Yuliya V; Anderson, Gordon A; Smith, Richard D; Dabney, Alan R

    2011-08-15

    Current algorithms for quantifying peptide identification confidence in the accurate mass and time (AMT) tag approach assume that the AMT tags themselves have been correctly identified. However, there is uncertainty in the identification of AMT tags, because this is based on matching LC-MS/MS fragmentation spectra to peptide sequences. In this paper, we incorporate confidence measures for the AMT tag identifications into the calculation of probabilities for correct matches to an AMT tag database, resulting in a more accurate overall measure of identification confidence for the AMT tag approach. The method is referenced as Statistical Tools for AMT Tag Confidence (STAC). STAC additionally provides a uniqueness probability (UP) to help distinguish between multiple matches to an AMT tag and a method to calculate an overall false discovery rate (FDR). STAC is freely available for download, as both a command line and a Windows graphical application.

  1. Dereplication of Streptomyces sp. AMC 23 polyether ionophore antibiotics by accurate-mass electrospray tandem mass spectrometry.

    PubMed

    Crevelin, Eduardo J; Crotti, Antônio E M; Zucchi, Tiago D; Melo, Itamar S; Moraes, Luiz A B

    2014-11-01

    Actinomycetes, especially those belonging to the genus Streptomyces, are economically important from a biotechnological standpoint: they produce antibiotics, anticancer compounds and a variety of bioactive substances that are potentially applicable in the agrochemical and pharmaceutical industries. This paper combined accurate-mass electrospray tandem mass spectrometry in the full scan and product ion scan modes with compounds library data to identify the major compounds in the crude extract produced by Streptomyces sp. AMC 23; it also investigated how sodiated nonactin ([M + Na](+)) fragmented. Most product ions resulted from elimination of 184 mass units due to consecutive McLafferty-type rearrangements. The data allowed identification of four macrotetrolides homologous to nonactin (monactin, isodinactin, isotrinactin/trinactin and tetranactin) as well as three related linear dimer compounds (nonactyl nonactoate, nonactyl homononactoate and homononactyl homononactoate). The major product ions of the sodiated molecules of these compounds also originated from elimination of 184 and 198 mass units. UPLC-MS/MS in the neutral loss scan mode helped to identify these compounds on the basis of the elimination of 184 and 198 mass units. This method aided monitoring of the relative production of these compounds for 32 days and revealed that the biosynthetic process began with increased production of linear dimers as compared with macrotetrolides. These data could facilitate dereplication and identification of these compounds in other microbial crude extracts.

  2. An accurate mass and radius measurement for an ultracool white dwarf

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Bergeron, P.; Copperwheat, C. M.; Dhillon, V. S.; Bento, J.; Littlefair, S. P.; Schreiber, M. R.

    2012-11-01

    Studies of cool white dwarfs in the solar neighbourhood have placed a limit on the age of the Galactic disc of 8-9 billion years. However, determining their cooling ages requires the knowledge of their effective temperatures, masses, radii and atmospheric composition. So far, these parameters could only be inferred for a small number of ultracool white dwarfs for which an accurate distance is known, by fitting their spectral energy distributions in conjunction with a theoretical mass-radius relation. However, the mass-radius relation remains largely untested, and the derived cooling ages are hence model dependent. Here we report direct measurements of the mass and radius of an ultracool white dwarf in the double-lined eclipsing binary SDSS J013851.54-001621.6. We find MWD = 0.529 ± 0.010 M⊙ and RWD = 0.0131 ± 0.0003 R⊙. Our measurements are consistent with the mass-radius relation and we determine a robust cooling age of 9.5 billion years for the 3570 K white dwarf. We find that the mass and radius of the low-mass companion star, Msec = 0.132 ± 0.003 M⊙ and Rsec = 0.165 ± 0.001 R⊙, are in agreement with evolutionary models. We also find evidence that this >9.5 Gyr old M5 star is still active, far beyond the activity lifetime for a star of its spectral type. This is likely caused by the high tidally enforced rotation rate of the star. The companion star is close to filling its Roche lobe and the system will evolve into a cataclysmic variable in only 70 Myr. Our direct measurements demonstrate that this system can be used to calibrate ultracool white dwarf atmospheric models.

  3. Accurate mass fragment library for rapid analysis of pesticides on produce using ambient pressure desorption ionization with high-resolution mass spectrometry.

    PubMed

    Kern, Sara E; Lin, Lora A; Fricke, Frederick L

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]⁺) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]⁺ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]⁺ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli

  4. Accurate Mass Fragment Library for Rapid Analysis of Pesticides on Produce Using Ambient Pressure Desorption Ionization with High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kern, Sara E.; Lin, Lora A.; Fricke, Frederick L.

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]+) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]+ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]+ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli. The

  5. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags

    PubMed Central

    Lipton, Mary S.; Paša-Tolić, Ljiljana; Anderson, Gordon A.; Anderson, David J.; Auberry, Deanna L.; Battista, John R.; Daly, Michael J.; Fredrickson, Jim; Hixson, Kim K.; Kostandarithes, Heather; Masselon, Christophe; Markillie, Lye Meng; Moore, Ronald J.; Romine, Margaret F.; Shen, Yufeng; Stritmatter, Eric; Tolić, Nikola; Udseth, Harold R.; Venkateswaran, Amudhan; Wong, Kwong-Kwok; Zhao, Rui; Smith, Richard D.

    2002-01-01

    Understanding biological systems and the roles of their constituents is facilitated by the ability to make quantitative, sensitive, and comprehensive measurements of how their proteome changes, e.g., in response to environmental perturbations. To this end, we have developed a high-throughput methodology to characterize an organism's dynamic proteome based on the combination of global enzymatic digestion, high-resolution liquid chromatographic separations, and analysis by Fourier transform ion cyclotron resonance mass spectrometry. The peptides produced serve as accurate mass tags for the proteins and have been used to identify with high confidence >61% of the predicted proteome for the ionizing radiation-resistant bacterium Deinococcus radiodurans. This fraction represents the broadest proteome coverage for any organism to date and includes 715 proteins previously annotated as either hypothetical or conserved hypothetical. PMID:12177431

  6. High-resolution accurate mass measurements of biomolecules using a new electrospray ionization ion cyclotron resonance mass spectrometer.

    PubMed

    Winger, B E; Hofstadler, S A; Bruce, J E; Udseth, H R; Smith, R D

    1993-07-01

    A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10(-9) torr. The increased pumping speed attainable with cryopumping (> 10(5) L/s) allowed brief pressure excursions to above 10(-4) torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10-25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4(+) charge state (m/z 1434) of insulin. PMID:24227643

  7. Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

    NASA Astrophysics Data System (ADS)

    Little, James L.; Williams, Antony J.; Pshenichnov, Alexey; Tkachenko, Valery

    2012-01-01

    In many cases, an unknown to an investigator is actually known in the chemical literature, a reference database, or an internet resource. We refer to these types of compounds as "known unknowns." ChemSpider is a very valuable internet database of known compounds useful in the identification of these types of compounds in commercial, environmental, forensic, and natural product samples. The database contains over 26 million entries from hundreds of data sources and is provided as a free resource to the community. Accurate mass mass spectrometry data is used to query the database by either elemental composition or a monoisotopic mass. Searching by elemental composition is the preferred approach. However, it is often difficult to determine a unique elemental composition for compounds with molecular weights greater than 600 Da. In these cases, searching by the monoisotopic mass is advantageous. In either case, the search results are refined by sorting the number of references associated with each compound in descending order. This raises the most useful candidates to the top of the list for further evaluation. These approaches were shown to be successful in identifying "known unknowns" noted in our laboratory and for compounds of interest to others.

  8. Accurate Universal Models for the Mass Accretion Histories and Concentrations of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Börner, G.

    2009-12-01

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance ΛCDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and ΛCDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the ΛCDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass, when

  9. ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS

    SciTech Connect

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.

    2009-12-10

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance LAMBDACDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and LAMBDACDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the LAMBDACDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass

  10. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance.

    PubMed

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Suffredini, Anthony F; Sacks, David B; Yu, Yi-Kuo

    2016-02-01

    Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple 'fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

  11. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y.; Drake, Steven K.; Gucek, Marjan; Suffredini, Anthony F.; Sacks, David B.; Yu, Yi-Kuo

    2016-02-01

    Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple `fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

  12. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for β-cell mass assessments

    PubMed Central

    Eter, Wael A.; Parween, Saba; Joosten, Lieke; Frielink, Cathelijne; Eriksson, Maria; Brom, Maarten; Ahlgren, Ulf; Gotthardt, Martin

    2016-01-01

    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM. Alternative methods are therefore warranted to cross-validate β-cell imaging using radiotracers. In this study, we introduce multimodal SPECT - optical projection tomography (OPT) imaging as an accurate approach to cross-validate radionuclide-based imaging of β-cells. Uptake of a promising radiotracer for β-cell imaging by SPECT, 111In-exendin-3, was measured by ex vivo-SPECT and cross evaluated by 3D quantitative OPT imaging as well as with histology within healthy and alloxan-treated Brown Norway rat pancreata. SPECT signal was in excellent linear correlation with OPT data as compared to histology. While histological determination of islet spatial distribution was challenging, SPECT and OPT revealed similar distribution patterns of 111In-exendin-3 and insulin positive β-cell volumes between different pancreatic lobes, both visually and quantitatively. We propose ex vivo SPECT-OPT multimodal imaging as a highly accurate strategy for validating the performance of β-cell radiotracers. PMID:27080529

  13. Distributed Pedestrian Detection Alerts Based on Data Fusion with Accurate Localization

    PubMed Central

    García, Fernando; Jiménez, Felipe; Anaya, José Javier; Armingol, José María; Naranjo, José Eugenio; de la Escalera, Arturo

    2013-01-01

    Among Advanced Driver Assistance Systems (ADAS) pedestrian detection is a common issue due to the vulnerability of pedestrians in the event of accidents. In the present work, a novel approach for pedestrian detection based on data fusion is presented. Data fusion helps to overcome the limitations inherent to each detection system (computer vision and laser scanner) and provides accurate and trustable tracking of any pedestrian movement. The application is complemented by an efficient communication protocol, able to alert vehicles in the surroundings by a fast and reliable communication. The combination of a powerful location, based on a GPS with inertial measurement, and accurate obstacle localization based on data fusion has allowed locating the detected pedestrians with high accuracy. Tests proved the viability of the detection system and the efficiency of the communication, even at long distances. By the use of the alert communication, dangerous situations such as occlusions or misdetections can be avoided. PMID:24008284

  14. Distributed pedestrian detection alerts based on data fusion with accurate localization.

    PubMed

    García, Fernando; Jiménez, Felipe; Anaya, José Javier; Armingol, José María; Naranjo, José Eugenio; de la Escalera, Arturo

    2013-01-01

    Among Advanced Driver Assistance Systems (ADAS) pedestrian detection is a common issue due to the vulnerability of pedestrians in the event of accidents. In the present work, a novel approach for pedestrian detection based on data fusion is presented. Data fusion helps to overcome the limitations inherent to each detection system (computer vision and laser scanner) and provides accurate and trustable tracking of any pedestrian movement. The application is complemented by an efficient communication protocol, able to alert vehicles in the surroundings by a fast and reliable communication. The combination of a powerful location, based on a GPS with inertial measurement, and accurate obstacle localization based on data fusion has allowed locating the detected pedestrians with high accuracy. Tests proved the viability of the detection system and the efficiency of the communication, even at long distances. By the use of the alert communication, dangerous situations such as occlusions or misdetections can be avoided.

  15. DMS-prefiltered mass spectrometry for the detection of biomarkers

    NASA Astrophysics Data System (ADS)

    Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.

    2008-04-01

    Technologies based on Differential Mobility Spectrometry (DMS) are ideally matched to rapid, sensitive, and selective detection of chemicals like biomarkers. Biomarkers linked to exposure to radiation, exposure to CWA's, exposure to toxic materials (TICs and TIMs) and to specific diseases are being examined in a number of laboratories. Screening for these types of exposure can be improved in accuracy and greatly speeded up by using DMS-MS instead of slower techniques like LC-MS and GC-MS. We have performed an extensive series of tests with nanospray-DMS-mass spectroscopy and standalone nanospray-DMS obtaining extensive information on chemistry and detectivity. DMS-MS systems implemented with low-resolution, low-cost, portable mass-spectrometry systems are very promising. Lowresolution mass spectrometry alone would be inadequate for the task, but with DMS pre-filtration to suppress interferences, can be quite effective, even for quantitative measurement. Bio-fluids and digests are well suited to ionization by electrospray and detection by mass-spectrometry, but signals from critical markers are overwhelmed by chemical noise from unrelated species, making essential quantitative analysis impossible. Sionex and collaborators have presented data using DMS to suppress chemical noise, allowing detection of cancer biomarkers in 10,000-fold excess of normal products 1,2. In addition, a linear dynamic range of approximately 2,000 has been demonstrated with accurate quantitation 3. We will review the range of possible applications and present new data on DMS-MS biomarker detection.

  16. A simplified hydroethidine method for fast and accurate detection of superoxide production in isolated mitochondria.

    PubMed

    Back, Patricia; Matthijssens, Filip; Vanfleteren, Jacques R; Braeckman, Bart P

    2012-04-01

    Because superoxide is involved in various physiological processes, many efforts have been made to improve its accurate quantification. We optimized and validated a superoxide-specific and -sensitive detection method. The protocol is based on fluorescence detection of the superoxide-specific hydroethidine (HE) oxidation product, 2-hydroxyethidium. We established a method for the quantification of superoxide production in isolated mitochondria without the need for acetone extraction and purification chromatography as described in previous studies.

  17. Ultra-performance liquid chromatography/tandem mass spectrometry for accurate quantification of global DNA methylation in human sperms.

    PubMed

    Wang, Xiaoli; Suo, Yongshan; Yin, Ruichuan; Shen, Heqing; Wang, Hailin

    2011-06-01

    Aberrant DNA methylation in human sperms has been proposed to be a possible mechanism associated with male infertility. We developed an ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for rapid, sensitive, and specific detection of global DNA methylation level in human sperms. Multiple-reaction monitoring (MRM) mode was used in MS/MS detection for accurate quantification of DNA methylation. The intra-day and inter-day precision values of this method were within 1.50-5.70%. By using 2-deoxyguanosine as an internal standard, UPLC-MS/MS method was applied for the detection of global DNA methylation levels in three cultured cell lines. DNA methyltransferases inhibitor 5-aza-2'-deoxycytidine can significantly reduce global DNA methylation levels in treated cell lines, showing the reliability of our method. We further examined global DNA methylation levels in human sperms, and found that global methylation values varied from 3.79% to 4.65%. The average global DNA methylation level of sperm samples washed only by PBS (4.03%) was relatively lower than that of sperm samples in which abnormal and dead sperm cells were removed by density gradient centrifugation (4.25%), indicating the possible aberrant DNA methylation level in abnormal sperm cells. Clinical application of UPLC-MS/MS method in global DNA methylation detection of human sperms will be useful in human sperm quality evaluation and the study of epigenetic mechanisms responsible for male infertility.

  18. Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions

    PubMed Central

    He, Hongshen

    2016-01-01

    Humans and non-human primates are extremely sensitive to snakes as exemplified by their ability to detect pictures of snakes more quickly than those of other animals. These findings are consistent with the Snake Detection Theory, which hypothesizes that as predators, snakes were a major source of evolutionary selection that favored expansion of the visual system of primates for rapid snake detection. Many snakes use camouflage to conceal themselves from both prey and their own predators, making it very challenging to detect them. If snakes have acted as a selective pressure on primate visual systems, they should be more easily detected than other animals under difficult visual conditions. Here we tested whether humans discerned images of snakes more accurately than those of non-threatening animals (e.g., birds, cats, or fish) under conditions of less perceptual information by presenting a series of degraded images with the Random Image Structure Evolution technique (interpolation of random noise). We find that participants recognize mosaic images of snakes, which were regarded as functionally equivalent to camouflage, more accurately than those of other animals under dissolved conditions. The present study supports the Snake Detection Theory by showing that humans have a visual system that accurately recognizes snakes under less discernible visual conditions. PMID:27783686

  19. Accurate, noninvasive detection of Helicobacter pylori DNA from stool samples: potential usefulness for monitoring treatment.

    PubMed

    Shuber, Anthony P; Ascaño, Jennifer J; Boynton, Kevin A; Mitchell, Anastasia; Frierson, Henry F; El-Rifai, Wa'el; Powell, Steven M

    2002-01-01

    A novel DNA assay demonstrating sensitive and accurate detection of Helicobacter pylori from stool samples is reported. Moreover, in three individuals tested for therapeutic response, the assay showed the disappearance of H. pylori DNA during treatment. Thus, this noninvasive molecular biology-based assay has the potential to be a powerful diagnostic tool given its ability to specifically identify H. pylori DNA.

  20. In-Depth Glycoproteomic Characterization of γ-Conglutin by High-Resolution Accurate Mass Spectrometry

    PubMed Central

    Schiarea, Silvia; Arnoldi, Lolita; Fanelli, Roberto; De Combarieu, Eric; Chiabrando, Chiara

    2013-01-01

    The molecular characterization of bioactive food components is necessary for understanding the mechanisms of their beneficial or detrimental effects on human health. This study focused on γ-conglutin, a well-known lupin seed N-glycoprotein with health-promoting properties and controversial allergenic potential. Given the importance of N-glycosylation for the functional and structural characteristics of proteins, we studied the purified protein by a mass spectrometry-based glycoproteomic approach able to identify the structure, micro-heterogeneity and attachment site of the bound N-glycan(s), and to provide extensive coverage of the protein sequence. The peptide/N-glycopeptide mixtures generated by enzymatic digestion (with or without N-deglycosylation) were analyzed by high-resolution accurate mass liquid chromatography–multi-stage mass spectrometry. The four main micro-heterogeneous variants of the single N-glycan bound to γ-conglutin were identified as Man2(Xyl) (Fuc) GlcNAc2, Man3(Xyl) (Fuc) GlcNAc2, GlcNAcMan3(Xyl) (Fuc) GlcNAc2 and GlcNAc 2Man3(Xyl) (Fuc) GlcNAc2. These carry both core β1,2-xylose and core α1-3-fucose (well known Cross-Reactive Carbohydrate Determinants), but corresponding fucose-free variants were also identified as minor components. The N-glycan was proven to reside on Asn131, one of the two potential N-glycosylation sites. The extensive coverage of the γ-conglutin amino acid sequence suggested three alternative N-termini of the small subunit, that were later confirmed by direct-infusion Orbitrap mass spectrometry analysis of the intact subunit. PMID:24069245

  1. Change in body mass accurately and reliably predicts change in body water after endurance exercise.

    PubMed

    Baker, Lindsay B; Lang, James A; Kenney, W Larry

    2009-04-01

    This study tested the hypothesis that the change in body mass (DeltaBM) accurately reflects the change in total body water (DeltaTBW) after prolonged exercise. Subjects (4 men, 4 women; 22-36 year; 66 +/- 10 kg) completed 2 h of interval running (70% VO(2max)) in the heat (30 degrees C), followed by a run to exhaustion (85% VO(2max)), and then sat for a 1 h recovery period. During exercise and recovery, subjects drank fluid or no fluid to maintain their BM, increase BM by 2%, or decrease BM by 2 or 4% in separate trials. Pre- and post-experiment TBW were determined using the deuterium oxide (D(2)O) dilution technique and corrected for D(2)O lost in urine, sweat, breath vapor, and nonaqueous hydrogen exchange. The average difference between DeltaBM and DeltaTBW was 0.07 +/- 1.07 kg (paired t test, P = 0.29). The slope and intercept of the relation between DeltaBM and DeltaTBW were not significantly different from 1 and 0, respectively. The intraclass correlation coefficient between DeltaBM and DeltaTBW was 0.76, which is indicative of excellent reliability between methods. Measuring pre- to post-exercise DeltaBM is an accurate and reliable method to assess the DeltaTBW.

  2. Highly sensitive and accurate screening of 40 dyes in soft drinks by liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Feng, Feng; Zhao, Yansheng; Yong, Wei; Sun, Li; Jiang, Guibin; Chu, Xiaogang

    2011-06-15

    A method combining solid phase extraction with high performance liquid chromatography-electrospray ionization tandem mass spectrometry was developed for the highly sensitive and accurate screening of 40 dyes, most of which are banned in foods. Electrospray ionization tandem mass spectrometry was used to identify and quantify a large number of dyes for the first time, and demonstrated greater accuracy and sensitivity than the conventional liquid chromatography-ultraviolet/visible methods. The limits of detection at a signal-to-noise ratio of 3 for the dyes are 0.0001-0.01 mg/L except for Tartrazine, Amaranth, New Red and Ponceau 4R, with detection limits of 0.5, 0.25, 0.125 and 0.125 mg/L, respectively. When this method was applied to screening of dyes in soft drinks, the recoveries ranged from 91.1 to 105%. This method has been successfully applied to screening of illegal dyes in commercial soft drink samples, and it is valuable to ensure the safety of food.

  3. Accurate mass screening of pharmaceuticals and fungicides in water by U-HPLC-Exactive Orbitrap MS.

    PubMed

    Chitescu, Carmen Lidia; Oosterink, Efraim; de Jong, Jacob; Linda Stolker, Alida Adriana Maria

    2012-07-01

    The use of pharmaceuticals in livestock production is a potential source of surface water, groundwater and soil contamination. Possible impacts of antibiotics on the environment include toxicity and the emergence of antibiotic resistance. Monitoring programs are required to record the presence of these substances in the environment. A rapid, versatile and selective multi-method was developed and validated for screening 43 pharmaceutical and fungicides compounds, in surface and groundwater, in one single full-scan MS method, using benchtop U-HPLC-Exactive Orbitrap MS at 50,000 (FWHM) resolution. Detection was based on calculated exact masses and on retention time. Sample volume, pH conditions and solid-phase extraction (SPE) sample clean-up conditions were optimized. In the final method, 74 % of the compounds had recoveries higher than 80 %, 15 % of the compounds had recoveries between 60 % and 80 %, and 7 % of the compounds had recoveries between 40 % and 50 %. One of the compounds (itraconazole) had a recovery lower than 10 % and nystatin was not detected. The level of detection was 10 ng L(-1) for 61 % of the compounds, 50 ng L(-1) for 32 % and 100 ng L(-1) for 5%. In-house validation, based on EU guidelines, proves that the detection capability CCβ is lower than 10 ng L(-1) (for β error 5 %) for 37 % of the compounds, lower than 50 ng L(-1) for 35 % of the compounds and lower than 100 ng L(-1) for 14 % of compounds. This study demonstrates that the ultra-high resolution and reliable mass accuracy of Exactive Orbitrap MS permits the detection of pharmaceutical residues in a concentration range of 10-100 ng L(-1), applying a post target screening approach, in the multi-method conditions.

  4. A Support Vector Machine model for the prediction of proteotypic peptides for accurate mass and time proteomics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.

    2008-07-01

    Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares these profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a Support Vector Machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity, and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of ~0.8 with a standard deviation of less than 0.025. Furthermore, we demonstrate that these results are achievable with a small set of 12 variables and can achieve high proteome coverage. Availability: http://omics.pnl.gov/software/STEPP.php

  5. Retrospective screening of relevant pesticide metabolites in food using liquid chromatography high resolution mass spectrometry and accurate-mass databases of parent molecules and diagnostic fragment ions.

    PubMed

    Polgár, László; García-Reyes, Juan F; Fodor, Péter; Gyepes, Attila; Dernovics, Mihály; Abrankó, László; Gilbert-López, Bienvenida; Molina-Díaz, Antonio

    2012-08-01

    In recent years, the detection and characterization of relevant pesticide metabolites in food is an important task in order to evaluate their formation, kinetics, stability, and toxicity. In this article, a methodology for the systematic screening of pesticides and their main metabolites in fruit and vegetable samples is described, using LC-HRMS and accurate-mass database search of parent compounds and their diagnostic fragment ions. The approach is based on (i) search for parent pesticide molecules; (ii) search for their metabolites in the positive samples, assuming common fragmentation pathways between the metabolites and parent pesticide molecules; and (iii) search for pesticide conjugates using the data from both parent species and diagnostic fragment ions. An accurate-mass database was constructed consisting of 1396 compounds (850 parent compounds, 447 fragment ions and 99 metabolites). The screening process was performed by the software in an automated fashion. The proposed methodology was evaluated with 29 incurred samples and the output obtained was compared to standard pesticide testing methods (targeted LC-MS/MS). Examples on the application of the proposed approach are shown, including the detection of several pesticide glycosides derivatives, which were found with significantly relevant intensities. Glucose-conjugated forms of parent compounds (e.g., fenhexamid-O-glucoside) and those of metabolites (e.g., despropyl-iprodione-N-glycoside) were detected. Facing the lack of standards for glycosylated pesticides, the study was completed with the synthesis of fenhexamid-O-glucoside for quantification purposes. In some cases the pesticide derivatives were found in a relatively high ratio, drawing the attention to these kinds of metabolites and showing that they should not be neglected in multi-residue methods. The global coverage obtained on the 29 analyzed samples showed the usefulness and benefits of the proposed approach and highlights the practical

  6. Identification of Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs) in Natural Waters Using Accurate Mass Time-of-Flight Mass Spectrometry (TOFMS).

    PubMed

    Strynar, Mark; Dagnino, Sonia; McMahen, Rebecca; Liang, Shuang; Lindstrom, Andrew; Andersen, Erik; McMillan, Larry; Thurman, Michael; Ferrer, Imma; Ball, Carol

    2015-10-01

    Recent scientific scrutiny and concerns over exposure, toxicity, and risk have led to international regulatory efforts resulting in the reduction or elimination of certain perfluorinated compounds from various products and waste streams. Some manufacturers have started producing shorter chain per- and polyfluorinated compounds to try to reduce the potential for bioaccumulation in humans and wildlife. Some of these new compounds contain central ether oxygens or other minor modifications of traditional perfluorinated structures. At present, there has been very limited information published on these "replacement chemistries" in the peer-reviewed literature. In this study we used a time-of-flight mass spectrometry detector (LC-ESI-TOFMS) to identify fluorinated compounds in natural waters collected from locations with historical perfluorinated compound contamination. Our workflow for discovery of chemicals included sequential sampling of surface water for identification of potential sources, nontargeted TOFMS analysis, molecular feature extraction (MFE) of samples, and evaluation of features unique to the sample with source inputs. Specifically, compounds were tentatively identified by (1) accurate mass determination of parent and/or related adducts and fragments from in-source collision-induced dissociation (CID), (2) in-depth evaluation of in-source adducts formed during analysis, and (3) confirmation with authentic standards when available. We observed groups of compounds in homologous series that differed by multiples of CF2 (m/z 49.9968) or CF2O (m/z 65.9917). Compounds in each series were chromatographically separated and had comparable fragments and adducts produced during analysis. We detected 12 novel perfluoroalkyl ether carboxylic and sulfonic acids in surface water in North Carolina, USA using this approach. A key piece of evidence was the discovery of accurate mass in-source n-mer formation (H(+) and Na(+)) differing by m/z 21.9819, corresponding to the

  7. Time-of-flight accurate mass spectrometry identification of quinoline alkaloids in honey.

    PubMed

    Rodríguez-Cabo, Tamara; Moniruzzaman, Mohammed; Rodríguez, Isaac; Ramil, María; Cela, Rafael; Gan, Siew Hua

    2015-08-01

    Time-of-flight accurate mass spectrometry (TOF-MS), following a previous chromatographic (gas or liquid chromatography) separation step, is applied to the identification and structural elucidation of quinoline-like alkaloids in honey. Both electron ionization (EI) MS and positive electrospray (ESI+) MS spectra afforded the molecular ions (M(.+) and M+H(+), respectively) of target compounds with mass errors below 5 mDa. Scan EI-MS and product ion scan ESI-MS/MS spectra permitted confirmation of the existence of a quinoline ring in the structures of the candidate compounds. Also, the observed fragmentation patterns were useful to discriminate between quinoline derivatives having the same empirical formula but different functionalities, such as aldoximes and amides. In the particular case of phenylquinolines, ESI-MS/MS spectra provided valuable clues regarding the position of the phenyl moiety attached to the quinoline ring. The aforementioned spectral information, combined with retention times matching, led to the identification of quinoline and five quinoline derivatives, substituted at carbon number 4, in honey samples. An isomer of phenyquinoline was also noticed; however, its exact structure could not be established. Liquid-liquid microextraction and gas chromatography (GC) TOF-MS were applied to the screening of the aforementioned compounds in a total of 62 honeys. Species displaying higher occurrence frequencies were 4-quinolinecarbonitrile, 4-quinolinecarboxaldehyde, 4-quinolinealdoxime, and the phenylquinoline isomer. The Pearson test revealed strong correlations among the first three compounds. PMID:26041455

  8. CycloBranch: De Novo Sequencing of Nonribosomal Peptides from Accurate Product Ion Mass Spectra

    NASA Astrophysics Data System (ADS)

    Novák, Jiří; Lemr, Karel; Schug, Kevin A.; Havlíček, Vladimír

    2015-07-01

    Nonribosomal peptides have a wide range of biological and medical applications. Their identification by tandem mass spectrometry remains a challenging task. A new open-source de novo peptide identification engine CycloBranch was developed and successfully applied in identification or detailed characterization of 11 linear, cyclic, branched, and branch-cyclic peptides. CycloBranch is based on annotated building block databases the size of which is defined by the user according to ribosomal or nonribosomal peptide origin. The current number of involved nonisobaric and isobaric building blocks is 287 and 521, respectively. Contrary to all other peptide sequencing tools utilizing either peptide libraries or peptide fragment libraries, CycloBranch represents a true de novo sequencing engine developed for accurate mass spectrometric data. It is a stand-alone and cross-platform application with a graphical and user-friendly interface; it supports mzML, mzXML, mgf, txt, and baf file formats and can be run in parallel on multiple threads. It can be downloaded for free from http://ms.biomed.cas.cz/cyclobranch/, where the User's manual and video tutorials can be found.

  9. Enantiomeric separation in comprehensive two-dimensional gas chromatography with accurate mass analysis.

    PubMed

    Chin, Sung-Tong; Nolvachai, Yada; Marriott, Philip J

    2014-11-01

    Chiral comprehensive two-dimensional gas chromatography (eGC×GC) coupled to quadrupole-accurate mass time-of-flight mass spectrometry (QTOFMS) was evaluated for its capability to report the chiral composition of several monoterpenes, namely, α-pinene, β-pinene, and limonene in cardamom oil. Enantiomers in a standard mixture were fully resolved by direct enantiomeric-GC analysis with a 2,3-di-O-methyl-6-t-butylsilyl derivatized β-cyclodextrin phase; however, the (+)-(R)-limonene enantiomer in cardamom oil was overlapped with other background components including cymene and cineole. Verification of (+)-(R)-limonene components based on characteristic ions at m/z 136, 121, and 107 acquired by chiral single-dimension GC-QTOFMS in the alternate MS/MSMS mode of operation was unsuccessful due to similar parent/daughter ions generated by interfering or co-eluting cymene and cineole. Column phases SUPELCOWAX, SLB-IL111, HP-88, and SLB-IL59, were incorporated as the second dimension column ((2)D) in chiral GC×GC analysis; the SLB-IL59 offered the best resolution for the tested monoterpene enantiomers from the matrix background. Enantiomeric ratios for α-pinene, β-pinene, and limonene were determined to be 1.325, 2.703, and 1.040, respectively, in the cardamom oil sample based on relative peak area data. PMID:24420979

  10. Enantiomeric separation in comprehensive two-dimensional gas chromatography with accurate mass analysis.

    PubMed

    Chin, Sung-Tong; Nolvachai, Yada; Marriott, Philip J

    2014-11-01

    Chiral comprehensive two-dimensional gas chromatography (eGC×GC) coupled to quadrupole-accurate mass time-of-flight mass spectrometry (QTOFMS) was evaluated for its capability to report the chiral composition of several monoterpenes, namely, α-pinene, β-pinene, and limonene in cardamom oil. Enantiomers in a standard mixture were fully resolved by direct enantiomeric-GC analysis with a 2,3-di-O-methyl-6-t-butylsilyl derivatized β-cyclodextrin phase; however, the (+)-(R)-limonene enantiomer in cardamom oil was overlapped with other background components including cymene and cineole. Verification of (+)-(R)-limonene components based on characteristic ions at m/z 136, 121, and 107 acquired by chiral single-dimension GC-QTOFMS in the alternate MS/MSMS mode of operation was unsuccessful due to similar parent/daughter ions generated by interfering or co-eluting cymene and cineole. Column phases SUPELCOWAX, SLB-IL111, HP-88, and SLB-IL59, were incorporated as the second dimension column ((2)D) in chiral GC×GC analysis; the SLB-IL59 offered the best resolution for the tested monoterpene enantiomers from the matrix background. Enantiomeric ratios for α-pinene, β-pinene, and limonene were determined to be 1.325, 2.703, and 1.040, respectively, in the cardamom oil sample based on relative peak area data.

  11. Accurate and Efficient Resolution of Overlapping Isotopic Envelopes in Protein Tandem Mass Spectra

    PubMed Central

    Xiao, Kaijie; Yu, Fan; Fang, Houqin; Xue, Bingbing; Liu, Yan; Tian, Zhixin

    2015-01-01

    It has long been an analytical challenge to accurately and efficiently resolve extremely dense overlapping isotopic envelopes (OIEs) in protein tandem mass spectra to confidently identify proteins. Here, we report a computationally efficient method, called OIE_CARE, to resolve OIEs by calculating the relative deviation between the ideal and observed experimental abundance. In the OIE_CARE method, the ideal experimental abundance of a particular overlapping isotopic peak (OIP) is first calculated for all the OIEs sharing this OIP. The relative deviation (RD) of the overall observed experimental abundance of this OIP relative to the summed ideal value is then calculated. The final individual abundance of the OIP for each OIE is the individual ideal experimental abundance multiplied by 1 + RD. Initial studies were performed using higher-energy collisional dissociation tandem mass spectra on myoglobin (with direct infusion) and the intact E. coli proteome (with liquid chromatographic separation). Comprehensive data at the protein and proteome levels, high confidence and good reproducibility were achieved. The resolving method reported here can, in principle, be extended to resolve any envelope-type overlapping data for which the corresponding theoretical reference values are available. PMID:26439836

  12. Accurate assessment of mass, models and resolution by small-angle scattering

    PubMed Central

    Rambo, Robert P.; Tainer, John A.

    2013-01-01

    Modern small angle scattering (SAS) experiments with X-rays or neutrons provide a comprehensive, resolution-limited observation of the thermodynamic state. However, methods for evaluating mass and validating SAS based models and resolution have been inadequate. Here, we define the volume-of-correlation, Vc: a SAS invariant derived from the scattered intensities that is specific to the structural state of the particle, yet independent of concentration and the requirements of a compact, folded particle. We show Vc defines a ratio, Qr, that determines the molecular mass of proteins or RNA ranging from 10 to 1,000 kDa. Furthermore, we propose a statistically robust method for assessing model-data agreements (X2free) akin to cross-validation. Our approach prevents over-fitting of the SAS data and can be used with a newly defined metric, Rsas, for quantitative evaluation of resolution. Together, these metrics (Vc, Qr, X2free, and Rsas) provide analytical tools for unbiased and accurate macromolecular structural characterizations in solution. PMID:23619693

  13. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  14. Integrated Post-Experiment Monoisotopic Mass Refinement: An Integrated Approach to Accurately Assign Monoisotopic Precursor Masses to Tandem Mass Spectrometric Data

    SciTech Connect

    Jung, Hee-Jung; Purvine, Samuel O.; Kim, Hokeun; Petyuk, Vladislav A.; Hyung, Seok-Won; Monroe, Matthew E.; Mun, Dong-Gi; Kim, Kyong-Chul; Park, Jong-Moon; Kim, Su-Jin; Tolic, Nikola; Slysz, Gordon W.; Moore, Ronald J.; Zhao, Rui; Adkins, Joshua N.; Anderson, Gordon A.; Lee, Hookeun; Camp, David G.; Yu, Myeong-Hee; Smith, Richard D.; Lee, Sang-Won

    2010-10-15

    Accurate assignment of monoisotopic precursor masses to tandem mass spectrometric (MS/MS) data is a fundamental and critically important step for successful peptide identifications in mass spectrometry based proteomics. Here we describe an integrated approach that combines three previously reported methods of treating MS/MS data for precursor mass refinement. This combined method, “integrated Post-Experiment Monoisotopic Mass Refinement” (iPE MMR), integrates steps: 1) generation of refined MS/MS data by DeconMSn, 2) additional refinement of the resultant MS/MS data by a modified version of PE-MMR, and 3) elimination of systematic errors of precursor masses using DtaRefinery. iPE-MMR is the first method that utilizes all MS information from multiple MS scans of a precursor ion and multiple charge states of it in an MS scan to determine precursor mass. By combining the synergistic features of each of method, iPE MMR increases sensitivity in peptide identification and provides increased accuracy when applied to complex high-throughput proteomics data. iPE MMR also allows incorporating additional data processing step(s) or skipping step(s), if necessary, to enable new developments or applications of the tools, as each step of iPE MMR produces output data in a common and conventional format used in proteomics data processing.

  15. ACCURATE MASSES FOR THE PRIMARY AND SECONDARY IN THE ECLIPSING WHITE DWARF BINARY NLTT 11748

    SciTech Connect

    Kilic, Mukremin; Brown, Warren R.; Kenyon, S. J.; Allende Prieto, Carlos; Agueeros, M. A.; Camilo, Fernando

    2010-10-01

    We measure the radial velocity curve of the eclipsing detached white dwarf binary NLTT 11748. The primary exhibits velocity variations with a semi-amplitude of 273 km s{sup -1} and an orbital period of 5.641 hr. We do not detect any spectral features from the secondary star or any spectral changes during the secondary eclipse. We use our composite spectrum to constrain the temperature and surface gravity of the primary to be T {sub eff} = 8690 {+-} 140 K and log g = 6.54 {+-} 0.05, which correspond to a mass of 0.18 M {sub sun}. For an inclination angle of 89.{sup 0}9 derived from the eclipse modeling, the mass function requires a 0.76 M {sub sun} companion. The merger time for the system is 7.2 Gyr. However, due to the extreme mass ratio of 0.24, the binary will most likely create an AM CVn system instead of a merger.

  16. Super Sensitive Mass Detection in Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Azizi, Saber; Ahmadian, Iman; Cetinkaya, Cetin; Rezazadeh, Ghader

    2015-11-01

    Nonlinear dynamics of a clamped-clamped micro-beam exposed to a two sided electrostatic actuation is investigated to determine super sensitive regions for mass detection. The objective is to investigate the sensitivity of the frequency spectrum of various regions in the phase space to the added mass and force the system to operate in its super sensitive regions by applying an appropriate pulse to its control electrodes. The electrostatic actuation in the top electrode is a combination of a DC, AC and a pulse voltage, the excitation on the lower electrode is only a DC and a pulse voltage. The governing equation of the motion, derived using the Hamiltonian principle, is discretized to an equivalent single-degree of freedom system using the Galerkin method. Depending on the applied electrostatic voltage to the micro-beam, it is demonstrated that the number and types of equilibrium points of the system can be modified. In this study, the level of the DC electrostatic voltage is chosen such a way that the system has three equilibrium points including two centers and a saddle node where the homoclinic orbit originates. According to the reported results, the mass sensing sensitivity depends on the operating orbit; some orbits exhibit considerably higher mass detection sensitivity to the added mass compared to that of a typical quartz crystal micro balance instrument.

  17. Robust and accurate anomaly detection in ECG artifacts using time series motif discovery.

    PubMed

    Sivaraks, Haemwaan; Ratanamahatana, Chotirat Ann

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods.

  18. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification.

    PubMed

    Wu, Xuping; Wang, Jianfang; Song, Jinyun; Li, Jiayan; Yang, Yongfeng

    2016-09-01

    Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection. PMID:27283884

  19. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification.

    PubMed

    Wu, Xuping; Wang, Jianfang; Song, Jinyun; Li, Jiayan; Yang, Yongfeng

    2016-09-01

    Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection.

  20. Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using LAMBDAR

    NASA Astrophysics Data System (ADS)

    Wright, A. H.; Robotham, A. S. G.; Bourne, N.; Driver, S. P.; Dunne, L.; Maddox, S. J.; Alpaslan, M.; Andrews, S. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Clarke, C.; Cluver, M.; Davies, L. J. M.; Grootes, M. W.; Holwerda, B. W.; Hopkins, A. M.; Jarrett, T. H.; Kafle, P. R.; Lange, R.; Liske, J.; Loveday, J.; Moffett, A. J.; Norberg, P.; Popescu, C. C.; Smith, M.; Taylor, E. N.; Tuffs, R. J.; Wang, L.; Wilkins, S. M.

    2016-07-01

    We present the Lambda Adaptive Multi-Band Deblending Algorithm in R (LAMBDAR), a novel code for calculating matched aperture photometry across images that are neither pixel- nor PSF-matched, using prior aperture definitions derived from high-resolution optical imaging. The development of this program is motivated by the desire for consistent photometry and uncertainties across large ranges of photometric imaging, for use in calculating spectral energy distributions. We describe the program, specifically key features required for robust determination of panchromatic photometry: propagation of apertures to images with arbitrary resolution, local background estimation, aperture normalization, uncertainty determination and propagation, and object deblending. Using simulated images, we demonstrate that the program is able to recover accurate photometric measurements in both high-resolution, low-confusion, and low-resolution, high-confusion, regimes. We apply the program to the 21-band photometric data set from the Galaxy And Mass Assembly (GAMA) Panchromatic Data Release (PDR; Driver et al. 2016), which contains imaging spanning the far-UV to the far-IR. We compare photometry derived from LAMBDAR with that presented in Driver et al. (2016), finding broad agreement between the data sets. None the less, we demonstrate that the photometry from LAMBDAR is superior to that from the GAMA PDR, as determined by a reduction in the outlier rate and intrinsic scatter of colours in the LAMBDAR data set. We similarly find a decrease in the outlier rate of stellar masses and star formation rates using LAMBDAR photometry. Finally, we note an exceptional increase in the number of UV and mid-IR sources able to be constrained, which is accompanied by a significant increase in the mid-IR colour-colour parameter-space able to be explored.

  1. STELLAR MASS-TO-LIGHT RATIOS FROM GALAXY SPECTRA: HOW ACCURATE CAN THEY BE?

    SciTech Connect

    Gallazzi, Anna; Bell, Eric F. E-mail: ericbell@umich.edu

    2009-12-01

    Stellar masses play a crucial role in the exploration of galaxy properties and the evolution of the galaxy population. In this paper, we explore the minimum possible uncertainties in stellar mass-to-light ratios (M {sub *}/L) from the assumed star formation history (SFH) and metallicity distribution, with the goals of providing a minimum set of requirements for observational studies. We use a large Monte Carlo library of SFHs to study as a function of galaxy spectral type and signal-to-noise ratio (S/N) the statistical uncertainties of M {sub *}/L values using either absorption-line data or broadband colors. The accuracy of M {sub *}/L estimates can be significantly improved by using metal-sensitive indices in combination with age-sensitive indices, in particular for galaxies with intermediate-age or young stellar populations. While M {sub *}/L accuracy clearly depends on the spectral S/N, there is no significant gain in improving the S/N much above 50 pixel{sup -1} and limiting uncertainties of {approx}0.03 dex are reached. Assuming that dust is accurately corrected or absent and that the redshift is known, color-based M {sub *}/L estimates are only slightly more uncertain than spectroscopic estimates (at comparable spectroscopic and photometric quality), but are more easily affected by systematic biases. This is the case in particular for galaxies with bursty SFHs (high H{delta} {sub A} at fixed D4000 {sub n}), the M {sub *}/L of which cannot be constrained any better than {approx}0.15 dex with any indicators explored here. Finally, we explore the effects of the assumed prior distribution in SFHs and metallicity, finding them to be higher for color-based estimates.

  2. Giant African pouched rats (Cricetomys gambianus) that work on tilled soil accurately detect land mines.

    PubMed

    Edwards, Timothy L; Cox, Christophe; Weetjens, Bart; Tewelde, Tesfazghi; Poling, Alan

    2015-09-01

    Pouched rats were employed as mine-detection animals in a quality-control application where they searched for mines in areas previously processed by a mechanical tiller. The rats located 58 mines and fragments in this 28,050-m(2) area with a false indication rate of 0.4 responses per 100 m(2) . Humans with metal detectors found no mines that were not located by the rats. These findings indicate that pouched rats can accurately detect land mines in disturbed soil and suggest that they can play multiple roles in humanitarian demining. PMID:25962550

  3. Comparison of methods for accurate end-point detection of potentiometric titrations

    NASA Astrophysics Data System (ADS)

    Villela, R. L. A.; Borges, P. P.; Vyskočil, L.

    2015-01-01

    Detection of the end point in potentiometric titrations has wide application on experiments that demand very low measurement uncertainties mainly for certifying reference materials. Simulations of experimental coulometric titration data and consequential error analysis of the end-point values were conducted using a programming code. These simulations revealed that the Levenberg-Marquardt method is in general more accurate than the traditional second derivative technique used currently as end-point detection for potentiometric titrations. Performance of the methods will be compared and presented in this paper.

  4. Giant African pouched rats (Cricetomys gambianus) that work on tilled soil accurately detect land mines.

    PubMed

    Edwards, Timothy L; Cox, Christophe; Weetjens, Bart; Tewelde, Tesfazghi; Poling, Alan

    2015-09-01

    Pouched rats were employed as mine-detection animals in a quality-control application where they searched for mines in areas previously processed by a mechanical tiller. The rats located 58 mines and fragments in this 28,050-m(2) area with a false indication rate of 0.4 responses per 100 m(2) . Humans with metal detectors found no mines that were not located by the rats. These findings indicate that pouched rats can accurately detect land mines in disturbed soil and suggest that they can play multiple roles in humanitarian demining.

  5. Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space

    PubMed Central

    Tokunaga, Terumasa; Kanamori, Manami; Teramoto, Takayuki; Jang, Moon Sun; Kuge, Sayuri; Ishihara, Takeshi; Yoshida, Ryo; Iino, Yuichi

    2016-01-01

    To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured. PMID:27271939

  6. Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space.

    PubMed

    Toyoshima, Yu; Tokunaga, Terumasa; Hirose, Osamu; Kanamori, Manami; Teramoto, Takayuki; Jang, Moon Sun; Kuge, Sayuri; Ishihara, Takeshi; Yoshida, Ryo; Iino, Yuichi

    2016-06-01

    To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured. PMID:27271939

  7. Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space.

    PubMed

    Toyoshima, Yu; Tokunaga, Terumasa; Hirose, Osamu; Kanamori, Manami; Teramoto, Takayuki; Jang, Moon Sun; Kuge, Sayuri; Ishihara, Takeshi; Yoshida, Ryo; Iino, Yuichi

    2016-06-01

    To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured.

  8. Toward an Accurate Prediction of the Arrival Time of Geomagnetic-Effective Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Shi, T.; Wang, Y.; Wan, L.; Cheng, X.; Ding, M.; Zhang, J.

    2015-12-01

    Accurately predicting the arrival of coronal mass ejections (CMEs) to the Earth based on remote images is of critical significance for the study of space weather. Here we make a statistical study of 21 Earth-directed CMEs, specifically exploring the relationship between CME initial speeds and transit times. The initial speed of a CME is obtained by fitting the CME with the Graduated Cylindrical Shell model and is thus free of projection effects. We then use the drag force model to fit results of the transit time versus the initial speed. By adopting different drag regimes, i.e., the viscous, aerodynamics, and hybrid regimes, we get similar results, with a least mean estimation error of the hybrid model of 12.9 hr. CMEs with a propagation angle (the angle between the propagation direction and the Sun-Earth line) larger than their half-angular widths arrive at the Earth with an angular deviation caused by factors other than the radial solar wind drag. The drag force model cannot be reliably applied to such events. If we exclude these events in the sample, the prediction accuracy can be improved, i.e., the estimation error reduces to 6.8 hr. This work suggests that it is viable to predict the arrival time of CMEs to the Earth based on the initial parameters with fairly good accuracy. Thus, it provides a method of forecasting space weather 1-5 days following the occurrence of CMEs.

  9. Toward Sensitive and Accurate Analysis of Antibody Biotherapeutics by Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    An, Bo; Zhang, Ming

    2014-01-01

    Remarkable methodological advances in the past decade have expanded the application of liquid chromatography coupled with mass spectrometry (LC/MS) analysis of biotherapeutics. Currently, LC/MS represents a promising alternative or supplement to the traditional ligand binding assay (LBA) in the pharmacokinetic, pharmacodynamic, and toxicokinetic studies of protein drugs, owing to the rapid and cost-effective method development, high specificity and reproducibility, low sample consumption, the capacity of analyzing multiple targets in one analysis, and the fact that a validated method can be readily adapted across various matrices and species. While promising, technical challenges associated with sensitivity, sample preparation, method development, and quantitative accuracy need to be addressed to enable full utilization of LC/MS. This article introduces the rationale and technical challenges of LC/MS techniques in biotherapeutics analysis and summarizes recently developed strategies to alleviate these challenges. Applications of LC/MS techniques on quantification and characterization of antibody biotherapeutics are also discussed. We speculate that despite the highly attractive features of LC/MS, it will not fully replace traditional assays such as LBA in the foreseeable future; instead, the forthcoming trend is likely the conjunction of biochemical techniques with versatile LC/MS approaches to achieve accurate, sensitive, and unbiased characterization of biotherapeutics in highly complex pharmaceutical/biologic matrices. Such combinations will constitute powerful tools to tackle the challenges posed by the rapidly growing needs for biotherapeutics development. PMID:25185260

  10. Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems.

    PubMed

    Huang, Shih-Chia; Chen, Bo-Hao

    2013-12-01

    Automated motion detection, which segments moving objects from video streams, is the key technology of intelligent transportation systems for traffic management. Traffic surveillance systems use video communication over real-world networks with limited bandwidth, which frequently suffers because of either network congestion or unstable bandwidth. Evidence supporting these problems abounds in publications about wireless video communication. Thus, to effectively perform the arduous task of motion detection over a network with unstable bandwidth, a process by which bit-rate is allocated to match the available network bandwidth is necessitated. This process is accomplished by the rate control scheme. This paper presents a new motion detection approach that is based on the cerebellar-model-articulation-controller (CMAC) through artificial neural networks to completely and accurately detect moving objects in both high and low bit-rate video streams. The proposed approach is consisted of a probabilistic background generation (PBG) module and a moving object detection (MOD) module. To ensure that the properties of variable bit-rate video streams are accommodated, the proposed PBG module effectively produces a probabilistic background model through an unsupervised learning process over variable bit-rate video streams. Next, the MOD module, which is based on the CMAC network, completely and accurately detects moving objects in both low and high bit-rate video streams by implementing two procedures: 1) a block selection procedure and 2) an object detection procedure. The detection results show that our proposed approach is capable of performing with higher efficacy when compared with the results produced by other state-of-the-art approaches in variable bit-rate video streams over real-world limited bandwidth networks. Both qualitative and quantitative evaluations support this claim; for instance, the proposed approach achieves Similarity and F1 accuracy rates that are 76

  11. Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems.

    PubMed

    Huang, Shih-Chia; Chen, Bo-Hao

    2013-12-01

    Automated motion detection, which segments moving objects from video streams, is the key technology of intelligent transportation systems for traffic management. Traffic surveillance systems use video communication over real-world networks with limited bandwidth, which frequently suffers because of either network congestion or unstable bandwidth. Evidence supporting these problems abounds in publications about wireless video communication. Thus, to effectively perform the arduous task of motion detection over a network with unstable bandwidth, a process by which bit-rate is allocated to match the available network bandwidth is necessitated. This process is accomplished by the rate control scheme. This paper presents a new motion detection approach that is based on the cerebellar-model-articulation-controller (CMAC) through artificial neural networks to completely and accurately detect moving objects in both high and low bit-rate video streams. The proposed approach is consisted of a probabilistic background generation (PBG) module and a moving object detection (MOD) module. To ensure that the properties of variable bit-rate video streams are accommodated, the proposed PBG module effectively produces a probabilistic background model through an unsupervised learning process over variable bit-rate video streams. Next, the MOD module, which is based on the CMAC network, completely and accurately detects moving objects in both low and high bit-rate video streams by implementing two procedures: 1) a block selection procedure and 2) an object detection procedure. The detection results show that our proposed approach is capable of performing with higher efficacy when compared with the results produced by other state-of-the-art approaches in variable bit-rate video streams over real-world limited bandwidth networks. Both qualitative and quantitative evaluations support this claim; for instance, the proposed approach achieves Similarity and F1 accuracy rates that are 76

  12. Detection of weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Bjorkholm, Paul J.

    2003-07-01

    High Energy X-ray cargo screening is a mature technology that has proven its value in the detection of contraband material hidden within cargo including fully loaded sea containers. To date high energy screening has been largely applied to manifest verification and to drug detection. However, the dramatic change in world terrorism has altered the application. Now it is essential that weapons of mass destruction (WMD"s) be interdicted with incredibly high accuracy. The implication of a missed detection has gone from loss of revenue or the lowering of the street price of drugs to potentially stopping, at least for some significant time, most world commerce. Screening containers with high energy x-rays (~250+ mm of steel penetration) is capable of detecting all nuclear threats at a fraction of the strategically important mass. The screening operation can be automated so that no human decisions are required with very low false alarms. Finally, the goal of 100% inspection of cargo inbound to the United States from the twenty largest international ports is an achievable goal with hardware costs in the area of that already spent on airport security.

  13. The Megamaser Cosmology Project. III. Accurate Masses of Seven Supermassive Black Holes in Active Galaxies with Circumnuclear Megamaser Disks

    NASA Astrophysics Data System (ADS)

    Kuo, C. Y.; Braatz, J. A.; Condon, J. J.; Impellizzeri, C. M. V.; Lo, K. Y.; Zaw, I.; Schenker, M.; Henkel, C.; Reid, M. J.; Greene, J. E.

    2011-01-01

    Observations of H2O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project (MCP) allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry images and kinematics of water maser emission in six active galaxies: NGC 1194, NGC 2273, NGC 2960 (Mrk 1419), NGC 4388, NGC 6264 and NGC 6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central ~0.3 pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 × 1010 and 61 × 1010 M sun pc-3. For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominantly to a supermassive BH. The seven BHs have masses ranging between 0.75 × 107 and 6.5 × 107 M sun, with the mass errors dominated by the uncertainty of the Hubble constant. We compare the megamaser BH mass determination with BH mass measured from the virial estimation method. The virial estimation BH mass in four galaxies is consistent with the megamaser BH mass, but the virial mass uncertainty is much greater. Circumnuclear megamaser disks allow the best mass determination of the central BH mass in external galaxies and significantly improve the observational basis at the low-mass end of the M-σsstarf relation. The M-σsstarf relation may not be a single, low-scatter power law as originally proposed. MCP observations continue and we expect to obtain more maser BH masses in the future.

  14. Fast and Accurate Large-Scale Detection of β-Lactamase Genes Conferring Antibiotic Resistance.

    PubMed

    Lee, Jae Jin; Lee, Jung Hun; Kwon, Dae Beom; Jeon, Jeong Ho; Park, Kwang Seung; Lee, Chang-Ro; Lee, Sang Hee

    2015-10-01

    Fast detection of β-lactamase (bla) genes allows improved surveillance studies and infection control measures, which can minimize the spread of antibiotic resistance. Although several molecular diagnostic methods have been developed to detect limited bla gene types, these methods have significant limitations, such as their failure to detect almost all clinically available bla genes. We developed a fast and accurate molecular method to overcome these limitations using 62 primer pairs, which were designed through elaborate optimization processes. To verify the ability of this large-scale bla detection method (large-scaleblaFinder), assays were performed on previously reported bacterial control isolates/strains. To confirm the applicability of the large-scaleblaFinder, the assays were performed on unreported clinical isolates. With perfect specificity and sensitivity in 189 control isolates/strains and 403 clinical isolates, the large-scaleblaFinder detected almost all clinically available bla genes. Notably, the large-scaleblaFinder detected 24 additional unreported bla genes in the isolates/strains that were previously studied, suggesting that previous methods detecting only limited types of bla genes can miss unexpected bla genes existing in pathogenic bacteria, and our method has the ability to detect almost all bla genes existing in a clinical isolate. The ability of large-scaleblaFinder to detect bla genes on a large scale enables prompt application to the detection of almost all bla genes present in bacterial pathogens. The widespread use of the large-scaleblaFinder in the future will provide an important aid for monitoring the emergence and dissemination of bla genes and minimizing the spread of resistant bacteria. PMID:26169415

  15. Fast and Accurate Large-Scale Detection of β-Lactamase Genes Conferring Antibiotic Resistance

    PubMed Central

    Lee, Jae Jin; Lee, Jung Hun; Kwon, Dae Beom; Jeon, Jeong Ho; Park, Kwang Seung; Lee, Chang-Ro

    2015-01-01

    Fast detection of β-lactamase (bla) genes allows improved surveillance studies and infection control measures, which can minimize the spread of antibiotic resistance. Although several molecular diagnostic methods have been developed to detect limited bla gene types, these methods have significant limitations, such as their failure to detect almost all clinically available bla genes. We developed a fast and accurate molecular method to overcome these limitations using 62 primer pairs, which were designed through elaborate optimization processes. To verify the ability of this large-scale bla detection method (large-scaleblaFinder), assays were performed on previously reported bacterial control isolates/strains. To confirm the applicability of the large-scaleblaFinder, the assays were performed on unreported clinical isolates. With perfect specificity and sensitivity in 189 control isolates/strains and 403 clinical isolates, the large-scaleblaFinder detected almost all clinically available bla genes. Notably, the large-scaleblaFinder detected 24 additional unreported bla genes in the isolates/strains that were previously studied, suggesting that previous methods detecting only limited types of bla genes can miss unexpected bla genes existing in pathogenic bacteria, and our method has the ability to detect almost all bla genes existing in a clinical isolate. The ability of large-scaleblaFinder to detect bla genes on a large scale enables prompt application to the detection of almost all bla genes present in bacterial pathogens. The widespread use of the large-scaleblaFinder in the future will provide an important aid for monitoring the emergence and dissemination of bla genes and minimizing the spread of resistant bacteria. PMID:26169415

  16. Accurate single-trial detection of movement intention made possible using adaptive wavelet transform.

    PubMed

    Chamanzar, Alireza; Malekmohammadi, Alireza; Bahrani, Masih; Shabany, Mahdi

    2015-01-01

    The outlook of brain-computer interfacing (BCI) is very bright. The real-time, accurate detection of a motor movement task is critical in BCI systems. The poor signal-to-noise-ratio (SNR) of EEG signals and the ambiguity of noise generator sources in brain renders this task quite challenging. In this paper, we demonstrate a novel algorithm for precise detection of the onset of a motor movement through identification of event-related-desynchronization (ERD) patterns. Using an adaptive matched filter technique implemented based on an optimized continues Wavelet transform by selecting an appropriate basis, we can detect single-trial ERDs. Moreover, we use a maximum-likelihood (ML), electrooculography (EOG) artifact removal method to remove eye-related artifacts to significantly improve the detection performance. We have applied this technique to our locally recorded Emotiv(®) data set of 6 healthy subjects, where an average detection selectivity of 85 ± 6% and sensitivity of 88 ± 7.7% is achieved with a temporal precision in the range of -1250 to 367 ms in onset detections of single-trials.

  17. Spectroscopic Method for Fast and Accurate Group A Streptococcus Bacteria Detection.

    PubMed

    Schiff, Dillon; Aviv, Hagit; Rosenbaum, Efraim; Tischler, Yaakov R

    2016-02-16

    Rapid and accurate detection of pathogens is paramount to human health. Spectroscopic techniques have been shown to be viable methods for detecting various pathogens. Enhanced methods of Raman spectroscopy can discriminate unique bacterial signatures; however, many of these require precise conditions and do not have in vivo replicability. Common biological detection methods such as rapid antigen detection tests have high specificity but do not have high sensitivity. Here we developed a new method of bacteria detection that is both highly specific and highly sensitive by combining the specificity of antibody staining and the sensitivity of spectroscopic characterization. Bacteria samples, treated with a fluorescent antibody complex specific to Streptococcus pyogenes, were volumetrically normalized according to their Raman bacterial signal intensity and characterized for fluorescence, eliciting a positive result for samples containing Streptococcus pyogenes and a negative result for those without. The normalized fluorescence intensity of the Streptococcus pyogenes gave a signal that is up to 16.4 times higher than that of other bacteria samples for bacteria stained in solution and up to 12.7 times higher in solid state. This method can be very easily replicated for other bacteria species using suitable antibody-dye complexes. In addition, this method shows viability for in vivo detection as it requires minute amounts of bacteria, low laser excitation power, and short integration times in order to achieve high signal.

  18. Spectroscopic Method for Fast and Accurate Group A Streptococcus Bacteria Detection.

    PubMed

    Schiff, Dillon; Aviv, Hagit; Rosenbaum, Efraim; Tischler, Yaakov R

    2016-02-16

    Rapid and accurate detection of pathogens is paramount to human health. Spectroscopic techniques have been shown to be viable methods for detecting various pathogens. Enhanced methods of Raman spectroscopy can discriminate unique bacterial signatures; however, many of these require precise conditions and do not have in vivo replicability. Common biological detection methods such as rapid antigen detection tests have high specificity but do not have high sensitivity. Here we developed a new method of bacteria detection that is both highly specific and highly sensitive by combining the specificity of antibody staining and the sensitivity of spectroscopic characterization. Bacteria samples, treated with a fluorescent antibody complex specific to Streptococcus pyogenes, were volumetrically normalized according to their Raman bacterial signal intensity and characterized for fluorescence, eliciting a positive result for samples containing Streptococcus pyogenes and a negative result for those without. The normalized fluorescence intensity of the Streptococcus pyogenes gave a signal that is up to 16.4 times higher than that of other bacteria samples for bacteria stained in solution and up to 12.7 times higher in solid state. This method can be very easily replicated for other bacteria species using suitable antibody-dye complexes. In addition, this method shows viability for in vivo detection as it requires minute amounts of bacteria, low laser excitation power, and short integration times in order to achieve high signal. PMID:26752013

  19. Accurate Mass MS/MS/MS Analysis of Siderophores Ferrioxamine B and E1 by Collision-Induced Dissociation Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Sidebottom, Ashley M.; Karty, Jonathan A.; Carlson, Erin E.

    2015-11-01

    Siderophores are bacterially secreted, small molecule iron chelators that facilitate the binding of insoluble iron (III) for reuptake and use in various biological processes. These compounds are classified by their iron (III) binding geometry, as dictated by subunit composition and include groups such as the trihydroxamates (hexadentate ligand) and catecholates (bidentate). Small modifications to the core structure such as acetylation, lipid tail addition, or cyclization, make facile characterization of new siderophores difficult by molecular ion detection alone (MS1). We have expanded upon previous fragmentation-directed studies using electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS/MS) and identified diagnostic MS3 features from the trihydroxamate siderophore class for ferrioxamine B and E1 by accurate mass. Diagnostic features for MS3 include C-C, C-N, amide, and oxime cleavage events with proposed losses of water and -CO from the iron (III) coordination sites. These insights will facilitate the discovery of novel trihydroxamate siderophores from complex sample matrices.

  20. Mass killings and detection of impacts

    NASA Technical Reports Server (NTRS)

    Mclaren, Digby J.

    1988-01-01

    Highly energetic bolide impacts occur and their flux is known. For larger bodies the energy release is greater than for any other short-term global phenomenon. Such impacts produce or release a large variety of shock induced changes including major atmospheric, sedimentologic, seismic and volcanic events. These events must necessarily leave a variety of records in the stratigraphic column, including mass killings resulting in major changes in population density and reduction or extinction of many taxonomic groups, followed by characteristic patterns of faunal and flora replacement. Of these effects, mass killings, marked by large-scale loss of biomass, are the most easily detected evidence in the field but must be manifest on a near-global scale. Such mass killings that appear to be approximately synchronous and involve disappearance of biomass at a bedding plane in many sedimentologically independent sections globally suggest a common cause and probable synchroneity. Mass killings identify an horizon which may be examined for evidence of cause. Geochemical markers may be ephemeral and absence may not be significant. There appears to be no reason why ongoing phenomena such as climate and sea-level changes are primary causes of anomolous episodic events.

  1. Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Charles A.; Chiu, Norman H. L.

    2009-01-01

    Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.

  2. Interplanetary Coronal Mass Ejections detected by HAWC

    NASA Astrophysics Data System (ADS)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  3. Accurate Mass GC/LC-Quadrupole Time of Flight Mass Spectrometry Analysis of Fatty Acids and Triacylglycerols of Spicy Fruits from the Apiaceae Family

    PubMed Central

    Nguyen, Thao; Aparicio, Mario; Saleh, Mahmoud A.

    2016-01-01

    The triacylglycerol (TAG) structure and the regio-stereospecific distribution of fatty acids (FA) of seed oils from most of the Apiaceae family are not well documented. The TAG structure ultimately determines the final physical properties of the oils and the position of FAs in the TAG molecule affects the digestion; absorption and metabolism; and physical and technological properties of TAGs. Fixed oils from the fruits of dill (Anethum graveolens), caraway (Carum carvi), cumin (Cuminum cyminum), coriander (Coriandrum sativum), anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), fennel (Foeniculum vulgare), and Khella (Ammi visnaga), all from the Apiaceae family, were extracted at room temperature in chloroform/methanol (2:1 v/v) using percolators. Crude lipids were fractionated by solid phase extraction to separate neutral triacylglycerols (TAGs) from other lipids components. Neutral TAGs were subjected to transesterification process to convert them to their corresponding fatty acids methyl esters (FAMES) using 1% boron trifluoride (BF3) in methanol. FAMES were analyzed by gas chromatography-quadrupole time of flight (GC-QTOF) mass spectrometry. Triglycerides were analyzed using high performance liquid chromatography-quadrupole time of flight (LC-QTOF) mass spectrometry. Petroselinic acid was the major fatty acid in all samples ranging from 57% of the total fatty acids in caraway up to 82% in fennel. All samples contained palmitic (16:0), palmitoleic (C16:1n-9), stearic (C18:0), petroselinic (C18:1n-12), linoleic (C18:2n-6), linolinic (18:3n-3), and arachidic (C20:0) acids. TAG were analyzed using LC-QTOF for accurate mass identification and mass spectrometry/mass spectrometry (MS/MS) techniques for regiospesific elucidation of the identified TAGs. Five major TAGs were detected in all samples but with different relative concentrations in all of the tested samples. Several other TAGs were detected as minor components and were present in

  4. Accurate Mass GC/LC-Quadrupole Time of Flight Mass Spectrometry Analysis of Fatty Acids and Triacylglycerols of Spicy Fruits from the Apiaceae Family.

    PubMed

    Nguyen, Thao; Aparicio, Mario; Saleh, Mahmoud A

    2015-01-01

    The triacylglycerol (TAG) structure and the regio-stereospecific distribution of fatty acids (FA) of seed oils from most of the Apiaceae family are not well documented. The TAG structure ultimately determines the final physical properties of the oils and the position of FAs in the TAG molecule affects the digestion; absorption and metabolism; and physical and technological properties of TAGs. Fixed oils from the fruits of dill (Anethum graveolens), caraway (Carum carvi), cumin (Cuminum cyminum), coriander (Coriandrum sativum), anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), fennel (Foeniculum vulgare), and Khella (Ammi visnaga), all from the Apiaceae family, were extracted at room temperature in chloroform/methanol (2:1 v/v) using percolators. Crude lipids were fractionated by solid phase extraction to separate neutral triacylglycerols (TAGs) from other lipids components. Neutral TAGs were subjected to transesterification process to convert them to their corresponding fatty acids methyl esters (FAMES) using 1% boron trifluoride (BF₃) in methanol. FAMES were analyzed by gas chromatography-quadrupole time of flight (GC-QTOF) mass spectrometry. Triglycerides were analyzed using high performance liquid chromatography-quadrupole time of flight (LC-QTOF) mass spectrometry. Petroselinic acid was the major fatty acid in all samples ranging from 57% of the total fatty acids in caraway up to 82% in fennel. All samples contained palmitic (16:0), palmitoleic (C16:1n-9), stearic (C18:0), petroselinic (C18:1n-12), linoleic (C18:2n-6), linolinic (18:3n-3), and arachidic (C20:0) acids. TAG were analyzed using LC-QTOF for accurate mass identification and mass spectrometry/mass spectrometry (MS/MS) techniques for regiospesific elucidation of the identified TAGs. Five major TAGs were detected in all samples but with different relative concentrations in all of the tested samples. Several other TAGs were detected as minor components and were present in

  5. Accurate Optical Detection of Amphiphiles at Liquid-Crystal-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Popov, Piotr; Mann, Elizabeth K.; Jákli, Antal

    2014-04-01

    Liquid-crystal-based biosensors utilize the high sensitivity of liquid-crystal alignment to the presence of amphiphiles adsorbed to one of the liquid-crystal surfaces from water. They offer inexpensive, easy optical detection of biologically relevant molecules such as lipids, proteins, and cells. Present techniques use linear polarizers to analyze the alignment of the liquid crystal. The resulting images contain information not only about the liquid-crystal tilt with respect to the surface normal, the quantity which is controlled by surface adsorption, but also on the uncontrolled in-plane liquid-crystal alignment, thus making the detection largely qualitative. Here we show that detecting the liquid-crystal alignment between circular polarizers, which are only sensitive to the liquid-crystal tilt with respect to the interface normal, makes possible quantitative detection by measuring the transmitted light intensity with a spectrophotometer. Following a new procedure, not only the concentration dependence of the optical path difference but also the film thickness and the effective birefringence can be determined accurately. We also introduce a new "dynamic" mode of sensing, where (instead of the conventional "steady" mode, which detects the concentration dependence of the steady-state texture) we increase the concentration at a constant rate.

  6. Methodological Guidelines for Accurate Detection of Viruses in Wild Plant Species

    PubMed Central

    Renner, Kurra; Cole, Ellen; Seabloom, Eric W.; Borer, Elizabeth T.; Malmstrom, Carolyn M.

    2016-01-01

    Ecological understanding of disease risk, emergence, and dynamics and of the efficacy of control strategies relies heavily on efficient tools for microorganism identification and characterization. Misdetection, such as the misclassification of infected hosts as healthy, can strongly bias estimates of disease prevalence and lead to inaccurate conclusions. In natural plant ecosystems, interest in assessing microbial dynamics is increasing exponentially, but guidelines for detection of microorganisms in wild plants remain limited, particularly so for plant viruses. To address this gap, we explored issues and solutions associated with virus detection by serological and molecular methods in noncrop plant species as applied to the globally important Barley yellow dwarf virus PAV (Luteoviridae), which infects wild native plants as well as crops. With enzyme-linked immunosorbent assays (ELISA), we demonstrate how virus detection in a perennial wild plant species may be much greater in stems than in leaves, although leaves are most commonly sampled, and may also vary among tillers within an individual, thereby highlighting the importance of designing effective sampling strategies. With reverse transcription-PCR (RT-PCR), we demonstrate how inhibitors in tissues of perennial wild hosts can suppress virus detection but can be overcome with methods and products that improve isolation and amplification of nucleic acids. These examples demonstrate the paramount importance of testing and validating survey designs and virus detection methods for noncrop plant communities to ensure accurate ecological surveys and reliable assumptions about virus dynamics in wild hosts. PMID:26773088

  7. A Highly Accurate Inclusive Cancer Screening Test Using Caenorhabditis elegans Scent Detection

    PubMed Central

    Uozumi, Takayuki; Shinden, Yoshiaki; Mimori, Koshi; Maehara, Yoshihiko; Ueda, Naoko; Hamakawa, Masayuki

    2015-01-01

    Early detection and treatment are of vital importance to the successful eradication of various cancers, and development of economical and non-invasive novel cancer screening systems is critical. Previous reports using canine scent detection demonstrated the existence of cancer-specific odours. However, it is difficult to introduce canine scent recognition into clinical practice because of the need to maintain accuracy. In this study, we developed a Nematode Scent Detection Test (NSDT) using Caenorhabditis elegans to provide a novel highly accurate cancer detection system that is economical, painless, rapid and convenient. We demonstrated wild-type C. elegans displayed attractive chemotaxis towards human cancer cell secretions, cancer tissues and urine from cancer patients but avoided control urine; in parallel, the response of the olfactory neurons of C. elegans to the urine from cancer patients was significantly stronger than to control urine. In contrast, G protein α mutants and olfactory neurons-ablated animals were not attracted to cancer patient urine, suggesting that C. elegans senses odours in urine. We tested 242 samples to measure the performance of the NSDT, and found the sensitivity was 95.8%; this is markedly higher than that of other existing tumour markers. Furthermore, the specificity was 95.0%. Importantly, this test was able to diagnose various cancer types tested at the early stage (stage 0 or 1). To conclude, C. elegans scent-based analyses might provide a new strategy to detect and study disease-associated scents. PMID:25760772

  8. Effective Echo Detection and Accurate Orbit Estimation Algorithms for Space Debris Radar

    NASA Astrophysics Data System (ADS)

    Isoda, Kentaro; Sakamoto, Takuya; Sato, Toru

    Orbit estimation of space debris, objects of no inherent value orbiting the earth, is a task that is important for avoiding collisions with spacecraft. The Kamisaibara Spaceguard Center radar system was built in 2004 as the first radar facility in Japan devoted to the observation of space debris. In order to detect the smaller debris, coherent integration is effective in improving SNR (Signal-to-Noise Ratio). However, it is difficult to apply coherent integration to real data because the motions of the targets are unknown. An effective algorithm is proposed for echo detection and orbit estimation of the faint echoes from space debris. The characteristics of the evaluation function are utilized by the algorithm. Experiments show the proposed algorithm improves SNR by 8.32dB and enables estimation of orbital parameters accurately to allow for re-tracking with a single radar.

  9. A simplified and accurate detection of the genetically modified wheat MON71800 with one calibrator plasmid.

    PubMed

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Park, Sunghoon; Shin, Min-Ki; Moon, Gui Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2015-06-01

    With the increasing number of genetically modified (GM) events, unauthorized GMO releases into the food market have increased dramatically, and many countries have developed detection tools for them. This study described the qualitative and quantitative detection methods of unauthorized the GM wheat MON71800 with a reference plasmid (pGEM-M71800). The wheat acetyl-CoA carboxylase (acc) gene was used as the endogenous gene. The plasmid pGEM-M71800, which contains both the acc gene and the event-specific target MON71800, was constructed as a positive control for the qualitative and quantitative analyses. The limit of detection in the qualitative PCR assay was approximately 10 copies. In the quantitative PCR assay, the standard deviation and relative standard deviation repeatability values ranged from 0.06 to 0.25 and from 0.23% to 1.12%, respectively. This study supplies a powerful and very simple but accurate detection strategy for unauthorized GM wheat MON71800 that utilizes a single calibrator plasmid.

  10. Fast and accurate border detection in dermoscopy images using statistical region merging

    NASA Astrophysics Data System (ADS)

    Celebi, M. Emre; Kingravi, Hassan A.; Iyatomi, Hitoshi; Lee, JeongKyu; Aslandogan, Y. Alp; Van Stoecker, William; Moss, Randy; Malters, Joseph M.; Marghoob, Ashfaq A.

    2007-03-01

    As a result of advances in skin imaging technology and the development of suitable image processing techniques during the last decade, there has been a significant increase of interest in the computer-aided diagnosis of melanoma. Automated border detection is one of the most important steps in this procedure, since the accuracy of the subsequent steps crucially depends on it. In this paper, a fast and unsupervised approach to border detection in dermoscopy images of pigmented skin lesions based on the Statistical Region Merging algorithm is presented. The method is tested on a set of 90 dermoscopy images. The border detection error is quantified by a metric in which a set of dermatologist-determined borders is used as the ground-truth. The proposed method is compared to six state-of-the-art automated methods (optimized histogram thresholding, orientation-sensitive fuzzy c-means, gradient vector flow snakes, dermatologist-like tumor extraction algorithm, meanshift clustering, and the modified JSEG method) and borders determined by a second dermatologist. The results demonstrate that the presented method achieves both fast and accurate border detection in dermoscopy images.

  11. Detection of Gunshot Residues Using Mass Spectrometry

    PubMed Central

    Blanes, Lucas; Cole, Nerida; Doble, Philip; Roux, Claude

    2014-01-01

    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR), although the “gold standard” for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX). This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis. PMID:24977168

  12. Accurate stellar masses for SB2 components: Interferometric observations for Gaia validation

    NASA Astrophysics Data System (ADS)

    Halbwachs, J.-L.; Boffin, H. M. J.; Le Bouquin, J.-B.; Famaey, B.; Salomon, J.-B.; Arenou, F.; Pourbaix, D.; Anthonioz, F.; Grellmann, R.; Guieu, S.; Guillout, P.; Jorissen, A.; Kiefer, F.; Lebreton, Y.; Mazeh, T.; Nebot Gómez-Morán, A.; Sana, H.; Tal-Or, L.

    2015-12-01

    A sample of about 70 double-lined spectroscopic binaries (SB2) is followed with radial velocity (RV) measurements, in order to derive the masses of their components when the astrometric measurements of Gaia will be available. A subset of 6 SB2 was observed in interferometry with VLTI/PIONIER, and the components were separated for each binary. The RV measurements already obtained were combined with the interferometric observations and the masses of the components were derived. The accuracies of the 12 masses are presently between 0.4 and 7 %, but they will still be improved in the future. These masses will be used to validate the masses which will be obtained from Gaia. In addition, the parallaxes derived from the combined visual+spectroscopic orbits are compared to that of Hipparcos, and a mass-luminosity relation is derived in the infrared H band.

  13. Novel Accurate and Fast Optic Disc Detection in Retinal Images With Vessel Distribution and Directional Characteristics.

    PubMed

    Zhang, Dongbo; Zhao, Yuanyuan

    2016-01-01

    A novel accurate and fast optic disc (OD) detection method is proposed by using vessel distribution and directional characteristics. A feature combining three vessel distribution characteristics, i.e., local vessel density, compactness, and uniformity, is designed to find possible horizontal coordinate of OD. Then, according to the global vessel direction characteristic, a General Hough Transformation is introduced to identify the vertical coordinate of OD. By confining the possible OD vertical range and by simplifying vessel structure with blocks, we greatly decrease the computational cost of the algorithm. Four public datasets have been tested. The OD localization accuracy lies from 93.8% to 99.7%, when 8-20% vessel detection results are adopted to achieve OD detection. Average computation times for STARE images are about 3.4-11.5 s, which relate to image size. The proposed method shows satisfactory robustness on both normal and diseased images. It is better than many previous methods with respect to accuracy and efficiency.

  14. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    PubMed Central

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-01-01

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739

  15. Joint iris boundary detection and fit: a real-time method for accurate pupil tracking.

    PubMed

    Barbosa, Marconi; James, Andrew C

    2014-08-01

    A range of applications in visual science rely on accurate tracking of the human pupil's movement and contraction in response to light. While the literature for independent contour detection and fitting of the iris-pupil boundary is vast, a joint approach, in which it is assumed that the pupil has a given geometric shape has been largely overlooked. We present here a global method for simultaneously finding and fitting of an elliptic or circular contour against a dark interior, which produces consistently accurate results even under non-ideal recording conditions, such as reflections near and over the boundary, droopy eye lids, or the sudden formation of tears. The specific form of the proposed optimization problem allows us to write down closed analytic formulae for the gradient and the Hessian of the objective function. Moreover, both the objective function and its derivatives can be cast into vectorized form, making the proposed algorithm significantly faster than its closest relative in the literature. We compare methods in multiple ways, both analytically and numerically, using real iris images as well as idealizations of the iris for which the ground truth boundary is precisely known. The method proposed here is illustrated under challenging recording conditions and it is shown to be robust. PMID:25136477

  16. Medical Image Watermarking Technique for Accurate Tamper Detection in ROI and Exact Recovery of ROI.

    PubMed

    Eswaraiah, R; Sreenivasa Reddy, E

    2014-01-01

    In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss.

  17. Medical Image Watermarking Technique for Accurate Tamper Detection in ROI and Exact Recovery of ROI

    PubMed Central

    Eswaraiah, R.; Sreenivasa Reddy, E.

    2014-01-01

    In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss. PMID:25328515

  18. ROM Plus(®): accurate point-of-care detection of ruptured fetal membranes.

    PubMed

    McQuivey, Ross W; Block, Jon E

    2016-01-01

    Accurate and timely diagnosis of rupture of fetal membranes is imperative to inform and guide gestational age-specific interventions to optimize perinatal outcomes and reduce the risk of serious complications, including preterm delivery and infections. The ROM Plus is a rapid, point-of-care, qualitative immunochromatographic diagnostic test that uses a unique monoclonal/polyclonal antibody approach to detect two different proteins found in amniotic fluid at high concentrations: alpha-fetoprotein and insulin-like growth factor binding protein-1. Clinical study results have uniformly demonstrated high diagnostic accuracy and performance characteristics with this point-of-care test that exceeds conventional clinical testing with external laboratory evaluation. The description, indications for use, procedural steps, and laboratory and clinical characterization of this assay are presented in this article. PMID:27274316

  19. Tissue resonance interaction accurately detects colon lesions: A double-blind pilot study

    PubMed Central

    Dore, Maria P; Tufano, Marcello O; Pes, Giovanni M; Cuccu, Marianna; Farina, Valentina; Manca, Alessandra; Graham, David Y

    2015-01-01

    AIM: To investigated the performance of the tissue resonance interaction method (TRIM) for the non-invasive detection of colon lesions. METHODS: We performed a prospective single-center blinded pilot study of consecutive adults undergoing colonoscopy at the University Hospital in Sassari, Italy. Before patients underwent colonoscopy, they were examined by the TRIMprobe which detects differences in electromagnetic properties between pathological and normal tissues. All patients had completed the polyethylene glycol-containing bowel prep for the colonoscopy procedure before being screened. During the procedure the subjects remained fully dressed. A hand-held probe was moved over the abdomen and variations in electromagnetic signals were recorded for 3 spectral lines (462-465 MHz, 930 MHz, and 1395 MHz). A single investigator, blind to any clinical information, performed the test using the TRIMprob system. Abnormal signals were identified and recorded as malignant or benign (adenoma or hyperplastic polyps). Findings were compared with those from colonoscopy with histologic confirmation. Statistical analysis was performed by χ2 test. RESULTS: A total of 305 consecutive patients fulfilling the inclusion criteria were enrolled over a period of 12 months. The most frequent indication for colonoscopy was abdominal pain (33%). The TRIMprob was well accepted by all patients; none spontaneously complained about the procedure, and no adverse effects were observed. TRIM proved inaccurate for polyp detection in patients with inflammatory bowel disease (IBD) and they were excluded leaving 281 subjects (mean age 59 ± 13 years; 107 males). The TRIM detected and accurately characterized all 12 adenocarcinomas and 135/137 polyps (98.5%) including 64 adenomatous (100%) found. The method identified cancers and polyps with 98.7% sensitivity, 96.2% specificity, and 97.5% diagnostic accuracy, compared to colonoscopy and histology analyses. The positive predictive value was 96.7% and the

  20. Accurate determination of ultra-trace impurities, including europium, in ultra-pure barium carbonate materials through inductively coupled plasma-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Shuchao; Zeng, Xiangcheng; Dai, Xuefeng; Hu, Yongping; Li, Gang; Zheng, Cunjiang

    2016-09-01

    Impurities, especially ultra-trace europium (Eu), in ultra-pure barium carbonate materials were accurately determined through inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). Two reaction modes, namely, mass shift (with O2 as reaction gas) and on-mass modes(with NH3/He and He as reaction gases), were extensively investigated using Eu+ as target analyte. The use of Eu+ → EuO2+, instead of Eu+ → EuO+, as ion pairs in mass shift mode eliminated polyatomic interferences based on Ba matrix ions (135Ba16O2+ on 151Eu16O+ and 137Ba16O2+ on 153Eu16O+). This procedure exhibited enhanced sensitivity and selectivity. When the ICP-MS/MS was operated in NH3 on-mass mode, Eu+ can be determined in its original mass in interference-free conditions because NH3 did not react with Eu+ but with BaO+ to form a neutral product (BaO). The two reaction modes, especially NH3 on mass mode, were validated to be accurate because their resultant isotope ratios of 153Eu/151Eu matched well with that of the natural abundance ratio. The proposed ICP-MS/MS method is a sensitive technique with a limit of detection as low as 2.0 ng L- 1 for 153Eu+. Compared with conventional single-quadrupole (SQ) ICP-MS, both NH3 on-mass mode and O2 mass shift mode in ICP-MS/MS can be used to accurately determine Eu+ in ultra-pure BaCO3 materials. The detected concentration of Eu+ was 4.0 ng L- 1 to 15 ng L- 1, with spiked recoveries ranging from 100%-110%. ICP-MS/MS was also used to eliminate polyatomic interferences, particularly Ba-based interferences, prior to measurement of Gd and Sm. Impurities, including Na, Mg, Al, K, Mn, Fe, Cr, Sr, and Cs, in ultra-pure BaCO3 materials were also determined using ICP-MS/MS in conventional SQ mode.

  1. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples.

    PubMed

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-05-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis.

  2. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples

    PubMed Central

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-01-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260

  3. Investigation of low-abundant in vitro metabolites of stable isotope-labelled BAL4815 by accurate mass capillary-LC-ESI-qTof-MS and MS/MS.

    PubMed

    Wind, Mathias; Spickermann, Jochen; Schleimer, Michael; Donzelli, Massimiliano; Gebhardt, Klaus; Sturm-Haurany, Rima; Klauer, Dominique; Fullhardt, Pascal; Schmitt-Hoffmann, Anne

    2006-07-01

    The metabolic profile of BAL4815, an antifungal azole drug, was determined using in vitro rat hepatocyte incubations and subsequent analysis by capillary LC-qTof-MS and MS/MS including accurate mass determination. For the detection of the metabolites, a mixture of the drug and its deuterium-labelled analogue was used for incubations. Metabolic stability of BAL4815 was high in cultured rat hepatocytes. However, several low-abundant metabolites were detected by the use of capillary LC-qTof-MS and manual investigation of the data. The peak intensity of the most abundant metabolite was close to the limit of detection. Except for an apparent oxidation product, the masses of the other detected metabolites could not be assigned to a single and frequently occurring biotransformation. Accurate mass determination and possible elemental compositions suggested that metabolism occurred through a combination of glutathionylation and defluorination. This was verified using accurate mass MS/MS. The use of accurate mass measurements and the derived suggestions for the elemental compositions were essential to elucidate this atypical metabolic pathway. A mass accuracy better than 8 ppm could be achieved for most assigned MS and MS/MS signals with intensities less than 6 cps in the spectra.

  4. An experimental correction proposed for an accurate determination of mass diffusivity of wood in steady regime

    NASA Astrophysics Data System (ADS)

    Zohoun, Sylvain; Agoua, Eusèbe; Degan, Gérard; Perre, Patrick

    2002-08-01

    This paper presents an experimental study of the mass diffusion in the hygroscopic region of four temperate species and three tropical ones. In order to simplify the interpretation of the phenomena, a dimensionless parameter called reduced diffusivity is defined. This parameter varies from 0 to 1. The method used is firstly based on the determination of that parameter from results of the measurement of the mass flux which takes into account the conditions of operating standard device (tightness, dimensional variations and easy installation of samples of wood, good stability of temperature and humidity). Secondly the reasons why that parameter has to be corrected are presented. An abacus for this correction of mass diffusivity of wood in steady regime has been plotted. This work constitutes an advanced deal nowadays for characterising forest species.

  5. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    SciTech Connect

    Zimmer, Jennifer S.; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.

    2006-01-20

    Proteomics, and the larger field of systems biology, have recently demonstrated utility in both the understanding of cellular processes on the molecular level and the identification of potential biomarkers of various disease states. The large amount of data generated by utilizing high mass accuracy mass spectrometry for high-throughput proteomics analyses presents a challenge in data processing, analysis and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics analysis and the accompanying data processing tools that have been developed in order to interpret and display the large volumes of data produced.

  6. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  7. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize plant extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. However, th...

  8. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize phytochemicals in plant extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. New methods a...

  9. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize plant extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. For phytochem...

  10. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity

    PubMed Central

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (BiologTM) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  11. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity.

    PubMed

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (Biolog(TM)) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  12. Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis.

    PubMed

    Qiu, Wentao; Ndao, Abdoulaye; Lu, Huihui; Bernal, Maria-Pilar; Baida, Fadi Issam

    2016-09-01

    We present a theoretical study of guided resonances (GR) on a thin film lithium niobate rectangular lattice photonic crystal by band diagram calculations and 3D Finite Difference Time Domain (FDTD) transmission investigations which cover a broad range of parameters. A photonic crystal with an active zone as small as 13μm×13μm×0.7μm can be easily designed to obtain a resonance Q value in the order of 1000. These resonances are then employed in electric field (E-field) sensing applications exploiting the electro optic (EO) effect of lithium niobate. A local field factor that is calculated locally for each FDTD cell is proposed to accurately estimate the sensitivity of GR based E-field sensor. The local field factor allows well agreement between simulations and reported experimental data therefore providing a valuable method in optimizing the GR structure to obtain high sensitivities. When these resonances are associated with sub-picometer optical spectrum analyzer and high field enhancement antenna design, an E-field probe with a sensitivity of 50 μV/m could be achieved. The results of our simulations could be also exploited in other EO based applications such as EEG (Electroencephalography) or ECG (Electrocardiography) probe and E-field frequency detector with an 'invisible' probe to the field being detected etc. PMID:27607627

  13. Accurate mass analysis of ethanesulfonic acid degradates of acetochlor and alachlor using high-performance liquid chromatography and time-of-flight mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Parry, R.

    2002-01-01

    Degradates of acetochlor and alachlor (ethanesulfonic acids, ESAs) were analyzed in both standards and in a groundwater sample using high-performance liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. The negative pseudomolecular ion of the secondary amide of acetochlor ESA and alachlor ESA gave average masses of 256.0750??0.0049 amu and 270.0786??0.0064 amu respectively. Acetochlor and alachlor ESA gave similar masses of 314.1098??0.0061 amu and 314.1153??0.0048 amu; however, they could not be distinguished by accurate mass because they have the same empirical formula. On the other hand, they may be distinguished using positive-ion electrospray because of different fragmentation spectra, which did not occur using negative-ion electrospray.

  14. MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis

    PubMed Central

    Tabb, David L.; Fernando, Christopher G.; Chambers, Matthew C.

    2008-01-01

    Shotgun proteomics experiments are dependent upon database search engines to identify peptides from tandem mass spectra. Many of these algorithms score potential identifications by evaluating the number of fragment ions matched between each peptide sequence and an observed spectrum. These systems, however, generally do not distinguish between matching an intense peak and matching a minor peak. We have developed a statistical model to score peptide matches that is based upon the multivariate hypergeometric distribution. This scorer, part of the “MyriMatch” database search engine, places greater emphasis on matching intense peaks. The probability that the best match for each spectrum has occurred by random chance can be employed to separate correct matches from random ones. We evaluated this software on data sets from three different laboratories employing three different ion trap instruments. Employing a novel system for testing discrimination, we demonstrate that stratifying peaks into multiple intensity classes improves the discrimination of scoring. We compare MyriMatch results to those of Sequest and X!Tandem, revealing that it is capable of higher discrimination than either of these algorithms. When minimal peak filtering is employed, performance plummets for a scoring model that does not stratify matched peaks by intensity. On the other hand, we find that MyriMatch discrimination improves as more peaks are retained in each spectrum. MyriMatch also scales well to tandem mass spectra from high-resolution mass analyzers. These findings may indicate limitations for existing database search scorers that count matched peaks without differentiating them by intensity. This software and source code is available under Mozilla Public License at this URL: http://www.mc.vanderbilt.edu/msrc/bioinformatics/. PMID:17269722

  15. Accurate mass measurements of short-lived isotopes with the MISTRAL* rf spectrometer

    SciTech Connect

    Toader, C.; Audi, G.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Le Scornet, G.; Lunney, D.; Monsanglant, C.; Saint Simon, M. de; Thibault, C.; Borcea, C.; Duma, M.; Lebee, G.

    1999-01-15

    The MISTRAL* experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  16. GridMass: a fast two-dimensional feature detection method for LC/MS.

    PubMed

    Treviño, Victor; Yañez-Garza, Irma-Luz; Rodriguez-López, Carlos E; Urrea-López, Rafael; Garza-Rodriguez, Maria-Lourdes; Barrera-Saldaña, Hugo-Alberto; Tamez-Peña, José G; Winkler, Robert; Díaz de-la-Garza, Rocío-Isabel

    2015-01-01

    One of the initial and critical procedures for the analysis of metabolomics data using liquid chromatography and mass spectrometry is feature detection. Feature detection is the process to detect boundaries of the mass surface from raw data. It consists of detected abundances arranged in a two-dimensional (2D) matrix of mass/charge and elution time. MZmine 2 is one of the leading software environments that provide a full analysis pipeline for these data. However, the feature detection algorithms provided in MZmine 2 are based mainly on the analysis of one-dimension at a time. We propose GridMass, an efficient algorithm for 2D feature detection. The algorithm is based on landing probes across the chromatographic space that are moved to find local maxima providing accurate boundary estimations. We tested GridMass on a controlled marker experiment, on plasma samples, on plant fruits, and in a proteome sample. Compared with other algorithms, GridMass is faster and may achieve comparable or better sensitivity and specificity. As a proof of concept, GridMass has been implemented in Java under the MZmine 2 environment and is available at http://www.bioinformatica.mty.itesm.mx/GridMass and MASSyPup. It has also been submitted to the MZmine 2 developing community.

  17. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veverková, Lenka; Hradilová, Šárka; Milde, David; Panáček, Aleš; Skopalová, Jana; Kvítek, Libor; Petrželová, Kamila; Zbořil, Radek

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO3 and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl2- and AgCl32 - for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results.

  18. A feasibility study of UHPLC-HRMS accurate-mass screening methods for multiclass testing of organic contaminants in food.

    PubMed

    Pérez-Ortega, Patricia; Lara-Ortega, Felipe J; García-Reyes, Juan F; Gilbert-López, Bienvenida; Trojanowicz, Marek; Molina-Díaz, Antonio

    2016-11-01

    The feasibility of accurate-mass multi-residue screening methods using liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) using time-of-flight mass spectrometry has been evaluated, including over 625 multiclass food contaminants as case study. Aspects such as the selectivity and confirmation capability provided by HRMS with different acquisition modes (full-scan or full-scan combined with collision induced dissociation (CID) with no precursor ion isolation), and chromatographic separation along with main limitations such as sensitivity or automated data processing have been examined. Compound identification was accomplished with retention time matching and accurate mass measurements of the targeted ions for each analyte (mainly (de)protonated molecules). Compounds with the same nominal mass (isobaric species) were very frequent due to the large number of compounds included. Although 76% of database compounds were involved in isobaric groups, they were resolved in most cases (99% of these isobaric species were distinguished by retention time, resolving power, isotopic profile or fragment ions). Only three pairs could not be resolved with these tools. In-source CID fragmentation was evaluated in depth, although the results obtained in terms of information provided were not as thorough as those obtained using fragmentation experiments without precursor ion isolation (all ion mode). The latter acquisition mode was found to be the best suited for this type of large-scale screening method instead of classic product ion scan, as provided excellent fragmentation information for confirmatory purposes for an unlimited number of compounds. Leaving aside the sample treatment limitations, the main weaknesses noticed are basically the relatively low sensitivity for compounds which does not map well against electrospray ionization and also quantitation issues such as those produced by signal suppression due to either matrix effects from coeluting matrix or from

  19. A feasibility study of UHPLC-HRMS accurate-mass screening methods for multiclass testing of organic contaminants in food.

    PubMed

    Pérez-Ortega, Patricia; Lara-Ortega, Felipe J; García-Reyes, Juan F; Gilbert-López, Bienvenida; Trojanowicz, Marek; Molina-Díaz, Antonio

    2016-11-01

    The feasibility of accurate-mass multi-residue screening methods using liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) using time-of-flight mass spectrometry has been evaluated, including over 625 multiclass food contaminants as case study. Aspects such as the selectivity and confirmation capability provided by HRMS with different acquisition modes (full-scan or full-scan combined with collision induced dissociation (CID) with no precursor ion isolation), and chromatographic separation along with main limitations such as sensitivity or automated data processing have been examined. Compound identification was accomplished with retention time matching and accurate mass measurements of the targeted ions for each analyte (mainly (de)protonated molecules). Compounds with the same nominal mass (isobaric species) were very frequent due to the large number of compounds included. Although 76% of database compounds were involved in isobaric groups, they were resolved in most cases (99% of these isobaric species were distinguished by retention time, resolving power, isotopic profile or fragment ions). Only three pairs could not be resolved with these tools. In-source CID fragmentation was evaluated in depth, although the results obtained in terms of information provided were not as thorough as those obtained using fragmentation experiments without precursor ion isolation (all ion mode). The latter acquisition mode was found to be the best suited for this type of large-scale screening method instead of classic product ion scan, as provided excellent fragmentation information for confirmatory purposes for an unlimited number of compounds. Leaving aside the sample treatment limitations, the main weaknesses noticed are basically the relatively low sensitivity for compounds which does not map well against electrospray ionization and also quantitation issues such as those produced by signal suppression due to either matrix effects from coeluting matrix or from

  20. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  1. Accurate means of detecting and characterizing abnormal patterns of ventricular activation by phase image analysis

    SciTech Connect

    Botvinick, E.H.; Frais, M.A.; Shosa, D.W.; O'Connell, J.W.; Pacheco-Alvarez, J.A.; Scheinman, M.; Hattner, R.S.; Morady, F.; Faulkner, D.B.

    1982-08-01

    The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex and then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.

  2. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences. PMID:27668140

  3. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  4. Faster and more accurate graphical model identification of tandem mass spectra using trellises

    PubMed Central

    Wang, Shengjie; Halloran, John T.; Bilmes, Jeff A.; Noble, William S.

    2016-01-01

    Tandem mass spectrometry (MS/MS) is the dominant high throughput technology for identifying and quantifying proteins in complex biological samples. Analysis of the tens of thousands of fragmentation spectra produced by an MS/MS experiment begins by assigning to each observed spectrum the peptide that is hypothesized to be responsible for generating the spectrum. This assignment is typically done by searching each spectrum against a database of peptides. To our knowledge, all existing MS/MS search engines compute scores individually between a given observed spectrum and each possible candidate peptide from the database. In this work, we use a trellis, a data structure capable of jointly representing a large set of candidate peptides, to avoid redundantly recomputing common sub-computations among different candidates. We show how trellises may be used to significantly speed up existing scoring algorithms, and we theoretically quantify the expected speedup afforded by trellises. Furthermore, we demonstrate that compact trellis representations of whole sets of peptides enables efficient discriminative learning of a dynamic Bayesian network for spectrum identification, leading to greatly improved spectrum identification accuracy. Contact: bilmes@uw.edu or william-noble@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307634

  5. Enhancing accurate data collection in mass fatality kinship identifications: lessons learned from Hurricane Katrina.

    PubMed

    Donkervoort, Sandra; Dolan, Siobhan M; Beckwith, Michelle; Northrup, Tammy Pruet; Sozer, Amanda

    2008-09-01

    A mass fatality DNA identification effort is a complex process in which direct matching and kinship analysis is used for identifying human remains. Kinship DNA identification is an important tool in the identification process in which victim's DNA profiles are compared to the profiles of "known" biologically related reference samples. Experience from the 9/11 World Trade Center DNA identification efforts showed that forms used to record biological relationships are important and that inaccurately documented information may hamper the kinship analysis and DNA identification process. In the identification efforts following Hurricane Katrina, a Family and/or Donor Reference Collection (FDRC) form was used as a means to document the reported relationship between the reference DNA donor and the purported missing individual. This FDRC form was developed based upon lessons learned from 9/11 and the Tsunami identification efforts. This paper analyses the effectiveness of the FDRC form used in the Hurricane Katrina kinship DNA identification efforts and proposes an improved sample collection form for kinship and other donor reference samples. The data presented can be used to enhance the accuracy of the data collection process through an improved sample collection form, streamlining the DNA kinship identification process and decreasing the burden on valuable resources.

  6. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide.

    PubMed

    Ross, Charles W; Simonsick, William J; Bogusky, Michael J; Celikay, Recep W; Guare, James P; Newton, Randall C

    2016-06-28

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.

  7. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide

    PubMed Central

    Ross, Charles W.; Simonsick, William J.; Bogusky, Michael J.; Celikay, Recep W.; Guare, James P.; Newton, Randall C.

    2016-01-01

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry. PMID:27367671

  8. Bianalyte mass detection with a single resonant microcantilever

    SciTech Connect

    Yu Haitao; Li Xinxin

    2009-01-05

    Mass-loading detection of multiple kinds of analyte with a single resonant microcantilever is proposed and experimentally validated. By exciting the cantilever in different resonance modes and adsorbing the different analytes at different locations of the cantilever, the specific mass of either kind of analyte can be independently detected. The proposed micromechanical resonant cantilever sensor is designed and fabricated using silicon micromachining techniques. Used as simulant adsorbates, Au and Cr thin films are selectively implemented on the cantilever to verify the bianalyte detecting function. The testing results are consistent with the theoretical analysis, with the detection error being an order of magnitude lower than the analyzed mass.

  9. An accurate algorithm to match imperfectly matched images for lung tumor detection without markers.

    PubMed

    Rozario, Timothy; Bereg, Sergey; Yan, Yulong; Chiu, Tsuicheng; Liu, Honghuan; Kearney, Vasant; Jiang, Lan; Mao, Weihua

    2015-05-08

    implanted and used as ground truth for tumor positions. Although other organs and bony structures introduced strong signals superimposed on tumors at some angles, this method accurately located tumors on every projection over 12 gantry angles. The maximum error was less than 2.2 mm, while the total average error was less than 0.9mm. This algorithm was capable of detecting tumors without markers, despite strong background signals.

  10. Purification of pharmaceutical preparations using thin-layer chromatography to obtain mass spectra with Direct Analysis in Real Time and accurate mass spectrometry.

    PubMed

    Wood, Jessica L; Steiner, Robert R

    2011-06-01

    Forensic analysis of pharmaceutical preparations requires a comparative analysis with a standard of the suspected drug in order to identify the active ingredient. Purchasing analytical standards can be expensive or unattainable from the drug manufacturers. Direct Analysis in Real Time (DART™) is a novel, ambient ionization technique, typically coupled with a JEOL AccuTOF™ (accurate mass) mass spectrometer. While a fast and easy technique to perform, a drawback of using DART™ is the lack of component separation of mixtures prior to ionization. Various in-house pharmaceutical preparations were purified using thin-layer chromatography (TLC) and mass spectra were subsequently obtained using the AccuTOF™- DART™ technique. Utilizing TLC prior to sample introduction provides a simple, low-cost solution to acquiring mass spectra of the purified preparation. Each spectrum was compared against an in-house molecular formula list to confirm the accurate mass elemental compositions. Spectra of purified ingredients of known pharmaceuticals were added to an in-house library for use as comparators for casework samples. Resolving isomers from one another can be accomplished using collision-induced dissociation after ionization. Challenges arose when the pharmaceutical preparation required an optimized TLC solvent to achieve proper separation and purity of the standard. Purified spectra were obtained for 91 preparations and included in an in-house drug standard library. Primary standards would only need to be purchased when pharmaceutical preparations not previously encountered are submitted for comparative analysis. TLC prior to DART™ analysis demonstrates a time efficient and cost saving technique for the forensic drug analysis community. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Isotopic Ratio Outlier Analysis of the S. cerevisiae Metabolome Using Accurate Mass Gas Chromatography/Time-of-Flight Mass Spectrometry: A New Method for Discovery.

    PubMed

    Qiu, Yunping; Moir, Robyn; Willis, Ian; Beecher, Chris; Tsai, Yu-Hsuan; Garrett, Timothy J; Yost, Richard A; Kurland, Irwin J

    2016-03-01

    Isotopic ratio outlier analysis (IROA) is a (13)C metabolomics profiling method that eliminates sample to sample variance, discriminates against noise and artifacts, and improves identification of compounds, previously done with accurate mass liquid chromatography/mass spectrometry (LC/MS). This is the first report using IROA technology in combination with accurate mass gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS), here used to examine the S. cerevisiae metabolome. S. cerevisiae was grown in YNB media, containing randomized 95% (13)C, or 5%(13)C glucose as the single carbon source, in order that the isotopomer pattern of all metabolites would mirror the labeled glucose. When these IROA experiments are combined, the abundance of the heavy isotopologues in the 5%(13)C extracts, or light isotopologues in the 95%(13)C extracts, follows the binomial distribution, showing mirrored peak pairs for the molecular ion. The mass difference between the (12)C monoisotopic and the (13)C monoisotopic equals the number of carbons in the molecules. The IROA-GC/MS protocol developed, using both chemical and electron ionization, extends the information acquired from the isotopic peak patterns for formulas generation. The process that can be formulated as an algorithm, in which the number of carbons, as well as the number of methoximations and silylations are used as search constraints. In electron impact (EI/IROA) spectra, the artifactual peaks are identified and easily removed, which has the potential to generate "clean" EI libraries. The combination of chemical ionization (CI) IROA and EI/IROA affords a metabolite identification procedure that enables the identification of coeluting metabolites, and allowed us to characterize 126 metabolites in the current study. PMID:26820234

  12. Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Riedo, A.; Meyer, S.; Heredia, B.; Neuland, M. B.; Bieler, A.; Tulej, M.; Leya, I.; Iakovleva, M.; Mezger, K.; Wurz, P.

    2013-10-01

    An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.

  13. Implications of (Less) Accurate Mass-Radius-Measurements for the Habitability of Extrasolar Terrestrial Planets: Why Do We Need PLATO?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Wagner, F. W.; Plesa, A.-C.; Höning, D.; Sohl, F.; Breuer, D.; Rauer, H.

    2012-04-01

    Several space missions (CoRoT, Kepler and others) already provided promising candidates for terrestrial exoplanets (i.e. with masses less than about 10 Earth masses) and thereby triggered an exciting new research branch of planetary modelling to investigate the possible habitability of such planets. Earth analogues (low-mass planets with an Earth-like structure and composition) are likely to be found in the near future with new missions such as the proposed M3 mission PLATO. Planets may be more diverse in the universe than they are in the solar system. Our neighbouring planets in the habitable zone are all terrestrial by the means of being differentiated into an iron core, a silicate mantle and a crust. To reliably determine the interior structure of an exoplanet, measurements of mass and radius have to be sufficiently accurate (around +/-2% error allowed for the radius and +/-5% for the mass). An Earth-size planet with an Earth-like mass but an expected error of ~15% in mass for example may have either a Mercury-like, an Earth-like or a Moon-like (i.e. small iron core) structure [1,2]. Even though the atmospheric escape is not strongly influenced by the interior structure, the outgassing of volatiles and the likeliness of plate tectonics and an ongoing carbon-cycle may be very different. Our investigations show, that a planet with a small silicate mantle is less likely to shift into the plate-tectonics regime, cools faster (which may lead to the loss of a magnetic field after a short time) and outgasses less volatiles than a planet with the same mass but a large silicate mantle and small iron core. To be able to address the habitability of exoplanets, space missions such as PLATO, which can lead up to 2% accuracy in radius [3], are extremely important. Moreover, information about the occurrence of different planetary types helps us to better understand the formation of planetary systems and to further constrain the Drake's equation, which gives an estimate of the

  14. Detecting Children's Lies: Are Parents Accurate Judges of Their Own Children's Lies?

    ERIC Educational Resources Information Center

    Talwar, Victoria; Renaud, Sarah-Jane; Conway, Lauryn

    2015-01-01

    The current study investigated whether parents are accurate judges of their own children's lie-telling behavior. Participants included 250 mother-child dyads. Children were between three and 11 years of age. A temptation resistance paradigm was used to elicit a minor transgressive behavior from the children involving peeking at a forbidden toy and…

  15. Metabolic profiling of yeast culture using gas chromatography coupled with orthogonal acceleration accurate mass time-of-flight mass spectrometry: application to biomarker discovery.

    PubMed

    Kondo, Elsuida; Marriott, Philip J; Parker, Rhiannon M; Kouremenos, Konstantinos A; Morrison, Paul; Adams, Mike

    2014-01-01

    Yeast and yeast cultures are frequently used as additives in diets of dairy cows. Beneficial effects from the inclusion of yeast culture in diets for dairy mammals have been reported, and the aim of this study was to develop a comprehensive analytical method for the accurate mass identification of the 'global' metabolites in order to differentiate a variety of yeasts at varying growth stages (Diamond V XP, Yea-Sacc and Levucell). Microwave-assisted derivatization for metabolic profiling is demonstrated through the analysis of differing yeast samples developed for cattle feed, which include a wide range of metabolites of interest covering a large range of compound classes. Accurate identification of the components was undertaken using GC-oa-ToFMS (gas chromatography-orthogonal acceleration-time-of-flight mass spectrometry), followed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) for data reduction and biomarker discovery. Semi-quantification (fold changes in relative peak areas) was reported for metabolites identified as possible discriminative biomarkers (p-value <0.05, fold change >2), including D-ribose (four fold decrease), myo-inositol (five fold increase), L-phenylalanine (three fold increase), glucopyranoside (two fold increase), fructose (three fold increase) and threitol (three fold increase) respectively. PMID:24356230

  16. Fast and accurate procedure for the determination of Cr(VI) in solid samples by isotope dilution mass spectrometry.

    PubMed

    Fabregat-Cabello, Neus; Rodríguez-González, Pablo; Castillo, Ángel; Malherbe, Julien; Roig-Navarro, Antoni F; Long, Stephen E; García Alonso, J Ignacio

    2012-11-20

    We present here a new environmental measurement method for the rapid extraction and accurate quantification of Cr(VI) in solid samples. The quantitative extraction of Cr(VI) is achieved in 10 minutes by means of focused microwave assisted extraction using 50 mmol/L Ethylendiamintetraacetic acid (EDTA) at pH 10 as extractant. In addition, it enables the separation of Cr species by anion exchange chromatography using a mobile phase which is a 1:10 dilution of the extracting solution. Thus, neutralization or acidification steps which are prone to cause interconversion of Cr species are not needed. Another benefit of using EDTA is that it allows to measure Cr(III)-EDTA complex and Cr(VI) simultaneously in an alkaline extraction solution. The application of a 10 minutes focused microwave assisted extraction (5 min at 90 °C plus 5 min at 110 °C) has been shown to quantitatively extract all forms of hexavalent chromium from the standard reference materials (SRM) candidate NIST 2700 and NIST 2701. A double spike isotope dilution mass spectrometry (IDMS) procedure was employed to study chromium interconversion reactions. It was observed that the formation of a Cr(III)-EDTA complex avoided Cr(III) oxidation for these two reference materials. Thus, the use of a double spiking strategy for quantification is not required and a single spike IDMS procedure using isotopically enriched Cr(VI) provided accurate results.

  17. Multiclass semi-volatile compounds determination in wine by gas chromatography accurate time-of-flight mass spectrometry.

    PubMed

    Rodríguez-Cabo, T; Rodríguez, I; Ramil, M; Silva, A; Cela, R

    2016-04-15

    The performance of gas chromatography (GC) with accurate, high resolution mass spectrometry (HRMS) for the determination of a group of 39 semi-volatile compounds related to wine quality (pesticide residues, phenolic off-flavours, phenolic pollutants and bioactive stilbenes) is investigated. Solid-phase extraction (SPE) was used as extraction technique, previously to acetylation (phenolic compounds) and dispersive liquid-liquid microextraction (DLLME) concentration. Compounds were determined by GC coupled to a quadrupole time-of-flight (QTOF) MS system through an electron ionization (EI) source. The final method attained limits of quantification (LOQs) at the very low ng mL(-1) level, covering the range of expected concentrations for target compounds in red and white wines. For 38 out of 39 compounds, performance of sample preparation and determination steps were hardly affected by the wine matrix; thus, accurate recoveries were achieved by using pseudo-external calibration. Levels of target compounds in a set of 25 wine samples are reported. The capabilities of the described approach for the post-run identification of species not considered during method development, without retention time information, are illustrated and discussed with selected examples of compounds from different classes.

  18. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate

    PubMed Central

    Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul

    2015-01-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere. PMID:26633821

  19. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate.

    PubMed

    Minyoo, Abel B; Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul; Lankester, Felix

    2015-12-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere.

  20. Incentives Increase Participation in Mass Dog Rabies Vaccination Clinics and Methods of Coverage Estimation Are Assessed to Be Accurate.

    PubMed

    Minyoo, Abel B; Steinmetz, Melissa; Czupryna, Anna; Bigambo, Machunde; Mzimbiri, Imam; Powell, George; Gwakisa, Paul; Lankester, Felix

    2015-12-01

    In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere. PMID:26633821

  1. Detecting Mass Loss in Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Sandberg, Erik; Rajagopal, Jayadev; Ridgway, Susan E.; Kotulla, Ralf C.; Valdes, Francisco; Allen, Lori

    2016-01-01

    Sandberg, E., Rajagopal, J., Ridgway, S.E, Kotulla, R., Valdes, F., Allen, L.The Dark Energy Camera (DECam) on the 4m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) is being used for a survey of Near Earth Objects (NEOs). Here we attempt to identify mass loss in main belt asteroids (MBAs) from these data. A primary motivation is to understand the role that asteroids may play in supplying dust and gas for debris disks. This work focuses on finding methods to automatically pick out asteroids that have qualities indicating possible mass loss. Two methods were chosen: looking for flux above a certain threshold in the asteroid's radial profile, and comparing its PSF to that of a point source. After sifting through 490 asteroids, several have passed these tests and should be followed up with a more rigorous analysis.Sandberg was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829)

  2. THE EFFECT OF STARSPOTS ON ACCURATE RADIUS DETERMINATION OF THE LOW-MASS DOUBLE-LINED ECLIPSING BINARY GU Boo

    SciTech Connect

    Windmiller, G.; Orosz, J. A.; Etzel, P. B. E-mail: orosz@sciences.sdsu.ed

    2010-04-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. Lopez-Morales and Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by Lopez-Morales and Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, Lopez-Morales and Ribas derived masses and radii accurate to {approx_equal}2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spots in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of Lopez-Morales and Ribas using models with and without spots. We derived a radius of the primary of 0.6329 +- 0.0026 R{sub sun}, 0.6413 +- 0.0049 R{sub sun}, and 0.6373 +- 0.0029 R{sub sun} from the CCD, photoelectric, and Lopez-Morales and Ribas data, respectively. Each of these measurements agrees with the value reported by Lopez-Morales and Ribas (R{sub 1} = 0.623 +- 0.016 R{sub sun}) at the level of {approx}2%. In addition, the spread in these values is {approx}1%-2% from the mean. For the secondary, we derive radii of 0.6074 +- 0.0035 R{sub sun}, 0.5944 +- 0.0069 R{sub sun}, and 0.5976 +- 0.0059 R{sub sun} from the three respective data sets. The Lopez-Morales and Ribas value is R{sub 2} = 0.620 +- 0.020 R{sub sun}, which is {approx}2%-3% larger than each of the three values we found. The spread in these values is {approx}2% from the mean. The systematic difference between our three determinations of the secondary radius and that of Lopez-Morales and Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations

  3. Can We Detect Intermediate-mass-ratio Inspirals with LISA?

    NASA Astrophysics Data System (ADS)

    Mandel, Ilya; Gair, J. R.

    2009-01-01

    Gravitational waves emitted during intermediate-mass-ratio inspirals (IMRIs) of intermediate-mass black holes (IMBHs) into supermassive black holes could represent a very interesting source for LISA. Similarly, IMRIs of stellar-mass compact objects into IMBHs could be detectable by Advanced LIGO. At present, however, it is not clear what waveforms could be used for IMRI detection, since the post-Newtonian approximation breaks down as an IMRI approaches the innermost stable circular orbit, and the perturbative solution is only known to the lowest order in the mass ratio. We discuss the expected mismatches between approximate and true waveforms, and the choice of the best available waveform as a function of the mass ratio and the total mass of the system. We also comment on the significance of the spin of the smaller body and the need for its inclusion in the waveforms. This research is partially supported by NASA ATP Grant NNX07AH22G to Northwestern University.

  4. Development and evaluation of a liquid chromatography-mass spectrometry method for rapid, accurate quantitation of malondialdehyde in human plasma.

    PubMed

    Sobsey, Constance A; Han, Jun; Lin, Karen; Swardfager, Walter; Levitt, Anthony; Borchers, Christoph H

    2016-09-01

    Malondialdhyde (MDA) is a commonly used marker of lipid peroxidation in oxidative stress. To provide a sensitive analytical method that is compatible with high throughput, we developed a multiple reaction monitoring-mass spectrometry (MRM-MS) approach using 3-nitrophenylhydrazine chemical derivatization, isotope-labeling, and liquid chromatography (LC) with electrospray ionization (ESI)-tandem mass spectrometry assay to accurately quantify MDA in human plasma. A stable isotope-labeled internal standard was used to compensate for ESI matrix effects. The assay is linear (R(2)=0.9999) over a 20,000-fold concentration range with a lower limit of quantitation of 30fmol (on-column). Intra- and inter-run coefficients of variation (CVs) were <2% and ∼10% respectively. The derivative was stable for >36h at 5°C. Standards spiked into plasma had recoveries of 92-98%. When compared to a common LC-UV method, the LC-MS method found near-identical MDA concentrations. A pilot project to quantify MDA in patient plasma samples (n=26) in a study of major depressive disorder with winter-type seasonal pattern (MDD-s) confirmed known associations between MDA concentrations and obesity (p<0.02). The LC-MS method provides high sensitivity and high reproducibility for quantifying MDA in human plasma. The simple sample preparation and rapid analysis time (5x faster than LC-UV) offers high throughput for large-scale clinical applications. PMID:27437618

  5. Hybrid quadrupole-orbitrap mass spectrometry analysis with accurate-mass database and parallel reaction monitoring for high-throughput screening and quantification of multi-xenobiotics in honey.

    PubMed

    Li, Yi; Zhang, Jinzhen; Jin, Yue; Wang, Lin; Zhao, Wen; Zhang, Wenwen; Zhai, Lifei; Zhang, Yaping; Zhang, Yongxin; Zhou, Jinhui

    2016-01-15

    This study reports a rapid, automated screening and quantification method for the determination of multi-xenobiotic residues in honey using ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap) with a user-built accurate-mass database plus parallel reaction monitoring (PRM). The database contains multi-xenobiotic information including formulas, adduct types, theoretical exact mass and retention time, characteristic fragment ions, ion ratios, and mass accuracies. A simple sample preparation method was developed to reduce xenobiotic loss in the honey samples. The screening method was validated based on retention time deviation, mass accuracy via full scan-data-dependent MS/MS (full scan-ddMS2), multi-isotope ratio, characteristic ion ratio, sensitivity, and positive/negative switching performance between the spiked sample and corresponding standard solution. The quantification method based on the PRM mode is a promising new quantitative tool which we validated in terms of selectivity, linearity, recovery (accuracy), repeatability (precision), decision limit (CCα), detection capability (CCβ), matrix effects, and carry-over. The optimized methods proposed in this study enable the automated screening and quantification of 157 compounds in less than 15 min in honey. The results of this study, as they represent a convenient protocol for large-scale screening and quantification, also provide a research approach for analysis of various contaminants in other matrices.

  6. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    PubMed

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the

  7. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety.

    PubMed

    Mangal, Manisha; Bansal, Sangita; Sharma, Satish K; Gupta, Ram K

    2016-07-01

    Food safety is a global health concern. For the prevention and recognition of problems related to health and safety, detection of foodborne pathogen is of utmost importance at all levels of food production chain. For several decades, a lot of research has been targeted at the development of rapid methodology as reducing the time needed to complete pathogen detection tests has been the primary goal of food microbiologists. With the result, food microbiology laboratories now have a wide array of detection methods and automated technologies such as enzyme immunoassay, polymerase chain reaction, and microarrays, which can cut test times considerably. Nucleic acid amplification strategies and advances in amplicon detection methodologies have been the key factors in the progress of molecular microbiology. A comprehensive literature survey has been carried out to give an overview in the field of foodborne pathogen detection. In this paper, we describe the conventional methods, as well as recent developments in food pathogen detection, identification, and quantification, with a major emphasis on molecular detection methods.

  8. Accurate measurement of pancreatic islet beta-cell mass using a second-generation fluorescent exendin-4 analog.

    PubMed

    Reiner, Thomas; Thurber, Greg; Gaglia, Jason; Vinegoni, Claudio; Liew, Chong Wee; Upadhyay, Rabi; Kohler, Rainer H; Li, Li; Kulkarni, Rohit N; Benoist, Christophe; Mathis, Diane; Weissleder, Ralph

    2011-08-01

    The hallmark of type 1 diabetes is autoimmune destruction of the insulin-producing β-cells of the pancreatic islets. Autoimmune diabetes has been difficult to study or treat because it is not usually diagnosed until substantial β-cell loss has already occurred. Imaging agents that permit noninvasive visualization of changes in β-cell mass remain a high-priority goal. We report on the development and testing of a near-infrared fluorescent β-cell imaging agent. Based on the amino acid sequence of exendin-4, we created a neopeptide via introduction of an unnatural amino acid at the K(12) position, which could subsequently be conjugated to fluorophores via bioorthogonal copper-catalyzed click-chemistry. Cell assays confirmed that the resulting fluorescent probe (E4(×12)-VT750) had a high binding affinity (~3 nM). Its in vivo properties were evaluated using high-resolution intravital imaging, histology, whole-pancreas visualization, and endoscopic imaging. According to intravital microscopy, the probe rapidly bound to β-cells and, as demonstrated by confocal microscopy, it was internalized. Histology of the whole pancreas showed a close correspondence between fluorescence and insulin staining, and there was an excellent correlation between imaging signals and β-cell mass in mice treated with streptozotocin, a β-cell toxin. Individual islets could also be visualized by endoscopic imaging. In short, E4(×12)-VT750 showed strong and selective binding to glucose-like peptide-1 receptors and permitted accurate measurement of β-cell mass in both diabetic and nondiabetic mice. This near-infrared imaging probe, as well as future radioisotope-labeled versions of it, should prove to be important tools for monitoring diabetes, progression, and treatment in both experimental and clinical contexts. PMID:21768367

  9. Accurate measurement of pancreatic islet β-cell mass using a second-generation fluorescent exendin-4 analog

    PubMed Central

    Reiner, Thomas; Thurber, Greg; Gaglia, Jason; Vinegoni, Claudio; Liew, Chong Wee; Upadhyay, Rabi; Kohler, Rainer H.; Kulkarni, Rohit N.; Benoist, Christophe; Mathis, Diane; Weissleder, Ralph

    2011-01-01

    The hallmark of type 1 diabetes is autoimmune destruction of the insulin-producing β-cells of the pancreatic islets. Autoimmune diabetes has been difficult to study or treat because it is not usually diagnosed until substantial β-cell loss has already occurred. Imaging agents that permit noninvasive visualization of changes in β-cell mass remain a high-priority goal. We report on the development and testing of a near-infrared fluorescent β-cell imaging agent. Based on the amino acid sequence of exendin-4, we created a neopeptide via introduction of an unnatural amino acid at the K12 position, which could subsequently be conjugated to fluorophores via bioorthogonal copper-catalyzed click-chemistry. Cell assays confirmed that the resulting fluorescent probe (E4×12-VT750) had a high binding affinity (∼3 nM). Its in vivo properties were evaluated using high-resolution intravital imaging, histology, whole-pancreas visualization, and endoscopic imaging. According to intravital microscopy, the probe rapidly bound to β-cells and, as demonstrated by confocal microscopy, it was internalized. Histology of the whole pancreas showed a close correspondence between fluorescence and insulin staining, and there was an excellent correlation between imaging signals and β-cell mass in mice treated with streptozotocin, a β-cell toxin. Individual islets could also be visualized by endoscopic imaging. In short, E4×12-VT750 showed strong and selective binding to glucose-like peptide-1 receptors and permitted accurate measurement of β-cell mass in both diabetic and nondiabetic mice. This near-infrared imaging probe, as well as future radioisotope-labeled versions of it, should prove to be important tools for monitoring diabetes, progression, and treatment in both experimental and clinical contexts. PMID:21768367

  10. Combining CRF and multi-hypothesis detection for accurate lesion segmentation in breast sonograms.

    PubMed

    Hao, Zhihui; Wang, Qiang; Seong, Yeong Kyeong; Lee, Jong-Ha; Ren, Haibing; Kim, Ji-yeun

    2012-01-01

    The implementation of lesion segmentation for breast ultrasound image relies on several diagnostic rules on intensity, texture, etc. In this paper, we propose a novel algorithm to achieve a comprehensive decision upon these rules by incorporating image over-segmentation and lesion detection in a pairwise CRF model, rather than a term-by-term translation. Multiple detection hypotheses are used to propagate object-level cues to segments and a unified classifier is trained based on the concatenated features. The experimental results show that our algorithm can avoid the drawbacks of separate detection or bottom-up segmentation, and can deal with very complicated cases. PMID:23285589

  11. Towards accurate node-based detection of P2P botnets.

    PubMed

    Yin, Chunyong

    2014-01-01

    Botnets are a serious security threat to the current Internet infrastructure. In this paper, we propose a novel direction for P2P botnet detection called node-based detection. This approach focuses on the network characteristics of individual nodes. Based on our model, we examine node's flows and extract the useful features over a given time period. We have tested our approach on real-life data sets and achieved detection rates of 99-100% and low false positives rates of 0-2%. Comparison with other similar approaches on the same data sets shows that our approach outperforms the existing approaches.

  12. Towards Accurate Node-Based Detection of P2P Botnets

    PubMed Central

    2014-01-01

    Botnets are a serious security threat to the current Internet infrastructure. In this paper, we propose a novel direction for P2P botnet detection called node-based detection. This approach focuses on the network characteristics of individual nodes. Based on our model, we examine node's flows and extract the useful features over a given time period. We have tested our approach on real-life data sets and achieved detection rates of 99-100% and low false positives rates of 0–2%. Comparison with other similar approaches on the same data sets shows that our approach outperforms the existing approaches. PMID:25089287

  13. Current cardiac imaging techniques for detection of left ventricular mass

    PubMed Central

    2010-01-01

    Estimation of left ventricular (LV) mass has both prognostic and therapeutic value independent of traditional risk factors. Unfortunately, LV mass evaluation has been underestimated in clinical practice. Assessment of LV mass can be performed by a number of imaging modalities. Despite inherent limitations, conventional echocardiography has fundamentally been established as most widely used diagnostic tool. 3-dimensional echocardiography (3DE) is now feasible, fast and accurate for LV mass evaluation. 3DE is also superior to conventional echocardiography in terms of LV mass assessment, especially in patients with abnormal LV geometry. Cardiovascular magnetic resonance (CMR) and cardiovascular computed tomography (CCT) are currently performed for LV mass assessment and also do not depend on cardiac geometry and display 3-dimensional data, as well. Therefore, CMR is being increasingly employed and is at the present standard of reference in the clinical setting. Although each method demonstrates advantages over another, there are also disadvantages to receive attention. Diagnostic accuracy of methods will also be increased with the introduction of more advanced systems. It is also likely that in the coming years new and more accurate diagnostic tests will become available. In particular, CMR and CCT have been intersecting hot topic between cardiology and radiology clinics. Thus, good communication and collaboration between two specialties is required for selection of an appropriate test. PMID:20515461

  14. The modified card agglutination test: an accurate tool for detecting anaplasmosis in Columbian black-tailed deer.

    PubMed

    Howarth, A; Hokama, Y; Amerault, T E

    1976-07-01

    Inoculation of susceptible calves confirmed that the modified card agglutination test accurately detected the anaplasmosis infection status of each of 35 Columbian black-tailed deer (Odocoileus hemionus columbianus). Anaplasma marginale, and specific antibodies, were demonstrated only in calves which received blood from deer that were positive by the card test. The modified card agglutination testing of deer serum was performed in the manner recommended for testing cattle serum with bovine-origin antigen and bovine serum factor.

  15. Hydrogen sulfide detection based on reflection: from a poison test approach of ancient China to single-cell accurate localization.

    PubMed

    Kong, Hao; Ma, Zhuoran; Wang, Song; Gong, Xiaoyun; Zhang, Sichun; Zhang, Xinrong

    2014-08-01

    With the inspiration of an ancient Chinese poison test approach, we report a rapid hydrogen sulfide detection strategy in specific areas of live cells using silver needles with good spatial resolution of 2 × 2 μm(2). Besides the accurate-localization ability, this reflection-based strategy also has attractive merits of convenience and robust response when free pretreatment and short detection time are concerned. The success of endogenous H2S level evaluation in cellular cytoplasm and nuclear of human A549 cells promises the application potential of our strategy in scientific research and medical diagnosis.

  16. Targeted mass spectrometry methods for detecting oxidative post-translational modifications.

    PubMed

    Tveen-Jensen, Karina; Reis, Ana; Spickett, Corinne M; Pitt, Andrew R

    2014-10-01

    Oxidative post-translational modifications (oxPTMs) can alter the function of proteins, and are important in the redox regulation of cell behaviour. The most informative technique to detect and locate oxPTMs within proteins is mass spectrometry (MS). However, proteomic MS data are usually searched against theoretical databases using statistical search engines, and the occurrence of unspecified or multiple modifications, or other unexpected features, can lead to failure to detect the modifications and erroneous identifications of oxPTMs. We have developed a new approach for mining data from accurate mass instruments that allows multiple modifications to be examined. Accurate mass extracted ion chromatograms (XIC) for specific reporter ions from peptides containing oxPTMs were generated from standard LC-MSMS data acquired on a rapid-scanning high-resolution mass spectrometer (ABSciex 5600 Triple TOF). The method was tested using proteins from human plasma or isolated LDL. A variety of modifications including chlorotyrosine, nitrotyrosine, kynurenine, oxidation of lysine, and oxidized phospholipid adducts were detected. For example, the use of a reporter ion at 184.074Da/e, corresponding to phosphocholine, was used to identify for the first time intact oxidized phosphatidylcholine adducts on LDL. In all cases the modifications were confirmed by manual sequencing. ApoB-100 containing oxidized lipid adducts was detected even in healthy human samples, as well as LDL from patients with chronic kidney disease. The accurate mass XIC method gave a lower false positive rate than normal database searching using statistical search engines, and identified more oxidatively modified peptides. A major advantage was that additional modifications could be searched after data collection, and multiple modifications on a single peptide identified. The oxPTMs present on albumin and ApoB-100 have potential as indicators of oxidative damage in ageing or inflammatory diseases. PMID:26461406

  17. An accurate heart beat detection method in the EKG recorded in fMRI system.

    PubMed

    Oh, Sung Suk; Chung, Jun-Young; Yoon, Hyo Woon; Park, HyunWook

    2007-01-01

    The simultaneous recording of functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) provides an efficient signal for the high spatiotemporal brain mapping because each modality provides complementary information. The peak detection in the EEG signal measured in the MR scanner is necessary for removal of the ballistocardiac artifact. Especially, it would be affected by the quality of the EKG signal and the variation of the heart beat rate. Therefore, we propose the peak detection method using a K-teager energy operator (K-TEO) as well as further refinement processes in order to detect precise peaks. We applied this technique to the analysis of simulation waves with random noise and abrupt heat beat changes.

  18. Unbound or distant planetary mass population detected by gravitational microlensing.

    PubMed

    2011-05-19

    Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8(+1.7)(-0.8)) as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.

  19. Micromechanical mass sensors for biomolecular detection in a physiological environment.

    PubMed

    Braun, Thomas; Barwich, Viola; Ghatkesar, Murali Krishna; Bredekamp, Adriaan H; Gerber, Christoph; Hegner, Martin; Lang, Hans Peter

    2005-09-01

    Micromechanical cantilever arrays are used to measure time-resolved adsorption of tiny masses based on protein-ligand interactions. Here, streptavidin-biotin interactions are investigated in a physiological environment. A measurement method is introduced using higher flexural modes of a silicon cantilever in order to enhance the sensitivity of mass detection. Modeling the cantilever vibration in liquid allows the measurement of absolute mass changes. We show time-resolved mass adsorption of final 7+/-0.7 ng biotinylated latex beads. The sensitivity obtained is about 2.5 pg/Hz measuring at a center frequency of 750 kHz.

  20. Accurate detection of Campylobacter spp. antigens by immunochromatography and enzyme immunoassay in routine microbiological laboratory.

    PubMed

    Regnath, Thomas; Ignatius, Ralf

    2014-09-01

    Campylobacter spp. are fastidious microorganisms, and their detection by culture depends on the freshness of the stool sample and the skills of the laboratory staff. To improve laboratory diagnosis, assays for the detection of specific antigens have been developed. Here, we evaluated two assays for the detection of Campylobacter spp.-specific antigens, i.e., one immunochromatographic test and one enzyme-linked immunosorbent assay (EIA), in 38 frozen Campylobacter spp.-positive specimens and prospectively in 533 fresh stool samples with a conventional enzyme immunoassay (EIA) and culture. Both assays were positive for 36 samples with Campylobacter jejuni and one with Campylobacter coli among 38 Campylobacter spp.-positive frozen samples. One Campylobacter lari-positive sample was identified by the immunochromatographic assay (ICA) only. In a prospective study performed within the course of routine microbiology, both assays were positive for 24/25 C. jejuni culture-positive samples (positive percent agreement, 96.0% [95% CI: 78.9-100%]). ICA and EIA also were positive for 14 and 10 culture-negative samples, respectively (negative percent agreement: ICA, 97.2% [95% CI: 95.4-98.4%]; EIA, 98.0% [95% CI: 96.4-99.0%]). In conclusion, the high agreement between both antigen-detection assays and culture indicates that both assays may be initially performed followed by culture only upon a positive test result.

  1. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?

    PubMed

    Gjoreski, Martin; Gjoreski, Hristijan; Luštrek, Mitja; Gams, Matjaž

    2016-01-01

    Although wearable accelerometers can successfully recognize activities and detect falls, their adoption in real life is low because users do not want to wear additional devices. A possible solution is an accelerometer inside a wrist device/smartwatch. However, wrist placement might perform poorly in terms of accuracy due to frequent random movements of the hand. In this paper we perform a thorough, large-scale evaluation of methods for activity recognition and fall detection on four datasets. On the first two we showed that the left wrist performs better compared to the dominant right one, and also better compared to the elbow and the chest, but worse compared to the ankle, knee and belt. On the third (Opportunity) dataset, our method outperformed the related work, indicating that our feature-preprocessing creates better input data. And finally, on a real-life unlabeled dataset the recognized activities captured the subject's daily rhythm and activities. Our fall-detection method detected all of the fast falls and minimized the false positives, achieving 85% accuracy on the first dataset. Because the other datasets did not contain fall events, only false positives were evaluated, resulting in 9 for the second, 1 for the third and 15 for the real-life dataset (57 days data). PMID:27258282

  2. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?

    PubMed Central

    Gjoreski, Martin; Gjoreski, Hristijan; Luštrek, Mitja; Gams, Matjaž

    2016-01-01

    Although wearable accelerometers can successfully recognize activities and detect falls, their adoption in real life is low because users do not want to wear additional devices. A possible solution is an accelerometer inside a wrist device/smartwatch. However, wrist placement might perform poorly in terms of accuracy due to frequent random movements of the hand. In this paper we perform a thorough, large-scale evaluation of methods for activity recognition and fall detection on four datasets. On the first two we showed that the left wrist performs better compared to the dominant right one, and also better compared to the elbow and the chest, but worse compared to the ankle, knee and belt. On the third (Opportunity) dataset, our method outperformed the related work, indicating that our feature-preprocessing creates better input data. And finally, on a real-life unlabeled dataset the recognized activities captured the subject’s daily rhythm and activities. Our fall-detection method detected all of the fast falls and minimized the false positives, achieving 85% accuracy on the first dataset. Because the other datasets did not contain fall events, only false positives were evaluated, resulting in 9 for the second, 1 for the third and 15 for the real-life dataset (57 days data). PMID:27258282

  3. Rapid Screening of Bovine Milk Oligosaccharides in a Whey Permeate Product and Domestic Animal Milks by Accurate Mass Database and Tandem Mass Spectral Library.

    PubMed

    Lee, Hyeyoung; Cuthbertson, Daniel J; Otter, Don E; Barile, Daniela

    2016-08-17

    A bovine milk oligosaccharide (BMO) library, prepared from cow colostrum, with 34 structures was generated and used to rapidly screen oligosaccharides in domestic animal milks and a whey permeate powder. The novel library was entered into a custom Personal Compound Database and Library (PCDL) and included accurate mass, retention time, and tandem mass spectra. Oligosaccharides in minute-sized samples were separated using nanoliquid chromatography (nanoLC) coupled to a high resolution and sensitive quadrupole-Time of Flight (Q-ToF) MS system. Using the PCDL, 18 oligosaccharides were found in a BMO-enriched product obtained from whey permeate processing. The usefulness of the analytical system and BMO library was further validated using milks from domestic sheep and buffaloes. Through BMO PCDL searching, 15 and 13 oligosaccharides in the BMO library were assigned in sheep and buffalo milks, respectively, thus demonstrating significant overlap between oligosaccharides in bovine (cow and buffalo) and ovine (sheep) milks. This method was shown to be an efficient, reliable, and rapid tool to identify oligosaccharide structures using automated spectral matching. PMID:27428379

  4. Rapid Screening of Bovine Milk Oligosaccharides in a Whey Permeate Product and Domestic Animal Milks by Accurate Mass Database and Tandem Mass Spectral Library.

    PubMed

    Lee, Hyeyoung; Cuthbertson, Daniel J; Otter, Don E; Barile, Daniela

    2016-08-17

    A bovine milk oligosaccharide (BMO) library, prepared from cow colostrum, with 34 structures was generated and used to rapidly screen oligosaccharides in domestic animal milks and a whey permeate powder. The novel library was entered into a custom Personal Compound Database and Library (PCDL) and included accurate mass, retention time, and tandem mass spectra. Oligosaccharides in minute-sized samples were separated using nanoliquid chromatography (nanoLC) coupled to a high resolution and sensitive quadrupole-Time of Flight (Q-ToF) MS system. Using the PCDL, 18 oligosaccharides were found in a BMO-enriched product obtained from whey permeate processing. The usefulness of the analytical system and BMO library was further validated using milks from domestic sheep and buffaloes. Through BMO PCDL searching, 15 and 13 oligosaccharides in the BMO library were assigned in sheep and buffalo milks, respectively, thus demonstrating significant overlap between oligosaccharides in bovine (cow and buffalo) and ovine (sheep) milks. This method was shown to be an efficient, reliable, and rapid tool to identify oligosaccharide structures using automated spectral matching.

  5. Negative chemical ionization gas chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry and automated accurate mass data processing for determination of pesticides in fruit and vegetables.

    PubMed

    Besil, Natalia; Uclés, Samanta; Mezcúa, Milagros; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2015-08-01

    Gas chromatography coupled to high resolution hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS), operating in negative chemical ionization (NCI) mode and combining full scan with MSMS experiments using accurate mass analysis, has been explored for the automated determination of pesticide residues in fruit and vegetables. Seventy compounds were included in this approach where 50 % of them are not approved by the EU legislation. A global 76 % of the analytes could be identified at 1 μg kg(-1). Recovery studies were developed at three concentration levels (1, 5, and 10 μg kg(-1)). Seventy-seven percent of the detected pesticides at the lowest level yielded recoveries within the 70 %-120 % range, whereas 94 % could be quantified at 5 μg kg(-1), and the 100 % were determined at 10 μg kg(-1). Good repeatability, expressed as relative standard deviation (RSD <20 %), was obtained for all compounds. The main drawback of the method was the limited dynamic range that was observed for some analytes that can be overcome either diluting the sample or lowering the injection volume. A home-made database was developed and applied to an automatic accurate mass data processing. Measured mass accuracies of the generated ions were mainly less than 5 ppm for at least one diagnostic ion. When only one ion was obtained in the single-stage NCI-MS, a representative product ion from MSMS experiments was used as identification criterion. A total of 30 real samples were analyzed and 67 % of the samples were positive for 12 different pesticides in the range 1.0-1321.3 μg kg(-1). PMID:25694145

  6. High Resolution Melting Analysis: A Rapid and Accurate Method to Detect CALR Mutations

    PubMed Central

    Moreno, Melania; Torres, Laura; Santana-Lopez, Gonzalo; Rodriguez-Medina, Carlos; Perera, María; Bellosillo, Beatriz; de la Iglesia, Silvia; Molero, Teresa; Gomez-Casares, Maria Teresa

    2014-01-01

    Background The recent discovery of CALR mutations in essential thrombocythemia (ET) and primary myelofibrosis (PMF) patients without JAK2/MPL mutations has emerged as a relevant finding for the molecular diagnosis of these myeloproliferative neoplasms (MPN). We tested the feasibility of high-resolution melting (HRM) as a screening method for rapid detection of CALR mutations. Methods CALR was studied in wild-type JAK2/MPL patients including 34 ET, 21 persistent thrombocytosis suggestive of MPN and 98 suspected secondary thrombocytosis. CALR mutation analysis was performed through HRM and Sanger sequencing. We compared clinical features of CALR-mutated versus 45 JAK2/MPL-mutated subjects in ET. Results Nineteen samples showed distinct HRM patterns from wild-type. Of them, 18 were mutations and one a polymorphism as confirmed by direct sequencing. CALR mutations were present in 44% of ET (15/34), 14% of persistent thrombocytosis suggestive of MPN (3/21) and none of the secondary thrombocytosis (0/98). Of the 18 mutants, 9 were 52 bp deletions, 8 were 5 bp insertions and other was a complex mutation with insertion/deletion. No mutations were found after sequencing analysis of 45 samples displaying wild-type HRM curves. HRM technique was reproducible, no false positive or negative were detected and the limit of detection was of 3%. Conclusions This study establishes a sensitive, reliable and rapid HRM method to screen for the presence of CALR mutations. PMID:25068507

  7. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters

    PubMed Central

    Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal

    2015-01-01

    Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. PMID:25883146

  8. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters.

    PubMed

    Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal

    2015-07-01

    Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il.

  9. Avoiding incidental predation by mammalian herbivores: accurate detection and efficient response in aphids

    NASA Astrophysics Data System (ADS)

    Gish, Moshe; Dafni, Amots; Inbar, Moshe

    2011-09-01

    Mammalian herbivores eat plants that may also provide food and shelter for insects. The direct trophic effect of the browsing and grazing of mammalian herbivory on insects, which is probably prevalent in terrestrial ecosystems, has been mostly neglected by ecologists. We examined how the aphid Uroleucon sonchi L. deals with the danger of incidental predation by mammalian herbivores. We found that most (76%) of the aphids in a colony survive the ingestion of the plant by a feeding herbivore. They do so by sensing the combination of heat and humidity in the herbivore's breath and immediately dropping off the plant in large numbers. Their ability to sense the herbivore's breath or their tendency to drop off the plant weakens as ambient temperature rises. This could indicate a limitation of the aphids' sensory system or an adaptation that enables them to avoid the hostile conditions on a hot ground. Once on the ground, U. sonchi is highly mobile and capable of locating a new host plant by advancing in a pattern that differs significantly from random movement. The accurate and efficient defense mechanism of U. sonchi emphasizes the significance of incidental predation as a danger to plant-dwelling invertebrates.

  10. Accurate de novo and transmitted indel detection in exome-capture data using microassembly.

    PubMed

    Narzisi, Giuseppe; O'Rawe, Jason A; Iossifov, Ivan; Fang, Han; Lee, Yoon-Ha; Wang, Zihua; Wu, Yiyang; Lyon, Gholson J; Wigler, Michael; Schatz, Michael C

    2014-10-01

    We present an open-source algorithm, Scalpel (http://scalpel.sourceforge.net/), which combines mapping and assembly for sensitive and specific discovery of insertions and deletions (indels) in exome-capture data. A detailed repeat analysis coupled with a self-tuning k-mer strategy allows Scalpel to outperform other state-of-the-art approaches for indel discovery, particularly in regions containing near-perfect repeats. We analyzed 593 families from the Simons Simplex Collection and demonstrated Scalpel's power to detect long (≥30 bp) transmitted events and enrichment for de novo likely gene-disrupting indels in autistic children. PMID:25128977

  11. Possibility of detecting anisotropic expansion of the universe by very accurate astrometry measurements.

    PubMed

    Quercellini, Claudia; Quartin, Miguel; Amendola, Luca

    2009-04-17

    Refined astrometry measurements allow us to detect large-scale deviations from isotropy through real-time observations of changes in the angular separation between sources at cosmic distances. This "cosmic parallax" effect is a powerful consistency test of the Friedmann-Robertson-Walker metric and may set independent constraints on cosmic anisotropy. We apply this novel general test to Lemaitre-Tolman-Bondi cosmologies with off-center observers and show that future satellite missions such as Gaia might achieve accuracies that would put limits on the off-center distance which are competitive with cosmic microwave background dipole constraints. PMID:19518616

  12. Accurate Detection of Interaural Time Differences by a Population of Slowly Integrating Neurons

    NASA Astrophysics Data System (ADS)

    Vasilkov, Viacheslav A.; Tikidji-Hamburyan, Ruben A.

    2012-03-01

    For localization of a sound source, animals and humans process the microsecond interaural time differences of arriving sound waves. How nervous systems, consisting of elements with time constants of about and more than 1 ms, can reach such high precision is still an open question. In this Letter we present a hypothesis and show theoretical and computational evidence that a rather large population of slowly integrating neurons with inhibitory and excitatory inputs (EI neurons) can detect minute temporal disparities in input signals which are significantly less than any time constant in the system.

  13. Flexible and accurate detection of genomic copy-number changes from aCGH.

    PubMed

    Rueda, Oscar M; Díaz-Uriarte, Ramón

    2007-06-01

    Genomic DNA copy-number alterations (CNAs) are associated with complex diseases, including cancer: CNAs are indeed related to tumoral grade, metastasis, and patient survival. CNAs discovered from array-based comparative genomic hybridization (aCGH) data have been instrumental in identifying disease-related genes and potential therapeutic targets. To be immediately useful in both clinical and basic research scenarios, aCGH data analysis requires accurate methods that do not impose unrealistic biological assumptions and that provide direct answers to the key question, "What is the probability that this gene/region has CNAs?" Current approaches fail, however, to meet these requirements. Here, we introduce reversible jump aCGH (RJaCGH), a new method for identifying CNAs from aCGH; we use a nonhomogeneous hidden Markov model fitted via reversible jump Markov chain Monte Carlo; and we incorporate model uncertainty through Bayesian model averaging. RJaCGH provides an estimate of the probability that a gene/region has CNAs while incorporating interprobe distance and the capability to analyze data on a chromosome or genome-wide basis. RJaCGH outperforms alternative methods, and the performance difference is even larger with noisy data and highly variable interprobe distance, both commonly found features in aCGH data. Furthermore, our probabilistic method allows us to identify minimal common regions of CNAs among samples and can be extended to incorporate expression data. In summary, we provide a rigorous statistical framework for locating genes and chromosomal regions with CNAs with potential applications to cancer and other complex human diseases.

  14. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms.

    PubMed

    Sharon, Itai; Kertesz, Michael; Hug, Laura A; Pushkarev, Dmitry; Blauwkamp, Timothy A; Castelle, Cindy J; Amirebrahimi, Mojgan; Thomas, Brian C; Burstein, David; Tringe, Susannah G; Williams, Kenneth H; Banfield, Jillian F

    2015-04-01

    Accurate evaluation of microbial communities is essential for understanding global biogeochemical processes and can guide bioremediation and medical treatments. Metagenomics is most commonly used to analyze microbial diversity and metabolic potential, but assemblies of the short reads generated by current sequencing platforms may fail to recover heterogeneous strain populations and rare organisms. Here we used short (150-bp) and long (multi-kb) synthetic reads to evaluate strain heterogeneity and study microorganisms at low abundance in complex microbial communities from terrestrial sediments. The long-read data revealed multiple (probably dozens of) closely related species and strains from previously undescribed Deltaproteobacteria and Aminicenantes (candidate phylum OP8). Notably, these are the most abundant organisms in the communities, yet short-read assemblies achieved only partial genome coverage, mostly in the form of short scaffolds (N50 = ∼ 2200 bp). Genome architecture and metabolic potential for these lineages were reconstructed using a new synteny-based method. Analysis of long-read data also revealed thousands of species whose abundances were <0.1% in all samples. Most of the organisms in this "long tail" of rare organisms belong to phyla that are also represented by abundant organisms. Genes encoding glycosyl hydrolases are significantly more abundant than expected in rare genomes, suggesting that rare species may augment the capability for carbon turnover and confer resilience to changing environmental conditions. Overall, the study showed that a diversity of closely related strains and rare organisms account for a major portion of the communities. These are probably common features of many microbial communities and can be effectively studied using a combination of long and short reads.

  15. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms

    PubMed Central

    Sharon, Itai; Kertesz, Michael; Hug, Laura A.; Pushkarev, Dmitry; Blauwkamp, Timothy A.; Castelle, Cindy J.; Amirebrahimi, Mojgan; Thomas, Brian C.; Burstein, David; Tringe, Susannah G.; Williams, Kenneth H.

    2015-01-01

    Accurate evaluation of microbial communities is essential for understanding global biogeochemical processes and can guide bioremediation and medical treatments. Metagenomics is most commonly used to analyze microbial diversity and metabolic potential, but assemblies of the short reads generated by current sequencing platforms may fail to recover heterogeneous strain populations and rare organisms. Here we used short (150-bp) and long (multi-kb) synthetic reads to evaluate strain heterogeneity and study microorganisms at low abundance in complex microbial communities from terrestrial sediments. The long-read data revealed multiple (probably dozens of) closely related species and strains from previously undescribed Deltaproteobacteria and Aminicenantes (candidate phylum OP8). Notably, these are the most abundant organisms in the communities, yet short-read assemblies achieved only partial genome coverage, mostly in the form of short scaffolds (N50 = ∼2200 bp). Genome architecture and metabolic potential for these lineages were reconstructed using a new synteny-based method. Analysis of long-read data also revealed thousands of species whose abundances were <0.1% in all samples. Most of the organisms in this “long tail” of rare organisms belong to phyla that are also represented by abundant organisms. Genes encoding glycosyl hydrolases are significantly more abundant than expected in rare genomes, suggesting that rare species may augment the capability for carbon turnover and confer resilience to changing environmental conditions. Overall, the study showed that a diversity of closely related strains and rare organisms account for a major portion of the communities. These are probably common features of many microbial communities and can be effectively studied using a combination of long and short reads. PMID:25665577

  16. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation.

    PubMed

    Girshick, Ross; Donahue, Jeff; Darrell, Trevor; Malik, Jitendra

    2016-01-01

    Object detection performance, as measured on the canonical PASCAL VOC Challenge datasets, plateaued in the final years of the competition. The best-performing methods were complex ensemble systems that typically combined multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 50 percent relative to the previous best result on VOC 2012-achieving a mAP of 62.4 percent. Our approach combines two ideas: (1) one can apply high-capacity convolutional networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data are scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, boosts performance significantly. Since we combine region proposals with CNNs, we call the resulting model an R-CNN or Region-based Convolutional Network. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.

  17. Laser desorption mass spectrometry for biomolecule detection and its applications

    NASA Astrophysics Data System (ADS)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  18. Mammography mass detection: a multi-stage hybrid approach

    NASA Astrophysics Data System (ADS)

    Sahba, Nima; Tavakoli, Vahid; Ahmadian, Alireza; Giti, Masoumeh

    2009-02-01

    Here in this paper a combined method of pixel based and region based mass detection is proposed. In the first step, the background and pectoral muscle are filtered from mammography images and the image contrast is enhanced using an adaptive density weighted approach. Then, in a coarse level, suspected regions are extracted based on mathematical morphology and adaptive thresholding methods. Finally, to reduce the false positives produced in the coarse stage, a useful feature vector based on ranklet transform is obtained and fed into a support vector machine classifier to detect masses. MIAS (Mammographic Image Analysis Society) and Imam Hospital databases were used to evaluate the performance of the algorithm. The sensitivity and specificity of the proposed method are 74% and 91% respectively. The proposed algorithm shows a high degree of robustness in detecting masses of different shapes.

  19. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  20. Development of a Rapid and Accurate Identification Method for Citrobacter Species Isolated from Pork Products Using a Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Kwak, Hye-Lim; Han, Sun-Kyung; Park, Sunghoon; Park, Si Hong; Shim, Jae-Yong; Oh, Mihwa; Ricke, Steven C; Kim, Hae-Yeong

    2015-09-01

    Previous detection methods for Citrobacter are considered time consuming and laborious. In this study, we have developed a rapid and accurate detection method for Citrobacter species in pork products, using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). A total of 35 Citrobacter strains were isolated from 30 pork products and identified by both MALDI-TOF MS and 16S rRNA gene sequencing approaches. All isolates were identified to the species level by the MALDI-TOF MS, while 16S rRNA gene sequencing results could not discriminate them clearly. These results confirmed that MALDI-TOF MS is a more accurate and rapid detection method for the identification of Citrobacter species.

  1. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: determination of accurate ionization energy and cationic structure.

    PubMed

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae; Kwon, Chan Ho

    2014-11-01

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73,570 ± 6 cm(-1) (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ((2)A2), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C(2v) symmetry through the C-N axis.

  2. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: Determination of accurate ionization energy and cationic structure

    SciTech Connect

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae E-mail: hlkim@kangwon.ac.kr; Kwon, Chan Ho E-mail: hlkim@kangwon.ac.kr

    2014-11-07

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73 570 ± 6 cm{sup −1} (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ({sup 2}A{sub 2}), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C{sub 2v} symmetry through the C-N axis.

  3. Narrow-band imaging with magnifying endoscopy is accurate for detecting gastric intestinal metaplasia

    PubMed Central

    Savarino, Edoardo; Corbo, Marina; Dulbecco, Pietro; Gemignani, Lorenzo; Giambruno, Elisa; Mastracci, Luca; Grillo, Federica; Savarino, Vincenzo

    2013-01-01

    AIM: To investigate the predictive value of narrow-band imaging with magnifying endoscopy (NBI-ME) for identifying gastric intestinal metaplasia (GIM) in unselected patients. METHODS: We prospectively evaluated consecutive patients undergoing upper endoscopy for various indications, such as epigastric discomfort/pain, anaemia, gastro-oesophageal reflux disease, suspicion of peptic ulcer disease, or chronic liver diseases. Patients underwent NBI-ME, which was performed by three blinded, experienced endoscopists. In addition, five biopsies (2 antrum, 1 angulus, and 2 corpus) were taken and examined by two pathologists unaware of the endoscopic findings to determine the presence or absence of GIM. The correlation between light blue crest (LBC) appearance and histology was measured. Moreover, we quantified the degree of LBC appearance as less than 20% (+), 20%-80% (++) and more than 80% (+++) of an image field, and the semiquantitative evaluation of LBC appearance was correlated with IM percentage from the histological findings. RESULTS: We enrolled 100 (58 F/42 M) patients who were mainly referred for gastro-esophageal reflux disease/dyspepsia (46%), cancer screening/anaemia (34%), chronic liver disease (9%), and suspected celiac disease (6%); the remaining patients were referred for other indications. The prevalence of Helicobacter pylori (H. pylori) infection detected from the biopsies was 31%, while 67% of the patients used proton pump inhibitors. LBCs were found in the antrum of 33 patients (33%); 20 of the cases were classified as LBC+, 9 as LBC++, and 4 as LBC+++. LBCs were found in the gastric body of 6 patients (6%), with 5 of them also having LBCs in the antrum. The correlation between the appearance of LBCs and histological GIM was good, with a sensitivity of 80% (95%CI: 67-92), a specificity of 96% (95%CI: 93-99), a positive predictive value of 84% (95%CI: 73-96), a negative predictive value of 95% (95%CI: 92-98), and an accuracy of 93% (95%CI: 90-97). The

  4. Method for predicting peptide detection in mass spectrometry

    DOEpatents

    Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA

    2010-07-13

    A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.

  5. Graphene fluorescence switch-based cooperative amplification: a sensitive and accurate method to detection microRNA.

    PubMed

    Liu, Haiyun; Li, Lu; Wang, Qian; Duan, Lili; Tang, Bo

    2014-06-01

    MicroRNAs (miRNAs) play significant roles in a diverse range of biological progress and have been regarded as biomarkers and therapeutic targets in cancer treatment. Sensitive and accurate detection of miRNAs is crucial for better understanding their roles in cancer cells and further validating their function in clinical diagnosis. Here, we developed a stable, sensitive, and specific miRNAs detection method on the basis of cooperative amplification combining with the graphene oxide (GO) fluorescence switch-based circular exponential amplification and the multimolecules labeling of SYBR Green I (SG). First, the target miRNA is adsorbed on the surface of GO, which can protect the miRNA from enzyme digest. Next, the miRNA hybridizes with a partial hairpin probe and then acts as a primer to initiate a strand displacement reaction to form a complete duplex. Finally, under the action of nicking enzyme, universal DNA fragments are released and used as triggers to initiate next reaction cycle, constituting a new circular exponential amplification. In the proposed strategy, a small amount of target miRNA can be converted to a large number of stable DNA triggers, leading to a remarkable amplification for the target. Moreover, compared with labeling with a 1:1 stoichiometric ratio, multimolecules binding of intercalating dye SG to double-stranded DNA (dsDNA) can induce significant enhancement of fluorescence signal and further improve the detection sensitivity. The extraordinary fluorescence quenching of GO used here guarantees the high signal-to-noise ratio. Due to the protection for target miRNA by GO, the cooperative amplification, and low fluorescence background, sensitive and accurate detection of miRNAs has been achieved. The strategy proposed here will offer a new approach for reliable quantification of miRNAs in medical research and early clinical diagnostics. PMID:24823448

  6. An optimized method for the accurate determination of patulin in apple products by isotope dilution-liquid chromatography/mass spectrometry.

    PubMed

    Seo, Miyeong; Kim, Byungjoo; Baek, Song-Yee

    2015-07-01

    Patulin, a mycotoxin produced by several molds in fruits, has been frequently detected in apple products. Therefore, regulatory bodies have established recommended maximum permitted patulin concentrations for each type of apple product. Although several analytical methods have been adopted to determine patulin in food, quality control of patulin analysis is not easy, as reliable certified reference materials (CRMs) are not available. In this study, as a part of a project for developing CRMs for patulin analysis, we developed isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC/MS/MS) as a higher-order reference method for the accurate value-assignment of CRMs. (13)C7-patulin was used as internal standard. Samples were extracted with ethyl acetate to improve recovery. For further sample cleanup with solid-phase extraction (SPE), the HLB SPE cartridge was chosen after comparing with several other types of SPE cartridges. High-performance liquid chromatography was performed on a multimode column for proper retention and separation of highly polar and water-soluble patulin from sample interferences. Sample extracts were analyzed by LC/MS/MS with electrospray ionization in negative ion mode with selected reaction monitoring of patulin and (13)C7-patulin at m/z 153→m/z 109 and m/z 160→m/z 115, respectively. The validity of the method was tested by measuring gravimetrically fortified samples of various apple products. In addition, the repeatability and the reproducibility of the method were tested to evaluate the performance of the method. The method was shown to provide accurate measurements in the 3-40 μg/kg range with a relative expanded uncertainty of around 1%.

  7. Development and application of accurate detection and assay techniques for oilfield scale inhibitors in produced water samples

    SciTech Connect

    Graham, G.M.; Sorbie, K.S.; Boak, L.S.; Taylor, K.; Blilie, L.

    1995-11-01

    In the application of chemical inhibitors in field squeeze treatments for the prevention of sulfate and carbonate mineral scale formation, it is very important that the chemical species involved can be accurately assayed. When the inhibitor concentration drops below a predetermined threshold level for scale inhibition (C{sub t}) then the well may need to be resqueezed. The accurate assay of scale inhibitors down to concentration levels of a few ppm in real field brines can be a difficult task. In this paper, the authors examine a number of interferences which often make assay techniques very difficult to apply in field produced brines. The inhibitors examined include phosphonates (PH), polyacrylates (PAA) and phosphinopolycarboxylates (PPCA). The main objective of this work is to develop suitable pre-treatment/purification techniques which allow the standard wet chemical techniques to be applied effectively after appropriate modification. Successful techniques all based on careful modification of existing methods have been developed by which these common inhibitors can be assayed very accurately at ppm and sub-ppm levels in a variety of North Sea field produced waters. This paper examines some of the major problems and interferences associated with poor analysis and introduces modified methods which can be applied in the field without the use of expensive equipment. It is also shown that different detection methods can often be employed in order to avoid more extensive clean-up strategies. Finally, instrumental methods such as ICP analysis (commonly used for phosphonates) are examined and pre-treatment methods are developed which allow phosphino-polycarboxylic acid based inhibitors to be assayed very accurately by this method. The results from an independent assessment by a North Sea operator, using spiked field produced water, are also presented as an independent verification of the accuracy of the techniques which have been developed in this work.

  8. Accurate physical laws can permit new standard units: The two laws F→=ma→ and the proportionality of weight to mass

    NASA Astrophysics Data System (ADS)

    Saslow, Wayne M.

    2014-04-01

    Three common approaches to F→=ma→ are: (1) as an exactly true definition of force F→ in terms of measured inertial mass m and measured acceleration a→; (2) as an exactly true axiom relating measured values of a→, F→ and m; and (3) as an imperfect but accurately true physical law relating measured a→ to measured F→, with m an experimentally determined, matter-dependent constant, in the spirit of the resistance R in Ohm's law. In the third case, the natural units are those of a→ and F→, where a→ is normally specified using distance and time as standard units, and F→ from a spring scale as a standard unit; thus mass units are derived from force, distance, and time units such as newtons, meters, and seconds. The present work develops the third approach when one includes a second physical law (again, imperfect but accurate)—that balance-scale weight W is proportional to m—and the fact that balance-scale measurements of relative weight are more accurate than those of absolute force. When distance and time also are more accurately measurable than absolute force, this second physical law permits a shift to standards of mass, distance, and time units, such as kilograms, meters, and seconds, with the unit of force—the newton—a derived unit. However, were force and distance more accurately measurable than time (e.g., time measured with an hourglass), this second physical law would permit a shift to standards of force, mass, and distance units such as newtons, kilograms, and meters, with the unit of time—the second—a derived unit. Therefore, the choice of the most accurate standard units depends both on what is most accurately measurable and on the accuracy of physical law.

  9. Is the Posner Reaction Time Test More Accurate Than Clinical Tests in Detecting Left Neglect in Acute and Chronic Stroke?

    PubMed Central

    Rengachary, Jennifer; d'Avossa, Giovanni; Sapir, Ayelet; Shulman, Gordon L.; Corbetta, Maurizio

    2013-01-01

    Objective To compare the accuracy of common clinical tests for left neglect with that of a computerized reaction time Posner test in a stroke population. Design Neglect measures were collected longitudinally in stroke patients at the acute (≈2wk) and chronic (≈9mo) stage. Identical measures were collected in a healthy control group. Setting Inpatient and outpatient rehabilitation. Participants Acute stroke patients (n=59) with left neglect, 30 of whom were tested longitudinally; healthy age-matched controls (n=30). Interventions Not applicable. Main Outcome Measures A receiver operating characteristic analysis, ranking the measures' sensitivity and specificity using a single summary statistic. Results Most clinical tests were adequately accurate at the acute stage, but many were near chance at the chronic stage. The Posner test was the most sensitive test at both stages, the most sensitive variable being the reaction time difference for detecting targets appearing on the left compared to the right side. Conclusions Computerized reaction time tests can be used to screen for subtle but potentially clinically relevant left neglect, which may not be detectable by conventional clinical tests, especially at the chronic stage. Such tests may be useful to assess the severity of the patients' deficits and provide more accurate measures of the degree of recovery in clinical trials than established clinical measures. PMID:19969172

  10. Accurate determination of ochratoxin A in Korean fermented soybean paste by isotope dilution-liquid chromatography tandem mass spectrometry.

    PubMed

    Ahn, Seonghee; Lee, Suyoung; Lee, Joonhee; Kim, Byungjoo

    2016-01-01

    Ochratoxin A (OTA), a naturally occurring mycotoxin, has been frequently detected in doenjang, a traditional fermented soybean paste, when it is fermented under improper conditions. Reliable screening of OTA in traditional fermented soybean paste (doenjang) is a special food-safety issue in Korea. Our laboratory, the National Metrology Institute of Korea, established an isotope dilution-liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method as a higher-order reference method to be used for SI-traceable value-assignment of OTA in certified reference materials (CRMs). (13)C20-OTA was used as an internal standard. Sample preparation conditions and LC/MS measurement parameters were optimised for this purpose. The analytical method was validated by measuring samples fortified with OTA at various levels. Repeatability and reproducibility studies showed that the ID-LC/MS/MS method is reliable and reproducible within 2% relative standard deviation. The analytical method was applied to determine OTA in various commercial doenjang products and home-made doenjang products.

  11. Method for detecting a mass density image of an object

    DOEpatents

    Wernick, Miles N.; Yang, Yongyi

    2008-12-23

    A method for detecting a mass density image of an object. An x-ray beam is transmitted through the object and a transmitted beam is emitted from the object. The transmitted beam is directed at an angle of incidence upon a crystal analyzer. A diffracted beam is emitted from the crystal analyzer onto a detector and digitized. A first image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a first angular position. A second image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a second angular position. A refraction image is obtained and a regularized mathematical inversion algorithm is applied to the refraction image to obtain a mass density image.

  12. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry

    PubMed Central

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2011-01-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000–15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert’s visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition. PMID:21544266

  13. Nonlinear mechanical resonators for ultra-sensitive mass detection

    SciTech Connect

    Datskos, Panos G; Lavrik, Nickolay V

    2014-01-01

    The fundamental sensitivity limit of an appropriately scaled down mechanical resonator can approach one atomic mass unit when only thermal noise is present in the system. However, operation of such nanoscale mechanical resonators is very challenging due to minuteness of their oscillation amplitudes and presence of multiple noise sources in real experimental environments. In order to surmount these challenges, we use microscale cantilever resonators driven to large amplitudes, far beyond their nonlinear instability onset. Our experiments show that such a nonlinear cantilever resonator, described analytically as a Duffing oscillator, has mass sensing performance comparable to that of much smaller resonators operating in a linear regime. We demonstrate femtogram level mass sensing that relies on a bifurcation point tracking that does not require any complex readout means. Our approaches enable straightforward detection of mass changes that are near the fundamental limit imposed by thermo-mechanical fluctuations.

  14. Full house of fears: evidence that people high in attachment anxiety are more accurate in detecting deceit.

    PubMed

    Ein-Dor, Tsachi; Perry, Adi

    2014-04-01

    Lying is deep-rooted in our nature, as over 90% of all people lie. Laypeople, however, do only slightly better than chance when detecting lies and deceptions. Recently, attachment anxiety was linked with people's hypervigilance toward threat-related cues. Accordingly, we tested whether attachment anxiety predicts people's ability to detect deceit and to play poker-a game that is based on players' ability to detect cheating. In Study 1, 202 participants watched a series of interpersonal interactions that comprised subtle clues to the honesty or dishonesty of the speakers. In Study 2, 58 participants watched clips in which such cues were absent. Participants were asked to decide whether the main characters were honest or dishonest. In Study 3, we asked 35 semiprofessional poker players to participate in a poker tournament, and then we predicted the amount of money won during the game. Results indicated that attachment anxiety, but not other types of anxiety, predicted more accurate detection of deceitful statements (Studies 1-2) and a greater amount of money won during a game of poker (Study 3). Results are discussed in relation to the possible adaptive functions of certain personality characteristics, such as attachment anxiety, often viewed as undesirable. PMID:23437786

  15. Less accurate but more efficient family of search templates for detection of gravitational waves from inspiraling compact binaries

    NASA Astrophysics Data System (ADS)

    Chronopoulos, Andreas E.; Apostolatos, Theocharis A.

    2001-08-01

    The network of interferometric detectors that is under construction at various locations on Earth is expected to start searching for gravitational waves in a few years. The number of search templates that is needed to be cross correlated with the noisy output of the detectors is a major issue since computing power capabilities are restricted. By choosing higher and higher post-Newtonian order expansions for the family of search templates we make sure that our filters are more accurate copies of the real waves that hit our detectors. However, this is not the only criterion for choosing a family of search templates. To make the process of detection as efficient as possible, one needs a family of templates with a relatively small number of members that manages to pick up any detectable signal with only a tiny reduction in signal-to-noise ratio. Evidently, one family is better than another if it accomplishes its goal with a smaller number of templates. Following the geometric language of Owen, we have studied the performance of the post1.5-Newtonian family of templates on detecting post2-Newtonian signals for binaries. Several technical issues arise from the fact that the two types of waveforms cannot be made to coincide by a suitable choice of parameters. In general, the parameter space of the signals is not identical with the parameter space of the templates, although in our case they are of the same dimension, and one has to take into account all such peculiarities before drawing any conclusion. An interesting result we have obtained is that the post1.5-Newtonian family of templates happens to be more economical for detecting post2-Newtonian signals than the perfectly accurate post2-Newtonian family of templates itself. The number of templates is reduced by 20-30 %, depending on the acceptable level of reduction in signal-to-noise ratio due to discretization of the family of templates. This makes the post1.5-Newtonian family of templates more favorable for detecting

  16. Mass determination of megadalton-DNA electrospray ions using charge detection mass spectrometry.

    PubMed

    Schultz, J C; Hack, C A; Benner, W H

    1998-04-01

    Charge detection mass spectrometry (CD-MS) has been used to determine the mass of double-stranded, circular DNA and single-stranded, circular DNA in the range of 2500 to 8000 base pairs (1.5-5.0 MDa). Simultaneous measurement of the charge and velocity of an electrostatically accelerated ion allows a mass determination of the ion, with instrument calibration determined independently of samples. Positive ion mass spectra of electrosprayed commercial DNA samples supplied in tris(hydroxymethyl)ethylenediaminetetraacetic acid buffer, diluted in 50 vol. % acetonitrile, were obtained without cleanup of the sample. A CD mass spectrum constructed from 3000 ion measurements takes 10 min to acquire and yields the DNA molecular mass directly (mass resolution = 6). The data collected represent progress toward a more automatable alternative to sizing of DNA by gel electrophoresis. In addition to the mass spectra, CD-MS generates charge versus mass plots, which provide another means to investigate the creation and fate of large electrospray ions.

  17. Mass determination of megadalton-DNA Electrospray Ions usingCharge Detection Mass Spectrometry

    SciTech Connect

    Schultz, Jocelyn C.; Hack, Christopher; Benner, Henry W.

    1997-10-01

    Charge detection mass spectrometry (CD-MS) has been used to determine the mass of double-stranded, circular DNA and single-stranded, circular DNA in the range of 2500 to 8000 base pairs (1.5-5.0 MDa). Simultaneous measurement of the charge and velocity of an electrostatically accelerated ion allows a mass determination of the ion, with instrument calibration determined independently of samples. Positive ion mass spectra of electrosprayed commercial DNA samples supplied in tris(hydroxymethyl)ethylenediamine tetraacetic acid buffer, diluted in 50 vol. percent acetonitrile, were obtained without cleanup of the sample. ACD mass spectrum constructed from 3000 ion measurements takes 10 min to acquire and yields the DNA molecular mass directly (mass resolution = 6). The data collected represent progress toward a more automatable alternative to sizing of DNA by gel electrophoresis. In addition to the mass spectra, CD-MS generates charge versus mass plots, which provide another means to investigate the creation and fate of large electrospray ions.

  18. Creation of an Accurate Algorithm to Detect Snellen Best Documented Visual Acuity from Ophthalmology Electronic Health Record Notes

    PubMed Central

    French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J

    2016-01-01

    Background Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Objective Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. Methods We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Results Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Conclusions Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently

  19. Accurate detection of on-state quantum dot and biomolecules in a microfluidic flow with single-molecule two-color coincidence detection.

    PubMed

    Zhang, Chun-Yang; Yang, Kun

    2010-05-01

    Due to their unique optical and electronic properties, quantum dots (QDs) have been widely used in a variety of biosensors for sensitive detection of biomarkers and small molecules. However, single QD exhibits dynamic fluctuation of fluorescence intensity (i.e., blinking) with the transition between on and off states, which adversely influences the development of QD-based optical biosensors. Therefore, the methods for efficient evaluation of on-state QD are especially important and highly desirable. In this paper, a novel and unique approach based on single-molecule two-color coincidence detection is developed to simply and accurately evaluate the on-state QDs in a microfluidic flow. Our results demonstrate that improved QDs in the on state are detected in a microfluidic flow in comparison with that in the Brownian motion state, thus paving the way to the development of single QD-based biosensors for sensitive detection of low-abundance biomolecules. This single-molecule two-color coincidence detection has been applied for the homegeneous detection of nucleic acids in a microfluidic flow with the detection sensitivity of 5.0 fM.

  20. Single virus particle mass detection using microresonators with nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Akin, D.; Bashir, R.

    2004-03-01

    In this letter, we present the microfabrication and application of arrays of silicon cantilever beams as microresonator sensors with nanoscale thickness to detect the mass of individual virus particles. The dimensions of the fabricated cantilever beams were in the range of 4-5 μm in length, 1-2 μm in width and 20-30 nm in thickness. The virus particles we used in the study were vaccinia virus, which is a member of the Poxviridae family and forms the basis of the smallpox vaccine. The frequency spectra of the cantilever beams, due to thermal and ambient noise, were measured using a laser Doppler vibrometer under ambient conditions. The change in resonant frequency as a function of the virus particle mass binding on the cantilever beam surface forms the basis of the detection scheme. We have demonstrated the detection of a single vaccinia virus particle with an average mass of 9.5 fg. These devices can be very useful as components of biosensors for the detection of airborne virus particles.

  1. High frequency columnar silicon microresonators for mass detection

    SciTech Connect

    Kehrbusch, J.; Ilin, E. A.; Hullin, M.; Oesterschulze, E.

    2008-07-14

    A simple but effective technological scheme for the fabrication of high frequency silicon columnar microresonators is presented. With the proposed technique the dimensions of the microresonators are controlled on a scale of at least 1 {mu}m. Characterization of the mechanical properties of silicon columns gave resonant frequencies of the lowest flexural mode of 3-7 MHz with quality factors of up to 2500 in air and {approx}8800 under vacuum condition. Columnar microresonators were operated as mass balance with a sensitivity of 1 Hz/fg. A mass detection limit of 25 fg was deduced from experiments.

  2. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  3. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  4. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  5. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}−g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentum (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p{sub R}). The entire family of conventional halo-independent g-tilde(v{sub min}) plots for all DM masses are directly found from the single h-tilde(p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde(p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde(v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  6. Halo-independent direct detection analyses without mass assumptions

    DOE PAGES

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ – σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin – g~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR),more » the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g~(vmin) plots for all DM masses are directly found from the single tilde h~(pR) plot through a simple rescaling of axes. By considering results in tildeh~(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g~(vmin) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.« less

  7. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew E-mail: pjfox@fnal.gov E-mail: matthew.mccullough@cern.ch

    2015-10-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}− g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentum (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-tilde (p{sub R}). The entire family of conventional halo-independent g-tilde (v{sub min}) plots for all DM masses are directly found from the single h-tilde (p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde (p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde (v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  8. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ – σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin – g~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g~(vmin) plots for all DM masses are directly found from the single tilde h~(pR) plot through a simple rescaling of axes. By considering results in tildeh~(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g~(vmin) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  9. Radionuclide detection by inductively coupled plasma mass spectrometry: A comparison of atomic and radiation detection method

    SciTech Connect

    Smith, M.R.; Wyse, E.J.; Koppenaal, D.W.

    1991-04-01

    Radionuclide detection by mass spectrometric techniques offers inherent advantages over conventional radiation detection methods. Since radionuclides decay at variable rates (half-lives) and via various nuclear transformations (i.e. emission of alpha, beta, and/or gamma radiation) their determination via radiation detection depends not only on decay systematics but also on detector technology. Radionuclide detection by direct atom measurement, however, is dependent only on technique sensitivity and is indifferent to decay mode. Evaluation of inductively coupled plasma mass spectrometry (ICP/MS) indicates this method to be superior conventional radiation detection techniques for many radionuclides. This work discusses factors which influence detection by both methods. Illustrative applications of ICP/MS to the ultra-trace determination of several radionuclides, including {sup 129}I, are presented. 20 refs., 6 figs., 1 tab.

  10. Development and validation of a sensitive solid phase extraction/hydrophilic interaction liquid chromatography/mass spectrometry method for the accurate determination of glucosamine in dog plasma.

    PubMed

    Hubert, C; Houari, S; Lecomte, F; Houbart, V; De Bleye, C; Fillet, M; Piel, G; Rozet, E; Hubert, Ph

    2010-05-01

    A sensitive and accurate LC/MS method was developed for the monitoring of glucosamine (GLcN) dog plasmatic concentration. In this scope, relatively low plasmatic concentrations of GLcN were expected, ranging from 50 to 1000 ng/mL. Liquid chromatography coupled to simple quadrupole mass spectrometry detection (LC/MS) was selected bringing the selectivity and the sensitivity needed for this application. Additionally, a solid phase extraction (SPE) step was performed to reduce matrix and ion suppression effects. Due to the ionisable character of the compound of interest, a mixed-mode strong cation exchange (Plexa PCX) disposable extraction cartridge (DEC) was selected. The separation was carried out on a Zorbax SB-CN column (5 microm, 4.6mm i.d. x 250 mm), considering hydrophilic interaction liquid chromatography (HILIC). Indeed, the mobile phase was made of methanol and 5mM ammonium hydrogen carbonate buffer at pH 7.5 (95/5, v/v). The detection was led at m/z ratios of 180.0 and 417.0, for GLcN and IS, respectively. Reliability of the results was demonstrated through the validation of the method using an approach based on the accuracy profile allowing managing the risk associated to the use of these methods in routine analysis: it is thus guaranteed that each future result will fall in the +/-30% acceptance limits with a probability of at least 90%. Successful application of the method to a preliminary pharmacokinetic study illustrated the usefulness of the method for pre-clinical studies.

  11. Liquid Hybridization and Solid Phase Detection: A Highly Sensitive and Accurate Strategy for MicroRNA Detection in Plants and Animals.

    PubMed

    Li, Fosheng; Mei, Lanju; Zhan, Cheng; Mao, Qiang; Yao, Min; Wang, Shenghua; Tang, Lin; Chen, Fang

    2016-01-01

    MicroRNAs (miRNAs) play important roles in nearly every aspect of biology, including physiological, biochemical, developmental and pathological processes. Therefore, a highly sensitive and accurate method of detection of miRNAs has great potential in research on theory and application, such as the clinical approach to medicine, animal and plant production, as well as stress response. Here, we report a strategic method to detect miRNAs from multicellular organisms, which mainly includes liquid hybridization and solid phase detection (LHSPD); it has been verified in various species and is much more sensitive than traditional biotin-labeled Northern blots. By using this strategy and chemiluminescent detection with digoxigenin (DIG)-labeled or biotin-labeled oligonucleotide probes, as low as 0.01-0.25 fmol [for DIG-CDP Star (disodium2-chloro-5-(4-methoxyspiro{1,2-dioxetane-3,2'-(5'-chloro)tricyclo[3.3.1.13,7]decan}-4-yl)phenyl phosphate) system], 0.005-0.1 fmol (for biotin-CDP Star system), or 0.05-0.5 fmol (for biotin-luminol system) of miRNA can be detected and one-base difference can be distinguished between miRNA sequences. Moreover, LHSPD performed very well in the quantitative analysis of miRNAs, and the whole process can be completed within about 9 h. The strategy of LHSPD provides an effective solution for rapid, accurate, and sensitive detection and quantitative analysis of miRNAs in plants and animals. PMID:27598139

  12. Liquid Hybridization and Solid Phase Detection: A Highly Sensitive and Accurate Strategy for MicroRNA Detection in Plants and Animals

    PubMed Central

    Li, Fosheng; Mei, Lanju; Zhan, Cheng; Mao, Qiang; Yao, Min; Wang, Shenghua; Tang, Lin; Chen, Fang

    2016-01-01

    MicroRNAs (miRNAs) play important roles in nearly every aspect of biology, including physiological, biochemical, developmental and pathological processes. Therefore, a highly sensitive and accurate method of detection of miRNAs has great potential in research on theory and application, such as the clinical approach to medicine, animal and plant production, as well as stress response. Here, we report a strategic method to detect miRNAs from multicellular organisms, which mainly includes liquid hybridization and solid phase detection (LHSPD); it has been verified in various species and is much more sensitive than traditional biotin-labeled Northern blots. By using this strategy and chemiluminescent detection with digoxigenin (DIG)-labeled or biotin-labeled oligonucleotide probes, as low as 0.01–0.25 fmol [for DIG-CDP Star (disodium2-chloro-5-(4-methoxyspiro{1,2-dioxetane-3,2′-(5′-chloro)tricyclo[3.3.1.13,7]decan}-4-yl)phenyl phosphate) system], 0.005–0.1 fmol (for biotin-CDP Star system), or 0.05–0.5 fmol (for biotin-luminol system) of miRNA can be detected and one-base difference can be distinguished between miRNA sequences. Moreover, LHSPD performed very well in the quantitative analysis of miRNAs, and the whole process can be completed within about 9 h. The strategy of LHSPD provides an effective solution for rapid, accurate, and sensitive detection and quantitative analysis of miRNAs in plants and animals. PMID:27598139

  13. Accurate Point-of-Care Detection of Ruptured Fetal Membranes: Improved Diagnostic Performance Characteristics with a Monoclonal/Polyclonal Immunoassay

    PubMed Central

    Rogers, Linda C.; Scott, Laurie; Block, Jon E.

    2016-01-01

    OBJECTIVE Accurate and timely diagnosis of rupture of membranes (ROM) is imperative to allow for gestational age-specific interventions. This study compared the diagnostic performance characteristics between two methods used for the detection of ROM as measured in the same patient. METHODS Vaginal secretions were evaluated using the conventional fern test as well as a point-of-care monoclonal/polyclonal immunoassay test (ROM Plus®) in 75 pregnant patients who presented to labor and delivery with complaints of leaking amniotic fluid. Both tests were compared to analytical confirmation of ROM using three external laboratory tests. Diagnostic performance characteristics were calculated including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. RESULTS Diagnostic performance characteristics uniformly favored ROM detection using the immunoassay test compared to the fern test: sensitivity (100% vs. 77.8%), specificity (94.8% vs. 79.3%), PPV (75% vs. 36.8%), NPV (100% vs. 95.8%), and accuracy (95.5% vs. 79.1%). CONCLUSIONS The point-of-care immunoassay test provides improved diagnostic accuracy for the detection of ROM compared to fern testing. It has the potential of improving patient management decisions, thereby minimizing serious complications and perinatal morbidity. PMID:27199579

  14. Mass spectrometric detection, identification, and fragmentation of arseno-phytochelatins.

    PubMed

    Schmied-Tobies, Maria I H; Arroyo-Abad, Uriel; Mattusch, Jürgen; Reemtsma, Thorsten

    2014-11-01

    Phytochelatins (PC) are cystein-rich oligopeptides in plants for coordination with toxic metals and metalloids via their thiol groups. The composition, structure, and mass spectrometric fragmentation of arseno-PC (As-PC) with PC of different degree of oligomerization (PC2-PC5) in solution were studied using liquid chromatography coupled in parallel to inductively coupled plasma mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry. As-PC were detected from As(PC2) to As(PC5) with an increasing number of isomers that differ in the position of thiol groups bound to As. Thermodynamic modeling supported the identification process in case of these isomers. Mass spectrometric fragmentation of the As-PC does not follow the established pattern of peptides but is governed by the formation of series of As-containing annular cations, which coordinate to As via S, N, or O. Structure proposals for 30 As-PC fragment ions in the range m/z 147.92 to m/z 1290.18 are elaborated. Many of these fragment ions are characteristic to several As-PC and may be suited for a screening for As-PC in plant extracts. The mass spectrometric data offer the perspective for a future more sensitive determination of As-PC by means of liquid chromatography tandem mass spectrometry with multiple reaction monitoring. PMID:25395130

  15. Mass spectrometric detection, identification, and fragmentation of arseno-phytochelatins.

    PubMed

    Schmied-Tobies, Maria I H; Arroyo-Abad, Uriel; Mattusch, Jürgen; Reemtsma, Thorsten

    2014-11-01

    Phytochelatins (PC) are cystein-rich oligopeptides in plants for coordination with toxic metals and metalloids via their thiol groups. The composition, structure, and mass spectrometric fragmentation of arseno-PC (As-PC) with PC of different degree of oligomerization (PC2-PC5) in solution were studied using liquid chromatography coupled in parallel to inductively coupled plasma mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry. As-PC were detected from As(PC2) to As(PC5) with an increasing number of isomers that differ in the position of thiol groups bound to As. Thermodynamic modeling supported the identification process in case of these isomers. Mass spectrometric fragmentation of the As-PC does not follow the established pattern of peptides but is governed by the formation of series of As-containing annular cations, which coordinate to As via S, N, or O. Structure proposals for 30 As-PC fragment ions in the range m/z 147.92 to m/z 1290.18 are elaborated. Many of these fragment ions are characteristic to several As-PC and may be suited for a screening for As-PC in plant extracts. The mass spectrometric data offer the perspective for a future more sensitive determination of As-PC by means of liquid chromatography tandem mass spectrometry with multiple reaction monitoring.

  16. Direct Detection of Biotinylated Proteins by Mass Spectrometry

    PubMed Central

    2015-01-01

    Mass spectrometric strategies to identify protein subpopulations involved in specific biological functions rely on covalently tagging biotin to proteins using various chemical modification methods. The biotin tag is primarily used for enrichment of the targeted subpopulation for subsequent mass spectrometry (MS) analysis. A limitation of these strategies is that MS analysis does not easily discriminate unlabeled contaminants from the labeled protein subpopulation under study. To solve this problem, we developed a flexible method that only relies on direct MS detection of biotin-tagged proteins called “Direct Detection of Biotin-containing Tags” (DiDBiT). Compared with conventional targeted proteomic strategies, DiDBiT improves direct detection of biotinylated proteins ∼200 fold. We show that DiDBiT is applicable to several protein labeling protocols in cell culture and in vivo using cell permeable NHS-biotin and incorporation of the noncanonical amino acid, azidohomoalanine (AHA), into newly synthesized proteins, followed by click chemistry tagging with biotin. We demonstrate that DiDBiT improves the direct detection of biotin-tagged newly synthesized peptides more than 20-fold compared to conventional methods. With the increased sensitivity afforded by DiDBiT, we demonstrate the MS detection of newly synthesized proteins labeled in vivo in the rodent nervous system with unprecedented temporal resolution as short as 3 h. PMID:25117199

  17. Selective accurate-mass-based analysis of 11 oxy-PAHs on atmospheric particulate matter by pressurized liquid extraction followed by high-performance liquid chromatography and magnetic sector mass spectrometry.

    PubMed

    Walgraeve, C; Demeestere, K; De Wispelaere, P; Dewulf, J; Lintelmann, J; Fischer, K; Van Langenhove, H

    2012-02-01

    An innovative analytical method based on high-performance liquid chromatography and atmospheric pressure chemical ionization magnetic sector mass spectrometry was developed and optimized to determine trace concentrations of 11 compounds belonging to the group of the seldom-analyzed oxy-PAHs (phenanthrene-9,10-dione, chrysene-5,6-dione, benzo[a]pyrene-4,5-dione, benzo[a]pyrene-1,6-dione, benzo[a]pyrene-3,6-dione, benzo[a]pyrene-6,12-dione, 4-oxa-benzo[def]chrysene-5-one, pyrene-1-carboxaldehyde, benzo[de]anthracene-7-one, benzo[a]anthracene-7,12-dione, and napthacene-5,12-dione) on airborne particulate matter (PM(10)). The mass spectrometer was operated in multiple ion detection mode, allowing for selective accurate mass detection (mass resolution of 12,000 full width at half maximum) of the oxy-PAHs characteristic ions. Optimization of both the vaporizer (450 °C) and capillary temperature (350 °C) resulted into instrumental detection limits in the range between 7 (benzo[a]pyrene-1,6-dione) and 926 pg (benzo[a]anthracene-7,12-dione). The advanced pressurized liquid extraction (PLE) and the more traditionally used ultrasonic extraction (USE) were compared using ethyl acetate as an extraction solvent. For both techniques, high recoveries from spiked quartz fiber filters (PLE, 82-110%; USE, 67-97%) were obtained. Recoveries obtained from real PM(10) samples were also high (76-107%), and no significant matrix effects (ME) on the ionization process (enhancement or suppression) were found (ME, 89-123%). Method limits of quantification (S/N = 10) were in the range between 2 and 336 pg/m(3). This method was used to analyze real PM samples collected at several urban and rural locations in the Antwerp area. For the first time, concentrations for Belgium are provided. Concentrations of individual oxy-PAHs are in the lower pictograms per cubic meter to 6 ng/m(3) range. High concentration differences between individual compounds are found as exemplified by the 75th percentile

  18. Detection of 36Cl with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jiang, Songsheng; Ma, Tiejung; Jiang, Shan; Yang, Bingfan; Wang, Xun; Huang, Qi

    1989-12-01

    An accelerator mass spectrometry (AMS) system based on the HI-13 tandem accelerator at the Institute of Atomic Energy (IAE) is described, and the first detection of 36Cl with our AMS system is reported. The electrostatic deflector completely rejects isotopic background, 35Cl and 37Cl. The ioinzation chamber distinguishs 36Cl from isobaric background, 36S. The measurement of 36Cl with two samples is presented.

  19. Radiocarbon detection by ion charge exchange mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hotchkis, Michael; Wei, Tao

    2007-06-01

    A method for detection of radiocarbon at low levels is described and the results of tests are presented. We refer to this method as ion charge exchange mass spectrometry (ICE-MS). The ICE-MS instrument is a two stage mass spectrometer. In the first stage, molecular interferences which would otherwise affect radiocarbon detection at mass 14 are eliminated by producing high charge state ions directly in the ion source (charge state ⩾2). 14N interference is eliminated in the second stage by converting the beam to negative ions in a charge exchange cell. The beam is mass-analysed at each stage. We have built a test apparatus consisting of an electron cyclotron resonance ion source and a pair of analysing magnets with a charge exchange cell in between, followed by an electrostatic analyser to improve the signal to background ratio. With this apparatus we have measured charge exchange probabilities for (Cn+ → C-) from 4.5 to 40.5 keV (n = 1-3). We have studied the sources of background including assessment of limits for nitrogen interference by searching for negative ions from charge exchange of 14N ions. Our system has been used to detect 14C in enriched samples of CO2 gas with 14C/12C isotopic ratio down to the 10-9 level. Combined with a measured sample consumption rate of 4 ng/s, this corresponds to a capability to detect transient signals containing only a few μBq of 14C activity, such as may be obtained from chromatographic separation. The method will require further development to match the sensitivity of AMS with a gas ion source; however, even in its present state its sensitivity is well suited to tracer studies in biomedical research and drug development.

  20. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  1. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  2. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service.

    PubMed

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  3. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service

    PubMed Central

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  4. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service.

    PubMed

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-02-22

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption.

  5. Probing Interfacial Processes on Graphene Surface by Mass Detection

    NASA Astrophysics Data System (ADS)

    Kakenov, Nurbek; Kocabas, Coskun

    2013-03-01

    In this work we studied the mass density of graphene, probed interfacial processes on graphene surface and examined the formation of graphene oxide by mass detection. The graphene layers were synthesized by chemical vapor deposition method on copper foils and transfer-printed on a quartz crystal microbalance (QCM). The mass density of single layer graphene was measured by investigating the mechanical resonance of the QCM. Moreover, we extended the developed technique to probe the binding dynamics of proteins on the surface of graphene, were able to obtain nonspecific binding constant of BSA protein of graphene surface in aqueous solution. The time trace of resonance signal showed that the BSA molecules rapidly saturated by filling the available binding sites on graphene surface. Furthermore, we monitored oxidation of graphene surface under oxygen plasma by tracing the changes of interfacial mass of the graphene controlled by the shifts in Raman spectra. Three regimes were observed the formation of graphene oxide which increases the interfacial mass, the release of carbon dioxide and the removal of small graphene/graphene oxide flakes. Scientific and Technological Research Council of Turkey (TUBITAK) grant no. 110T304, 109T209, Marie Curie International Reintegration Grant (IRG) grant no 256458, Turkish Academy of Science (TUBA-Gebip).

  6. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    SciTech Connect

    Ludvigson, Laura D.

    2004-01-01

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease prevention and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.

  7. Evaluation of hybrids algorithms for mass detection in digitalized mammograms

    NASA Astrophysics Data System (ADS)

    Cordero, José; Garzón Reyes, Johnson

    2011-01-01

    The breast cancer remains being a significant public health problem, the early detection of the lesions can increase the success possibilities of the medical treatments. The mammography is an image modality effective to early diagnosis of abnormalities, where the medical image is obtained of the mammary gland with X-rays of low radiation, this allows detect a tumor or circumscribed mass between two to three years before that it was clinically palpable, and is the only method that until now achieved reducing the mortality by breast cancer. In this paper three hybrids algorithms for circumscribed mass detection on digitalized mammograms are evaluated. In the first stage correspond to a review of the enhancement and segmentation techniques used in the processing of the mammographic images. After a shape filtering was applied to the resulting regions. By mean of a Bayesian filter the survivors regions were processed, where the characteristics vector for the classifier was constructed with few measurements. Later, the implemented algorithms were evaluated by ROC curves, where 40 images were taken for the test, 20 normal images and 20 images with circumscribed lesions. Finally, the advantages and disadvantages in the correct detection of a lesion of every algorithm are discussed.

  8. Mass detection with digitized screening mammograms by using Gabor features

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Agyepong, Kwabena

    2007-03-01

    Breast cancer is the leading cancer among American women. The current lifetime risk of developing breast cancer is 13.4% (one in seven). Mammography is the most effective technology presently available for breast cancer screening. With digital mammograms computer-aided detection (CAD) has proven to be a useful tool for radiologists. In this paper, we focus on mass detection that is a common category of breast cancers relative to calcification and architecture distortion. We propose a new mass detection algorithm utilizing Gabor filters, termed as "Gabor Mass Detection" (GMD). There are three steps in the GMD algorithm, (1) preprocessing, (2) generating alarms and (3) classification (reducing false alarms). Down-sampling, quantization, denoising and enhancement are done in the preprocessing step. Then a total of 30 Gabor filtered images (along 6 bands by 5 orientations) are produced. Alarm segments are generated by thresholding four Gabor images of full orientations (Stage-I classification) with image-dependent thresholds computed via histogram analysis. Next a set of edge histogram descriptors (EHD) are extracted from 24 Gabor images (6 by 4) that will be used for Stage-II classification. After clustering EHD features with fuzzy C-means clustering method, a k-nearest neighbor classifier is used to reduce the number of false alarms. We initially analyzed 431 digitized mammograms (159 normal images vs. 272 cancerous images, from the DDSM project, University of South Florida) with the proposed GMD algorithm. And a ten-fold cross validation was used for testing the GMD algorithm upon the available data. The GMD performance is as follows: sensitivity (true positive rate) = 0.88 at false positives per image (FPI) = 1.25, and the area under the ROC curve = 0.83. The overall performance of the GMD algorithm is satisfactory and the accuracy of locating masses (highlighting the boundaries of suspicious areas) is relatively high. Furthermore, the GMD algorithm can

  9. Evaluation of comprehensive two-dimensional gas chromatography with accurate mass time-of-flight mass spectrometry for the metabolic profiling of plant-fungus interaction in Aquilaria malaccensis.

    PubMed

    Wong, Yong Foo; Chin, Sung-Tong; Perlmutter, Patrick; Marriott, Philip J

    2015-03-27

    To explore the possible obligate interactions between the phytopathogenic fungus and Aquilaria malaccensis which result in generation of a complex array of secondary metabolites, we describe a comprehensive two-dimensional gas chromatography (GC × GC) method, coupled to accurate mass time-of-flight mass spectrometry (TOFMS) for the untargeted and comprehensive metabolic profiling of essential oils from naturally infected A. malaccensis trees. A polar/non-polar column configuration was employed, offering an improved separation pattern of components when compared to other column sets. Four different grades of the oils displayed quite different metabolic patterns, suggesting the evolution of a signalling relationship between the host tree (emergence of various phytoalexins) and fungi (activation of biotransformation). In total, ca. 550 peaks/metabolites were detected, of which tentative identification of 155 of these compounds was reported, representing between 20.1% and 53.0% of the total ion count. These are distributed over the chemical families of monoterpenic and sesquiterpenic hydrocarbons, oxygenated monoterpenes and sesquiterpenes (comprised of ketone, aldehyde, oxide, alcohol, lactone, keto-alcohol and diol), norterpenoids, diterpenoids, short chain glycols, carboxylic acids and others. The large number of metabolites detected, combined with the ease with which they are located in the 2D separation space, emphasises the importance of a comprehensive analytical approach for the phytochemical analysis of plant metabolomes. Furthermore, the potential of this methodology in grading agarwood oils by comparing the obtained metabolic profiles (pattern recognition for unique metabolite chemical families) is discussed. The phytocomplexity of the agarwood oils signified the production of a multitude of plant-fungus mediated secondary metabolites as chemical signals for natural ecological communication. To the best of our knowledge, this is the most complete

  10. Three-dimensional accurate detection of lung emphysema in rats using ultra-short and zero echo time MRI.

    PubMed

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Rasche, Volker; Stiller, Detlef

    2015-11-01

    Emphysema is a life-threatening pathology that causes irreversible destruction of alveolar walls. In vivo imaging techniques play a fundamental role in the early non-invasive pre-clinical and clinical detection and longitudinal follow-up of this pathology. In the present study, we aimed to evaluate the feasibility of using high resolution radial three-dimensional (3D) zero echo time (ZTE) and 3D ultra-short echo time (UTE) MRI to accurately detect lung pathomorphological changes in a rodent model of emphysema.Porcine pancreas elastase (PPE) was intratracheally administered to the rats to produce the emphysematous changes. 3D ZTE MRI, low and high definition 3D UTE MRI and micro-computed tomography images were acquired 4 weeks after the PPE challenge. Signal-to-noise ratios (SNRs) were measured in PPE-treated and control rats. T2* values were computed from low definition 3D UTE MRI. Histomorphometric measurements were made after euthanizing the animals. Both ZTE and UTE MR images showed a significant decrease in the SNR measured in PPE-treated lungs compared with controls, due to the pathomorphological changes taking place in the challenged lungs. A significant decrease in T2* values in PPE-challenged animals compared with controls was measured using UTE MRI. Histomorphometric measurements showed a significant increase in the mean linear intercept in PPE-treated lungs. UTE yielded significantly higher SNR compared with ZTE (14% and 30% higher in PPE-treated and non-PPE-treated lungs, respectively).This study showed that optimized 3D radial UTE and ZTE MRI can provide lung images of excellent quality, with high isotropic spatial resolution (400 µm) and SNR in parenchymal tissue (>25) and negligible motion artifacts in freely breathing animals. These techniques were shown to be useful non-invasive instruments to accurately and reliably detect the pathomorphological alterations taking place in emphysematous lungs, without incurring the risks of cumulative radiation

  11. Charge detection mass spectrometry: Instrumentation & applications to viruses

    NASA Astrophysics Data System (ADS)

    Pierson, Elizabeth E.

    For over three decades, electrospray ionization (ESI) has been used to ionize non-covalent complexes and subsequently transfer the intact ion into the gas phase for mass spectrometry (MS) analysis. ESI generates a distribution of multiple charged ions, resulting in an m/z spectrum comprised of a series of peaks, known as a charge state envelope. To obtain mass information, the number of charges for each peak must be deduced. For smaller biological analytes like peptides, the charge states are sufficiently resolved and this process is straightforward. For macromolecular complexes exceeding ~100 kDa, this process is complicated by the broadening and shifting of charge states due to incomplete desolvation, salt adduction, and inherent mass heterogeneity. As the analyte mass approaches the MDa regime, the m/z spectrum is often comprised of a broad distribution of unresolved charge states. In such cases, mass determination is precluded. Charge detection mass spectrometry (CDMS) is an emerging MS technique for determining the masses of heterogeneous, macromolecular complexes. In CDMS, the m/z and z of single ions are measured concurrently so that mass is easily calculated. With this approach, deconvolution of an m/z spectrum is unnecessary. This measurement is carried out by passing macroions through a conductive cylinder. The induced image charge on the cylindrical detector provides information about m/z and z: the m/z is related to its time-of-flight through the detector, and the z is related to the intensity of the image charge. We have applied CDMS to study the self-assembly of virus capsids. Late-stage intermediates in the assembly of hepatitis B virus, a devastating human pathogen, have been identified. This is the first time that such intermediates have been detected and represent a significant advancement towards understanding virus capsid assembly. CDMS has also been used to identify oversized, non-icosahedral polymorphs in the assembly of woodchuck hepatitis

  12. An accurate and inexpensive color-based assay for detecting severe anemia in a limited-resource setting.

    PubMed

    McGann, Patrick T; Tyburski, Erika A; de Oliveira, Vysolela; Santos, Brigida; Ware, Russell E; Lam, Wilbur A

    2015-12-01

    Severe anemia is an important cause of morbidity and mortality among children in resource-poor settings, but laboratory diagnostics are often limited in these locations. To address this need, we developed a simple, inexpensive, and color-based point-of-care (POC) assay to detect severe anemia. The purpose of this study was to evaluate the accuracy of this novel POC assay to detect moderate and severe anemia in a limited-resource setting. The study was a cross-sectional study conducted on children with sickle cell anemia in Luanda, Angola. The hemoglobin concentrations obtained by the POC assay were compared to reference values measured by a calibrated automated hematology analyzer. A total of 86 samples were analyzed (mean hemoglobin concentration 6.6 g/dL). There was a strong correlation between the hemoglobin concentrations obtained by the POC assay and reference values obtained from an automated hematology analyzer (r=0.88, P<0.0001). The POC assay demonstrated excellent reproducibility (r=0.93, P<0.0001) and the reagents appeared to be durable in a tropical setting (r=0.93, P<0.0001). For the detection of severe anemia that may require blood transfusion (hemoglobin <5 g/dL), the POC assay had sensitivity of 88.9% and specificity of 98.7%. These data demonstrate that an inexpensive (<$0.25 USD) POC assay accurately estimates low hemoglobin concentrations and has the potential to become a transformational diagnostic tool for severe anemia in limited-resource settings.

  13. Bone Positron Emission Tomography with or without CT Is More Accurate than Bone Scan for Detection of Bone Metastasis

    PubMed Central

    Lee, Soo Jin; Kim, Sang Eun

    2013-01-01

    Objective Na18F bone positron emission tomography (bone PET) is a new imaging modality which is useful for the evaluation of bone diseases. Here, we compared the diagnostic accuracies between bone PET and bone scan for the detection of bone metastasis (BM). Materials and Methods Sixteen cancer patients (M:F = 10:6, mean age = 60 ± 12 years) who underwent both bone PET and bone scan were analyzed. Bone PET was conducted 30 minutes after the injection of 370 MBq Na18F, and a bone scan was performed 3 hours after the injection of 1295 MBq 99mTc-hydroxymethylene diphosphonate. Results In the patient-based analysis (8 patients with BM and 8 without BM), the sensitivities of bone PET (100% = 8/8) and bone scan (87.5% = 7/8) were not significantly different (p > 0.05), whereas the specificity of bone PET (87.5% = 7/8) was significantly greater than that of the bone scan (25% = 2/8) (p < 0.05). In the lesion-based analysis (43 lesions in 14 patients; 31 malignant and 12 benign), the sensitivity of bone PET (100% = 31/31) was significantly greater than that of bone scan (38.7% = 12/31) (p < 0.01), and the specificity of bone PET (75.0% = 9/12) was also significantly higher than that of bone scan (8.3% = 1/12) (p < 0.05). The receiver operating characteristic curve analysis showed that bone PET was significantly more accurate than the bone scan in the patient (p = 0.0306) and lesion (p = 0.0001) based analyses. Conclusion Na18F bone PET is more accurate than bone scan for BM evaluation. PMID:23690722

  14. Limits on detectability of mass loss from cool dwarfs

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Doyle, J. G.; Redman, R. O.; Mathioudakis, M.

    1992-01-01

    Recent spectroscopic evidence supports the theoretical expectation that certain cool dwarfs may have stellar winds with M-dot values several orders of magnitude larger than the solar rate. For large enough values of M-dot, the emission from the wind is expected to have a spectrum which, at low enough frequencies, becomes a power law, S(v) about v exp alpha with alpha about 0.7. Data from IRAS and VLA suggest that such a spectrum may in fact occur in certain M dwarfs: a key test of the wind spectrum would be provided if the stars could be detected at lambda about 1 mm. We show that the M-dot required to ensure power-law emission is a few times 10 exp -10 solar mass/yr. With M-dot of this order, fluxes at lambda about 1 mm would be tens of mJy. Using the James Clerk Maxwell Telescope, we have tested this prediction on several stars: the data are suggestive but are near the limits of detection. Confirmation of our estimates will be important for evolution and for interstellar medium (ISM) physics: if even a few percent of all M dwarfs are losing mass at the above rates, the mass balance of the ISM will be dominated by M dwarfs.

  15. A Computational Drug Metabolite Detection Using the Stable Isotopic Mass-Shift Filtering with High Resolution Mass Spectrometry in Pioglitazone and Flurbiprofen

    PubMed Central

    Uchida, Masashi; Kanazawa, Mitsuhiro; Ogiwara, Atsushi; Sezaki, Hiroshi; Ando, Akihiro; Miyamoto, Yohei

    2013-01-01

    The identification of metabolites in drug discovery is important. At present, radioisotopes and mass spectrometry are both widely used. However, rapid and comprehensive identification is still laborious and difficult. In this study, we developed new analytical software and employed a stable isotope as a tool to identify drug metabolites using mass spectrometry. A deuterium-labeled compound and non-labeled compound were both metabolized in human liver microsomes and analyzed by liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS). We computationally aligned two different MS data sets and filtered ions having a specific mass-shift equal to masses of labeled isotopes between those data using our own software. For pioglitazone and flurbiprofen, eight and four metabolites, respectively, were identified with calculations of mass and formulas and chemical structural fragmentation analysis. With high resolution MS, the approach became more accurate. The approach detected two unexpected metabolites in pioglitazone, i.e., the hydroxypropanamide form and the aldehyde hydrolysis form, which other approaches such as metabolite-biotransformation list matching and mass defect filtering could not detect. We demonstrated that the approach using computational alignment and stable isotopic mass-shift filtering has the ability to identify drug metabolites and is useful in drug discovery. PMID:24084721

  16. A computational drug metabolite detection using the stable isotopic mass-shift filtering with high resolution mass spectrometry in pioglitazone and flurbiprofen.

    PubMed

    Uchida, Masashi; Kanazawa, Mitsuhiro; Ogiwara, Atsushi; Sezaki, Hiroshi; Ando, Akihiro; Miyamoto, Yohei

    2013-01-01

    The identification of metabolites in drug discovery is important. At present, radioisotopes and mass spectrometry are both widely used. However, rapid and comprehensive identification is still laborious and difficult. In this study, we developed new analytical software and employed a stable isotope as a tool to identify drug metabolites using mass spectrometry. A deuterium-labeled compound and non-labeled compound were both metabolized in human liver microsomes and analyzed by liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS). We computationally aligned two different MS data sets and filtered ions having a specific mass-shift equal to masses of labeled isotopes between those data using our own software. For pioglitazone and flurbiprofen, eight and four metabolites, respectively, were identified with calculations of mass and formulas and chemical structural fragmentation analysis. With high resolution MS, the approach became more accurate. The approach detected two unexpected metabolites in pioglitazone, i.e., the hydroxypropanamide form and the aldehyde hydrolysis form, which other approaches such as metabolite-biotransformation list matching and mass defect filtering could not detect. We demonstrated that the approach using computational alignment and stable isotopic mass-shift filtering has the ability to identify drug metabolites and is useful in drug discovery.

  17. Can accelerometers detect mass variations in Amazonian trees?

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Gentine, Pierre; Guerin, Marceau; Hut, Rolf; Oliveira, Rafael; van de Giesen, Nick

    2016-04-01

    The mass of trees is influenced by physiological processes within the tree (e.g. transpiration and root water uptake), as well as external loads (e.g. intercepted precipitation). Recent studies have found diurnal variations in radar backscatter over vegetated areas, which might be attributed to mass changes of the vegetation layer. Field measurements are required to study the driving processes. This study aims to use measured three-dimensional displacement and acceleration of trees, to detect and quantify their diurnal (bio)mass variations. Accelerometers and dendrometers were installed on seven different tree species in the Amazon rainforest. Trees were selected to cover a broad range of wood density. Using spectral analysis, the governing frequencies in the acceleration time series were found. The governing frequencies showed a diurnal pattern, as well as a change during precipitation events. Our results suggest that we can separate and potentially quantify tree mass changes due to (1) internal water redistribution and (2) intercepted precipitation. This will allow further investigation of the effect of precipitation and water stress on tree dynamics in forest canopies.

  18. Ion trace detection algorithm to extract pure ion chromatograms to improve untargeted peak detection quality for liquid chromatography/time-of-flight mass spectrometry-based metabolomics data.

    PubMed

    Wang, San-Yuan; Kuo, Ching-Hua; Tseng, Yufeng J

    2015-03-01

    Able to detect known and unknown metabolites, untargeted metabolomics has shown great potential in identifying novel biomarkers. However, elucidating all possible liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) ion signals in a complex biological sample remains challenging since many ions are not the products of metabolites. Methods of reducing ions not related to metabolites or simply directly detecting metabolite related (pure) ions are important. In this work, we describe PITracer, a novel algorithm that accurately detects the pure ions of a LC/TOF-MS profile to extract pure ion chromatograms and detect chromatographic peaks. PITracer estimates the relative mass difference tolerance of ions and calibrates the mass over charge (m/z) values for peak detection algorithms with an additional option to further mass correction with respect to a user-specified metabolite. PITracer was evaluated using two data sets containing 373 human metabolite standards, including 5 saturated standards considered to be split peaks resultant from huge m/z fluctuation, and 12 urine samples spiked with 50 forensic drugs of varying concentrations. Analysis of these data sets show that PITracer correctly outperformed existing state-of-art algorithm and extracted the pure ion chromatograms of the 5 saturated standards without generating split peaks and detected the forensic drugs with high recall, precision, and F-score and small mass error.

  19. Liquid chromatography and mass spectrometry in food allergen detection.

    PubMed

    Fæste, Christiane Kruse; Rønning, Helene Thorsen; Christians, Uwe; Granum, Per Einar

    2011-02-01

    Food allergy is an important issue in the field of food safety because of the hazards for affected persons and the hygiene requirements and legal regulations imposed on the food industry. Consumer protection and law enforcement require suitable analytical techniques for the detection of allergens in foods. Immunological methods are currently preferred; however, confirmatory alternatives are needed. The determination of allergenic proteins by liquid chromatography and mass spectrometry has greatly advanced in recent years, and gel-free allergenomics is becoming a routinely used approach for the identification and quantitation of food allergens. The present review provides a brief overview of the principles of proteomic procedures, various chromatographic set ups, and mass spectrometry instrumentation used in allergenomics. A compendium of published liquid chromatography methods, proteomic analyses, typical marker peptides, and quantitative assays for 14 main allergy-causing foods is also included.

  20. Assessment of mass detection performance in contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge

    2015-03-01

    We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.

  1. Automatic detection of mass-resolved ion conics

    NASA Technical Reports Server (NTRS)

    Doherty, Mark F.; Bjorklund, Carolyn M.; Peterson, William K.; Collin, Henry L.

    1993-01-01

    A processing algorithm to automatically detect a specific type of ion distribution (called the ion conic distribution) in data obtained from a space-based mass spectrometer has been devised. Automation of this task is necessary due to the sparseness of conic events within the very large databases typical of space plasma instruments. This paper reports on the algorithm used to perform this automated analysis, along with a description of the methods used to verify the algorithm and a summary of initial results on the characterization of the near-earth space plasma.

  2. Detection of arsenic by resonance ionization mass spectrometry

    SciTech Connect

    Nogar, N.; Anderson, J.; Allen, T.; Smith, C.

    1996-03-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The development of sensitive analytical techniques for environmental analysis is a problem of immediate interest. Waste residues containing heavy metals such as chromium, lead and arsenic are particular problems due to their widespread usage and sometime incomplete recovery or inadequate storage. The objective of this project was to apply resonance ionization mass spectrometry (RIMS) to the detection of trace levels of arsenic.

  3. Automated Detection of coronal mass ejections in three-dimensions using multi-viewpoint observations

    NASA Astrophysics Data System (ADS)

    Hutton, Joseph; Morgan, Huw

    2016-10-01

    A new, automated method of detecting Solar Wind transients such as Coronal Mass Ejections (CMEs) in three dimensions for the LASCO C2 and STEREO COR2 coronagraphs is presented. By triangulating isolated CME signal from the three coronagraphs over a sliding window of five hours, the most likely region through which CMEs pass at 5 solar radii is identified. The centre and size of the region gives the most likely direction of propagation and angular extent. The Automated CME Triangulation (ACT) method is tested extensively using a series of synthetic CME images created using a flux rope density model, and on a sample of real coronagraph data; including Halo CMEs. The accuracy of the detection remains acceptable regardless of CME position relative to the observer, the relative separation of the three observers, and even through the loss of one coronagraph. By comparing the detection results with the input parameters of the synthetic CMEs, and the low coronal sources of the real CMEs, it is found that the detection is on average accurate to within 7.14 degrees. All current CME catalogues (CDAW, CACTus, SEEDS, ARTEMIS and CORIMP) rely on plane-of-sky measurements for key parameters such as height and velocity. Estimating the true geometry using the new method gains considerable accuracy for kinematics and mass/density. The results of the new method will be incorporated into the CORIMP database in the near future, enabling improved space weather diagnostics and forecasting.

  4. Detection of Adult Beetles Inside the Stored Wheat Mass Based on Their Acoustic Emissions.

    PubMed

    Eliopoulos, P A; Potamitis, I; Kontodimas, D Ch; Givropoulou, E G

    2015-12-01

    The efficacy of bioacoustics in detecting the presence of adult beetles inside the grain mass was evaluated in the laboratory. A piezoelectric sensor and a portable acoustic emission amplifier connected with a computer were used. Adults of the most common beetle pests of stored wheat have been detected in varying population densities (0.1, 0.5, 1, and 2 adults per kilogram of wheat). The verification of the presence of the insect individuals was achieved through automated signal parameterization and classification. We tried out two different ways to detect impulses: 1) by applying a Hilbert transform on the audio recording and 2) by subtracting a noise estimation of the recording from the spectral content of the recording, thus allowing the frequency content of possible impulses to emerge. Prediction for infestation was rated falsely negative in 60-74%, 48-60%, 0-28%, and 0-4% of the cases when actual population density was 0.1, 0.5, 1, and 2 adults per kilogram, respectively, irrespective of pest species. No significant differences were recorded in positive predictions among different species in almost all cases. The system was very accurate (72-100%) in detecting 1 or 2 insects per kilogram of hard wheat grain, which is the standard threshold for classifying a grain mass "clean" or "infested." Our findings are discussed on the basis of enhancing the use of bioacoustics in stored-product IPM framework.

  5. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications.

    PubMed

    Duriez, Elodie; Armengaud, Jean; Fenaille, François; Ezan, Eric

    2016-03-01

    In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up. PMID:26956386

  6. A finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imaging

    NASA Astrophysics Data System (ADS)

    Oñativia, Jon; Schultz, Simon R.; Dragotti, Pier Luigi

    2013-08-01

    Objective. Inferring the times of sequences of action potentials (APs) (spike trains) from neurophysiological data is a key problem in computational neuroscience. The detection of APs from two-photon imaging of calcium signals offers certain advantages over traditional electrophysiological approaches, as up to thousands of spatially and immunohistochemically defined neurons can be recorded simultaneously. However, due to noise, dye buffering and the limited sampling rates in common microscopy configurations, accurate detection of APs from calcium time series has proved to be a difficult problem. Approach. Here we introduce a novel approach to the problem making use of finite rate of innovation (FRI) theory (Vetterli et al 2002 IEEE Trans. Signal Process. 50 1417-28). For calcium transients well fit by a single exponential, the problem is reduced to reconstructing a stream of decaying exponentials. Signals made of a combination of exponentially decaying functions with different onset times are a subclass of FRI signals, for which much theory has recently been developed by the signal processing community. Main results. We demonstrate for the first time the use of FRI theory to retrieve the timing of APs from calcium transient time series. The final algorithm is fast, non-iterative and parallelizable. Spike inference can be performed in real-time for a population of neurons and does not require any training phase or learning to initialize parameters. Significance. The algorithm has been tested with both real data (obtained by simultaneous electrophysiology and multiphoton imaging of calcium signals in cerebellar Purkinje cell dendrites), and surrogate data, and outperforms several recently proposed methods for spike train inference from calcium imaging data.

  7. Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions.

    PubMed

    Sun, Fang; Ella-Menye, Jean-Rene; Galvan, Daniel David; Bai, Tao; Hung, Hsiang-Chieh; Chou, Ying-Nien; Zhang, Peng; Jiang, Shaoyi; Yu, Qiuming

    2015-03-24

    Reliable surface-enhanced Raman scattering (SERS) based biosensing in complex media is impeded by nonspecific protein adsorptions. Because of the near-field effect of SERS, it is challenging to modify SERS-active substrates using conventional nonfouling materials without introducing interference from their SERS signals. Herein, we report a stealth surface modification strategy for sensitive, specific and accurate detection of fructose in protein solutions using SERS by forming a mixed self-assembled monolayer (SAM). The SAM consists of a short zwitterionic thiol, N,N-dimethyl-cysteamine-carboxybetaine (CBT), and a fructose probe 4-mercaptophenylboronic acid (4-MPBA). The specifically designed and synthesized CBT not only resists protein fouling effectively, but also has very weak Raman activity compared to 4-MPBA. Thus, the CBT SAM provides a stealth surface modification to SERS-active substrates. The surface compositions of mixed SAMs were investigated using X-ray photoelectron spectroscopy (XPS) and SERS, and their nonfouling properties were studied with a surface plasmon resonance (SPR) biosensor. The mixed SAM with a surface composition of 94% CBT demonstrated a very low bovine serum albumin (BSA) adsorption (∼3 ng/cm(2)), and moreover, only the 4-MPBA signal appeared in the SERS spectrum. With the use of this surface-modified SERS-active substrate, quantification of fructose over clinically relevant concentrations (0.01-1 mM) was achieved. Partial least-squares regression (PLS) analysis showed that the detection sensitivity and accuracy were maintained for the measurements in 1 mg/mL BSA solutions. This stealth surface modification strategy provides a novel route to introduce nonfouling property to SERS-active substrates for SERS biosensing in complex media.

  8. Accurate detection of Neisseria gonorrhoeae ciprofloxacin susceptibility directly from genital and extragenital clinical samples: towards genotype-guided antimicrobial therapy

    PubMed Central

    Pond, Marcus J.; Hall, Catherine L.; Miari, Victoria F.; Cole, Michelle; Laing, Ken G.; Jagatia, Heena; Harding-Esch, Emma; Monahan, Irene M.; Planche, Timothy; Hinds, Jason; Ison, Catherine A.; Chisholm, Stephanie; Butcher, Philip D.; Sadiq, Syed Tariq

    2016-01-01

    Introduction Increasing use of nucleic acid amplification tests (NAATs) as the primary means of diagnosing gonococcal infection has resulted in diminished availability of Neisseria gonorrhoeae antimicrobial susceptibility data. We conducted a prospective diagnostic assessment of a real-time PCR assay (NGSNP) enabling direct detection of gonococcal ciprofloxacin susceptibility from a range of clinical sample types. Methods NGSNP, designed to discriminate an SNP associated with ciprofloxacin resistance within the N. gonorrhoeae genome, was validated using a characterized panel of geographically diverse isolates (n = 90) and evaluated to predict ciprofloxacin susceptibility directly on N. gonorrhoeae-positive NAAT lysates derived from genital (n = 174) and non-genital (n = 116) samples (n = 290), from 222 culture-confirmed clinical episodes of gonococcal infection. Results NGSNP correctly genotyped all phenotypically susceptible (n = 49) and resistant (n = 41) panel isolates. Ciprofloxacin-resistant N. gonorrhoeae was responsible for infection in 29.7% (n = 66) of clinical episodes evaluated. Compared with phenotypic susceptibility testing, NGSNP demonstrated sensitivity and specificity of 95.8% (95% CI 91.5%–98.3%) and 100% (95% CI 94.7%–100%), respectively, for detecting ciprofloxacin-susceptible N. gonorrhoeae, with a positive predictive value of 100% (95% CI 97.7%–100%). Applied to urogenital (n = 164), rectal (n = 40) and pharyngeal samples alone (n = 30), positive predictive values were 100% (95% CI 96.8%–100%), 100% (95% CI 87.2%–100%) and 100% (95% CI 82.4%–100%), respectively. Conclusions Genotypic prediction of N. gonorrhoeae ciprofloxacin susceptibility directly from clinical samples was highly accurate and, in the absence of culture, will facilitate use of tailored therapy for gonococcal infection, sparing use of current empirical treatment regimens and enhancing acquisition of susceptibility data for

  9. A finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imaging

    PubMed Central

    Oñativia, Jon; Schultz, Simon R; Dragotti, Pier Luigi

    2014-01-01

    Objective Inferring the times of sequences of action potentials (APs) (spike trains) from neurophysiological data is a key problem in computational neuroscience. The detection of APs from two-photon imaging of calcium signals offers certain advantages over traditional electrophysiological approaches, as up to thousands of spatially and immunohistochemically defined neurons can be recorded simultaneously. However, due to noise, dye buffering and the limited sampling rates in common microscopy configurations, accurate detection of APs from calcium time series has proved to be a difficult problem. Approach Here we introduce a novel approach to the problem making use of finite rate of innovation (FRI) theory (Vetterli et al 2002 IEEE Trans. Signal Process. 50 1417–28). For calcium transients well fit by a single exponential, the problem is reduced to reconstructing a stream of decaying exponentials. Signals made of a combination of exponentially decaying functions with different onset times are a subclass of FRI signals, for which much theory has recently been developed by the signal processing community. Main results We demonstrate for the first time the use of FRI theory to retrieve the timing of APs from calcium transient time series. The final algorithm is fast, non-iterative and parallelizable. Spike inference can be performed in real-time for a population of neurons and does not require any training phase or learning to initialize parameters. Significance The algorithm has been tested with both real data (obtained by simultaneous electrophysiology and multiphoton imaging of calcium signals in cerebellar Purkinje cell dendrites), and surrogate data, and outperforms several recently proposed methods for spike train inference from calcium imaging data. PMID:23860257

  10. RNA-Based Detection Does not Accurately Enumerate Living Escherichia coli O157:H7 Cells on Plants

    PubMed Central

    Ju, Wenting; Moyne, Anne-Laure; Marco, Maria L.

    2016-01-01

    The capacity to distinguish between living and dead cells is an important, but often unrealized, attribute of rapid detection methods for foodborne pathogens. In this study, the numbers of enterohemorrhagic Escherichia coli O157:H7 after inoculation onto Romaine lettuce plants and on plastic (abiotic) surfaces were measured over time by culturing, and quantitative PCR (qPCR), propidium monoazide (PMA)-qPCR, and reverse transcriptase (RT)-qPCR targeting E. coli O157:H7 gapA, rfbE, eae, and lpfA genes and gene transcripts. On Romaine lettuce plants incubated at low relative humidity, E. coli O157:H7 cell numbers declined 107-fold within 96 h according to culture-based assessments. In contrast, there were no reductions in E. coli levels according to qPCR and only 100- and 1000-fold lower numbers per leaf by RT-qPCR and PMA-qPCR, respectively. Similar results were obtained upon exposure of E. coli O157:H7 to desiccation conditions on a sterile plastic surface. Subsequent investigation of mixtures of living and dead E. coli O157:H7 cells strongly indicated that PMA-qPCR detection was subject to false-positive enumerations of viable targets when in the presence of 100-fold higher numbers of dead cells. RT-qPCR measurements of killed E. coli O157:H7 as well as for RNaseA-treated E. coli RNA confirmed that transcripts from dead cells and highly degraded RNA were also amplified by RT-qPCR. These findings show that neither PMA-qPCR nor RT-qPCR provide accurate estimates of bacterial viability in environments where growth and survival is limited. PMID:26955370

  11. RNA-Based Detection Does not Accurately Enumerate Living Escherichia coli O157:H7 Cells on Plants.

    PubMed

    Ju, Wenting; Moyne, Anne-Laure; Marco, Maria L

    2016-01-01

    The capacity to distinguish between living and dead cells is an important, but often unrealized, attribute of rapid detection methods for foodborne pathogens. In this study, the numbers of enterohemorrhagic Escherichia coli O157:H7 after inoculation onto Romaine lettuce plants and on plastic (abiotic) surfaces were measured over time by culturing, and quantitative PCR (qPCR), propidium monoazide (PMA)-qPCR, and reverse transcriptase (RT)-qPCR targeting E. coli O157:H7 gapA, rfbE, eae, and lpfA genes and gene transcripts. On Romaine lettuce plants incubated at low relative humidity, E. coli O157:H7 cell numbers declined 10(7)-fold within 96 h according to culture-based assessments. In contrast, there were no reductions in E. coli levels according to qPCR and only 100- and 1000-fold lower numbers per leaf by RT-qPCR and PMA-qPCR, respectively. Similar results were obtained upon exposure of E. coli O157:H7 to desiccation conditions on a sterile plastic surface. Subsequent investigation of mixtures of living and dead E. coli O157:H7 cells strongly indicated that PMA-qPCR detection was subject to false-positive enumerations of viable targets when in the presence of 100-fold higher numbers of dead cells. RT-qPCR measurements of killed E. coli O157:H7 as well as for RNaseA-treated E. coli RNA confirmed that transcripts from dead cells and highly degraded RNA were also amplified by RT-qPCR. These findings show that neither PMA-qPCR nor RT-qPCR provide accurate estimates of bacterial viability in environments where growth and survival is limited. PMID:26955370

  12. Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response.

    PubMed

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv(3.1) (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  13. Aptamer-conjugated live human immune cell based biosensors for the accurate detection of C-reactive protein

    NASA Astrophysics Data System (ADS)

    Hwang, Jangsun; Seo, Youngmin; Jo, Yeonho; Son, Jaewoo; Choi, Jonghoon

    2016-10-01

    C-reactive protein (CRP) is a pentameric protein that is present in the bloodstream during inflammatory events, e.g., liver failure, leukemia, and/or bacterial infection. The level of CRP indicates the progress and prognosis of certain diseases; it is therefore necessary to measure CRP levels in the blood accurately. The normal concentration of CRP is reported to be 1–3 mg/L. Inflammatory events increase the level of CRP by up to 500 times; accordingly, CRP is a biomarker of acute inflammatory disease. In this study, we demonstrated the preparation of DNA aptamer-conjugated peripheral blood mononuclear cells (Apt-PBMCs) that specifically capture human CRP. Live PBMCs functionalized with aptamers could detect different levels of human CRP by producing immune complexes with reporter antibody. The binding behavior of Apt-PBMCs toward highly concentrated CRP sites was also investigated. The immune responses of Apt-PBMCs were evaluated by measuring TNF-alpha secretion after stimulating the PBMCs with lipopolysaccharides. In summary, engineered Apt-PBMCs have potential applications as live cell based biosensors and for in vitro tracing of CRP secretion sites.

  14. Aptamer-conjugated live human immune cell based biosensors for the accurate detection of C-reactive protein

    PubMed Central

    Hwang, Jangsun; Seo, Youngmin; Jo, Yeonho; Son, Jaewoo; Choi, Jonghoon

    2016-01-01

    C-reactive protein (CRP) is a pentameric protein that is present in the bloodstream during inflammatory events, e.g., liver failure, leukemia, and/or bacterial infection. The level of CRP indicates the progress and prognosis of certain diseases; it is therefore necessary to measure CRP levels in the blood accurately. The normal concentration of CRP is reported to be 1–3 mg/L. Inflammatory events increase the level of CRP by up to 500 times; accordingly, CRP is a biomarker of acute inflammatory disease. In this study, we demonstrated the preparation of DNA aptamer-conjugated peripheral blood mononuclear cells (Apt-PBMCs) that specifically capture human CRP. Live PBMCs functionalized with aptamers could detect different levels of human CRP by producing immune complexes with reporter antibody. The binding behavior of Apt-PBMCs toward highly concentrated CRP sites was also investigated. The immune responses of Apt-PBMCs were evaluated by measuring TNF-alpha secretion after stimulating the PBMCs with lipopolysaccharides. In summary, engineered Apt-PBMCs have potential applications as live cell based biosensors and for in vitro tracing of CRP secretion sites. PMID:27708384

  15. Defining and Detecting Complex Peak Relationships in Mass Spectral Data: The Mz.unity Algorithm.

    PubMed

    Mahieu, Nathaniel G; Spalding, Jonathan L; Gelman, Susan J; Patti, Gary J

    2016-09-20

    Analysis of a single analyte by mass spectrometry can result in the detection of more than 100 degenerate peaks. These degenerate peaks complicate spectral interpretation and are challenging to annotate. In mass spectrometry-based metabolomics, this degeneracy leads to inflated false discovery rates, data sets containing an order of magnitude more features than analytes, and an inefficient use of resources during data analysis. Although software has been introduced to annotate spectral degeneracy, current approaches are unable to represent several important classes of peak relationships. These include heterodimers and higher complex adducts, distal fragments, relationships between peaks in different polarities, and complex adducts between features and background peaks. Here we outline sources of peak degeneracy in mass spectra that are not annotated by current approaches and introduce a software package called mz.unity to detect these relationships in accurate mass data. Using mz.unity, we find that data sets contain many more complex relationships than we anticipated. Examples include the adduct of glutamate and nicotinamide adenine dinucleotide (NAD), fragments of NAD detected in the same or opposite polarities, and the adduct of glutamate and a background peak. Further, the complex relationships we identify show that several assumptions commonly made when interpreting mass spectral degeneracy do not hold in general. These contributions provide new tools and insight to aid in the annotation of complex spectral relationships and provide a foundation for improved data set identification. Mz.unity is an R package and is freely available at https://github.com/nathaniel-mahieu/mz.unity as well as our laboratory Web site http://pattilab.wustl.edu/software/ .

  16. A Mass Spectrometric Analysis Method Based on PPCA and SVM for Early Detection of Ovarian Cancer

    PubMed Central

    Wu, Jiang; Ji, Mengying; Ye, Zhuang

    2016-01-01

    Background. Surfaced-enhanced laser desorption-ionization-time of flight mass spectrometry (SELDI-TOF-MS) technology plays an important role in the early diagnosis of ovarian cancer. However, the raw MS data is highly dimensional and redundant. Therefore, it is necessary to study rapid and accurate detection methods from the massive MS data. Methods. The clinical data set used in the experiments for early cancer detection consisted of 216 SELDI-TOF-MS samples. An MS analysis method based on probabilistic principal components analysis (PPCA) and support vector machine (SVM) was proposed and applied to the ovarian cancer early classification in the data set. Additionally, by the same data set, we also established a traditional PCA-SVM model. Finally we compared the two models in detection accuracy, specificity, and sensitivity. Results. Using independent training and testing experiments 10 times to evaluate the ovarian cancer detection models, the average prediction accuracy, sensitivity, and specificity of the PCA-SVM model were 83.34%, 82.70%, and 83.88%, respectively. In contrast, those of the PPCA-SVM model were 90.80%, 92.98%, and 88.97%, respectively. Conclusions. The PPCA-SVM model had better detection performance. And the model combined with the SELDI-TOF-MS technology had a prospect in early clinical detection and diagnosis of ovarian cancer. PMID:27642365

  17. A Mass Spectrometric Analysis Method Based on PPCA and SVM for Early Detection of Ovarian Cancer

    PubMed Central

    Wu, Jiang; Ji, Mengying; Ye, Zhuang

    2016-01-01

    Background. Surfaced-enhanced laser desorption-ionization-time of flight mass spectrometry (SELDI-TOF-MS) technology plays an important role in the early diagnosis of ovarian cancer. However, the raw MS data is highly dimensional and redundant. Therefore, it is necessary to study rapid and accurate detection methods from the massive MS data. Methods. The clinical data set used in the experiments for early cancer detection consisted of 216 SELDI-TOF-MS samples. An MS analysis method based on probabilistic principal components analysis (PPCA) and support vector machine (SVM) was proposed and applied to the ovarian cancer early classification in the data set. Additionally, by the same data set, we also established a traditional PCA-SVM model. Finally we compared the two models in detection accuracy, specificity, and sensitivity. Results. Using independent training and testing experiments 10 times to evaluate the ovarian cancer detection models, the average prediction accuracy, sensitivity, and specificity of the PCA-SVM model were 83.34%, 82.70%, and 83.88%, respectively. In contrast, those of the PPCA-SVM model were 90.80%, 92.98%, and 88.97%, respectively. Conclusions. The PPCA-SVM model had better detection performance. And the model combined with the SELDI-TOF-MS technology had a prospect in early clinical detection and diagnosis of ovarian cancer.

  18. A Mass Spectrometric Analysis Method Based on PPCA and SVM for Early Detection of Ovarian Cancer.

    PubMed

    Wu, Jiang; Ji, Yanju; Zhao, Ling; Ji, Mengying; Ye, Zhuang; Li, Suyi

    2016-01-01

    Background. Surfaced-enhanced laser desorption-ionization-time of flight mass spectrometry (SELDI-TOF-MS) technology plays an important role in the early diagnosis of ovarian cancer. However, the raw MS data is highly dimensional and redundant. Therefore, it is necessary to study rapid and accurate detection methods from the massive MS data. Methods. The clinical data set used in the experiments for early cancer detection consisted of 216 SELDI-TOF-MS samples. An MS analysis method based on probabilistic principal components analysis (PPCA) and support vector machine (SVM) was proposed and applied to the ovarian cancer early classification in the data set. Additionally, by the same data set, we also established a traditional PCA-SVM model. Finally we compared the two models in detection accuracy, specificity, and sensitivity. Results. Using independent training and testing experiments 10 times to evaluate the ovarian cancer detection models, the average prediction accuracy, sensitivity, and specificity of the PCA-SVM model were 83.34%, 82.70%, and 83.88%, respectively. In contrast, those of the PPCA-SVM model were 90.80%, 92.98%, and 88.97%, respectively. Conclusions. The PPCA-SVM model had better detection performance. And the model combined with the SELDI-TOF-MS technology had a prospect in early clinical detection and diagnosis of ovarian cancer. PMID:27642365

  19. Assessment of gas chromatography time-of-flight accurate mass spectrometry for identification of volatile and semi-volatile compounds in honey.

    PubMed

    Moniruzzaman, M; Rodríguez, I; Ramil, M; Cela, R; Sulaiman, S A; Gan, S H

    2014-11-01

    The performance of gas chromatography (GC) combined with a hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) system for the determination of volatile and semi-volatile compounds in honey samples is evaluated. After headspace (HS) solid-phase microextraction (SPME) of samples, the accurate mass capabilities of the above system were evaluated for compounds identification. Accurate scan electron impact (EI) MS spectra allowed discriminating compounds displaying the same nominal masses, but having different empirical formulae. Moreover, the use of a mass window with a width of 0.005 Da provided highly specific chromatograms for selected ions, avoiding the contribution of interferences to their peak areas. Additional information derived from positive chemical ionization (PCI) MS spectra and ion product scan MS/MS spectra permitted confirming the identity of novel compounds. The above possibilities are illustrated with examples of honey aroma compounds, belonging to different chemical classes and containing different elements in their molecules. Examples of compounds whose structures could not be described are also provided. Overall, 84 compounds, from a total of 89 species, could be identified in 19 honey samples from 3 different geographic areas in the world. The suitability of responses measured for selected ions, corresponding to above species, for authentication purposes is assessed through principal components analysis. PMID:25127626

  20. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry.

    PubMed

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification.

  1. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification. PMID:27313979

  2. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry.

    PubMed

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification. PMID:27313979

  3. Sensitive, accurate and rapid detection of trace aliphatic amines in environmental samples with ultrasonic-assisted derivatization microextraction using a new fluorescent reagent for high performance liquid chromatography.

    PubMed

    Chen, Guang; Liu, Jianjun; Liu, Mengge; Li, Guoliang; Sun, Zhiwei; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao

    2014-07-25

    A new fluorescent reagent, 1-(1H-imidazol-1-yl)-2-(2-phenyl-1H-phenanthro[9,10-d]imidazol-1-yl)ethanone (IPPIE), is synthesized, and a simple pretreatment based on ultrasonic-assisted derivatization microextraction (UDME) with IPPIE is proposed for the selective derivatization of 12 aliphatic amines (C1: methylamine-C12: dodecylamine) in complex matrix samples (irrigation water, river water, waste water, cultivated soil, riverbank soil and riverbed soil). Under the optimal experimental conditions (solvent: ACN-HCl, catalyst: none, molar ratio: 4.3, time: 8 min and temperature: 80°C), micro amount of sample (40 μL; 5mg) can be pretreated in only 10 min, with no preconcentration, evaporation or other additional manual operations required. The interfering substances (aromatic amines, aliphatic alcohols and phenols) get the derivatization yields of <5%, causing insignificant matrix effects (<4%). IPPIE-analyte derivatives are separated by high performance liquid chromatography (HPLC) and quantified by fluorescence detection (FD). The very low instrumental detection limits (IDL: 0.66-4.02 ng/L) and method detection limits (MDL: 0.04-0.33 ng/g; 5.96-45.61 ng/L) are achieved. Analytes are further identified from adjacent peaks by on-line ion trap mass spectrometry (MS), thereby avoiding additional operations for impurities. With this UDME-HPLC-FD-MS method, the accuracy (-0.73-2.12%), precision (intra-day: 0.87-3.39%; inter-day: 0.16-4.12%), recovery (97.01-104.10%) and sensitivity were significantly improved. Successful applications in environmental samples demonstrate the superiority of this method in the sensitive, accurate and rapid determination of trace aliphatic amines in micro amount of complex samples. PMID:24925451

  4. CLASH-VLT: Constraints on the Dark Matter Equation of State from Accurate Measurements of Galaxy Cluster Mass Profiles

    NASA Astrophysics Data System (ADS)

    Sartoris, Barbara; Biviano, Andrea; Rosati, Piero; Borgani, Stefano; Umetsu, Keiichi; Bartelmann, Matthias; Girardi, Marisa; Grillo, Claudio; Lemze, Doron; Zitrin, Adi; Balestra, Italo; Mercurio, Amata; Nonino, Mario; Postman, Marc; Czakon, Nicole; Bradley, Larry; Broadhurst, Tom; Coe, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Merten, Julian; Annunziatella, Marianna; Benitez, Narciso; Czoske, Oliver; Donahue, Megan; Ettori, Stefano; Ford, Holland; Fritz, Alexander; Kelson, Dan; Koekemoer, Anton; Kuchner, Ulrike; Lombardi, Marco; Maier, Christian; Moustakas, Leonidas A.; Munari, Emiliano; Presotto, Valentina; Scodeggio, Marco; Seitz, Stella; Tozzi, Paolo; Zheng, Wei; Ziegler, Bodo

    2014-03-01

    A pressureless scenario for the dark matter (DM) fluid is a widely adopted hypothesis, despite the absence of direct observational evidence. According to general relativity, the total mass-energy content of a system shapes the gravitational potential well, but different test particles perceive this potential in different ways depending on their properties. Cluster galaxy velocities, being Ltc, depend solely on the gravitational potential, whereas photon trajectories reflect the contributions from the gravitational potential plus a relativistic-pressure term that depends on the cluster mass. We exploit this phenomenon to constrain the equation of state (EoS) parameter of the fluid, primarily DM, contained in galaxy clusters. We use complementary information provided by the kinematic and lensing mass profiles of the galaxy cluster MACS 1206.2-0847 at z = 0.44, as obtained in an extensive imaging and spectroscopic campaign within the Cluster Lensing And Supernova survey with Hubble. The unprecedented high quality of our data set and the properties of this cluster are well suited to determine the EoS parameter of the cluster fluid. Since baryons contribute at most 15% to the total mass in clusters and their pressure is negligible, the EoS parameter we derive describes the behavior of the DM fluid. We obtain the most stringent constraint on the DM EoS parameter to date, w = (pr + 2 pt )/(3 c 2ρ) = 0.00 ± 0.15 (stat) ± 0.08 (syst), averaged over the radial range 0.5 Mpc <= r <= r 200, where pr and pt are the radial and tangential pressure, and ρ is the density. We plan to further improve our constraint by applying the same procedure to all clusters from the ongoing Cluster Lensing And Supernova Survey with Hubble-Very Large Telescope program.

  5. CLASH-VLT: CONSTRAINTS ON THE DARK MATTER EQUATION OF STATE FROM ACCURATE MEASUREMENTS OF GALAXY CLUSTER MASS PROFILES

    SciTech Connect

    Sartoris, Barbara; Borgani, Stefano; Girardi, Marisa; Biviano, Andrea; Balestra, Italo; Nonino, Mario; Umetsu, Keiichi; Czakon, Nicole; Bartelmann, Matthias; Grillo, Claudio; Lemze, Doron; Medezinski, Elinor; Zitrin, Adi; Mercurio, Amata; Broadhurst, Tom; Melchior, Peter; and others

    2014-03-01

    A pressureless scenario for the dark matter (DM) fluid is a widely adopted hypothesis, despite the absence of direct observational evidence. According to general relativity, the total mass-energy content of a system shapes the gravitational potential well, but different test particles perceive this potential in different ways depending on their properties. Cluster galaxy velocities, being <mass. We exploit this phenomenon to constrain the equation of state (EoS) parameter of the fluid, primarily DM, contained in galaxy clusters. We use complementary information provided by the kinematic and lensing mass profiles of the galaxy cluster MACS 1206.2–0847 at z = 0.44, as obtained in an extensive imaging and spectroscopic campaign within the Cluster Lensing And Supernova survey with Hubble. The unprecedented high quality of our data set and the properties of this cluster are well suited to determine the EoS parameter of the cluster fluid. Since baryons contribute at most 15% to the total mass in clusters and their pressure is negligible, the EoS parameter we derive describes the behavior of the DM fluid. We obtain the most stringent constraint on the DM EoS parameter to date, w = (p{sub r} + 2 p{sub t} )/(3 c {sup 2}ρ) = 0.00 ± 0.15 (stat) ± 0.08 (syst), averaged over the radial range 0.5 Mpc ≤ r ≤ r {sub 200}, where p{sub r} and p{sub t} are the radial and tangential pressure, and ρ is the density. We plan to further improve our constraint by applying the same procedure to all clusters from the ongoing Cluster Lensing And Supernova Survey with Hubble-Very Large Telescope program.

  6. Analyzing Protease Specificity and Detecting in Vivo Proteolytic Events Using Tandem Mass Spectrometry

    SciTech Connect

    Gupta, Nitin; Hixson, Kim K.; Culley, David E.; Smith, Richard D.; Pevzner, Pavel A.

    2010-07-01

    While trypsin remains the most commonly used protease in mass spectrometry, other proteases may be employed for increasing peptide-coverage or generating overlapping peptides. Knowledge of the accurate specifcity rules of these proteases is helpful for database search tools to detect peptides, and becomes crucial when mass spectrometry is used to discover in vivo proteolytic cleavages. In this study, we use tandem mass spectrometry to analyze the specifcity rules of selected proteases and describe MS- Proteolysis, a software tool for identifying putative sites of in vivo proteolytic cleavage. Our analysis suggests that the specifcity rules for some commonly used proteases can be improved, e.g., we find that V8 protease cuts not only after Asp and Glu, as currently expected, but also shows a smaller propensity to cleave after Gly for the conditions tested in this study. Finally, we show that comparative analysis of multiple proteases can be used to detect putative in vivo proteolytic sites on a proteome-wide scale.

  7. Noninvasive detection of weapons of mass destruction using terahertz radiation

    NASA Astrophysics Data System (ADS)

    Campbell, Matthew B.; Heilweil, Edwin J.

    2003-08-01

    The growing and immediate threat of biological and chemical weapons has placed urgency on the development of chemical and biological warfare agent (CWA/BWA) screening devices. Specifically, the ability to detect CWA/BWA prior to deployment is paramount to mitigating the threat without exposing individuals to its effects. SPARTA, Inc. and NIST are currently investigating the feasibility of using far-infrared radiation, or terahertz (THz, 1 THz = 1012 Hz) radiation, to non-invasively detect biological and chemical agents, explosives and drugs/narcotics inside sealed containers. Small-to-medium sized molecules (3-100 atoms) in gas, liquid and solid phases consistently exhibit identifiable spectral features in the far-IR portion of the spectrum. Many compounds associated with weapons of mass destruction are made up of molecules of this size. The THz portion of the spectrum lies between visible light and radio waves, allowing for partial transmission of 0.3-10.0 THz (30-1000 μm, 10-330 cm-1) light through most common materials. Therefore, transmission measurements of THz light can potentially be used to non-invasively detect the presence of CWA/BWA, explosives and drugs in the pathway of a THz radiation beam.

  8. SU-E-J-23: An Accurate Algorithm to Match Imperfectly Matched Images for Lung Tumor Detection Without Markers

    SciTech Connect

    Rozario, T; Bereg, S; Chiu, T; Liu, H; Kearney, V; Jiang, L; Mao, W

    2014-06-01

    Purpose: In order to locate lung tumors on projection images without internal markers, digitally reconstructed radiograph (DRR) is created and compared with projection images. Since lung tumors always move and their locations change on projection images while they are static on DRRs, a special DRR (background DRR) is generated based on modified anatomy from which lung tumors are removed. In addition, global discrepancies exist between DRRs and projections due to their different image originations, scattering, and noises. This adversely affects comparison accuracy. A simple but efficient comparison algorithm is reported. Methods: This method divides global images into a matrix of small tiles and similarities will be evaluated by calculating normalized cross correlation (NCC) between corresponding tiles on projections and DRRs. The tile configuration (tile locations) will be automatically optimized to keep the tumor within a single tile which has bad matching with the corresponding DRR tile. A pixel based linear transformation will be determined by linear interpolations of tile transformation results obtained during tile matching. The DRR will be transformed to the projection image level and subtracted from it. The resulting subtracted image now contains only the tumor. A DRR of the tumor is registered to the subtracted image to locate the tumor. Results: This method has been successfully applied to kV fluoro images (about 1000 images) acquired on a Vero (Brainlab) for dynamic tumor tracking on phantom studies. Radiation opaque markers are implanted and used as ground truth for tumor positions. Although, other organs and bony structures introduce strong signals superimposed on tumors at some angles, this method accurately locates tumors on every projection over 12 gantry angles. The maximum error is less than 2.6 mm while the total average error is 1.0 mm. Conclusion: This algorithm is capable of detecting tumor without markers despite strong background signals.

  9. Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia.

    PubMed

    Hanson, D R; McMurry, P H; Jiang, J; Tanner, D; Huey, L G

    2011-10-15

    An instrument to detect gaseous amines and ammonia is described, and representative data from an urban site and a laboratory setting are presented. The instrument, an Ambient pressure Proton transfer Mass Spectrometer (AmPMS), consists of a chemical ionization and drift region at atmospheric pressure coupled to a standard quadrupole mass spectrometer. Calibrations show that AmPMS sensitivity is good for amines, and AmPMS backgrounds were suitably determined by diverting sampled air through a catalytic converter. In urban air at a site in Atlanta, amines were detected at subpptv levels for methyl and dimethyl amine which were generally at a low abundance of <1 and ∼3 pptv, respectively. Trimethyl amine (or isomers) was on average about 4 pptv in the morning and increased to 15 pptv in the afternoon, while triethyl amine (or isomers or amides) increased to 25 pptv on average in the late afternoon. The background levels for the 4 and 5 carbon amines and ammonia were high, and data are very limited for these species. Improvements in detecting amines and ammonia from a smog chamber were evident due to improvements in AmPMS background determination; notably dimethyl amine and its OH oxidation products were followed along with impurity ammonia and other species. Future work will focus on accurate calibration standards and on improving the sample gas inlet.

  10. Upcoming Microlensing by Proxima Centauri: A Rare Opportunity for Mass Determination and Planet Detection

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash C.; Bond, H. E.; Anderson, J.; Dominik, M.

    2013-06-01

    Proxima Centauri will pass close to two background stars in 2014 and 2016, with impact parameters of about 1.6 and 0.5 arc seconds. Because Proxima is so nearby, its angular Einstein ring radius is large 28 milli arc sec) and will lead to detectable relativistic deflections of the images of the background stars even at those angular separations. Measurement of the astrometric shifts offers a unique opportunity for an accurate determination of the mass of Proxima. Although the background stars are >8.5 mag fainter than Proxima, the large contrast is mitigated by the relatively large separations at which the gravitational deflection is still detectable, and well within the capabilities of the Hubble Space Telescope. The upcoming events also offer the opportunity to detect and determine the masses of planetary companions, either through additional astrometric shifts, or in rare circumstances through a photometric microlensing event, leading to a brightening of the source star. These events would have durations of a few hours to several days.

  11. Accurate determination of ⁴¹Ca concentrations in spent resins from the nuclear industry by accelerator mass spectrometry.

    PubMed

    Nottoli, Emmanuelle; Bourlès, Didier; Bienvenu, Philippe; Labet, Alexandre; Arnold, Maurice; Bertaux, Maité

    2013-12-01

    The radiological characterisation of nuclear waste is essential for managing storage sites. Determining the concentration of Long-Lived RadioNuclides (LLRN) is fundamental for their long-term management. This paper focuses on the measurement of low (41)Ca concentrations in ions exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). (41)Ca concentrations were successfully measured by Accelerator Mass Spectrometry (AMS) after the acid digestion of resin samples, followed by radioactive decontamination and isobaric suppression through successive hydroxide, carbonate, nitrate and final CaF2 precipitations. Measured (41)Ca concentrations ranged from 0.02 to 0.03 ng/g, i.e. from 0.06 to 0.09 Bq/g. The (41)Ca/(60)Co activity ratios obtained were remarkably reproducible and in good agreement with the current ratio used for resins management. PMID:24144617

  12. Automated gas-phase purification for accurate, multiplexed quantification on a stand-alone ion trap mass spectrometer

    PubMed Central

    Vincent, Catherine E.; Rensvold, Jarred W.; Westphall, Michael S.; Pagliarini, David J.; Coon, Joshua J.

    2012-01-01

    Isobaric tagging enables the acquisition of highly-multiplexed proteome quantification but is hindered by the pervasive problem of precursor interference. The elimination of co-isolated contaminants prior to reporter tag generation can be achieved through the use of gas-phase purification via proton transfer ion/ion reactions (QuantMode); however, the original QuantMode technique was implemented on the high resolution linear ion trap-Orbitrap hybrid mass spectrometer enabled with electron transfer dissociation (ETD). Here we extend this technology to stand-alone linear ion trap systems (trapQuantMode). Facilitated by the use of inlet beam-type activation (i.e., trapHCD) for production and observation of the low mass-to-charge reporter region, this scan sequence comprises three separate events to maximize peptide identifications, minimize duty cycle requirements, and increase quantitative accuracy, precision, and dynamic range. Significant improvements in quantitative accuracy were attained over standard methods when using trapQuantMode (trapQM) to analyze an interference model system comprising tryptic peptides of yeast that we contaminated with human peptides. Finally, we demonstrate practical benefits of this method by analysis of the proteomic changes that occur during mouse skeletal muscle myoblast differentiation. While trapQM’s reduced duty cycle led to the identification of fewer proteins than conventional operation (4,050 vs. 2,964), trapQM identified more significant differences (>1.5 fold, 1,362 vs 1,132, respectively; P<0.05) between the proteomes of undifferentiated myoblasts and differentiated myotubes and nearly ten-fold more differences with changes greater than 5-fold (96 vs. 12). We further show that our trapQM dataset is superior for identifying changes in protein abundance that are consistent with the metabolic and structural changes known to accompany myotube formation. PMID:23046161

  13. Utility of accurate monoisotopic mass measurements to confidently identify lambda exonuclease generated single-stranded amplicons containing 7-deaza analogs by electrospray ionization FT-ICR mass spectrometry

    NASA Astrophysics Data System (ADS)

    Frahm, Jennifer L.; Mason, Christopher J.; Muddiman, David C.

    2004-05-01

    A 53-base pair region on the long arm of chromosome 22 was amplified using PCR with 7-deaza-modified deoxynucleotides. Increased amplification efficiency was achieved by doubling the concentration of the modified deoxynucleotide triphosphates. Incorporation of 7-deaza purines has been previously shown to selectively eliminate fragmentation pathways during gas-phase sequencing of nucleic acids by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) and infrared multiphoton dissociation. However, 7-deaza analogs result in significant duplex stability precluding interrogation of the single-stranded species by tandem mass spectrometry. Herein, we demonstrate the use of lambda exonuclease to successfully overcome this problem and are able to obtain single-stranded PCR products containing 7-deaza adenine and guanine nucleobases. Mass accuracy was used as our metric to determine complete incorporation of 7-deaza residues in PCR products>15 kDa; <= 3 ppm neutral monoisotopic mass measurement accuracies were routinely achieved. High mass measurement accuracy was obtained using a dual electrospray source and subsequently, using an isotopic fitting algorithm, the best fit between the theoretical and experimental isotopic distributions was determined using a chi-square value. Theoretical isotopic distributions were generated using an average nucleotide (averatide) chemical formula developed herein which was based on the relative frequencies of AT and GC base pairs in the human genome. Single-stranded PCR products were fragmented using SORI-CID and as expected, cleavage at the 7-deaza modified sites was not observed. Collectively, this integrated approach can facilitate top-down sequencing of PCR products by a variety of tandem mass spectrometry methods.

  14. Detecting Disease Outbreaks in Mass Gatherings Using Internet Data

    PubMed Central

    Yom-Tov, Elad; Cox, Ingemar J; McKendry, Rachel A

    2014-01-01

    Background Mass gatherings, such as music festivals and religious events, pose a health care challenge because of the risk of transmission of communicable diseases. This is exacerbated by the fact that participants disperse soon after the gathering, potentially spreading disease within their communities. The dispersion of participants also poses a challenge for traditional surveillance methods. The ubiquitous use of the Internet may enable the detection of disease outbreaks through analysis of data generated by users during events and shortly thereafter. Objective The intent of the study was to develop algorithms that can alert to possible outbreaks of communicable diseases from Internet data, specifically Twitter and search engine queries. Methods We extracted all Twitter postings and queries made to the Bing search engine by users who repeatedly mentioned one of nine major music festivals held in the United Kingdom and one religious event (the Hajj in Mecca) during 2012, for a period of 30 days and after each festival. We analyzed these data using three methods, two of which compared words associated with disease symptoms before and after the time of the festival, and one that compared the frequency of these words with those of other users in the United Kingdom in the days following the festivals. Results The data comprised, on average, 7.5 million tweets made by 12,163 users, and 32,143 queries made by 1756 users from each festival. Our methods indicated the statistically significant appearance of a disease symptom in two of the nine festivals. For example, cough was detected at higher than expected levels following the Wakestock festival. Statistically significant agreement (chi-square test, P<.01) between methods and across data sources was found where a statistically significant symptom was detected. Anecdotal evidence suggests that symptoms detected are indeed indicative of a disease that some users attributed to being at the festival. Conclusions Our work

  15. Time-of-flight mass spectrometry for explosives trace detection

    NASA Astrophysics Data System (ADS)

    Pettersson, Anna; Elfving, Anders; Elfsberg, Mattias; Hurtig, Tomas; Johansson, Niklas; Al-Khalili, Ahmed; Käck, Petra; Wallin, Sara; Östmark, Henric

    2012-06-01

    This paper presents the ongoing development of a laser ionization mass spectrometric system to be applied for screening for security related threat substances, specifically explosives. The system will be part of a larger security checkpoint system developed and demonstrated within the FP7 project EFFISEC to aid border police and customs at outer border checks. The laser ionization method of choice is SPI (single photon ionization), but the system also incorporates optional functionalities such as a cold trap and/or a particle concentrator to facilitate detection of minute amounts of explosives. The possibility of using jet-REMPI as a verification means is being scrutinized. Automated functionality and user friendliness is also considered in the demo system development.

  16. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  17. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans

    SciTech Connect

    McKenzie, Elizabeth M.; Balter, Peter A.; Stingo, Francesco C.; Jones, Jimmy; Followill, David S.; Kry, Stephen F.

    2014-12-15

    was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.

  18. CLASH-VLT: INSIGHTS ON THE MASS SUBSTRUCTURES IN THE FRONTIER FIELDS CLUSTER MACS J0416.1–2403 THROUGH ACCURATE STRONG LENS MODELING

    SciTech Connect

    Grillo, C.; Suyu, S. H.; Umetsu, K.; Rosati, P.; Caminha, G. B.; Mercurio, A.; Balestra, I.; Munari, E.; Nonino, M.; De Lucia, G.; Borgani, S.; Biviano, A.; Girardi, M.; Lombardi, M.; Gobat, R.; Zitrin, A.; Halkola, A. and others

    2015-02-10

    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the Cluster Lensing And Supernova survey with Hubble (CLASH) and Frontier Fields galaxy cluster MACS J0416.1–2403. We show and employ our extensive spectroscopic data set taken with the VIsible Multi-Object Spectrograph instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log (M {sub *}/M {sub ☉}) ≅ 8.6. We reproduce the measured positions of a set of 30 multiple images with a remarkable median offset of only 0.''3 by means of a comprehensive strong lensing model comprised of two cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components, parameterized with dual pseudo-isothermal total mass profiles. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ∼5%, including the systematic uncertainties estimated from six distinct mass models. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological N-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1–2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide intriguing

  19. Masses of the components of SB2 binaries observed with Gaia - III. Accurate SB2 orbits for 10 binaries and masses of HIP 87895

    NASA Astrophysics Data System (ADS)

    Kiefer, F.; Halbwachs, J.-L.; Arenou, F.; Pourbaix, D.; Famaey, B.; Guillout, P.; Lebreton, Y.; Nebot Gómez-Morán, A.; Mazeh, T.; Salomon, J.-B.; Soubiran, C.; Tal-Or, L.

    2016-05-01

    In anticipation of the Gaia astrometric mission, a large sample of spectroscopic binaries has been observed since 2010 with the Spectrographe pour l'Observation des PHénomènes des Intérieurs Stellaires et des Exoplanètes spectrograph at the Haute-Provence Observatory. Our aim is to derive the orbital elements of double-lined spectroscopic binaries (SB2s) with an accuracy sufficient to finally obtain the masses of the components with relative errors as small as 1 per cent when the astrometric measurements of Gaia are taken into account. In this paper, we present the results from five years of observations of 10 SB2 systems with periods ranging from 37 to 881 d. Using the TODMOR algorithm, we computed radial velocities from the spectra, and then derived the orbital elements of these binary systems. The minimum masses of the components are then obtained with an accuracy better than 1.2 per cent for the 10 binaries. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 87895 with an accuracy of 0.98 and 1.2 per cent, respectively.

  20. Mammographical mass detection and classification using local seed region growing-spherical wavelet transform (LSRG-SWT) hybrid scheme.

    PubMed

    Görgel, Pelin; Sertbas, Ahmet; Ucan, Osman N

    2013-07-01

    The purpose of this study is to implement accurate methods of detection and classification of benign and malignant breast masses in mammograms. Our new proposed method, which can be used as a diagnostic tool, is denoted Local Seed Region Growing-Spherical Wavelet Transform (LSRG-SWT), and consists of four steps. The first step is homomorphic filtering for enhancement, and the second is detection of the region of interests (ROIs) using a Local Seed Region Growing (LSRG) algorithm, which we developed. The third step incoporates Spherical Wavelet Transform (SWT) and feature extraction. Finally the fourth step is classification, which consists of two sequential components: the 1st classification distinguishes the ROIs as either mass or non-mass and the 2nd classification distinguishes the masses as either benign or malignant using a Support Vector Machine (SVM). The mammograms used in this study were acquired from the hospital of Istanbul University (I.U.) in Turkey and the Mammographic Image Analysis Society (MIAS). The results demonstrate that the proposed scheme LSRG-SWT achieves 96% and 93.59% accuracy in mass/non-mass classification (1st component) and benign/malignant classification (2nd component) respectively when using the I.U. database with k-fold cross validation. The system achieves 94% and 91.67% accuracy in mass/non-mass classification and benign/malignant classification respectively when using the I.U. database as a training set and the MIAS database as a test set with external validation.

  1. Characterization of Compounds in Psoralea corylifolia Using High-Performance Liquid Chromatography Diode Array Detection, Time-of-Flight Mass Spectrometry and Quadrupole Ion Trap Mass Spectrometry.

    PubMed

    Tan, Guangguo; Yang, Tiehong; Miao, Huayan; Chen, Hao; Chai, Yifeng; Wu, Hong

    2015-10-01

    High-performance liquid chromatography with diode array detection (HPLC-DAD), time-of-flight mass spectrometry (HPLC-TOFMS) and quadrupole ion trap mass spectrometry (HPLC-QITMS) were used for separation and identification of multi-components in Psoralea corylifolia. Benefiting from combining the accurate mass measurement of HPLC-TOFMS to generate elemental compositions, the complementary multilevel structural information provided by HPLC-QITMS and the characteristic UV spectra obtained from HPLC-DAD, 24 components in P. corylifolia were identified. The five groups of isomers were differentiated based on the fragmentation behaviors in QITMS and UV spectra. It can be concluded that an effective method based on the combination of HPLC-DAD, HPLC-TOFMS and HPLC-QITMS for identification of chemical components in P. corylifolia was established. The results provide essential data for further pharmacological and clinical studies of P. corylifolia and facilitate the rapid quality control of the crude drug.

  2. A convenient method for calculation of ionic diffusion coefficients for accurate selected ion flow tube mass spectrometry, SIFT-MS

    NASA Astrophysics Data System (ADS)

    Dryahina, K.; Spanel, P.

    2005-07-01

    A method to calculate diffusion coefficients of ions important for the selected ion flow tube mass spectrometry, SIFT-MS, is presented. The ions, on which this method is demonstrated, include the SIFT-MS precursors H3O+(H2O)0,1,2,3, NO.+(H2O)0,1,2 and O2+ and the product ions relevant to analysis of breath trace metabolites ammonia (NH3+(H2O)0,1,2, NH4+(H2O)0,1,2), acetaldehyde (C2H4OH+(H2O)0,1,2), acetone (CH3CO+, (CH3)2CO+, (CH3)2COH+(H2O)0,1, (CH3)2CO.NO+), ethanol (C2H5OHH+(H2O)0,1,2) and isoprene (C5H7+, C5H8+, C5H9+). Theoretical model of the (12, 4) potential for interaction between the ions and the helium atoms is used, with the repulsive part approximated by the mean hard-sphere cross section and the attractive part describing ion-induced dipole interactions. The reduced zero-field mobilities at 300 K are calculated using the Viehland and Mason theory [L.A. Viehland, S.L. Lin, E.A. Mason, At. Data Nucl. Data Tables, 60 (1995) 37-95], parameterised by a simple formula as a function of the mean hard-sphere cross section, and converted to diffusion coefficients using the Einstein relation. The method is tested on a set of experimental data for simple ions and cluster ions.

  3. Detection and characterization of cyclic hydroxylamine adducts by mass spectrometry.

    PubMed

    Reis, Ana; Domingues, Maria R M; Amado, Francisco M L; Oliveira, M Manuel; Domingues, Pedro

    2008-05-01

    Two cyclic hydroxylamines (cHA) bearing pyrrolidine (CPH) and piperidine moieties (TMTH) were evaluated to trap hydroxyl, peptide and phospholipid free radicals using mass spectrometry for their detection. The cHA ionized as [M+H](+) ions, showing higher relative abundances when compared to the DMPO, probably due to higher ionization efficiency. In the presence of hydroxyl radicals, both cHA generated new ions that could be attributed to loss of (*)H and (*)CH(3), most likely deriving from decomposition reactions of the nitroxide spin adduct. Addition of cHA to Leucine-enkephalin and palmitoyl-lineloyl-glycerophosphatidylcholine free radicals promoted the formation of cHA biomolecule adducts, which were confirmed by MS/MS data. Results suggest that the cHA are not suitable for hydroxyl radical trapping but can be used for trapping biomolecule radicals, having the advantage, over the most used cyclic nitrones, of being water soluble. The biomolecule adducts identified by MS are ESR silent, evidencing the importance of MS detection.

  4. Status of mass spectrometric radiocarbon detection at ETHZ

    NASA Astrophysics Data System (ADS)

    Seiler, Martin; Maxeiner, Sascha; Wacker, Lukas; Synal, Hans-Arno

    2015-10-01

    A prototype of a mass spectrometric radiocarbon detection instrument without accelerator stage was built for the first time and set into operation at ETH Zurich. The system is designed as an experimental platform to optimize performance of 14C detection at low ion energies and to study the most relevant processes that may limit system performance. The optimized stripper unit incorporates differential pumping to maintain a low gas outflow and a revised tube design to better match the phase space volume of the ion beam at low energies. The system is fully operational and has demonstrated true radiocarbon dating capabilities. The overall beam transmission through the stripper tube is about 40% for the 1+ charge state. Radiocarbon analyses with an overall precision of 0.6% were obtained on a single sample under regular measurement conditions. By analyzing multiple targets of the same sample material an uncertainty level of 0.3% has been reached. The background level corresponds to a radiocarbon age of 40,000 years.

  5. Dual electrospray ionization source for confident generation of accurate mass tags using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Nepomuceno, Angelito I; Muddiman, David C; Bergen, H Robert; Craighead, James R; Burke, Michael J; Caskey, Patrick E; Allan, Jonathan A

    2003-07-15

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) has rapidly established a prominent role in proteomics because of its unparalleled resolving power, sensitivity and ability to achieve high mass measurement accuracy (MMA) simultaneously. However, space-charge effects must be quantitatively, routinely, and confidently corrected because they are known to profoundly influence MMA. We argue that the most effective way to account for space-charge effects is to introduce an internal mass calibrant (IMC) using a dual electrospray ionization (ESI) source where the IMC is added from a separate ESI emitter. The major disadvantage of our initial dual ESI source to achieve high MMA, and arguably the only one, was the time required to switch between the analyte emitter and IMC emitter (i.e., >300 ms). While this "switching time" was acceptable for direct infusion experiments, it did not lend itself to high-throughput applications or when conducting on-line liquid separations. In this report, we completely redesigned the dual ESI source and demonstrate several key attributes. First, the new design allows for facile alignment of ESI emitters, undetectable vibration, and the ability to extend to multiple emitters. Second, the switching time was reduced to <50 ms, which allowed the analyte and IMC to be accumulated "simultaneously" in the external ion reservoir and injected as a single ion packet into the ion cyclotron resonance cell, eliminating the need for a separate accumulation and ion injection event for the IMC. Third, by using a high concentration of the IMC, the residence time on this emitter could be reduced to approximately 80 ms, allowing for more time spent accumulating analyte ions of significantly lower concentration. Fourth, multiplexed on-line separations can be carried out providing increased throughput. Specifically, the new dual ESI source has demonstrated its ability to produce a stable ion current over a 45-min time period at 7 T

  6. Comparison of 3 infrared thermal detection systems and self-report for mass fever screening.

    PubMed

    Nguyen, An V; Cohen, Nicole J; Lipman, Harvey; Brown, Clive M; Molinari, Noelle Angelique; Jackson, William L; Kirking, Hannah; Szymanowski, Paige; Wilson, Todd W; Salhi, Bisan A; Roberts, Rebecca R; Stryker, David W; Fishbein, Daniel B

    2010-11-01

    Despite limited evidence regarding their utility, infrared thermal detection systems (ITDS) are increasingly being used for mass fever detection. We compared temperature measurements for 3 ITDS (FLIR ThermoVision A20M [FLIR Systems Inc., Boston, MA, USA], OptoTherm Thermoscreen [OptoTherm Thermal Imaging Systems and Infrared Cameras Inc., Sewickley, PA, USA], and Wahl Fever Alert Imager HSI2000S [Wahl Instruments Inc., Asheville, NC, USA]) with oral temperatures (≥ 100 °F = confirmed fever) and self-reported fever. Of 2,873 patients enrolled, 476 (16.6%) reported a fever, and 64 (2.2%) had a confirmed fever. Self-reported fever had a sensitivity of 75.0%, specificity 84.7%, and positive predictive value 10.1%. At optimal cutoff values for detecting fever, temperature measurements by OptoTherm and FLIR had greater sensitivity (91.0% and 90.0%, respectively) and specificity (86.0% and 80.0%, respectively) than did self-reports. Correlations between ITDS and oral temperatures were similar for OptoTherm (ρ = 0.43) and FLIR (ρ = 0.42) but significantly lower for Wahl (ρ = 0.14; p < 0.001). When compared with oral temperatures, 2 systems (OptoTherm and FLIR) were reasonably accurate for detecting fever and predicted fever better than self-reports.

  7. Comparison of 3 infrared thermal detection systems and self-report for mass fever screening.

    PubMed

    Nguyen, An V; Cohen, Nicole J; Lipman, Harvey; Brown, Clive M; Molinari, Noelle Angelique; Jackson, William L; Kirking, Hannah; Szymanowski, Paige; Wilson, Todd W; Salhi, Bisan A; Roberts, Rebecca R; Stryker, David W; Fishbein, Daniel B

    2010-11-01

    Despite limited evidence regarding their utility, infrared thermal detection systems (ITDS) are increasingly being used for mass fever detection. We compared temperature measurements for 3 ITDS (FLIR ThermoVision A20M [FLIR Systems Inc., Boston, MA, USA], OptoTherm Thermoscreen [OptoTherm Thermal Imaging Systems and Infrared Cameras Inc., Sewickley, PA, USA], and Wahl Fever Alert Imager HSI2000S [Wahl Instruments Inc., Asheville, NC, USA]) with oral temperatures (≥ 100 °F = confirmed fever) and self-reported fever. Of 2,873 patients enrolled, 476 (16.6%) reported a fever, and 64 (2.2%) had a confirmed fever. Self-reported fever had a sensitivity of 75.0%, specificity 84.7%, and positive predictive value 10.1%. At optimal cutoff values for detecting fever, temperature measurements by OptoTherm and FLIR had greater sensitivity (91.0% and 90.0%, respectively) and specificity (86.0% and 80.0%, respectively) than did self-reports. Correlations between ITDS and oral temperatures were similar for OptoTherm (ρ = 0.43) and FLIR (ρ = 0.42) but significantly lower for Wahl (ρ = 0.14; p < 0.001). When compared with oral temperatures, 2 systems (OptoTherm and FLIR) were reasonably accurate for detecting fever and predicted fever better than self-reports. PMID:21029528

  8. A simple and accurate SNP scoring strategy based on typeIIS restriction endonuclease cleavage and matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Hong, Sun Pyo; Ji, Seung Il; Rhee, Hwanseok; Shin, Soo Kyeong; Hwang, Sun Young; Lee, Seung Hwan; Lee, Soong Deok; Oh, Heung-Bum; Yoo, Wangdon; Kim, Soo-Ok

    2008-01-01

    Background We describe the development of a novel matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-based single nucleotide polymorphism (SNP) scoring strategy, termed Restriction Fragment Mass Polymorphism (RFMP) that is suitable for genotyping variations in a simple, accurate, and high-throughput manner. The assay is based on polymerase chain reaction (PCR) amplification and mass measurement of oligonucleotides containing a polymorphic base, to which a typeIIS restriction endonuclease recognition was introduced by PCR amplification. Enzymatic cleavage of the products leads to excision of oligonucleotide fragments representing base variation of the polymorphic site whose masses were determined by MALDI-TOF MS. Results The assay represents an improvement over previous methods because it relies on the direct mass determination of PCR products rather than on an indirect analysis, where a base-extended or fluorescent report tag is interpreted. The RFMP strategy is simple and straightforward, requiring one restriction digestion reaction following target amplification in a single vessel. With this technology, genotypes are generated with a high call rate (99.6%) and high accuracy (99.8%) as determined by independent sequencing. Conclusion The simplicity, accuracy and amenability to high-throughput screening analysis should make the RFMP assay suitable for large-scale genotype association study as well as clinical genotyping in laboratories. PMID:18538037

  9. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    PubMed

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  10. Mass Spectrometry-based Workflow for Accurate Quantification of Escherichia coli Enzymes: How Proteomics Can Play a Key Role in Metabolic Engineering*

    PubMed Central

    Trauchessec, Mathieu; Jaquinod, Michel; Bonvalot, Aline; Brun, Virginie; Bruley, Christophe; Ropers, Delphine; de Jong, Hidde; Garin, Jérôme; Bestel-Corre, Gwenaëlle; Ferro, Myriam

    2014-01-01

    Metabolic engineering aims to design high performance microbial strains producing compounds of interest. This requires systems-level understanding; genome-scale models have therefore been developed to predict metabolic fluxes. However, multi-omics data including genomics, transcriptomics, fluxomics, and proteomics may be required to model the metabolism of potential cell factories. Recent technological advances to quantitative proteomics have made mass spectrometry-based quantitative assays an interesting alternative to more traditional immuno-affinity based approaches. This has improved specificity and multiplexing capabilities. In this study, we developed a quantification workflow to analyze enzymes involved in central metabolism in Escherichia coli (E. coli). This workflow combined full-length isotopically labeled standards with selected reaction monitoring analysis. First, full-length 15N labeled standards were produced and calibrated to ensure accurate measurements. Liquid chromatography conditions were then optimized for reproducibility and multiplexing capabilities over a single 30-min liquid chromatography-MS analysis. This workflow was used to accurately quantify 22 enzymes involved in E. coli central metabolism in a wild-type reference strain and two derived strains, optimized for higher NADPH production. In combination with measurements of metabolic fluxes, proteomics data can be used to assess different levels of regulation, in particular enzyme abundance and catalytic rate. This provides information that can be used to design specific strains used in biotechnology. In addition, accurate measurement of absolute enzyme concentrations is key to the development of predictive kinetic models in the context of metabolic engineering. PMID:24482123

  11. Using Lanthanide Nanoparticles as Isotopic Tags for Biomarker Detection by Mass Cytometry

    NASA Astrophysics Data System (ADS)

    Cao, Pengpeng

    The development of robust, versatile, and high-throughput biosensing techniques has widespread implications for early disease detection and accurate diagnosis. An innovative technology, mass cytometry, has been developed to use isotopically-labelled antibodies to simultaneously study multiple parameters of single cells. The current detection sensitivity of mass cytometry is limited by the number of copies of a given isotope that can be attached to a given antibody. This thesis describes research on the synthesis, characterization, and bioconjugation of a new class of nanoparticle-based labelling agents to be employed for the detection of low-abundance biomarkers by mass cytometry. Hydrophobic lanthanide nanoparticles (Ln NPs) have been prepared by the Winnik group. To render the NPs water-soluble for biological applications, we coated the NP surface with a first generation of multidentate poly(ethylene glycol) (PEG)-based ligands via ligand exchange. We measured the size, morphology, and polydispersity of these hydrophilic NPs by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The colloidal stability of the NPs was determined at various pH and in phosphate buffered saline (PBS) solutions. Tetradentate-PEG-coated NPs (Tetra-NPs) exhibited the best stability at pH 3 to 9, and in PBS. However, when cells were treated with Tetra-NPs in preliminary in vitro studies, significant undesirable non-specific binding (NSB) was observed. In order to tackle the NSB issue presented in the Tetra-NPs, we prepared a second generation of polymer-based ligands using ring-opening metathesis polymerization (ROMP). A small library of ROMP polymers was synthesized, characterized, and used to stabilize NPs in aqueous solutions. The ROMP-NPs were found to have significantly reduced NSB to cells by inductively coupled plasma-mass spectrometry (ICP-MS). To further modify the NPs, amine groups were introduced as functional handles to both the tetradentate-PEG and

  12. Mass Spectrometry Detection of Isolevuglandin Adduction to Specific Protein Residues

    PubMed Central

    Charvet, Casey D.; Pikuleva, Irina A.

    2014-01-01

    The aging process seems to be associated with oxidative stress and hence increased production of lipid peroxidation products, including isolevuglandins (isoLGs). The latter are highly reactive γ-ketoaldehydes which can form covalent adducts with primary amino groups of enzymes and proteins and alter the properties of these biomolecules. Yet, little is currently known about amino acid-containing compounds affected by isoLG modification in different age-related pathological processes. To facilitate the detection of these biomolecules, we developed a strategy in which the purified enzyme (or protein) of interest is first treated with authentic isoLG in vitro to evaluate whether it contains reactive lysine residues prone to modification with isoLGs. The data obtained serve as a basis for making the “GO/NO GO” decision as to whether to pursue a further search of this isoLG modification in a biological sample. In this chapter, we describe the conditions for the in vitro isoLG modification assay and how to use mass spectrometry to identify the isoLG-modified peptides and amino acid residues. Our studies were carried out on cytochrome P450 27A1, an important metabolic enzyme, and utilized iso[4]levuglandin E2 as a prototypical isoLG. The isoLG-treated cytochrome P450 was subjected to proteolysis followed by liquid chromatography-tandem mass spectrometry for peptide separation and analysis by Mascot, a proteomics search engine, for the presence of modified peptides. The developed protocol could be applied to characterization of other enzymes/proteins and other types of unconventional post-translational protein modification. PMID:25323515

  13. Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS).

    PubMed

    González-Mariño, Iria; Quintana, José Benito; Rodríguez, Isaac; Cela, Rafael

    2011-12-15

    An assessment of the sewage occurrence and biodegradability of seven parabens and three halogenated derivatives of methyl paraben (MeP) is presented. Several wastewater samples were collected at three different wastewater treatment plants (WWTPs) during April and May 2010, concentrated by solid-phase extraction (SPE) and analysed by liquid chromatography-electrospray-quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS). The performance of the QTOF system proved to be comparable to triple-quadrupole instruments in terms of quantitative capabilities, with good linearity (R(2) > 0.99 in the 5-500 ng mL(-1) range), repeatability (RSD < 5.6%) and LODs (0.3-4.0 ng L(-1) after SPE). MeP and n-propyl paraben (n-PrP) were the most frequently detected and the most abundant analytes in raw wastewater (0.3-10 μg L(-1)), in accordance with the data displayed in the bibliography and reflecting their wider use in cosmetic formulations. Samples were also evaluated in search for potential halogenated by-products of parabens, formed as a result of their reaction with residual chlorine contained in tap water. Monochloro- and dichloro-methyl paraben (ClMeP and Cl(2)MeP) were found and quantified in raw wastewater at levels between 0.01 and 0.1 μg L(-1). Halogenated derivatives of n-PrP could not be quantified due to the lack of standards; nevertheless, the monochlorinated species (ClPrP) was identified in several samples from its accurate precursor and product ions mass/charge ratios (m/z). Removal efficiencies of parabens and MeP chlorinated by-products in WWTPs exceeded 90%, with the lowest percentages corresponding to the latter species. This trend was confirmed by an activated sludge biodegradation batch test, where non-halogenated parabens had half-lives lower than 4 days, whereas halogenated derivatives of MeP turned out to be more persistent, with up to 10 days of half-life in the case of dihalogenated derivatives. A further stability test performed with raw wastewater

  14. Accurate classification of 29 objects detected in the 39 month Palermo Swift/BAT hard X-ray catalogue

    NASA Astrophysics Data System (ADS)

    Parisi, P.; Masetti, N.; Jiménez-Bailón, E.; Chavushyan, V.; Palazzi, E.; Landi, R.; Malizia, A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Charles, P. A.; Galaz, G.; Mason, E.; McBride, V. A.; Minniti, D.; Morelli, L.; Schiavone, F.; Ubertini, P.

    2012-09-01

    Through an optical campaign performed at four telescopes located in the northern and the southern hemispheres, plus archival data from two on-line sky surveys, we obtained optical spectroscopy for 29 counterparts of unclassified or poorly studied hard X-ray emitting objects detected with Swift /Burst Alert Telescope (BAT) and listed in the 39 month Palermo catalogue. All these objects also have observations taken with Swift /X-ray Telescope (XRT) or XMM-European Photon Imaging Camera (EPIC) which not only allow us to pinpoint their optical counterpart, but also study their X-ray spectral properties (column density, power law photon index, and F2-10 keV flux). We find that 28 sources in our sample are active galactic nuclei (AGNs); 7 are classified as type 1, while 21 are of type 2; the remaining object is a Galactic cataclysmic variable. Among our type 1 AGNs, we find 5 objects of intermediate Seyfert type (1.2-1.9) and one narrow-line Seyfert 1 galaxy; for 4 out of 7 sources, we are able to estimate the central black hole mass. Three of the type 2 AGNs of our sample display optical features typical of low-ionization nuclear emission-line regions (LINER) and one is a likely Compton thick AGN. All galaxies classified in this work are relatively nearby objects since their redshifts lie in the range 0.008-0.075; the only Galactic object found lies at an estimated distance of 90 pc. We also investigate the optical versus X-ray emission ratio of the galaxies of our sample to test the AGN unified model. For these galaxies, we also compare the X-ray absorption (caused by gas) with the optical reddening (caused by dust): we find that for most of our sources, specifically those of type 1.9-2.0 the former is higher than the latter confirming early results of Maiolino and collaborators; this is possibly due to the properties of dust in the circumnuclear obscuring torus of the AGN. Based on observations obtained from the following observatories: the Astronomical Observatory of

  15. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)

    2002-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  16. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrara (Inventor); Fossum, Eric (Inventor)

    2006-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  17. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)

    2005-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  18. Non-targeted screening for contaminants in paper and board food-contact materials using effect-directed analysis and accurate mass spectrometry.

    PubMed

    Bengtström, Linda; Rosenmai, Anna Kjerstine; Trier, Xenia; Jensen, Lisbeth Krüger; Granby, Kit; Vinggaard, Anne Marie; Driffield, Malcolm; Højslev Petersen, Jens

    2016-06-01

    Due to large knowledge gaps in chemical composition and toxicological data for substances involved, paper and board food-contact materials (P&B FCM) have been emerging as a FCM type of particular concern for consumer safety. This study describes the development of a step-by-step strategy, including extraction, high-performance liquid chromatography (HPLC) fractionation, tentative identification of relevant substances and in vitro testing of selected tentatively identified substances. As a case study, we used two fractions from a recycled pizza box sample which exhibited aryl hydrocarbon receptor (AhR) activity. These fractions were analysed by gas chromatography (GC) and ultra-HPLC (UHPLC) coupled to quadrupole time-of-flight mass spectrometers (QTOF MS) in order tentatively to identify substances. The elemental composition was determined for peaks above a threshold, and compared with entries in a commercial mass spectral library for GC-MS (GC-EI-QTOF MS) analysis and an in-house built library of accurate masses for substances known to be used in P&B packaging for UHPLC-QTOF analysis. Of 75 tentatively identified substances, 15 were initially selected for further testing in vitro; however, only seven were commercially available and subsequently tested in vitro and quantified. Of these seven, the identities of three pigments found in printing inks were confirmed by UHPLC tandem mass spectrometry (QqQ MS/MS). Two pigments had entries in the database, meaning that a material relevant accurate mass database can provide a fast tentative identification. Pure standards of the seven tentatively identified substances were tested in vitro but could not explain a significant proportion of the AhR-response in the extract. Targeted analyses of dioxins and PCBs, both well-known AhR agonists, was performed. However, the dioxins could explain approximately 3% of the activity observed in the pizza box extract indicating that some very AhR active substance(s) still remain to be

  19. Non-targeted screening for contaminants in paper and board food-contact materials using effect-directed analysis and accurate mass spectrometry.

    PubMed

    Bengtström, Linda; Rosenmai, Anna Kjerstine; Trier, Xenia; Jensen, Lisbeth Krüger; Granby, Kit; Vinggaard, Anne Marie; Driffield, Malcolm; Højslev Petersen, Jens

    2016-06-01

    Due to large knowledge gaps in chemical composition and toxicological data for substances involved, paper and board food-contact materials (P&B FCM) have been emerging as a FCM type of particular concern for consumer safety. This study describes the development of a step-by-step strategy, including extraction, high-performance liquid chromatography (HPLC) fractionation, tentative identification of relevant substances and in vitro testing of selected tentatively identified substances. As a case study, we used two fractions from a recycled pizza box sample which exhibited aryl hydrocarbon receptor (AhR) activity. These fractions were analysed by gas chromatography (GC) and ultra-HPLC (UHPLC) coupled to quadrupole time-of-flight mass spectrometers (QTOF MS) in order tentatively to identify substances. The elemental composition was determined for peaks above a threshold, and compared with entries in a commercial mass spectral library for GC-MS (GC-EI-QTOF MS) analysis and an in-house built library of accurate masses for substances known to be used in P&B packaging for UHPLC-QTOF analysis. Of 75 tentatively identified substances, 15 were initially selected for further testing in vitro; however, only seven were commercially available and subsequently tested in vitro and quantified. Of these seven, the identities of three pigments found in printing inks were confirmed by UHPLC tandem mass spectrometry (QqQ MS/MS). Two pigments had entries in the database, meaning that a material relevant accurate mass database can provide a fast tentative identification. Pure standards of the seven tentatively identified substances were tested in vitro but could not explain a significant proportion of the AhR-response in the extract. Targeted analyses of dioxins and PCBs, both well-known AhR agonists, was performed. However, the dioxins could explain approximately 3% of the activity observed in the pizza box extract indicating that some very AhR active substance(s) still remain to be

  20. Accurate determination of the thickness or mass per unit area of thin foils and single-crystal wafers for x-ray attenuation measurements

    NASA Astrophysics Data System (ADS)

    Tran, C. Q.; Chantler, C. T.; Barnea, Z.; de Jonge, M. D.

    2004-09-01

    The determination of the local mass per unit area m/A=∫ρdt and the thickness of a specimen is an important aspect of its characterization and is often required for material quality control in fabrication. We discuss common methods which have been used to determine the local thickness of thin specimens. We then propose an x-ray technique which is capable of determining the local thickness and the x-ray absorption profile of a foil or wafer to high accuracy. This technique provides an accurate integration of the column density which is not affected by the presence of voids and internal defects in the material. The technique is best suited to specimens with thickness substantially greater than the dimensions of the surface and void structure. We also show that the attenuation of an x-ray beam by a nonuniform specimen is significantly different from that calculated by using a simple linear average of the mass per unit area and quantify this effect. For much thinner specimens or in the presence of a very structured surface profile we propose a complementary technique capable of attaining high accuracy by the use of a secondary standard. The technique is demonstrated by absolute measurements of the x-ray mass attenuation coefficient of copper and silver.

  1. Accurate determination of the thickness or mass per unit area of thin foils and single-crystal wafers for x-ray attenuation measurements

    SciTech Connect

    Tran, C.Q.; Chantler, C.T.; Barnea, Z.; Jonge, M.D. de

    2004-09-01

    The determination of the local mass per unit area m/A={integral}{rho}dt and the thickness of a specimen is an important aspect of its characterization and is often required for material quality control in fabrication. We discuss common methods which have been used to determine the local thickness of thin specimens. We then propose an x-ray technique which is capable of determining the local thickness and the x-ray absorption profile of a foil or wafer to high accuracy. This technique provides an accurate integration of the column density which is not affected by the presence of voids and internal defects in the material. The technique is best suited to specimens with thickness substantially greater than the dimensions of the surface and void structure. We also show that the attenuation of an x-ray beam by a nonuniform specimen is significantly different from that calculated by using a simple linear average of the mass per unit area and quantify this effect. For much thinner specimens or in the presence of a very structured surface profile we propose a complementary technique capable of attaining high accuracy by the use of a secondary standard. The technique is demonstrated by absolute measurements of the x-ray mass attenuation coefficient of copper and silver.

  2. Metabolite identification of artemether by data-dependent accurate mass spectrometric analysis using an LTQ-Orbitrap hybrid mass spectrometer in combination with the online hydrogen/deuterium exchange technique.

    PubMed

    Liu, Tian; Du, Fuying; Zhu, Fanping; Xing, Jie

    2011-11-15

    Artemether (ARM), the O-methyl ether prodrug of dihydroartemisinin (DHA), is a first-line antimalarial drug used in areas of multi-drug resistance. Artemisinin drugs can be metabolized extensively in vivo and this seems related to their autoinduction pharmacokinetics. In the present study, the metabolite identification of ARM was performed by the generic data-dependent accurate mass spectrometric analysis, using high-resolution (HR) liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) and tandem mass spectrometry (MS/MS) LTQ-Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange for rapid structural characterization. The LC separation was improved allowing the separation of ARM parent drugs and their metabolites from their diastereomers. A total of 77 phase I metabolites of ARM were identified in rat liver microsomal incubates and rat urine, including dihydroartemisinin and artemisinin. In rat bile, 12 phase II metabolites were found. Accurate mass data were obtained in both full scan and HR-MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC/HR-ESI-MS experiments provided additional evidence in differentiating dihydroxylated deoxy-ARM from mono-hydroxylated ARM. The results showed the main phase I metabolites of artemether are hydroxylated, dehydro, demethylated and deoxy products, and they will undergo subsequent phase II glucuronidation processes. Most metabolites were reported for the first time. This study also demonstrated the effectiveness of high-resolution mass spectrometry in combination with an online H/D exchange LC/HR-MS(n) technique in rapid identification of drug metabolites. PMID:22006394

  3. An optimized method for neurotransmitters and their metabolites analysis in mouse hypothalamus by high performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry.

    PubMed

    Yang, Zong-Lin; Li, Hui; Wang, Bing; Liu, Shu-Ying

    2016-02-15

    Neurotransmitters (NTs) and their metabolites are known to play an essential role in maintaining various physiological functions in nervous system. However, there are many difficulties in the detection of NTs together with their metabolites in biological samples. A new method for NTs and their metabolites detection by high performance liquid chromatography coupled with Q Exactive hybrid quadruple-orbitrap high-resolution accurate mass spectrometry (HPLC-HRMS) was established in this paper. This method was a great development of the applying of Q Exactive MS in the quantitative analysis. This method enabled a rapid quantification of ten compounds within 18min. Good linearity was obtained with a correlation coefficient above 0.99. The concentration range of the limit of detection (LOD) and the limit of quantitation (LOQ) level were 0.0008-0.05nmol/mL and 0.002-25.0nmol/mL respectively. Precisions (relative standard deviation, RSD) of this method were at 0.36-12.70%. Recovery ranges were between 81.83% and 118.04%. Concentrations of these compounds in mouse hypothalamus were detected by Q Exactive LC-MS technology with this method.

  4. Sectional power-law correction for the accurate determination of lutetium by isotope dilution multiple collector-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yuan, Hong-Lin; Gao, Shan; Zong, Chun-Lei; Dai, Meng-Ning

    2009-11-01

    In this study, we employ a sectional power-law (SPL) correction that provides accurate and precise measurements of 176Lu/ 175Lu ratios in geological samples using multiple collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Three independent power laws were adopted based on the 176Lu/ 176Yb ratios of samples measured after chemical chromatography. Using isotope dilution (ID) techniques and the SPL correction method, the measured lutetium contents of United States Geological Survey rock standards (BHVO-1, BHVO-2, BCR-2, AGV-1, and G-2) agree well with the recommended values. Results obtained by conventional ICP-MS and INAA are generally higher than those obtained by ID-TIMS and ID-MC-ICP-MS; this discrepancy probably reflects oxide interference and inaccurate corrections.

  5. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures.

    PubMed

    Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi

    2015-01-01

    Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio

  6. Doppler radar detection of exceptional mass-migration of aphids into Finland

    NASA Astrophysics Data System (ADS)

    Nieminen, M.; Leskinen, Matti; Helenius, Juha

    Our objective was to detect mass migrations of insects of economic significance by insect traps and a Doppler weather radar. Migrants were sampled by suction traps, tow nets and light traps in the Helsinki region. We used radar to observe the migrating insects, and trajectories to backtrack mass migrations of aphids (Homoptera, Aphididae) in spring 1988. The aphid migrations were clearly observed in trap catches and by radar. The first migration, mainly involving Euceraphis betulae, occurred on 18 May and was tracked back to northern Poland. The second migration, mainly of Rhopalosiphum padi (a serious pest of small-grain cereals), occurred 3 days later and was tracked back to a large area covering Latvia and western Russia south of St Petersburg. The third migration included both E. betulae and R. padi, and took place on 30 May. It originated from Estonia. Neither trap nor radar data provide exact quantitative information on migrations. Trapping efficiency depends strongly on wind speed and insect size. Radar echo intensity is very strongly related to the sizes of insects in the large volume of air measured, and the sizes are not known accurately. Weather data, especially temperature, can be used in predicting the development of aphids, and air-parcel trajectories in estimating the source areas of migrants. These methods for forecasting aphid migrations, combined with radar observations, are useful for warning purposes and to intensify insect trapping. This would contribute to more efficient agricultural pest management.

  7. Doppler radar detection of exceptional mass-migration of aphids into Finland.

    PubMed

    Nieminen, M; Leskinen, M; Helenius, J

    2000-11-01

    Our objective was to detect mass migrations of insects of economic significance by insect traps and a Doppler weather radar. Migrants were sampled by suction traps, tow nets and light traps in the Helsinki region. We used radar to observe the migrating insects, and trajectories to backtrack mass migrations of aphids (Homoptera, Aphididae) in spring 1988. The aphid migrations were clearly observed in trap catches and by radar. The first migration, mainly involving Euceraphis betulae, occurred on 18 May and was tracked back to northern Poland. The second migration, mainly of Rhopalosiphum padi (a serious pest of small-grain cereals), occurred 3 days later and was tracked back to a large area covering Latvia and western Russia south of St Petersburg. The third migration included both E. betulae and R. padi, and took place on 30 May. It originated from Estonia. Neither trap nor radar data provide exact quantitative information on migrations. Trapping efficiency depends strongly on wind speed and insect size. Radar echo intensity is very strongly related to the sizes of insects in the large volume of air measured, and the sizes are not known accurately. Weather data, especially temperature, can be used in predicting the development of aphids, and air-parcel trajectories in estimating the source areas of migrants. These methods for forecasting aphid migrations, combined with radar observations, are useful for warning purposes and to intensify insect trapping. This would contribute to more efficient agricultural pest management.

  8. Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection.

    PubMed

    Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan

    2011-06-01

    Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O(2) content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids.

  9. Loop Mediated Isothermal Amplification (LAMP) Accurately Detects Malaria DNA from Filter Paper Blood Samples of Low Density Parasitaemias

    PubMed Central

    González, Iveth J.; Polley, Spencer D.; Bell, David; Shakely, Delér; Msellem, Mwinyi I.; Björkman, Anders; Mårtensson, Andreas

    2014-01-01

    Background Loop mediated isothermal amplification (LAMP) provides an opportunity for improved, field-friendly detection of malaria infections in endemic areas. However data on the diagnostic accuracy of LAMP for active case detection, particularly low-density parasitaemias, are lacking. We therefore evaluated the performance of a new LAMP kit compared with PCR using DNA from filter paper blood spots. Methods and Findings Samples from 865 fever patients and 465 asymptomatic individuals collected in Zanzibar were analysed for Pan (all species) and Pf (P. falciparum) DNA with the Loopamp MALARIA Pan/Pf kit. Samples were amplified at 65°C for 40 minutes in a real-time turbidimeter and results were compared with nested PCR. Samples with discordant results between LAMP and nested PCR were analysed with real-time PCR. The real-time PCR corrected nested PCR result was defined as gold standard. Among the 117 (13.5%) PCR detected P. falciparum infections from fever patients (mean parasite density 7491/µL, range 6–782,400) 115, 115 and 111 were positive by Pan-LAMP, Pf-LAMP and nested PCR, respectively. The sensitivities were 98.3% (95%CI 94–99.8) for both Pan and Pf-LAMP. Among the 54 (11.6%) PCR positive samples from asymptomatic individuals (mean parasite density 10/µL, range 0–4972) Pf-LAMP had a sensitivity of 92.7% (95%CI 80.1–98.5) for detection of the 41 P. falciparum infections. Pan-LAMP had sensitivities of 97% (95%CI 84.2–99.9) and 76.9% (95%CI 46.2–95) for detection of P. falciparum and P. malariae, respectively. The specificities for both Pan and Pf-LAMP were 100% (95%CI 99.1–100) in both study groups. Conclusion Both components of the Loopamp MALARIA Pan/Pf detection kit revealed high diagnostic accuracy for parasite detection among fever patients and importantly also among asymptomatic individuals of low parasite densities from minute blood volumes preserved on filter paper. These data support LAMPs potential role for improved detection of low

  10. Are the Original and Second Edition of the California Verbal Learning Test Equally Accurate in Detecting Malingering?

    ERIC Educational Resources Information Center

    Greve, Kevin W.; Curtis, Kelly L.; Bianchini, Kevin J.; Ord, Jonathan S.

    2009-01-01

    This two-part study sought to determine the equivalence of the California Verbal Learning Tests (CVLT-1 and CVLT-2) in the detection of malingering in traumatic brain injury (TBI) and chronic pain. Part 1 compared a variety of scores from the two versions in carefully matched patient groups. Part 2 used criterion groups (known-groups) methodology…

  11. Mode-shape-based mass detection scheme using mechanically diverse, indirectly coupled microresonator arrays

    NASA Astrophysics Data System (ADS)

    Glean, Aldo A.; Judge, John A.; Vignola, Joseph F.; Ryan, Teresa J.

    2015-02-01

    We explore vibration localization in arrays of microresonators used for ultrasensitive mass detection and describe an algorithm for identifying the location and amount of added mass using measurements of a vibration mode of the system. For a set of sensing elements coupled through a common shuttle mass, the inter-element coupling is shown to be proportional to the ratio of the element masses to the shuttle mass and to vary with the frequency mistuning between any two sensing elements. When any two elements have sufficiently similar frequencies, mass adsorption on one element can result in measurable changes to multiple modes of the system. We describe the effects on system frequencies and mode shapes due to added mass, in terms of mass ratio and frequency spacing. In cases in which modes are not fully localized, frequency-shift-based mass detection methods may give ambiguous results. The mode-shape-based detection algorithm presented uses a single measured mode shape and corresponding natural frequency to identify the location and amount of added mass. Mass detection in the presence of measurement noise is numerically simulated using a ten element sensor array. The accuracy of the detection scheme is shown to depend on the amplitude with which each element vibrates in the chosen mode.

  12. Questioning the Specificity of ASRS-v1.1 to Accurately Detect ADHD in Substance Abusing Populations

    ERIC Educational Resources Information Center

    Chiasson, Jean-Pierre; Stavro, Katherine; Rizkallah, Elie; Lapierre, Luc; Dussault, Maxime; Legault, Louis; Potvin, Stephane

    2012-01-01

    Objective: To assess the specificity of the Adult ADHD Self-Report Scale (ASRS-v1.1) in detecting ADHD among individuals with substance use disorders (SUDs). Method: A chart review of 183 SUD patients was conducted. Patients were screened for ADHD with the ASRS-v1.1 and were later assessed by a psychiatrist specialized in ADHD. Results: Among SUD…

  13. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    NASA Astrophysics Data System (ADS)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  14. Comparison of Methodologies to Detect Low Levels of Hemolysis in Serum for Accurate Assessment of Serum microRNAs

    PubMed Central

    Shah, Jaynish S.; Soon, Patsy S.; Marsh, Deborah J.

    2016-01-01

    microRNAs have emerged as powerful regulators of many biological processes, and their expression in many cancer tissues has been shown to correlate with clinical parameters such as cancer type and prognosis. Present in a variety of biological fluids, microRNAs have been described as a ‘gold mine’ of potential noninvasive biomarkers. Release of microRNA content of blood cells upon hemolysis dramatically alters the microRNA profile in blood, potentially affecting levels of a significant number of proposed biomarker microRNAs and, consequently, accuracy of serum or plasma-based tests. Several methods to detect low levels of hemolysis have been proposed; however, a direct comparison assessing their sensitivities is currently lacking. In this study, we evaluated the sensitivities of four methods to detect hemolysis in serum (listed in the order of sensitivity): measurement of hemoglobin using a Coulter® AcT diff™ Analyzer, visual inspection, the absorbance of hemoglobin measured by spectrophotometry at 414 nm and the ratio of red blood cell-enriched miR-451a to the reference microRNA miR-23a-3p. The miR ratio detected hemolysis down to approximately 0.001%, whereas the Coulter® AcT diff™ Analyzer was unable to detect hemolysis lower than 1%. The spectrophotometric method could detect down to 0.004% hemolysis, and correlated with the miR ratio. Analysis of hemolysis in a cohort of 86 serum samples from cancer patients and healthy controls showed that 31 of 86 (36%) were predicted by the miR ratio to be hemolyzed, whereas only 8 of these samples (9%) showed visible pink discoloration. Using receiver operator characteristic (ROC) analyses, we identified absorbance cutoffs of 0.072 and 0.3 that could identify samples with low and high levels of hemolysis, respectively. Overall, this study will assist researchers in the selection of appropriate methodologies to test for hemolysis in serum samples prior to quantifying expression of microRNAs. PMID:27054342

  15. Novel real-time simultaneous amplification and testing method to accurately and rapidly detect Mycobacterium tuberculosis complex.

    PubMed

    Cui, Zhenling; Wang, Yongzhong; Fang, Liang; Zheng, Ruijuan; Huang, Xiaochen; Liu, Xiaoqin; Zhang, Gang; Rui, Dongmei; Ju, Jinliang; Hu, Zhongyi

    2012-03-01

    The aim of this study was to establish and evaluate a simultaneous amplification and testing method for detection of the Mycobacterium tuberculosis complex (SAT-TB assay) in clinical specimens by using isothermal RNA amplification and real-time fluorescence detection. In the SAT-TB assay, a 170-bp M. tuberculosis 16S rRNA fragment is reverse transcribed to DNA by use of Moloney murine leukemia virus (M-MLV) reverse transcriptase, using specific primers incorporating the T7 promoter sequence, and undergoes successive cycles of amplification using T7 RNA polymerase. Using a real-time PCR instrument, hybridization of an internal 6-carboxyfluorescein-4-[4-(dimethylamino)phenylazo] benzoic acid N-succinimidyl ester (FAM-DABCYL)-labeled fluorescent probe can be used to detect RNA amplification. The SAT-TB assay takes less than 1.5 h to perform, and the sensitivity of the assay for detection of M. tuberculosis H37Rv is 100 CFU/ml. The TB probe has no cross-reactivity with nontuberculous mycobacteria or other common respiratory tract pathogens. For 253 pulmonary tuberculosis (PTB) specimens and 134 non-TB specimens, the SAT-TB results correlated with 95.6% (370/387 specimens) of the Bactec MGIT 960 culture assay results. The sensitivity, specificity, and positive and negative predictive values of the SAT-TB test for the diagnosis of PTB were 67.6%, 100%, 100%, and 62.0%, respectively, compared to 61.7%, 100%, 100%, and 58.0% for Bactec MGIT 960 culture. For PTB diagnosis, the sensitivities of the SAT-TB and Bactec MGIT 960 culture methods were 97.6% and 95.9%, respectively, for smear-positive specimens and 39.2% and 30.2%, respectively, for smear-negative specimens. In conclusion, the SAT-TB assay is a novel, simple test with a high specificity which may enhance the detection rate of TB. It is therefore a promising tool for rapid diagnosis of M. tuberculosis infection in clinical microbiology laboratories.

  16. Ultrasonic Measurement of Change in Elasticity due to Endothelium Dependent Relaxation Response by Accurate Detection of Artery-Wall Boundary

    NASA Astrophysics Data System (ADS)

    Kaneko, Takuya; Hasegawa, Hideyuki; Kanai, Hiroshi

    2007-07-01

    Ross hypothesized that an endothelial dysfunction is considered to be an initial step in atherosclerosis. Endothelial cells, which release nitric oxide (NO) in response to shear stress from blood flow, have a function of relaxing smooth muscle in the media of the arterial wall. For the assessment of the endothelial function, there is a conventional method in which the change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) is measured with ultrasound. However, despite the fact that the collagen-rich hard adventitia does not respond to NO, the conventional method measures the change in diameter depending on the mechanical property of the entire wall including the adventitia. Therefore, we developed a method of measuring the change in the thickness and the elasticity of the brachial artery during a cardiac cycle using the phased tracking method for the evaluation of the mechanical property of only the intima-media region. In this study, the initial positions of echoes from the lumen-intima and media-adventitia boundaries are determined using complex template matching to accurately estimate the minute change in the thickness and the elasticity of the brachial and radial arteries. The ambiguity in the determination of such boundaries was eliminated using complex template matching, and the change in elasticity measured by the proposed method was larger than the change in inner diameter obtained by the conventional method.

  17. Accurate variant detection across non-amplified and whole genome amplified DNA using targeted next generation sequencing

    PubMed Central

    2012-01-01

    Background Many hypothesis-driven genetic studies require the ability to comprehensively and efficiently target specific regions of the genome to detect sequence variations. Often, sample availability is limited requiring the use of whole genome amplification (WGA). We evaluated a high-throughput microdroplet-based PCR approach in combination with next generation sequencing (NGS) to target 384 discrete exons from 373 genes involved in cancer. In our evaluation, we compared the performance of six non-amplified gDNA samples from two HapMap family trios. Three of these samples were also preamplified by WGA and evaluated. We tested sample pooling or multiplexing strategies at different stages of the tested targeted NGS (T-NGS) workflow. Results The results demonstrated comparable sequence performance between non-amplified and preamplified samples and between different indexing strategies [sequence specificity of 66.0% ± 3.4%, uniformity (coverage at 0.2× of the mean) of 85.6% ± 0.6%]. The average genotype concordance maintained across all the samples was 99.5% ± 0.4%, regardless of sample type or pooling strategy. We did not detect any errors in the Mendelian patterns of inheritance of genotypes between the parents and offspring within each trio. We also demonstrated the ability to detect minor allele frequencies within the pooled samples that conform to predicted models. Conclusion Our described PCR-based sample multiplex approach and the ability to use WGA material for NGS may enable researchers to perform deep resequencing studies and explore variants at very low frequencies and cost. PMID:22994565

  18. Full automatic fiducial marker detection on coil arrays for accurate instrumentation placement during MRI guided breast interventions

    NASA Astrophysics Data System (ADS)

    Filippatos, Konstantinos; Boehler, Tobias; Geisler, Benjamin; Zachmann, Harald; Twellmann, Thorsten

    2010-02-01

    With its high sensitivity, dynamic contrast-enhanced MR imaging (DCE-MRI) of the breast is today one of the first-line tools for early detection and diagnosis of breast cancer, particularly in the dense breast of young women. However, many relevant findings are very small or occult on targeted ultrasound images or mammography, so that MRI guided biopsy is the only option for a precise histological work-up [1]. State-of-the-art software tools for computer-aided diagnosis of breast cancer in DCE-MRI data offer also means for image-based planning of biopsy interventions. One step in the MRI guided biopsy workflow is the alignment of the patient position with the preoperative MR images. In these images, the location and orientation of the coil localization unit can be inferred from a number of fiducial markers, which for this purpose have to be manually or semi-automatically detected by the user. In this study, we propose a method for precise, full-automatic localization of fiducial markers, on which basis a virtual localization unit can be subsequently placed in the image volume for the purpose of determining the parameters for needle navigation. The method is based on adaptive thresholding for separating breast tissue from background followed by rigid registration of marker templates. In an evaluation of 25 clinical cases comprising 4 different commercial coil array models and 3 different MR imaging protocols, the method yielded a sensitivity of 0.96 at a false positive rate of 0.44 markers per case. The mean distance deviation between detected fiducial centers and ground truth information that was appointed from a radiologist was 0.94mm.

  19. Damage detection using experimentally measured mass and stiffness matrices

    NASA Technical Reports Server (NTRS)

    Peterson, L. D.; Alvin, K. F.; Doebling, S. W.; Park, K. C.

    1993-01-01

    A method is presented for locating physical damage or change in a structure using experimentally measured mass and stiffness matrices. The approach uses a recently developed algorithm for transforming a state-space realization into a second order structural model with physical displacements as the generalized coordinates. This is accomplished by first rotating a state-space model of the identified structural dynamics into modal coordinates and approximating the mass normalized modal vectors for the output measurement set. Next, the physical mass, damping and stiffness matrices are synthesized directly from the measured modal parameters. This yields experimental mass and stiffness matrices for the structure without the use of a finite element model or a numerical search. The computed mass and stiffness are asymptotically equivalent to a static condensation of the global physical coordinate model. Techniques for solving the inverse connectivity problem are then developed whereby it is possible to assess the stiffness in a region of the structure bounded by several sensors. Applications to both simulated data and experimental data are used to discuss the effectiveness of the approach.

  20. Damage detection using experimentally measured mass and stiffness matrices

    NASA Astrophysics Data System (ADS)

    Peterson, L. D.; Alvin, K. F.; Doebling, S. W.; Park, K. C.

    1993-04-01

    A method is presented for locating physical damage or change in a structure using experimentally measured mass and stiffness matrices. The approach uses a recently developed algorithm for transforming a state-space realization into a second order structural model with physical displacements as the generalized coordinates. This is accomplished by first rotating a state-space model of the identified structural dynamics into modal coordinates and approximating the mass normalized modal vectors for the output measurement set. Next, the physical mass, damping and stiffness matrices are synthesized directly from the measured modal parameters. This yields experimental mass and stiffness matrices for the structure without the use of a finite element model or a numerical search. The computed mass and stiffness are asymptotically equivalent to a static condensation of the global physical coordinate model. Techniques for solving the inverse connectivity problem are then developed whereby it is possible to assess the stiffness in a region of the structure bounded by several sensors. Applications to both simulated data and experimental data are used to discuss the effectiveness of the approach.

  1. Mass spectrometric detection of radiocarbon for dating applications

    NASA Astrophysics Data System (ADS)

    Synal, H.-A.; Schulze-König, T.; Seiler, M.; Suter, M.; Wacker, L.

    2013-01-01

    Radiocarbon is still the most important nuclide measured by accelerator mass spectrometry (AMS). The related capabilities for dating and tracer studies are eminent not only in archaeology but also drive important applications in the earth and environmental sciences as well as in biomedical research. So far, standard mass spectrometric systems have not been capable of radiocarbon dating because of interfering molecular isobars which, however, can be completely eliminated in charge changing processes at high ion beam energies (MeV) [1,2]. Here, we present a novel type mass spectrometry system for radiocarbon analyses. Radiocarbon dating was performed using 45 keV 14C ions from the ion source and a molecule dissociation unit kept at ground potential. This proof-of-principle experiment demonstrates for the first time the feasibility of mass spectrometric radiocarbon dating without an accelerator. The results obtained will be the basis of an optimized design for a radiocarbon dating instrument comparable in size, complexity and cost to standard mass spectrometers.

  2. Accurate detection of male subclinical genital tract infection via cervical culture and DNA hybridization assay of the female partner.

    PubMed

    Trum, J W; Pannekoek, Y; Spanjaard, L; Bleker, O P; Van Der Veen, F

    2000-02-01

    The accuracy of the PACE2 DNA hybridization assay of the cervix and cervical culture in female partners for the diagnosis of male subclinical genital tract infection were assessed in a male infertility population. A total of 184 men were screened for the presence of Chlamydia trachomatis, Ureaplasma urealyticum and Mycoplasma hominis. Seventy-one men were identified with a positive test for one or more of the above mentioned micro-organisms. The overall prevalence of bacterial infection was 39%. Female partners of all men were tested with the PACE2 DNA hybridization assay to detect a C. trachomatis infection. Sensitivity was 100% and specificity was 100%. In 67 female partners (94%) of men who tested positive for U. urealyticum and/or M. hominis, a cervical swab culture was performed. The sensitivity of the cervical swab culture was 100%. In view of the high prevalence of U. urealyticum and M. hominis in the male genital tract and the role these sexually transmitted pathogens may play in infertility, one might question whether all couples should be screened for the presence of these pathogens. Transurethral swab culture after digital prostatic massage is disincentive to men. The cervical culture in their female partner, performed as part of the routine fertility work-up, is a suitable alternative to detect the presence of these micro-organisms in the male genital tract.

  3. Isothermal microcalorimetry accurately detects bacteria, tumorous microtissues, and parasitic worms in a label-free well-plate assay

    PubMed Central

    Braissant, Olivier; Keiser, Jennifer; Meister, Isabel; Bachmann, Alexander; Wirz, Dieter; Göpfert, Beat; Bonkat, Gernot; Wadsö, Ingemar

    2015-01-01

    Isothermal microcalorimetry is a label-free assay that allows monitoring of enzymatic and metabolic activities. The technique has strengths, but most instruments have a low throughput, which has limited their use for bioassays. Here, an isothermal microcalorimeter, equipped with a vessel holder similar to a 48-well plate, was used. The increased throughput of this microcalorimeter makes it valuable for biomedical and pharmaceutical applications. Our results show that the sensitivity of the instrument allows the detection of 3 × 104 bacteria per vial. Growth of P. mirabilis in Luria Broth medium was detected between 2 and 9 h with decreasing inoculum. The culture released 2.1J with a maximum thermal power of 76 μW. The growth rate calculated using calorimetric and spectrophotometric data were 0.60 and 0.57 h–1, respectively. Additional insight on protease activities of P. mirabilis matching the last peak in heat production could be gathered as well. Growth of tumor microtissues releasing a maximum thermal power of 2.1 μW was also monitored and corresponds to a diameter increase of the microtissues from ca. 100 to 428 μm. This opens new research avenues in cancer research, diagnostics, and development of new antitumor drugs. For parasitic worms, the technique allows assessment of parasite survival using motor and metabolic activities even with a single worm. PMID:25511812

  4. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing.

    PubMed

    Wang, Ting; He, Quanze; Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing.

  5. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing.

    PubMed

    Wang, Ting; He, Quanze; Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  6. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing

    PubMed Central

    Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  7. CYP450 phenotyping and metabolite identification of quinine by accurate mass UPLC-MS analysis: a possible metabolic link to blackwater fever

    PubMed Central

    2013-01-01

    Background The naturally occurring alkaloid drug, quinine is commonly used for the treatment of severe malaria. Despite centuries of use, its metabolism is still not fully understood, and may play a role in the haemolytic disorders associated with the drug. Methods Incubations of quinine with CYPs 1A2, 2C9, 2C19, 2D6, and 3A4 were conducted, and the metabolites were characterized by accurate mass UPLC-MSE analysis. Reactive oxygen species generation was also measured in human erythrocytes incubated in the presence of quinine with and without microsomes. Results The metabolites 3-hydroxyquinine, 2’-oxoquininone, and O-desmethylquinine were observed after incubation with CYPs 3A4 (3-hydroxyquinine and 2’-oxoquininone) and 2D6 (O-desmethylquinine). In addition, multiple hydroxylations were observed both on the quinoline core and the quinuclidine ring system. Of the five primary abundance CYPs tested, 3A4, 2D6, 2C9, and 2C19 all demonstrated activity toward quinine, while 1A2 did not. Further, quinine produced robust dose-dependent oxidative stress in human erythrocytes in the presence of microsomes. Conclusions Taken in context, these data suggest a CYP-mediated link between quinine metabolism and the poorly understood haemolytic condition known as blackwater fever, often associated with quinine ingestion. PMID:23800033

  8. Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies

    SciTech Connect

    Gourgiotis, A.; Isnard, H.; Aubert, M.; Dupont, E.; AlMahamid, I.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.; Tian, G.; Rao, L.; Lukens, W.

    2011-02-01

    The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm ({approx}97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

  9. DNA extraction techniques compared for accurate detection of genetically modified organisms (GMOs) in maize food and feed products.

    PubMed

    Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J

    2015-08-01

    In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products. PMID:26243938

  10. Functional DNA quantification guides accurate next-generation sequencing mutation detection in formalin-fixed, paraffin-embedded tumor biopsies

    PubMed Central

    2013-01-01

    The formalin-fixed, paraffin-embedded (FFPE) biopsy is a challenging sample for molecular assays such as targeted next-generation sequencing (NGS). We compared three methods for FFPE DNA quantification, including a novel PCR assay (‘QFI-PCR’) that measures the absolute copy number of amplifiable DNA, across 165 residual clinical specimens. The results reveal the limitations of commonly used approaches, and demonstrate the value of an integrated workflow using QFI-PCR to improve the accuracy of NGS mutation detection and guide changes in input that can rescue low quality FFPE DNA. These findings address a growing need for improved quality measures in NGS-based patient testing. PMID:24001039

  11. DNA extraction techniques compared for accurate detection of genetically modified organisms (GMOs) in maize food and feed products.

    PubMed

    Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J

    2015-08-01

    In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.

  12. Mass spectrometry-based detection of protein acetylation

    PubMed Central

    Li, Yu; Silva, Jeffrey C.; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    Summary Improved sample preparation techniques and increasingly sensitive mass spectrometry (MS) analysis have revolutionized the study of protein post-translational modifications (PTMs). Here, we describe a general approach for immunopurification and MS-based identification of acetylated proteins in biological samples. This approach is useful characterizing changes in the acetylome in response to biological interventions (1). PMID:24014401

  13. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance

    PubMed Central

    Wang, Shaopeng; Shan, Xiaonan; Patel, Urmez; Huang, Xinping; Lu, Jin; Li, Jinghong; Tao, Nongjian

    2010-01-01

    We report on label-free imaging, detection, and mass/size measurement of single viral particles in solution by high-resolution surface plasmon resonance microscopy. Diffraction of propagating plasmon waves along a metal surface by the viral particles creates images of the individual particles, which allow us to detect the binding of the viral particles to surfaces functionalized with and without antibodies. We show that the intensity of the particle image is related to the mass of the particle, from which we determine the mass and mass distribution of influenza viral particles with a mass detection limit of approximately 1 ag (or 0.2 fg/mm2). This work demonstrates a multiplexed method to measure the masses of individual viral particles and to study the binding activity of the viral particles. PMID:20798340

  14. False positive reduction in mammographic mass detection using local binary patterns.

    PubMed

    Oliver, Arnau; Lladó, Xavier; Freixenet, Jordi; Martí, Joan

    2007-01-01

    In this paper we propose a new approach for false positive reduction in the field of mammographic mass detection. The goal is to distinguish between the true recognized masses and the ones which actually are normal parenchyma. Our proposal is based on Local Binary Patterns (LBP) for representing salient micro-patterns and preserving at the same time the spatial structure of the masses. Once the descriptors are extracted, Support Vector Machines (SVM) are used for classifying the detected masses. We test our proposal using a set of 1792 suspicious regions of interest extracted from the DDSM database. Exhaustive experiments illustrate that LBP features are effective and efficient for false positive reduction even at different mass sizes, a critical aspect in mass detection systems. Moreover, we compare our proposal with current methods showing that LBP obtains better performance. PMID:18051070

  15. Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: compound class targeting in a metabolomics workflow.

    PubMed

    Bobeldijk, Ivana; Hekman, Maarten; de Vries-van der Weij, Jitske; Coulier, Leon; Ramaker, Raymond; Kleemann, Robert; Kooistra, Teake; Rubingh, Carina; Freidig, Andreas; Verheij, Elwin

    2008-08-15

    We report a sensitive, generic method for quantitative profiling of bile acids and other endogenous metabolites in small quantities of various biological fluids and tissues. The method is based on a straightforward sample preparation, separation by reversed-phase high performance liquid-chromatography mass spectrometry (HPLC-MS) and electrospray ionisation in the negative ionisation mode (ESI-). Detection is performed in full scan using the linear ion trap Fourier transform mass spectrometer (LTQ-FTMS) generating data for many (endogenous) metabolites, not only bile acids. A validation of the method in urine, plasma and liver was performed for 17 bile acids including their taurine, sulfate and glycine conjugates. The method is linear in the 0.01-1 microM range. The accuracy in human plasma ranges from 74 to 113%, in human urine 77 to 104% and in mouse liver 79 to 140%. The precision ranges from 2 to 20% for pooled samples even in studies with large number of samples (n>250). The method was successfully applied to a multi-compartmental APOE*3-Leiden mouse study, the main goal of which was to analyze the effect of increasing dietary cholesterol concentrations on hepatic cholesterol homeostasis and bile acid synthesis. Serum and liver samples from different treatment groups were profiled with the new method. Statistically significant differences between the diet groups were observed regarding total as well as individual bile acid concentrations.

  16. New Method for Accurate Calibration of Micro-Channel Plate based Detection Systems and its use in the Fast Plasma Investigation of NASA's Magnetospheric MultiScale Mission

    NASA Astrophysics Data System (ADS)

    Gliese, U.; Avanov, L. A.; Barrie, A.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Zeuch, M.; Pollock, C. J.; Jacques, A. D.

    2013-12-01

    The Fast Plasma Investigation (FPI) of the NASA Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers (DESs) and 16 Dual Ion Spectrometers (DISs) with 4 of each type on each of 4 spacecraft to enable fast (30ms for electrons; 150ms for ions) and spatially differentiated measurements of full the 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity and reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions. Traditionally, the micro-channel plate (MCP) based detection systems for electrostatic particle spectrometers have been calibrated by setting a fixed detection threshold and, subsequently, measuring a detection system count rate plateau curve to determine the MCP voltage that ensures the count rate has reached a constant value independent of further variation in the MCP voltage. This is achieved when most of the MCP pulse height distribution (PHD) is located at higher values (larger pulses) than the detection amplifier threshold. This method is adequate in single-channel detection systems and in multi-channel detection systems with very low crosstalk between channels. However, in dense multi-channel systems, it can be inadequate. Furthermore, it fails to fully and individually characterize each of the fundamental parameters of the detection system. We present a new detection system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. The fundamental

  17. An accurate projector gamma correction method for phase-measuring profilometry based on direct optical power detection

    NASA Astrophysics Data System (ADS)

    Liu, Miao; Yin, Shibin; Yang, Shourui; Zhang, Zonghua

    2015-10-01

    Digital projector is frequently applied to generate fringe pattern in phase calculation-based three dimensional (3D) imaging systems. Digital projector often works with camera in this kind of systems so the intensity response of a projector should be linear in order to ensure the measurement precision especially in Phase-Measuring Profilometry (PMP). Some correction methods are often applied to cope with the non-linear intensity response of the digital projector. These methods usually rely on camera and gamma function is often applied to compensate the non-linear response so the correction performance is restricted by the dynamic range of camera. In addition, the gamma function is not suitable to compensate the nonmonotonicity intensity response. This paper propose a gamma correction method by the precisely detecting the optical energy instead of using a plate and camera. A photodiode with high dynamic range and linear response is used to directly capture the light optical from the digital projector. After obtaining the real gamma curve precisely by photodiode, a gray level look-up table (LUT) is generated to correct the image to be projected. Finally, this proposed method is verified experimentally.

  18. Reliable detection of milk allergens in food using a high-resolution, stand-alone mass spectrometer.

    PubMed

    Monaci, Linda; Losito, Ilario; Palmisano, Francesco; Visconti, Angelo

    2011-01-01

    Reliable methods are needed for detection of allergenic milk proteins in complex food matrixes. The feasibility of an LC/high-resolution MS method for the analysis of milk proteins in a thermally processed model food (incurred cookies) and in white wine spiked, respectively, with milk powder and caseinate is described. Detection of milk proteins was based on the identification of unique peptides in the tryptic digests of cookie/wine extracts using an RP-HPLC separation coupled to an Exactive nonhybrid mass spectrometer using Orbitrap technology. The extremely high mass accuracy and resolution provided by the Orbitrap analyzer allowed a fast preliminary identification of four previously proposed peptide markers of caseins using only accurate values of the m/z of their ions. No interference was observed, despite the complexity of the analyzed matrixes. Moreover, the availability of a high- energy, collisionally activated dissociation cell integrated in the mass spectrometer enabled acquisition of peptide MS/MS-like spectra through post-source fragmentation. Confirmation of peptide marker identity could then be achieved by a comparison between experimental and predicted product ions. The described method shows the great potential of Orbitrap MS as a reliable technique in the field of protein allergen detection once the peptide markers are identified.

  19. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1

    NASA Technical Reports Server (NTRS)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-01-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (approx. 3 to 20 solar masses) as well as supermassive black holes (approx.. 10(exp 6) to 10(exp 9) Solar Mass) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (approx. 10(exp 2) to 10(exp 5) Solar Mass), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between approx. 9 × 10(exp 3) Solar Mass and approx. 9 × 10(exp 4) Solar Mass.

  20. [Detection of asymptomatic prolactinoma by a mass screening program].

    PubMed

    Ichihara, K; Miyai, K

    1990-06-01

    Mass screening for prolactinoma was performed among the general population of 10,550 normal adults (8,450 men and 2,100 women) using a paired assay method for serum PRL. Forty subjects with hyperprolactinemia were studied. There were five patients with pituitary prolactinoma, and 10 with 'big' prolactinemia. The patients with prolactinoma had few if any complaints. The occurrence of asymptomatic big prolactinemia showed marked female predominance. The implication of such a screening program for laboratory medicine in future is two-fold: 1) prospect of laboratory 'physician' taking active role in the promotion of mass screening program to cover wide range of disorders affecting adult population and 2) feasibility of analyzing or discovering subclinical disorders of academic interest, being allowed to explore every single individual in the population.

  1. Non-targeted analysis of electronics waste by comprehensive two-dimensional gas chromatography combined with high-resolution mass spectrometry: Using accurate mass information and mass defect analysis to explore the data.

    PubMed

    Ubukata, Masaaki; Jobst, Karl J; Reiner, Eric J; Reichenbach, Stephen E; Tao, Qingping; Hang, Jiliang; Wu, Zhanpin; Dane, A John; Cody, Robert B

    2015-05-22

    Comprehensive two-dimensional gas chromatography (GC×GC) and high-resolution mass spectrometry (HRMS) offer the best possible separation of their respective techniques. Recent commercialization of combined GC×GC-HRMS systems offers new possibilities for the analysis of complex mixtures. However, such experiments yield enormous data sets that require new informatics tools to facilitate the interpretation of the rich information content. This study reports on the analysis of dust obtained from an electronics recycling facility by using GC×GC in combination with a new high-resolution time-of-flight (TOF) mass spectrometer. New software tools for (non-traditional) Kendrick mass defect analysis were developed in this research and greatly aided in the identification of compounds containing chlorine and bromine, elements that feature in most persistent organic pollutants (POPs). In essence, the mass defect plot serves as a visual aid from which halogenated compounds are recognizable on the basis of their mass defect and isotope patterns. Mass chromatograms were generated based on specific ions identified in the plots as well as region of the plot predominantly occupied by halogenated contaminants. Tentative identification was aided by database searches, complementary electron-capture negative ionization experiments and elemental composition determinations from the exact mass data. These included known and emerging flame retardants, such as polybrominated diphenyl ethers (PBDEs), hexabromobenzene, tetrabromo bisphenol A and tris (1-chloro-2-propyl) phosphate (TCPP), as well as other legacy contaminants such as polychlorinated biphenyls (PCBs) and polychlorinated terphenyls (PCTs).

  2. A dried blood spot mass spectrometry metabolomic approach for rapid breast cancer detection

    PubMed Central

    Wang, Qingjun; Sun, Tao; Cao, Yunfeng; Gao, Peng; Dong, Jun; Fang, Yanhua; Fang, Zhongze; Sun, Xiaoyu; Zhu, Zhitu

    2016-01-01

    Objective Breast cancer (BC) is still a lethal threat to women worldwide. An accurate screening and diagnosis strategy performed in an easy-to-operate manner is highly warranted in clinical perspective. Besides the routinely focused protein markers, blood is full of small molecular metabolites with diverse structures and properties. This study aimed to screen metabolite markers with BC diagnosis potentials. Methods A dried blood spot-based direct infusion mass spectrometry (MS) metabolomic analysis was conducted for BC and non-BC differentiation. The targeted analytes included 23 amino acids and 26 acylcarnitines. Results Multivariate analysis screened out 21 BC-related metabolites in the blood. Regression analysis generated a diagnosis model consisting of parameters Pip, Asn, Pro, C14:1/C16, Phe/Tyr, and Gly/Ala. Tested with another set of BC and non-BC samples, this model showed a sensitivity of 92.2% and a specificity of 84.4%. Compared to the routinely used protein markers, this model exhibited distinct advantage with its higher sensitivity. Conclusion Blood metabolites screening is a more plausible approach for BC detection. Furthermore, this direct MS analysis could be finished within few minutes, which means that its throughput is higher than the currently used imaging techniques. PMID:27042107

  3. Dual energy detection of weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Budner, Gregory J.

    2006-03-01

    There is continuing plans and actions from terrorists to use "violence to inculcate fear with intent to coerce or try to intimidate governments or societies in the pursuit of goals that are generally political, religious or ideological." (Joint Pub 3-07.2) One can characterize the types of attacks and plan to interdict terrorist actions before they become crises. This paper focuses on Radiological (RDD) and Nuclear (WMD) threats. The X-ray inspection process and the use of dual-energy imaging will interdict materials for WMDs. Listed herewith is "several major characteristics that one can exploit for the detection. First, both WMDs and RDDs are radioactive. Therefore, one can hope to detect radiation coming from the containers to identify the threat. However since uranium and plutonium are largely self-shielding and since lead can be used to shield and hide these substances, passive detection of emitted radiation can be easily defeated. An important second characteristic is that WMDs and shielded dirty bombs contain materials with very high atomic numbers. Since normal commerce rarely contains materials with atomic numbers higher than that of iron, dual-energy imaging technology can detect such materials automatically, for the successful interdiction of WMDs and dirty bombs". (Bjorkolm 2005)

  4. Compact and cost-effective temperature-insensitive bio-sensor based on long-period fiber gratings for accurate detection of E. coli bacteria in water.

    PubMed

    Dandapat, Krishnendu; Tripathi, Saurabh Mani; Chinifooroshan, Yasser; Bock, Wojtek J; Mikulic, Predrag

    2016-09-15

    We propose and demonstrate a novel temperature-insensitive bio-sensor for accurate and quantitative detection of Escherichia coli (E. coli) bacteria in water. Surface sensitivity is maximized by operating the long-period fiber grating (LPFG) closest to its turnaround wavelength, and the temperature insensitivity is achieved by selectively exciting a pair of cladding modes with opposite dispersion characteristics. Our sensor shows a nominal temperature sensitivity of ∼1.25  pm/°C, which can be further reduced by properly adjusting the LPFG lengths, while maintaining a high refractive index sensitivity of 1929 nm/RIU. The overall length of the sensor is ∼3.6  cm, making it ideally suitable for bio-sensing applications. As an example, we also show the sensor's capability for reliable, quantitative detection of E. coli bacteria in water over a temperature fluctuation of room temperature to 40°C. PMID:27628356

  5. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs

    SciTech Connect

    Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Budiharto, Tom; Haustermans, Karin; Heuvel, Frank van den

    2010-04-15

    Purpose: A robust and accurate method that allows the automatic detection of fiducial markers in MV and kV projection image pairs is proposed. The method allows to automatically correct for inter or intrafraction motion. Methods: Intratreatment MV projection images are acquired during each of five treatment beams of prostate cancer patients with four implanted fiducial markers. The projection images are first preprocessed using a series of marker enhancing filters. 2D candidate marker locations are generated for each of the filtered projection images and 3D candidate marker locations are reconstructed by pairing candidates in subsequent projection images. The correct marker positions are retrieved in 3D by the minimization of a cost function that combines 2D image intensity and 3D geometric or shape information for the entire marker configuration simultaneously. This optimization problem is solved using dynamic programming such that the globally optimal configuration for all markers is always found. Translational interfraction and intrafraction prostate motion and the required patient repositioning is assessed from the position of the centroid of the detected markers in different MV image pairs. The method was validated on a phantom using CT as ground-truth and on clinical data sets of 16 patients using manual marker annotations as ground-truth. Results: The entire setup was confirmed to be accurate to around 1 mm by the phantom measurements. The reproducibility of the manual marker selection was less than 3.5 pixels in the MV images. In patient images, markers were correctly identified in at least 99% of the cases for anterior projection images and 96% of the cases for oblique projection images. The average marker detection accuracy was 1.4{+-}1.8 pixels in the projection images. The centroid of all four reconstructed marker positions in 3D was positioned within 2 mm of the ground-truth position in 99.73% of all cases. Detecting four markers in a pair of MV images

  6. Detecting both the mass and position of an accreted particle by a micro/nano-mechanical resonator sensor.

    PubMed

    Zhang, Yin; Liu, Yun

    2014-09-02

    In the application of a micro-/nano-mechanical resonator, the position of an accreted particle and the resonant frequencies are measured by two different physical systems. Detecting the particle position sometimes can be extremely difficult or even impossible, especially when the particle is as small as an atom or a molecule. Using the resonant frequencies to determine the mass and position of an accreted particle formulates an inverse problem. The Dirac delta function and Galerkin method are used to model and formulate an eigenvalue problem of a beam with an accreted particle. An approximate method is proposed by ignoring the off-diagonal elements of the eigenvalue matrix. Based on the approximate method, the mass and position of an accreted particle can be decoupled and uniquely determined by measuring at most three resonant frequencies. The approximate method is demonstrated to be very accurate when the particle mass is small, which is the application scenario for much of the mass sensing of micro-/nano-mechanical  resonators. By solving the inverse problem,  the position measurement becomes unnecessary, which is of some help to the mass sensing application  of a micro-/nano-mechanical resonator by reducing two measurement systems to one. How to apply the method to the general scenario of multiple accreted particles is also discussed.

  7. Detecting Both the Mass and Position of an Accreted Particle by a Micro/Nano-Mechanical Resonator Sensor

    PubMed Central

    Zhang, Yin; Liu, Yun

    2014-01-01

    In the application of a micro-/nano-mechanical resonator, the position of an accreted particle and the resonant frequencies are measured by two different physical systems. Detecting the particle position sometimes can be extremely difficult or even impossible, especially when the particle is as small as an atom or a molecule. Using the resonant frequencies to determine the mass and position of an accreted particle formulates an inverse problem. The Dirac delta function and Galerkin method are used to model and formulate an eigenvalue problem of a beam with an accreted particle. An approximate method is proposed by ignoring the off-diagonal elements of the eigenvalue matrix. Based on the approximate method, the mass and position of an accreted particle can be decoupled and uniquely determined by measuring at most three resonant frequencies. The approximate method is demonstrated to be very accurate when the particle mass is small, which is the application scenario for much of the mass sensing of micro-/nano-mechanical resonators. By solving the inverse problem, the position measurement becomes unnecessary, which is of some help to the mass sensing application of a micro-/nano-mechanical resonator by reducing two measurement systems to one. How to apply the method to the general scenario of multiple accreted particles is also discussed. PMID:25184493

  8. Method for the Compound Annotation of Conjugates in Nontargeted Metabolomics Using Accurate Mass Spectrometry, Multistage Product Ion Spectra and Compound Database Searching.

    PubMed

    Ogura, Tairo; Bamba, Takeshi; Tai, Akihiro; Fukusaki, Eiichiro

    2015-01-01

    Owing to biotransformation, xenobiotics are often found in conjugated form in biological samples such as urine and plasma. Liquid chromatography coupled with accurate mass spectrometry with multistage collision-induced dissociation provides spectral information concerning these metabolites in complex materials. Unfortunately, compound databases typically do not contain a sufficient number of records for such conjugates. We report here on the development of a novel protocol, referred to as ChemProphet, to annotate compounds, including conjugates, using compound databases such as PubChem and ChemSpider. The annotation of conjugates involves three steps: 1. Recognition of the type and number of conjugates in the sample; 2. Compound search and annotation of the deconjugated form; and 3. In silico evaluation of the candidate conjugate. ChemProphet assigns a spectrum to each candidate by automatically exploring the substructures corresponding to the observed product ion spectrum. When finished, it annotates the candidates assigning a rank for each candidate based on the calculated score that ranks its relative likelihood. We assessed our protocol by annotating a benchmark dataset by including the product ion spectra for 102 compounds, annotating the commercially available standard for quercetin 3-glucuronide, and by conducting a model experiment using urine from mice that had been administered a green tea extract. The results show that by using the ChemProphet approach, it is possible to annotate not only the deconjugated molecules but also the conjugated molecules using an automatic interpretation method based on deconjugation that involves multistage collision-induced dissociation and in silico calculated conjugation.

  9. Computer-aided detection of masses in digital tomosynthesis mammography: Comparison of three approaches

    SciTech Connect

    Chan Heangping; Wei Jun; Zhang Yiheng; Helvie, Mark A.; Moore, Richard H.; Sahiner, Berkman; Hadjiiski, Lubomir; Kopans, Daniel B.

    2008-09-15

    The authors are developing a computer-aided detection (CAD) system for masses on digital breast tomosynthesis mammograms (DBT). Three approaches were evaluated in this study. In the first approach, mass candidate identification and feature analysis are performed in the reconstructed three-dimensional (3D) DBT volume. A mass likelihood score is estimated for each mass candidate using a linear discriminant analysis (LDA) classifier. Mass detection is determined by a decision threshold applied to the mass likelihood score. A free response receiver operating characteristic (FROC) curve that describes the detection sensitivity as a function of the number of false positives (FPs) per breast is generated by varying the decision threshold over a range. In the second approach, prescreening of mass candidate and feature analysis are first performed on the individual two-dimensional (2D) projection view (PV) images. A mass likelihood score is estimated for each mass candidate using an LDA classifier trained for the 2D features. The mass likelihood images derived from the PVs are backprojected to the breast volume to estimate the 3D spatial distribution of the mass likelihood scores. The FROC curve for mass detection can again be generated by varying the decision threshold on the 3D mass likelihood scores merged by backprojection. In the third approach, the mass likelihood scores estimated by the 3D and 2D approaches, described above, at the corresponding 3D location are combined and evaluated using FROC analysis. A data set of 100 DBT cases acquired with a GE prototype system at the Breast Imaging Laboratory in the Massachusetts General Hospital was used for comparison of the three approaches. The LDA classifiers with stepwise feature selection were designed with leave-one-case-out resampling. In FROC analysis, the CAD system for detection in the DBT volume alone achieved test sensitivities of 80% and 90% at average FP rates of 1.94 and 3.40 per breast, respectively. With the

  10. Satellite remote sensing for detection and inventory of mass wasting events in British Columbia

    NASA Astrophysics Data System (ADS)

    Martin, Y.; Franklin, S.; Barlow, J.

    2003-04-01

    Landsliding is a major mechanism of mass wasting in humid, alpine terrain. The collection of large, landsliding inventories is critical from both an applied and theoretical perspective. These inventories can be used to improve our understanding of the contribution of landsliding to sediment transfers in steep terrain and also form a key component of many hazard assessment studies. The collection of large inventories has traditionally been based on interpretation of aerial photographs, a methodology which is labour-intensive and not cost-effective. Automated approaches based on satellite image digital data sources have much potential for improving the efficiency of data collection and may help remove interpretation bias. As the quality and quantity of such data increases, methods of analyzing the imagery together with digital elevation models (DEMs) must be developed and tested in a variety of environmental conditions. We examined the potential of Landsat satellite data in conjunction with DEM data to detect translational landslides in the Cascade Mountains of British Columbia. Image segmentation, followed by object-based classification using spectral and geomorphometric data derived from the DEM, resulted in an overall accuracy of 75% in the detection of landslides that were over 1 ha in area. Use of a geomorphometric software package enabled the calculation of slope shape parameters and the path of steepest slope, two key discriminators of landslide morphology. We tested fusion of the Landsat optical/infrared spectral channels with the 15 m spatial resolution panchromatic data to obtain additional increase in accuracy. Texture analysis was used to discriminate between shallow and bedrock landslides. This research suggests there is a strong potential to develop accurate large-area landslide inventories from satellite imagery in British Columbia.

  11. SN2001IG: Detecting a Mass Loss Phase?

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric

    2001-09-01

    The X-ray emission of supernovae is a young field with relatively little data. X-rays provide information about the circumstellar ejecta as the outgoing shock runs into matter from previous phases of mass loss. A reverse shock is created which generates low-energy X-rays (~1 keV) while the outgoing shock generates harder events. The X-rays probe the circumstellar matter and are expected to provide measures of abundances in spectral lines. The X-ray light curve (LC) additionally provides a measure of the matter distribution (Ref for SN: Schlegel 1995, Reports on Prog in Physics, 58, 1375). The radio LC of SN1979C has been interpreted as revealing waves of mass loss (Weiler et al. 1992, ApJ, 399, 672) from the progenitor. No other SN has shown such behavior prior to the recent increase in the radio LC of SN2001ig. We expect the hard and soft X-rays to behave differently, directly testing shock/reverse shock theory.

  12. Detection of Candida albicans by mass spectrometric fingerprinting.

    PubMed

    Zehm, Sarah; Schweinitz, Simone; Würzner, Reinhard; Colvin, Hans Peter; Rieder, Josef

    2012-03-01

    Candida albicans is one of the most frequent causes of fungal infections in humans. Significant correlation between candiduria and invasive candidiasis has previously been described. The existing diagnostic methods are often time-consuming, cost-intensive and lack in sensitivity and specificity. In this study, the profile of low-molecular weight volatile compounds in the headspace of C. albicans-urine suspensions of four different fungal cell concentrations compared to nutrient media and urine without C. albicans was determined using proton-transfer reaction mass spectrometry (PTR-MS). At fungal counts of ≥1.5 × 10(5) colony forming units (CFU)/ml signals at 45, 47 and 73 atomic mass units (amu) highly significantly increased. At fungal counts of <1.5 × 10(5) CFU/ml signals at 47 and 73 amu also increased, but only at 45 amu a statistically significant increase was seen. Time course alterations of signal intensities dependent on different cell concentrations and after addition of Sabouraud nutrient solution were analysed. Recommendations for measurement conditions are given. Our study is the first to describe headspace profiling of C. albicans-urine suspensions of different fungal cell concentrations. PTR-MS represents a promising approach to rapid, highly sensitive and non-invasive clinical diagnostics allowing qualitative and quantitative analysis.

  13. Meteoroid mass determination using head echoes detected at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Close, Sigrid; Oppenheim, Meers; Hunt, Stephen; McKeen, Fred; Coster, Anthea

    2002-11-01

    Meteor data collected at the Kwajalein Missile Range (KMR) during the peak of the 1998 Leonid storm comprise the only simultaneous data collection of meteor head echoes and trails using seven frequencies (VHF, UHF, L-, S-, C-, Ka- and W-band). The primary sensor was the ALTAIR radar operating at 160 MHz with 30-m range resolution and 422 MHz with 7.5-m range resolution, which has both interferometric and polarization capabilities. This paper presents an alaysis of these high-resolution data in support of the following ideas: First, head echo scattering appears to arise from an ionized region with a density sufficiently high that its plasma frequency exceeds the radar frequency (overdense reflection). Second, the Radar-cross-section (RCS) values, which decrease with decreasing wavelength, peak near 105 km altitude at the point where the meteoroid gives up the most kinetic energy during its descent. Third, these RCS measurements were used to compute electron line densities, which provide estimates of a meteoroid's mass. By combining these data and simple ablation models, we can constrain meteoroid mass as it loses material during its passage through the atmosphere.

  14. Recent developments in ion detection techniques for Penning trap mass spectrometry at TRIGA-TRAP

    NASA Astrophysics Data System (ADS)

    Ketelaer, J.; Blaum, K.; Block, M.; Eberhardt, K.; Eibach, M.; Ferrer, R.; George, S.; Herfurth, F.; Ketter, J.; Nagy, Sz.; Repp, J.; Schweikhard, L.; Smorra, C.; Sturm, S.; Ulmer, S.

    2009-12-01

    The highest precision in the determination of nuclear and atomic masses can be achieved by Penning trap mass spectrometry. The mass value is obtained through a measurement of the cyclotron frequency of the stored charged particle. Two different approaches are used at the Penning trap mass spectrometer TRIGA-TRAP for the mass determination: the destructive Time-Of-Flight Ion Cyclotron Resonance (TOF-ICR) technique and the non-destructive Fourier Transform Ion Cyclotron Resonance (FT-ICR) method. New developments for both techniques are described, which will improve the detection efficiency and the suppression of contaminations in the case of TOF-ICR. The FT-ICR detection systems will allow for the investigation of an incoming ion bunch from a radioactive-beam facility on the one hand, and for the detection of a single singly charged ion in the Penning trap on the other hand.

  15. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-10-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  16. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-04-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  17. Detection of estradiol-17β during a mass coral spawn

    NASA Astrophysics Data System (ADS)

    Atkinson, S.; Atkinson, M. J.

    1992-04-01

    The steroid estradiol-17β (E2) is associated with female gametogenesis in all vertebrates and many invertebrates. This is the first report of estrogens in scleractinian corals. Seawater and egg slicks were collected during a mass coral spawn at Ningaloo reef, Western Australia for the measurement of total phosphate (TP) and E2. Total P in the water column increased 600 times, from 0.5μM to 300μM. Concentrations of E2 increased nearly 8 fold during the spawn, from 55 to 420 pg/100 ml seawater. Coral eggs collected from egg slicks contained 368±40 pg E2/g dry wt of eggs. Estrogen may be a key hormone in a simple endocrine system of scleractinian corals that synchronizes growth and development of coral oocytes. Its potential role in triggering spawning via chemical messengers in the water column warrants further research.

  18. First detection of CF+ towards a high-mass protostar

    NASA Astrophysics Data System (ADS)

    Fechtenbaum, S.; Bontemps, S.; Schneider, N.; Csengeri, T.; Duarte-Cabral, A.; Herpin, F.; Lefloch, B.

    2015-02-01

    Aims: We report the first detection of the J = 1-0 (102.6 GHz) rotational lines of CF+ (fluoromethylidynium ion) towards CygX-N63, a young and massive protostar of the Cygnus X region. Methods: This detection occurred as part of an unbiased spectral survey of this object in the 0.8-3 mm range, performed with the IRAM 30 m telescope. The data were analyzed using a local thermodynamical equilibrium model (LTE model) and a population diagram in order to derive the column density. Results: The line velocity (-4 km s-1) and line width (1.6 km s-1) indicate an origin from the collapsing envelope of the protostar. We obtain a CF+ column density of 4 × 1011 cm-2. The CF+ ion is thought to be a good tracer for C+ and assuming a ratio of 10-6 for CF+/C+, we derive a total number of C+ of 1.2 × 1053 within the beam. There is no evidence of carbon ionization caused by an exterior source of UV photons suggesting that the protostar itself is the source of ionization. Ionization from the protostellar photosphere is not efficient enough. In contrast, X-ray ionization from the accretion shock(s) and UV ionization from outflow shocks could provide a large enough ionizing power to explain our CF+ detection. Conclusions: Surprisingly, CF+ has been detected towards a cold, massive protostar with no sign of an external photon dissociation region (PDR), which means that the only possibility is the existence of a significant inner source of C+. This is an important result that opens interesting perspectives to study the early development of ionized regions and to approach the issue of the evolution of the inner regions of collapsing envelopes of massive protostars. The existence of high energy radiations early in the evolution of massive protostars also has important implications for chemical evolution of dense collapsing gas and could trigger peculiar chemistry and early formation of a hot core. Appendices are available in electronic form at http://www.aanda.org

  19. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations

    NASA Astrophysics Data System (ADS)

    Rosotti, Giovanni P.; Juhasz, Attila; Booth, Richard A.; Clarke, Cathie J.

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ˜15 M⊕: this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ˜20 M⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  20. PTMSearchPlus: Software Tool for Automated Protein Identification and Post-Translational and Post-Translational Modification Characterization by Integrating Accurate Intact Protein Mass and Bottom-Up Mass Spectrometric Data Searches

    SciTech Connect

    Kertesz, Vilmos; Connelly, Heather M; Erickson, Brian K; Hettich, Robert {Bob} L

    2009-01-01

    PTMSearchPlus is a software tool for the automated integration of accurate intact protein mass (AIPM) and bottom-up (BU) mass spectra searches/data in order to both confidently identify the intact proteins and to characterize their post-translational modifications (PTMs). The development of PTMSearchPlus was motivated by the desire to effectively integrate high-resolution intact protein molecular masses with bottom-up peptide MS/MS data. PTMSearchPlus requires as input both intact protein and proteolytic peptide mass spectra collected from the same protein mixture, a FASTA protein database, and a selection of possible PTMs, the types and ranges of which can be specified. The output of PTMSearchPlus is a list of intact and modified proteins matching the AIPM data concomitant with their respective peptides found by the BU search. This list also contains protein and peptide sequence coverage information, scores, etc. that can be used for further evaluation or refiltering of the results. Corresponding and annotated AIPM and BU mass spectra are also displayed for visual inspection when a listed protein or a peptide is selected. These and other controls ensure that the user can manually evaluate, modify (e.g., remove obvious false positives, low quality spectra etc.), and save the results of the automated search if necessary. Driven by the exponential growth in the number of possible peptide candidates in a BU search when multiple PTMs are probed, the advantages on search speed by limiting the total number of possible PTMs on a peptide in the BU search or by performing an AIPM predicted BU search are also discussed in addition to the integration approach. The features of PTMSearchPlus are demonstrated using both a protein standard mixture and a complex protein mixture from Escherichia coli. Experimental data revealed a unique advantage of coupling AIPM and the BU data sets that is mutually beneficial for both approaches. Namely, AIPM data can confirm that no PTM peptides

  1. PTMSearchPlus: A Software Tool for Automated Protein Identification and Post-Translational Modification Characterization by Integrating Accurate Intact Protein Mass and Bottom-Up Mass Spectrometric Data Searches

    SciTech Connect

    Kertesz, Vilmos; Connelly, Heather M; Erickson, Brian K; Hettich, Robert {Bob} L

    2009-01-01

    PTMSearchPlus is a software tool for the automated integration of accurate intact protein mass (AIPM) and bottom-up (BU) mass spectra searches/data in order to both confidently identify the intact proteins and to characterize their post-translational modifications (PTMs). The development of PTMSearchPlus was motivated by the desire to effectively integrate high resolution intact protein molecular masses with bottom-up peptide MS/MS data. PTMSearchPlus requires as input both intact protein and proteolytic peptide mass spectra collected from the same protein mixture, a FASTA protein database, and a selection of possible PTMs, the types and ranges of which can be specified. The output of PTMSearchPlus is a list of intact and modified proteins matching the AIPM data concomitant with their respective peptides found by the BU search. This list also contains protein and peptide sequence coverage information, scores, etc. that can be used for further evaluation or refiltering of the results. Corresponding and annotated AIPM and BU mass spectra are also displayed for visual inspection when a listed protein or a peptide is selected. These and other controls ensure that the user can manually evaluate, modify (e.g. remove obvious false positives, low quality spectra etc.), and save the results of the automated search if necessary. Driven by the exponential growth in the number of possible peptide candidates in a BU search when multiple PTMs are probed, the advantages on search speed by limiting the total number of possible PTMs on a peptide in the BU search or by performing an AIPM predicted BU search are also discussed in addition to the integration approach. The features of PTMSearchPlus are demonstrated using both a protein standard mixture and a complex protein mixture from Escherichia coli. Experimental data revealed a unique advantage of coupling AIPM and the BU datasets that is mutually beneficial for both approaches. Namely, AIPM data can confirm that no PTM peptides

  2. Application of mass spectrometry-based proteomics techniques for the detection of protein doping in sports.

    PubMed

    Kay, Richard G; Creaser, Colin S

    2010-04-01

    Mass spectrometry-based proteomic approaches have been used to develop methodologies capable of detecting the abuse of protein therapeutics such as recombinant human erythropoietin and recombinant human growth hormone. Existing detection methods use antibody-based approaches that, although effective, suffer from long assay development times and specificity issues. The application of liquid chromatography with tandem mass spectrometry and selected reaction-monitoring-based analysis has demonstrated the ability to detect and quantify existing protein therapeutics in plasma. Furthermore, the multiplexing capability of selected reaction-monitoring analysis has also aided in the detection of multiple downstream biomarkers in a single analysis, requiring less sample than existing immunological techniques. The flexibility of mass spectrometric instrumentation has shown that the technique is capable of detecting the abuse of novel and existing protein therapeutics, and has a vital role in the fight to keep sports drug-free.

  3. Rapid separation and identification of furocoumarins in Angelica dahurica by high-performance liquid chromatography with diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry.

    PubMed

    Zhang, Hai; Gong, Chungui; Lv, Lei; Xu, Yuanjie; Zhao, Liang; Zhu, Zhenyu; Chai, Yifeng; Zhang, Guoqing

    2009-07-01

    High-performance liquid chromatography with diode-array detection (HPLC/DAD), time-of-flight mass spectrometry (HPLC/TOFMS) and quadrupole ion trap mass spectrometry (HPLC/QITMS) were used for separation, identification and structural analysis of furocoumarins in Angelica dahurica. Two furocoumarins (imperatorin and isoimperatorin) in Angelica dahurica extract were identified unambiguously by comparing their relative retention times, characteristic ultraviolet information and accurate mass measurement. A formula database of known furocoumarins in Angelica dahurica was established, against which the other 21 furocoumarins were identified effectively based on the accurate extract masses and formulae acquired by HPLC/TOFMS. In order to distinguish the isomers, multi-stage mass spectrometry (MSn, ion trap mass spectrometry) was used. General fragmentation behavior of the furocoumarins in the ion trap mass spectrometer was studied by the two furocoumarin standards, and their fragmentation rules in MS(n) spectra were summarized. These deduced fragmentation rules of furocoumarins were successfully implemented in distinguishing the three groups of isomers in Angelica dahurica by HPLC/QITMS. By using the three different analytical techniques, 23 furocoumarins in Angelica dahurica were tentatively identified within 30 min. Finally, HPLC/TOFMS fingerprints of Angelica dahurica were established by which it can be concluded that a rapid and effective method based on the three analytical techniques for identification of chemical components was established. This can provide help for further quality control of Angelica dahurica and pharmacology mechanism study of furocoumarins in Angelica dahurica.

  4. Identification and Characterization of Indole and Oxindole Alkaloids from Leaves of Mitragyna speciosa Korth Using Liquid Chromatography-Accurate QToF Mass Spectrometry.

    PubMed

    Avula, Bharathi; Sagi, Satyanarayanaraju; Wang, Yan-Hong; Wang, Mei; Ali, Zulfiqar; Smillie, Troy J; Zweigenbaum, Jerry; Khan, Ikhlas A

    2015-01-01

    Alkaloids have been reported to be the major physiologically active constituents in Mitragyna. An analytical method was developed to provide an alternative, fast method for characterization of alkaloids from various M. speciosa samples. The separation was achieved using an RP octylsilyl (C8) column, MS detection, and a water-acetonitrile with formic acid gradient as the mobile phase. Ultra-HPLC/quadrupole time-of-flight MS analysis and characterization were performed on 12 corynanthe-type indole/oxindole alkaloids obtained from the leaves of M. speciosa Korth. The indoles and oxindoles had an open E ring with or without substitution occurring at the C9 position. The full single mass spectrum of alkaloids showed a strong signal for the protonated molecule [M+H]+. The product ion spectrum of mitragynine type of alkaloids showed strong response at m/z=174.0901 suggestive of an ion containing an odd number of nitrogen atoms corresponding to formula C11H12NO, which is characteristic of indole alkaloids. A multivariate statistical analysis technique, principal component analysis, was used to show discrimination between the M. speciosa samples. The results indicated that the analytical method is suitable for QC testing of various Mitragyna commercial samples and can be used to evaluate market products purported to contain M. speciosa. PMID:25857873

  5. Identification and Characterization of Indole and Oxindole Alkaloids from Leaves of Mitragyna speciosa Korth Using Liquid Chromatography-Accurate QToF Mass Spectrometry.

    PubMed

    Avula, Bharathi; Sagi, Satyanarayanaraju; Wang, Yan-Hong; Wang, Mei; Ali, Zulfiqar; Smillie, Troy J; Zweigenbaum, Jerry; Khan, Ikhlas A

    2015-01-01

    Alkaloids have been reported to be the major physiologically active constituents in Mitragyna. An analytical method was developed to provide an alternative, fast method for characterization of alkaloids from various M. speciosa samples. The separation was achieved using an RP octylsilyl (C8) column, MS detection, and a water-acetonitrile with formic acid gradient as the mobile phase. Ultra-HPLC/quadrupole time-of-flight MS analysis and characterization were performed on 12 corynanthe-type indole/oxindole alkaloids obtained from the leaves of M. speciosa Korth. The indoles and oxindoles had an open E ring with or without substitution occurring at the C9 position. The full single mass spectrum of alkaloids showed a strong signal for the protonated molecule [M+H]+. The product ion spectrum of mitragynine type of alkaloids showed strong response at m/z=174.0901 suggestive of an ion containing an odd number of nitrogen atoms corresponding to formula C11H12NO, which is characteristic of indole alkaloids. A multivariate statistical analysis technique, principal component analysis, was used to show discrimination between the M. speciosa samples. The results indicated that the analytical method is suitable for QC testing of various Mitragyna commercial samples and can be used to evaluate market products purported to contain M. speciosa.

  6. Reevaluating the feasibility of ground-based Earth-mass microlensing planet detections

    SciTech Connect

    Jung, Youn Kil; Park, Hyuk; Han, Cheongho; Hwang, Kyu-Ha; Shin, In-Gu; Choi, Joon-Young

    2014-05-10

    An important strength of the microlensing method to detect extrasolar planets is its high sensitivity to low-mass planets. However, many believe that microlensing detections of Earth-mass planets from ground-based observation would be difficult because of limits set by finite-source effects. This view comes from the previous estimation of planet detection probability based on the fractional deviation of planetary signals; however, a proper probability estimation is required when considering the source brightness, which is directly related to the photometric precision. In this paper, we reevaluate the feasibility of low-mass planet detections by considering photometric precision for different populations of source stars. From this, we find that the contribution of improved photometric precision to the planetary signal of a giant-source event is large enough to compensate for the decrease in magnification excess caused by finite-source effects. As a result, we conclude that giant-source events are suitable targets for Earth-mass planet detections with significantly higher detection probability than events involved with source stars of smaller radii, and we predict that Earth-mass planets could be detected by prospective high-cadence surveys.

  7. Detection of Pancreatic Cancer Biomarkers Using Mass Spectrometry

    PubMed Central

    Kim, Kiyoun; Ahn, Soohyun; Lim, Johan; Yoo, Byong Chul; Hwang, Jin-Hyeok; Jang, Woncheol

    2014-01-01

    BACKGROUND Pancreatic cancer is the fourth leading cause of cancer-related deaths. Therefore, in order to improve survival rates, the development of biomarkers for early diagnosis is crucial. Recently, diabetes has been associated with an increased risk of pancreatic cancer. The aims of this study were to search for novel serum biomarkers that could be used for early diagnosis of pancreatic cancer and to identify whether diabetes was a risk factor for this disease. METHODS Blood samples were collected from 25 patients with diabetes (control) and 93 patients with pancreatic cancer (including 53 patients with diabetes), and analyzed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS). We performed preprocessing, and various classification methods with imputation were used to replace the missing values. To validate the selection of biomarkers identified in pancreatic cancer patients, we measured biomarker intensity in pancreatic cancer patients with diabetes following surgical resection and compared our results with those from control (diabetes-only) patients. RESULTS By using various classification methods, we identified the commonly splitting protein peaks as m/z 1,465, 1,206, and 1,020. In the follow-up study, in which we assessed biomarkers in pancreatic cancer patients with diabetes after surgical resection, we found that the intensities of m/z at 1,465, 1,206, and 1,020 became comparable with those of diabetes-only patients. PMID:25673969

  8. Computer-aided detection of breast masses on mammograms: performance improvement using a dual system

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Sahiner, Berkman; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Petrick, Nicholas; Ge, Jun; Zhou, Chuan

    2005-04-01

    We have developed a computer-aided detection (CAD) system for breast masses on mammograms. In this study, our purpose was to improve the performance of our mass detection system by using a new dual system approach which combines a CAD system optimized with "average" masses with another CAD system optimized with subtle masses. The latter system is trained to provide high sensitivity in detecting subtle masses. For an unknown mammogram, the two systems are used in parallel to detect suspicious objects. A feed-forward backpropagation neural network trained to merge the scores of the two linear discriminant analysis (LDA) classifiers from the two systems makes the final decision in differentiation of true masses from normal tissue. A data set of 86 patients containing 172 mammograms with biopsy-proven masses was partitioned into a training set and an independent test set. This data set is referred to as the average data set. A second data set of 214 prior mammograms was used for training the second CAD system for detection of subtle masses. When the single CAD system trained on the average data set was applied to the test set, the Az for false positive (FP) classification was 0.81 and the FP rates were 2.1, 1.5 and 1.3 FPs/image at the case-based sensitivities of 95%, 90% and 85%, respectively. With the dual CAD system, the Az was 0.85 and the FP rates were improved to 1.7, 1.2 and 0.8 FPs/image at the same case-based sensitivities. Our results indicate that the dual CAD system can improve the performance of mass detection on mammograms.

  9. Surface pump-probe femtosecond-laser mass spectrometry: Time-, mass-, and velocity-resolved detection of surface reaction dynamics

    SciTech Connect

    Vaida, Mihai E.; Bernhardt, Thorsten M.

    2010-10-15

    A detailed account of the experimental methodology of surface pump-probe femtosecond-laser mass spectrometry is presented. This recently introduced technique enables the direct time-resolved investigation of surface reaction dynamics by monitoring the mass and the relative velocity of intermediates and products of a photoinduced surface reaction via multiphoton ionization. As a model system, the photodissociation dynamics of methyl iodide adsorbed at submonolayer coverage on magnesia ultrathin films is investigated. The magnesia surface preparation and characterization as well as the pulsed deposition of methyl iodide are described. The femtosecond-laser excitation (pump) and, in particular, the resonant multiphoton ionization surface detection (probe) schemas are discussed in detail. Results of pump-probe time-resolved methyl and iodine atom detection experiments are presented and the potential of this method for velocity-resolved photofragment analysis is evaluated.

  10. Helicopter Based Magnetic Detection Of Wells At The Teapot Dome (Naval Petroleum Reserve No. 3 Oilfield: Rapid And Accurate Geophysical Algorithms For Locating Wells

    NASA Astrophysics Data System (ADS)

    Harbert, W.; Hammack, R.; Veloski, G.; Hodge, G.

    2011-12-01

    In this study Airborne magnetic data was collected by Fugro Airborne Surveys from a helicopter platform (Figure 1) using the Midas II system over the 39 km2 NPR3 (Naval Petroleum Reserve No. 3) oilfield in east-central Wyoming. The Midas II system employs two Scintrex CS-2 cesium vapor magnetometers on opposite ends of a transversely mounted, 13.4-m long horizontal boom located amidships (Fig. 1). Each magnetic sensor had an in-flight sensitivity of 0.01 nT. Real time compensation of the magnetic data for magnetic noise induced by maneuvering of the aircraft was accomplished using two fluxgate magnetometers mounted just inboard of the cesium sensors. The total area surveyed was 40.5 km2 (NPR3) near Casper, Wyoming. The purpose of the survey was to accurately locate wells that had been drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood to enhance oil recovery, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells that are missing from the well database and to provide accurate locations for all wells. The well location method used combined an input dataset (for example, leveled total magnetic field reduced to the pole), combined with first and second horizontal spatial derivatives of this input dataset, which were then analyzed using focal statistics and finally combined using a fuzzy combination operation. Analytic signal and the Shi and Butt (2004) ZS attribute were also analyzed using this algorithm. A parameter could be adjusted to determine sensitivity. Depending on the input dataset 88% to 100% of the wells were located, with typical values being 95% to 99% for the NPR3 field site.

  11. On the detection of a cometary mass distribution. [by perturbations on space probe orbits

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Peale, S. J.

    1976-01-01

    The problem of detecting a possible cometary distribution on the fringes of the solar system is examined. The acceleration of a space probe due to a hypothetical cometary mass distribution with the surface density rising to a maximum and subsequently falling off with increasing distance from the sun is analyzed. The total minimum detectable cometary mass for the Pioneer and Mariner spacecraft is estimated on the basis of this model to be on the order of 1000 earth masses. Precision tracking of deep space probes is less sensitive by three orders of magnitude for the detection of an unseen cometary mass distribution at the fringes of the solar system than are the secular perturbations of long-period comets.

  12. Detecting the mass and position of an adsorbate on a drum resonator

    PubMed Central

    Zhang, Y.; Zhao, Y. P.

    2014-01-01

    The resonant frequency shifts of a circular membrane caused by an adsorbate are the sensing mechanism for a drum resonator. The adsorbate mass and position are the two major (unknown) parameters determining the resonant frequency shifts. There are infinite combinations of mass and position which can cause the same shift of one resonant frequency. Finding the mass and position of an adsorbate from the experimentally measured resonant frequencies forms an inverse problem. This study presents a straightforward method to determine the adsorbate mass and position by using the changes of two resonant frequencies. Because detecting the position of an adsorbate can be extremely difficult, especially when the adsorbate is as small as an atom or a molecule, this new inverse problem-solving method should be of some help to the mass resonator sensor application of detecting a single adsorbate. How to apply this method to the case of multiple adsorbates is also discussed. PMID:25294971

  13. A model-based framework for the detection of spiculated masses on mammography

    SciTech Connect

    Sampat, Mehul P.; Bovik, Alan C.; Whitman, Gary J.; Markey, Mia K.

    2008-05-15

    The detection of lesions on mammography is a repetitive and fatiguing task. Thus, computer-aided detection systems have been developed to aid radiologists. The detection accuracy of current systems is much higher for clusters of microcalcifications than for spiculated masses. In this article, the authors present a new model-based framework for the detection of spiculated masses. The authors have invented a new class of linear filters, spiculated lesion filters, for the detection of converging lines or spiculations. These filters are highly specific narrowband filters, which are designed to match the expected structures of spiculated masses. As a part of this algorithm, the authors have also invented a novel technique to enhance spicules on mammograms. This entails filtering in the radon domain. They have also developed models to reduce the false positives due to normal linear structures. A key contribution of this work is that the parameters of the detection algorithm are based on measurements of physical properties of spiculated masses. The results of the detection algorithm are presented in the form of free-response receiver operating characteristic curves on images from the Mammographic Image Analysis Society and Digital Database for Screening Mammography databases.

  14. PNA-based microbial pathogen identification and resistance marker detection: an accurate, isothermal rapid assay based on genome-specific features

    PubMed Central

    Smolina, Irina; Miller, Nancy S.; Frank-Kamenetskii, Maxim

    2010-01-01

    With the rapidly growing availability of the entire genome sequences of microbial pathogens, there is unmet need for increasingly sensitive systems to monitor the gene-specific markers for diagnosis of bacteremia that enables an earlier detection of causative agent and determination of drug resistance. To address these challenges, a novel FISH-type genomic sequence-based molecular technique is proposed that can identify bacteria and simultaneously detect antibiotic resistance markers for rapid and accurate testing of pathogens. The approach is based on a synergistic combination of advanced Peptide Nucleic Acid (PNA)-based technology and signal-enhancing Rolling Circle Amplification (RCA) reaction to achieve a highly specific and sensitive assay. A specific PNA-DNA construct serves as an exceedingly selective and very effective biomarker, while RCA enhances detection sensitivity and provide with a highly multiplexed assay system. Distinct-color fluorescent decorator probes are used to identify about 20-nucleotide-long signature sequences in bacterial genomic DNA and/or key genetic markers of drug resistance in order to identify and characterize various pathogens. The technique's potential and its utility for clinical diagnostics are illustrated by identification of S. aureus with simultaneous discrimination of methicillin-sensitive (MSSA) versus methicillin-resistant (MRSA) strains. Overall these promising results hint to the adoption of PNA-based rapid sensitive detection for diagnosis of other clinically relevant organisms. Thereby, new assay enables significantly earlier administration of appropriate antimicrobial therapy and may, thus have a positive impact on the outcome of the patient. PMID:20953307

  15. Detection and quantification of plasma amyloid-β by selected reaction monitoring mass spectrometry.

    PubMed

    Kim, Jun Seok; Ahn, Hee-Sung; Cho, Soo Min; Lee, Ji Eun; Kim, YoungSoo; Lee, Cheolju

    2014-08-20

    Amyloid-β (Aβ) in human plasma was detected and quantified by an antibody-free method, selected reaction monitoring mass spectrometry (SRM-MS) in the current study. Due to its low abundance, SRM-based quantification in 10 μL plasma was a challenge. Prior to SRM analysis, human plasma proteins as a whole were digested by trypsin and high pH reversed-phase liquid chromatography (RPLC) was used to fractionate the tryptic digests and to collect peptides, Aβ(1-5), Aβ(6-16), Aβ(17-28) and Aβ(29-40(42)) of either Aβ(1-40) or Aβ(1-42). Among those peptides, Aβ(17-28) was selected as a surrogate to measure the total Aβ level. Human plasma samples obtained from triplicate sample preparations were analyzed, obtaining 4.20 ng mL(-1) with a CV of 25.3%. Triplicate measurements for each sample preparation showed CV of <5%. Limit of quantification was obtained as 132 pM, which corresponded to 570 pg mL(-1) of Aβ(1-40). Until now, most quantitative measurements of Aβ in plasma or cerebrospinal fluid have required antibody-based immunoassays. Since quantification of Aβ by immunoassays is highly dependent on the extent of epitope exposure due to aggregation or plasma protein binding, it is difficult to accurately measure the actual concentration of Aβ in plasma. Our diagnostic method based on SRM using a surrogate peptide of Aβ is promising in that actual amounts of total Aβ can be measured regardless of the conformational status of the biomarker. PMID:25086887

  16. Thermal effects on mass detection sensitivity of carbon nanotube resonators in nonlinear oscillation regime

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Keun; Yang, Hyun-Ik; Kim, Chang-Wan

    2015-11-01

    A mass sensor using a nano-resonator has high detection sensitivity, and mass sensitivity is higher with smaller resonators. Therefore, carbon nanotubes (CNTs) are the ultimate materials for these applications and have been actively studied. In particular, CNT-based nanomechanical devices may experience high temperatures that lead to thermal expansion and residual stress in devices, which affects the device reliability. In this letter, to demonstrate the influence of the temperature change (i.e., thermal effect) on the mass detection sensitivity of CNT-based mass sensor, dynamic analysis is carried out for a CNT resonator with thermal effects in both linear and nonlinear oscillation regimes. Based on the continuum mechanics model, the analytical solution method with an assumed deflection eigenmode is applied to solve the nonlinear differential equation which involves the von Karman nonlinear strain-displacement relation and the additional axial force associated with thermal effects. A thermal effect on the fundamental resonance behavior and resonance frequency shift due to adsorbed mas, i.e., mass detection sensitivity, is examined in high-temperature environment. Results indicate a valid improvement of fundamental resonance frequency by using nonlinear oscillation in a thermal environment. In both linear and nonlinear oscillation regimes, the mass detection sensitivity becomes worse due to the increasing of temperature in a high-temperature environment. The thermal effect on the detection sensitivity is less effective in the nonlinear oscillation regime. It is concluded that a temperature change of a mass sensor with a CNT-based resonator can be utilized to enhance the detection sensitivity depending on the CNT length, linear/nonlinear oscillation behaviors, and the thermal environment.

  17. Combination of conspicuity improved synthetic mammograms and digital breast tomosynthesis: a promising approach for mass detection

    NASA Astrophysics Data System (ADS)

    Kim, Seong Tae; Kim, Dae Hoe; Ro, Yong Man

    2015-03-01

    In this study, a novel mass detection framework that utilizes the information from synthetic mammograms has been developed for detecting masses in digital breast tomosynthesis (DBT). In clinical study, it is demonstrated that the combination of DBT and full field digital mammography (FFDM) increases the reader performance. To reduce the radiation dose in this approach, synthetic mammogram has been developed in previous researches and it is demonstrated that synthetic mammogram can alternate the FFDM when it is used with DBT. In this study, we investigate the feasibility of the combined approach of DBT and synthetic mammogram in point of computer-aided detection (CAD). As a synthetic mammogram, two-dimensional image was generated by adopting conspicuous voxels of three-dimensional DBT volume in our study. The mass likelihood scores estimated for each mass candidates in synthetic mammogram and DBT are merged to differentiate masses and false positives (FPs) in combined approach. We compared the performance of detecting masses in the proposed combined approach and DBT alone. A clinical data set of 196 DBT volumes was used to evaluate the different detection schemes. The combined approach achieved sensitivity of 80% and 89% with 1.16 and 2.37 FPs per DBT volume. The DBT alone approach achieved same sensitivities with 1.61 and 3.46 FPs per DBT volume. Experimental results show that statistically significant improvement (p = 0.002) is achieved in combined approach compared to DBT alone. These results imply that the information fusion of synthetic mammogram and DBT is a promising approach to detect masses in DBT.

  18. Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing

    PubMed Central

    Bujakowska, Kinga M.; Sousa, Maria E.; Fonseca-Kelly, Zoë D.; Taub, Daniel G.; Janessian, Maria; Wang, Dan Yi; Au, Elizabeth D.; Sims, Katherine B.; Sweetser, David A.; Fulton, Anne B.; Liu, Qin; Wiggs, Janey L.; Gai, Xiaowu; Pierce, Eric A.

    2015-01-01

    Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing. PMID:25412400

  19. Accurate detection of spatio-temporal variability of plant phenology by using satellite-observed daily green-red vegetation index (GRVI) in Japan

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Saitoh, T. M.; Nasahara, K. N.; Inoue, T.; Suzuki, R.

    2015-12-01

    To evaluate the spatio-temporal variability of biodiversity and ecosystem functioning and service in deciduous forests, accurate detection of the timing of plant phenology such as leaf-flushing, -coloring, and -falling is important from plot to continental scales. Here, (1) we detected the spatio-temporal variability in the timing of start (SGS) and end of growing season (EGS) in Japan from 2001 to 2014 by analyzing Terra and Aqua/MODIS satellite-observed daily green-red vegetation index (GRVI) with a 500-m spatial resolution. (2) We examined the characteristics of timing of SGS and EGS in deciduous forests along vertical (altitude) and horizontal (latitude) gradients and their sensitivity to air temperature. (3) We evaluated the relationship between the spatial distribution of leaf-coloring phenology derived from Landsat-8/OLI satellite-observed GRVI with a 30-m spatial resolution on 23 November 2014 and leaf-coloring information published on web sites in Kanagawa Prefecture, Japan. We found that (1) changes along the vertical and horizontal gradients in the timing of SGS tended to be larger than those of EGS; (2) the sensitivity of the timing of SGS to air temperature was much more than that of EGS; and (3) leaf-coloring information published on web sites covering multiple points was useful for verification of leaf-coloring phenology derived from satellite-observed GRVI in relation to the altitude gradient in mountainous regions.

  20. A new peak detection algorithm for MALDI mass spectrometry data based on a modified Asymmetric Pseudo-Voigt model

    PubMed Central

    2015-01-01

    Background Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Results Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. Conclusions The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net. PMID:26680279

  1. Feasibility of ultra-high performance liquid and gas chromatography coupled to mass spectrometry for accurate determination of primary and secondary phthalate metabolites in urine samples.

    PubMed

    Herrero, Laura; Calvarro, Sagrario; Fernández, Mario A; Quintanilla-López, Jesús Eduardo; González, María José; Gómara, Belén

    2015-01-01

    Phthalates (PAEs) are ubiquitous toxic chemical compounds. During the last few years, some phthalate metabolites (MPAEs) have been proposed as appropriate biomarkers in human urine samples to determine PAE human intake and exposure. So, it is necessary to have fast, easy, robust and validated analytical methods to determine selected MPAEs in urine human samples. Two different instrumental methods based on gas (GC) and ultra-high performance liquid (UHPLC) chromatography coupled to mass spectrometry (MS) have been optimized, characterized and validated for the simultaneous determination of nine primary and secondary phthalate metabolites in urine samples. Both instrumental methods have similar sensitivity (detection limits ranged from 0.03 to 8.89 pg μL(-1) and from 0.06 to 0.49 pg μL(-1) in GC-MS and UHPLC-MS(2), respectively), precision (repeatability, expressed as relative standard deviation, which was lower than 8.4% in both systems, except for 5OH-MEHP in the case of GC-MS) and accuracy. But some advantages of the UHPLC-MS(2) method, such as more selectivity and lower time in the chromatographic runs (6.8 min vs. 28.5 min), have caused the UHPLC-MS(2) method to be chosen to analyze the twenty one human urine samples from the general Spanish population. Regarding these samples, MEP showed the highest median concentration (68.6 μg L(-1)), followed by MiBP (23.3 μg L(-1)), 5cx-MEPP (22.5 μg L(-1)) and MBP (19.3μgL(-1)). MMP (6.99 μg L(-1)), 5oxo-MEHP (6.15 μg L(-1)), 5OH-MEHP (5.30 μg L(-1)) and MEHP (4.40 μg L(-1)) showed intermediate levels. Finally, the lowest levels were found for MBzP (2.55 μg L(-1)). These data are within the same order of magnitude as those found in other similar populations. PMID:25467512

  2. Feasibility of ultra-high performance liquid and gas chromatography coupled to mass spectrometry for accurate determination of primary and secondary phthalate metabolites in urine samples.

    PubMed

    Herrero, Laura; Calvarro, Sagrario; Fernández, Mario A; Quintanilla-López, Jesús Eduardo; González, María José; Gómara, Belén

    2015-01-01

    Phthalates (PAEs) are ubiquitous toxic chemical compounds. During the last few years, some phthalate metabolites (MPAEs) have been proposed as appropriate biomarkers in human urine samples to determine PAE human intake and exposure. So, it is necessary to have fast, easy, robust and validated analytical methods to determine selected MPAEs in urine human samples. Two different instrumental methods based on gas (GC) and ultra-high performance liquid (UHPLC) chromatography coupled to mass spectrometry (MS) have been optimized, characterized and validated for the simultaneous determination of nine primary and secondary phthalate metabolites in urine samples. Both instrumental methods have similar sensitivity (detection limits ranged from 0.03 to 8.89 pg μL(-1) and from 0.06 to 0.49 pg μL(-1) in GC-MS and UHPLC-MS(2), respectively), precision (repeatability, expressed as relative standard deviation, which was lower than 8.4% in both systems, except for 5OH-MEHP in the case of GC-MS) and accuracy. But some advantages of the UHPLC-MS(2) method, such as more selectivity and lower time in the chromatographic runs (6.8 min vs. 28.5 min), have caused the UHPLC-MS(2) method to be chosen to analyze the twenty one human urine samples from the general Spanish population. Regarding these samples, MEP showed the highest median concentration (68.6 μg L(-1)), followed by MiBP (23.3 μg L(-1)), 5cx-MEPP (22.5 μg L(-1)) and MBP (19.3μgL(-1)). MMP (6.99 μg L(-1)), 5oxo-MEHP (6.15 μg L(-1)), 5OH-MEHP (5.30 μg L(-1)) and MEHP (4.40 μg L(-1)) showed intermediate levels. Finally, the lowest levels were found for MBzP (2.55 μg L(-1)). These data are within the same order of magnitude as those found in other similar populations.

  3. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs. PMID:17630721

  4. The use of transit timing to detect terrestrial-mass extrasolar planets.

    PubMed

    Holman, Matthew J; Murray, Norman W

    2005-02-25

    Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations.

  5. The use of transit timing to detect terrestrial-mass extrasolar planets.

    PubMed

    Holman, Matthew J; Murray, Norman W

    2005-02-25

    Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations. PMID:15731449

  6. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  7. Size-exclusion chromatography with organic carbon detection using a mass spectrometer.

    PubMed

    Warton, Ben; Heitz, Anna; Allpike, Bradley; Kagi, Robert

    2008-10-17

    A novel organic carbon detector for size-exclusion chromatography (SEC) is described. The instrument uses the conventional UV-persulfate oxidation method to convert organic carbon to CO(2), which is then detected using a mass spectrometer. This system, using the mass spectrometer, had lower limits of detection (LOD) and limits of quantification (LOQ) than a previously described system using a Fourier transform infrared (FTIR) spectroscopy 'lightpipe' detector (i.e. when quantification was based on calibration using phthalate standards). When used to analyse natural organic matter (NOM) in water, it also had a superior signal-to-noise ratio to the previously described system. The use of a mass spectrometer to detect organic carbon (as CO(2)) enables the possibility of further characterisation of NOM by measuring the stable carbon isotope ratios of the various molecular size fractions of organic carbon, as obtained by SEC.

  8. Identification of a 251 Gene Expression Signature That Can Accurately Detect M. tuberculosis in Patients with and without HIV Co-Infection

    PubMed Central

    Dawany, Noor; Showe, Louise C.; Kossenkov, Andrew V.; Chang, Celia; Ive, Prudence; Conradie, Francesca; Stevens, Wendy; Sanne, Ian

    2014-01-01

    Background Co-infection with tuberculosis (TB) is the leading cause of death in HIV-infected individuals. However, diagnosis of TB, especially in the presence of an HIV co-infection, can be limiting due to the high inaccuracy associated with the use of conventional diagnostic methods. Here we report a gene signature that can identify a tuberculosis infection in patients co-infected with HIV as well as in the absence of HIV. Methods We analyzed global gene expression data from peripheral blood mononuclear cell (PBMC) samples of patients that were either mono-infected with HIV or co-infected with HIV/TB and used support vector machines to identify a gene signature that can distinguish between the two classes. We then validated our results using publically available gene expression data from patients mono-infected with TB. Results Our analysis successfully identified a 251-gene signature that accurately distinguishes patients co-infected with HIV/TB from those infected with HIV only, with an overall accuracy of 81.4% (sensitivity = 76.2%, specificity = 86.4%). Furthermore, we show that our 251-gene signature can also accurately distinguish patients with active TB in the absence of an HIV infection from both patients with a latent TB infection and healthy controls (88.9–94.7% accuracy; 69.2–90% sensitivity and 90.3–100% specificity). We also demonstrate that the expression levels of the 251-gene signature diminish as a correlate of the length of TB treatment. Conclusions A 251-gene signature is described to (a) detect TB in the presence or absence of an HIV co-infection, and (b) assess response to treatment following anti-TB therapy. PMID:24587128

  9. Liquid Chromatography-Mass Spectrometry Interface for Detection of Extraterrestrial Organics

    NASA Technical Reports Server (NTRS)

    Southard, Adrian E.; Getty, Stephanie A.; Balvin, Manuel; Cook, Jamie E.; Espiritu, Ana Mellina; Kotecki, Carl; Towner, Deborah W.; Dworkin, J. P.; Glavin, Daniel P.; Mahaffy, Paul R.; Ferrance, J.

    2014-01-01

    The OASIS (Organics Analyzer for Sampling Icy surfaces) microchip enables electrospray or thermospray of analyte for subsequent analysis by the OASIS time-of-flight mass spectrometer. Electrospray of buffer solution containing the nucleobase adenine was performed using the microchip and detected by a commercial time-of-flight mass spectrometer. Future testing of thermospray and electrospray capability will be performed using a test fixture and vacuum chamber developed especially for optimization of ion spray at atmosphere and in low pressure environments.

  10. Determination of alkylphenol and alkylphenolethoxylates in biota by liquid chromatography with detection by tandem mass spectrometry and fluorescence spectroscopy

    USGS Publications Warehouse

    Schmitz-Afonso, I.; Loyo-Rosales, J.E.; de la Paz Aviles, M.; Rattner, B.A.; Rice, C.P.

    2003-01-01

    A quantitative method for the simultaneous determination of octylphenol, nonylphenol and the corresponding ethoxylates (1 to 5) in biota is presented. Extraction methods were developed for egg and fish matrices based on accelerated solvent extraction followed by a solid-phase extraction cleanup, using octadecylsilica or aminopropyl cartridges. Identification and quantitation were accomplished by liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) and compared to the traditional liquid chromatography with fluorescence spectroscopy detection. LC-MS-MS provides high sensitivity and specificity required for these complex matrices and an accurate quantitation with the use of 13C-labeled internal standards. Quantitation limits by LC-MS-MS ranged from 4 to 12 ng/g in eggs, and from 6 to 22 ng/g in fish samples. These methods were successfully applied to osprey eggs from the Chesapeake Bay and fish from the Great Lakes area. Total levels found in osprey egg samples were up to 18 ng/g wet mass and as high as 8.2 ug/g wet mass in the fish samples.

  11. Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry.

    PubMed

    Bailey, Melanie J; Bradshaw, Robert; Francese, Simona; Salter, Tara L; Costa, Catia; Ismail, Mahado; P Webb, Roger; Bosman, Ingrid; Wolff, Kim; de Puit, Marcel

    2015-09-21

    Latent fingerprints provide a potential route to the secure, high throughput and non-invasive detection of drugs of abuse. In this study we show for the first time that the excreted metabolites of drugs of abuse can be detected in fingerprints using ambient mass spectrometry. Fingerprints and oral fluid were taken from patients attending a drug and alcohol treatment service. Gas chromatography mass spectrometry (GC-MS) was used to test the oral fluid of patients for the presence of cocaine and benzoylecgonine. The corresponding fingerprints were analysed using Desorption Electrospray Ionization (DESI) which operates under ambient conditions and Ion Mobility Tandem Mass Spectrometry Matrix Assisted Laser Desorption Ionization (MALDI-IMS-MS/MS) and Secondary Ion Mass Spectrometry (SIMS). The detection of cocaine, benzoylecgonine (BZE) and methylecgonine (EME) in latent fingerprints using both DESI and MALDI showed good correlation with oral fluid testing. The sensitivity of SIMS was found to be insufficient for this application. These results provide exciting opportunities for the use of fingerprints as a new sampling medium for secure, non-invasive drug detection. The mass spectrometry techniques used here offer a high level of selectivity and consume only a small area of a single fingerprint, allowing repeat and high throughput analyses of a single sample.

  12. Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry.

    PubMed

    Bailey, Melanie J; Bradshaw, Robert; Francese, Simona; Salter, Tara L; Costa, Catia; Ismail, Mahado; P Webb, Roger; Bosman, Ingrid; Wolff, Kim; de Puit, Marcel

    2015-09-21

    Latent fingerprints provide a potential route to the secure, high throughput and non-invasive detection of drugs of abuse. In this study we show for the first time that the excreted metabolites of drugs of abuse can be detected in fingerprints using ambient mass spectrometry. Fingerprints and oral fluid were taken from patients attending a drug and alcohol treatment service. Gas chromatography mass spectrometry (GC-MS) was used to test the oral fluid of patients for the presence of cocaine and benzoylecgonine. The corresponding fingerprints were analysed using Desorption Electrospray Ionization (DESI) which operates under ambient conditions and Ion Mobility Tandem Mass Spectrometry Matrix Assisted Laser Desorption Ionization (MALDI-IMS-MS/MS) and Secondary Ion Mass Spectrometry (SIMS). The detection of cocaine, benzoylecgonine (BZE) and methylecgonine (EME) in latent fingerprints using both DESI and MALDI showed good correlation with oral fluid testing. The sensitivity of SIMS was found to be insufficient for this application. These results provide exciting opportunities for the use of fingerprints as a new sampling medium for secure, non-invasive drug detection. The mass spectrometry techniques used here offer a high level of selectivity and consume only a small area of a single fingerprint, allowing repeat and high throughput analyses of a single sample. PMID:25977942

  13. Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes

    NASA Astrophysics Data System (ADS)

    Lu, Jonathan; Trnka, Michael J.; Roh, Soung-Hun; Robinson, Philip J. J.; Shiau, Carrie; Fujimori, Danica Galonic; Chiu, Wah; Burlingame, Alma L.; Guan, Shenheng

    2015-12-01

    Native electrospray-ionization mass spectrometry (native MS) measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact protein assemblies. However, native spectra derived from these assemblies are often partially obscured by low signal-to-noise as well as broad peak shapes because of residual solvation and adduction after the electrospray process. The wide peak widths together with the fact that sequential charge state series from highly charged ions are closely spaced means that native spectra containing multiple species often suffer from high degrees of peak overlap or else contain highly interleaved charge envelopes. This situation presents a challenge for peak detection, correct charge state and charge envelope assignment, and ultimately extraction of the relevant underlying mass values of the noncovalent assemblages being investigated. In this report, we describe a comprehensive algorithm developed for addressing peak detection, peak overlap, and charge state assignment in native mass spectra, called PeakSeeker. Overlapped peaks are detected by examination of the second derivative of the raw mass spectrum. Charge state distributions of the molecular species are determined by fitting linear combinations of charge envelopes to the overall experimental mass spectrum. This software is capable of deconvoluting heterogeneous, complex, and noisy native mass spectra of large protein assemblies as demonstrated by analysis of (1) synthetic mononucleosomes containing severely overlapping peaks, (2) an RNA polymerase II/α-amanitin complex with many closely interleaved ion signals, and (3) human TriC complex containing high levels of background noise.

  14. Atmospheric sampling glow discharge ionizataion and triple quadrupole tandem mass spectrometry for explosives vapor detection

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.; Hart, K.J.; Glish, G.L.; Grant, B.C.; Chambers, D.M.

    1993-08-01

    The detection and identification of trace vapors of hidden high explosives is an excellent example of a targeted analysis problem. It is desirable to push to ever lower levels the quantity or concentration of explosives material that provides an analytical signal, while at the same time discriminating against all other uninteresting material. The detection system must therefore combine high sensitivity with high specificity. This report describes the philosophy behind the use of atmospheric sampling glow discharge ionization, which is a sensitive, rugged, and convenient means for forming anions from explosives molecules, with tandem mass spectrometry, which provides unparalleled specificity in the identification of explosives-related ions. Forms of tandem mass spectrometry are compared and contrasted to provide a summary of the characteristics to be expected from an explosives detector employing mass spectrometry/mass spectrometry. The instrument developed for the FAA, an atmospheric sampling glow discharge/triple quadrupole mass spectrometer, is described in detail with particular emphasis on the ion source/spectrometer interface and on the capabilities of the spectrometer. Performance characteristics of the system are also described as they pertain to explosives of interest including a description of an automated procedure for the detection and identification of specific explosives. A comparison of various tandem mass spectrometers mated with atmospheric sampling glow discharge is then described and preliminary studies with a vapor preconcentration system provided by the FAA will be described.

  15. GaAs coupled micro resonators with enhanced sensitive mass detection.

    PubMed

    Chopard, Tony; Lacour, Vivien; Leblois, Therese

    2014-12-02

    This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation.

  16. Detection of clustered microcalcifications in masses on mammograms by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xuejun; Hara, Takeshi; Fujita, Hiroshi; Iwase, Takuji; Endo, Tokiko

    2001-07-01

    The existence of a cluster of microcalcifications in mass area on mammogram is one of important features for distinguishing the breast cancer between benign and malignant. However, missed detections often occur because of its low subject contrast in denser background and small quantity of microcalcifications. To get a higher performance of detecting the cluster in mass area, we combined the shift-invariant artificial neural network (SIANN) with triple-ring filter (TRF) method in our computer-aided diagnosis (CAD) system. 150 region-of- interests around mass containing both of positive and negative microcalcifications were selected for training the network by a modified error-back-propagation algorithm. A variable-ring filter was used for eliminating the false- positive (FP) detections after the outputs of SIANN and TRF. The remained Fps were then reduced by a conventional three layer artificial neural network. Finally, the program identified clustered microcalcifications form individual microcalcifications. In a practical detection of 30 cases with 40 clusters in masses, the sensitivity of detecting clusters was improved form 90% by our previous method to 95% by using both SIANN and TRF, while the number of FP clusters was decreased from 0.85 to 0.40 cluster per image.

  17. Detecting Cardiac Sarcoidosis with a Right Atrial Mass Using Transthoracic Echocardiography.

    PubMed

    Takahashi, Yusuke; Izumi, Chisato; Miyake, Makoto; Nakajima, Seiko; Nishimura, Shunsuke; Kuroda, Maiko; Yoshikawa, Yusuke; Amano, Masashi; Hayama, Yukiko; Imamura, Sari; Onishi, Naoaki; Tamaki, Yodo; Enomoto, Soichiro; Tamura, Toshihiro; Kondo, Hirokazu; Kaitani, Kazuaki; Nakagawa, Yoshihisa

    2016-01-01

    An asymptomatic 40-year-old woman with a first-degree atrioventricular block presented a right atrial mass in transthoracic echocardiograms. Transesophageal echocardiograms showed abnormally thickened tissue on the interatrial septum, which extended around the aortic annulus. Multimodality examinations demonstrated lesions in the heart, lungs, liver, and spleen, suggesting sarcoidosis. She was diagnosed with cardiac sarcoidosis after we detected granulomas in a lung specimen. A right atrial mass shrunk following steroid therapy. We should therefore consider the possibility of cardiac sarcoidosis when we see wall thickening and a mass echo in the atrium. These signs may point to an early-phase lesion of cardiac sarcoidosis.

  18. Radio detections during two state transitions of the intermediate-mass black hole HLX-1.

    PubMed

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-08-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (~3 to 20 solar masses, M(⊙)) as well as supermassive black holes (~10(6) to 10(9) M(⊙)) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (~10(2) to 10(5) M(⊙)), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between ~9 × 10(3) M(⊙) and ~9 × 10(4) M(⊙).

  19. Rapid Detection of Ricin in Serum Based on Cu-Chelated Magnetic Beads Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-Qiang; Song, Jian; Wang, Hong-Li; Xu, Bin; Liu, Feng; He, Kun; Wang, Na

    2016-04-01

    The protein toxin ricin obtained from castor bean plant (Ricinus communis) seeds is a potent biological warfare agent due to its ease of availability and acute toxicity. In this study, we demonstrated a rapid and simple method to detect ricin in serum in vitro. The ricin was mixed with serum and digested by trypsin, then all the peptides were efficiently extracted using Cu-chelated magnetic beads and were detected with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The specific ricin peptides were identified by Nanoscale Ultra Performance liquid chromatography coupled to tandem mass spectrometry according to their sequences. The assay required 2.5 hours, and a characteristic peptide could be detected down to 4 ng/μl and used as a biomarker to detect ricin in serum. The high sensitivity and simplicity of the procedure makes it valuable in clinical practice.

  20. First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry.

    PubMed

    Heick, J; Fischer, M; Pöpping, B

    2011-02-18

    The development of a multi-method for the detection of seven allergens based on liquid chromatography and triple-quadrupole tandem mass spectrometry in multiple reaction mode is described. It is based on extraction of the allergenic proteins from a food matrix, followed by enzymatic digestion with trypsin. The chosen marker peptides were implemented into one method that is capable of the simultaneous detection of milk, egg, soy, hazelnut, peanut, walnut and almond. This method has been used to detect all seven allergenic commodities from incurred reference bread material, which was baked according to a standard recipe from the baking industry. Detected concentrations ranged from 10 to 1000 μg/g, demonstrating that the mass spectrometric based method is a useful tool for allergen screening.

  1. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    PubMed

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents.

  2. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    PubMed

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents. PMID:27260452

  3. Rapid Detection of Ricin in Serum Based on Cu-Chelated Magnetic Beads Using Mass Spectrometry.

    PubMed

    Zhao, Yong-Qiang; Song, Jian; Wang, Hong-Li; Xu, Bin; Liu, Feng; He, Kun; Wang, Na

    2016-04-01

    The protein toxin ricin obtained from castor bean plant (Ricinus communis) seeds is a potent biological warfare agent due to its ease of availability and acute toxicity. In this study, we demonstrated a rapid and simple method to detect ricin in serum in vitro. The ricin was mixed with serum and digested by trypsin, then all the peptides were efficiently extracted using Cu-chelated magnetic beads and were detected with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The specific ricin peptides were identified by Nanoscale Ultra Performance liquid chromatography coupled to tandem mass spectrometry according to their sequences. The assay required 2.5 hours, and a characteristic peptide could be detected down to 4 ng/μl and used as a biomarker to detect ricin in serum. The high sensitivity and simplicity of the procedure makes it valuable in clinical practice. Graphical Abstract ᅟ. PMID:26873724

  4. The Mass-Radius-Eccentricity Distribution of Near-Resonant Transiting Exoplanet Pairs Detected by Kepler

    NASA Astrophysics Data System (ADS)

    Shabram, Megan; Jontof-Hutter, Daniel; Ford, Eric B.

    2015-12-01

    We characterize the mass-radius-eccentricity distribution of transiting planets near first-order mean motion resonances using Transit Timing Variation (TTV) observations from NASA's Kepler mission. Kepler's precise measurements of transit times (Mazeh et al. 2014; Rowe et al. 2015) constrain the planet-star mass ratio, eccentricity and pericenter directions for hundreds of planets. Strongly-interacting planetary systems allow TTVs to provide precise measurements of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. 2012). In addition to these precisely characterized planetary systems, there are several systems harboring at least two planets near a mean motion resonance (MMR) for which TTVs provide a joint constraint on planet masses, eccentricities and pericenter directions (Hadden et al. 2015). Unfortunately, a near degeneracy between these parameters leads to a posterior probability density with highly correlated uncertainties. Nevertheless, the population encodes valuable information about the distribution of planet masses, orbital eccentricities and the planet mass-radius relationship. We characterize the distribution of masses and eccentricities for near-resonant transiting planets by combining a hierarchical Bayesian model with an analytic model for the TTV signatures of near-resonant planet pairs (Lithwick & Wu 2012). By developing a rigorous statistical framework for analyzing the TTV signatures of a population of planetary systems, we significantly improve upon previous analyses. For example, our analysis includes transit timing measurements of near-resonant transiting planet pairs regardless of whether there is a significant detection of TTVs, thereby avoiding biases due to only including TTV detections.

  5. Mass measurement of a single unseen star and planetary detection efficiency for OGLE 2007-BLG-050

    NASA Astrophysics Data System (ADS)

    Batista, V.; Dong, S.; Gould, A.; Beaulieu, J. P.; Cassan, A.; Christie, G. W.; Han, C.; Udalski, A.; Allen, W.; Depoy, D. L.; Gal-Yam, A.; Gaudi, B. S.; Johnson, B.; Kaspi, S.; Lee, C. U.; Maoz, D.; McCormick, J.; McGreer, I.; Monard, B.; Natusch, T.; Ofek, E.; Park, B.-G.; Pogge, R. W.; Polishook, D.; Shporer, A.; μFUN Collaboration; Albrow, M. D.; Bennett, D. P.; Brillant, S.; Bode, M.; Bramich, D. M.; Burgdorf, M.; Caldwell, J. A. R.; Calitz, H.; Cole, A.; Cook, K. H.; Coutures, Ch.; Dieters, S.; Dominik, M.; Prester, D. D.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Hoffman, M.; Horne, K.; Jørgensen, U. G.; Kains, N.; Kane, S.; Kubas, D.; Marquette, J. B.; Martin, R.; Meintjes, P.; Menzies, J.; Pollard, K. R.; Sahu, K. C.; Snodgrass, C.; Steele, I.; Tsapras, Y.; Wambsganss, J.; Williams, A.; Zub, M.; PLANET/RoboNet Collaboration; Wyrzykowski, Ł.; Kubiak, M.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Szewczyk, O.; Ulaczyk, K.; Ogle Collaboration; Abe, F.; Bond, I. A.; Fukui, A.; Furusawa, K.; Hearnshaw, J. B.; Holderness, S.; Itow, Y.; Kamiya, K.; Kilmartin, P. M.; Korpela, A.; Lin, W.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Nagaya, M.; Ohnishi, K.; Okumura, T.; Perrott, Y. C.; Rattenbury, N.; Saito, T.; Sako, T.; Skuljan, L.; Sullivan, D.; Sumi, T.; Sweatman, W. L.; Tristram, P. J.; Yock, P. C. M.; MOA Collaboration

    2009-12-01

    Aims. We analyze OGLE-2007-BLG-050, a high magnification microlensing event (A˜ 432) whose peak occurred on 2 May, 2007, with pronounced finite-source and parallax effects. We compute planet detection efficiencies for this event in order to determine its sensitivity to the presence of planets around the lens star. Methods: Both finite-source and parallax effects permit a measurement of the angular Einstein radius θ_E=0.48± 0.01 mas and the parallax π_E=0.12± 0.03, leading to an estimate of the lens mass M=0.50±0.14 M⊙ and its distance to the observer D_L=5.5±0.4 kpc. This is only the second determination of a reasonably precise (<30%) mass estimate for an isolated unseen object, using any method. This allows us to calculate the planetary detection efficiency in physical units (r_perp,m_p), where r_perp is the projected planet-star separation and mp is the planet mass. Results: When computing planet detection efficiency, we did not find any planetary signature, i.e. none of the planetary configurations provides a Δχ2 improvement higher than 60, and our detection efficiency results reveal significant sensitivity to Neptune-mass planets, and to a lesser extent Earth-mass planets in some configurations. Indeed, Jupiter and Neptune-mass planets are excluded with a high confidence for a large projected separation range between the planet and the lens star, respectively [0.6-10] and [1.4-4] AU, and Earth-mass planets are excluded with a 10% confidence in the lensing zone, i.e. [1.8-3.1] AU. Probing Lensing Anomalies NETwork (PLANET). Optical Gravitational Lens Experiment (OGLE). Microlensing Observations in Astrophysics (MOA). Royal Society University research fellow.

  6. Detection of uranium in industrial and mines samples by microwave plasma torch mass spectrometry.

    PubMed

    Li, Yi; Yang, Meiling; Sun, Rong; Zhong, Tao; Chen, Huanwen

    2016-02-01

    Microwave plasma torch (MPT), traditionally used as the light source for atomic emission spectrophotometry, has been employed as the ambient ionization source for sensitive detection of uranium in various ground water samples with widely available ion trap mass spectrometer. In the full-scan mass spectra obtained in the negative ion detection mode, uranium signal was featured by the uranyl nitrate complexes (e.g. [UO2 (NO3 )3 ](-) ), which yielded characteristic fragments in the tandem mass spectrometry experiments, allowing confident detection of trace uranium in water samples without sample pretreatment. Under the optimal experimental conditions, the calibration curves were linearly responded within the concentration levels ranged in 10-1000 µg·l(-1) , with the limit of detection (LOD) of 31.03 ng·l(-1) . The relative standard deviations (RSD) values were 2.1-5.8% for the given samples at 100 µg·l(-1) . The newly established method has been applied to direct detection of uranium in practical mine water samples, providing reasonable recoveries 90.94-112.36% for all the samples tested. The analysis of a single sample was completed within 30 s, showing a promising potential of the method for sensitive detection of trace uranium with improved throughput. PMID:26889932

  7. Detection of uranium in industrial and mines samples by microwave plasma torch mass spectrometry.

    PubMed

    Li, Yi; Yang, Meiling; Sun, Rong; Zhong, Tao; Chen, Huanwen

    2016-02-01

    Microwave plasma torch (MPT), traditionally used as the light source for atomic emission spectrophotometry, has been employed as the ambient ionization source for sensitive detection of uranium in various ground water samples with widely available ion trap mass spectrometer. In the full-scan mass spectra obtained in the negative ion detection mode, uranium signal was featured by the uranyl nitrate complexes (e.g. [UO2 (NO3 )3 ](-) ), which yielded characteristic fragments in the tandem mass spectrometry experiments, allowing confident detection of trace uranium in water samples without sample pretreatment. Under the optimal experimental conditions, the calibration curves were linearly responded within the concentration levels ranged in 10-1000 µg·l(-1) , with the limit of detection (LOD) of 31.03 ng·l(-1) . The relative standard deviations (RSD) values were 2.1-5.8% for the given samples at 100 µg·l(-1) . The newly established method has been applied to direct detection of uranium in practical mine water samples, providing reasonable recoveries 90.94-112.36% for all the samples tested. The analysis of a single sample was completed within 30 s, showing a promising potential of the method for sensitive detection of trace uranium with improved throughput.

  8. Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors

    PubMed Central

    Hahm, Jong-in

    2011-01-01

    The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered. PMID:21691441

  9. Architectural considerations of micro- and nanoresonators for mass detection in the presence of a fluid

    NASA Astrophysics Data System (ADS)

    Vignola, Joseph F.; Judge, John A.

    2008-12-01

    The sensitivity of various microscale and nanoscale resonator platforms, for use as mass sensors for detection of chemical or biological agents in air or water, is examined in terms of architectural considerations, including shape, scale, vibration mode, and fluid environment. Simple models for estimating damping due to various sources are used to calculate Q for several resonator designs: cantilevers and doubly fixed beams in flexure and extensional bar and disk resonators. The scaling of various contributions to Q is discussed, and the effects of support loss and fluid loss are compared as a function of aspect ratio for beam resonators. The minimum detectable mass is estimated for each of the four resonator designs, both for the case in which additional mass adsorbs uniformly over the resonator surface and the case in which functionalization of the surface is limited in order to maximize sensitivity and minimize added dissipation. The mass sensitivity is best for resonators undergoing extensional motion and worst for flexural devices with high length-to-thickness ratio. The minimum detectable mass is shown to be proportional to scale to the power of 1.75 for microresonator scenarios in which resonator quality factor is limited by viscous damping and proportional to scale squared when the resonator is sufficiently small that continuum fluid models are inappropriate and quality factor is limited by dissipation via momentum transfer to individual fluid molecules.

  10. TREX-DM: a low background Micromegas-based TPC for low-mass WIMP detection

    NASA Astrophysics Data System (ADS)

    Iguaz, F. J.; Garza, J. G.; Aznar, F.; Castel, J. F.; Cebrián, S.; Dafni, T.; García, J. A.; Irastorza, I. G.; Lagraba, A.; Luzón, G.; Peiró, A.

    2016-05-01

    Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we describe the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass ~0.3 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This work describes the commissioning of the actual setup situated in a laboratory on surface and the updates needed for a possible physics run at the Canfranc Underground Laboratory (LSC) in 2016. A preliminary background model of TREX-DM is also presented, based on a Geant4 simulation, the simulation of the detector’s response and two discrimination methods: a conservative muon/electron and one based on a neutron source. Based on this background model, TREX-DM could be competitive in the search for low-mass WIMPs. In particular it could be sensitive, e.g., to the low-mass WIMP interpretation of the DAMA/LIBRA and other hints in a conservative scenario.

  11. A novel featureless approach to mass detection in digital mammograms based on support vector machines

    NASA Astrophysics Data System (ADS)

    Campanini, Renato; Dongiovanni, Danilo; Iampieri, Emiro; Lanconelli, Nico; Masotti, Matteo; Palermo, Giuseppe; Riccardi, Alessandro; Roffilli, Matteo

    2004-03-01

    In this work, we present a novel approach to mass detection in digital mammograms. The great variability of the appearance of masses is the main obstacle to building a mass detection method. It is indeed demanding to characterize all the varieties of masses with a reduced set of features. Hence, in our approach we have chosen not to extract any feature, for the detection of the region of interest; in contrast, we exploit all the information available on the image. A multiresolution overcomplete wavelet representation is performed, in order to codify the image with redundancy of information. The vectors of the very-large space obtained are then provided to a first support vector machine (SVM) classifier. The detection task is considered here as a two-class pattern recognition problem: crops are classified as suspect or not, by using this SVM classifier. False candidates are eliminated with a second cascaded SVM. To further reduce the number of false positives, an ensemble of experts is applied: the final suspect regions are achieved by using a voting strategy. The sensitivity of the presented system is nearly 80% with a false-positive rate of 1.1 marks per image, estimated on images coming from the USF DDSM database.

  12. A novel featureless approach to mass detection in digital mammograms based on support vector machines.

    PubMed

    Campanini, Renato; Dongiovanni, Danilo; Iampieri, Emiro; Lanconelli, Nico; Masotti, Matteo; Palermo, Giuseppe; Riccardi, Alessandro; Roffilli, Matteo

    2004-03-21

    In this work, we present a novel approach to mass detection in digital mammograms. The great variability of the appearance of masses is the main obstacle to building a mass detection method. It is indeed demanding to characterize all the varieties of masses with a reduced set of features. Hence, in our approach we have chosen not to extract any feature, for the detection of the region of interest; in contrast, we exploit all the information available on the image. A multiresolution overcomplete wavelet representation is performed, in order to codify the image with redundancy of information. The vectors of the very-large space obtained are then provided to a first support vector machine (SVM) classifier. The detection task is considered here as a two-class pattern recognition problem: crops are classified as suspect or not, by using this SVM classifier. False candidates are eliminated with a second cascaded SVM. To further reduce the number of false positives, an ensemble of experts is applied: the final suspect regions are achieved by using a voting strategy. The sensitivity of the presented system is nearly 80% with a false-positive rate of 1.1 marks per image, estimated on images coming from the USF DDSM database. PMID:15104319

  13. Mass calibration of the energy axis in ToF-E elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Meersschaut, J.; Laricchiuta, G.; Sajavaara, T.; Vandervorst, W.

    2016-03-01

    We report on procedures that we have developed to mass-calibrate the energy axis of ToF-E histograms in elastic recoil detection analysis. The obtained calibration parameters allow one to transform the ToF-E histogram into a calibrated ToF-M histogram.

  14. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses

    SciTech Connect

    Blennow, Mattias

    2008-06-01

    We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background.

  15. Optically detected, single nanoparticle mass spectrometer with pre-filtered electrospray nanoparticle source

    SciTech Connect

    Howder, Collin R.; Bell, David M.; Anderson, Scott L.

    2014-01-15

    An instrument designed for non-destructive mass analysis of single trapped nanoparticles is described. The heart of the instrument is a 3D quadrupole (Paul) trap constructed to give optical access to the trap center along ten directions, allowing passage of lasers for particle heating and detection, particle injection, collection of scattered or fluorescent photons for particle detection and mass analysis, and collection of particles on TEM grids for analysis, as needed. Nanoparticles are injected using an electrospray ionization (ESI) source, and conditions are described for spraying and trapping polymer particles, bare metal particles, and ligand stabilized particles with masses ranging from 200 kDa to >3 GDa. Conditions appropriate to ESI and injection of different types of particles are described. The instrument is equipped with two ion guides separating the ESI source and nanoparticle trap. The first ion guide is mostly to allow desolvation and differential pumping before the particles enter the trap section of the instrument. The second is a linear quadrupole guide, which can be operated in mass selective or mass band-pass modes to limit transmission to species with mass-to-charge ratios in the range of interest. With a little experience, the design allows injection of single particles into the trap upon demand.

  16. Matrix-assisted laser desorption ionization-time of flight mass spectrometry can accurately differentiate Aeromonas dhakensis from A. hydrophila, A. caviae, and A. veronii.

    PubMed

    Chen, Po-Lin; Lee, Tai-Fen; Wu, Chi-Jung; Teng, Shih-Hua; Teng, Lee-Jene; Ko, Wen-Chien; Hsueh, Po-Ren

    2014-07-01

    Among 217 Aeromonas isolates identified by sequencing analysis of their rpoB genes, the accuracy rates of identification of A. dhakensis, A. hydrophila, A. veronii, and A. caviae were 96.7%, 90.0%, 96.7%, and 100.0%, respectively, by the cluster analysis of spectra generated by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

  17. A Comprehensive Review of School-Based Body Mass Index Screening Programs and Their Implications for School Health: Do the Controversies Accurately Reflect the Research?

    ERIC Educational Resources Information Center

    Ruggieri, Dominique G.; Bass, Sarah B.

    2015-01-01

    Background: Whereas legislation for body mass index (BMI) surveillance and screening programs has passed in 25 states, the programs are often subject to ethical debates about confidentiality and privacy, school-to-parent communication, and safety and self-esteem issues for students. Despite this debate, no comprehensive analysis has been completed…

  18. Effect of viscous loss on mechanical resonators designed for mass detection

    NASA Astrophysics Data System (ADS)

    Vignola, Joseph F.; Judge, John A.; Jarzynski, Jacek; Zalalutdinov, Maxim; Houston, Brian H.; Baldwin, Jeffrey W.

    2006-01-01

    Simple models are presented for estimating viscous damping of fluid (gas or liquid) loaded mechanical resonators. The models apply to beams in flexural modes of vibration, and to thin beams and plates in longitudinal modes of vibration. Predictions of the associated quality factor are compared with measured values for several macroscale and microscale resonators. The scaling of viscous loss with oscillator size is discussed. The minimum detectable mass is estimated for several oscillator designs and it is shown that, for comparably sized devices, longitudinal resonators have the lowest threshold of detection. This minimum detectable mass is proportional to scale to the power 1.75 for all resonator architectures limited by viscous damping, and it is shown that the viscous loss is 220 times larger in water than in air.

  19. Single Particle Fluorescence & Mass Spectrometry for the Detection of Biological Aerosols

    SciTech Connect

    Coffee, K; Riot, V; Woods, B; Steele, P; Gard, E E

    2005-04-25

    Biological Aerosol Mass Spectrometry (BAMS) is an emerging technique for the detection of biological aerosols, which is being developed at Lawrence Livermore National Laboratory. The current system uses several orthogonal analytical methods to improve system selectivity, sensitivity and speed in order to maximize its utility as a biological aerosol detection system with extremely low probability of false alarm and high probability of detection. Our approach is to pre-select particles of interest by size and fluorescence prior to mass spectral analysis. The ability to distinguish biological aerosols from background and to discriminate bacterial spores, vegetative cells, viruses and toxins from one another will be shown. Data from particle standards of known chemical composition will be discussed. Analysis of ambient particles will also be presented.

  20. Detecting Biosignatures Associated with Minerals by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transorm Mass Spectromety (GALDI-FTMS)

    SciTech Connect

    C. Doc Richardson; J. Michelle Kotler; Nancy W. Hinman; Timothy R. McJunkin; Jill R. Scott

    2008-07-01

    The ability to detect carbon signatures that can be linked to complex, possibly biogenic, organic molecules is imperative in research into the origin and distribution of life in our solar system particularly when used in conjunction with inorganic, mineralogical, and isotopic signatures that provide strong evidence for geochemical influences of living organisms on their environment. Ideally, the method used to detect these signatures must (i) accurately and automatically translate the organic and other information into usable forms, (ii) precisely distinguish such information from alternative compositions, (iii) operate with high spatial resolution coupled with precise location abilities, and (iv) require little to no sample preparation because of the potential for contamination. Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform mass spectrometer (FTMS) has been used to determine the presence of bio/organic molecules (BOM) associated with different minerals and mineraloids including oxide, sulfate, carbonate, chloride, and silicate minerals. BOM is defined as an organic structure that can be produced by living organisms or derived from another organic compound made by living organisms (i.e., degradation product). GALDI requires no sample preparation because the mineral matrix assists desorption. Ultimately, however, the detectability of BOM is controlled by the desorption efficiency, ionization efficiency, and the specific experimental conditions. Results from experiments with combinations of known BOM and mineral standards indicated that the detectability of BOM increased with decreasing concentration, contrary to most analytical procedures. Results suggest that BOM when combined with certain minerals is more easily detected than when combined with other minerals. Such conclusions can guide selection of appropriate samples for sample return missions.

  1. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity

    PubMed Central

    Kalb, Suzanne R.; Boyer, Anne E.; Barr, John R.

    2015-01-01

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A–G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin. PMID:26404376

  2. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    PubMed

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-08-31

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin.

  3. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    PubMed

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-09-01

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin. PMID:26404376

  4. Detection of pseudouridine and other modifications in tRNA by cyanoethylation and MALDI mass spectrometry

    PubMed Central

    Mengel-Jørgensen, Jonas; Kirpekar, Finn

    2002-01-01

    Mass spectrometry plays a central role in the characterisation of modified nucleotides, but pseudouridine is a mass-silent post-transcriptional modification and hence not detectable by direct mass spectrometric analysis. We show by the use of matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry that pseudouridines in tRNA can be specifically cyanoethylated by acrylonitrile without affecting the uridines. The tRNA was cyanoethylated and then subjected to digestion with either RNase A or RNase T1. Cyanoethylated digestion fragments were identified by mass spectrometric comparison of untreated and acrylonitrile-treated samples, where the addition of one acrylonitrile resulted in a mass increment of 53.0 Da. The exact modified nucleotide could be identified by tandem mass spectrometry on the cyanoethylated digestion fragment. The methodology was used to identify additional one 4-thiouridine and one pseudouridine in tRNATyrII from Escherichia coli. Furthermore, we observed that RNase A is highly tolerant towards nucleotide modifications, only being inhibited by 2′-O-methylation, whereas RNase T1 cleavage is affected by most nucleotide modifications. PMID:12466567

  5. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  6. Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: application in unambiguous toxin detection from bioaerosol.

    PubMed

    Alam, Syed Imteyaz; Kumar, Bhoj; Kamboj, Dev Vrat

    2012-12-01

    Protein toxins, such as botulinum neurotoxins (BoNTs), Clostridium perfringens epsilon toxin (ETX), staphylococcal enterotoxin B (SEB), shiga toxin (STX), and plant toxin ricin, are involved in a number of diseases and are considered as potential agents for bioterrorism and warfare. From a bioterrorism and warfare perspective, these agents are likely to cause maximum damage to a civilian or military population through an inhalational route of exposure and aerosol is considered the envisaged mode of delivery. Unambiguous detection of toxin from aerosol is of paramount importance, both for bringing mitigation protocols into operation and for implementation of effective medical countermeasures, in case a "biological cloud" is seen over a population. A multiplex, unambiguous, and qualitative detection of protein toxins is reported here using tandem mass spectrometry with MALDI-TOF-TOF. The methodology involving simple sample processing steps was demonstrated to identify toxins (ETX, Clostridium perfringes phospholipase C, and SEB) from blind spiked samples. The novel directed search approach using a list of unique peptides was used to identify toxins from a complex protein mixture. The bioinformatic analysis of seven protein toxins for elucidation of unique peptides with conservation status across all known sequences provides a high confidence for detecting toxins originating from any geographical location and source organism. Use of tandem MS data with peptide sequence information increases the specificity of the method. A prototype for generation of aerosol using a nebulizer and collection using a cyclone collector was used to provide a proof of concept for unambiguous detection of toxin from aerosol using precursor directed tandem mass spectrometry combined with protein database searching. ETX prototoxin could be detected from aerosol at 0.2 ppb concentration in aerosol.

  7. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    PubMed

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  8. Ion Trap with Narrow Aperture Detection Electrodes for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Oleg Y.; Tsybin, Yury O.

    2015-05-01

    The current paradigm in ion trap (cell) design for Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is the ion detection with wide aperture detection electrodes. Specifically, excitation and detection electrodes are typically 90° wide and positioned radially at a similar distance from the ICR cell axis. Here, we demonstrate that ion detection with narrow aperture detection electrodes (NADEL) positioned radially inward of the cell's axis is feasible and advantageous for FT-ICR MS. We describe design details and performance characteristics of a 10 T FT-ICR MS equipped with a NADEL ICR cell having a pair of narrow aperture (flat) detection electrodes and a pair of standard 90° excitation electrodes. Despite a smaller surface area of the detection electrodes, the sensitivity of the NADEL ICR cell is not reduced attributable to improved excite field distribution, reduced capacitance of the detection electrodes, and their closer positioning to the orbits of excited ions. The performance characteristics of the NADEL ICR cell are comparable with the state-of-the-art FT-ICR MS implementations for small molecule, peptide, protein, and petroleomics analyses. In addition, the NADEL ICR cell's design improves the flexibility of ICR cells and facilitates implementation of advanced capabilities (e.g., quadrupolar ion detection for improved mainstream applications). It also creates an intriguing opportunity for addressing the major bottleneck in FTMS—increasing its throughput via simultaneous acquisition of multiple transients or via generation of periodic non-sinusoidal transient signals.