Science.gov

Sample records for accurate measurement methods

  1. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  2. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2017-01-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  3. Method for Accurate Surface Temperature Measurements During Fast Induction Heating

    NASA Astrophysics Data System (ADS)

    Larregain, Benjamin; Vanderesse, Nicolas; Bridier, Florent; Bocher, Philippe; Arkinson, Patrick

    2013-07-01

    A robust method is proposed for the measurement of surface temperature fields during induction heating. It is based on the original coupling of temperature-indicating lacquers and a high-speed camera system. Image analysis tools have been implemented to automatically extract the temporal evolution of isotherms. This method was applied to the fast induction treatment of a 4340 steel spur gear, allowing the full history of surface isotherms to be accurately documented for a sequential heating, i.e., a medium frequency preheating followed by a high frequency final heating. Three isotherms, i.e., 704, 816, and 927°C, were acquired every 0.3 ms with a spatial resolution of 0.04 mm per pixel. The information provided by the method is described and discussed. Finally, the transformation temperature Ac1 is linked to the temperature on specific locations of the gear tooth.

  4. Novel dispersion tolerant interferometry method for accurate measurements of displacement

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Maria, Michael; Leick, Lasse; Podoleanu, Adrian G.

    2015-05-01

    We demonstrate that the recently proposed master-slave interferometry method is able to provide true dispersion free depth profiles in a spectrometer-based set-up that can be used for accurate displacement measurements in sensing and optical coherence tomography. The proposed technique is based on correlating the channelled spectra produced by the linear camera in the spectrometer with previously recorded masks. As such technique is not based on Fourier transformations (FT), it does not require any resampling of data and is immune to any amounts of dispersion left unbalanced in the system. In order to prove the tolerance of technique to dispersion, different lengths of optical fiber are used in the interferometer to introduce dispersion and it is demonstrated that neither the sensitivity profile versus optical path difference (OPD) nor the depth resolution are affected. In opposition, it is shown that the classical FT based methods using calibrated data provide less accurate optical path length measurements and exhibit a quicker decays of sensitivity with OPD.

  5. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  6. Accurate mass replacement method for the sediment concentration measurement with a constant volume container

    NASA Astrophysics Data System (ADS)

    Ban, Yunyun; Chen, Tianqin; Yan, Jun; Lei, Tingwu

    2017-04-01

    The measurement of sediment concentration in water is of great importance in soil erosion research and soil and water loss monitoring systems. The traditional weighing method has long been the foundation of all the other measuring methods and instrument calibration. The development of a new method to replace the traditional oven-drying method is of interest in research and practice for the quick and efficient measurement of sediment concentration, especially field measurements. A new method is advanced in this study for accurately measuring the sediment concentration based on the accurate measurement of the mass of the sediment-water mixture in the confined constant volume container (CVC). A sediment-laden water sample is put into the CVC to determine its mass before the CVC is filled with water and weighed again for the total mass of the water and sediments in the container. The known volume of the CVC, the mass of sediment-laden water, and sediment particle density are used to calculate the mass of water, which is replaced by sediments, therefore sediment concentration of the sample is calculated. The influence of water temperature was corrected by measuring water density to determine the temperature of water before measurements were conducted. The CVC was used to eliminate the surface tension effect so as to obtain the accurate volume of water and sediment mixture. Experimental results showed that the method was capable of measuring the sediment concentration from 0.5 up to 1200 kg m‑3. A good liner relationship existed between the designed and measured sediment concentrations with all the coefficients of determination greater than 0.999 and the averaged relative error less than 0.2%. All of these seem to indicate that the new method is capable of measuring a full range of sediment concentration above 0.5 kg m‑3 to replace the traditional oven-drying method as a standard method for evaluating and calibrating other methods.

  7. Indirect viscosimetric method is less accurate than ektacytometry for the measurement of red blood cell deformability.

    PubMed

    Vent-Schmidt, Jens; Waltz, Xavier; Pichon, Aurélien; Hardy-Dessources, Marie-Dominique; Romana, Marc; Connes, Philippe

    2015-01-01

    The aim of this study was to test the accuracy of viscosimetric method to estimate the red blood cell (RBC) deformability properties. Thirty-three subjects were enrolled in this study: 6 healthy subjects (AA), 11 patients with sickle cell-hemoglobin C disease (SC) and 16 patients with sickle cell anemia (SS). Two methods were used to assess RBC deformability: 1) indirect viscosimetric method and 2) ektacytometry. The indirect viscosimetric method was based on the Dintenfass equation where blood viscosity, plasma viscosity and hematocrit are measured and used to calculate an index of RBC rigidity (Tk index). The RBC deformability/rigidity of the three groups was compared using the two methods. Tk index was not different between SS and SC patients and the two groups had higher values than AA group. When ektacytometry was used, RBC deformability was lower in SS and SC groups compared to the AA group and SS and SC patients were different. Although the two measures of RBC deformability were correlated, the association was not very high. Bland and Altman analysis demonstrated a 3.25 bias suggesting a slight difference between the two methods. In addition, the limit of agreement represented 28% (>15%) of the mean values of RBC deformability, showing no interchangeability between the two methods. In conclusion, measuring RBC deformability by indirect viscosimetry is less accurate than by ektacytometry, which is considered the gold standard.

  8. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  9. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  10. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided.

  11. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers

    PubMed Central

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-01-01

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time. PMID:27941705

  12. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers.

    PubMed

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-12-09

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.

  13. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  14. Wear characteristics of UHMW polyethylene: a method for accurately measuring extremely low wear rates.

    PubMed

    McKellop, H; Clarke, I C; Markolf, K L; Amstutz, H C

    1978-11-01

    The wear of UHMW polyethylene bearing against 316 stainless steel or cobalt chrome alloy was measured using a 12-channel wear tester especially developed for the evaluation of candidate materials for prosthetic joints. The coefficient of friction and wear rate was determined as a function of lubricant, contact stress, and metallic surface roughness in tests lasting two to three million cycles, the equivalent of several years' use of a prosthesis. Wear was determined from the weight loss of the polyethylene specimens corrected for the effect of fluid absorption. The friction and wear processes in blood serum differed markedly from those in saline solution or distilled water. Only serum lubrication produced wear surfaces resembling those observed on removed prostheses. The experimental method provided a very accurate reproducible measurement of polyethylene wear. The long-term wear rates were proportional to load and sliding distance and were much lower than expected from previously published data. Although the polyethylene wear rate increased with increasing surface roughness, wear was not severe except with very coarse metal surfaces. The data obtained in these studies forms a basis for the subsequent comparative evaluation of potentially superior materials for prosthetic joints.

  15. Accurate measurement method of Fabry-Perot cavity parameters via optical transfer function

    SciTech Connect

    Bondu, Francois; Debieu, Olivier

    2007-05-10

    It is shown how the transfer function from frequency noise to a Pound-Drever-Hall signal for a Fabry-Perot cavity can be used to accurately measure cavity length, cavity linewidth, mirror curvature, misalignments, laser beam shape mismatching with resonant beam shape, and cavity impedance mismatching with respect to vacuum.

  16. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  17. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  18. Accurate surface tension measurement of glass melts by the pendant drop method.

    PubMed

    Chang, Yao-Yuan; Wu, Ming-Ya; Hung, Yi-Lin; Lin, Shi-Yow

    2011-05-01

    A pendant drop tensiometer, coupled with image digitization technology and a best-fitting algorithm, was built to accurately measure the surface tension of glass melts at high temperatures. More than one thousand edge-coordinate points were obtained for a pendant glass drop. These edge points were fitted with the theoretical drop profiles derived from the Young-Laplace equation to determine the surface tension of glass melt. The uncertainty of the surface tension measurements was investigated. The measurement uncertainty (σ) could be related to a newly defined factor of drop profile completeness (Fc): the larger the Fc is, the smaller σ is. Experimental data showed that the uncertainty of the surface tension measurement when using this pendant drop tensiometer could be ±3 mN∕m for glass melts.

  19. Archimedes Revisited: A Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2005-01-01

    A little-known method of measuring the volume of small objects based on Archimedes' principle is described, which involves suspending an object in a water-filled container placed on electronic scales. The suspension technique is a variation on the hydrostatic weighing technique used for measuring volume. The suspension method was compared with two…

  20. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  1. Novel method for accurate g measurements in electron-spin resonance

    NASA Astrophysics Data System (ADS)

    Stesmans, A.; Van Gorp, G.

    1989-09-01

    In high-accuracy work, electron-spin-resonance (ESR) g values are generally determined by calibrating against the accurately known proton nuclear magnetic resonance (NMR). For that method—based on leakage of microwave energy out of the ESR cavity—a convenient technique is presented to obtain accurate g values without needing conscientious precalibration procedures or cumbersome constructions. As main advantages, the method allows the easy monitoring of the positioning of the ESR and NMR samples while they are mounted as close as physically realizable at all time during their simultaneous resonances. Relative accuracies on g of ≊2×10-6 are easily achieved for ESR signals of peak-to-peak width ΔBpp≲0.3 G. The method has been applied to calibrate the g value of conduction electrons of small Li particles embedded in LiF—a frequently used g marker—resulting in gLiF: Li=2.002 293±0.000 002.

  2. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  3. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments.

    PubMed

    Zhang, Wei; Ma, Hong; Yang, Simon X

    2016-03-18

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products.

  4. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments

    PubMed Central

    Zhang, Wei; Ma, Hong; Yang, Simon X.

    2016-01-01

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products. PMID:26999161

  5. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  6. An Improved Method for Accurate and Rapid Measurement of Flight Performance in Drosophila

    PubMed Central

    Babcock, Daniel T.; Ganetzky, Barry

    2014-01-01

    Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens. PMID:24561810

  7. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  8. A Robust Method of Vehicle Stability Accurate Measurement Using GPS and INS

    NASA Astrophysics Data System (ADS)

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-12-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) is a very practical method to get high-precision measurement data. Usually, the Kalman filter is used to fuse the data from GPS and INS. In this paper, a robust method is used to measure vehicle sideslip angle and yaw rate, which are two important parameters for vehicle stability. First, a four-wheel vehicle dynamic model is introduced, based on sideslip angle and yaw rate. Second, a double level Kalman filter is established to fuse the data from Global Positioning System and Inertial Navigation System. Then, this method is simulated on a sample vehicle, using Carsim software to test the sideslip angle and yaw rate. Finally, a real experiment is made to verify the advantage of this approach. The experimental results showed the merits of this method of measurement and estimation, and the approach can meet the design requirements of the vehicle stability controller.

  9. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    NASA Astrophysics Data System (ADS)

    Öz, E.; Batsch, F.; Muggli, P.

    2016-09-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.

  10. Compensation method for obtaining accurate, sub-micrometer displacement measurements of immersed specimens using electronic speckle interferometry.

    PubMed

    Fazio, Massimo A; Bruno, Luigi; Reynaud, Juan F; Poggialini, Andrea; Downs, J Crawford

    2012-03-01

    We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.

  11. An accurate method to measure alpha-emitting natural radionuclides in atmospheric filters: Application in two NORM industries

    NASA Astrophysics Data System (ADS)

    Lozano, R. L.; Bolívar, J. P.; San Miguel, E. G.; García-Tenorio, R.; Gázquez, M. J.

    2011-12-01

    In this work, an accurate method for the measurement of natural alpha-emitting radionuclides from aerosols collected in air filters is presented and discussed in detail. The knowledge of the levels of several natural alpha-emitting radionuclides (238U, 234U, 232Th, 230Th, 228Th, 226Ra and 210Po) in atmospheric aerosols is essential not only for a better understanding of the several atmospheric processes and changes, but also for a proper evaluation of the potential doses, which can inadvertently be received by the population via inhalation. The proposed method takes into account the presence of intrinsic amounts of these radionuclides in the matrices of the quartz filters used, as well as the possible variation in the humidity of the filters throughout the collection process. In both cases, the corrections necessary in order to redress these levels have been evaluated and parameterized. Furthermore, a detailed study has been performed into the optimisation of the volume of air to be sampled in order to increase the accuracy in the determination of the radionuclides. The method as a whole has been applied for the determination of the activity concentrations of U- and Th-isotopes in aerosols collected at two NORM (Naturally Occurring Radioactive Material) industries located in the southwest of Spain. Based on the levels found, a conservative estimation has been performed to yield the additional committed effective doses to which the workers are potentially susceptible due to inhalation of anthropogenic material present in the environment of these two NORM industries.

  12. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system.

    PubMed

    Koubar, Khodor; Bekaert, Virgile; Brasse, David; Laquerriere, Patrice

    2015-06-01

    Bone mineral density plays an important role in the determination of bone strength and fracture risks. Consequently, it is very important to obtain accurate bone mineral density measurements. The microcomputerized tomography system provides 3D information about the architectural properties of bone. Quantitative analysis accuracy is decreased by the presence of artefacts in the reconstructed images, mainly due to beam hardening artefacts (such as cupping artefacts). In this paper, we introduced a new beam hardening correction method based on a postreconstruction technique performed with the use of off-line water and bone linearization curves experimentally calculated aiming to take into account the nonhomogeneity in the scanned animal. In order to evaluate the mass correction rate, calibration line has been carried out to convert the reconstructed linear attenuation coefficient into bone masses. The presented correction method was then applied on a multimaterial cylindrical phantom and on mouse skeleton images. Mass correction rate up to 18% between uncorrected and corrected images were obtained as well as a remarkable improvement of a calculated mouse femur mass has been noticed. Results were also compared to those obtained when using the simple water linearization technique which does not take into account the nonhomogeneity in the object.

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  15. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  17. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  18. Accurate measurement of relative tilt and azimuth angles in electron tomography: A comparison of fiducial marker method with electron diffraction

    SciTech Connect

    Hayashida, Misa; Malac, Marek; Egerton, Ray F.; Bergen, Michael; Li, Peng

    2014-08-15

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  19. Accurate measurement of relative tilt and azimuth angles in electron tomography: a comparison of fiducial marker method with electron diffraction.

    PubMed

    Hayashida, Misa; Malac, Marek; Bergen, Michael; Egerton, Ray F; Li, Peng

    2014-08-01

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  20. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  1. A rapid and accurate method, ventilated chamber C-history method, of measuring the emission characteristic parameters of formaldehyde/VOCs in building materials.

    PubMed

    Huang, Shaodan; Xiong, Jianyin; Zhang, Yinping

    2013-10-15

    The indoor pollution caused by formaldehyde and volatile organic compounds (VOCs) emitted from building materials poses an adverse effect on people's health. It is necessary to understand and control the behaviors of the emission sources. Based on detailed mass transfer analysis on the emission process in a ventilated chamber, this paper proposes a novel method of measuring the three emission characteristic parameters, i.e., the initial emittable concentration, the diffusion coefficient and the partition coefficient. A linear correlation between the logarithm of dimensionless concentration and time is derived. The three parameters can then be calculated from the intercept and slope of the correlation. Compared with the closed chamber C-history method, the test is performed under ventilated condition thus some commonly-used measurement instruments (e.g., GC/MS, HPLC) can be applied. While compared with other methods, the present method can rapidly and accurately measure the three parameters, with experimental time less than 12h and R(2) ranging from 0.96 to 0.99 for the cases studied. Independent experiment was carried out to validate the developed method, and good agreement was observed between the simulations based on the determined parameters and experiments. The present method should prove useful for quick characterization of formaldehyde/VOC emissions from indoor materials.

  2. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to ...

  3. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  4. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  5. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    SciTech Connect

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F.; Murányi, F.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  6. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    NASA Astrophysics Data System (ADS)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Murányi, F.; Simon, F.

    2015-09-01

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  7. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection.

    PubMed

    Bechet, P; Mitran, R; Munteanu, M

    2013-08-01

    Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.

  8. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection

    NASA Astrophysics Data System (ADS)

    Bechet, P.; Mitran, R.; Munteanu, M.

    2013-08-01

    Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.

  9. Accurate, reproducible measurement of blood pressure.

    PubMed Central

    Campbell, N R; Chockalingam, A; Fodor, J G; McKay, D W

    1990-01-01

    The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings. PMID:2192791

  10. Accurate method for measurement of pipe wall thickness using a circumferential guided wave generated and detected by a pair of noncontact transducers

    NASA Astrophysics Data System (ADS)

    Nishino, H.; Taniguchi, Y.; Yoshida, K.

    2012-05-01

    A noncontact method of an accurate estimation of a pipe wall thickness using a circumferential (C-) Lamb wave is presented. The C-Lamb waves circling along the circumference of pipes are transmitted and received by the critical angle method using a pair of noncontact air-coupled ultrasonic transducers. For the accurate estimation of a pipe wall thickness, the accurate measurement of the angular wave number that changes minutely owing to the thickness must be achieved. To achieve the accurate measurement, a large number of tone-burst cycles are used so as to superpose the C-Lamb wave on itself along its circumferential orbit. In this setting, the amplitude of the superposed region changes considerably with the angular wave number, from which the wall thickness can be estimated. This paper presents the principle of the method and experimental verifications. As results of the experimental verifications, it was confirmed that the maximum error between the estimates and the theoretical model was less than 10 micrometers.

  11. Fast and accurate exhaled breath ammonia measurement.

    PubMed

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  12. Accurate Insertion Loss Measurements of the Juno Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Chen, Jacqueline; Hodges, Richard; Demas, John

    2010-01-01

    This paper describes two independent methods for estimating the insertion loss of patch array antennas that were developed for the Juno Microwave Radiometer instrument. One method is based principally on pattern measurements while the other method is based solely on network analyzer measurements. The methods are accurate to within 0.1 dB for the measured antennas and show good agreement (to within 0.1dB) of separate radiometric measurements.

  13. A simple and inclusive method to determine the habit plane in transmission electron microscope based on accurate measurement of foil thickness

    SciTech Connect

    Qiu, Dong Zhang, Mingxing

    2014-08-15

    A simple and inclusive method is proposed for accurate determination of the habit plane between bicrystals in transmission electron microscope. Whilst this method can be regarded as a variant of surface trace analysis, the major innovation lies in the improved accuracy and efficiency of foil thickness measurement, which involves a simple tilt of the thin foil about a permanent tilting axis of the specimen holder, rather than cumbersome tilt about the surface trace of the habit plane. Experimental study has been done to validate this proposed method in determining the habit plane between lamellar α{sub 2} plates and γ matrix in a Ti–Al–Nb alloy. Both high accuracy (± 1°) and high precision (± 1°) have been achieved by using the new method. The source of the experimental errors as well as the applicability of this method is discussed. Some tips to minimise the experimental errors are also suggested. - Highlights: • An improved algorithm is formulated to measure the foil thickness. • Habit plane can be determined with a single tilt holder based on the new algorithm. • Better accuracy and precision within ± 1° are achievable using the proposed method. • The data for multi-facet determination can be collected simultaneously.

  14. Application of the energy reassignment method to measure accurate Rayleigh and Love wave group velocities from ambient seismic noise cross-correlations

    NASA Astrophysics Data System (ADS)

    Witek, M.; Kang, T. S.; van der Lee, S.

    2015-12-01

    We have collected three-component data from 122 Korean accelerometer stations for the month of December in 2014. We apply similar techniques described by Zha et al. (2013) to retrieve accurate station orientation angles, in order to rotate the horizontal component data into the radial and transverse frame of reference, and for subsequent measurement of Love wave group velocity dispersion. We simultaneously normalize all three components of a daily noise record via the frequency-time normalization (FTN) method. Each component is divided by the average signal envelope in an effort to retain relative amplitude information between all three components. Station orientations are found by a grid search for the orientation azimuth which maximizes the coherency between the radial-vertical cross-correlation and the Hilbert transformed vertical-vertical cross-correlation. After measuring orientation angles, we cross-correlate and rotate the data. Typically, the group velocity dispersion curves are measured using the frequency time analysis technique (FTAN), effectively producing spectrograms with significant uncertainty in the time-frequency plane. The spectrogram approach retains only the amplitude information of the short-time Fourier transform (STFT). However, Kodera et al (1976) show that by taking into account the phase information, the concepts of instantaneous frequency and group-time delay can be used to compute the first moment of the signal power in the frequency and time domains. During energy reassignment, the signal power calculated using the STFT at a point (t0,f0t_0, f_0) is reassigned to the location of the first moment (t^g,f^ihat{t}_g,hat{f}_i), where t^ghat{t}_g is the group-time delay and f^ihat{f}_i is the instantaneous frequency. We apply the method of energy reassignment to produce precise Rayleigh and Love wave group velocity measurements in the frequency range 0.1 - 1.0 Hz. Tests on synthetic data show more accurate retrieval of group velocities at

  15. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  16. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  17. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  18. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  19. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  20. Accurate methods for large molecular systems.

    PubMed

    Gordon, Mark S; Mullin, Jonathan M; Pruitt, Spencer R; Roskop, Luke B; Slipchenko, Lyudmila V; Boatz, Jerry A

    2009-07-23

    Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.

  1. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  2. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  3. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  4. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  5. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, Glyn; Horton, Keith A.; Elias, Tamar; Garbeil, Harold; Mouginis-Mark, Peter J; Sutton, A. Jeff; Harris, Andrew J. L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Kīlauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s−1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements.

  6. Accurate measurement of the helical twisting power of chiral dopants

    NASA Astrophysics Data System (ADS)

    Kosa, Tamas; Bodnar, Volodymyr; Taheri, Bahman; Palffy-Muhoray, Peter

    2002-03-01

    We propose a method for the accurate determination of the helical twisting power (HTP) of chiral dopants. In the usual Cano-wedge method, the wedge angle is determined from the far-field separation of laser beams reflected from the windows of the test cell. Here we propose to use an optical fiber based spectrometer to accurately measure the cell thickness. Knowing the cell thickness at the positions of the disclination lines allows determination of the HTP. We show that this extension of the Cano-wedge method greatly increases the accuracy with which the HTP is determined. We show the usefulness of this method by determining the HTP of ZLI811 in a variety of hosts with negative dielectric anisotropy.

  7. Considerations for Accurate Whole Plant Photosynthesis Measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole plant photosynthetic rate (Pn) measurements provide an integral assessment of how an entire plant responds to biotic and abitics factors. Pn determination is based on measurements of CO2 exchange rates (CER) using various types of system including Closed, Semi-closed, and Open systems. This ...

  8. Accurate Method for Determining Adhesion of Cantilever Beams

    SciTech Connect

    Michalske, T.A.; de Boer, M.P.

    1999-01-08

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

  9. Instrument accurately measures weld angle and offset

    NASA Technical Reports Server (NTRS)

    Boyd, W. G.

    1967-01-01

    Weld angle is measured to the nearest arc minute and offset to one thousandth of an inch by an instrument designed to use a reference plane at two locations on a test coupon. A special table for computation has been prepared for use with the instrument.

  10. Air brake-dynamometer accurately measures torque

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  11. Modified algesimeter provides accurate depth measurements

    NASA Technical Reports Server (NTRS)

    Turner, D. P.

    1966-01-01

    Algesimeter which incorporates a standard sensory needle with a sensitive micrometer, measures needle point depth penetration in pain tolerance research. This algesimeter provides an inexpensive, precise instrument with assured validity of recordings in those biomedical areas with a requirement for repeated pain detection or ascertaining pain sensitivity.

  12. EMR Gage Would Measure Coal Thickness Accurately

    NASA Technical Reports Server (NTRS)

    King, J. D.; Rollwitz, W. L.

    1982-01-01

    Laboratory tests indicate electron magnetic resonance (EMR) would be effective in measuring thickness of coal overlying rock substrate. In prototype dual-frequency EMR system, Sample is irradiated by two radio frequencies. Signals are mixed, producing sum and difference output frequencies that are detected by receiver. Magnetic field is varied to scan resonant spot through sample. In system designed for field use, electromagnet is U-shaped, so that sample can be adjacent to, rather than inside the probe. Same coil is used for transmitting and receiving.

  13. CT Scan Method Accurately Assesses Humeral Head Retroversion

    PubMed Central

    Boileau, P.; Mazzoleni, N.; Walch, G.; Urien, J. P.

    2008-01-01

    Humeral head retroversion is not well described with the literature controversial regarding accuracy of measurement methods and ranges of normal values. We therefore determined normal humeral head retroversion and assessed the measurement methods. We measured retroversion in 65 cadaveric humeri, including 52 paired specimens, using four methods: radiographic, computed tomography (CT) scan, computer-assisted, and direct methods. We also assessed the distance between the humeral head central axis and the bicipital groove. CT scan methods accurately measure humeral head retroversion, while radiographic methods do not. The retroversion with respect to the transepicondylar axis was 17.9° and 21.5° with respect to the trochlear tangent axis. The difference between the right and left humeri was 8.9°. The distance between the central axis of the humeral head and the bicipital groove was 7.0 mm and was consistent between right and left humeri. Humeral head retroversion may be most accurately obtained using the patient’s own anatomic landmarks or, if not, identifiable retroversion as measured by those landmarks on contralateral side or the bicipital groove. PMID:18264854

  14. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  15. Accurate Group Delay Measurement for Radial Velocity Instruments Using the Dispersed Fixed Delay Interferometer Method. II. Application of Heterodyne Combs Using an External Interferometer Filter

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Ge, Jian; Wan, Xiaoke; De Lee, Nathan; Lee, Brian

    2012-11-01

    A fixed delay interferometer is the key component in a DFDI (dispersed fixed delay interferometer) instrument for an exoplanet search using the radial velocity (RV) technique. Although the group delay (GD) of the interferometer can be measured with white light combs (WLCs), the measurement precision is limited by the comb visibility, and the wavelength coverage is constrained by the comb sampling. For instance, this method can calibrate only half of the SDSS-III MARVELS spectra and reach a precision of 2.2 m s-1. This article introduces an innovative method using a sine source for precision delay calibration over very broad wavelengths. The sine source is made of a monolithic Michelson interferometer fed with white light. The interferometer modulated white light (in a sinusoidal form) is fed into a DFDI instrument for calibration. Due to an optimal GD of the sine source, Fourier components from the DFDI interferometer, the sine source, and their frequency beating can be clearly separated and effectively extracted with a chirped Fourier transform to allow precision measurements of the interferometer GD over the entire range of operation wavelengths. The measurements of the MARVELS interferometer with a sine source show that this new calibration method has improved the wavelength coverage by a factor of 2 and the precision by a factor of 3. The RV measurement error induced by GD measurement uncertainties is controlled to be less than 1 m s-1, which has met the requirements for MARVELS moderate-to-high Doppler precision (∼5–30 m s-1) for exoplanet search around V ∼ 8–12 solar-type stars. Heterodyne combs using an external interferometer source can be applied in other areas of optics measurement and calibration.

  16. Accurate and precise zinc isotope ratio measurements in urban aerosols.

    PubMed

    Gioia, Simone; Weiss, Dominik; Coles, Barry; Arnold, Tim; Babinski, Marly

    2008-12-15

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05 per thousand per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37 per thousand in coarse and between -1.04 and 0.02 per thousand in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta(66)Zn(Imperial) = 0.26 +/- 0.10 per thousand).

  17. Accurate vessel width measurement from fundus photographs: a new concept.

    PubMed Central

    Rassam, S M; Patel, V; Brinchmann-Hansen, O; Engvold, O; Kohner, E M

    1994-01-01

    Accurate determination of retinal vessel width measurement is important in the study of the haemodynamic changes that accompany various physiological and pathological states. Currently the width at the half height of the transmittance and densitometry profiles are used as a measure of retinal vessel width. A consistent phenomenon of two 'kick points' on the slopes of the transmittance and densitometry profiles near the base, has been observed. In this study, mathematical models have been formulated to describe the characteristic curves of the transmittance and the densitometry profiles. They demonstrate the kick points being coincident with the edges of the blood column. The horizontal distance across the kick points would therefore indicate the actual blood column width. To evaluate this hypothesis, blood was infused through two lengths of plastic tubing of known diameters, and photographed. In comparison with the known diameters, the half height underestimated the blood column width by 7.33% and 6.46%, while the kick point method slightly overestimated it by 1.40% and 0.34%. These techniques were applied to monochromatic fundus photographs. In comparison with the kick point method, the half height underestimated the blood column width in veins by 16.67% and in arteries by 15.86%. The characteristics of the kick points and their practicality have been discussed. The kick point method may provide the most accurate measurement of vessel width possible from these profiles. Images PMID:8110693

  18. Second Order Accurate Finite Difference Methods

    DTIC Science & Technology

    1984-08-20

    a study of the idealized material has direct applications to some polymer structures (4, 5). Wave propagation studies in hyperelastic materials have...34Acceleration Wave Propagation in Hyperelastic Rods of Variable Cross- section. Wave Motion, V4, pp. 173-180, 1982. 9. M. Hirao and N. Sugimoto...Waves in Hyperelastic Road," Quart. Appl. Math., V37, pp. 377-399, 1979. 11. G. A. Sod. "A Survey of Several Finite Difference Methods for Systems of

  19. Accurate Runout Measurement for HDD Spinning Motors and Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Bi, Chao; Lin, Song

    As hard disk drive (HDD) areal density increases, its track width becomes smaller and smaller and so is non-repeatable runout. HDD industry needs more accurate and better resolution runout measurements of spinning spindle motors and media platters in both axial and radial directions. This paper introduces a new system how to precisely measure the runout of HDD spinning disks and motors through synchronously acquiring the rotor position signal and the displacements in axial or radial directions. In order to minimize the synchronizing error between the rotor position and the displacement signal, a high resolution counter is adopted instead of the conventional phase-lock loop method. With Laser Doppler Vibrometer and proper signal processing, the proposed runout system can precisely measure the runout of the HDD spinning disks and motors with 1 nm resolution and 0.2% accuracy with a proper sampling rate. It can provide an effective and accurate means to measure the runout of high areal density HDDs, in particular the next generation HDDs, such as, pattern media HDDs and HAMR HDDs.

  20. Accurate multipixel phase measurement with classical-light interferometry

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Khare, Kedar; Jha, Anand Kumar; Prabhakar, Shashi; Singh, R. P.

    2015-02-01

    We demonstrate accurate phase measurement from experimental low photon level interferograms using a constrained optimization method that takes into account the expected redundancy in the unknown phase function. This approach is shown to have significant noise advantage over traditional methods, such as balanced homodyning or phase shifting, that treat individual pixels in the interference data as independent of each other. Our interference experiments comparing the optimization method with the traditional phase-shifting method show that when the same photon resources are used, the optimization method provides phase recoveries with tighter error bars. In particular, rms phase error performance of the optimization method for low photon number data (10 photons per pixel) shows a >5 × noise gain over the phase-shifting method. In our experiments where a laser light source is used for illumination, the results imply phase measurement with an accuracy better than the conventional single-pixel-based shot-noise limit that assumes independent phases at individual pixels. The constrained optimization approach presented here is independent of the nature of the light source and may further enhance the accuracy of phase detection when a nonclassical-light source is used.

  1. Accurate measurement of psoralen-crosslinked DNA: direct biochemical measurements and indirect measurement by hybridization

    SciTech Connect

    Matsuo, N.; Ross, P.M.

    1988-11-01

    This paper evaluates methods to measure crosslinkage due to psoralen plus light in total DNA and in specific sequences. DNA exposed in cells or in vitro to a bifunctional psoralen and near ultraviolet light accumulates interstrand crosslinks. Crosslinkage is the DNA mass fraction that is attached in both strands to a crosslink. We show here biochemical methods to measure psoralen photocrosslinkage accurately in total DNA. We also describe methods to measure photocrosslinkage indirectly, in specific sequences, by nucleic acid hybridization. We show that a single 4,5',8-trimethylpsoralen (TMP) crosslink causes at least 50 kbp of alkali-denatured DNA contiguous in both strands with it to snap back into the duplex form when the denatured preparation is returned to neutral pH. This process was so efficient that the DNA was not nicked by the single-strand nuclease S1 at 100-fold excess after snapping back. Uncrosslinked DNA was digested to acid-soluble material by the enzyme. Crosslinkage therefore equals the fraction of S1-resistant nucleotide in this kind of experiment. We alkali-denatured DNA samples crosslinked to varying degrees by varying TMP concentration at constant light exposure. We then measured crosslinkage by ethidium bromide (EtBr) fluorometry at pH 11.8; by EtBr fluorometry at neutral pH of S1 digests of the DNA; and by the fraction of radioactivity remaining acid insoluble in S1-digests of DNA labeled uniformly with (3H)deoxythymidine. These assays measure distinct physical properties of crosslinked DNA. Numerical agreement is expected only when all three measurements are accurate. Under optimum conditions, the three methods yielded identical results over the range of measurement. Using alkaline EtBr fluorescence in crude cell lysates, we detected crosslinks at frequencies in the range of 1.6 X 10(-7) per base pair.

  2. Accurate optical CD profiler based on specialized finite element method

    NASA Astrophysics Data System (ADS)

    Carrero, Jesus; Perçin, Gökhan

    2012-03-01

    As the semiconductor industry is moving to very low-k1 patterning solutions, the metrology problems facing process engineers are becoming much more complex. Choosing the right optical critical dimension (OCD) metrology technique is essential for bridging the metrology gap and achieving the required manufacturing volume throughput. The critical dimension scanning electron microscope (CD-SEM) measurement is usually distorted by the high aspect ratio of the photoresist and hard mask layers. CD-SEM measurements cease to correlate with complex three-dimensional profiles, such as the cases for double patterning and FinFETs, thus necessitating sophisticated, accurate and fast computational methods to bridge the gap. In this work, a suite of computational methods that complement advanced OCD equipment, and enabling them to operate at higher accuracies, are developed. In this article, a novel method for accurately modeling OCD profiles is presented. A finite element formulation in primal form is used to discretize the equations. The implementation uses specialized finite element spaces to solve Maxwell equations in two dimensions.

  3. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  4. Measurement and Accurate Interpretation of the Solubility of Pharmaceutical Salts.

    PubMed

    He, Yan; Ho, Chris; Yang, Donglai; Chen, Jeane; Orton, Edward

    2017-01-30

    Salt formation is one of the primary approaches to improve the developability of ionizable poorly water-soluble compounds. Solubility determination of the salt candidates in aqueous media or biorelevant fluids is a critical step in salt screening. Salt solubility measurements can be complicated due to dynamic changes in both solution and solid phases. Because of the early implementation of salt screening in research, solubility measurements often are performed using minimal amount of material. Some salts have transient high solubility on dissolution. Recognition of these transients can be critical in developing these salts into drug products. This minireview focuses on challenges in salt solubility measurements due to the changes in solution caused by self-buffering effects of dissolved species and the changes in solid phase due to solid-state phase transformations. Solubility measurements and their accurate interpretation are assessed in the context of dissolution monitoring and solid-phase analysis technologies. A harmonized method for reporting salt solubility measurements is recommended to reduce errors and to align with the U.S. Pharmacopeial policy and Food and Drug Administration recommendations for drug products containing pharmaceutical salts.

  5. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  6. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  7. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  8. Ultrasonic system for accurate distance measurement in the air.

    PubMed

    Licznerski, Tomasz J; Jaroński, Jarosław; Kosz, Dariusz

    2011-12-01

    This paper presents a system that accurately measures the distance travelled by ultrasound waves through the air. The simple design of the system and its obtained accuracy provide a tool for non-contact distance measurements required in the laser's optical system that investigates the surface of the eyeball.

  9. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  10. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  11. In-line sensor for accurate rf power measurements

    NASA Astrophysics Data System (ADS)

    Gahan, D.; Hopkins, M. B.

    2005-10-01

    An in-line sensor has been constructed with 50Ω characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  12. In-line sensor for accurate rf power measurements

    SciTech Connect

    Gahan, D.; Hopkins, M.B.

    2005-10-15

    An in-line sensor has been constructed with 50 {omega} characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  13. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  14. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  15. An Accurate Projector Calibration Method Based on Polynomial Distortion Representation

    PubMed Central

    Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua

    2015-01-01

    In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247

  16. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  17. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  18. Instrument accurately measures small temperature changes on test surface

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Miller, H. B.

    1966-01-01

    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material.

  19. Ellipsoidal-mirror reflectometer accurately measures infrared reflectance of materials

    NASA Technical Reports Server (NTRS)

    Dunn, S. T.; Richmond, J. C.

    1967-01-01

    Reflectometer accurately measures the reflectance of specimens in the infrared beyond 2.5 microns and under geometric conditions approximating normal irradiation and hemispherical viewing. It includes an ellipsoidal mirror, a specially coated averaging sphere associated with a detector for minimizing spatial and angular sensitivity, and an incident flux chopper.

  20. Accurate measurement of streamwise vortices using dual-plane PIV

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Breuer, Kenneth S.

    2012-11-01

    Low Reynolds number aerodynamic experiments with flapping animals (such as bats and small birds) are of particular interest due to their application to micro air vehicles which operate in a similar parameter space. Previous PIV wake measurements described the structures left by bats and birds and provided insight into the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions based on said measurements. The highly three-dimensional and unsteady nature of the flows associated with flapping flight are major challenges for accurate measurements. The challenge of animal flight measurements is finding small flow features in a large field of view at high speed with limited laser energy and camera resolution. Cross-stream measurement is further complicated by the predominately out-of-plane flow that requires thick laser sheets and short inter-frame times, which increase noise and measurement uncertainty. Choosing appropriate experimental parameters requires compromise between the spatial and temporal resolution and the dynamic range of the measurement. To explore these challenges, we do a case study on the wake of a fixed wing. The fixed model simplifies the experiment and allows direct measurements of the aerodynamic forces via load cell. We present a detailed analysis of the wake measurements, discuss the criteria for making accurate measurements, and present a solution for making quantitative aerodynamic load measurements behind free-flyers.

  1. History and progress on accurate measurements of the Planck constant

    NASA Astrophysics Data System (ADS)

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10-34 J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, NA. As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 108 from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the improved

  2. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  3. Optical Fiber Geometry: Accurate Measurement of Cladding Diameter

    PubMed Central

    Young, Matt; Hale, Paul D.; Mechels, Steven E.

    1993-01-01

    We have developed three instruments for accurate measurement of optieal fiber cladding diameter: a contact micrometer, a scanning confocal microscope, and a white-light interference microscope. Each instrument has an estimated uncertainty (3 standard deviations) of 50 nm or less, but the confocal microscope may display a 20 nm systematic error as well. The micrometer is used to generate Standard Reference Materials that are commercially available. PMID:28053467

  4. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  5. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  6. RTbox: a device for highly accurate response time measurements.

    PubMed

    Li, Xiangrui; Liang, Zhen; Kleiner, Mario; Lu, Zhong-Lin

    2010-02-01

    Although computer keyboards and mice are frequently used in measuring response times (RTs), the accuracy of these measurements is quite low. Specialized RT collection devices must be used to obtain more accurate measurements. However, all the existing devices have some shortcomings. We have developed and implemented a new, commercially available device, the RTbox, for highly accurate RT measurements. The RTbox has its own microprocessor and high-resolution clock. It can record the identities and timing of button events with high accuracy, unaffected by potential timing uncertainty or biases during data transmission and processing in the host computer. It stores button events until the host computer chooses to retrieve them. The asynchronous storage greatly simplifies the design of user programs. The RTbox can also receive and record external signals as triggers and can measure RTs with respect to external events. The internal clock of the RTbox can be synchronized with the computer clock, so the device can be used without external triggers. A simple USB connection is sufficient to integrate the RTbox with any standard computer and operating system.

  7. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  8. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  9. Accurate upwind-monotone (nonoscillatory) methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1992-01-01

    The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.

  10. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  11. Quantifying Methane Fluxes Simply and Accurately: The Tracer Dilution Method

    NASA Astrophysics Data System (ADS)

    Rella, Christopher; Crosson, Eric; Green, Roger; Hater, Gary; Dayton, Dave; Lafleur, Rick; Merrill, Ray; Tan, Sze; Thoma, Eben

    2010-05-01

    Methane is an important atmospheric constituent with a wide variety of sources, both natural and anthropogenic, including wetlands and other water bodies, permafrost, farms, landfills, and areas with significant petrochemical exploration, drilling, transport, or processing, or refining occurs. Despite its importance to the carbon cycle, its significant impact as a greenhouse gas, and its ubiquity in modern life as a source of energy, its sources and sinks in marine and terrestrial ecosystems are only poorly understood. This is largely because high quality, quantitative measurements of methane fluxes in these different environments have not been available, due both to the lack of robust field-deployable instrumentation as well as to the fact that most significant sources of methane extend over large areas (from 10's to 1,000,000's of square meters) and are heterogeneous emitters - i.e., the methane is not emitted evenly over the area in question. Quantifying the total methane emissions from such sources becomes a tremendous challenge, compounded by the fact that atmospheric transport from emission point to detection point can be highly variable. In this presentation we describe a robust, accurate, and easy-to-deploy technique called the tracer dilution method, in which a known gas (such as acetylene, nitrous oxide, or sulfur hexafluoride) is released in the same vicinity of the methane emissions. Measurements of methane and the tracer gas are then made downwind of the release point, in the so-called far-field, where the area of methane emissions cannot be distinguished from a point source (i.e., the two gas plumes are well-mixed). In this regime, the methane emissions are given by the ratio of the two measured concentrations, multiplied by the known tracer emission rate. The challenges associated with atmospheric variability and heterogeneous methane emissions are handled automatically by the transport and dispersion of the tracer. We present detailed methane flux

  12. Mapping methods for computationally efficient and accurate structural reliability

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1992-01-01

    Mapping methods are developed to improve the accuracy and efficiency of probabilistic structural analyses with coarse finite element meshes. The mapping methods consist of: (1) deterministic structural analyses with fine (convergent) finite element meshes, (2) probabilistic structural analyses with coarse finite element meshes, (3) the relationship between the probabilistic structural responses from the coarse and fine finite element meshes, and (4) a probabilistic mapping. The results show that the scatter of the probabilistic structural responses and structural reliability can be accurately predicted using a coarse finite element model with proper mapping methods. Therefore, large structures can be analyzed probabilistically using finite element methods.

  13. Is scintillometer measurement accurate enough for evaluating remote sensing based energy balance ET models?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three evapotranspiration (ET) measurement/retrieval techniques used in this study, lysimeter, scintillometer and remote sensing vary in their level of complexity, accuracy, resolution and applicability. The lysimeter with its point measurement is the most accurate and direct method to measure ET...

  14. Accurate measurement of the pulse wave delay with imaging photoplethysmography

    PubMed Central

    Kamshilin, Alexei A.; Sidorov, Igor S.; Babayan, Laura; Volynsky, Maxim A.; Giniatullin, Rashid; Mamontov, Oleg V.

    2016-01-01

    Assessment of the cardiovascular parameters using noncontact video-based or imaging photoplethysmography (IPPG) is usually considered as inaccurate because of strong influence of motion artefacts. To optimize this technique we performed a simultaneous recording of electrocardiogram and video frames of the face for 36 healthy volunteers. We found that signal disturbances originate mainly from the stochastically enhanced dichroic notch caused by endogenous cardiovascular mechanisms, with smaller contribution of the motion artefacts. Our properly designed algorithm allowed us to increase accuracy of the pulse-transit-time measurement and visualize propagation of the pulse wave in the facial region. Thus, the accurate measurement of the pulse wave parameters with this technique suggests a sensitive approach to assess local regulation of microcirculation in various physiological and pathological states. PMID:28018731

  15. Accurate measurement of RF exposure from emerging wireless communication systems

    NASA Astrophysics Data System (ADS)

    Letertre, Thierry; Monebhurrun, Vikass; Toffano, Zeno

    2013-04-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  16. Accurate measurement of streamwise vortices in low speed aerodynamic flows

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.

    2010-11-01

    Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.

  17. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  18. Accurate measurement of liquid transport through nanoscale conduits

    PubMed Central

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  19. ELODIE: A spectrograph for accurate radial velocity measurements.

    NASA Astrophysics Data System (ADS)

    Baranne, A.; Queloz, D.; Mayor, M.; Adrianzyk, G.; Knispel, G.; Kohler, D.; Lacroix, D.; Meunier, J.-P.; Rimbaud, G.; Vin, A.

    1996-10-01

    The fibre-fed echelle spectrograph of Observatoire de Haute-Provence, ELODIE, is presented. This instrument has been in operation since the end of 1993 on the 1.93 m telescope. ELODIE is designed as an updated version of the cross-correlation spectrometer CORAVEL, to perform very accurate radial velocity measurements such as needed in the search, by Doppler shift, for brown-dwarfs or giant planets orbiting around nearby stars. In one single exposure a spectrum at a resolution of 42000 (λ/{DELTA}λ) ranging from 3906A to 6811A is recorded on a 1024x1024 CCD. This performance is achieved by using a tanθ=4 echelle grating and a combination of a prism and a grism as cross-disperser. An automatic on-line data treatment reduces all the ELODIE echelle spectra and computes cross-correlation functions. The instrument design and the data reduction algorithms are described in this paper. The efficiency and accuracy of the instrument and its long term instrumental stability allow us to measure radial velocities with an accuracy better than 15m/s for stars up to 9th magnitude in less than 30 minutes exposure time. Observations of 16th magnitude stars are also possible to measure velocities at about 1km/s accuracy. For classic spectroscopic studies (S/N>100) 9th magnitude stars can be observed in one hour exposure time.

  20. Fast processing techniques for accurate ultrasonic range measurements

    NASA Astrophysics Data System (ADS)

    Barshan, Billur

    2000-01-01

    Four methods of range measurement for airborne ultrasonic systems - namely simple thresholding, curve-fitting, sliding-window, and correlation detection - are compared on the basis of bias error, standard deviation, total error, robustness to noise, and the difficulty/complexity of implementation. Whereas correlation detection is theoretically optimal, the other three methods can offer acceptable performance at much lower cost. Performances of all methods have been investigated as a function of target range, azimuth, and signal-to-noise ratio. Curve fitting, sliding window, and thresholding follow correlation detection in the order of decreasing complexity. Apart from correlation detection, minimum bias and total error is most consistently obtained with the curve-fitting method. On the other hand, the sliding-window method is always better than the thresholding and curve-fitting methods in terms of minimizing the standard deviation. The experimental results are in close agreement with the corresponding simulation results. Overall, the three simple and fast processing methods provide a variety of attractive compromises between measurement accuracy and system complexity. Although this paper concentrates on ultrasonic range measurement in air, the techniques described may also find application in underwater acoustics.

  1. An Accurate and Efficient Method of Computing Differential Seismograms

    NASA Astrophysics Data System (ADS)

    Hu, S.; Zhu, L.

    2013-12-01

    Inversion of seismic waveforms for Earth structure usually requires computing partial derivatives of seismograms with respect to velocity model parameters. We developed an accurate and efficient method to calculate differential seismograms for multi-layered elastic media, based on the Thompson-Haskell propagator matrix technique. We first derived the partial derivatives of the Haskell matrix and its compound matrix respect to the layer parameters (P wave velocity, shear wave velocity and density). We then derived the partial derivatives of surface displacement kernels in the frequency-wavenumber domain. The differential seismograms are obtained by using the frequency-wavenumber double integration method. The implementation is computationally efficient and the total computing time is proportional to the time of computing the seismogram itself, i.e., independent of the number of layers in the model. We verified the correctness of results by comparing with differential seismograms computed using the finite differences method. Our results are more accurate because of the analytical nature of the derived partial derivatives.

  2. Magnetic field models of nine CP stars from "accurate" measurements

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2013-01-01

    The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.

  3. Accurate measurement of curvilinear shapes by Virtual Image Correlation

    NASA Astrophysics Data System (ADS)

    Semin, B.; Auradou, H.; François, M. L. M.

    2011-10-01

    The proposed method allows the detection and the measurement, in the sense of metrology, of smooth elongated curvilinear shapes. Such measurements are required in many fields of physics, for example: mechanical engineering, biology or medicine (deflection of beams, fibers or filaments), fluid mechanics or chemistry (detection of fronts). Contrary to actual methods, the result is given in an analytical form of class C∞ (and not a finite set of locations or pixels) thus curvatures and slopes, often of great interest in science, are given with good confidence. The proposed Virtual Image Correlation (VIC) method uses a virtual beam, an image which consists in a lateral expansion of the curve with a bell-shaped gray level. This figure is deformed until it fits the best the physical image with a method issued from the Digital Image Correlation method in use in solid mechanics. The precision of the identification is studied in a benchmark and successfully compared to two state-of-the-art methods. Three practical examples are given: a bar bending under its own weight, a thin fiber transported by a flow within a fracture and a thermal front. The first allows a comparison with theoretical solution, the second shows the ability of the method to deal with complex shapes and crossings and the third deals with ill-defined image.

  4. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  5. Estimation of bone permeability using accurate microstructural measurements.

    PubMed

    Beno, Thoma; Yoon, Young-June; Cowin, Stephen C; Fritton, Susannah P

    2006-01-01

    While interstitial fluid flow is necessary for the viability of osteocytes, it is also believed to play a role in bone's mechanosensory system by shearing bone cell membranes or causing cytoskeleton deformation and thus activating biochemical responses that lead to the process of bone adaptation. However, the fluid flow properties that regulate bone's adaptive response are poorly understood. In this paper, we present an analytical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity in bone. First, we estimate the total number of canaliculi emanating from each osteocyte lacuna based on published measurements from parallel-fibered shaft bones of several species (chick, rabbit, bovine, horse, dog, and human). Next, we determine the local three-dimensional permeability of the lacunar-canalicular porosity for these species using recent microstructural measurements and adapting a previously developed model. Results demonstrated that the number of canaliculi per osteocyte lacuna ranged from 41 for human to 115 for horse. Permeability coefficients were found to be different in three local principal directions, indicating local orthotropic symmetry of bone permeability in parallel-fibered cortical bone for all species examined. For the range of parameters investigated, the local lacunar-canalicular permeability varied more than three orders of magnitude, with the osteocyte lacunar shape and size along with the 3-D canalicular distribution determining the degree of anisotropy of the local permeability. This two-step theoretical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity will be useful for accurate quantification of interstitial fluid movement in bone.

  6. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  7. Ad hoc methods for accurate determination of Bader's atomic boundary

    NASA Astrophysics Data System (ADS)

    Polestshuk, Pavel M.

    2013-08-01

    In addition to the recently published triangulation method [P. M. Polestshuk, J. Comput. Chem. 34, 206 (2013)], 10.1002/jcc.23121, two new highly accurate approaches, ZFSX and SINTY, for the integration over an atomic region covered by a zero-flux surface (zfs) were developed and efficiently interfaced into the TWOE program. ZFSX method was realized as three independent modules (ZFSX-1, ZFSX-3, and ZFSX-5) handling interatomic surfaces of a different complexity. Details of algorithmic implementation of ZFSX and SINTY are discussed. A special attention to an extended analysis of errors in calculations of atomic properties is paid. It was shown that uncertainties in zfs determination caused by ZFSX and SINTY approaches contribute negligibly (less than 10-6 a.u.) to the total atomic integration errors. Moreover, the new methods are able to evaluate atomic integrals with a reasonable time and can be universally applied for the systems of any complexity. It is suggested, therefore, that ZFSX and SINTY can be regarded as benchmark methods for the computation of any Quantum Theory of Atoms in Molecules atomic property.

  8. An accurate moving boundary formulation in cut-cell methods

    NASA Astrophysics Data System (ADS)

    Schneiders, Lennart; Hartmann, Daniel; Meinke, Matthias; Schröder, Wolfgang

    2013-02-01

    A cut-cell method for Cartesian meshes to simulate viscous compressible flows with moving boundaries is presented. We focus on eliminating unphysical oscillations occurring in Cartesian grid methods extended to moving-boundary problems. In these methods, cells either lie completely in the fluid or solid region or are intersected by the boundary. For the latter cells, the time dependent volume fraction lying in the fluid region can be so small that explicit time-integration schemes become unstable and a special treatment of these cells is necessary. When the boundary moves, a fluid cell may become a cut cell or a solid cell may become a small cell at the next time level. This causes an abrupt change in the discretization operator and a suddenly modified truncation error of the numerical scheme. This temporally discontinuous alteration is shown to act like an unphysical source term, which deteriorates the numerical solution, i.e., it generates unphysical oscillations in the hydrodynamic forces exerted on the moving boundary. We develop an accurate moving boundary formulation based on the varying discretization operators yielding a cut-cell method which avoids these discontinuities. Results for canonical two- and three-dimensional test cases evidence the accuracy and robustness of the newly developed scheme.

  9. Ad hoc methods for accurate determination of Bader's atomic boundary.

    PubMed

    Polestshuk, Pavel M

    2013-08-07

    In addition to the recently published triangulation method [P. M. Polestshuk, J. Comput. Chem. 34, 206 (2013)], two new highly accurate approaches, ZFSX and SINTY, for the integration over an atomic region covered by a zero-flux surface (zfs) were developed and efficiently interfaced into the TWOE program. ZFSX method was realized as three independent modules (ZFSX-1, ZFSX-3, and ZFSX-5) handling interatomic surfaces of a different complexity. Details of algorithmic implementation of ZFSX and SINTY are discussed. A special attention to an extended analysis of errors in calculations of atomic properties is paid. It was shown that uncertainties in zfs determination caused by ZFSX and SINTY approaches contribute negligibly (less than 10(-6) a.u.) to the total atomic integration errors. Moreover, the new methods are able to evaluate atomic integrals with a reasonable time and can be universally applied for the systems of any complexity. It is suggested, therefore, that ZFSX and SINTY can be regarded as benchmark methods for the computation of any Quantum Theory of Atoms in Molecules atomic property.

  10. Accurate reconstruction in measurement of microstructures using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Xiao, Hong; Xu, Min

    2016-11-01

    Due to the limitation of traditional interferometry, digital holographic microscopy has attracted intensive attention for its capability of measuring complex shapes. However, speckles are inevitable in the recorded interferometric patterns, thereby polluting the reconstructed surface topographies. In this paper, a phase-shifting interferometer is built to realize the in-axis digital holographic microscopy. The anti-aliasing shift-invariant contourlet transform (ASCT) is used for reconstructing the measured surfaces. By avoiding subsampling in the scale and directional filtering schemes, the problems of frequency aliasing and phase distortion can be effectively solved. Practical experiments show that speckles can be recognized and removed straightforwardly. Therefore the proposed method has excellent performance for reconstructing structured surfaces.

  11. Express method of construction of accurate inverse pole figures

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu; Isaenkova, M.; Fesenko, V.

    2016-04-01

    With regard to metallic materials with the FCC and BCC crystal lattice a new method for constructing the X-ray texture inverse pole figures (IPF) by using tilt curves of spinning sample, characterized by high accuracy and rapidity (express), was proposed. In contrast to the currently widespread method to construct IPF using orientation distribution function (ODF), synthesized in several partial direct pole figures, the proposed method is based on a simple geometrical interpretation of a measurement procedure, requires a minimal operating time of the X-ray diffractometer.

  12. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  13. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  14. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  15. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator

  16. Knowledge of accurate blood pressure measurement procedures in chiropractic students

    PubMed Central

    Crosley, Angela M.; Rose, James R. La

    2013-01-01

    Objective Blood pressure measurement is a basic clinical procedure. However, studies have shown that many errors are made when health care providers acquire blood pressure readings. Our study assessed knowledge of blood pressure measurement procedures in chiropractic students. Methods This was an observational, descriptive study. A questionnaire based on one created by the American Heart Association was given to 1st, 2nd, 3rd, and final year students (n = 186). A one way ANOVA was used to analyze the data. Results Of the students 80% were confident that their knowledge of this clinical skill was adequate or better. However, the overall score on the knowledge test of blood pressure–taking skills was 52% (range, 24%–88%). The only significant difference in the mean scores was between the 1st and 2nd year students compared to the 3rd and 4th year students (p < .005). Of the 16 questions given, the following mean scores were: 1st year 10.45, 2nd year 9.75, 3rd year 7.93, and 4th year 8.33. Of the 16 areas tested, 10 were of major concern (test item score <70%), showing the need for frequent retraining of chiropractic students. Conclusion Consistent with studies in other health care disciplines, our research found the knowledge of blood pressure skills to be deficient in our sample. There is a need for subsequent training in our teaching program. PMID:23957320

  17. Numerical assessment of accurate measurements of laminar flame speed

    NASA Astrophysics Data System (ADS)

    Goulier, Joules; Bizon, Katarzyna; Chaumeix, Nabiha; Meynet, Nicolas; Continillo, Gaetano

    2016-12-01

    In combustion, the laminar flame speed constitutes an important parameter that reflects the chemistry of oxidation for a given fuel, along with its transport and thermal properties. Laminar flame speeds are used (i) in turbulent models used in CFD codes, and (ii) to validate detailed or reduced mechanisms, often derived from studies using ideal reactors and in diluted conditions as in jet stirred reactors and in shock tubes. End-users of such mechanisms need to have an assessment of their capability to predict the correct heat released by combustion in realistic conditions. In this view, the laminar flame speed constitutes a very convenient parameter, and it is then very important to have a good knowledge of the experimental errors involved with its determination. Stationary configurations (Bunsen burners, counter-flow flames, heat flux burners) or moving flames (tubes, spherical vessel, soap bubble) can be used. The spherical expanding flame configuration has recently become popular, since it can be used at high pressures and temperatures. With this method, the flame speed is not measured directly, but derived through the recording of the flame radius. The method used to process the radius history will have an impact on the estimated flame speed. Aim of this work is to propose a way to derive the laminar flame speed from experimental recording of expanding flames, and to assess the error magnitude.

  18. Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup

    NASA Astrophysics Data System (ADS)

    Natividad, Eva; Castro, Miguel; Mediano, Arturo

    2008-03-01

    Accurate measurements of the specific absorption rate (SAR) of solids and fluids were obtained by a calorimetric method, using a special-purpose setup working under adiabatic conditions. Unlike in current nonadiabatic setups, the weak heat exchange with the surroundings allowed a straightforward determination of temperature increments, avoiding the usual initial-time approximations. The measurements performed on a commercial magnetite aqueous ferrofluid revealed a good reproducibility (4%). Also, the measurements on a copper sample allowed comparison between experimental and theoretical values: adiabatic conditions gave SAR values only 3% higher than the theoretical ones, while the typical nonadiabatic method underestimated SAR by 21%.

  19. An Approach for the Accurate Measurement of Social Morality Levels

    PubMed Central

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the “5∶1 rewards-to-punishment rule,” which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials. PMID:24312189

  20. Accurate measurement of spatial noise portraits of photosensors of digital cameras

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Kulakov, M. N.; Starikov, R. S.

    2016-08-01

    Method of measurement of accurate portraits of light and dark spatial noise of photosensors is described. The method consists of four steps: creation of spatially homogeneous illumination; shooting light and dark frames; digital processing and filtering. Unlike standard technique, this method uses iterative creation of spatially homogeneous illumination by display, compensation of photosensor dark spatial noise portrait and improved procedure of elimination of dark temporal noise. Portraits of light and dark spatial noise of photosensors of a scientific digital camera were found. Characteristics of the measured portraits were compared with values of photo response and dark signal non-uniformities of camera's photosensor.

  1. Techniques for determining propulsion system forces for accurate high speed vehicle drag measurements in flight

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.

    1975-01-01

    As part of a NASA program to evaluate current methods of predicting the performance of large, supersonic airplanes, the drag of the XB-70 airplane was measured accurately in flight at Mach numbers from 0.75 to 2.5. This paper describes the techniques used to determine engine net thrust and the drag forces charged to the propulsion system that were required for the in-flight drag measurements. The accuracy of the measurements and the application of the measurement techniques to aircraft with different propulsion systems are discussed. Examples of results obtained for the XB-70 airplane are presented.

  2. Pendant bubble method for an accurate characterization of superhydrophobic surfaces.

    PubMed

    Ling, William Yeong Liang; Ng, Tuck Wah; Neild, Adrian

    2011-12-06

    The commonly used sessile drop method for measuring contact angles and surface tension suffers from errors on superhydrophobic surfaces. This occurs from unavoidable experimental error in determining the vertical location of the liquid-solid-vapor interface due to a camera's finite pixel resolution, thereby necessitating the development and application of subpixel algorithms. We demonstrate here the advantage of a pendant bubble in decreasing the resulting error prior to the application of additional algorithms. For sessile drops to attain an equivalent accuracy, the pixel count would have to be increased by 2 orders of magnitude.

  3. Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions

    SciTech Connect

    Trabert, E

    2009-02-19

    A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

  4. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.

  5. Accurate determination of specific heat at high temperatures using the flash diffusivity method

    NASA Technical Reports Server (NTRS)

    Vandersande, J. W.; Zoltan, A.; Wood, C.

    1989-01-01

    The flash diffusivity method of Parker et al. (1961) was used to measure accurately the specific heat of test samples simultaneously with thermal diffusivity, thus obtaining the thermal conductivity of these materials directly. The accuracy of data obtained on two types of materials (n-type silicon-germanium alloys and niobium), was + or - 3 percent. It is shown that the method is applicable up to at least 1300 K.

  6. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  7. Accurate phase measurements for thick spherical objects using optical quadrature microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2009-02-01

    In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.

  8. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.

    1997-01-01

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.

  9. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.

    1997-09-23

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.

  10. Apparatus designed for very accurate measurement of the optical reflection.

    PubMed

    Piombini, Hervé; Voarino, Philippe

    2007-12-20

    The described instrument is a new reflectometer designed to check the normal specular reflectance of 40,000 reflectors necessary for the Laser Megajoule (LMJ). This new reflectometer has a high accuracy over the 400-950 nm wavelength range and allows the delicate measurement of shaped parts. The measurements are relative and several reference mirrors, which are low loss dielectric mirrors [R(lambda)>99.9%], are used for the standardization. The apparatus gives an excellent repeatability (< 0.06% at 2sigma) thanks to its design and automatic focalization imaging system. After a brief review that is related to performance evolution of the spectrophotometers, our facility and its components are described. The methodology of focusing and calibration are explained. The capabilities of our device are illustrated through some measurements realized on flat or shaped samples.

  11. Accurate measurement of gas volumes by liquid displacement

    NASA Technical Reports Server (NTRS)

    Christian, J. D.

    1972-01-01

    Mariotte bottle as liquid displacement device was used to measure gas volumes at flow rates that are far below threshold of wet test gas meters. Study of factors affecting amount of liquid displaced by gas flow was completed, and equations were derived which relate different variables.

  12. Air toxics being measured more accurately, controlled more effectively

    SciTech Connect

    1995-04-01

    In response to the directives of the Clean Air Act Amendments, Argonne National Laboratory is developing new or improved pollutant control technologies for industries that burn fossil fuels. This research continues Argonne`s traditional support for the US DOE Flue Gas Cleanup Program. Research is underway to measure process emissions and identify new and improved control measures. Argonne`s emission control research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing to pilot-scale field tests of several technologies. Whenever appropriate, the work has emphasized integrated or combined control systems as the best approach to technologies that offer low cost and good operating characteristics.

  13. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  14. ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD

    SciTech Connect

    Kurzeja, R.

    2009-09-09

    Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

  15. Model verification studies using accurate measurements of spin up

    NASA Technical Reports Server (NTRS)

    Hyun, J. M.

    1981-01-01

    The reliability and accuracy of the numerical code for spin up flows in a cylinder by comparing the numerical results against high resolution laser Doppler velocimeter (LDV) measurements of the azimuthal flows were checked. A computer code to generate numerical solution for axisymmetric rotating fluid in a cylinder was obtained and amended for routine use at MSFC. The numerical simulations used the Navier-Stokes equations in axisymmetric form and employed finite difference techniques on both constant and variable grids. The numerical solutions are analyzed to gain further insight into the fundamental questions analyzed in rotating fluid dynamics.

  16. Accurate measurement of mean sea level changes by altimetric satellites

    NASA Technical Reports Server (NTRS)

    Born, G. H.; Tapley, B. D.; Ries, J. C.; Stewart, R. H.

    1986-01-01

    A technique for monitoring changes in global mean sea levels using altimeter data from a well-tracked satellite is examined. The usefulness of this technique is evaluated by analyzing Seasat altimeter data obtained during July-September 1978. The effects of orbit errors, geoid errors, sampling intervals, tides, and atmosphere refraction on the calculation of the mean sea level are investigated. The data reveal that the stability of an altimeter can be determined with an accuracy of + or - 7 cm using globally averaged sea surface height measurements. The application of this procedure to the US/French Ocean Topography Experiment is discussed.

  17. Diamond micro-Raman thermometers for accurate gate temperature measurements

    SciTech Connect

    Simon, Roland B.; Pomeroy, James W.; Kuball, Martin

    2014-05-26

    Determining the peak channel temperature in AlGaN/GaN high electron mobility transistors and other devices with high accuracy is an important and challenging issue. A surface-sensitive thermometric technique is demonstrated, utilizing Raman thermography and diamond microparticles to measure the gate temperature. This technique enhances peak channel temperature estimation, especially when it is applied in combination with standard micro-Raman thermography. Its application to other metal-covered areas of devices, such as field plates is demonstrated. Furthermore, this technique can be readily applied to other material/device systems.

  18. Approach to accurately measuring the speed of optical precursors

    SciTech Connect

    Li Chuanfeng; Zhou Zongquan; Guo Guangcan; Jeong, Heejeong

    2011-10-15

    Precursors can serve as a bound on the speed of information with dispersive medium. We propose a method to identify the speed of optical wave fronts using polarization-based interference in a solid-state device, which can bound the accuracy of the speed of wave fronts to less than 10{sup -4} with conventional experimental conditions. Our proposal may have important implications for optical communications and fast information processing.

  19. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study1234

    PubMed Central

    Harnly, James

    2016-01-01

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical for establishing relations between diet and health. There are as many as 50,000 secondary metabolites that may influence human health. Their structural and chemical diversity presents a challenge to analytical chemistry. With respect to flavonoids, putative identification is accessible, but positive identification and quantification are limited by the lack of standards. Quantification has been tested with use of both nonspecific and specific methods. Nonspecific methods, which include antioxidant capacity methods, fail to provide information on the measured components, suffer from numerous interferences, are not equatable, and are unsuitable for health research. Specific methods, such as LC with diode array and mass spectrometric detection, require the use of internal standards and relative molar response factors. These methods are relatively expensive and require a high level of expertise and experimental verification; however, they represent the only suitable means of relating health outcomes to specific dietary components. PMID:26980821

  20. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study.

    PubMed

    Harnly, James

    2016-03-01

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical for establishing relations between diet and health. There are as many as 50,000 secondary metabolites that may influence human health. Their structural and chemical diversity presents a challenge to analytical chemistry. With respect to flavonoids, putative identification is accessible, but positive identification and quantification are limited by the lack of standards. Quantification has been tested with use of both nonspecific and specific methods. Nonspecific methods, which include antioxidant capacity methods, fail to provide information on the measured components, suffer from numerous interferences, are not equatable, and are unsuitable for health research. Specific methods, such as LC with diode array and mass spectrometric detection, require the use of internal standards and relative molar response factors. These methods are relatively expensive and require a high level of expertise and experimental verification; however, they represent the only suitable means of relating health outcomes to specific dietary components.

  1. Fast and accurate automated measurements in digitized stereophotogrammetric radiographs.

    PubMed

    Vrooman, H A; Valstar, E R; Brand, G J; Admiraal, D R; Rozing, P M; Reiber, J H

    1998-05-01

    Until recently, Roentgen Stereophotogrammetric Analysis (RSA) required the manual definition of all markers using a high-resolution measurement table. To automate this tedious and time-consuming process and to eliminate observer variabilities, an analytical software package has been developed and validated for the detection, identification, and matching of markers in RSA radiographs. The digital analysis procedure consisted of the following steps: (1) the detection of markers using a variant of the Hough circle-finder technique; (2) the identification and labeling of the detected markers; (3) the reconstruction of the three-dimensional position of the bone markers and the prosthetic markers; and (4) the computation of micromotion. To assess the influence of film digitization, the measurements obtained from nine phantom radiographs using two different film scanners were compared with the results obtained by manual processing. All markers in the phantom radiographs were automatically detected and correctly labeled. The best results were obtained with a Vidar VXR-12 CCD scanner, for which the measurement errors were comparable to the errors associated with the manual approach. To assess the in vivo reproducibility, 30 patient radiographs were analyzed twice with the manual as well as with the automated procedure. Approximately, 85% of all calibration markers and bone markers were automatically detected and correctly matched. The calibration errors and the rigid-body errors show that the accuracy of the automated procedure is comparable to the accuracy of the manual procedure. The rigid-body errors had comparable mean values for both techniques: 0.05 mm for the tibia and 0.06 mm for the prosthesis. The reproducibility of the automated procedure showed to be slightly better than that of the manual procedure. The maximum errors in the computed translation and rotation of the tibial component were 0.11 mm and 0.24, compared to 0.13 mm and 0.27 for the manual RSA procedure

  2. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area1

    PubMed Central

    Easlon, Hsien Ming; Bloom, Arnold J.

    2014-01-01

    • Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images. PMID:25202639

  3. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  4. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  5. Mapping methods for computationally efficient and accurate structural reliability

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1992-01-01

    Mapping methods are developed to improve the accuracy and efficiency of probabilistic structural analyses with coarse finite element meshes. The mapping methods consist of the following: (1) deterministic structural analyses with fine (convergent) finite element meshes; (2) probabilistic structural analyses with coarse finite element meshes; (3) the relationship between the probabilistic structural responses from the coarse and fine finite element meshes; and (4) a probabilistic mapping. The results show that the scatter in the probabilistic structural responses and structural reliability can be efficiently predicted using a coarse finite element model and proper mapping methods with good accuracy. Therefore, large structures can be efficiently analyzed probabilistically using finite element methods.

  6. Accurate Measurement of the in vivo Ammonium Concentration in Saccharomyces cerevisiae.

    PubMed

    Cueto-Rojas, Hugo F; Maleki Seifar, Reza; Ten Pierick, Angela; Heijnen, Sef J; Wahl, Aljoscha

    2016-04-23

    Ammonium (NH₄⁺) is the most common N-source for yeast fermentations, and N-limitation is frequently applied to reduce growth and increase product yields. While there is significant molecular knowledge on NH₄⁺ transport and assimilation, there have been few attempts to measure the in vivo concentration of this metabolite. In this article, we present a sensitive and accurate analytical method to quantify the in vivo intracellular ammonium concentration in Saccharomyces cerevisiae based on standard rapid sampling and metabolomics techniques. The method validation experiments required the development of a proper sample processing protocol to minimize ammonium production/consumption during biomass extraction by assessing the impact of amino acid degradation-an element that is often overlooked. The resulting cold chloroform metabolite extraction method, together with quantification using ultra high performance liquid chromatography-isotope dilution mass spectrometry (UHPLC-IDMS), was not only more sensitive than most of the existing methods but also more accurate than methods that use electrodes, enzymatic reactions, or boiling water or boiling ethanol biomass extraction because it minimized ammonium consumption/production during sampling processing and interference from other metabolites in the quantification of intracellular ammonium. Finally, our validation experiments showed that other metabolites such as pyruvate or 2-oxoglutarate (αKG) need to be extracted with cold chloroform to avoid measurements being biased by the degradation of other metabolites (e.g., amino acids).

  7. The chain collocation method: A spectrally accurate calculus of forms

    NASA Astrophysics Data System (ADS)

    Rufat, Dzhelil; Mason, Gemma; Mullen, Patrick; Desbrun, Mathieu

    2014-01-01

    Preserving in the discrete realm the underlying geometric, topological, and algebraic structures at stake in partial differential equations has proven to be a fruitful guiding principle for numerical methods in a variety of fields such as elasticity, electromagnetism, or fluid mechanics. However, structure-preserving methods have traditionally used spaces of piecewise polynomial basis functions for differential forms. Yet, in many problems where solutions are smoothly varying in space, a spectral numerical treatment is called for. In an effort to provide structure-preserving numerical tools with spectral accuracy on logically rectangular grids over periodic or bounded domains, we present a spectral extension of the discrete exterior calculus (DEC), with resulting computational tools extending well-known collocation-based spectral methods. Its efficient implementation using fast Fourier transforms is provided as well.

  8. An accurate and practical method for inference of weak gravitational lensing from galaxy images

    NASA Astrophysics Data System (ADS)

    Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.

    2016-07-01

    We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.

  9. Accurate Time/Frequency Transfer Method Using Bi-Directional WDM Transmission

    NASA Technical Reports Server (NTRS)

    Imaoka, Atsushi; Kihara, Masami

    1996-01-01

    An accurate time transfer method is proposed using b-directional wavelength division multiplexing (WDM) signal transmission along a single optical fiber. This method will be used in digital telecommunication networks and yield a time synchronization accuracy of better than 1 ns for long transmission lines over several tens of kilometers. The method can accurately measure the difference in delay between two wavelength signals caused by the chromatic dispersion of the fiber in conventional simple bi-directional dual-wavelength frequency transfer methods. We describe the characteristics of this difference in delay and then show that the accuracy of the delay measurements can be obtained below 0.1 ns by transmitting 156 Mb/s times reference signals of 1.31 micrometer and 1.55 micrometers along a 50 km fiber using the proposed method. The sub-nanosecond delay measurement using the simple bi-directional dual-wavelength transmission along a 100 km fiber with a wavelength spacing of 1 nm in the 1.55 micrometer range is also shown.

  10. An accurate fuzzy edge detection method using wavelet details subimages

    NASA Astrophysics Data System (ADS)

    Sedaghat, Nafiseh; Pourreza, Hamidreza

    2010-02-01

    Edge detection is a basic and important subject in computer vision and image processing. An edge detector is defined as a mathematical operator of small spatial extent that responds in some way to these discontinuities, usually classifying every image pixel as either belonging to an edge or not. Many researchers have been spent attempting to develop effective edge detection algorithms. Despite this extensive research, the task of finding the edges that correspond to true physical boundaries remains a difficult problem.Edge detection algorithms based on the application of human knowledge show their flexibility and suggest that the use of human knowledge is a reasonable alternative. In this paper we propose a fuzzy inference system with two inputs: gradient and wavelet details. First input is calculated by Sobel operator and the second is calculated by wavelet transform of input image and then reconstruction of image only with details subimages by inverse wavelet transform. There are many fuzzy edge detection methods, but none of them utilize wavelet transform as it is used in this paper. For evaluating our method, we detect edges of images with different brightness characteristics and compare results with canny edge detector. The results show the high performance of our method in finding true edges.

  11. Mapping methods for computationally efficient and accurate structural reliability

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1991-01-01

    The influence of mesh coarseness in the structural reliability is evaluated. The objectives are to describe the alternatives and to demonstrate their effectiveness. The results show that special mapping methods can be developed by using: (1) deterministic structural responses from a fine (convergent) finite element mesh; (2) probabilistic distributions of structural responses from a coarse finite element mesh; (3) the relationship between the probabilistic structural responses from the coarse and fine finite element meshes; and (4) probabilistic mapping. The structural responses from different finite element meshes are highly correlated.

  12. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    SciTech Connect

    Suchyta, E.

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases. We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.

  13. No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Suchyta, E.; Huff, E. M.; Aleksić, J.; Melchior, P.; Jouvel, S.; MacCrann, N.; Ross, A. J.; Crocce, M.; Gaztanaga, E.; Honscheid, K.; Leistedt, B.; Peiris, H. V.; Rykoff, E. S.; Sheldon, E.; Abbott, T.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Percival, W. J.; Reil, K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Zhang, Y.; DES Collaboration

    2016-03-01

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of detectable stars or galaxies. We have implemented our proposal in BALROG, software which embeds fake objects in real imaging to accurately characterize measurement biases. We demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the Landy-Szalay estimator suppresses the effects of variable survey selection by at least two orders of magnitude. With this correction, our measured angular clustering is found to be in excellent agreement with that of a matched sample from much deeper, higher resolution space-based Cosmological Evolution Survey (COSMOS) imaging; over angular scales of 0.004° < θ < 0.2°, we find a best-fitting scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending measurements' statistical reach in a variety of upcoming imaging surveys.

  14. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    DOE PAGES

    Suchyta, E.

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases.more » We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.« less

  15. Multiple-frequency continuous wave ultrasonic system for accurate distance measurement

    NASA Astrophysics Data System (ADS)

    Huang, C. F.; Young, M. S.; Li, Y. C.

    1999-02-01

    A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.

  16. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  17. Individualizing amikacin regimens: accurate method to achieve therapeutic concentrations.

    PubMed

    Zaske, D E; Cipolle, R J; Rotschafer, J C; Kohls, P R; Strate, R G

    1991-11-01

    Amikacin's pharmacokinetics and dosage requirements were studied in 98 patients receiving treatment for gram-negative infections. A wide interpatient variation in the kinetic parameters of the drug occurred in all patients and in patients who had normal serum creatinine levels or normal creatinine clearance. The half-life ranged from 0.7 to 14.4 h in 74 patients who had normal serum creatinine levels and from 0.7 to 7.2 h in 37 patients who had normal creatinine clearance. The necessary daily dose to obtain therapeutic serum concentrations ranged from 1.25 to 57 mg/kg in patients with normal serum creatinine levels and from 10 to 57 mg/kg in patients with normal creatinine clearance. In four patients (4%), a significant change in baseline serum creatinine level (greater than 0.5 mg/dl) occurred during or after treatment, which may have been amikacin-associated toxicity. Overt ototoxicity occurred in one patient. The method of individualizing dosage regimens provided a clinically useful means of rapidly attaining therapeutic peak and trough serum concentrations.

  18. Comparison of Motion Blur Measurement Methods

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    2008-01-01

    Motion blur is a significant display property for which accurate, valid measurement methods are needed. Recent measurements of a set of eight displays by a set of six measurement devices provide an opportunity to evaluate techniques of measurement and of the analysis of those measurements.

  19. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  20. Are portable bladder scanning and real-time ultrasound accurate measures of bladder volume in postnatal women?

    PubMed

    Mathew, S; Horne, A W; Murray, L S; Tydeman, G; McKinley, C A

    2007-08-01

    Real-time ultrasound and portable bladder scanners are commonly used instead of catheterisation to determine bladder volumes in postnatal women but it is not known whether these are accurate. Change in bladder volumes measured by ultrasound and portable scanners were compared with actual voided volume (VV) in 100 postnatal women. The VV was on average 41 ml (CI 29 - 54 ml) higher than that measured by ultrasound, and 33 ml (CI 17 - 48 ml) higher than that measured by portable scanners. Portable scanner volumes were 9 ml (CI -8 - 26 ml) higher than those measured by ultrasound. Neither method is an accurate tool for detecting bladder volume in postnatal women.

  1. A highly accurate method for the determination of mass and center of mass of a spacecraft

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Trubert, M. R.; Egwuatu, A.

    1978-01-01

    An extremely accurate method for the measurement of mass and the lateral center of mass of a spacecraft has been developed. The method was needed for the Voyager spacecraft mission requirement which limited the uncertainty in the knowledge of lateral center of mass of the spacecraft system weighing 750 kg to be less than 1.0 mm (0.04 in.). The method consists of using three load cells symmetrically located at 120 deg apart on a turntable with respect to the vertical axis of the spacecraft and making six measurements for each load cell. These six measurements are taken by cyclic rotations of the load cell turntable and of the spacecraft, about the vertical axis of the measurement fixture. This method eliminates all alignment, leveling, and load cell calibration errors for the lateral center of mass determination, and permits a statistical best fit of the measurement data. An associated data reduction computer program called MASCM has been written to implement this method and has been used for the Voyager spacecraft.

  2. Accurate Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative Humidity.

    PubMed

    Rovelli, Grazia; Miles, Rachael E H; Reid, Jonathan P; Clegg, Simon L

    2016-06-30

    Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations that account for both the heat and mass transport governing the droplet evaporation kinetics, these measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e., the variations with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water activity (from >0.99 to, in principle, <0.05) on time scales of <10 s for droplets containing involatile or volatile solutes. The approach is benchmarked for binary and ternary inorganic solution aerosols with typical uncertainties in water activity of <±0.2% at water activities >0.9 and ∼±1% below 80% RH, and maximum uncertainties in diameter growth factor of ±0.7%. For all of the inorganic systems examined, the time-dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1).

  3. Methods for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, M.R.; Bland, R.

    2000-01-01

    Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three

  4. Accurate label-free reaction kinetics determination using initial rate heat measurements

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  5. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions.

    PubMed

    Dong, Miao L; Goyal, Kashika G; Worth, Bradley W; Makkar, Sorab S; Calhoun, William R; Bali, Lalit M; Bali, Samir

    2013-08-01

    A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

  6. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions

    NASA Astrophysics Data System (ADS)

    Dong, Miao L.; Goyal, Kashika G.; Worth, Bradley W.; Makkar, Sorab S.; Calhoun, William R.; Bali, Lalit M.; Bali, Samir

    2013-08-01

    A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

  7. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application.

  8. A simple and accurate resist parameter extraction method for sub-80-nm DRAM patterns

    NASA Astrophysics Data System (ADS)

    Lee, Sook; Hwang, Chan; Park, Dong-Woon; Kim, In-Sung; Kim, Ho-Chul; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae

    2004-05-01

    Due to the polarization effect of high NA lithography, the consideration of resist effect in lithography simulation becomes increasingly important. In spite of the importance of resist simulation, many process engineers are reluctant to consider resist effect in lithography simulation due to time-consuming procedure to extract required resist parameters and the uncertainty of measurement of some parameters. Weiss suggested simplified development model, and this model does not require the complex kinetic parameters. For the device fabrication engineers, there is a simple and accurate parameter extraction and optimizing method using Weiss model. This method needs refractive index, Dill"s parameters and development rate monitoring (DRM) data in parameter extraction. The parameters extracted using referred sequence is not accurate, so that we have to optimize the parameters to fit the critical dimension scanning electron microscopy (CD SEM) data of line and space patterns. Hence, the FiRM of Sigma-C is utilized as a resist parameter-optimizing program. According to our study, the illumination shape, the aberration and the pupil mesh point have a large effect on the accuracy of resist parameter in optimization. To obtain the optimum parameters, we need to find the saturated mesh points in terms of normalized intensity log slope (NILS) prior to an optimization. The simulation results using the optimized parameters by this method shows good agreement with experiments for iso-dense bias, Focus-Exposure Matrix data and sub 80nm device pattern simulation.

  9. Distance scaling method for accurate prediction of slowly varying magnetic fields in satellite missions

    NASA Astrophysics Data System (ADS)

    Zacharias, Panagiotis P.; Chatzineofytou, Elpida G.; Spantideas, Sotirios T.; Capsalis, Christos N.

    2016-07-01

    In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.

  10. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  11. Root resistance to cavitation is accurately measured using a centrifuge technique.

    PubMed

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change.

  12. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, B.; Hut, R.; Van De Giesen, N.

    2012-12-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the $150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  13. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  14. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms

    PubMed Central

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes’ principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of ‘unellipticity’ introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  15. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    PubMed

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-02-23

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor and resource intensive methods. An efficient method for identifying single copy transgene insertion events from a population of independent transgenic lines is desirable. Currently transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one and two copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR (dPCR)-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato, and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. This article is protected by copyright. All rights reserved.

  16. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  17. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  18. Thermal coupling measurement method

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.; Menichelli, V. J.

    1974-01-01

    Heat flow from an embedded heated wire responds to a change in the ambient environment. The wire is part of a self-balancing bridge system, and heat flow is measured directly in watts. Steady-state and transient thermal coupling can be measured directly and is an indication of the thermal resistance and diffusivity for the system under study. The method is applied to an aerospace electroexplosive component.

  19. Accurate Measurement of Canal Length during Root Canal Treatment: An In Vivo Study

    PubMed Central

    Sadaf, Durre; Ahmad, Muhammad Zubair

    2015-01-01

    Objectives: To assess the consistency and accuracy of Electronic Apex Locator (EAL) (Root ZXII) in individual canals and its association with other clinical variables. Study Design: Cross-Sectional study. Place of study: Dental section of the Aga Khan University Hospital, Karachi, Pakistan. Materials and Methods: Working length was measured by EAL in 180 patients requiring endodontic therapy in molar and premolar teeth. The effects of clinical variables e.g. gender and pulpal status on the consistency and accuracy of EAL were recorded. Performance of apex locator was considered “Consistent” when the scale bar was stable and moved only in correspondence to the movement of file in the root canal. Accuracy was determined by inserting the file at the working length determined by the EAL and periapical view of radiograph was taken using paralleling technique. Estimated working length was considered accurate when the file tip was located 0-2mm short of the radiographic apex. If the file was overextended from the radiographic apex, it showed dysfunction of the EAL. Results: Consistency of EAL was found 97.6% in distobuccal canals, 91.1% in palatal canals, 73.7% in mesiolingual canals, 83.3% in mesiobuccal and 80.2% in distal canals. Accuracy of EAL was 91.4% in mesiolingual canal, 92% in mesiobuccal, and 90.2% in Palatal and 93.2% in distal canal. Conclusion: Consistency of electronic apex locator vary in different canals, however consistent measurements are highly accurate. No significant association was found between other clinical variables with the consistency and accuracy of EAL.

  20. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  1. Accurate measurements of the acoustical physical constants of synthetic alpha-quartz for SAW devices.

    PubMed

    Kushibiki, Juin-ichi; Takanaga, Izumi; Nishiyama, Shouichi

    2002-01-01

    Accurate measurements of the acoustical physical constants (elastic constants, piezoelectric constants, dielectric constants, and density) of commercially available and widely used surface acoustic wave (SAW)-grade synthetic a-quartz are reported. The propagation directions and modes of bulk waves optimal for accurately determining the constants were selected through numerical calculations, and three principal X-, Y-, and Z-cut specimens and several rotated Y-cut specimens were prepared from a single crystal ingot to determine the constants and to confirm their accuracy. All of the constants were determined through highly accurate measurements of the longitudinal velocities, shear velocities, dielectric constants, and density. The velocity values measured for the specimens that were not used to determine the constants agreed well with those calculated from the determined constants, within a difference of +/- 0.20 m/s (+/- 0.004%).

  2. Accurate, in vivo NIR measurement of skeletal muscle oxygenation through fat

    NASA Astrophysics Data System (ADS)

    Jin, Chunguang; Zou, Fengmei; Ellerby, Gwenn E. C.; Scott, Peter; Peshlov, Boyan; Soller, Babs R.

    2010-02-01

    Noninvasive near infrared (NIR) spectroscopic measurement of muscle oxygenation requires the penetration of light through overlying skin and fat layers. We have previously demonstrated a dual-light source design and orthogonalization algorithm that corrects for inference from skin absorption and fat scattering. To achieve accurate muscle oxygen saturation (SmO2) measurement, one must select the appropriate source-detector distance (SD) to completely penetrate the fat layer. Methods: Six healthy subjects were supine for 15min to normalize tissue oxygenation across the body. NIR spectra were collected from the calf, shoulder, lower and upper thigh muscles with long SD distances of 30mm, 35mm, 40mm and 45mm. Spectral preprocessing with the short SD (3mm) spectrum preceded SmO2 calculation with a Taylor series expansion method. Three-way ANOVA was used to compare SmO2 values over varying fat thickness, subjects and SD distances. Results: Overlying fat layers varied in thickness from 4.9mm to 19.6mm across all subjects. SmO2 measured at the four locations were comparable for each subject (p=0.133), regardless of fat thickness and SD distance. SmO2 (mean+/-std dev) measured at calf, shoulder, low and high thigh were 62+/-3%, 59+/-8%, 61+/-2%, 61+/-4% respectively for SD distance of 30mm. In these subjects no significant influence of SD was observed (p=0.948). Conclusions: The results indicate that for our sensor design a 30mm SD is sufficient to penetrate through a 19mm fat layer and that orthogonalization with short SD effectively removed spectral interference from fat to result in a reproducible determination of SmO2.

  3. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future.

  4. Methods for accurate analysis of galaxy clustering on non-linear scales

    NASA Astrophysics Data System (ADS)

    Vakili, Mohammadjavad

    2017-01-01

    Measurements of galaxy clustering with the low-redshift galaxy surveys provide sensitive probe of cosmology and growth of structure. Parameter inference with galaxy clustering relies on computation of likelihood functions which requires estimation of the covariance matrix of the observables used in our analyses. Therefore, accurate estimation of the covariance matrices serves as one of the key ingredients in precise cosmological parameter inference. This requires generation of a large number of independent galaxy mock catalogs that accurately describe the statistical distribution of galaxies in a wide range of physical scales. We present a fast method based on low-resolution N-body simulations and approximate galaxy biasing technique for generating mock catalogs. Using a reference catalog that was created using the high resolution Big-MultiDark N-body simulation, we show that our method is able to produce catalogs that describe galaxy clustering at a percentage-level accuracy down to highly non-linear scales in both real-space and redshift-space.In most large-scale structure analyses, modeling of galaxy bias on non-linear scales is performed assuming a halo model. Clustering of dark matter halos has been shown to depend on halo properties beyond mass such as halo concentration, a phenomenon referred to as assembly bias. Standard large-scale structure studies assume that halo mass alone is sufficient in characterizing the connection between galaxies and halos. However, modeling of galaxy bias can face systematic effects if the number of galaxies are correlated with other halo properties. Using the Small MultiDark-Planck high resolution N-body simulation and the clustering measurements of Sloan Digital Sky Survey DR7 main galaxy sample, we investigate the extent to which the dependence of galaxy bias on halo concentration can improve our modeling of galaxy clustering.

  5. A fast, accurate, and reliable reconstruction method of the lumbar spine vertebrae using positional MRI.

    PubMed

    Simons, Craig J; Cobb, Loren; Davidson, Bradley S

    2014-04-01

    In vivo measurement of lumbar spine configuration is useful for constructing quantitative biomechanical models. Positional magnetic resonance imaging (MRI) accommodates a larger range of movement in most joints than conventional MRI and does not require a supine position. However, this is achieved at the expense of image resolution and contrast. As a result, quantitative research using positional MRI has required long reconstruction times and is sensitive to incorrectly identifying the vertebral boundary due to low contrast between bone and surrounding tissue in the images. We present a semi-automated method used to obtain digitized reconstructions of lumbar vertebrae in any posture of interest. This method combines a high-resolution reference scan with a low-resolution postural scan to provide a detailed and accurate representation of the vertebrae in the posture of interest. Compared to a criterion standard, translational reconstruction error ranged from 0.7 to 1.6 mm and rotational reconstruction error ranged from 0.3 to 2.6°. Intraclass correlation coefficients indicated high interrater reliability for measurements within the imaging plane (ICC 0.97-0.99). Computational efficiency indicates that this method may be used to compile data sets large enough to account for population variance, and potentially expand the use of positional MRI as a quantitative biomechanics research tool.

  6. Simple, flexible, and accurate phase retrieval method for generalized phase-shifting interferometry.

    PubMed

    Yatabe, Kohei; Ishikawa, Kenji; Oikawa, Yasuhiro

    2017-01-01

    This paper presents a non-iterative phase retrieval method from randomly phase-shifted fringe images. By combining the hyperaccurate least squares ellipse fitting method with the subspace method (usually called the principal component analysis), a fast and accurate phase retrieval algorithm is realized. The proposed method is simple, flexible, and accurate. It can be easily coded without iteration, initial guess, or tuning parameter. Its flexibility comes from the fact that totally random phase-shifting steps and any number of fringe images greater than two are acceptable without any specific treatment. Finally, it is accurate because the hyperaccurate least squares method and the modified subspace method enable phase retrieval with a small error as shown by the simulations. A MATLAB code, which is used in the experimental section, is provided within the paper to demonstrate its simplicity and easiness.

  7. Accurate measurement of interferometer group delay using field-compensated scanning white light interferometer.

    PubMed

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2010-10-10

    Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interferometer calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region.

  8. A cost-effective transparency-based digital imaging for efficient and accurate wound area measurement.

    PubMed

    Li, Pei-Nan; Li, Hong; Wu, Mo-Li; Wang, Shou-Yu; Kong, Qing-You; Zhang, Zhen; Sun, Yuan; Liu, Jia; Lv, De-Cheng

    2012-01-01

    Wound measurement is an objective and direct way to trace the course of wound healing and to evaluate therapeutic efficacy. Nevertheless, the accuracy and efficiency of the current measurement methods need to be improved. Taking the advantages of reliability of transparency tracing and the accuracy of computer-aided digital imaging, a transparency-based digital imaging approach is established, by which data from 340 wound tracing were collected from 6 experimental groups (8 rats/group) at 8 experimental time points (Day 1, 3, 5, 7, 10, 12, 14 and 16) and orderly archived onto a transparency model sheet. This sheet was scanned and its image was saved in JPG form. Since a set of standard area units from 1 mm(2) to 1 cm(2) was integrated into the sheet, the tracing areas in JPG image were measured directly, using the "Magnetic lasso tool" in Adobe Photoshop program. The pixel values/PVs of individual outlined regions were obtained and recorded in an average speed of 27 second/region. All PV data were saved in an excel form and their corresponding areas were calculated simultaneously by the formula of Y (PV of the outlined region)/X (PV of standard area unit) × Z (area of standard unit). It took a researcher less than 3 hours to finish area calculation of 340 regions. In contrast, over 3 hours were expended by three skillful researchers to accomplish the above work with traditional transparency-based method. Moreover, unlike the results obtained traditionally, little variation was found among the data calculated by different persons and the standard area units in different sizes and shapes. Given its accurate, reproductive and efficient properties, this transparency-based digital imaging approach would be of significant values in basic wound healing research and clinical practice.

  9. Accurate measurement of respiratory airway wall thickness in CT images using a signal restoration technique

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Tae Jung; Kim, Kwang Gi; Lee, Sang Ho; Goo, Jin Mo; Kim, Jong Hyo

    2008-03-01

    Airway wall thickness (AWT) is an important bio-marker for evaluation of pulmonary diseases such as chronic bronchitis, bronchiectasis. While an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of AWT in Multidetector-Row Computed Tomography (MDCT) images involves various sources of error and uncertainty. So we have developed an accurate AWT measurement technique for small airways with three-dimensional (3-D) approach. To evaluate performance of these techniques, we used a set of acryl tube phantom was made to mimic small airways to have three different sizes of wall diameter (4.20, 1.79, 1.24 mm) and wall thickness (1.84, 1.22, 0.67 mm). The phantom was imaged with MDCT using standard reconstruction kernel (Sensation 16, Siemens, Erlangen). The pixel size was 0.488 mm × 0.488 mm × 0.75 mm in x, y, and z direction respectively. The images were magnified in 5 times using cubic B-spline interpolation, and line profiles were obtained for each tube. To recover faithful line profile from the blurred images, the line profiles were deconvolved with a point spread kernel of the MDCT which was estimated using the ideal tube profile and image line profile. The inner diameter, outer diameter, and wall thickness of each tube were obtained with full-width-half-maximum (FWHM) method for the line profiles before and after deconvolution processing. Results show that significant improvement was achieved over the conventional FWHM method in the measurement of AWT.

  10. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  11. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... production and utilization? 3275.15 Section 3275.15 Public Lands: Interior Regulations Relating to Public...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.15 How accurately must I measure my production and utilization? It depends on whether you use a meter to calculate Federal production or...

  12. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... production and utilization? 3275.15 Section 3275.15 Public Lands: Interior Regulations Relating to Public...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.15 How accurately must I measure my production and utilization? It depends on whether you use a meter to calculate Federal production or...

  13. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... production and utilization? 3275.15 Section 3275.15 Public Lands: Interior Regulations Relating to Public...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.15 How accurately must I measure my production and utilization? It depends on whether you use a meter to calculate Federal production or...

  14. Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers

    NASA Astrophysics Data System (ADS)

    Chojnacky, M. J.; Miller, W. M.; Strouse, G. F.

    2013-09-01

    Complete and accurate records of vaccine temperature history are vital to preserving drug potency and patient safety. However, previously published vaccine storage and handling guidelines have failed to indicate a need for continuous temperature monitoring in vaccine storage refrigerators. We evaluated the performance of seven digital data logger models as candidates for continuous temperature monitoring of refrigerated vaccines, based on the following criteria: out-of-box performance and compliance with manufacturer accuracy specifications over the range of use; measurement stability over extended, continuous use; proper setup in a vaccine storage refrigerator so that measurements reflect liquid vaccine temperatures; and practical methods for end-user validation and establishing metrological traceability. Data loggers were tested using ice melting point checks and by comparison to calibrated thermocouples to characterize performance over 0 °C to 10 °C. We also monitored logger performance in a study designed to replicate the range of vaccine storage and environmental conditions encountered at provider offices. Based on the results of this study, the Centers for Disease Control released new guidelines on proper methods for storage, handling, and temperature monitoring of vaccines for participants in its federally-funded Vaccines for Children Program. Improved temperature monitoring practices will ultimately decrease waste from damaged vaccines, improve consumer confidence, and increase effective inoculation rates.

  15. Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele

    2017-04-01

    I start by providing an updated summary of the penalized pixel-fitting (PPXF) method that is used to extract the stellar and gas kinematics, as well as the stellar population of galaxies, via full spectrum fitting. I then focus on the problem of extracting the kinematics when the velocity dispersion σ is smaller than the velocity sampling ΔV that is generally, by design, close to the instrumental dispersion σinst. The standard approach consists of convolving templates with a discretized kernel, while fitting for its parameters. This is obviously very inaccurate when σ ≲ ΔV/2, due to undersampling. Oversampling can prevent this, but it has drawbacks. Here I present a more accurate and efficient alternative. It avoids the evaluation of the undersampled kernel and instead directly computes its well-sampled analytic Fourier transform, for use with the convolution theorem. A simple analytic transform exists when the kernel is described by the popular Gauss-Hermite parametrization (which includes the Gaussian as special case) for the line-of-sight velocity distribution. I describe how this idea was implemented in a significant upgrade to the publicly available PPXF software. The key advantage of the new approach is that it provides accurate velocities regardless of σ. This is important e.g. for spectroscopic surveys targeting galaxies with σ ≪ σinst, for galaxy redshift determinations or for measuring line-of-sight velocities of individual stars. The proposed method could also be used to fix Gaussian convolution algorithms used in today's popular software packages.

  16. Enabling high grayscale resolution displays and accurate response time measurements on conventional computers.

    PubMed

    Li, Xiangrui; Lu, Zhong-Lin

    2012-02-29

    Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect

  17. A time-accurate finite volume method valid at all flow velocities

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.

    1993-07-01

    . The calculated streaklines are in very good comparison with the experimentally obtained smoke picture. The calculated turbulent viscosity contours show that the transition from laminar to turbulent state and the relaminarization occur widely in space as well as in time. The ensemble-averaged velocity profiles are also in good agreement with the measured data and the good comparison indicates that the numerical method as well as the multipletime-scale turbulence equations successfully predict the unsteady transitional turbulence field. The chemical reactions for the hydrogen in the vitiated supersonic airstream are described using 9 chemical species and 48 reaction-steps. Consider that a fast chemistry can not be used to describe the fine details (such as the instability) of chemically reacting flows while a reduced chemical kinetics can not be used confidently due to the uncertainty contained in the reaction mechanisms. However, the use of a detailed finite rate chemistry may make it difficult to obtain a fully converged solution due to the coupling between the large number of flow, turbulence, and chemical equations. measured data. &The good comparison is attributed to the numerical method that can yield strongly converged results for the reacting flow and to the use of the multiple-time-scale turbulence equations that can accurately describe the mixing of the fuel and the oxidant.

  18. A Method for Accurate Reconstructions of the Upper Airway Using Magnetic Resonance Images

    PubMed Central

    Xiong, Huahui; Huang, Xiaoqing; Li, Yong; Li, Jianhong; Xian, Junfang; Huang, Yaqi

    2015-01-01

    Objective The purpose of this study is to provide an optimized method to reconstruct the structure of the upper airway (UA) based on magnetic resonance imaging (MRI) that can faithfully show the anatomical structure with a smooth surface without artificial modifications. Methods MRI was performed on the head and neck of a healthy young male participant in the axial, coronal and sagittal planes to acquire images of the UA. The level set method was used to segment the boundary of the UA. The boundaries in the three scanning planes were registered according to the positions of crossing points and anatomical characteristics using a Matlab program. Finally, the three-dimensional (3D) NURBS (Non-Uniform Rational B-Splines) surface of the UA was constructed using the registered boundaries in all three different planes. Results A smooth 3D structure of the UA was constructed, which captured the anatomical features from the three anatomical planes, particularly the location of the anterior wall of the nasopharynx. The volume and area of every cross section of the UA can be calculated from the constructed 3D model of UA. Conclusions A complete scheme of reconstruction of the UA was proposed, which can be used to measure and evaluate the 3D upper airway accurately. PMID:26066461

  19. Method for resonant measurement

    DOEpatents

    Rhodes, George W.; Migliori, Albert; Dixon, Raymond D.

    1996-01-01

    A method of measurement of objects to determine object flaws, Poisson's ratio (.sigma.) and shear modulus (.mu.) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson's ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson's ratio using other modes dependent on both the shear modulus and Poisson's ratio.

  20. Method for resonant measurement

    DOEpatents

    Rhodes, G.W.; Migliori, A.; Dixon, R.D.

    1996-03-05

    A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.

  1. Defining allowable physical property variations for high accurate measurements on polymer parts

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Sonne, M. R.; Madruga, D. G.; De Chiffre, L.; Hattel, J. H.

    2016-06-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which is a challenge in today`s production and metrology environments. The residual deformations in polymer products at room temperature after injection molding are important when micrometer accuracy needs to be achieved. Numerical modelling can give a valuable insight to what is happening in the polymer during cooling down after injection molding. In order to obtain accurate simulations, accurate inputs to the model are crucial. In reality however, the material and physical properties will have some variations. Although these variations may be small, they can act as a source of uncertainty for the measurement. In this paper, we investigated how big the variation in material and physical properties are allowed in order to reach the 5 μm target on the uncertainty.

  2. S3 HMBC hetero: Spin-State-Selective HMBC for accurate measurement of long-range heteronuclear coupling constants

    NASA Astrophysics Data System (ADS)

    Hoeck, Casper; Gotfredsen, Charlotte H.; Sørensen, Ole W.

    2017-02-01

    A novel method, Spin-State-Selective (S3) HMBC hetero, for accurate measurement of heteronuclear coupling constants is introduced. The method extends the S3 HMBC technique for measurement of homonuclear coupling constants by appending a pulse sequence element that interchanges the polarization in 13C-1H methine pairs. This amounts to converting the spin-state selectivity from 1H spin states to 13C spin states in the spectra of long-range coupled 1H spins, allowing convenient measurement of heteronuclear coupling constants similar to other S3 or E.COSY-type methods. As usual in this type of techniques, the accuracy of coupling constant measurement is independent of the size of the coupling constant of interest. The merits of the new method are demonstrated by application to vinyl acetate, the alkaloid strychnine, and the carbohydrate methyl β-maltoside.

  3. Spontaneous fluctuation indices of the cardiovagal baroreflex accurately measure the baroreflex sensitivity at the operating point during upright tilt.

    PubMed

    Schwartz, Christopher E; Medow, Marvin S; Messer, Zachary; Stewart, Julian M

    2013-06-15

    Spontaneous fluctuation indices of cardiovagal baroreflex have been suggested to be inaccurate measures of baroreflex function during orthostatic stress compared with alternate open-loop methods (e.g. neck pressure/suction, modified Oxford method). We therefore tested the hypothesis that spontaneous fluctuation measurements accurately reflect local baroreflex gain (slope) at the operating point measured by the modified Oxford method, and that apparent differences between these two techniques during orthostasis can be explained by a resetting of the baroreflex function curve. We computed the sigmoidal baroreflex function curves supine and during 70° tilt in 12 young, healthy individuals. With the use of the modified Oxford method, slopes (gains) of supine and upright curves were computed at their maxima (Gmax) and operating points. These were compared with measurements of spontaneous indices in both positions. Supine spontaneous analyses of operating point slope were similar to calculated Gmax of the modified Oxford curve. In contrast, upright operating point was distant from the centering point of the reset curve and fell on the nonlinear portion of the curve. Whereas spontaneous fluctuation measurements were commensurate with the calculated slope of the upright modified Oxford curve at the operating point, they were significantly lower than Gmax. In conclusion, spontaneous measurements of cardiovagal baroreflex function accurately estimate the slope near operating points in both supine and upright position.

  4. System to measure accurate temperature dependence of electric conductivity down to 20 K in ultrahigh vacuum.

    PubMed

    Sakai, C; Takeda, S N; Daimon, H

    2013-07-01

    We have developed the new in situ electrical-conductivity measurement system which can be operated in ultrahigh vacuum (UHV) with accurate temperature measurement down to 20 K. This system is mainly composed of a new sample-holder fixing mechanism, a new movable conductivity-measurement mechanism, a cryostat, and two receptors for sample- and four-probe holders. Sample-holder is pushed strongly against the receptor, which is connected to a cryostat, by using this new sample-holder fixing mechanism to obtain high thermal conductivity. Test pieces on the sample-holders have been cooled down to about 20 K using this fixing mechanism, although they were cooled down to only about 60 K without this mechanism. Four probes are able to be touched to a sample surface using this new movable conductivity-measurement mechanism for measuring electrical conductivity after making film on substrates or obtaining clean surfaces by cleavage, flashing, and so on. Accurate temperature measurement is possible since the sample can be transferred with a thermocouple and∕or diode being attached directly to the sample. A single crystal of Bi-based copper oxide high-Tc superconductor (HTSC) was cleaved in UHV to obtain clean surface, and its superconducting critical temperature has been successfully measured in situ. The importance of in situ measurement of resistance in UHV was demonstrated for this HTSC before and after cesium (Cs) adsorption on its surface. The Tc onset increase and the Tc offset decrease by Cs adsorption were observed.

  5. Photoacoustic spectrometer for accurate, continuous measurements of atmospheric carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Reed, Zachary D.; Sperling, Brent; van Zee, Roger D.; Whetstone, James R.; Gillis, Keith A.; Hodges, Joseph T.

    2014-06-01

    We have developed a portable photoacoustic spectrometer that offers routine, precise and accurate measurements of the molar concentration of atmospheric carbon. The temperature-controlled spectrometer continuously samples dried atmospheric air and employs an intensity-modulated distributed feedback laser and fiber amplifier operating near 1.57 µm. For measurements of carbon dioxide in air, we demonstrate a measurement precision (60-s averaging time) of 0.15 µmol mol-1 and achieve a standard uncertainty of 0.8 µmol mol-1 by calibrating the analyzer response in terms of certified gas mixtures. We also investigate how water vapor affects the photoacoustic signal by promoting collisional relaxation of the carbon dioxide.

  6. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  7. A new method to synthesize competitor RNAs for accurate analyses by competitive RT-PCR.

    PubMed

    Ishibashi, O

    1997-12-03

    A method to synthesize competitor RNAs as internal standards for competitive RT-PCR is improved by using the long accurate PCR (LA-PCR) technique. Competitor templates synthesized by the new method are almost the same in length, and possibly in secondary structure, as target mRNAs to be quantified except that they include the short deletion within the segments to be amplified. This allows the reverse transcription to be achieved with almost the same efficiency from both target mRNAs and competitor RNAs. Therefore, more accurate quantification can be accomplished by using such competitor RNAs.

  8. A new direct absorption measurement for high precision and accurate measurement of water vapor in the UT/LS

    NASA Astrophysics Data System (ADS)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Anderson, J.

    2011-12-01

    Highly accurate and precise water vapor measurements in the upper troposphere and lower stratosphere are critical to understanding the climate feedbacks of water vapor and clouds in that region. However, the continued disagreement among water vapor measurements (~1 - 2 ppmv) are too large to constrain the role of different hydration and dehydration mechanisms operating in the UT/LS, with model validation dependent upon which dataset is chosen. In response to these issues, we present a new instrument for measurement of water vapor in the UT/LS that was flown during the April 2011 MACPEX mission out of Houston, TX. The dual axis instrument combines the heritage and validated accuracy of the Harvard Lyman-alpha instrument with a newly designed direct IR absorption instrument, the Harvard Herriott Hygrometer (HHH). The Lyman-alpha detection axis has flown aboard NASA's WB-57 and ER2 aircraft since 1994, and provides a requisite link between the new HHH instrument and the long history of Harvard water vapor measurements. The instrument utilizes the highly sensitive Lyman-alpha photo-fragment fluorescence detection method; its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. The Harvard Herriott Hygrometer employs a fiber coupled near-IR laser with state-of-the-art electronics to measure water vapor via direct absorption in a spherical Herriott cell of 10 cm length. The instrument demonstrated in-flight precision of 0.1 ppmv (1-sec, 1-sigma) at mixing ratios as low as 5 ppmv with accuracies of 10% based on careful laboratory calibrations and in-flight performance. We present a description of the measurement technique along with our methodology for calibration and details of the measurement uncertainties. The simultaneous utilization of radically different measurement techniques in a single duct in the new Harvard Water Vapor (HWV) instrument allows for the constraint of systematic errors inherent in each technique

  9. A Monte Carlo Method for Making the SDSS u-Band Magnitude More Accurate

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Du, Cuihua; Zuo, Wenbo; Jing, Yingjie; Wu, Zhenyu; Ma, Jun; Zhou, Xu

    2016-10-01

    We develop a new Monte Carlo-based method to convert the Sloan Digital Sky Survey (SDSS) u-band magnitude to the south Galactic Cap of the u-band Sky Survey (SCUSS) u-band magnitude. Due to the increased accuracy of SCUSS u-band measurements, the converted u-band magnitude becomes more accurate compared with the original SDSS u-band magnitude, in particular at the faint end. The average u-magnitude error (for both SDSS and SCUSS) of numerous main-sequence stars with 0.2\\lt g-r\\lt 0.8 increases as the g-band magnitude becomes fainter. When g = 19.5, the average magnitude error of the SDSS u is 0.11. When g = 20.5, the average SDSS u error rises to 0.22. However, at this magnitude, the average magnitude error of the SCUSS u is just half as much as that of the SDSS u. The SDSS u-band magnitudes of main-sequence stars with 0.2\\lt g-r\\lt 0.8 and 18.5\\lt g\\lt 20.5 are converted, therefore the maximum average error of the converted u-band magnitudes is 0.11. The potential application of this conversion is to derive a more accurate photometric metallicity calibration from SDSS observations, especially for the more distant stars. Thus, we can explore stellar metallicity distributions either in the Galactic halo or some stream stars.

  10. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    SciTech Connect

    Heinrich, Martin; Kluska, Sven; Binder, Sebastian; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given on how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.

  11. Accurate microfour-point probe sheet resistance measurements on small samples.

    PubMed

    Thorsteinsson, Sune; Wang, Fei; Petersen, Dirch H; Hansen, Torben Mikael; Kjaer, Daniel; Lin, Rong; Kim, Jang-Yong; Nielsen, Peter F; Hansen, Ole

    2009-05-01

    We show that accurate sheet resistance measurements on small samples may be performed using microfour-point probes without applying correction factors. Using dual configuration measurements, the sheet resistance may be extracted with high accuracy when the microfour-point probes are in proximity of a mirror plane on small samples with dimensions of a few times the probe pitch. We calculate theoretically the size of the "sweet spot," where sufficiently accurate sheet resistances result and show that even for very small samples it is feasible to do correction free extraction of the sheet resistance with sufficient accuracy. As an example, the sheet resistance of a 40 microm (50 microm) square sample may be characterized with an accuracy of 0.3% (0.1%) using a 10 microm pitch microfour-point probe and assuming a probe alignment accuracy of +/-2.5 microm.

  12. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  13. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  14. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth W.; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M.

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10-3 for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  15. Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor)

    2003-01-01

    System and methods are disclosed for fluid measurements which may be utilized to determine mass flow rates such as instantaneous mass flow of a fluid stream. In a preferred embodiment, the present invention may be utilized to compare an input mass flow to an output mass flow of a drilling fluid circulation stream. In one embodiment, a fluid flow rate is determined by utilizing a microwave detector in combination with an acoustic sensor. The acoustic signal is utilized to eliminate 2pi phase ambiguities in a reflected microwave signal. In another embodiment, a fluid flow rate may be determined by detecting a phase shift of an acoustic signal across two different predetermined transmission paths. A fluid density may be determined by detecting a calibrated phase shift of an acoustic signal through the fluid. In another embodiment, a second acoustic signal may be transmitted through the fluid to define a particular 2pi phase range which defines the phase shift. The present invention may comprise multiple transmitters/receivers operating at different frequencies to measure instantaneous fuel levels of cryogenic fuels within containers positioned in zero or near zero gravity environments. In one embodiment, a moveable flexible collar of transmitter/receivers may be utilized to determine inhomogenuities within solid rocket fuel tubes.

  16. An accurate method of extracting fat droplets in liver images for quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masahiro; Kobayashi, Naoki; Komagata, Hideki; Shinoda, Kazuma; Yamaguchi, Masahiro; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2015-03-01

    The steatosis in liver pathological tissue images is a promising indicator of nonalcoholic fatty liver disease (NAFLD) and the possible risk of hepatocellular carcinoma (HCC). The resulting values are also important for ensuring the automatic and accurate classification of HCC images, because the existence of many fat droplets is likely to create errors in quantifying the morphological features used in the process. In this study we propose a method that can automatically detect, and exclude regions with many fat droplets by using the feature values of colors, shapes and the arrangement of cell nuclei. We implement the method and confirm that it can accurately detect fat droplets and quantify the fat droplet ratio of actual images. This investigation also clarifies the effective characteristics that contribute to accurate detection.

  17. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi

    2012-11-01

    Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.

  18. Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond

    NASA Astrophysics Data System (ADS)

    Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2013-02-01

    A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by Dpb. Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the Dpb of base pairs in DNA along C-H and N-H bonds are obtained for the first time. All results show that C7-H of A-T and C8-H of G-C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate Dpb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules.

  19. The U.S. Department of Agriculture Automated Multiple-Pass Method accurately assesses sodium intakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and practical methods to monitor sodium intake of the U.S. population are critical given current sodium reduction strategies. While the gold standard for estimating sodium intake is the 24 hour urine collection, few studies have used this biomarker to evaluate the accuracy of a dietary ins...

  20. Methods in pharmacology: measurement of cardiac output

    PubMed Central

    Geerts, Bart F; Aarts, Leon P; Jansen, Jos R

    2011-01-01

    Many methods of cardiac output measurement have been developed, but the number of methods useful for human pharmacological studies is limited. The ‘holy grail’ for the measurement of cardiac output would be a method that is accurate, precise, operator independent, fast responding, non-invasive, continuous, easy to use, cheap and safe. This method does not exist today. In this review on cardiac output methods used in pharmacology, the Fick principle, indicator dilution techniques, arterial pulse contour analysis, ultrasound and bio-impedance are reviewed. PMID:21284692

  1. LSimpute: accurate estimation of missing values in microarray data with least squares methods.

    PubMed

    Bø, Trond Hellem; Dysvik, Bjarte; Jonassen, Inge

    2004-02-20

    Microarray experiments generate data sets with information on the expression levels of thousands of genes in a set of biological samples. Unfortunately, such experiments often produce multiple missing expression values, normally due to various experimental problems. As many algorithms for gene expression analysis require a complete data matrix as input, the missing values have to be estimated in order to analyze the available data. Alternatively, genes and arrays can be removed until no missing values remain. However, for genes or arrays with only a small number of missing values, it is desirable to impute those values. For the subsequent analysis to be as informative as possible, it is essential that the estimates for the missing gene expression values are accurate. A small amount of badly estimated missing values in the data might be enough for clustering methods, such as hierachical clustering or K-means clustering, to produce misleading results. Thus, accurate methods for missing value estimation are needed. We present novel methods for estimation of missing values in microarray data sets that are based on the least squares principle, and that utilize correlations between both genes and arrays. For this set of methods, we use the common reference name LSimpute. We compare the estimation accuracy of our methods with the widely used KNNimpute on three complete data matrices from public data sets by randomly knocking out data (labeling as missing). From these tests, we conclude that our LSimpute methods produce estimates that consistently are more accurate than those obtained using KNNimpute. Additionally, we examine a more classic approach to missing value estimation based on expectation maximization (EM). We refer to our EM implementations as EMimpute, and the estimate errors using the EMimpute methods are compared with those our novel methods produce. The results indicate that on average, the estimates from our best performing LSimpute method are at least as

  2. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    PubMed

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  3. Novel methodology for accurate resolution of fluid signatures from multi-dimensional NMR well-logging measurements.

    PubMed

    Anand, Vivek

    2017-03-01

    A novel methodology for accurate fluid characterization from multi-dimensional nuclear magnetic resonance (NMR) well-logging measurements is introduced. This methodology overcomes a fundamental challenge of poor resolution of features in multi-dimensional NMR distributions due to low signal-to-noise ratio (SNR) of well-logging measurements. Based on an unsupervised machine-learning concept of blind source separation, the methodology resolves fluid responses from simultaneous analysis of large quantities of well-logging data. The multi-dimensional NMR distributions from a well log are arranged in a database matrix that is expressed as the product of two non-negative matrices. The first matrix contains the unique fluid signatures, and the second matrix contains the relative contributions of the signatures for each measurement sample. No a priori information or subjective assumptions about the underlying features in the data are required. Furthermore, the dimensionality of the data is reduced by several orders of magnitude, which greatly simplifies the visualization and interpretation of the fluid signatures. Compared to traditional methods of NMR fluid characterization which only use the information content of a single measurement, the new methodology uses the orders-of-magnitude higher information content of the entire well log. Simulations show that the methodology can resolve accurate fluid responses in challenging SNR conditions. The application of the methodology to well-logging data from a heavy oil reservoir shows that individual fluid signatures of heavy oil, water associated with clays and water in interstitial pores can be accurately obtained.

  4. Novel methodology for accurate resolution of fluid signatures from multi-dimensional NMR well-logging measurements

    NASA Astrophysics Data System (ADS)

    Anand, Vivek

    2017-03-01

    A novel methodology for accurate fluid characterization from multi-dimensional nuclear magnetic resonance (NMR) well-logging measurements is introduced. This methodology overcomes a fundamental challenge of poor resolution of features in multi-dimensional NMR distributions due to low signal-to-noise ratio (SNR) of well-logging measurements. Based on an unsupervised machine-learning concept of blind source separation, the methodology resolves fluid responses from simultaneous analysis of large quantities of well-logging data. The multi-dimensional NMR distributions from a well log are arranged in a database matrix that is expressed as the product of two non-negative matrices. The first matrix contains the unique fluid signatures, and the second matrix contains the relative contributions of the signatures for each measurement sample. No a priori information or subjective assumptions about the underlying features in the data are required. Furthermore, the dimensionality of the data is reduced by several orders of magnitude, which greatly simplifies the visualization and interpretation of the fluid signatures. Compared to traditional methods of NMR fluid characterization which only use the information content of a single measurement, the new methodology uses the orders-of-magnitude higher information content of the entire well log. Simulations show that the methodology can resolve accurate fluid responses in challenging SNR conditions. The application of the methodology to well-logging data from a heavy oil reservoir shows that individual fluid signatures of heavy oil, water associated with clays and water in interstitial pores can be accurately obtained.

  5. On an efficient and accurate method to integrate restricted three-body orbits

    NASA Technical Reports Server (NTRS)

    Murison, Marc A.

    1989-01-01

    This work is a quantitative analysis of the advantages of the Bulirsch-Stoer (1966) method, demonstrating that this method is certainly worth considering when working with small N dynamical systems. The results, qualitatively suspected by many users, are quantitatively confirmed as follows: (1) the Bulirsch-Stoer extrapolation method is very fast and moderately accurate; (2) regularization of the equations of motion stabilizes the error behavior of the method and is, of course, essential during close approaches; and (3) when applicable, a manifold-correction algorithm reduces numerical errors to the limits of machine accuracy. In addition, for the specific case of the restricted three-body problem, even a small eccentricity for the orbit of the primaries drastically affects the accuracy of integrations, whether regularized or not; the circular restricted problem integrates much more accurately.

  6. A fast and accurate image-based measuring system for isotropic reflection materials

    NASA Astrophysics Data System (ADS)

    Kim, Duck Bong; Kim, Kang Yeon; Park, Kang Su; Seo, Myoung Kook; Lee, Kwan H.

    2008-08-01

    We present a novel image-based BRDF (Bidirectional Reflectance Distribution Function) measurement system for materials that have isotropic reflectance properties. Our proposed system is fast due to simple set up and automated operations. It also provides a wide angular coverage and noise reduction capability so that it achieves accuracy that is needed for computer graphics applications. We test the uniformity and constancy of the light source and the reciprocity of the measurement system. We perform a photometric calibration of HDR (High Dynamic Range) camera to recover an accurate radiance map from each HDR image. We verify our proposed system by comparing it with a previous imagebased BRDF measurement system. We demonstrate the efficiency and accuracy of our proposed system by generating photorealistic images of the measured BRDF data that include glossy blue, green plastics, gold coated metal and gold metallic paints.

  7. Accurate Alternative Measurements for Female Lifetime Reproductive Success in Drosophila melanogaster

    PubMed Central

    Nguyen, Trinh T. X.; Moehring, Amanda J.

    2015-01-01

    Fitness is an individual’s ability to survive and reproduce, and is an important concept in evolutionary biology. However, accurately measuring fitness is often difficult, and appropriate fitness surrogates need to be identified. Lifetime reproductive success, the total progeny an organism can produce in their lifetime, is thought to be a suitable proxy for fitness, but the measure of an organism’s reproductive output across a lifetime can be difficult or impossible to obtain. Here we demonstrate that the short-term measure of reproductive success across five days provides a reasonable prediction of an individual's total lifetime reproductive success in Drosophila melanogaster. However, the lifetime reproductive success of a female that has only mated once is not correlated to the lifetime reproductive success of a female that is allowed to mate multiple times, demonstrating that these measures should not serve as surrogates nor be used to make inferences about one another. PMID:26125633

  8. An Effective Method to Accurately Calculate the Phase Space Factors for β - β - Decay

    DOE PAGES

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  9. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  10. An effective method for accurate prediction of the first hyperpolarizability of alkalides.

    PubMed

    Wang, Jia-Nan; Xu, Hong-Liang; Sun, Shi-Ling; Gao, Ting; Li, Hong-Zhi; Li, Hui; Su, Zhong-Min

    2012-01-15

    The proper theoretical calculation method for nonlinear optical (NLO) properties is a key factor to design the excellent NLO materials. Yet it is a difficult task to obatin the accurate NLO property of large scale molecule. In present work, an effective intelligent computing method, as called extreme learning machine-neural network (ELM-NN), is proposed to predict accurately the first hyperpolarizability (β(0)) of alkalides from low-accuracy first hyperpolarizability. Compared with neural network (NN) and genetic algorithm neural network (GANN), the root-mean-square deviations of the predicted values obtained by ELM-NN, GANN, and NN with their MP2 counterpart are 0.02, 0.08, and 0.17 a.u., respectively. It suggests that the predicted values obtained by ELM-NN are more accurate than those calculated by NN and GANN methods. Another excellent point of ELM-NN is the ability to obtain the high accuracy level calculated values with less computing cost. Experimental results show that the computing time of MP2 is 2.4-4 times of the computing time of ELM-NN. Thus, the proposed method is a potentially powerful tool in computational chemistry, and it may predict β(0) of the large scale molecules, which is difficult to obtain by high-accuracy theoretical method due to dramatic increasing computational cost.

  11. Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements.

    PubMed

    Kudryavtsev, Volodymyr; Sikor, Martin; Kalinin, Stanislav; Mokranjac, Dejana; Seidel, Claus A M; Lamb, Don C

    2012-03-01

    Single-pair Förster resonance energy transfer (spFRET) experiments using single-molecule burst analysis on a confocal microscope are an ideal tool to measure inter- and intramolecular distances and dynamics on the nanoscale. Different techniques have been developed to maximize the amount of information available in spFRET burst analysis experiments. Multiparameter fluorescence detection (MFD) is used to monitor a variety of fluorescence parameters simultaneously and pulsed interleaved excitation (PIE) employs direct excitation of the acceptor to probe its presence and photoactivity. To calculate accurate FRET efficiencies from spFRET experiments with MFD or PIE, several calibration measurements are usually required. Herein, we demonstrate that by combining MFD with PIE information regarding all calibration factors as well as an accurate determination of spFRET histograms can be performed in a single measurement. In addition, the quality of overlap of the different detection volumes as well as the detection of acceptor photophysics can be investigated with MFD-PIE. Bursts containing acceptor photobleaching can be identified and excluded from further investigation while bursts that contain FRET dynamics are unaffected by this analysis. We have employed MFD-PIE to accurately analyze the effects of nucleotides and substrate on the interdomain separation in DnaK, the major bacterial heat shock protein 70 (Hsp70). The interdomain distance increases from 47 Å in the ATP-bound state to 84 Å in the ADP-bound state and slightly contracts to 77 Å when a substrate is bound. This is in contrast to what was observed for the mitochondrial member of the Hsp70s, Ssc1, supporting the notion of evolutionary specialization of Hsp70s for different cellular functions in different organisms and cell organelles.

  12. Note: long range and accurate measurement of deep trench microstructures by a specialized scanning tunneling microscope.

    PubMed

    Ju, Bing-Feng; Chen, Yuan-Liu; Zhang, Wei; Zhu, Wule; Jin, Chao; Fang, F Z

    2012-05-01

    A compact but practical scanning tunneling microscope (STM) with high aspect ratio and high depth capability has been specially developed. Long range scanning mechanism with tilt-adjustment stage is adopted for the purpose of adjusting the probe-sample relative angle to compensate the non-parallel effects. A periodical trench microstructure with a pitch of 10 μm has been successfully imaged with a long scanning range up to 2.0 mm. More innovatively, a deep trench with depth and step height of 23.0 μm has also been successfully measured, and slope angle of the sidewall can approximately achieve 67°. The probe can continuously climb the high step and exploring the trench bottom without tip crashing. The new STM could perform long range measurement for the deep trench and high step surfaces without image distortion. It enables accurate measurement and quality control of periodical trench microstructures.

  13. Fiddler crabs accurately measure two-dimensional distance over three-dimensional terrain.

    PubMed

    Walls, Michael L; Layne, John E

    2009-10-01

    Foraging fiddler crabs (Uca spp.) monitor the location of, and are able to return to, their burrows by employing path integration. This requires them to accurately measure both the directions and distances of their locomotory movements. Even though most fiddler crabs inhabit relatively flat terrain, they must cope with vertical features of their environment, such as sloping beaches, mounds and shells, which may represent significant obstacles. To determine whether fiddler crabs can successfully perform path integration among such three-dimensional obstacles, we tested their ability to measure distance while we imposed a vertical detour. By inserting a large hill in the homeward path of foraging crabs we show that fiddler crabs can cope with vertical detours: they accurately travel the correct horizontal distance, despite the fact that the shape of the hill forces them to change their gait from what would be used on flat ground. Our results demonstrate a flexible path integrator capable of measuring, and either integrating or discarding, the vertical dimension.

  14. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    PubMed

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples.

  15. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  16. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  17. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  18. A safe and accurate method to perform esthetic mandibular contouring surgery for Far Eastern Asians.

    PubMed

    Hsieh, A M-C; Huon, L-K; Jiang, H-R; Liu, S Y-C

    2017-05-01

    A tapered mandibular contour is popular with Far Eastern Asians. This study describes a safe and accurate method of using preoperative virtual surgical planning (VSP) and an intraoperative ostectomy guide to maximize the esthetic outcomes of mandibular symmetry and tapering while mitigating injury to the inferior alveolar nerve (IAN). Twelve subjects with chief complaints of a wide and square lower face underwent this protocol from January to June 2015. VSP was used to confirm symmetry and preserve the IAN while maximizing the surgeon's ability to taper the lower face via mandibular inferior border ostectomy. The accuracy of this method was confirmed by superimposition of the perioperative computed tomography scans in all subjects. No subjects complained of prolonged paresthesia after 3 months. A safe and accurate protocol for achieving an esthetic lower face in indicated Far Eastern individuals is described.

  19. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  20. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Utku, Cuneyt; Tarkocin, Yalcin; LeVine, David M.

    2010-01-01

    This report describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz that is at the center of the L-Sand radiometric protected frequency spectrum. Aquarius will be sensing the sea surface salinity from space in this band. The objective of the project is to refine the model function for the dielectric constant as a function of salinity and temperature so that remote sensing measurements can be made with the accuracy needed to meet the measurement goals (0.2 psu) of the Aquarius mission. The measurements were made, using a microwave cavity operated in the transmission configuration. The cavity's temperature was accurately regulated to 0.02 C by immersing it in a temperature controlled bath of distilled water and ethanol glycol. Seawater had been purchased from Ocean Scientific International Limited (OS1L) at salinities of 30, 35 and 38 psu. Measurements of these seawater samples were then made over a range of temperatures, from l0 C to 35 C in 5 C intervals. Repeated measurements were made at each temperature and salinity, Mean values and standard deviations were then computed. Total error budgets indicated that the real and imaginary parts of the dielectric constant had a relative accuracy of about l%.

  1. Accurate size measurement of monosize calibration spheres by differential mobility analysis

    SciTech Connect

    Mulholland, George W.; Fernandez, Marco

    1998-11-24

    A differential mobility analyzer was used to measure the mean particle size of three monosize suspensions of polystyrene spheres in water. Key features of the experiment to minimize the uncertainty in the results include developing a recirculating flow to ensure equal flows into and out of the classifier, an accurate divider circuit for calibrating the electrode voltage, and use of the 100.7 nm NIST SRM for calibrating the flow of the classifier. The measured average sizes and expanded uncertainties with a coverage factor of 2 are 92.4 nm{+-}1.1 nm, 126.9 nm{+-}1.4 nm, and 217.7 nm{+-}3.4 nm. These calibration sizes were characterized by NIST to improve the calibration of scanning surface inspection systems.

  2. A solution for measuring accurate reaction time to visual stimuli realized with a programmable microcontroller.

    PubMed

    Ohyanagi, Toshio; Sengoku, Yasuhito

    2010-02-01

    This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.

  3. Core temperature measurement: methods and current insights.

    PubMed

    Moran, Daniel S; Mendal, Liran

    2002-01-01

    Climatic injuries, including hypothermia, hyperthermia and heat stroke, are common in many sports activities. Body core temperature (T(c)) measurement for the sportsperson can influence individual performance and may help to prevent injuries. Monitoring internal body T(c) accurately requires invasive methods of measurement. The mercury thermometer, most commonly used to measure oral temperature (T(oral)), has been almost exclusively the only instrument for measuring T(c) since the 18th century. Rectal (T(re)) and oesophageal temperatures (T(oes)) have been the most preferred measurement sites employed in thermoregulatory investigations. However, these measurement sites (T(re), T(oes), T(oral)), and the methods used to measure T(c) at these sites, are not convenient. T(oral) measurements are not always possible or accurate. T(oes) is undesirable because of the difficulty of inserting the thermistor, irritation to nasal passages and general subject discomfort. T(re) is not suitable under many circumstances as it is labour intensive and has a prolonged response time. However, T(re) remains the most accurately available method for monitoring T(c) in thermal illness that occurs during sports activities. In addition, T(re) and T(oes) require wire connections between the thermistor and the monitoring device. The purpose of this paper is to review the various existing methods of T(c) measurements in order to focus on the breakthrough needed for a simple, noninvasive, universally used device for T(c) measurement which is essential for preventing climatic injuries during sports events.

  4. Home Circadian Phase Assessments with Measures of Compliance Yield Accurate Dim Light Melatonin Onsets

    PubMed Central

    Burgess, Helen J.; Wyatt, James K.; Park, Margaret; Fogg, Louis F.

    2015-01-01

    Study Objectives: There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Design: Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Setting: Laboratory or participants' homes. Participants: Thirty-five healthy adults, age 21–62 y. Interventions: N/A. Measurements and Results: Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for < 9 min of the required 8.5 h. Most participants collected every saliva sample within 5 min of the scheduled time. Ninety-two percent of home DLMOs were not affected by light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P < 0.001). Conclusions: Participants were reasonably compliant to the home phase assessment procedures. The good agreement between the home and laboratory dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Clinical Trial Registration: Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. Citation: Burgess HJ, Wyatt JK, Park M, Fogg LF. Home circadian phase assessments with measures of compliance yield accurate dim light melatonin onsets. SLEEP 2015;38(6):889–897

  5. How accurately will SWOT measurements be able to characterize river discharge?

    NASA Astrophysics Data System (ADS)

    Durand, M.; Alsdorf, D.; Bates, P.; Rodríguez, E.; Andreadis, K.; Clark, E.

    2008-12-01

    The Surface Water and Ocean Topography (SWOT) mission is a swath mapping radar altimeter that would provide new measurements of inland water surface elevation (WSE) for rivers, lakes, wetlands and reservoirs. SWOT has been recommended by the National Research Council Decadal Survey to measure ocean topography as well as WSE over land; the proposed launch date timeframe is between 2013 - 2016. SWOT WSE estimates would provide a source of information for characterizing streamflow globally. In this paper, we evaluate the accuracy of river discharge estimates obtained from SWOT measurements over the Ohio River and eight of its major tributaries within the context of a virtual mission (VM). SWOT VM measurements are obtained by simulation from the hydrodynamic model LISFLOOD, using USGS streamflow gages as boundary conditions and validation data. SWOT measurements are then input into an algorithm to obtain estimates of discharge variations. The algorithm is based on Manning's equation, in which river width and slope are obtained from SWOT, roughness is estimated a priori. Three different algorithms are used to estimate depth. SWOT discharge estimates are compared to the discharge simulated by LISFLOOD. In this way, we are able to characterize the accuracy of SWOT estimates of instantaneous discharge. More specifically, we characterize how SWOT accuracy varies as a function of the river characteristics and contributing area, such as Strahler order. More accurate depth and discharge estimates can be obtained by data assimilation, but will be more computationally expensive.

  6. A high-order accurate embedded boundary method for first order hyperbolic equations

    NASA Astrophysics Data System (ADS)

    Mattsson, Ken; Almquist, Martin

    2017-04-01

    A stable and high-order accurate embedded boundary method for first order hyperbolic equations is derived. Where the grid-boundaries and the physical boundaries do not coincide, high order interpolation is used. The boundary stencils are based on a summation-by-parts framework, and the boundary conditions are imposed by the SAT penalty method, which guarantees linear stability for one-dimensional problems. Second-, fourth-, and sixth-order finite difference schemes are considered. The resulting schemes are fully explicit. Accuracy and numerical stability of the proposed schemes are demonstrated for both linear and nonlinear hyperbolic systems in one and two spatial dimensions.

  7. The Block recursion library: accurate calculation of resolvent submatrices using the block recursion method

    NASA Astrophysics Data System (ADS)

    Godin, T. J.; Haydock, Roger

    1991-04-01

    The Block Recursion Library, a collection of FORTRAN subroutines, calculates submatrices of the resolvent of a linear operator. The resolvent, in matrix theory, is a powerful tool for extracting information about solutions of linear systems. The routines use the block recursion method and achieve high accuracy for very large systems of coupled equations. This technique is a generalization of the scalar recursion method, an accurate technique for finding the local density of states. A sample program uses these routines to find the quantum mechanical transmittance of a randomly disordered two-dimensional cluster of atoms.

  8. Investigation of low frequency electrolytic solution behavior with an accurate electrical impedance method

    NASA Astrophysics Data System (ADS)

    Ho, Kung-Chu; Su, Vin-Cent; Huang, Da-Yo; Lee, Ming-Lun; Chou, Nai-Kuan; Kuan, Chieh-Hsiung

    2017-01-01

    This paper reports the investigation of strong electrolytic solutions operated in low frequency regime through an accurate electrical impedance method realized with a specific microfluidic device and high resolution instruments. Experimental results show the better repeatability and accuracy of the proposed impedance method. Moreover, all electrolytic solutions appear the so-called relaxation frequency at each peak value of dielectric loss due to relaxing total polarization inside the device. The relaxation frequency of concentrated electrolytes becomes higher owing to the stronger total polarization behavior coming from the higher conductivity as well as the lower resistance in the electrolytic solutions.

  9. [A accurate identification method for Chinese materia medica--systematic identification of Chinese materia medica].

    PubMed

    Wang, Xue-Yong; Liao, Cai-Li; Liu, Si-Qi; Liu, Chun-Sheng; Shao, Ai-Juan; Huang, Lu-Qi

    2013-05-01

    This paper put forward a more accurate identification method for identification of Chinese materia medica (CMM), the systematic identification of Chinese materia medica (SICMM) , which might solve difficulties in CMM identification used the ordinary traditional ways. Concepts, mechanisms and methods of SICMM were systematically introduced and possibility was proved by experiments. The establishment of SICMM will solve problems in identification of Chinese materia medica not only in phenotypic characters like the mnorphous, microstructure, chemical constituents, but also further discovery evolution and classification of species, subspecies and population in medical plants. The establishment of SICMM will improve the development of identification of CMM and create a more extensive study space.

  10. Establishing traceability of photometric absorbance values for accurate measurements of the haemoglobin concentration in blood

    NASA Astrophysics Data System (ADS)

    Witt, K.; Wolf, H. U.; Heuck, C.; Kammel, M.; Kummrow, A.; Neukammer, J.

    2013-10-01

    Haemoglobin concentration in blood is one of the most frequently measured analytes in laboratory medicine. Reference and routine methods for the determination of the haemoglobin concentration in blood are based on the conversion of haeme, haemoglobin and haemiglobin species into uniform end products. The total haemoglobin concentration in blood is measured using the absorbance of the reaction products. Traceable absorbance measurement values on the highest metrological level are a prerequisite for the calibration and evaluation of procedures with respect to their suitability for routine measurements and their potential as reference measurement procedures. For this purpose, we describe a procedure to establish traceability of spectral absorbance measurements for the haemiglobincyanide (HiCN) method and for the alkaline haematin detergent (AHD) method. The latter is characterized by a higher stability of the reaction product. In addition, the toxic hazard of cyanide, which binds to the iron ion of the haem group and thus inhibits the oxygen transport, is avoided. Traceability is established at different wavelengths by applying total least-squares analysis to derive the conventional quantity values for the absorbance from the measured values. Extrapolation and interpolation are applied to get access to the spectral regions required to characterize the Q-absorption bands of the HiCN and AHD methods, respectively. For absorbance values between 0.3 and 1.8, the contributions of absorbance measurements to the total expanded uncertainties (95% level of confidence) of absorbance measurements range from 1% to 0.4%.

  11. Multifrequency excitation method for rapid and accurate dynamic test of micromachined gyroscope chips.

    PubMed

    Deng, Yan; Zhou, Bin; Xing, Chao; Zhang, Rong

    2014-10-17

    A novel multifrequency excitation (MFE) method is proposed to realize rapid and accurate dynamic testing of micromachined gyroscope chips. Compared with the traditional sweep-frequency excitation (SFE) method, the computational time for testing one chip under four modes at a 1-Hz frequency resolution and 600-Hz bandwidth was dramatically reduced from 10 min to 6 s. A multifrequency signal with an equal amplitude and initial linear-phase-difference distribution was generated to ensure test repeatability and accuracy. The current test system based on LabVIEW using the SFE method was modified to use the MFE method without any hardware changes. The experimental results verified that the MFE method can be an ideal solution for large-scale dynamic testing of gyroscope chips and gyroscopes.

  12. An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods

    NASA Astrophysics Data System (ADS)

    Sudhakar, Y.; Moitinho de Almeida, J. P.; Wall, Wolfgang A.

    2014-09-01

    We present an accurate method for the numerical integration of polynomials over arbitrary polyhedra. Using the divergence theorem, the method transforms the domain integral into integrals evaluated over the facets of the polyhedra. The necessity of performing symbolic computation during such transformation is eliminated by using one dimensional Gauss quadrature rule. The facet integrals are computed with the help of quadratures available for triangles and quadrilaterals. Numerical examples, in which the proposed method is used to integrate the weak form of the Navier-Stokes equations in an embedded interface method (EIM), are presented. The results show that our method is as accurate and generalized as the most widely used volume decomposition based methods. Moreover, since the method involves neither volume decomposition nor symbolic computations, it is much easier for computer implementation. Also, the present method is more efficient than other available integration methods based on the divergence theorem. Efficiency of the method is also compared with the volume decomposition based methods and moment fitting methods. To our knowledge, this is the first article that compares both accuracy and computational efficiency of methods relying on volume decomposition and those based on the divergence theorem.

  13. Measuring nonlinear oscillations using a very accurate and low-cost linear optical position transducer

    NASA Astrophysics Data System (ADS)

    Donoso, Guillermo; Ladera, Celso L.

    2016-09-01

    An accurate linear optical displacement transducer of about 0.2 mm resolution over a range of ∼40 mm is presented. This device consists of a stack of thin cellulose acetate strips, each strip longitudinally slid ∼0.5 mm over the precedent one so that one end of the stack becomes a stepped wedge of constant step. A narrowed light beam from a white LED orthogonally incident crosses the wedge at a known point, the transmitted intensity being detected with a phototransistor whose emitter is connected to a diode. We present the interesting analytical proof that the voltage across the diode is linearly dependent upon the ordinate of the point where the light beam falls on the wedge, as well as the experimental validation of such a theoretical proof. Applications to nonlinear oscillations are then presented—including the interesting case of a body moving under dry friction, and the more advanced case of an oscillator in a quartic energy potential—whose time-varying positions were accurately measured with our transducer. Our sensing device can resolve the dynamics of an object attached to it with great accuracy and precision at a cost considerably less than that of a linear neutral density wedge. The technique used to assemble the wedge of acetate strips is described.

  14. A systematic approach for the accurate and rapid measurement of water vapor transmission through ultra-high barrier films

    NASA Astrophysics Data System (ADS)

    Kiese, Sandra; Kücükpinar, Esra; Reinelt, Matthias; Miesbauer, Oliver; Ewender, Johann; Langowski, Horst-Christian

    2017-02-01

    Flexible organic electronic devices are often protected from degradation by encapsulation in multilayered films with very high barrier properties against moisture and oxygen. However, metrology must be improved to detect such low quantities of permeants. We therefore developed a modified ultra-low permeation measurement device based on a constant-flow carrier-gas system to measure both the transient and stationary water vapor permeation through high-performance barrier films. The accumulation of permeated water vapor before its transport to the detector allows the measurement of very low water vapor transmission rates (WVTRs) down to 2 × 10-5 g m-2 d-1. The measurement cells are stored in a temperature-controlled chamber, allowing WVTR measurements within the temperature range 23-80 °C. Differences in relative humidity can be controlled within the range 15%-90%. The WVTR values determined using the novel measurement device agree with those measured using a commercially available carrier-gas device from MOCON®. Depending on the structure and quality of the barrier film, it may take a long time for the WVTR to reach a steady-state value. However, by using a combination of the time-dependent measurement and the finite element method, we were able to estimate the steady-state WVTR accurately with significantly shorter measurement times.

  15. Accurate method for including solid-fluid boundary interactions in mesoscopic model fluids

    SciTech Connect

    Berkenbos, A. Lowe, C.P.

    2008-04-20

    Particle models are attractive methods for simulating the dynamics of complex mesoscopic fluids. Many practical applications of this methodology involve flow through a solid geometry. As the system is modeled using particles whose positions move continuously in space, one might expect that implementing the correct stick boundary condition exactly at the solid-fluid interface is straightforward. After all, unlike discrete methods there is no mapping onto a grid to contend with. In this article we describe a method that, for axisymmetric flows, imposes both the no-slip condition and continuity of stress at the interface. We show that the new method then accurately reproduces correct hydrodynamic behavior right up to the location of the interface. As such, computed flow profiles are correct even using a relatively small number of particles to model the fluid.

  16. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.

  17. Accurate Wind Characterization in Complex Terrain Using the Immersed Boundary Method

    SciTech Connect

    Lundquist, K A; Chow, F K; Lundquist, J K; Kosovic, B

    2009-09-30

    This paper describes an immersed boundary method (IBM) that facilitates the explicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. Two different interpolation methods, trilinear and inverse distance weighting, are used at the core of the IBM algorithm. Functional aspects of the algorithm's implementation and the accuracy of results are considered. Simulations of flow over a three-dimensional hill with shallow terrain slopes are preformed with both WRF's native terrain-following coordinate and with both IB methods. Comparisons of flow fields from the three simulations show excellent agreement, indicating that both IB methods produce accurate results. However, when ease of implementation is considered, inverse distance weighting is superior. Furthermore, inverse distance weighting is shown to be more adept at handling highly complex urban terrain, where the trilinear interpolation algorithm breaks down. This capability is demonstrated by using the inverse distance weighting core of the IBM to model atmospheric flow in downtown Oklahoma City.

  18. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    SciTech Connect

    Spiridonov, Maxim; Toebaert, David

    2006-09-10

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes,and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator(typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  19. A new class of accurate, mesh-free hydrodynamic simulation methods

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2015-06-01

    We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, smoothed particle hydrodynamics (SPH), and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both SPH and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume `overlap'. We implement and test a parallel, second-order version of the method with self-gravity and cosmological integration, in the code GIZMO:1 this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require `artificial diffusion' terms; and allows the fluid elements to move with the flow, so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages versus SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced `particle noise' and numerical viscosity, more accurate sub-sonic flow evolution, and sharp shock-capturing. Advantages versus non-moving meshes include: automatic adaptivity, dramatically reduced advection errors and numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of `grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous discs, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize `grid noise'. These differences are important for a range of astrophysical problems.

  20. Coherent methods for measuring ophthalmic surfaces

    NASA Astrophysics Data System (ADS)

    Rottenkolber, Matthias; Podbielska, Halina

    1996-01-01

    Topographic analysis of the ophthalmic surfaces is an important task. Especially recently, when a laser assisted refractive surgery becomes more and more popular in a daily clinical praxis. Ophthalmologists need to know exact corneal parameters as a basis for proper operational approach, as well as for monitoring of the post-operative process. The fitting of the contact lenses can be more accurate when topography of both, cornea and contacts, can be precisely measured. We develop new coherent methods for measuring of the topography of curved optical surfaces. One of the proposed techniques is based on interferometry with a special distance measurement unit and spatial phase shifting interferogram evaluation. The other one uses deflectometry with spatial carrier frequency. The sensitivity of this method is adjustable and thus it closes the gap between the white light and interferometric measuring methods. The techniques proposed here can be suitable for measurement of the contact lenses or corneal surface.

  1. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    PubMed

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  2. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis

    NASA Astrophysics Data System (ADS)

    Xu, Z. N.

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  3. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  4. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    NASA Astrophysics Data System (ADS)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  5. The accurate measurement of second virial coefficients using self-interaction chromatography: experimental considerations.

    PubMed

    Quigley, A; Heng, J Y Y; Liddell, J M; Williams, D R

    2013-11-01

    Measurement of B22, the second virial coefficient, is an important technique for describing the solution behaviour of proteins, especially as it relates to precipitation, aggregation and crystallisation phenomena. This paper describes the best practise for calculating B22 values from self-interaction chromatograms (SIC) for aqueous protein solutions. Detailed analysis of SIC peak shapes for lysozyme shows that non-Gaussian peaks are commonly encountered for SIC, with typical peak asymmetries of 10%. This asymmetry reflects a non-linear chromatographic retention process, in this case heterogeneity of the protein-protein interactions. Therefore, it is important to use the centre of mass calculations for determining accurate retention volumes and thus B22 values. Empirical peak maximum chromatogram analysis, often reported in the literature, can result in errors of up to 50% in B22 values. A methodology is reported here for determining both the mean and the variance in B22 from SIC experiments, includes a correction for normal longitudinal peak broadening. The variance in B22 due to chemical effects is quantified statistically and is a measure of the heterogeneity of protein-protein interactions in solution. In the case of lysozyme, a wide range of B22 values are measured which can vary significantly from the average B22 values.

  6. Stratus optical coherence tomogram III: a novel, reliable and accurate way to measure corneal thickness.

    PubMed

    Madgula, Indira M; Kotta, Satish

    2007-01-01

    The commercially available optical coherence tomogram (Stratus OCT III) designed for posterior segment imaging can be used for central corneal thickness (CCT) measurement. The aim of the study was to determine the accuracy and reliability of CCT measurements using Stratus OCT III versus ultrasound pachymetry. CCT using Stratus OCT III (CCT oct) was taken and averaged. The focusing system had to be defocused near the maximum to relay the image of the OCT beam onto the cornea. CCT was then determined using the ultrasound pachymeter (CCT usg). Thirty white volunteers (12 male, 18 female) participated in this study. The mean CCToct was 522.33+/-34.44 microns. The mean CCTusg was 547.37+/-33.08 microns. The mean differences between CCTusg and CCToct was 25.04+/-11.67. CCT usg was found to be highly correlated with CCToct (P < 0.001) The relation can be represented by the equation. CCToct = 0.98 (CCTusg) - 13.9. The Stratus OCT III gave reliable readings of CCT and is a novel, reliable and accurate way to measure CCT.

  7. An accurate optical technique for measuring the nuclear polarisation of 3He gas

    NASA Astrophysics Data System (ADS)

    Talbot, C.; Batz, M.; Nacher, P.-J.; Tastevin, G.

    2011-06-01

    In the metastability exchange optical pumping cells of our on-site production unit and of our other experimental set-ups, we use a light absorption technique to measure the 3He nuclear polarisation. It involves weak probe beams at 1083 nm, that are either perpendicular or parallel to the magnetic field and cell axis, with suitable light polarisations. When metastability exchange collisions control the populations of the sublevels in the 23S state, absolute values of the 3He ground state nuclear polarisation are directly inferred from the ratio of the absorption rates measured for these probe beams. Our report focuses on the transverse detection scheme for which this ratio, measured at low magnetic field for σ and π light polarisations, hardly depends on gas pressure or the presence of an intense pump beam. This technique has been systematically tested both in pure 3He and isotopic mixtures and it is routinely used for accurate control of the optical pumping efficiency as well as for calibration of the NMR system.

  8. Measurement methods of ultrasonic transducer sensitivity.

    PubMed

    Xiao, Dingguo; Fan, Qiong; Xu, Chunguang; Zhang, Xiuhua

    2016-05-01

    Sensitivity is an important parameter to describe the electro-acoustic energy conversion efficiency of ultrasonic transducer. In this paper, the definition of sensitivity and reciprocity of ultrasonic transducer is studied. The frequency response function of a transducer is the spectrum of its sensitivity, which reflects the response sensitivity of the transducer for input signals at different frequencies. Four common methods which are used to measure the disc-vibrator transducer sensitivity are discussed in current investigation. The reciprocity method and the pulse-echo method are based on the reciprocity of the transducer. In the laser vibrometer method measurement, the normal velocity on the transducer radiating surface is directly measured by a laser vibrometer. In the measurement process of the hydrophone method, a calibrated hydrophone is used to measure the transmitted field. The validity of these methods is checked by experimental test. All of the four methods described are sufficiently accurate for transducer sensitivity measurement, while each method has its advantages and limitations. In practical applications, the appropriate method to measure transducer sensitivity should be selected based on actual conditions.

  9. Two-temperature method for measuring emissivity

    USGS Publications Warehouse

    Watson, K.

    1992-01-01

    Spectral emissivity can be uniquely determined from radiance measurements if the object can be observed at two different temperatures. The advantage of this approach is that the spectral emissivity is determined without a priori assumptions about spectral shape. Because the different temperatures are obtained by observing the scene at two times in the diurnal cycle (optimally after midday and midnight), the method assumes that emissivity is temporally invariant. This is valid for rocks and dry soils, not well established for vegetation, and not true when changes in soil moisture occur between the measurements. Accurate image registration and satisfactory signal:noise are critical factors that limit extensive use of this method. ?? 1992.

  10. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  11. Method for accurate optical alignment using diffraction rings from lenses with spherical aberration.

    PubMed

    Gwynn, R B; Christensen, D A

    1993-03-01

    A useful alignment method is presented that exploits the closely spaced concentric fringes that form in the longitudinal spherical aberration region of positive spherical lenses imaging a point source. To align one or more elements to a common axis, spherical lenses are attached precisely to the elements and the resulting diffraction rings are made to coincide. We modeled the spherical aberration of the lenses by calculating the diffraction patterns of converging plane waves passing through concentric narrow annular apertures. The validity of the model is supported by experimental data and is determined to be accurate for a prototype penumbral imaging alignment system developed at Lawrence Livermore National Laboratory.

  12. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    PubMed

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  13. Joint iris boundary detection and fit: a real-time method for accurate pupil tracking.

    PubMed

    Barbosa, Marconi; James, Andrew C

    2014-08-01

    A range of applications in visual science rely on accurate tracking of the human pupil's movement and contraction in response to light. While the literature for independent contour detection and fitting of the iris-pupil boundary is vast, a joint approach, in which it is assumed that the pupil has a given geometric shape has been largely overlooked. We present here a global method for simultaneously finding and fitting of an elliptic or circular contour against a dark interior, which produces consistently accurate results even under non-ideal recording conditions, such as reflections near and over the boundary, droopy eye lids, or the sudden formation of tears. The specific form of the proposed optimization problem allows us to write down closed analytic formulae for the gradient and the Hessian of the objective function. Moreover, both the objective function and its derivatives can be cast into vectorized form, making the proposed algorithm significantly faster than its closest relative in the literature. We compare methods in multiple ways, both analytically and numerically, using real iris images as well as idealizations of the iris for which the ground truth boundary is precisely known. The method proposed here is illustrated under challenging recording conditions and it is shown to be robust.

  14. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  15. Joint iris boundary detection and fit: a real-time method for accurate pupil tracking

    PubMed Central

    Barbosa, Marconi; James, Andrew C.

    2014-01-01

    A range of applications in visual science rely on accurate tracking of the human pupil’s movement and contraction in response to light. While the literature for independent contour detection and fitting of the iris-pupil boundary is vast, a joint approach, in which it is assumed that the pupil has a given geometric shape has been largely overlooked. We present here a global method for simultaneously finding and fitting of an elliptic or circular contour against a dark interior, which produces consistently accurate results even under non-ideal recording conditions, such as reflections near and over the boundary, droopy eye lids, or the sudden formation of tears. The specific form of the proposed optimization problem allows us to write down closed analytic formulae for the gradient and the Hessian of the objective function. Moreover, both the objective function and its derivatives can be cast into vectorized form, making the proposed algorithm significantly faster than its closest relative in the literature. We compare methods in multiple ways, both analytically and numerically, using real iris images as well as idealizations of the iris for which the ground truth boundary is precisely known. The method proposed here is illustrated under challenging recording conditions and it is shown to be robust. PMID:25136477

  16. Stiffly accurate Runge-Kutta methods for nonlinear evolution problems governed by a monotone operator

    NASA Astrophysics Data System (ADS)

    Emmrich, Etienne; Thalhammer, Mechthild

    2010-04-01

    Stiffly accurate implicit Runge-Kutta methods are studied for the time discretisation of nonlinear first-order evolution equations. The equation is supposed to be governed by a time-dependent hemicontinuous operator that is (up to a shift) monotone and coercive, and fulfills a certain growth condition. It is proven that the piecewise constant as well as the piecewise linear interpolant of the time-discrete solution converges towards the exact weak solution, provided the Runge-Kutta method is consistent and satisfies a stability criterion that implies algebraic stability; examples are the Radau IIA and Lobatto IIIC methods. The convergence analysis is also extended to problems involving a strongly continuous perturbation of the monotone main part.

  17. Accurate measurement of dispersion data through short and narrow tubes used in very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2015-09-04

    An original method is proposed for the accurate and reproducible measurement of the time-based dispersion properties of short L< 50cm and narrow rc< 50μm tubes at mobile phase flow rates typically used in very high-pressure liquid chromatography (vHPLC). Such tubes are used to minimize sample dispersion in vHPLC; however, their dispersion characteristics cannot be accurately measured at such flow rates due to system dispersion contribution of vHPLC injector and detector. It is shown that using longer and wider tubes (>10μL) enables a reliable measurement of the dispersion data. We confirmed that the dimensionless plot of the reduced dispersion coefficient versus the reduced linear velocity (Peclet number) depends on the aspect ratio, L/rc, of the tube, and unexpectedly also on the diffusion coefficient of the analyte. This dimensionless plot could be easily obtained for a large volume tube, which has the same aspect ratio as that of the short and narrow tube, and for the same diffusion coefficient. The dispersion data for the small volume tube are then directly extrapolated from this plot. For instance, it is found that the maximum volume variances of 75μm×30.5cm and 100μm×30.5cm prototype finger-tightened connecting tubes are 0.10 and 0.30μL(2), respectively, with an accuracy of a few percent and a precision smaller than seven percent.

  18. Accurate measurement of optical properties of narrow leaves and conifer needles with a typical integrating sphere and spectroradiometer.

    PubMed

    Noda, Hibiki M; Motohka, Takeshi; Murakami, Kazutaka; Muraoka, Hiroyuki; Nasahara, Kenlo Nishida

    2013-10-01

    Accurate information on the optical properties (reflectance and transmittance spectra) of single leaves is important for an ecophysiological understanding of light use by leaves, radiative transfer models and remote sensing of terrestrial ecosystems. In general, leaf optical properties are measured with an integrating sphere and a spectroradiometer. However, this method is usually difficult to use with grass leaves and conifer needles because they are too narrow to cover the sample port of a typical integrating sphere. Although ways to measure the optical properties of narrow leaves have been suggested, they have problems. We propose a new measurement protocol and calculation algorithms. The protocol does not damage sample leaves and is valid for various types of leaves, including green and senescent. We tested our technique with leaves of Aucuba japonica, an evergreen broadleaved shrub, and compared the spectral data of whole leaves and narrow strips of the leaves. The reflectance and transmittance of the strips matched those of the whole leaves, indicating that our technique can accurately estimate the optical properties of narrow leaves. Tests of conifer needles confirmed the applicability.

  19. Stable and accurate difference methods for seismic wave propagation on locally refined meshes

    NASA Astrophysics Data System (ADS)

    Petersson, A.; Rodgers, A.; Nilsson, S.; Sjogreen, B.; McCandless, K.

    2006-12-01

    To overcome some of the shortcomings of previous numerical methods for the elastic wave equation subject to stress-free boundary conditions, we are incorporating recent results from numerical analysis to develop a new finite difference method which discretizes the governing equations in second order displacement formulation. The most challenging aspect of finite difference methods for time dependent hyperbolic problems is clearly stability and some previous methods are known to be unstable when the material has a compressional velocity which exceeds about three times the shear velocity. Since the material properties in seismic applications often vary rapidly on the computational grid, the most straight forward approach for guaranteeing stability is through an energy estimate. For a hyperbolic system in second order formulation, the key to an energy estimate is a spatial discretization which is self-adjoint, i.e. corresponds to a symmetric or symmetrizable matrix. At the same time we want the scheme to be efficient and fully explicit, so only local operations are necessary to evolve the solution in the interior of the domain as well as on the free-surface boundary. Furthermore, we want the solution to be accurate when the data is smooth. Using these specifications, we developed an explicit second order accurate discretization where stability is guaranteed through an energy estimate for all ratios Cp/Cs. An implementation of our finite difference method was used to simulate ground motions during the 1906 San Francisco earthquake on a uniform grid with grid sizes down to 100 meters corresponding to over 4 Billion grid points. These simulations were run on 1024 processors on one of the supercomputers at Lawrence Livermore National Lab. To reduce the computational requirements for these simulations, we are currently extending the numerical method to use a locally refined mesh where the mesh size approximately follows the velocity structure in the domain. Some

  20. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made

  1. CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

    SciTech Connect

    Haugh, M J; Charest, M R; Ross, P W; Lee, J J; Schneider, M B; Palmer, N E; Teruya, A T

    2012-02-16

    National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

  2. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering

    NASA Astrophysics Data System (ADS)

    Moskalensky, Alexander E.; Yurkin, Maxim A.; Konokhova, Anastasiya I.; Strokotov, Dmitry I.; Nekrasov, Vyacheslav M.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  3. Lightdrum—Portable Light Stage for Accurate BTF Measurement on Site

    PubMed Central

    Havran, Vlastimil; Hošek, Jan; Němcová, Šárka; Čáp, Jiří; Bittner, Jiří

    2017-01-01

    We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF) and the bidirectional texture function (BTF) of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED) modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0∘ to 75∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples. PMID:28241466

  4. Lightdrum-Portable Light Stage for Accurate BTF Measurement on Site.

    PubMed

    Havran, Vlastimil; Hošek, Jan; Němcová, Šárka; Čáp, Jiří; Bittner, Jiří

    2017-02-23

    We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF) and the bidirectional texture function (BTF) of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED) modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0 ∘ to 75 ∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples.

  5. An adaptive, formally second order accurate version of the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Griffith, Boyce E.; Hornung, Richard D.; McQueen, David M.; Peskin, Charles S.

    2007-04-01

    Like many problems in biofluid mechanics, cardiac mechanics can be modeled as the dynamic interaction of a viscous incompressible fluid (the blood) and a (visco-)elastic structure (the muscular walls and the valves of the heart). The immersed boundary method is a mathematical formulation and numerical approach to such problems that was originally introduced to study blood flow through heart valves, and extensions of this work have yielded a three-dimensional model of the heart and great vessels. In the present work, we introduce a new adaptive version of the immersed boundary method. This adaptive scheme employs the same hierarchical structured grid approach (but a different numerical scheme) as the two-dimensional adaptive immersed boundary method of Roma et al. [A multilevel self adaptive version of the immersed boundary method, Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, 1996; An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509-534] and is based on a formally second order accurate (i.e., second order accurate for problems with sufficiently smooth solutions) version of the immersed boundary method that we have recently described [B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208 (1) (2005) 75-105]. Actual second order convergence rates are obtained for both the uniform and adaptive methods by considering the interaction of a viscous incompressible flow and an anisotropic incompressible viscoelastic shell. We also present initial results from the application of this methodology to the three-dimensional simulation of blood flow in the heart and great vessels. The results obtained by the adaptive method show good qualitative agreement with simulation results obtained by earlier non-adaptive versions of the method, but the flow in the vicinity of the model heart valves

  6. Optical Coherence Tomography as a Rapid, Accurate, Noncontact Method of Visualizing the Palisades of Vogt

    PubMed Central

    Gupta, Divya; Kagemann, Larry; Schuman, Joel S.; SundarRaj, Nirmala

    2012-01-01

    Purpose. This study explored the efficacy of optical coherence tomography (OCT) as a high-resolution, noncontact method for imaging the palisades of Vogt by correlating OCT and confocal microscopy images. Methods. Human limbal rims were acquired and imaged with OCT and confocal microscopy. The area of the epithelial basement membrane in each of these sets was digitally reconstructed, and the models were compared. Results. OCT identified the palisades within the limbus and exhibited excellent structural correlation with immunostained tissue imaged by confocal microscopy. Conclusions. OCT successfully identified the limbal palisades of Vogt that constitute the corneal epithelial stem cell niche. These findings offer the exciting potential to characterize the architecture of the palisades in vivo, to harvest stem cells for transplantation more accurately, to track palisade structure for better diagnosis, follow-up and staging of treatment, and to assess and intervene in the progression of stem cell depletion by monitoring changes in the structure of the palisades. PMID:22266521

  7. A Fully Implicit Time Accurate Method for Hypersonic Combustion: Application to Shock-induced Combustion Instability

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Radhakrishnan, Krishnan

    1994-01-01

    A new fully implicit, time accurate algorithm suitable for chemically reacting, viscous flows in the transonic-to-hypersonic regime is described. The method is based on a class of Total Variation Diminishing (TVD) schemes and uses successive Gauss-Siedel relaxation sweeps. The inversion of large matrices is avoided by partitioning the system into reacting and nonreacting parts, but still maintaining a fully coupled interaction. As a result, the matrices that have to be inverted are of the same size as those obtained with the commonly used point implicit methods. In this paper we illustrate the applicability of the new algorithm to hypervelocity unsteady combustion applications. We present a series of numerical simulations of the periodic combustion instabilities observed in ballistic-range experiments of blunt projectiles flying at subdetonative speeds through hydrogen-air mixtures. The computed frequencies of oscillation are in excellent agreement with experimental data.

  8. Odontoma-associated tooth impaction: accurate diagnosis with simple methods? Case report and literature review.

    PubMed

    Troeltzsch, Matthias; Liedtke, Jan; Troeltzsch, Volker; Frankenberger, Roland; Steiner, Timm; Troeltzsch, Markus

    2012-10-01

    Odontomas account for the largest fraction of odontogenic tumors and are frequent causes of tooth impaction. A case of a 13-year-old female patient with an odontoma-associated impaction of a mandibular molar is presented with a review of the literature. Preoperative planning involved simple and convenient methods such as clinical examination and panoramic radiography, which led to a diagnosis of complex odontoma and warranted surgical removal. The clinical diagnosis was confirmed histologically. Multidisciplinary consultation may enable the clinician to find the accurate diagnosis and appropriate therapy based on the clinical and radiographic appearance. Modern radiologic methods such as cone-beam computed tomography or computed tomography should be applied only for special cases, to decrease radiation.

  9. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode

    PubMed Central

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    ABSTRACT Objectives To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. Materials and Methods We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recent pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered an inaccurate result. Results A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Conclusions Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH. PMID:27286119

  10. Novel micelle PCR-based method for accurate, sensitive and quantitative microbiota profiling.

    PubMed

    Boers, Stefan A; Hays, John P; Jansen, Ruud

    2017-04-05

    In the last decade, many researchers have embraced 16S rRNA gene sequencing techniques, which has led to a wealth of publications and documented differences in the composition of microbial communities derived from many different ecosystems. However, comparison between different microbiota studies is currently very difficult due to the lack of a standardized 16S rRNA gene sequencing protocol. Here we report on a novel approach employing micelle PCR (micPCR) in combination with an internal calibrator that allows for standardization of microbiota profiles via their absolute abundances. The addition of an internal calibrator allows the researcher to express the resulting operational taxonomic units (OTUs) as a measure of 16S rRNA gene copies by correcting the number of sequences of each individual OTU in a sample for efficiency differences in the NGS process. Additionally, accurate quantification of OTUs obtained from negative extraction control samples allows for the subtraction of contaminating bacterial DNA derived from the laboratory environment or chemicals/reagents used. Using equimolar synthetic microbial community samples and low biomass clinical samples, we demonstrate that the calibrated micPCR/NGS methodology possess a much higher precision and a lower limit of detection compared with traditional PCR/NGS, resulting in more accurate microbiota profiles suitable for multi-study comparison.

  11. Novel micelle PCR-based method for accurate, sensitive and quantitative microbiota profiling

    PubMed Central

    Boers, Stefan A.; Hays, John P.; Jansen, Ruud

    2017-01-01

    In the last decade, many researchers have embraced 16S rRNA gene sequencing techniques, which has led to a wealth of publications and documented differences in the composition of microbial communities derived from many different ecosystems. However, comparison between different microbiota studies is currently very difficult due to the lack of a standardized 16S rRNA gene sequencing protocol. Here we report on a novel approach employing micelle PCR (micPCR) in combination with an internal calibrator that allows for standardization of microbiota profiles via their absolute abundances. The addition of an internal calibrator allows the researcher to express the resulting operational taxonomic units (OTUs) as a measure of 16S rRNA gene copies by correcting the number of sequences of each individual OTU in a sample for efficiency differences in the NGS process. Additionally, accurate quantification of OTUs obtained from negative extraction control samples allows for the subtraction of contaminating bacterial DNA derived from the laboratory environment or chemicals/reagents used. Using equimolar synthetic microbial community samples and low biomass clinical samples, we demonstrate that the calibrated micPCR/NGS methodology possess a much higher precision and a lower limit of detection compared with traditional PCR/NGS, resulting in more accurate microbiota profiles suitable for multi-study comparison. PMID:28378789

  12. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  13. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography.

    PubMed

    Hayashida, Misa; Kumagai, Kazuhiro; Malac, Marek

    2015-12-01

    Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.

  14. Double calibration: an accurate, reliable and easy-to-use method for 3D scapular motion analysis.

    PubMed

    Brochard, Sylvain; Lempereur, Mathieu; Rémy-Néris, Olivier

    2011-02-24

    The most recent non-invasive methods for the recording of scapular motion are based on an acromion marker (AM) set and a single calibration (SC) of the scapula in a resting position. However, this method fails to accurately measure scapular kinematics above 90° of arm elevation, due to soft tissue artifacts of the skin and muscles covering the acromion. The aim of this study was to evaluate the accuracy, and inter-trial and inter-session repeatability of a double calibration method (DC) in comparison with SC. The SC and DC data were measured with an optoelectronic system during arm flexion and abduction at different angles of elevation (0-180°). They were compared with palpation of the scapula using a scapula locator. DC data was not significantly different from palpation for 5/6 axes of rotation tested (Y, X, and Z in abduction and flexion), where as SC showed significant differences for 5/6 axes. The root mean square errors ranged from 2.96° to 4.48° for DC and from 6° to 9.19° for SC. The inter-trial repeatability was good to excellent for SC and DC. The inter-session repeatability was moderate to excellent for SC and moderate to good for DC. Coupling AM and DC is an easy-to-use method, which yields accurate and reliable measurements of scapular kinematics for the complete range of arm motion. It can be applied to the measurement of shoulder motion in many fields (sports, orthopaedics, and rehabilitation), especially when large ranges of arm motion are required.

  15. Accurate measurement of the x-ray coherent scattering form factors of tissues

    NASA Astrophysics Data System (ADS)

    King, Brian W.

    The material dependent x-ray scattering properties of tissues are determined by their scattering form factors, measured as a function of the momentum transfer argument, x. Incoherent scattering form factors, Finc, are calculable for all values of x while coherent scattering form factors, Fcoh, cannot be calculated except at large C because of their dependence on long range order. As a result, measuring Fcoh is very important to the developing field of x-ray scatter imaging. Previous measurements of Fcoh, based on crystallographic techniques, have shown significant variability, as these methods are not optimal for amorphous materials. Two methods of measuring F coh, designed with amorphous materials in mind, are developed in this thesis. An angle-dispersive technique is developed that uses a polychromatic x-ray beam and a large area, energy-insensitive detector. It is shown that Fcoh can be measured in this system if the incident x-ray spectrum is known. The problem is ill-conditioned for typical x-ray spectra and two numerical methods of dealing with the poor conditioning are explored. It is shown that these techniques work best with K-edge filters to limit the spectral width and that the accuracy degrades for strongly ordered materials. Measurements of width Fcoh for water samples are made using 50, 70 and 92 kVp spectra. The average absolute relative difference in Fcoh between our results and the literature for water is approximately 10-15%. Similar measurements for fat samples were made and found to be qualitatively similar to results in the literature, although there is very large variation between the literature values in this case. The angle-dispersive measurement is limited to low resolution measurements of the coherent scattering form factor although it is more accessible than traditional measurements because of the relatively commonplace equipment requirements. An energy-dispersive technique is also developed that uses a polychromatic x-ray beam and an

  16. Optical aperture area determination for accurate illuminance and luminous efficacy measurements of LED lamps

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Mäntynen, Henrik; Ikonen, Erkki

    2016-06-01

    The measurement uncertainty of illuminance and, consequently, luminous flux and luminous efficacy of LED lamps can be reduced with a recently introduced method based on the predictable quantum efficient detector (PQED). One of the most critical factors affecting the measurement uncertainty with the PQED method is the determination of the aperture area. This paper describes an upgrade to an optical method for direct determination of aperture area where superposition of equally spaced Gaussian laser beams is used to form a uniform irradiance distribution. In practice, this is accomplished by scanning the aperture in front of an intensity-stabilized laser beam. In the upgraded method, the aperture is attached to the PQED and the whole package is transversely scanned relative to the laser beam. This has the benefit of having identical geometry in the laser scanning of the aperture area and in the actual photometric measurement. Further, the aperture and detector assembly does not have to be dismantled for the aperture calibration. However, due to small acceptance angle of the PQED, differences between the diffraction effects of an overfilling plane wave and of a combination of Gaussian laser beams at the circular aperture need to be taken into account. A numerical calculation method for studying these effects is discussed in this paper. The calculation utilizes the Rayleigh-Sommerfeld diffraction integral, which is applied to the geometry of the PQED and the aperture. Calculation results for various aperture diameters and two different aperture-to-detector distances are presented.

  17. Efficient and accurate numerical methods for the Klein-Gordon-Schroedinger equations

    SciTech Connect

    Bao, Weizhu . E-mail: bao@math.nus.edu.sg; Yang, Li . E-mail: yangli@nus.edu.sg

    2007-08-10

    In this paper, we present efficient, unconditionally stable and accurate numerical methods for approximations of the Klein-Gordon-Schroedinger (KGS) equations with/without damping terms. The key features of our methods are based on: (i) the application of a time-splitting spectral discretization for a Schroedinger-type equation in KGS (ii) the utilization of Fourier pseudospectral discretization for spatial derivatives in the Klein-Gordon equation in KGS (iii) the adoption of solving the ordinary differential equations (ODEs) in phase space analytically under appropriate chosen transmission conditions between different time intervals or applying Crank-Nicolson/leap-frog for linear/nonlinear terms for time derivatives. The numerical methods are either explicit or implicit but can be solved explicitly, unconditionally stable, and of spectral accuracy in space and second-order accuracy in time. Moreover, they are time reversible and time transverse invariant when there is no damping terms in KGS, conserve (or keep the same decay rate of) the wave energy as that in KGS without (or with a linear) damping term, keep the same dynamics of the mean value of the meson field, and give exact results for the plane-wave solution. Extensive numerical tests are presented to confirm the above properties of our numerical methods for KGS. Finally, the methods are applied to study solitary-wave collisions in one dimension (1D), as well as dynamics of a 2D problem in KGS.

  18. An accurate and efficient bayesian method for automatic segmentation of brain MRI.

    PubMed

    Marroquin, J L; Vemuri, B C; Botello, S; Calderon, F; Fernandez-Bouzas, A

    2002-08-01

    Automatic three-dimensional (3-D) segmentation of the brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of attention lately. Of the techniques reported in the literature, very few are fully automatic. In this paper, we present an efficient and accurate, fully automatic 3-D segmentation procedure for brain MR scans. It has several salient features; namely, the following. 1) Instead of a single multiplicative bias field that affects all tissue intensities, separate parametric smooth models are used for the intensity of each class. 2) A brain atlas is used in conjunction with a robust registration procedure to find a nonrigid transformation that maps the standard brain to the specimen to be segmented. This transformation is then used to: segment the brain from nonbrain tissue; compute prior probabilities for each class at each voxel location and find an appropriate automatic initialization. 3) Finally, a novel algorithm is presented which is a variant of the expectation-maximization procedure, that incorporates a fast and accurate way to find optimal segmentations, given the intensity models along with the spatial coherence assumption. Experimental results with both synthetic and real data are included, as well as comparisons of the performance of our algorithm with that of other published methods.

  19. An easy way to measure accurately the direct magnetoelectric voltage coefficient of thin film devices

    NASA Astrophysics Data System (ADS)

    Poullain, Gilles; More-Chevalier, Joris; Cibert, Christophe; Bouregba, Rachid

    2017-01-01

    TbxDy1-xFe2/Pt/Pb(Zrx, Ti1-x)O3 thin films were grown on Pt/TiO2/SiO2/Si substrate by multi-target sputtering. The magnetoelectric voltage coefficient αΗΜΕ was determined at room temperature using a lock-in amplifier. By adding, in series in the circuit, a capacitor of the same value as that of the device under test, we were able to demonstrate that the magnetoelectric device behaves as a voltage source. Furthermore, a simple way to subtract the stray voltage arising from the flow of eddy currents in the measurement set-up, is proposed. This allows the easy and accurate determination of the true magnetoelectric voltage coefficient. A large αΗΜΕ of 8.3 V/cm. Oe was thus obtained for a Terfenol-D/Pt/PZT thin film device, without DC magnetic field nor mechanical resonance.

  20. Mass spectrometry in Earth sciences: the precise and accurate measurement of time.

    PubMed

    Schaltegger, Urs; Wotzlaw, Jörn-Frederik; Ovtcharova, Maria; Chiaradia, Massimo; Spikings, Richard

    2014-01-01

    Precise determinations of the isotopic compositions of a variety of elements is a widely applied tool in Earth sciences. Isotope ratios are used to quantify rates of geological processes that occurred during the previous 4.5 billion years, and also at the present time. An outstanding application is geochronology, which utilizes the production of radiogenic daughter isotopes by the radioactive decay of parent isotopes. Geochronological tools, involving isotopic analysis of selected elements from smallest volumes of minerals by thermal ionization mass spectrometry, provide precise and accurate measurements of time throughout the geological history of our planet over nine orders of magnitude, from the accretion of the proto-planetary disk, to the timing of the last glaciation. This article summarizes the recent efforts of the Isotope Geochemistry, Geochronology and Thermochronology research group at the University of Geneva to advance the U-Pb geochronological tool to achieve unprecedented precision and accuracy, and presents two examples of its application to two significant open questions in Earth sciences: what are the triggers and timescales of volcanic supereruptions, and what were the causes of mass extinctions in the geological past, driven by global climatic and environmental deterioration?

  1. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties.

  2. Integration of an intensified charge-coupled device (ICCD) camera for accurate spectroscopic measurements.

    PubMed

    Peláez, Ramón Javier; Mar, Santiago; Aparicio, Juan Antonio; Belmonte, María Teresa

    2012-08-01

    Intensified charge-coupled devices (ICCD) are used in a great variety of spectroscopic applications, some of them requiring high sensitivity and spectral resolution. The setup, configuration, and featuring of these cameras are fundamental issues in order to acquire high quality spectra. In this work a critical assessment of these detectors is performed and the specific configuration, the optical alignment, featuring, and the dark and shot noise are described and analyzed. Spatial response of the detector usually shows a significant lack of spatial homogeneity and a map of interferences may appear in certain ranges of wavelengths, which damages the quality of the recorded spectra. In this work the spectral resolution and the spatial and spectral sensitivity are also studied. The analysis of the dark current reveals the existence of a smooth but clear spatial dependence. As a final conclusion, the spectra registered with the spectrometer equipped with our ICCD camera allow us to explore and measure accurately spectral line shapes emitted by pulsed plasmas in the visible range and particularly in the ultraviolet (UV) range.

  3. Produced water toxicity tests accurately measure the produced water toxicity in marine environments?

    SciTech Connect

    Douglas, W.S.; Veil, J.A.

    1996-10-01

    U.S. Environmental Protection Agency (EPA) Region VI has issued a general permit for offshore oil and gas discharges to the Gulf of Mexico that places numerical limits on whole effluent toxicity (WEI) for produced water. Recently proposed EPA general permits for other produced water discharges in Regions VI and X also include enforceable numerical limits on WET. Clearly, the industry will be conducting extensive produced water WET testing. Unfortunately, the WET test may not accurately measure the toxicity of the chemical constituents of produced water. Rather the mortality of test organisms may be attributable to (1) the high salinity of produced water, which causes salinity shock to the organisms, or (2) an ionic imbalance caused by excesses or deficiencies of one or more of seawater`s essential ions in the test chambers. Both of these effects are likely to be mitigated in actual offshore discharge settings, where the receiving water will be seawater and substantial dilution will be probable. Thus, the additional salinity of produced water will be rapidly assimilated, and the proper marine ionic balance will be quickly restored. Regulatory authorities should be aware of these factors when interpreting WET test results.

  4. Acoustic resolution photoacoustic Doppler flowmetry: practical considerations for obtaining accurate measurements of blood flow

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2014-03-01

    An assessment has been made of various experimental factors affecting the accuracy of flow velocities measured using a pulsed time correlation photoacoustic Doppler technique. In this method, Doppler time shifts are quantified via crosscorrelation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves are detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. This enables penetration depths of several millimetres or centimetres, unlike methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1 mm. In the acoustic resolution mode, it is difficult to detect time shifts in highly concentrated suspensions of flowing absorbers, such as red blood cell suspensions and whole blood, and this challenge supposedly arises because of the lack of spatial heterogeneity. However, by assessing the effect of different absorption coefficients and tube diameters, we offer an alternative explanation relating to light attenuation and parabolic flow. We also demonstrate a new signal processing method that surmounts the previous problem of measurement under-reading. This method is a form of signal range gating and enables mapping of the flow velocity profile across the tube as well as measurement of the average flow velocity. We show that, using our signal processing scheme, it is possible to measure the flow of whole blood using a relatively low frequency detector. This important finding paves the way for application of the technique to measurements of blood flow several centimetres deep in living tissue.

  5. Global Precipitation Measurement: Methods, Datasets and Applications

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco; Turk, Francis J.; Petersen, Walt; Hou, Arthur Y.; Garcia-Ortega, Eduardo; Machado, Luiz, A. T.; Angelis, Carlos F.; Salio, Paola; Kidd, Chris; Huffman, George J.; De Castro, Manuel

    2011-01-01

    This paper reviews the many aspects of precipitation measurement that are relevant to providing an accurate global assessment of this important environmental parameter. Methods discussed include ground data, satellite estimates and numerical models. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a number of the many applications of those measurements and databases. The aim of the paper is to organize the many links and feedbacks between precipitation measurement, estimation and modeling, indicating the uncertainties and limitations of each technique in order to identify areas requiring further attention, and to show the limits within which datasets can be used.

  6. A novel method for more accurately mapping the surface temperature of ultrasonic transducers.

    PubMed

    Axell, Richard G; Hopper, Richard H; Jarritt, Peter H; Oxley, Chris H

    2011-10-01

    This paper introduces a novel method for measuring the surface temperature of ultrasound transducer membranes and compares it with two standard measurement techniques. The surface temperature rise was measured as defined in the IEC Standard 60601-2-37. The measurement techniques were (i) thermocouple, (ii) thermal camera and (iii) novel infra-red (IR) "micro-sensor." Peak transducer surface measurements taken with the thermocouple and thermal camera were -3.7 ± 0.7 (95% CI)°C and -4.3 ± 1.8 (95% CI)°C, respectively, within the limits of the IEC Standard. Measurements taken with the novel IR micro-sensor exceeded these limits by 3.3 ± 0.9 (95% CI)°C. The ambiguity between our novel method and the standard techniques could have direct patient safety implications because the IR micro-sensor measurements were beyond set limits. The spatial resolution of the measurement technique is not well defined in the IEC Standard and this has to be taken into consideration when selecting which measurement technique is used to determine the maximum surface temperature.

  7. MELIFT - A new device for accurate measurements in a snow rich environment

    NASA Astrophysics Data System (ADS)

    Dorninger, M.

    2012-04-01

    A deep snow pack, remote locations, no external power supply and very low temperatures are often the main ingredients when it comes to the deployment of meteorological stations in mountainous terrain. The accurate position of the sensor related to the snow surface is normally not known. A new device called METLIFT overcomes the problems. WMO recommends a height between 1.2 m and 2 m above ground level for the measurement of air temperature and humidity. The height above ground level is specified to take care of the possible strong vertical temperature and humidity gradients at the lowest layers in the atmosphere. Especially in snow rich and remote locations it may be hardly possible to follow this advice. Therefore most of the meteorological stations in mountainous terrain are situated at mountain tops where strong winds will blow off the snow or in valleys where a daily inspection of the sensors is possible. In other unpopulated mountainous areas, e.g. basins, plateaus, the distance of the sensor to the snow surface is not known or the sensor will be snow-covered. A new device was developed to guarantee the sensor height above surface within the WMO limits in harsh and remote environments. An ultrasonic snow height sensor measures the distance to the snow surface. If it exceeds certain limits due to snow accumulation or snow melt the lift adapts its height accordingly. The prototype of METLIFT has been installed in Lower Austria at an altitude of 1000m. The lift is 6 m high and can pull out for another 4 m. Sensor arms are mounted every meter to allow the connection of additional sensors or to measure a profile of a certain parameter of the lowest 5 m above surface. Sensors can be added easily since cable wiring is provided to each sensor arm. Horizontal winds are measured at 7 m height above surface. METLIFT is independent of external power supply. Three lead gel accumulators recharged by three solar panels provide the energy necessary for the sensors, the data

  8. A novel method for accurate collagen and biochemical assessment of pulmonary tissue utilizing one animal

    PubMed Central

    Kliment, Corrine R; Englert, Judson M; Crum, Lauren P; Oury, Tim D

    2011-01-01

    Aim: The purpose of this study was to develop an improved method for collagen and protein assessment of fibrotic lungs while decreasing animal use. methods: 8-10 week old, male C57BL/6 mice were given a single intratracheal instillation of crocidolite asbestos or control titanium dioxide. Lungs were collected on day 14 and dried as whole lung, or homogenized in CHAPS buffer, for hydroxyproline analysis. Insoluble and salt-soluble collagen content was also determined in lung homogenates using a modified Sirius red colorimetric 96-well plate assay. results: The hydroxyproline assay showed significant increases in collagen content in the lungs of asbestos-treated mice. Identical results were present between collagen content determined on dried whole lung or whole lung homogenates. The Sirius red plate assay showed a significant increase in collagen content in lung homogenates however, this assay grossly over-estimated the total amount of collagen and underestimated changes between control and fibrotic lungs, conclusions: The proposed method provides accurate quantification of collagen content in whole lungs and additional homogenate samples for biochemical analysis from a single animal. The Sirius-red colorimetric plate assay provides a complementary method for determination of the relative changes in lung collagen but the values tend to overestimate absolute values obtained by the gold standard hydroxyproline assay and underestimate the overall fibrotic injury. PMID:21577320

  9. Numerical system utilising a Monte Carlo calculation method for accurate dose assessment in radiation accidents.

    PubMed

    Takahashi, F; Endo, A

    2007-01-01

    A system utilising radiation transport codes has been developed to derive accurate dose distributions in a human body for radiological accidents. A suitable model is quite essential for a numerical analysis. Therefore, two tools were developed to setup a 'problem-dependent' input file, defining a radiation source and an exposed person to simulate the radiation transport in an accident with the Monte Carlo calculation codes-MCNP and MCNPX. Necessary resources are defined by a dialogue method with a generally used personal computer for both the tools. The tools prepare human body and source models described in the input file format of the employed Monte Carlo codes. The tools were validated for dose assessment in comparison with a past criticality accident and a hypothesized exposure.

  10. Accurate description of the electronic structure of organic semiconductors by GW methods

    NASA Astrophysics Data System (ADS)

    Marom, Noa

    2017-03-01

    Electronic properties associated with charged excitations, such as the ionization potential (IP), the electron affinity (EA), and the energy level alignment at interfaces, are critical parameters for the performance of organic electronic devices. To computationally design organic semiconductors and functional interfaces with tailored properties for target applications it is necessary to accurately predict these properties from first principles. Many-body perturbation theory is often used for this purpose within the GW approximation, where G is the one particle Green’s function and W is the dynamically screened Coulomb interaction. Here, the formalism of GW methods at different levels of self-consistency is briefly introduced and some recent applications to organic semiconductors and interfaces are reviewed.

  11. Methods to achieve accurate projection of regional and global raster databases

    USGS Publications Warehouse

    Usery, E. Lynn; Seong, Jeong Chang; Steinwand, Dan

    2002-01-01

    Modeling regional and global activities of climatic and human-induced change requires accurate geographic data from which we can develop mathematical and statistical tabulations of attributes and properties of the environment. Many of these models depend on data formatted as raster cells or matrices of pixel values. Recently, it has been demonstrated that regional and global raster datasets are subject to significant error from mathematical projection and that these errors are of such magnitude that model results may be jeopardized (Steinwand, et al., 1995; Yang, et al., 1996; Usery and Seong, 2001; Seong and Usery, 2001). There is a need to develop methods of projection that maintain the accuracy of these datasets to support regional and global analyses and modeling

  12. Accurate and precise plasma clearance measurement using four 99mTc-DTPA plasma samples over 4 h

    PubMed Central

    Wanasundara, Surajith N.; Wesolowski, Michal J.; Barnfield, Mark C.; Waller, Michael L.; Murray, Anthony W.; Burniston, Maria T.; Babyn, Paul S.

    2016-01-01

    Objectives Glomerular filtration rate can be measured as the plasma clearance (CL) of a glomerular filtration rate marker despite body fluid disturbances using numerous, prolonged time samples. We desire a simplified technique without compromised accuracy and precision. Materials and methods We compared CL values derived from two plasma concentration curve area methods – (a) biexponential fitting [CL (E2)] and (b) Tikhonov adaptively regularized gamma variate fitting [CL (Tk-GV)] – for 4 versus 8 h time samplings from 412 99mTc-DTPA studies in 142 patients, mostly paediatric patients, with suspected fluid disturbances. Results CL (Tk-GV) from four samples/4 h and from nine samples/8 h, both accurately and precisely agreed with the standard, which was taken to be nine samples/8 h CL from (noncompartmental) numerical integration [CL (NI)]. The E2 method, four samples/4 h, and nine samples/8 h median CL values significantly overestimated the CL (NI) values by 4.9 and 3.8%, respectively. Conclusion Compared with the standard, CL (E2) from four samples/4 h and from nine samples/8 h proved to be the most inaccurate and imprecise method examined, and can be replaced by better methods for calculating CL. The CL (Tk-GV) can be used to reduce sampling time in half from 8 to 4 h and from nine to four samples for a precise and accurate, yet more easily tolerated and simplified test. PMID:26465802

  13. Accurate Ultrasonic Measurement of Surface Profile Using Phase Shift of Echo and Inverse Filtering

    NASA Astrophysics Data System (ADS)

    Arihara, Chihiro; Hasegawa, Hideyuki; Kanai, Hiroshi

    2006-05-01

    Atherosclerosis is the main cause of circulatory diseases such as myocardial infarction and cerebral infarction, and it is very important to diagnose atherosclerosis in its early stage. In the early stage of atherosclerosis, the luminal surface of an arterial wall becomes rough because of the injury of the endothelium [R. Ross: New Engl. J. Med. 340 (2004) 115]. Conventional ultrasonic diagnostic equipments cannot detect such roughness on the order of micrometer because of their low resolution of approximately 0.1 mm. In this study, for the accurate detection of surface roughness, an ultrasonic beam was scanned in the direction that is parallel to the surface of an object. When there is a gap on the surface, the phase of the echo from the surface changes because the distance between the probe and the surface changes during the scanning. Therefore, surface roughness can be assessed by estimating the phase shift of echoes obtained during the beam scanning. Furthermore, lateral resolution, which is deteriorated by a finite diameter of the ultrasound beam, was improved by an inverse filter. By using the proposed method, the surface profile of a phantom, which had surface roughness on the micrometer order, was detected, and the estimated surface profiles became more precise by applying the inverse filter.

  14. Is photometry an accurate and reliable method to assess boar semen concentration?

    PubMed

    Camus, A; Camugli, S; Lévêque, C; Schmitt, E; Staub, C

    2011-02-01

    Sperm concentration assessment is a key point to insure appropriate sperm number per dose in species subjected to artificial insemination (AI). The aim of the present study was to evaluate the accuracy and reliability of two commercially available photometers, AccuCell™ and AccuRead™ pre-calibrated for boar semen in comparison to UltiMate™ boar version 12.3D, NucleoCounter SP100 and Thoma hemacytometer. For each type of instrument, concentration was measured on 34 boar semen samples in quadruplicate and agreement between measurements and instruments were evaluated. Accuracy for both photometers was illustrated by mean of percentage differences to the general mean. It was -0.6% and 0.5% for Accucell™ and Accuread™ respectively, no significant differences were found between instrument and mean of measurement among all equipment. Repeatability for both photometers was 1.8% and 3.2% for AccuCell™ and AccuRead™ respectively. Low differences were observed between instruments (confidence interval 3%) except when hemacytometer was used as a reference. Even though hemacytometer is considered worldwide as the gold standard, it is the more variable instrument (confidence interval 7.1%). The conclusion is that routine photometry measures of raw semen concentration are reliable, accurate and precise using AccuRead™ or AccuCell™. There are multiple steps in semen processing that can induce sperm loss and therefore increase differences between theoretical and real sperm numbers in doses. Potential biases that depend on the workflow but not on the initial photometric measure of semen concentration are discussed.

  15. A Distance and Angle Similarity Measure Method.

    ERIC Educational Resources Information Center

    Zhang, Jin; Korfhage, Robert R.

    1999-01-01

    Discusses similarity measures that are used in information retrieval to improve precision and recall ratios and presents a combined vector-based distance and angle measure to make similarity measurement more scientific and accurate. Suggests directions for future research. (LRW)

  16. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    NASA Astrophysics Data System (ADS)

    Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.

    2011-02-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.

  17. An Inexpensive, Accurate, and Precise Wet-Mount Method for Enumerating Aquatic Viruses

    PubMed Central

    Cunningham, Brady R.; Brum, Jennifer R.; Schwenck, Sarah M.; Sullivan, Matthew B.

    2015-01-01

    Viruses affect biogeochemical cycling, microbial mortality, gene flow, and metabolic functions in diverse environments through infection and lysis of microorganisms. Fundamental to quantitatively investigating these roles is the determination of viral abundance in both field and laboratory samples. One current, widely used method to accomplish this with aquatic samples is the “filter mount” method, in which samples are filtered onto costly 0.02-μm-pore-size ceramic filters for enumeration of viruses by epifluorescence microscopy. Here we describe a cost-effective (ca. 500-fold-lower materials cost) alternative virus enumeration method in which fluorescently stained samples are wet mounted directly onto slides, after optional chemical flocculation of viruses in samples with viral concentrations of <5 × 107 viruses ml−1. The concentration of viruses in the sample is then determined from the ratio of viruses to a known concentration of added microsphere beads via epifluorescence microscopy. Virus concentrations obtained by using this wet-mount method, with and without chemical flocculation, were significantly correlated with, and had precision equivalent to, those obtained by the filter mount method across concentrations ranging from 2.17 × 106 to 1.37 × 108 viruses ml−1 when tested by using cultivated viral isolates and natural samples from marine and freshwater environments. In summary, the wet-mount method is significantly less expensive than the filter mount method and is appropriate for rapid, precise, and accurate enumeration of aquatic viruses over a wide range of viral concentrations (≥1 × 106 viruses ml−1) encountered in field and laboratory samples. PMID:25710369

  18. An inexpensive, accurate, and precise wet-mount method for enumerating aquatic viruses.

    PubMed

    Cunningham, Brady R; Brum, Jennifer R; Schwenck, Sarah M; Sullivan, Matthew B; John, Seth G

    2015-05-01

    Viruses affect biogeochemical cycling, microbial mortality, gene flow, and metabolic functions in diverse environments through infection and lysis of microorganisms. Fundamental to quantitatively investigating these roles is the determination of viral abundance in both field and laboratory samples. One current, widely used method to accomplish this with aquatic samples is the "filter mount" method, in which samples are filtered onto costly 0.02-μm-pore-size ceramic filters for enumeration of viruses by epifluorescence microscopy. Here we describe a cost-effective (ca. 500-fold-lower materials cost) alternative virus enumeration method in which fluorescently stained samples are wet mounted directly onto slides, after optional chemical flocculation of viruses in samples with viral concentrations of <5×10(7) viruses ml(-1). The concentration of viruses in the sample is then determined from the ratio of viruses to a known concentration of added microsphere beads via epifluorescence microscopy. Virus concentrations obtained by using this wet-mount method, with and without chemical flocculation, were significantly correlated with, and had precision equivalent to, those obtained by the filter mount method across concentrations ranging from 2.17×10(6) to 1.37×10(8) viruses ml(-1) when tested by using cultivated viral isolates and natural samples from marine and freshwater environments. In summary, the wet-mount method is significantly less expensive than the filter mount method and is appropriate for rapid, precise, and accurate enumeration of aquatic viruses over a wide range of viral concentrations (≥1×10(6) viruses ml(-1)) encountered in field and laboratory samples.

  19. Development of a Ground-Based Differential Absorption Lidar for High Accurate Measurements of Vertical CO2 Concentration Profiles

    NASA Astrophysics Data System (ADS)

    Nagasawa, Chikao; Abo, Makoto; Shibata, Yasukuni; Nagai, Tomohiro; Nakazato, Masahisa; Sakai, Tetsu; Tsukamoto, Makoto; Sakaizawa, Daisuku

    2010-05-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve high accurate measurements of vertical CO2 profiles in the atmosphere. The DIAL system is constructed from the optical parametric oscillation(OPO) transmitter and the direct detection receiving system that included a near-infrared photomultiplier tube operating at photon counting mode. The primitive DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 50 minutes and vertical resolution of 150m. We are developing the next generation 1.6 μm DIAL that can measure simultaneously the vertical CO2 concentration, temperature and pressure profiles in the atmosphere. The output laser of the OPO is 20mJ at a 500 Hz repetition rate and a 600mm diameter telescope is employed for this measurement. A very narrow interference filter (0.5nm FWHM) is used for daytime measurement. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement may be realized. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration, temperature and pressure, which measured by DIAL techniques. This work was financially supported by the Japan EOS Promotion Program by the MEXT Japan and System Development Program for Advanced Measurement and Analysis by the JST. Reference D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and

  20. Development and calibration of an accurate 6-degree-of-freedom measurement system with total station

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Lin, Jiarui; Yang, Linghui; Zhu, Jigui

    2016-12-01

    To meet the demand of high-accuracy, long-range and portable use in large-scale metrology for pose measurement, this paper develops a 6-degree-of-freedom (6-DOF) measurement system based on total station by utilizing its advantages of long range and relative high accuracy. The cooperative target sensor, which is mainly composed of a pinhole prism, an industrial lens, a camera and a biaxial inclinometer, is designed to be portable in use. Subsequently, a precise mathematical model is proposed from the input variables observed by total station, imaging system and inclinometer to the output six pose variables. The model must be calibrated in two levels: the intrinsic parameters of imaging system, and the rotation matrix between coordinate systems of the camera and the inclinometer. Then corresponding approaches are presented. For the first level, we introduce a precise two-axis rotary table as a calibration reference. And for the second level, we propose a calibration method by varying the pose of a rigid body with the target sensor and a reference prism on it. Finally, through simulations and various experiments, the feasibilities of the measurement model and calibration methods are validated, and the measurement accuracy of the system is evaluated.

  1. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required.

  2. The extended Koopmans' theorem for orbital-optimized methods: accurate computation of ionization potentials.

    PubMed

    Bozkaya, Uğur

    2013-10-21

    The extended Koopmans' theorem (EKT) provides a straightforward way to compute ionization potentials (IPs) from any level of theory, in principle. However, for non-variational methods, such as Møller-Plesset perturbation and coupled-cluster theories, the EKT computations can only be performed as by-products of analytic gradients as the relaxed generalized Fock matrix (GFM) and one- and two-particle density matrices (OPDM and TPDM, respectively) are required [J. Cioslowski, P. Piskorz, and G. Liu, J. Chem. Phys. 107, 6804 (1997)]. However, for the orbital-optimized methods both the GFM and OPDM are readily available and symmetric, as opposed to the standard post Hartree-Fock (HF) methods. Further, the orbital optimized methods solve the N-representability problem, which may arise when the relaxed particle density matrices are employed for the standard methods, by disregarding the orbital Z-vector contributions for the OPDM. Moreover, for challenging chemical systems, where spin or spatial symmetry-breaking problems are observed, the abnormal orbital response contributions arising from the numerical instabilities in the HF molecular orbital Hessian can be avoided by the orbital-optimization. Hence, it appears that the orbital-optimized methods are the most natural choice for the study of the EKT. In this research, the EKT for the orbital-optimized methods, such as orbital-optimized second- and third-order Møller-Plesset perturbation [U. Bozkaya, J. Chem. Phys. 135, 224103 (2011)] and coupled-electron pair theories [OCEPA(0)] [U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 139, 054104 (2013)], are presented. The presented methods are applied to IPs of the second- and third-row atoms, and closed- and open-shell molecules. Performances of the orbital-optimized methods are compared with those of the counterpart standard methods. Especially, results of the OCEPA(0) method (with the aug-cc-pVTZ basis set) for the lowest IPs of the considered atoms and closed

  3. Conservative high-order-accurate finite-difference methods for curvilinear grids

    NASA Technical Reports Server (NTRS)

    Rai, Man M.; Chakrvarthy, Sukumar

    1993-01-01

    Two fourth-order-accurate finite-difference methods for numerically solving hyperbolic systems of conservation equations on smooth curvilinear grids are presented. The first method uses the differential form of the conservation equations; the second method uses the integral form of the conservation equations. Modifications to these schemes, which are required near boundaries to maintain overall high-order accuracy, are discussed. An analysis that demonstrates the stability of the modified schemes is also provided. Modifications to one of the schemes to make it total variation diminishing (TVD) are also discussed. Results that demonstrate the high-order accuracy of both schemes are included in the paper. In particular, a Ringleb-flow computation demonstrates the high-order accuracy and the stability of the boundary and near-boundary procedures. A second computation of supersonic flow over a cylinder demonstrates the shock-capturing capability of the TVD methodology. An important contribution of this paper is the dear demonstration that higher order accuracy leads to increased computational efficiency.

  4. Keeping the edge: an accurate numerical method to solve the stream power law

    NASA Astrophysics Data System (ADS)

    Campforts, B.; Govers, G.

    2015-12-01

    Bedrock rivers set the base level of surrounding hill slopes and mediate the dynamic interplay between mountain building and denudation. The propensity of rivers to preserve pulses of increased tectonic uplift also allows to reconstruct long term uplift histories from longitudinal river profiles. An accurate reconstruction of river profile development at different timescales is therefore essential. Long term river development is typically modeled by means of the stream power law. Under specific conditions this equation can be solved analytically but numerical Finite Difference Methods (FDMs) are most frequently used. Nonetheless, FDMs suffer from numerical smearing, especially at knickpoint zones which are key to understand transient landscapes. Here, we solve the stream power law by means of a Finite Volume Method (FVM) which is Total Variation Diminishing (TVD). Total volume methods are designed to simulate sharp discontinuities making them very suitable to model river incision. In contrast to FDMs, the TVD_FVM is well capable of preserving knickpoints as illustrated for the fast propagating Niagara falls. Moreover, we show that the TVD_FVM performs much better when reconstructing uplift at timescales exceeding 100 Myr, using Eastern Australia as an example. Finally, uncertainty associated with parameter calibration is dramatically reduced when the TVD_FVM is applied. Therefore, the use of a TVD_FVM to understand long term landscape evolution is an important addition to the toolbox at the disposition of geomorphologists.

  5. Methods for Applying Accurate Digital PCR Analysis on Low Copy DNA Samples

    PubMed Central

    Whale, Alexandra S.; Cowen, Simon; Foy, Carole A.; Huggett, Jim F.

    2013-01-01

    Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA. PMID:23472156

  6. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Huang, Y. S.; Huang, Y. P.; Huang, K. N.; Young, M. S.

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39°C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  7. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  8. Accurate high-resolution measurements of 3-D tissue dynamics with registration-enhanced displacement encoded MRI.

    PubMed

    Gomez, Arnold D; Merchant, Samer S; Hsu, Edward W

    2014-06-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI.

  9. Accurate Measurements of Multiple-Bond 13C- 1H Coupling Constants from Phase-Sensitive 2D INEPT Spectra

    NASA Astrophysics Data System (ADS)

    Ding, Keyang

    1999-10-01

    Measurements of multiple-bond 13C-1H coupling constants are of great interest for the assignment of nonprotonated 13C resonances and the elucidation of molecular conformation in solution. Usually, the heteronuclear multiple-bond coupling constants were measured either by the JCH splittings mostly in selective 2D spectra or in 3D spectra, which are time consuming, or by the cross peak intensity analysis in 2D quantitative heteronuclear J correlation spectra (1994, G. Zhu, A. Renwick, and A. Bax, J. Magn. Reson. A 110, 257; 1994, A. Bax, G. W. Vuister, S. Grzesiek, F. Delaglio, A. C. Wang, R. Tschudin, and G. Zhu, Methods Enzymol. 239, 79.), which suffer from the accuracy problem caused by the signal-to-noise ratio and the nonpure absorptive peak patterns. Concerted incrementation of the duration for developing proton antiphase magnetization with respect to carbon-13 and the evolution time for proton chemical shift in different steps in a modified INEPT pulse sequence provides a new method for accurate measurements of heteronuclear multiple-bond coupling constants in a single 2D experiment.

  10. An automatic method for fast and accurate liver segmentation in CT images using a shape detection level set method

    NASA Astrophysics Data System (ADS)

    Lee, Jeongjin; Kim, Namkug; Lee, Ho; Seo, Joon Beom; Won, Hyung Jin; Shin, Yong Moon; Shin, Yeong Gil

    2007-03-01

    Automatic liver segmentation is still a challenging task due to the ambiguity of liver boundary and the complex context of nearby organs. In this paper, we propose a faster and more accurate way of liver segmentation in CT images with an enhanced level set method. The speed image for level-set propagation is smoothly generated by increasing number of iterations in anisotropic diffusion filtering. This prevents the level-set propagation from stopping in front of local minima, which prevails in liver CT images due to irregular intensity distributions of the interior liver region. The curvature term of shape modeling level-set method captures well the shape variations of the liver along the slice. Finally, rolling ball algorithm is applied for including enhanced vessels near the liver boundary. Our approach are tested and compared to manual segmentation results of eight CT scans with 5mm slice distance using the average distance and volume error. The average distance error between corresponding liver boundaries is 1.58 mm and the average volume error is 2.2%. The average processing time for the segmentation of each slice is 5.2 seconds, which is much faster than the conventional ones. Accurate and fast result of our method will expedite the next stage of liver volume quantification for liver transplantations.

  11. Accurate, precise, and efficient theoretical methods to calculate anion-π interaction energies in model structures.

    PubMed

    Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei

    2015-01-13

    A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta

  12. Chamber for indirect calorimetry with accurate measurement and time discrimination of metabolic plateaus of over 20 min.

    PubMed

    Nguyen, T; de Jonge, L; Smith, S R; Bray, G A

    2003-09-01

    A robust algorithm for pull-calorimeters that provides a rapid response to changes in respiratory gas exchange has been implemented. Metabolic plateaus (over 20 min), such as that generated by steady treadmill exercise, can be measured accurately (< 2.0% error for an energy expenditure level of 16.7 kJ min(-1)). The time resolution for changes between plateaus can be accurately found with 1 min discrimination. Implementation required only software changes but no structural or instrumentation changes to the chamber. The algorithm was based on the one developed for the push-calorimeter at the Sahlgrenska Hospital in Sweden. The method utilises published equations for the rate of O2 consumption and CO2 production in the chamber, along with techniques for suppressing noise and identifying trends. Using the exact solution of the equations for steady state, the O2 concentrations from the preceding 30 min period are fitted to two connected exponential segments, of variable length, using the least-squares method. The smoothed O2 concentration and associated time derivative are then determined for the time point 15 min earlier and substituted into the respiration equations. The CO2 concentrations are subjected to the same analysis. The process is repeated every minute, and the newly computed rates of O2 consumption and CO2 production, as well as metabolic rate, are then presented. Gas injection tests proved that the chamber can respond instantaneously to a change from one steady state of respiration to another and correctly averages repeated changes in respiration with periods less than 15min (< 1.4% error for simulated, alternating O2 consumption levels of 0.81 min (-1) and 0.01 min). The successful integration of the algorithm into the Pennington chambers allows for traditional 24 h energy expenditure measurements and various metabolic experiments requiring rapid responses.

  13. The application of intraoperative transit time flow measurement to accurately assess anastomotic quality in sequential vein grafting

    PubMed Central

    Yu, Yang; Zhang, Fan; Gao, Ming-Xin; Li, Hai-Tao; Li, Jing-Xing; Song, Wei; Huang, Xin-Sheng; Gu, Cheng-Xiong

    2013-01-01

    OBJECTIVES Intraoperative transit time flow measurement (TTFM) is widely used to assess anastomotic quality in coronary artery bypass grafting (CABG). However, in sequential vein grafting, the flow characteristics collected by the conventional TTFM method are usually associated with total graft flow and might not accurately indicate the quality of every distal anastomosis in a sequential graft. The purpose of our study was to examine a new TTFM method that could assess the quality of each distal anastomosis in a sequential graft more reliably than the conventional TTFM approach. METHODS Two TTFM methods were tested in 84 patients who underwent sequential saphenous off-pump CABG in Beijing An Zhen Hospital between April and August 2012. In the conventional TTFM method, normal blood flow in the sequential graft was maintained during the measurement, and the flow probe was placed a few centimetres above the anastomosis to be evaluated. In the new method, blood flow in the sequential graft was temporarily reduced during the measurement by placing an atraumatic bulldog clamp at the graft a few centimetres distal to the anastomosis to be evaluated, while the position of the flow probe remained the same as in the conventional method. This new TTFM method was named the flow reduction TTFM. Graft flow parameters measured by both methods were compared. RESULTS Compared with the conventional TTFM, the flow reduction TTFM resulted in significantly lower mean graft blood flow (P < 0.05); in contrast, yielded significantly higher pulsatility index (P < 0.05). Diastolic filling was not significantly different between the two methods and was >50% in both cases. Interestingly, the flow reduction TTFM identified two defective middle distal anastomoses that the conventional TTFM failed to detect. Graft flows near the defective distal anastomoses were improved substantially after revision. CONCLUSIONS In this study, we found that temporary reduction of graft flow during TTFM seemed to

  14. Optical measurement methods in thermogasdynamics

    NASA Technical Reports Server (NTRS)

    Stursberg, K.; Erhardt, K.; Krahr, W.; Becker, M.

    1978-01-01

    A review is presented of a number of optical methods of flow measurements. Consideration is given to such spectroscopic methods as emission and absorption techniques, electron beam-stimulated fluorescence, and light scattering - Rayleigh, Raman and Mie - methods. The following visualization methods are also discussed: shadow photography, schlieren photography, interferometry, holographic interferometry, laser anemometry, particle holography, and electron-excitation imaging. A large bibliography is presented and the work is copiously illustrated with figures and photographs.

  15. A Weight-Averaged Interpolation Method for Coupling Time-Accurate Rarefied and Continuum Flows

    NASA Astrophysics Data System (ADS)

    Diaz, Steven William

    A novel approach to coupling rarefied and continuum flow regimes as a single, hybrid model is introduced. The method borrows from techniques used in the simulation of spray flows to interpolate Lagrangian point-particles onto an Eulerian grid in a weight-averaged sense. A brief overview of traditional methods for modeling both rarefied and continuum domains is given, and a review of the literature regarding rarefied/continuum flow coupling is presented. Details of the theoretical development of the method of weighted interpolation are then described. The method evaluates macroscopic properties at the nodes of a CFD grid via the weighted interpolation of all simulated molecules in a set surrounding the node. The weight factor applied to each simulated molecule is the inverse of the linear distance between it and the given node. During development, the method was applied to several preliminary cases, including supersonic flow over an airfoil, subsonic flow over tandem airfoils, and supersonic flow over a backward facing step; all at low Knudsen numbers. The main thrust of the research centered on the time-accurate expansion of a rocket plume into a near-vacuum. The method proves flexible enough to be used with various flow solvers, demonstrated by the use of Fluent as the continuum solver for the preliminary cases and a NASA-developed Large Eddy Simulation research code, WRLES, for the full lunar model. The method is applicable to a wide range of Mach numbers and is completely grid independent, allowing the rarefied and continuum solvers to be optimized for their respective domains without consideration of the other. The work presented demonstrates the validity, and flexibility of the method of weighted interpolation as a novel concept in the field of hybrid flow coupling. The method marks a significant divergence from current practices in the coupling of rarefied and continuum flow domains and offers a kernel on which to base an ongoing field of research. It has the

  16. Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos.

    PubMed

    Araki, Tadashi; Banchhor, Sumit K; Londhe, Narendra D; Ikeda, Nobutaka; Radeva, Petia; Shukla, Devarshi; Saba, Luca; Balestrieri, Antonella; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Suri, Jasjit S

    2016-03-01

    Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm(3), 27.79 ± 10.94 mm(3), 46.44 ± 19.13 mm(3) and 35.92 ± 16.44 mm(3) respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student's t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80%. Out procedure and protocol is along the line with method previously published clinically.

  17. A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Eiseman, Peter R.

    1990-01-01

    A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.

  18. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize phytochemicals in plant extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. New methods a...

  19. Adaptive and accurate color edge extraction method for one-shot shape acquisition

    NASA Astrophysics Data System (ADS)

    Yin, Wei; Cheng, Xiaosheng; Cui, Haihua; Li, Dawei; Zhou, Lei

    2016-09-01

    This paper presents an approach to extract accurate color edge information using encoded patterns in hue, saturation, and intensity (HSI) color space. This method is applied to one-shot shape acquisition. Theoretical analysis shows that the hue transition between primary and secondary colors in a color edge is based on light interference and diffraction. We set up a color transition model to illustrate the hue transition on an edge and then define the segmenting position of two stripes. By setting up an adaptive HSI color space, the colors of the stripes and subpixel edges are obtained precisely without a dark laboratory environment, in a low-cost processing algorithm. Since this method does not have any constraints for colors of neighboring stripes, the encoding is an easy procedure. The experimental results show that the edges of dense modulation patterns can be obtained under a complicated environment illumination, and the precision can ensure that the three-dimensional shape of the object is obtained reliably with only one image.

  20. Efficient and Accurate Multiple-Phenotype Regression Method for High Dimensional Data Considering Population Structure.

    PubMed

    Joo, Jong Wha J; Kang, Eun Yong; Org, Elin; Furlotte, Nick; Parks, Brian; Hormozdiari, Farhad; Lusis, Aldons J; Eskin, Eleazar

    2016-12-01

    A typical genome-wide association study tests correlation between a single phenotype and each genotype one at a time. However, single-phenotype analysis might miss unmeasured aspects of complex biological networks. Analyzing many phenotypes simultaneously may increase the power to capture these unmeasured aspects and detect more variants. Several multivariate approaches aim to detect variants related to more than one phenotype, but these current approaches do not consider the effects of population structure. As a result, these approaches may result in a significant amount of false positive identifications. Here, we introduce a new methodology, referred to as GAMMA for generalized analysis of molecular variance for mixed-model analysis, which is capable of simultaneously analyzing many phenotypes and correcting for population structure. In a simulated study using data implanted with true genetic effects, GAMMA accurately identifies these true effects without producing false positives induced by population structure. In simulations with this data, GAMMA is an improvement over other methods which either fail to detect true effects or produce many false positive identifications. We further apply our method to genetic studies of yeast and gut microbiome from mice and show that GAMMA identifies several variants that are likely to have true biological mechanisms.

  1. MASCG: Multi-Atlas Segmentation Constrained Graph method for accurate segmentation of hip CT images.

    PubMed

    Chu, Chengwen; Bai, Junjie; Wu, Xiaodong; Zheng, Guoyan

    2015-12-01

    This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.

  2. Accurate computation of surface stresses and forces with immersed boundary methods

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim

    2016-09-01

    Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.

  3. A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons.

    PubMed

    Eiber, Calvin D; Dokos, Socrates; Lovell, Nigel H; Suaning, Gregg J

    2016-08-19

    The capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind. The activating function formalism is extended to arbitrary neuron geometries, and a segmentation method to guarantee an appropriate choice of collocation points is presented. Differential quadrature may then be applied to efficiently solve the resulting cable equations. The capacity for this model to simulate action potentials propagating through branching structures and to predict minimum extracellular stimulation thresholds for individual neurons is demonstrated. The presented model is validated against published values for extracellular stimulation threshold and conduction velocity for realistic physiological parameter values. This model suggests that convoluted axon geometries are more readily activated by extracellular stimulation than linear axon geometries, which may have ramifications for the design of neural prostheses.

  4. New Distributed Multipole Methods for Accurate Electrostatics for Large-Scale Biomolecular Simultations

    NASA Astrophysics Data System (ADS)

    Sagui, Celeste

    2006-03-01

    An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.

  5. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1987-01-01

    A process for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H.sub.2 O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg.sub.2 Cl.sub.2. The method for doing this involves dissolving a precise amount of Hg.sub.2 Cl.sub.2 in an electrolyte solution comprised of concentrated HCl and H.sub.2 O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg.

  6. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1987-07-07

    A process is described for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H[sub 2]O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg[sub 2]Cl[sub 2]. The method for doing this involves dissolving a precise amount of Hg[sub 2]Cl[sub 2] in an electrolyte solution comprised of concentrated HCl and H[sub 2]O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg. 1 fig.

  7. Open lung biopsy: a safe, reliable and accurate method for diagnosis in diffuse lung disease.

    PubMed

    Shah, S S; Tsang, V; Goldstraw, P

    1992-01-01

    The ideal method for obtaining lung tissue for diagnosis should provide high diagnostic yield with low morbidity and mortality. We reviewed all 432 patients (mean age 55 years) who underwent an open lung biopsy at this hospital over a 10-year period. Twenty-four patients (5.5%) were immunocompromised. One hundred and twenty-five patients were on steroid therapy at the time of operation. Open lung biopsy provided a firm diagnosis in 410 cases overall (94.9%) and in 20 out of 24 patients in the immunocompromised group (83.3%). The commonest diagnosis was cryptogenic fibrosing alveolitis (173 patients). Twenty-two patients (5.1%) suffered complications following the procedure: wound infection 11 patients, pneumothorax 9 patients and haemothorax 1 patient. Thirteen patients (3.0%) died following open lung biopsy, but in only 1 patient was the death attributable to the procedure itself. We conclude that open lung biopsy is an accurate and safe method for establishing a diagnosis in diffuse lung disease with a high yield and minimal risk.

  8. Development of Ground-Based DIAL Techniques for High Accurate Measurements of CO2 Concentration Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Nakazato, M.; Sakai, T.; Tsukamoto, M.; Sakaizawa, D.

    2009-12-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve high accurate measurements of vertical CO2 profiles in the atmosphere. The DIAL system is constructed from the optical parametric oscillation(OPO) transmitter and the direct detection receiving system that included a near-infrared photomultiplier tube operating at photon counting mode (Fig.1). The primitive DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 50 minutes and vertical resolution of 150m. We develop the next generation 1.6 μm DIAL that can measure simultaneously the vertical CO2 concentration, temperature and pressure profiles in the atmosphere. The characteristics of the 1.6 μm DIALs of the primitive and next generations are shown in Table 1. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement may be realized. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration, temperature and pressure which measured by DIAL techniques. This work was financially supported by the Japan EOS Promotion Program by the MEXT Japan and System Development Program for Advanced Measurement and Analysis by the JST. Reference D. Sakaisawa et al., Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009. Fig. 1 Experimental setup of the 1.6 μm CO2 DIAL. Comparison of primitive

  9. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    SciTech Connect

    Shu, Yu-Chen; Chern, I-Liang; Chang, Chien C.

    2014-10-15

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.

  10. A New Method for Accurate Treatment of Flow Equations in Cylindrical Coordinates Using Series Expansions

    NASA Technical Reports Server (NTRS)

    Constantinescu, G.S.; Lele, S. K.

    2000-01-01

    The motivation of this work is the ongoing effort at the Center for Turbulence Research (CTR) to use large eddy simulation (LES) techniques to calculate the noise radiated by jet engines. The focus on engine exhaust noise reduction is motivated by the fact that a significant reduction has been achieved over the last decade on the other main sources of acoustic emissions of jet engines, such as the fan and turbomachinery noise, which gives increased priority to jet noise. To be able to propose methods to reduce the jet noise based on results of numerical simulations, one first has to be able to accurately predict the spatio-temporal distribution of the noise sources in the jet. Though a great deal of understanding of the fundamental turbulence mechanisms in high-speed jets was obtained from direct numerical simulations (DNS) at low Reynolds numbers, LES seems to be the only realistic available tool to obtain the necessary near-field information that is required to estimate the acoustic radiation of the turbulent compressible engine exhaust jets. The quality of jet-noise predictions is determined by the accuracy of the numerical method that has to capture the wide range of pressure fluctuations associated with the turbulence in the jet and with the resulting radiated noise, and by the boundary condition treatment and the quality of the mesh. Higher Reynolds numbers and coarser grids put in turn a higher burden on the robustness and accuracy of the numerical method used in this kind of jet LES simulations. As these calculations are often done in cylindrical coordinates, one of the most important requirements for the numerical method is to provide a flow solution that is not contaminated by numerical artifacts. The coordinate singularity is known to be a source of such artifacts. In the present work we use 6th order Pade schemes in the non-periodic directions to discretize the full compressible flow equations. It turns out that the quality of jet-noise predictions

  11. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  12. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    SciTech Connect

    Hong Xinguo; Hao Quan

    2009-01-15

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  13. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    NASA Astrophysics Data System (ADS)

    Hong, Xinguo; Hao, Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 °C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  14. Do inverse ecosystem models accurately reconstruct plankton trophic flows? Comparing two solution methods using field data from the California Current

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Landry, Michael R.; Ohman, Mark D.; Goericke, Ralf; Samo, Ty; Benitez-Nelson, Claudia R.

    2012-03-01

    Despite the increasing use of linear inverse modeling techniques to elucidate fluxes in undersampled marine ecosystems, the accuracy with which they estimate food web flows has not been resolved. New Markov Chain Monte Carlo (MCMC) solution methods have also called into question the biases of the commonly used L2 minimum norm (L 2MN) solution technique. Here, we test the abilities of MCMC and L 2MN methods to recover field-measured ecosystem rates that are sequentially excluded from the model input. For data, we use experimental measurements from process cruises of the California Current Ecosystem (CCE-LTER) Program that include rate estimates of phytoplankton and bacterial production, micro- and mesozooplankton grazing, and carbon export from eight study sites varying from rich coastal upwelling to offshore oligotrophic conditions. Both the MCMC and L 2MN methods predicted well-constrained rates of protozoan and mesozooplankton grazing with reasonable accuracy, but the MCMC method overestimated primary production. The MCMC method more accurately predicted the poorly constrained rate of vertical carbon export than the L 2MN method, which consistently overestimated export. Results involving DOC and bacterial production were equivocal. Overall, when primary production is provided as model input, the MCMC method gives a robust depiction of ecosystem processes. Uncertainty in inverse ecosystem models is large and arises primarily from solution under-determinacy. We thus suggest that experimental programs focusing on food web fluxes expand the range of experimental measurements to include the nature and fate of detrital pools, which play large roles in the model.

  15. Accurate Hf isotope determinations of complex zircons using the "laser ablation split stream" method

    NASA Astrophysics Data System (ADS)

    Fisher, Christopher M.; Vervoort, Jeffery D.; DuFrane, S. Andrew

    2014-01-01

    The "laser ablation split stream" (LASS) technique is a powerful tool for mineral-scale isotope analyses and in particular, for concurrent determination of age and Hf isotope composition of zircon. Because LASS utilizes two independent mass spectrometers, a large range of masses can be measured during a single ablation, and thus, the same sample volume can be analyzed for multiple geochemical systems. This paper describes a simple analytical setup using a laser ablation system coupled to a single-collector (for U-Pb age determination) and a multicollector (for Hf isotope analyses) inductively coupled plasma mass spectrometer (MC-ICPMS). The ability of the LASS for concurrent Hf + age technique to extract meaningful Hf isotope compositions in isotopically zoned zircon is demonstrated using zircons from two Proterozoic gneisses from northern Idaho, USA. These samples illustrate the potential problems associated with inadvertently sampling multiple age and Hf components in zircons, as well as the potential of LASS to recover meaningful Hf isotope compositions. We suggest that such inadvertent sampling of differing age and Hf components can be a significant cause of excess scatter in Hf isotope analyses and demonstrate that the LASS approach offers a robust solution to these issues. The veracity of the approach is demonstrated by accurate analyses of 10 reference zircons with well-characterized age and Hf isotopic composition, using laser spot diameters of 30 and 40 µm. In order to expand the database of high-precision Lu-Hf isotope analyses of reference zircons, we present 27 new isotope dilution-MC-ICPMS Lu-Hf isotope measurements of five U-Pb zircon standards: FC1, Temora, R33, QGNG, and 91500.

  16. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  17. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules: A Benchmark of GW Methods

    NASA Astrophysics Data System (ADS)

    Marom, Noa; Knight, Joseph; Wang, Xiaopeng; Gallandi, Lukas; Dolgounitcheva, Olga; Ren, Xinguo; Ortiz, Vincent; Rinke, Patrick; Korzdorfer, Thomas

    The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0) , non-self-consistent G0W0 based on several mean-field starting points, and a ``beyond GW'' second order screened exchange (SOSEX) correction to G0W0. The best performers overall are G0W0 + SOSEX and G0W0 based on an IP-tuned long range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs. delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments.

  18. Method for accurate sizing of pulmonary vessels from 3D medical images

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.

    2015-03-01

    Detailed characterization of vascular anatomy, in particular the quantification of changes in the distribution of vessel sizes and of vascular pruning, is essential for the diagnosis and management of a variety of pulmonary vascular diseases and for the care of cancer survivors who have received radiation to the thorax. Clinical estimates of vessel radii are typically based on setting a pixel intensity threshold and counting how many "On" pixels are present across the vessel cross-section. A more objective approach introduced recently involves fitting the image with a library of spherical Gaussian filters and utilizing the size of the best matching filter as the estimate of vessel diameter. However, both these approaches have significant accuracy limitations including mis-match between a Gaussian intensity distribution and that of real vessels. Here we introduce and demonstrate a novel approach for accurate vessel sizing using 3D appearance models of a tubular structure along a curvilinear trajectory in 3D space. The vessel branch trajectories are represented with cubic Hermite splines and the tubular branch surfaces represented as a finite element surface mesh. An iterative parameter adjustment scheme is employed to optimally match the appearance models to a patient's chest X-ray computed tomography (CT) scan to generate estimates for branch radii and trajectories with subpixel resolution. The method is demonstrated on pulmonary vasculature in an adult human CT scan, and on 2D simulated test cases.

  19. Accurate modeling of antennas for radiating short pulses, FDTD analysis and experimental measurements

    NASA Astrophysics Data System (ADS)

    Maloney, James G.; Smith, Glenn S.

    1993-01-01

    Antennas used to radiate short pulses often require different design rules that those that are used to radiate essentially time-harmonic signals. The finite-difference time-domain (FDTD) method is a very flexible numerical approach that can be used to treat a variety of electromagnetic problems in the time domain. It is well suited to the analysis and design of antennas for radiating short pulses; however, several advances had to be made before the method could be applied to this problem. In this paper, we will illustrate the use of the FDTD method with two antennas designed for the radiation of short pulses. The first is a simple, two-dimensional geometry, and open-ended parallel-plate waveguide, while the second is a three-dimensional, rotationally symmetric geometry, a conical monopole fed through an image by a coaxial transmission line. Both antennas are 'optimized' according to given criteria by adjusting geometrical parameters and including resistive loading that varies continuously with position along the antenna. The predicted performance for the conical monopole antenna is compared with experimental measurements; this verifies the optimization and demonstrates the practicality of the design.

  20. Fast, accurate and easy-to-pipeline methods for amplicon sequence processing

    NASA Astrophysics Data System (ADS)

    Antonielli, Livio; Sessitsch, Angela

    2016-04-01

    Next generation sequencing (NGS) technologies established since years as an essential resource in microbiology. While on the one hand metagenomic studies can benefit from the continuously increasing throughput of the Illumina (Solexa) technology, on the other hand the spreading of third generation sequencing technologies (PacBio, Oxford Nanopore) are getting whole genome sequencing beyond the assembly of fragmented draft genomes, making it now possible to finish bacterial genomes even without short read correction. Besides (meta)genomic analysis next-gen amplicon sequencing is still fundamental for microbial studies. Amplicon sequencing of the 16S rRNA gene and ITS (Internal Transcribed Spacer) remains a well-established widespread method for a multitude of different purposes concerning the identification and comparison of archaeal/bacterial (16S rRNA gene) and fungal (ITS) communities occurring in diverse environments. Numerous different pipelines have been developed in order to process NGS-derived amplicon sequences, among which Mothur, QIIME and USEARCH are the most well-known and cited ones. The entire process from initial raw sequence data through read error correction, paired-end read assembly, primer stripping, quality filtering, clustering, OTU taxonomic classification and BIOM table rarefaction as well as alternative "normalization" methods will be addressed. An effective and accurate strategy will be presented using the state-of-the-art bioinformatic tools and the example of a straightforward one-script pipeline for 16S rRNA gene or ITS MiSeq amplicon sequencing will be provided. Finally, instructions on how to automatically retrieve nucleotide sequences from NCBI and therefore apply the pipeline to targets other than 16S rRNA gene (Greengenes, SILVA) and ITS (UNITE) will be discussed.

  1. An automated, fast and accurate registration method to link stranded seeds in permanent prostate implants

    NASA Astrophysics Data System (ADS)

    Westendorp, Hendrik; Nuver, Tonnis T.; Moerland, Marinus A.; Minken, André W.

    2015-10-01

    The geometry of a permanent prostate implant varies over time. Seeds can migrate and edema of the prostate affects the position of seeds. Seed movements directly influence dosimetry which relates to treatment quality. We present a method that tracks all individual seeds over time allowing quantification of seed movements. This linking procedure was tested on transrectal ultrasound (TRUS) and cone-beam CT (CBCT) datasets of 699 patients. These datasets were acquired intraoperatively during a dynamic implantation procedure, that combines both imaging modalities. The procedure was subdivided in four automatic linking steps. (I) The Hungarian Algorithm was applied to initially link seeds in CBCT and the corresponding TRUS datasets. (II) Strands were identified and optimized based on curvature and linefits: non optimal links were removed. (III) The positions of unlinked seeds were reviewed and were linked to incomplete strands if within curvature- and distance-thresholds. (IV) Finally, seeds close to strands were linked, also if the curvature-threshold was violated. After linking the seeds an affine transformation was applied. The procedure was repeated until the results were stable or the 6th iteration ended. All results were visually reviewed for mismatches and uncertainties. Eleven implants showed a mismatch and in 12 cases an uncertainty was identified. On average the linking procedure took 42 ms per case. This accurate and fast method has the potential to be used for other time spans, like Day 30, and other imaging modalities. It can potentially be used during a dynamic implantation procedure to faster and better evaluate the quality of the permanent prostate implant.

  2. The dark art of light measurement: accurate radiometry for low-level light therapy.

    PubMed

    Hadis, Mohammed A; Zainal, Siti A; Holder, Michelle J; Carroll, James D; Cooper, Paul R; Milward, Michael R; Palin, William M

    2016-05-01

    Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement

  3. Accurate reporting of adherence to inhaled therapies in adults with cystic fibrosis: methods to calculate “normative adherence”

    PubMed Central

    Hoo, Zhe Hui; Curley, Rachael; Campbell, Michael J; Walters, Stephen J; Hind, Daniel; Wildman, Martin J

    2016-01-01

    Background Preventative inhaled treatments in cystic fibrosis will only be effective in maintaining lung health if used appropriately. An accurate adherence index should therefore reflect treatment effectiveness, but the standard method of reporting adherence, that is, as a percentage of the agreed regimen between clinicians and people with cystic fibrosis, does not account for the appropriateness of the treatment regimen. We describe two different indices of inhaled therapy adherence for adults with cystic fibrosis which take into account effectiveness, that is, “simple” and “sophisticated” normative adherence. Methods to calculate normative adherence Denominator adjustment involves fixing a minimum appropriate value based on the recommended therapy given a person’s characteristics. For simple normative adherence, the denominator is determined by the person’s Pseudomonas status. For sophisticated normative adherence, the denominator is determined by the person’s Pseudomonas status and history of pulmonary exacerbations over the previous year. Numerator adjustment involves capping the daily maximum inhaled therapy use at 100% so that medication overuse does not artificially inflate the adherence level. Three illustrative cases Case A is an example of inhaled therapy under prescription based on Pseudomonas status resulting in lower simple normative adherence compared to unadjusted adherence. Case B is an example of inhaled therapy under-prescription based on previous exacerbation history resulting in lower sophisticated normative adherence compared to unadjusted adherence and simple normative adherence. Case C is an example of nebulizer overuse exaggerating the magnitude of unadjusted adherence. Conclusion Different methods of reporting adherence can result in different magnitudes of adherence. We have proposed two methods of standardizing the calculation of adherence which should better reflect treatment effectiveness. The value of these indices can

  4. Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

    NASA Astrophysics Data System (ADS)

    An, Zhe; Rey, Daniel; Ye, Jingxin; Abarbanel, Henry D. I.

    2017-01-01

    The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of the full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.

  5. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    SciTech Connect

    Pourmoghaddas, Amir Wells, R. Glenn

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  6. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  7. Rapid and accurate measurement of the frequency-frequency correlation function.

    PubMed

    Osborne, Derek G; Kubarych, Kevin J

    2013-07-25

    Using an implementation of heterodyne-detected vibrational echo spectroscopy, we show that equilibrium spectral diffusion caused by solvation dynamics can be measured in a fraction of the time required using traditional two-dimensional infrared spectroscopy. Spectrally resolved, heterodyne-detected rephasing and nonrephasing signals, recorded at a single delay between the first two pulses in a photon echo sequence, can be used to measure the full waiting time dependent spectral dynamics that are typically extracted from a series of 2D-IR spectra. Hence, data acquisition is accelerated by more than 1 order of magnitude, while permitting extremely fine sampling of the spectral dynamics during the waiting time between the second and third pulses. Using cymantrene (cyclopentadienyl manganese tricarbonyl, CpMn(CO)3) in alcohol solutions, we compare this novel approach--denoted rapidly acquired spectral diffusion (RASD)--with a traditional method using full 2D-IR spectra, finding excellent agreement. Though this approach is largely limited to isolated vibrational bands, we also show how to remove interference from cross-peaks that can produce characteristic modulations of the spectral dynamics through vibrational quantum beats.

  8. Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.; Gower, J. F. R.

    1977-01-01

    A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.

  9. Accurate weak lensing of standard candles. II. Measuring σ8 with supernovae

    NASA Astrophysics Data System (ADS)

    Quartin, Miguel; Marra, Valerio; Amendola, Luca

    2014-01-01

    Soon the number of type Ia supernova (SN) measurements should exceed 100 000. Understanding the effect of weak lensing by matter structures on the supernova brightness will then be more important than ever. Although SN lensing is usually seen as a source of systematic noise, we will show that it can be in fact turned into signal. More precisely, the non-Gaussianity introduced by lensing in the SN Hubble diagram dispersion depends rather sensitively on the amplitude σ8 of the matter power spectrum. By exploiting this relation, we are able to predict constraints on σ8 of 7% (3%) for a catalog of 100 000 (500 000) SNe of average magnitude error 0.12, without having to assume that such intrinsic dispersion and its redshift evolution are known a priori. The intrinsic dispersion has been assumed to be Gaussian; possible intrinsic non-Gaussianities in the data set (due to the SN themselves and/or to other transients) could be potentially dealt with by means of additional nuisance parameters describing higher moments of the intrinsic dispersion distribution function. This method is independent of and complementary to the standard methods based on cosmic microwave background, cosmic shear, or cluster abundance observables.

  10. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor.

    PubMed

    Hu, Wei; Zhao, Zhangyan; Wang, Yunfeng; Zhang, Haiying; Lin, Fujiang

    2014-03-01

    The designed sensor enables accurate reconstruction of chest-wall movement caused by cardiopulmonary activities, and the algorithm enables estimation of respiration, heartbeat rate, and some indicators of heart rate variability (HRV). In particular, quadrature receiver and arctangent demodulation with calibration are introduced for high linearity representation of chest displacement; 24-bit ADCs with oversampling are adopted for radar baseband acquisition to achieve a high signal resolution; continuous-wavelet filter and ensemble empirical mode decomposition (EEMD) based algorithm are applied for cardio/pulmonary signal recovery and separation so that accurate beat-to-beat interval can be acquired in time domain for HRV analysis. In addition, the wireless sensor is realized and integrated on a printed circuit board compactly. The developed sensor system is successfully tested on both simulated target and human subjects. In simulated target experiments, the baseband signal-to-noise ratio (SNR) is 73.27 dB, high enough for heartbeat detection. The demodulated signal has 0.35% mean squared error, indicating high demodulation linearity. In human subject experiments, the relative error of extracted beat-to-beat intervals ranges from 2.53% to 4.83% compared with electrocardiography (ECG) R-R peak intervals. The sensor provides an accurate analysis for heart rate with the accuracy of 100% for p = 2% and higher than 97% for p = 1%.

  11. An accurate and efficient computation method of the hydration free energy of a large, complex molecule.

    PubMed

    Yoshidome, Takashi; Ekimoto, Toru; Matubayasi, Nobuyuki; Harano, Yuichi; Kinoshita, Masahiro; Ikeguchi, Mitsunori

    2015-05-07

    The hydration free energy (HFE) is a crucially important physical quantity to discuss various chemical processes in aqueous solutions. Although an explicit-solvent computation with molecular dynamics (MD) simulations is a preferable treatment of the HFE, huge computational load has been inevitable for large, complex solutes like proteins. In the present paper, we propose an efficient computation method for the HFE. In our method, the HFE is computed as a sum of 〈UUV〉/2 (〈UUV〉 is the ensemble average of the sum of pair interaction energy between solute and water molecule) and the water reorganization term mainly reflecting the excluded volume effect. Since 〈UUV〉 can readily be computed through a MD of the system composed of solute and water, an efficient computation of the latter term leads to a reduction of computational load. We demonstrate that the water reorganization term can quantitatively be calculated using the morphometric approach (MA) which expresses the term as the linear combinations of the four geometric measures of a solute and the corresponding coefficients determined with the energy representation (ER) method. Since the MA enables us to finish the computation of the solvent reorganization term in less than 0.1 s once the coefficients are determined, the use of the MA enables us to provide an efficient computation of the HFE even for large, complex solutes. Through the applications, we find that our method has almost the same quantitative performance as the ER method with substantial reduction of the computational load.

  12. Reading Assessment Methods for Middle-School Students: An Investigation of Reading Comprehension Rate and Maze Accurate Response Rate

    ERIC Educational Resources Information Center

    Hale, Andrea D.; Henning, Jaime B.; Hawkins, Renee O.; Sheeley, Wesley; Shoemaker, Larissa; Reynolds, Jennifer R.; Moch, Christina

    2011-01-01

    This study was designed to investigate the validity of four different aloud reading comprehension assessment measures: Maze, comprehension questions, Maze accurate response rate (MARR), and reading comprehension rate (RCR). The criterion measures used in this study were the Woodcock-Johnson III Tests of Achievement (WJ-III ACH) Broad Reading…

  13. Accurate optical measurement of nuclear polarization in optically pumped ^3He gas

    NASA Astrophysics Data System (ADS)

    Bigelow, N. P.; Nacher, P. J.; Leduc, M.

    1992-12-01

    Large nuclear polarizations M (over 80 %) can now be achieved in gaseous ^3He by optical pumping. The gas is excited by an RF discharge and is oriented using a high power LNA laser which is lamp pumped and tuned to the 2 ^3S-2 ^3P transition at 1.08 μm. In this paper we describe an experiment in which we measure M with high absolute precision. Our method is based on a change as a function of M in the ratio of σ or π polarized light absorbed from a weak probe beam by the 2 ^3S metastable atoms. The probe was delivered by a diode pumped LNA laser and propagated perpendicular to the direction of the magnetization. Simultaneous measurement of M was made by monitoring the degree of circular polarization \\cal{P} of the optical line at 668 nm emitted by the discharge. Our measurements show a linear relationship between M and \\cal{P} for all accessible M values and for a wide range of experimental conditions (sample pressure, magnetic field, RF discharge level, etc.). This provides a second method of measurement of the ^3He nuclear polarization which is simple to operate and is calibrated and is calibrated over a pressure range of 0.15 to 6.5 torr. On peut maintenant produire par pompage optique de fortes polarisations nucléaires M (M supérieure à 80 % dans l' ^3He gazeux. Le gaz est excité par une décharge radiofréquence et orienté à l'aide d'un laser LNA de forte intensité qui est pompé par des lampes et accordé sur la transition 2 ^3S-2 ^3P à 1,08 μm. Dans cet article, nous décrivons une expérience où nous mesurons M avec une grande précision absolue. Notre méthode est fondée sur la variation en fonction de M de l'absorption par les atomes métastables d'un faisceau sonde de faible intensité polarisé linéairement. Nous mesurons le rapport des absorptions pour des polarisations π et σ. Le faisceau sonde est un laser LNA pompé par diode qui se propage perpendiculairement à la direction de l'aimantation. Simultanément, nous mesurons M par le

  14. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    USGS Publications Warehouse

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among

  15. Computer-implemented system and method for automated and highly accurate plaque analysis, reporting, and visualization

    NASA Technical Reports Server (NTRS)

    Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)

    2008-01-01

    A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.

  16. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.

    1994-01-01

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  17. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  18. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  19. A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates

    NASA Astrophysics Data System (ADS)

    Savanevych, V. E.; Briukhovetskyi, O. B.; Sokovikova, N. S.; Bezkrovny, M. M.; Vavilova, I. B.; Ivashchenko, Yu. M.; Elenin, L. V.; Khlamov, S. V.; Movsesian, Ia. S.; Dashkova, A. M.; Pogorelov, A. V.

    2015-08-01

    We describe a new iteration method to estimate asteroid coordinates, based on a subpixel Gaussian model of the discrete object image. The method operates by continuous parameters (asteroid coordinates) in a discrete observational space (the set of pixel potentials) of the CCD frame. In this model, the kind of coordinate distribution of the photons hitting a pixel of the CCD frame is known a priori, while the associated parameters are determined from a real digital object image. The method that is developed, which is flexible in adapting to any form of object image, has a high measurement accuracy along with a low calculating complexity, due to the maximum-likelihood procedure that is implemented to obtain the best fit instead of a least-squares method and Levenberg-Marquardt algorithm for minimization of the quadratic form. Since 2010, the method has been tested as the basis of our Collection Light Technology (COLITEC) software, which has been installed at several observatories across the world with the aim of the automatic discovery of asteroids and comets in sets of CCD frames. As a result, four comets (C/2010 X1 (Elenin), P/2011 NO1(Elenin), C/2012 S1 (ISON) and P/2013 V3 (Nevski)) as well as more than 1500 small Solar system bodies (including five near-Earth objects (NEOs), 21 Trojan asteroids of Jupiter and one Centaur object) have been discovered. We discuss these results, which allowed us to compare the accuracy parameters of the new method and confirm its efficiency. In 2014, the COLITEC software was recommended to all members of the Gaia-FUN-SSO network for analysing observations as a tool to detect faint moving objects in frames.

  20. EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture.

    PubMed

    Armengaud, Patrick; Zambaux, Kevin; Hills, Adrian; Sulpice, Ronan; Pattison, Richard J; Blatt, Michael R; Amtmann, Anna

    2009-03-01

    The root system is essential for the growth and development of plants. In addition to anchoring the plant in the ground, it is the site of uptake of water and minerals from the soil. Plant root systems show an astonishing plasticity in their architecture, which allows for optimal exploitation of diverse soil structures and conditions. The signalling pathways that enable plants to sense and respond to changes in soil conditions, in particular nutrient supply, are a topic of intensive research, and root system architecture (RSA) is an important and obvious phenotypic output. At present, the quantitative description of RSA is labour intensive and time consuming, even using the currently available software, and the lack of a fast RSA measuring tool hampers forward and quantitative genetics studies. Here, we describe EZ-Rhizo: a Windows-integrated and semi-automated computer program designed to detect and quantify multiple RSA parameters from plants growing on a solid support medium. The method is non-invasive, enabling the user to follow RSA development over time. We have successfully applied EZ-Rhizo to evaluate natural variation in RSA across 23 Arabidopsis thaliana accessions, and have identified new RSA determinants as a basis for future quantitative trait locus (QTL) analysis.

  1. Accurate thickness/density measurements of organic light-emitting diodes

    SciTech Connect

    Maree, C.H.; Weller, R.A.; Feldman, L.C.; Pakbaz, K.; Lee, H.W.

    1998-10-01

    We report on the use of Rutherford backscattering spectroscopy for thickness analysis of organic light-emitting diode structures (OLEDs) with subnanometer resolution and a spatial resolution {lt}1thinspmm. A careful study of ion beam induced effects revealed some organic film degradation, but not so severe as to inhibit meaningful measurements. The method is independent of the substrate and is still applicable if the organic film is capped with a metal cathode. Common OLED materials have been the subject of this study: poly(2-methoxy,5-(2{sup {prime}}-ethylhexoxy)-1,4-phenylene-vinylene) (MEH-PPV), N{sup {prime}},N{sup {prime}}-diphenyl-N, N{sup {prime}}-bis(3-methylphenyl)-1,1{sup {prime}} biphenyl-4,4{sup {prime}}-diamine (TPD), and tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}). The densities of thin films of evaporated TPD ({rho}=1.22{plus_minus}0.05thinspg/cm{sup 3}) and Alq{sub 3} ({rho}=1.51{plus_minus}0.03thinspg/cm{sup 3}) have been established. {copyright} {ital 1998 American Institute of Physics.}

  2. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    PubMed Central

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-01-01

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739

  3. Highly accurate measurements of the spontaneous fission half-life of 240,242Pu

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2013-12-01

    Fast spectrum neutron-induced fission cross-section data for transuranic isotopes are of special demand from the nuclear data community. In particular highly accurate data are needed for the new generation IV nuclear applications. The aim is to obtain precise neutron-induced fission cross sections for 240Pu and 242Pu. To do so, accurate data on spontaneous fission half-lives must be available. Also, minimizing uncertainties in the detector efficiency is a key point. We studied both isotopes by means of a twin Frisch-grid ionization chamber with the goal of improving the present data on the neutron-induced fission cross section. For the two plutonium isotopes the high α-particle decay rates pose a particular problem to experiments due to piling-up events in the counting gas. Argon methane and methane were employed as counting gases, the latter showed considerable improvement in signal generation due to its higher drift velocity. The detection efficiency for both samples was determined, and improved spontaneous fission half-lives were obtained with very low statistical uncertainty (0.13% for 240Pu and 0.04% for 242Pu): for 240Pu, T1/2,SF=1.165×1011 yr (1.1%), and for 242Pu, T1/2,SF=6.74×1010 yr (1.3%). Systematic uncertainties are due to sample mass (0.4% for 240Pu and 0.9% for 242Pu) and efficiency (1%).

  4. Accurate monitoring and fault detection in wind measuring devices through wireless sensor networks.

    PubMed

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-11-24

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models.

  5. A Cost-Benefit and Accurate Method for Assessing Microalbuminuria: Single versus Frequent Urine Analysis.

    PubMed

    Hemmati, Roholla; Gharipour, Mojgan; Khosravi, Alireza; Jozan, Mahnaz

    2013-01-01

    Background. The purpose of this study was to answer the question whether a single testing for microalbuminuria results in a reliable conclusion leading costs saving. Methods. This current cross-sectional study included a total of 126 consecutive persons. Microalbuminuria was assessed by collection of two fasting random urine specimens on arrival to the clinic as well as one week later in the morning. Results. In overall, 17 out of 126 participants suffered from microalbuminuria that, among them, 12 subjects were also diagnosed as microalbuminuria once assessing this factor with a sensitivity of 70.6%, a specificity of 100%, a PPV of 100%, a NPV of 95.6%, and an accuracy of 96.0%. The measured sensitivity, specificity, PVV, NPV, and accuracy in hypertensive patients were 73.3%, 100%, 100%, 94.8%, and 95.5%, respectively. Also, these rates in nonhypertensive groups were 50.0%, 100%, 100%, 97.3%, and 97.4%, respectively. According to the ROC curve analysis, a single measurement of UACR had a high value for discriminating defected from normal renal function state (c = 0.989). Urinary albumin concentration in a single measurement had also high discriminative value for diagnosis of damaged kidney (c = 0.995). Conclusion. The single testing of both UACR and urine albumin level rather frequent testing leads to high diagnostic sensitivity, specificity, and accuracy as well as high predictive values in total population and also in hypertensive subgroups.

  6. Pulse measurement apparatus and method

    DOEpatents

    Marciante, John R.; Donaldson, William R.; Roides, Richard G.

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  7. A new noninvasive method for the accurate and precise assessment of varicose vein diameters.

    PubMed

    Baldassarre, Damiano; Pustina, Linda; Castelnuovo, Samuela; Bondioli, Alighiero; Carlà, Matteo; Sirtori, Cesare R

    2003-01-01

    The feasibility and reproducibility of a new ultrasonic method for the direct assessment of maximal varicose vein diameter (VVD) were evaluated. A study was also performed to demonstrate the capacity of the method to detect changes in venous diameter induced by a pharmacologic treatment. Patients with varicose vein disease were recruited. A method that allows the precise positioning of patient and transducer and performance of scans in a gel-bath was developed. Maximal VVD was recorded both in the standing and supine positions. The intraassay reproducibility was determined by replicate scans made within 15 minutes in both positions. The interobserver variability was assessed by comparing VVDs measured during the first phase baseline examination with those obtained during baseline examinations in the second phase of the study. The error in reproducibility of VVD determinations was 5.3% when diameters were evaluated in the standing position and 6.4% when assessed in the supine position. The intramethod agreement was high, with a bias between readings of 0.06 +/- 0.18 mm and of -0.02 +/- 0.19 mm, respectively, in standing and supine positions. Correlation coefficients were better than 0.99 in both positions. The method appears to be sensitive enough to detect small changes in VVDs induced by treatments. The proposed technique provides a tool of potential valid use in the detection and in vivo monitoring of VVD changes in patients with varicose vein disease. The method offers an innovative approach to obtain a quantitative assessment of varicose vein progression and of treatment effects, thus providing a basis for epidemiologic surveys.

  8. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  9. Development of an accurate EPID-based output measurement and dosimetric verification tool for electron beam therapy

    PubMed Central

    Ding, Aiping; Xing, Lei; Han, Bin

    2015-01-01

    Purpose: To develop an efficient and robust tool for output measurement and absolute dose verification of electron beam therapy by using a high spatial-resolution and high frame-rate amorphous silicon flat panel electronic portal imaging device (EPID). Methods: The dosimetric characteristics of the EPID, including saturation, linearity, and ghosting effect, were first investigated on a Varian Clinac 21EX accelerator. The response kernels of the individual pixels of the EPID to all available electron energies (6, 9, 12, 16, and 20 MeV) were calculated by using Monte Carlo (MC) simulations, which formed the basis to deconvolve an EPID raw images to the incident electron fluence map. The two-dimensional (2D) dose distribution at reference depths in water was obtained by using the constructed fluence map with a MC simulated pencil beam kernel with consideration of the geometric and structural information of the EPID. Output factor measurements were carried out with the EPID at a nominal source–surface distance of 100 cm for 2 × 2, 3 × 3, 6 × 6, 10 × 10, and 15 × 15 cm2 fields for all available electron energies, and the results were compared with that measured in a solid water phantom using film and a Farmer-type ion chamber. The dose distributions at a reference depth specific to each energy and the flatness and symmetry of the 10 × 10 cm2 electron beam were also measured using EPID, and the results were compared with ion chamber array and water scan measurements. Finally, three patient cases with various field sizes and irregular cutout shapes were also investigated. Results: EPID-measured dose changed linearly with the monitor units and showed little ghosting effect for dose rate up to 600 MU/min. The flatness and symmetry measured with the EPID were found to be consistent with ion chamber array and water scan measurements. The EPID-measured output factors for standard square fields of 2 × 2, 3 × 3, 6 × 6, 10 × 10, 15 × 15 cm2 agreed with film and ion

  10. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... meter measures water flowing at more than 500,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±2 percent or better; (5) If the meter measures water flowing at 500,000 lbs/hr or less on...

  11. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: An Accurate Image Simulation Method for High-Order Laue Zone Effects

    NASA Astrophysics Data System (ADS)

    Cai, Can-Ying; Zeng, Song-Jun; Liu, Hong-Rong; Yang, Qi-Bin

    2008-05-01

    A completely different formulation for simulation of the high order Laue zone (HOLZ) diffractions is derived. It refers to the new method, i.e. the Taylor series (TS) method. To check the validity and accuracy of the TS method, we take polyvinglidene fluoride (PVDF) crystal as an example to calculate the exit wavefunction by the conventional multi-slice (CMS) method and the TS method. The calculated results show that the TS method is much more accurate than the CMS method and is independent of the slice thicknesses. Moreover, the pure first order Laue zone wavefunction by the TS method can reflect the major potential distribution of the first reciprocal plane.

  12. A More Accurate Measurement of the {sup 28}Si Lattice Parameter

    SciTech Connect

    Massa, E. Sasso, C. P.; Mana, G.; Palmisano, C.

    2015-09-15

    In 2011, a discrepancy between the values of the Planck constant measured by counting Si atoms and by comparing mechanical and electrical powers prompted a review, among others, of the measurement of the spacing of {sup 28}Si (220) lattice planes, either to confirm the measured value and its uncertainty or to identify errors. This exercise confirmed the result of the previous measurement and yields the additional value d{sub 220} = 192 014 711.98(34) am having a reduced uncertainty.

  13. Metrology target design simulations for accurate and robust scatterometry overlay measurements

    NASA Astrophysics Data System (ADS)

    Ben-Dov, Guy; Tarshish-Shapir, Inna; Gready, David; Ghinovker, Mark; Adel, Mike; Herzel, Eitan; Oh, Soonho; Choi, DongSub; Han, Sang Hyun; El Kodadi, Mohamed; Hwang, Chan; Lee, Jeongjin; Lee, Seung Yoon; Lee, Kuntack

    2016-03-01

    Overlay metrology target design is an essential step prior to performing overlay measurements. This step is done through the optimization of target parameters for a given process stack. A simulation tool is therefore used to improve measurement performances. This work shows how our Metrology Target Design (MTD) simulator helps significantly in the target design process. We show the role of film and Optical CD measurements in improving significantly the fidelity of the simulations. We demonstrate that for various target design parameters we are capable of predicting measured performance metrics by simulations and correctly rank various designs performances.

  14. Method for measuring pollutant formation

    NASA Technical Reports Server (NTRS)

    Annen, Kurt (Inventor); Stickler, David B. (Inventor)

    2001-01-01

    Diagnostic methods for determining an instantaneous rate of pollutant formation in a combustion system are based on measurement of chemiluminescence intensity generated simultaneously with the formation of the pollutant. The chemiluminescent signal is generated by an analog reaction which occurs in parallel with a key step in the formation of a specific pollutant of interest. The connection between the analog reaction and the pollution reaction is such that the chemiluminescent signal indicates the local, instantaneous formation rate of the pollutant of interest.

  15. An accurate heart beat detection method in the EKG recorded in fMRI system.

    PubMed

    Oh, Sung Suk; Chung, Jun-Young; Yoon, Hyo Woon; Park, HyunWook

    2007-01-01

    The simultaneous recording of functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) provides an efficient signal for the high spatiotemporal brain mapping because each modality provides complementary information. The peak detection in the EEG signal measured in the MR scanner is necessary for removal of the ballistocardiac artifact. Especially, it would be affected by the quality of the EKG signal and the variation of the heart beat rate. Therefore, we propose the peak detection method using a K-teager energy operator (K-TEO) as well as further refinement processes in order to detect precise peaks. We applied this technique to the analysis of simulation waves with random noise and abrupt heat beat changes.

  16. A Feasibility Study for Measuring Accurate Chest Compression Depth and Rate on Soft Surfaces Using Two Accelerometers and Spectral Analysis.

    PubMed

    Ruiz de Gauna, Sofía; González-Otero, Digna M; Ruiz, Jesus; Gutiérrez, J J; Russell, James K

    2016-01-01

    Background. Cardiopulmonary resuscitation (CPR) feedback devices are being increasingly used. However, current accelerometer-based devices overestimate chest displacement when CPR is performed on soft surfaces, which may lead to insufficient compression depth. Aim. To assess the performance of a new algorithm for measuring compression depth and rate based on two accelerometers in a simulated resuscitation scenario. Materials and Methods. Compressions were provided to a manikin on two mattresses, foam and sprung, with and without a backboard. One accelerometer was placed on the chest and the second at the manikin's back. Chest displacement and mattress displacement were calculated from the spectral analysis of the corresponding acceleration every 2 seconds and subtracted to compute the actual sternal-spinal displacement. Compression rate was obtained from the chest acceleration. Results. Median unsigned error in depth was 2.1 mm (4.4%). Error was 2.4 mm in the foam and 1.7 mm in the sprung mattress (p < 0.001). Error was 3.1/2.0 mm and 1.8/1.6 mm with/without backboard for foam and sprung, respectively (p < 0.001). Median error in rate was 0.9 cpm (1.0%), with no significant differences between test conditions. Conclusion. The system provided accurate feedback on chest compression depth and rate on soft surfaces. Our solution compensated mattress displacement, avoiding overestimation of compression depth when CPR is performed on soft surfaces.

  17. Accurate quantification of creatinine in serum by coupling a measurement standard to extractive electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Keke; Li, Ming; Li, Hongmei; Li, Mengwan; Jiang, You; Fang, Xiang

    2016-01-01

    Ambient ionization (AI) techniques have been widely used in chemistry, medicine, material science, environmental science, forensic science. AI takes advantage of direct desorption/ionization of chemicals in raw samples under ambient environmental conditions with minimal or no sample preparation. However, its quantitative accuracy is restricted by matrix effects during the ionization process. To improve the quantitative accuracy of AI, a matrix reference material, which is a particular form of measurement standard, was coupled to an AI technique in this study. Consequently the analyte concentration in a complex matrix can be easily quantified with high accuracy. As a demonstration, this novel method was applied for the accurate quantification of creatinine in serum by using extractive electrospray ionization (EESI) mass spectrometry. Over the concentration range investigated (0.166 ~ 1.617 μg/mL), a calibration curve was obtained with a satisfactory linearity (R2 = 0.994), and acceptable relative standard deviations (RSD) of 4.6 ~ 8.0% (n = 6). Finally, the creatinine concentration value of a serum sample was determined to be 36.18 ± 1.08 μg/mL, which is in excellent agreement with the certified value of 35.16 ± 0.39 μg/mL.

  18. A Feasibility Study for Measuring Accurate Chest Compression Depth and Rate on Soft Surfaces Using Two Accelerometers and Spectral Analysis

    PubMed Central

    Gutiérrez, J. J.; Russell, James K.

    2016-01-01

    Background. Cardiopulmonary resuscitation (CPR) feedback devices are being increasingly used. However, current accelerometer-based devices overestimate chest displacement when CPR is performed on soft surfaces, which may lead to insufficient compression depth. Aim. To assess the performance of a new algorithm for measuring compression depth and rate based on two accelerometers in a simulated resuscitation scenario. Materials and Methods. Compressions were provided to a manikin on two mattresses, foam and sprung, with and without a backboard. One accelerometer was placed on the chest and the second at the manikin's back. Chest displacement and mattress displacement were calculated from the spectral analysis of the corresponding acceleration every 2 seconds and subtracted to compute the actual sternal-spinal displacement. Compression rate was obtained from the chest acceleration. Results. Median unsigned error in depth was 2.1 mm (4.4%). Error was 2.4 mm in the foam and 1.7 mm in the sprung mattress (p < 0.001). Error was 3.1/2.0 mm and 1.8/1.6 mm with/without backboard for foam and sprung, respectively (p < 0.001). Median error in rate was 0.9 cpm (1.0%), with no significant differences between test conditions. Conclusion. The system provided accurate feedback on chest compression depth and rate on soft surfaces. Our solution compensated mattress displacement, avoiding overestimation of compression depth when CPR is performed on soft surfaces. PMID:27999808

  19. Rapid, cost-effective and accurate quantification of Yucca schidigera Roezl. steroidal saponins using HPLC-ELSD method.

    PubMed

    Tenon, Mathieu; Feuillère, Nicolas; Roller, Marc; Birtić, Simona

    2017-04-15

    Yucca GRAS-labelled saponins have been and are increasingly used in food/feed, pharmaceutical or cosmetic industries. Existing techniques presently used for Yucca steroidal saponin quantification remain either inaccurate and misleading or accurate but time consuming and cost prohibitive. The method reported here addresses all of the above challenges. HPLC/ELSD technique is an accurate and reliable method that yields results of appropriate repeatability and reproducibility. This method does not over- or under-estimate levels of steroidal saponins. HPLC/ELSD method does not require each and every pure standard of saponins, to quantify the group of steroidal saponins. The method is a time- and cost-effective technique that is suitable for routine industrial analyses. HPLC/ELSD methods yield a saponin fingerprints specific to the plant species. As the method is capable of distinguishing saponin profiles from taxonomically distant species, it can unravel plant adulteration issues.

  20. Pectoralis major tendon reference (PMT): a new method for accurate restoration of humeral length with hemiarthroplasty for fracture.

    PubMed

    Murachovsky, Joel; Ikemoto, Roberto Y; Nascimento, Luis G P; Fujiki, Edison N; Milani, Carlo; Warner, Jon J P

    2006-01-01

    For hemiarthroplasty reconstruction of a proximal humeral fracture, accurate restoration of humeral head position is challenging, and incorrect prosthetic placement is associated with a poor outcome of surgical treatment. The purpose of this study was to validate the pectoralis major tendon as a reproducible landmark for accurate restoration of humeral length with hemiarthroplasty reconstruction. We dissected 20 cadavers (40 shoulders), and the distance between the upper border of the pectoralis major tendon insertion on the humerus and the top of the humeral head was measured (PMT). The PMT averaged 5.6 +/- 0.5 cm (with a confidence level of 95%). In only 4 of 40 shoulders did this distance exceed 6.0 cm, and there was no correlation between the size of the patient and this measurement. The PMT is a useful landmark that will aid in accurate restoration of humeral length when reconstructing complex proximal humeral fractures where landmarks are otherwise lost because of fracture comminution.

  1. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System.

    PubMed

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-07-28

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved.

  2. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System

    PubMed Central

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors’ errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  3. Measuring laser power as a force: a new paradigm to accurately monitor optical power during laser-based machining operations

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Simonds, Brian; Sowards, Jeffrey; Hadler, Joshua

    2016-03-01

    In laser manufacturing operations, accurate measurement of laser power is important for product quality, operational repeatability, and process validation. Accurate real-time measurement of high-power lasers, however, is difficult. Typical thermal power meters must absorb all the laser power in order to measure it. This constrains power meters to be large, slow and exclusive (that is, the laser cannot be used for its intended purpose during the measurement). To address these limitations, we have developed a different paradigm in laser power measurement where the power is not measured according to its thermal equivalent but rather by measuring the laser beam's momentum (radiation pressure). Very simply, light reflecting from a mirror imparts a small force perpendicular to the mirror which is proportional to the optical power. By mounting a high-reflectivity mirror on a high-sensitivity force transducer (scale), we are able to measure laser power in the range of tens of watts up to ~ 100 kW. The critical parameters for such a device are mirror reflectivity, angle of incidence, and scale sensitivity and accuracy. We will describe our experimental characterization of a radiation-pressure-based optical power meter. We have tested it for modulated and CW laser powers up to 92 kW in the laboratory and up to 20 kW in an experimental laser welding booth. We will describe present accuracy, temporal response, sources of measurement uncertainty, and hurdles which must be overcome to have an accurate power meter capable of routine operation as a turning mirror within a laser delivery head.

  4. An Accurate Timing Alignment Method with Time-to-Digital Converter Linearity Calibration for High-Resolution TOF PET.

    PubMed

    Li, Hongdi; Wang, Chao; An, Shaohui; Lu, Xingyu; Dong, Yun; Liu, Shitao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Wong, Wai-Hoi

    2015-06-01

    Accurate PET system timing alignment minimizes the coincidence time window and therefore reduces random events and improves image quality. It is also critical for time-of-flight (TOF) image reconstruction. Here, we use a thin annular cylinder (shell) phantom filled with a radioactive source and located axially and centrally in a PET camera for the timing alignment of a TOF PET system. This timing alignment method involves measuring the time differences between the selected coincidence detector pairs, calibrating the differential and integral nonlinearity of the time-to-digital converter (TDC) with the same raw data and deriving the intrinsic time biases for each detector using an iterative algorithm. The raw time bias for each detector is downloaded to the front-end electronics and the residual fine time bias can be applied during the TOF list-mode reconstruction. Our results showed that a timing alignment accuracy of better than ±25 ps can be achieved, and a preliminary timing resolution of 473 ps (full width at half maximum) was measured in our prototype TOF PET/CT system.

  5. An Accurate Timing Alignment Method with Time-to-Digital Converter Linearity Calibration for High-Resolution TOF PET

    PubMed Central

    Li, Hongdi; Wang, Chao; An, Shaohui; Lu, Xingyu; Dong, Yun; Liu, Shitao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Wong, Wai-Hoi

    2015-01-01

    Accurate PET system timing alignment minimizes the coincidence time window and therefore reduces random events and improves image quality. It is also critical for time-of-flight (TOF) image reconstruction. Here, we use a thin annular cylinder (shell) phantom filled with a radioactive source and located axially and centrally in a PET camera for the timing alignment of a TOF PET system. This timing alignment method involves measuring the time differences between the selected coincidence detector pairs, calibrating the differential and integral nonlinearity of the time-to-digital converter (TDC) with the same raw data and deriving the intrinsic time biases for each detector using an iterative algorithm. The raw time bias for each detector is downloaded to the front-end electronics and the residual fine time bias can be applied during the TOF list-mode reconstruction. Our results showed that a timing alignment accuracy of better than ±25 ps can be achieved, and a preliminary timing resolution of 473 ps (full width at half maximum) was measured in our prototype TOF PET/CT system. PMID:26543243

  6. Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device

    NASA Astrophysics Data System (ADS)

    Mohibul Kabir, K. M.; Matthews, Glenn I.; Sabri, Ylias M.; Russo, Salvy P.; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-03-01

    Accurate analysis of surface acoustic wave (SAW) devices is highly important due to their use in ever-growing applications in electronics, telecommunication and chemical sensing. In this study, a novel approach for analyzing the SAW devices was developed based on a series of two-dimensional finite element method (FEM) simulations, which has been experimentally verified. It was found that the frequency response of the two SAW device structures, each having slightly different bandwidth and center lobe characteristics, can be successfully obtained utilizing the current density of the electrodes via FEM simulations. The two SAW structures were based on XY Lithium Niobate (LiNbO3) substrates and had two and four electrode finger pairs in both of their interdigital transducers, respectively. Later, SAW devices were fabricated in accordance with the simulated models and their measured frequency responses were found to correlate well with the obtained simulations results. The results indicated that better match between calculated and measured frequency response can be obtained when one of the input electrode finger pairs was set at zero volts and all the current density components were taken into account when calculating the frequency response of the simulated SAW device structures.

  7. Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors

    PubMed Central

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-01-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961

  8. Accurate VUV Laboratory Measurements of Fe III Transitions for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Blackwell-Whitehead, R. J.; Pickering, J. C.; Smillie, D.; Nave, G.; Szabo, C. I.; Smith, Peter L.; Nielsen, K. E.; Peters, G.

    2006-01-01

    We report preliminary measurements of Fe III spectra in the 1150 to 2500 A wavelength interval. Spectra have been recorded with an iron-neon Penning discharge lamp (PDL) between 1600 and 2500 A at Imperial College (IC) using high resolution Fourier (FT) transform spectroscopy. These FT spectrometer measurements were extended beyond 1600 A to 1150 A using high-resolution grating spectroscopy at the National Institute of Standards and Technology (NIST). These recorded spectra represent the first radiometrically calibrated measurements of a doubly-ionized iron-group element spectrum combining the techniques of vacuum ultraviolet FT and grating spectroscopy. The spectral range of the new laboratory measurements corresponds to recent HST/STIS observations of sharp-lined B stars and of Eta Carinae. The new improved atomic data can be applied to abundance studies and diagnostics of astrophysical plasmas.

  9. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging

    NASA Astrophysics Data System (ADS)

    Hughes, Timothy J.; Kandathil, Shaun M.; Popelier, Paul L. A.

    2015-02-01

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G**, B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol-1, decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol-1.

  10. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging.

    PubMed

    Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A

    2015-02-05

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1).

  11. Accurate diagnosis of myalgic encephalomyelitis and chronic fatigue syndrome based upon objective test methods for characteristic symptoms

    PubMed Central

    Twisk, Frank NM

    2015-01-01

    Although myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS) are considered to be synonymous, the definitional criteria for ME and CFS define two distinct, partially overlapping, clinical entities. ME, whether defined by the original criteria or by the recently proposed criteria, is not equivalent to CFS, let alone a severe variant of incapacitating chronic fatigue. Distinctive features of ME are: muscle weakness and easy muscle fatigability, cognitive impairment, circulatory deficits, a marked variability of the symptoms in presence and severity, but above all, post-exertional “malaise”: a (delayed) prolonged aggravation of symptoms after a minor exertion. In contrast, CFS is primarily defined by (unexplained) chronic fatigue, which should be accompanied by four out of a list of 8 symptoms, e.g., headaches. Due to the subjective nature of several symptoms of ME and CFS, researchers and clinicians have questioned the physiological origin of these symptoms and qualified ME and CFS as functional somatic syndromes. However, various characteristic symptoms, e.g., post-exertional “malaise” and muscle weakness, can be assessed objectively using well-accepted methods, e.g., cardiopulmonary exercise tests and cognitive tests. The objective measures acquired by these methods should be used to accurately diagnose patients, to evaluate the severity and impact of the illness objectively and to assess the positive and negative effects of proposed therapies impartially. PMID:26140274

  12. Accurate diagnosis of myalgic encephalomyelitis and chronic fatigue syndrome based upon objective test methods for characteristic symptoms.

    PubMed

    Twisk, Frank Nm

    2015-06-26

    Although myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS) are considered to be synonymous, the definitional criteria for ME and CFS define two distinct, partially overlapping, clinical entities. ME, whether defined by the original criteria or by the recently proposed criteria, is not equivalent to CFS, let alone a severe variant of incapacitating chronic fatigue. Distinctive features of ME are: muscle weakness and easy muscle fatigability, cognitive impairment, circulatory deficits, a marked variability of the symptoms in presence and severity, but above all, post-exertional "malaise": a (delayed) prolonged aggravation of symptoms after a minor exertion. In contrast, CFS is primarily defined by (unexplained) chronic fatigue, which should be accompanied by four out of a list of 8 symptoms, e.g., headaches. Due to the subjective nature of several symptoms of ME and CFS, researchers and clinicians have questioned the physiological origin of these symptoms and qualified ME and CFS as functional somatic syndromes. However, various characteristic symptoms, e.g., post-exertional "malaise" and muscle weakness, can be assessed objectively using well-accepted methods, e.g., cardiopulmonary exercise tests and cognitive tests. The objective measures acquired by these methods should be used to accurately diagnose patients, to evaluate the severity and impact of the illness objectively and to assess the positive and negative effects of proposed therapies impartially.

  13. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    SciTech Connect

    Juang, T; Adamovics, J; Oldham, M

    2014-06-15

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, high resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately

  14. Instrumentation for the accurate measurement of phase and amplitude in optical tomography

    NASA Astrophysics Data System (ADS)

    Nissilä, Ilkka; Kotilahti, Kalle; Fallström, Kim; Katila, Toivo

    2002-09-01

    A single-channel prototype for a frequency-domain optical tomography system is presented. The two main goals in the design of the system were the measurement of phase with minimal systematic errors and a high enough signal-to-noise ratio to detect the small changes in the absorption of brain tissue during brain activity. Although the system inherently is an imaging system, the aspects of the system that relate to multichannel operation will be published separately, as this part of the system is not yet finished. The instrument is described in detail, including the radio-frequency system, the light detection system, and the light source. Factors that affect the accuracy of the measured phase include phase drift, radio-frequency coupling between the source and detector electronics, phase-amplitude cross talk, and others. To increase the range of intensities that can be measured, the gain of the detector is adjusted while keeping the mean anode current small compared with the quiescent current through the voltage bleeder of the photomultiplier tube so that cross talk is avoided. The calibration of the measurements is considered, and the data measured on a phantom are compared with a time-resolved instrument as well as with a finite-element forward model. The instrument allows the measurement of phase to an accuracy of 0.5° between 80 fW and 80 nW at a modulation frequency of 100 MHz, giving a dynamic range of 1:106. With a time constant of 0.3 s, phase noise is 0.5° at 1 pW and decreases to 0.06° in a typical activation measurement at 3 cm separation between the optodes. Amplitude noise is 0.8% at 1 pW and 0.1% at 3 cm separation.

  15. Accurate GPS measurement of the location and orientation of a floating platform. [for sea floor geodesy

    NASA Technical Reports Server (NTRS)

    Purcell, G. H., Jr.; Young, L. E.; Wolf, S. K.; Meehan, T. K.; Duncan, C. B.; Fisher, S. S.; Spiess, F. N.; Austin, G.; Boegeman, D. E.; Lowenstein, C. D.

    1990-01-01

    This article describes the design and initial tests of the GPS portion of a system for making seafloor geodesy measurements. In the planned system, GPS antennas on a floating platform will be used to measure the location of an acoustic transducer, attached below the platform, which interrogates an array of transponders on the seafloor. Since the GPS antennas are necessarily some distance above the transducer, a short-baseline GPS interferometer consisting of three antennas is used to measure the platform's orientation. A preliminary test of several crucial elements of the system was performed. The test involved a fixed antenna on the pier and a second antenna floating on a buoy about 80 m away. GPS measurements of the vertical component of this baseline, analyzed independently by two groups using different software, agree with each other and with an independent measurement within a centimeter. The first test of an integrated GPS/acoustic system took place in the Santa Cruz Basin off the coast of southern California in May 1990. In this test a much larger buoy, designed and built at SIO, was equipped with three GPS antennas and an acoustic transducer that interrogated a transponder on the ocean floor. Preliminary analysis indicates that the horizontal position of the transponder can be determined with a precision of about a centimeter.

  16. Accurate GPS measurement of the location and orientation of a floating platform

    NASA Astrophysics Data System (ADS)

    Purcell, G. H., Jr.; Young, L. E.; Wolf, S. K.; Meehan, T. K.; Duncan, C. B.; Fisher, S. S.; Spiess, F. N.; Austin, G.; Boegeman, D. E.; Lowenstein, C. D.

    This article describes the design and initial tests of the GPS portion of a system for making seafloor geodesy measurements. In the planned system, GPS antennas on a floating platform will be used to measure the location of an acoustic transducer, attached below the platform, which interrogates an array of transponders on the seafloor. Since the GPS antennas are necessarily some distance above the transducer, a short-baseline GPS interferometer consisting of three antennas is used to measure the platform's orientation. A preliminary test of several crucial elements of the system was performed. The test involved a fixed antenna on the pier and a second antenna floating on a buoy about 80 m away. GPS measurements of the vertical component of this baseline, analyzed independently by two groups using different software, agree with each other and with an independent measurement within a centimeter. The first test of an integrated GPS/acoustic system took place in the Santa Cruz Basin off the coast of southern California in May 1990. In this test a much larger buoy, designed and built at SIO, was equipped with three GPS antennas and an acoustic transducer that interrogated a transponder on the ocean floor. Preliminary analysis indicates that the horizontal position of the transponder can be determined with a precision of about a centimeter.

  17. Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?

    PubMed

    Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto

    2002-09-01

    Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore

  18. Method for measuring surface temperature

    DOEpatents

    Baker, Gary A.; Baker, Sheila N.; McCleskey, T. Mark

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  19. Bacterial Cytological Profiling (BCP) as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus aureus

    PubMed Central

    Quach, D.T.; Sakoulas, G.; Nizet, V.; Pogliano, J.; Pogliano, K.

    2016-01-01

    Successful treatment of bacterial infections requires the timely administration of appropriate antimicrobial therapy. The failure to initiate the correct therapy in a timely fashion results in poor clinical outcomes, longer hospital stays, and higher medical costs. Current approaches to antibiotic susceptibility testing of cultured pathogens have key limitations ranging from long run times to dependence on prior knowledge of genetic mechanisms of resistance. We have developed a rapid antimicrobial susceptibility assay for Staphylococcus aureus based on bacterial cytological profiling (BCP), which uses quantitative fluorescence microscopy to measure antibiotic induced changes in cellular architecture. BCP discriminated between methicillin-susceptible (MSSA) and -resistant (MRSA) clinical isolates of S. aureus (n = 71) within 1–2 h with 100% accuracy. Similarly, BCP correctly distinguished daptomycin susceptible (DS) from daptomycin non-susceptible (DNS) S. aureus strains (n = 20) within 30 min. Among MRSA isolates, BCP further identified two classes of strains that differ in their susceptibility to specific combinations of beta-lactam antibiotics. BCP provides a rapid and flexible alternative to gene-based susceptibility testing methods for S. aureus, and should be readily adaptable to different antibiotics and bacterial species as new mechanisms of resistance or multidrug-resistant pathogens evolve and appear in mainstream clinical practice. PMID:26981574

  20. An affordable and accurate conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Carminati, Marco; Luzzatto-Fegiz, Paolo

    2015-11-01

    In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.

  1. New insights for accurate chemically specific measurements of slow diffusing molecules

    NASA Astrophysics Data System (ADS)

    Hou, Jianbo; Madsen, Louis A.

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using 2H2O and obtain expected results, but we observe crippling artifacts when measuring 1H-glycerol diffusion with the same experimental parameters. A mathematical analysis of 2H2O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration.

  2. High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments

    NASA Technical Reports Server (NTRS)

    Fagot, R. J.; Mc Donald, R. T.; Roman, J. A.

    1968-01-01

    Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration.

  3. Evaluation Measures and Methods: Some Intersections.

    ERIC Educational Resources Information Center

    Elliott, John

    The literature is reviewed for four combinations of evaluation measures and methods: traditional methods with traditional measures (T-Meth/T-Mea), nontraditional methods with traditional measures (N-Meth/T-Mea), traditional measures with nontraditional measures (T-Meth/N-Mea), and nontraditional methods with nontraditional measures (N-Meth/N-Mea).…

  4. The effect of external dynamic loads on the lifetime of rolling element bearings: accurate measurement of the bearing behaviour

    NASA Astrophysics Data System (ADS)

    Jacobs, W.; Boonen, R.; Sas, P.; Moens, D.

    2012-05-01

    Accurate prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. Recent research emphasizes an important influence of external dynamic loads on the lifetime of bearings. However, most lifetime calculations of bearings are based on the classical ISO 281 standard, neglecting this influence. For bearings subjected to highly varying loads, this leads to inaccurate estimations of the lifetime, and therefore excessive safety factors during the design and unexpected failures during operation. This paper presents a novel test rig, developed to analyse the behaviour of rolling element bearings subjected to highly varying loads. Since bearings are very precise machine components, their motion can only be measured in an accurately controlled environment. Otherwise, noise from other components and external influences such as temperature variations will dominate the measurements. The test rig is optimised to perform accurate measurements of the bearing behaviour. Also, the test bearing is fitted in a modular structure, which guarantees precise mounting and allows testing different types and sizes of bearings. Finally, a fully controlled multi-axial static and dynamic load is imposed on the bearing, while its behaviour is monitored with capacitive proximity probes.

  5. Study Protocol - Accurate assessment of kidney function in Indigenous Australians: aims and methods of the eGFR Study

    PubMed Central

    2010-01-01

    Background There is an overwhelming burden of cardiovascular disease, type 2 diabetes and chronic kidney disease among Indigenous Australians. In this high risk population, it is vital that we are able to measure accurately kidney function. Glomerular filtration rate is the best overall marker of kidney function. However, differences in body build and body composition between Indigenous and non-Indigenous Australians suggest that creatinine-based estimates of glomerular filtration rate derived for European populations may not be appropriate for Indigenous Australians. The burden of kidney disease is borne disproportionately by Indigenous Australians in central and northern Australia, and there is significant heterogeneity in body build and composition within and amongst these groups. This heterogeneity might differentially affect the accuracy of estimation of glomerular filtration rate between different Indigenous groups. By assessing kidney function in Indigenous Australians from Northern Queensland, Northern Territory and Western Australia, we aim to determine a validated and practical measure of glomerular filtration rate suitable for use in all Indigenous Australians. Methods/Design A cross-sectional study of Indigenous Australian adults (target n = 600, 50% male) across 4 sites: Top End, Northern Territory; Central Australia; Far North Queensland and Western Australia. The reference measure of glomerular filtration rate was the plasma disappearance rate of iohexol over 4 hours. We will compare the accuracy of the following glomerular filtration rate measures with the reference measure: Modification of Diet in Renal Disease 4-variable formula, Chronic Kidney Disease Epidemiology Collaboration equation, Cockcroft-Gault formula and cystatin C- derived estimates. Detailed assessment of body build and composition was performed using anthropometric measurements, skinfold thicknesses, bioelectrical impedance and a sub-study used dual-energy X-ray absorptiometry. A

  6. gitter: a robust and accurate method for quantification of colony sizes from plate images.

    PubMed

    Wagih, Omar; Parts, Leopold

    2014-03-20

    Colony-based screens that quantify the fitness of clonal populations on solid agar plates are perhaps the most important source of genome-scale functional information in microorganisms. The images of ordered arrays of mutants produced by such experiments can be difficult to process because of laboratory-specific plate features, morphed colonies, plate edges, noise, and other artifacts. Most of the tools developed to address this problem are optimized to handle a single setup and do not work out of the box in other settings. We present gitter, an image analysis tool for robust and accurate processing of images from colony-based screens. gitter works by first finding the grid of colonies from a preprocessed image and then locating the bounds of each colony separately. We show that gitter produces comparable colony sizes to other tools in simple cases but outperforms them by being able to handle a wider variety of screens and more accurately quantify colony sizes from difficult images. gitter is freely available as an R package from http://cran.r-project.org/web/packages/gitter under the LGPL. Tutorials and demos can be found at http://omarwagih.github.io/gitter.

  7. Development and validation of a novel, simple, and accurate spectrophotometric method for the determination of lead in human serum.

    PubMed

    Shayesteh, Tavakol Heidari; Khajavi, Farzad; Khosroshahi, Abolfazl Ghafuri; Mahjub, Reza

    2016-01-01

    The determination of blood lead levels is the most useful indicator of the determination of the amount of lead that is absorbed by the human body. Various methods, like atomic absorption spectroscopy (AAS), have already been used for the detection of lead in biological fluid, but most of these methods are based on complicated, expensive, and highly instructed instruments. In this study, a simple and accurate spectroscopic method for the determination of lead has been developed and applied for the investigation of lead concentration in biological samples. In this study, a silica gel column was used to extract lead and eliminate interfering agents in human serum samples. The column was washed with deionized water. The pH was adjusted to the value of 8.2 using phosphate buffer, and then tartrate and cyanide solutions were added as masking agents. The lead content was extracted into the organic phase containing dithizone as a complexion reagent and the dithizone-Pb(II) complex was formed and approved by visible spectrophotometry at 538 nm. The recovery was found to be 84.6 %. In order to validate the method, a calibration curve involving the use of various concentration levels was calculated and proven to be linear in the range of 0.01-1.5 μg/ml, with an R (2) regression coefficient of 0.9968 by statistical analysis of linear model validation. The largest error % values were found to be -5.80 and +11.6 % for intra-day and inter-day measurements, respectively. The largest RSD % values were calculated to be 6.54 and 12.32 % for intra-day and inter-day measurements, respectively. Further, the limit of detection (LOD) was calculated to be 0.002 μg/ml. The developed method was applied to determine the lead content in the human serum of voluntary miners, and it has been proven that there is no statistically significant difference between the data provided from this novel method and the data obtained from previously studied AAS.

  8. Describing and compensating gas transport dynamics for accurate instantaneous emission measurement

    NASA Astrophysics Data System (ADS)

    Weilenmann, Martin; Soltic, Patrik; Ajtay, Delia

    Instantaneous emission measurements on chassis dynamometers and engine test benches are becoming increasingly usual for car-makers and for environmental emission factor measurement and calculation, since much more information about the formation conditions can be extracted than from the regulated bag measurements (integral values). The common exhaust gas analysers for the "regulated pollutants" (carbon monoxide, total hydrocarbons, nitrogen oxide, carbon dioxide) allow measurement at a rate of one to ten samples per second. This gives the impression of having after-the-catalyst emission information with that chronological precision. It has been shown in recent years, however, that beside the reaction time of the analysers, the dynamics of gas transport in both the exhaust system of the car and the measurement system last significantly longer than 1 s. This paper focuses on the compensation of all these dynamics convoluting the emission signals. Most analysers show linear and time-invariant reaction dynamics. Transport dynamics can basically be split into two phenomena: a pure time delay accounting for the transport of the gas downstream and a dynamic signal deformation since the gas is mixed by turbulence along the way. This causes emission peaks to occur which are smaller in height and longer in time at the sensors than they are after the catalyst. These dynamics can be modelled using differential equations. Both mixing dynamics and time delay are constant for modelling a raw gas analyser system, since the flow in that system is constant. In the exhaust system of the car, however, the parameters depend on the exhaust volume flow. For gasoline cars, the variation in overall transport time may be more than 6 s. It is shown in this paper how all these processes can be described by invertible mathematical models with the focus on the more complex case of the car's exhaust system. Inversion means that the sharp emission signal at the catalyst out location can be

  9. A Procedure for Accurately Measuring the Shaker Overturning Moment During Random Vibration Tests

    NASA Technical Reports Server (NTRS)

    Nayeri, Reza D.

    2011-01-01

    Motivation: For large system level random vibration tests, there may be some concerns about the shaker's capability for the overturning moment. It is the test conductor's responsibility to predict and monitor the overturning moment during random vibration tests. If the predicted moment is close to the shaker's capability, test conductor must measure the instantaneous moment at low levels and extrapolate to higher levels. That data will be used to decide whether it is safe to proceed to the next test level. Challenge: Kistler analog formulation for computing the real-time moment is only applicable to very limited cases in which we have 3 or 4 load cells installed at shaker interface with hardware. Approach: To overcome that limitation, a simple procedure was developed for computing the overturning moment time histories using the measured time histories of the individual load cells.

  10. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  11. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    ERIC Educational Resources Information Center

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  12. Measuring Accurately Single-Phase Sinusoidal and Non-Sinusoidal Power.

    DTIC Science & Technology

    1983-01-01

    dc source. - 1 T Figure 2.2 Power Measuring Test Set-up Source: Robert L. Boylestad , Introductory Circuit Analysis (Ohio: Charles E. Merrill, 1977) p...Power Waveforms for the General Case. Source: Robert L. Boylestad , Introductory CircuitAnalysis (Ohio: Charles E. Merrill, 1968) p. 309. Note that the...Inductive Circuit Source: Robert L. Boylestad , Introductory Circuit Analysis (Ohio: Charles E. Merrill, 1968) p. 43-. and c) In a1 purely capacitive

  13. Development of Filtered Rayleigh Scattering for Accurate Measurement of Gas Velocity

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Lempert, Walter R.

    1995-01-01

    The overall goals of this research were to develop new diagnostic tools capable of capturing unsteady and/or time-evolving, high-speed flow phenomena. The program centers around the development of Filtered Rayleigh Scattering (FRS) for velocity, temperature, and density measurement, and the construction of narrow linewidth laser sources which will be capable of producing an order MHz repetition rate 'burst' of high power pulses.

  14. Regular, Fast and Accurate Airborne In-Situ Methane Measurements Around the Tropopause

    NASA Astrophysics Data System (ADS)

    Dyroff, Christoph; Rauthe-Schöch, Armin; Schuck, Tanja J.; Zahn, Andreas

    2013-04-01

    We present a laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft. The instrument is based on a commercial fast methane analyzer (FMA, Los Gatos Res.), which was modified for fully unattended employment. A laboratory characterization was performed and the results with emphasis on the precision, cross sensitivity to H2O, and accuracy are presented. An in-flight calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. By statistical comparison of the in-situ measurements with the flask samples we derive a total uncetrainty estimate of ~ 3.85 ppbv (1?) around the tropopause, and ~ 12.4 ppbv (1?) during aircraft ascent and descent. Data from the first two years of airborne operation are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere, with occasional crossings of the tropics on flights to southern Africa. With its high spatial resolution and high accuracy this data set is unprecedented in the highly important atmospheric layer of the tropopause.

  15. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  16. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  17. Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHZ

    NASA Technical Reports Server (NTRS)

    Lang, R.H.; Tarkocin, Y.; Utku, C.; Le Vine, D.M.

    2008-01-01

    Measurements of the complex. dielectric constant of seawater at 30.00 psu, 35.00 psu and 38.27 psu over the temperature range from 5 C to 3 5 at 1.413 GHz are given and compared with the Klein-Swift results. A resonant cavity technique is used. The calibration constant used in the cavity perturbation formulas is determined experimentally using methanol and ethanediol (ethylene glycol) as reference liquids. Analysis of the data shows that the measurements are accurate to better than 1.0% in almost all cases studied.

  18. Absolute age Determinations on Diamond by Radioisotopic Methods: NOT the way to Accurately Identify Diamond Provenance

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.

    2002-05-01

    Gem-quality diamond contains such low abundances of parent-daughter radionuclides that dating the diamond lattice directly by isotopic measurements has been and will be impossible. Absolute ages on diamonds typically are obtained through measurements of their syngenetic mineral inclusions: Rb-Sr in garnet; Sm-Nd in garnet and pyroxene; Re-Os and U-Th-Pb in sulfide; K-Ar in pyroxene; and U-Pb in zircon. The application of the first two isotope schemes in the list requires putting together many inclusions from many diamonds whereas the latter isotope schemes permit ages on single diamonds. The key limitations on the application of these decay pairs are the availability and size of the inclusions, the abundance levels of the radionuclides, and instrumental sensitivity. Practical complications of radioisotope dating of inclusions are fatal to the application of the technique for diamond provenance. In all mines, the ratio of gem-quality diamonds to stones with datable inclusions is very high. Thus there is no way to date the valuable, marketable stones that are part of the conflict diamond problem, just their rare, flawed cousins. Each analysis destroys the diamond host plus the inclusion and can only be carried out in research labs by highly trained scientists. Thus, these methods can not be automated or applied to the bulk of diamond production. The geological problems with age dating are equally fatal to its application to diamond provenance. From the geological perspective, for age determination to work as a tool for diamond provenance studies, diamond ages would have to be specific to particular kimberlites or kimberlite fields and different between fields. The southern African Kaapvaal-Zimbabwe Craton and Limpopo Mobile Belt is the only cratonic region where age determinations have been applied on a large enough scale to a number of kimberlites to illustrate the geological problems in age measurements for diamond provenance. However, this southern African example

  19. Examining factors that may influence accurate measurement of testosterone in sea turtles.

    PubMed

    Graham, Katherine M; Mylniczenko, Natalie D; Burns, Charlene M; Bettinger, Tammie L; Wheaton, Catharine J

    2016-01-01

    Differences in reported testosterone concentrations in male sea turtle blood samples are common in the veterinary literature, but may be accounted for by differences in sample handling and processing prior to assay. Therefore, our study was performed to determine best practices for testosterone analysis in male sea turtles (Caretta caretta and Chelonia mydas). Blood samples were collected into 5 collection tube types, and assay validation and measured testosterone concentrations were compared across different sample storage (fresh, refrigerated 1 week, or frozen), extraction (unextracted or ether-extracted), and processing treatment (untreated, homogenized, or dissociation reagent) conditions. Ether-extracted and dissociation reagent-treated samples validated in all conditions tested and are recommended for use, as unextracted samples validated only if assayed fresh. Dissociation reagent treatment was simpler to perform than ether extraction and resulted in total testosterone concentrations ~2.7-3.5 times greater than free testosterone measured in ether-extracted samples. Sample homogenization did not affect measured testosterone concentrations, and could be used to increase volume in gelled samples. An annual seasonal testosterone increase was observed in both species when ether extraction or dissociation reagent treatment was used. Annual deslorelin implant treatments in a Chelonia mydas male resulted in suppression of seasonal testosterone following the fourth treatment. Seasonal testosterone patterns resumed following discontinuation of deslorelin. Comparison of in-house and commercially available enzyme immunoassay kits revealed similar patterns of seasonal testosterone increases and deslorelin-induced suppression. Our study highlights the importance of methodological validation and provides laboratorians with best practices for testosterone enzyme immunoassay in sea turtles.

  20. Possibility of detecting anisotropic expansion of the universe by very accurate astrometry measurements.

    PubMed

    Quercellini, Claudia; Quartin, Miguel; Amendola, Luca

    2009-04-17

    Refined astrometry measurements allow us to detect large-scale deviations from isotropy through real-time observations of changes in the angular separation between sources at cosmic distances. This "cosmic parallax" effect is a powerful consistency test of the Friedmann-Robertson-Walker metric and may set independent constraints on cosmic anisotropy. We apply this novel general test to Lemaitre-Tolman-Bondi cosmologies with off-center observers and show that future satellite missions such as Gaia might achieve accuracies that would put limits on the off-center distance which are competitive with cosmic microwave background dipole constraints.

  1. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears

    NASA Astrophysics Data System (ADS)

    Ferreira, N.; Krah, T.; Jeong, D. C.; Metz, D.; Kniel, K.; Dietzel, A.; Büttgenbach, S.; Härtig, F.

    2014-06-01

    The integration of silicon micro probing systems into conventional gear measuring instruments (GMIs) allows fully automated measurements of external involute micro spur gears of normal modules smaller than 1 mm. This system, based on a silicon microprobe, has been developed and manufactured at the Institute for Microtechnology of the Technische Universität Braunschweig. The microprobe consists of a silicon sensor element and a stylus which is oriented perpendicularly to the sensor. The sensor is fabricated by means of silicon bulk micromachining. Its small dimensions of 6.5 mm × 6.5 mm allow compact mounting in a cartridge to facilitate the integration into a GMI. In this way, tactile measurements of 3D microstructures can be realized. To enable three-dimensional measurements with marginal forces, four Wheatstone bridges are built with diffused piezoresistors on the membrane of the sensor. On the reverse of the membrane, the stylus is glued perpendicularly to the sensor on a boss to transmit the probing forces to the sensor element during measurements. Sphere diameters smaller than 300 µm and shaft lengths of 5 mm as well as measurement forces from 10 µN enable the measurements of 3D microstructures. Such micro probing systems can be integrated into universal coordinate measuring machines and also into GMIs to extend their field of application. Practical measurements were carried out at the Physikalisch-Technische Bundesanstalt by qualifying the microprobes on a calibrated reference sphere to determine their sensitivity and their physical dimensions in volume. Following that, profile and helix measurements were carried out on a gear measurement standard with a module of 1 mm. The comparison of the measurements shows good agreement between the measurement values and the calibrated values. This result is a promising basis for the realization of smaller probe diameters for the tactile measurement of micro gears with smaller modules.

  2. The accurate measurement of fear memory in Pavlovian conditioning: Resolving the baseline issue.

    PubMed

    Jacobs, Nathan S; Cushman, Jesse D; Fanselow, Michael S

    2010-07-15

    Fear conditioning has become an indispensable behavioral task in an increasingly vast array of research disciplines. Yet one unresolved issue is how conditional fear to an explicit cue interacts with and is potentially confounded by fear prior to tone presentation, referred to as baseline fear. After tone-shock pairings, we experimentally manipulated baseline fear by presenting unpaired shocks in the testing chamber and then analyzed the accuracy of common methods for reporting tone fear. Our findings indicate that baseline fear and tone fear tend to interact, where freezing to the tone increases as baseline fear increases. However, the form of interaction is not linear across all conditions and none of the commonly used reporting methods were consistently able to eliminate the confounding effects of baseline fear. We propose a methodological solution in which baseline fear is reduced to very low levels by first extinguishing fear to the training context and then pre-exposing to the testing context.

  3. Accurate Measurement of Brain Changes in Longitudinal MRI Scans using Tensor-Based Morphometry

    PubMed Central

    Hua, Xue; Gutman, Boris; Boyle, Christina; Rajagopalan, Priya; Leow, Alex D.; Yanovsky, Igor; Kumar, Anand R.; Toga, Arthur W.; Jack, Clifford R.; Schuff, Norbert; Alexander, Gene E.; Chen, Kewei; Reiman, Eric M.; Weiner, Michael W.; Thompson, Paul M.

    2011-01-01

    This paper responds to Thompson and Holland (2011), who challenged our tensor-based morphometry (TBM) method for estimating rates of brain changes in serial MRI from 431 subjects scanned every 6 months, for 2 years. Thompson and Holland noted an unexplained jump in our atrophy rate estimates: an offset between 0-6 months that may bias clinical trial power calculations. We identified why this jump occurs and propose a solution. By enforcing inverse-consistency in our TBM method, the offset dropped from 1.4% to 0.28%, giving plausible anatomical trajectories. Transitivity error accounted for the minimal remaining offset. Drug trial sample size estimates with the revised TBM-derived metrics are highly competitive with other methods, though higher than previously reported sample size estimates by a factor of 1.6 to 2.4. Importantly, estimates are far below those given in the critique. To demonstrate a 25% slowing of atrophic rates with 80% power, 62 AD and 129 MCI subjects would be required for a 2-year trial, and 91 AD and 192 MCI subjects for a 1-year trial. PMID:21320612

  4. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations.

    PubMed

    Douxfils, Jonathan; Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel; Mullier, François

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice.

  5. Methods to Assess Measurement Error in Questionnaires of Sedentary Behavior

    PubMed Central

    Sampson, Joshua N; Matthews, Charles E; Freedman, Laurence; Carroll, Raymond J.; Kipnis, Victor

    2015-01-01

    Sedentary behavior has already been associated with mortality, cardiovascular disease, and cancer. Questionnaires are an affordable tool for measuring sedentary behavior in large epidemiological studies. Here, we introduce and evaluate two statistical methods for quantifying measurement error in questionnaires. Accurate estimates are needed for assessing questionnaire quality. The two methods would be applied to validation studies that measure a sedentary behavior by both questionnaire and accelerometer on multiple days. The first method fits a reduced model by assuming the accelerometer is without error, while the second method fits a more complete model that allows both measures to have error. Because accelerometers tend to be highly accurate, we show that ignoring the accelerometer’s measurement error, can result in more accurate estimates of measurement error in some scenarios. In this manuscript, we derive asymptotic approximations for the Mean-Squared Error of the estimated parameters from both methods, evaluate their dependence on study design and behavior characteristics, and offer an R package so investigators can make an informed choice between the two methods. We demonstrate the difference between the two methods in a recent validation study comparing Previous Day Recalls (PDR) to an accelerometer-based ActivPal. PMID:27340315

  6. A technique for accurately determining the cusp-region polar cap boundary using SuperDARN HF radar measurements

    NASA Astrophysics Data System (ADS)

    Chisham, G.; Freeman, M. P.

    2003-04-01

    Accurately measuring the location and motion of the polar cap boundary (PCB) in the high-latitude ionosphere can be crucial for studies concerned with the dynamics of the polar cap, e.g. the measurement of reconnection rates. The Doppler spectral width characteristics of backscatter received by the SuperDARN HF radars have been previously used for locating and tracking the PCB in the cusp region. The boundary is generally observed in meridional beams of the SuperDARN radars and appears as a distinct change between low spectral width values observed equatorward of the cusp region, and high, but variable spectral width values observed within the cusp region. To identify the spectral width boundary (SWB) between these two regions, a simple algorithm employing a spectral width threshold has often been applied to the data. However, there is not, as yet, a standard algorithm, or spectral width threshold, which is universally applied. Nor has there been any rigorous assessment of the accuracy of this method of boundary determination. This study applies a series of threshold algorithms to a simulated cusp-region spectral width data set, to assess the accuracy of different algorithms. This shows that simple threshold algorithms correctly identify the boundary location in, at the most, 50% of the cases and that the average boundary error is at least ~ 1 2 range gates (~ 1° latitude). It transpires that spatial and temporal smoothing of the spectral width data (e.g. by median filtering), before application of a threshold algorithm can increase the boundary determination accuracy to over 95% and the average boundary error to much less than a range gate. However, this is sometimes at the cost of temporal resolution in the motion of the boundary location. The algorithms are also applied to a year’s worth of spectral width data from the cusp ionosphere, measured by the Halley SuperDARN radar in Antarctica. This analysis highlights the increased accuracy of the enhanced

  7. Accurate measurements of transition frequencies and isotope shifts of laser-trapped francium.

    PubMed

    Sanguinetti, S; Calabrese, R; Corradi, L; Dainelli, A; Khanbekyan, A; Mariotti, E; de Mauro, C; Minguzzi, P; Moi, L; Stancari, G; Tomassetti, L; Veronesi, S

    2009-04-01

    An interferometric method is used to improve the accuracy of the 7S-7P transition frequencies of three francium isotopes by 1 order of magnitude. The deduced isotope shifts for 209-211Fr confirm the ISOLDE data. The frequency of the D2 transition of 212Fr--the accepted reference for all Fr isotope shifts--is revised, and a significant difference with the ISOLDE value is found. Our results will be a benchmark for the accuracy of the theory of Fr energy levels, a necessary step to investigate fundamental symmetries.

  8. Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography.

    PubMed

    Mutelet, Fabrice; Jaubert, Jean-Noël

    2006-01-13

    Activity coefficients at infinite dilution of 29 organic compounds in two room temperature ionic liquids were determined using inverse gas chromatography. The measurements were carried out at different temperatures between 323.15 and 343.15K. To establish the influence of concurrent retention mechanisms on the accuracy of activity coefficients at infinite dilution for 1-butyl-3-methylimidazolium octyl sulfate and 1-ethyl-3-methylimidazolium tosylate, phase loading studies of the net retention volume per gram of packing as a function of the percent phase loading were used. It is shown that most of the solutes are retained largely by partition with a small contribution from adsorption on 1-butyl-3-methylimidazolium octyl sulfate and that the n-alkanes are retained predominantly by interfacial adsorption on 1-ethyl-3-methylimidazolium tosylate.

  9. Numerical simulation and analysis of accurate blood oxygenation measurement by using optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Yu, Tianhao; Li, Qian; Li, Lin; Zhou, Chuanqing

    2016-10-01

    Accuracy of photoacoustic signal is the crux on measurement of oxygen saturation in functional photoacoustic imaging, which is influenced by factors such as defocus of laser beam, curve shape of large vessels and nonlinear saturation effect of optical absorption in biological tissues. We apply Monte Carlo model to simulate energy deposition in tissues and obtain photoacoustic signals reaching a simulated focused surface detector to investigate corresponding influence of these factors. We also apply compensation on photoacoustic imaging of in vivo cat cerebral cortex blood vessels, in which signals from different lateral positions of vessels are corrected based on simulation results. And this process on photoacoustic images can improve the smoothness and accuracy of oxygen saturation results.

  10. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  11. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    PubMed Central

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  12. Accurate measurement of silver isotopic compositions in geological materials including low Pd/Ag meteorites

    NASA Astrophysics Data System (ADS)

    Woodland, S. J.; Rehkämper, M.; Halliday, A. N.; Lee, D.-C.; Hattendorf, B.; Günther, D.

    2005-04-01

    Very precise silver (Ag) isotopic compositions have been determined for a number of terrestrial rocks, and high and low Pd/Ag meteorites by utilizing multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The meteorites include primitive chondrites, the Group IAB iron meteorites Canyon Diablo and Toluca, and the Group IIIAB iron meteorite Grant. Silver isotopic measurements are primarily of interest because 107Ag was produced by decay of the short-lived radionuclide 107Pd during the formation of the solar system and hence the Pd-Ag chronometer has set constraints on the timing of early planetesimal formation. A 2σ precision of ±0.05‰ can be obtained for analyses of standard solutions when Ag isotopic ratios are normalized to Pd, to correct for instrumental mass discrimination, and to bracketing standards. Caution must be exercised when making Ag isotopic measurements because isotopic artifacts can be generated in the laboratory and during mass spectrometry. The external reproducibility for geological samples based on replicate analyses of rocks is ±0.2‰ (2σ). All chondrites analyzed have similar Ag isotopic compositions that do not differ significantly (>0.3‰) from the 'terrestrial' value of the NIST SRM 978a Ag isotope standard. Hence, they show no evidence of excess 107Ag derived from 107Pd decay or, of stable Ag isotope fractionation associated with volatile element depletion within the accretion disk or from parent body metamorphism. The Group IAB iron meteorite samples analyzed show evidence of complex behavior and disturbance of Ag isotope systematics. Therefore, care must be taken when using this group of iron meteorites to obtain chronological information based on the Pd-Ag decay scheme.

  13. Development of Accurate Chemical Equilibrium Models for the Hanford Waste Tanks: New Thermodynamic Measurements and Model Applications

    SciTech Connect

    Felmy, Andrew R.; Mason, Marvin; Qafoku, Odeta; Xia, Yuanxian; Wang, Zheming; MacLean, Graham

    2003-03-27

    Developing accurate thermodynamic models for predicting the chemistry of the high-level waste tanks at Hanford is an extremely daunting challenge in electrolyte and radionuclide chemistry. These challenges stem from the extremely high ionic strength of the tank waste supernatants, presence of chelating agents in selected tanks, wide temperature range in processing conditions and the presence of important actinide species in multiple oxidation states. This presentation summarizes progress made to date in developing accurate models for these tank waste solutions, how these data are being used at Hanford and the important challenges that remain. New thermodynamic measurements on Sr and actinide complexation with specific chelating agents (EDTA, HEDTA and gluconate) will also be presented.

  14. METHOD OF PEAK CURRENT MEASUREMENT

    DOEpatents

    Baker, G.E.

    1959-01-20

    The measurement and recording of peak electrical currents are described, and a method for utilizing the magnetic field of the current to erase a portion of an alternating constant frequency and amplitude signal from a magnetic mediums such as a magnetic tapes is presented. A portion of the flux from the current carrying conductor is concentrated into a magnetic path of defined area on the tape. After the current has been recorded, the tape is played back. The amplitude of the signal from the portion of the tape immediately adjacent the defined flux area and the amplitude of the signal from the portion of the tape within the area are compared with the amplitude of the signal from an unerased portion of the tape to determine the percentage of signal erasure, and thereby obtain the peak value of currents flowing in the conductor.

  15. Accurate measurement of the sticking time and sticking probability of Rb atoms on a polydimethylsiloxane coating

    SciTech Connect

    Atutov, S. N. Plekhanov, A. I.

    2015-01-15

    We present the results of a systematic study of Knudsen’s flow of Rb atoms in cylindrical capillary cells coated with a polydimethylsiloxane (PDMS) compound. The purpose of the investigation is to determine the characterization of the coating in terms of the sticking probability and sticking time of Rb on the two types of coating of high and medium viscosities. We report the measurement of the sticking probability of a Rb atom to the coating equal to 4.3 × 10{sup −5}, which corresponds to the number of bounces 2.3 × 10{sup 4} at room temperature. These parameters are the same for the two kinds of PDMS used. We find that at room temperature, the respective sticking times for high-viscosity and medium-viscosity PDMS are 22 ± 3 μs and 49 ± 6 μs. These sticking times are about million times larger than the sticking time derived from the surface Rb atom adsorption energy and temperature of the coating. A tentative explanation of this surprising result is proposed based on the bulk diffusion of the atoms that collide with the surface and penetrate inside the coating. The results can be important in many resonance cell experiments, such as the efficient magnetooptical trapping of rare elements or radioactive isotopes and in experiments on the light-induced drift effect.

  16. Do anthropometric indices accurately reflect directly measured body composition in men and women with chronic heart failure?

    PubMed

    Oreopoulos, Antigone; Fonarow, Gregg C; Ezekowitz, Justin A; McAlister, Finlay A; Sharma, Arya M; Kalantar-Zadeh, Kamyar; Norris, Colleen M; Johnson, Jeffery A; Padwal, Raj S

    2011-01-01

    How well anthropometric indices such as body mass index (BMI), waist circumference, waist-stature ratio, and waist index correlate with direct measures of body composition (lean body mass, body fat) in men and women with chronic heart failure (CHF) has not been reported. Body composition was assessed by dual-energy x-ray absorptiometry in 140 patients with CHF. Age-adjusted Pearson correlations between each index and measures of body composition for men and women were calculated. Diagnostic accuracy of detecting obesity or high central fat was also examined. In men, all of the anthropometric indices except waist index were just as strongly correlated with lean body mass (correlation coefficients varied between 0.56 for waist-stature ratio to 0.74 for BMI) as with percentage of body fat (correlation coefficients varied between 0.72 for BMI to 0.79 for waist circumference). In women, all 4 anthropometric measures were unable to significantly differentiate between body fat and lean body mass. The positive likelihood ratios for the detection of obesity varied between 2.26 for waist circumference and 3.42 for BMI, waist-stature ratio, and waist index. Anthropometric indices do not accurately reflect body composition in patients with CHF, especially in women. When accurate assessment of body composition is required, direct measurements should be obtained.

  17. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care.

    PubMed

    Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer

    2017-04-01

    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.

  18. Time-Accurate, Unstructured-Mesh Navier-Stokes Computations with the Space-Time CESE Method

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2006-01-01

    Application of the newly emerged space-time conservation element solution element (CESE) method to compressible Navier-Stokes equations is studied. In contrast to Euler equations solvers, several issues such as boundary conditions, numerical dissipation, and grid stiffness warrant systematic investigations and validations. Non-reflecting boundary conditions applied at the truncated boundary are also investigated from the stand point of acoustic wave propagation. Validations of the numerical solutions are performed by comparing with exact solutions for steady-state as well as time-accurate viscous flow problems. The test cases cover a broad speed regime for problems ranging from acoustic wave propagation to 3D hypersonic configurations. Model problems pertinent to hypersonic configurations demonstrate the effectiveness of the CESE method in treating flows with shocks, unsteady waves, and separations. Good agreement with exact solutions suggests that the space-time CESE method provides a viable alternative for time-accurate Navier-Stokes calculations of a broad range of problems.

  19. Towards More Accurate Measurements of the Ionization Energy of Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Sprecher, D.; Beyer, M.; Liu, J.; Merkt, F.; Salumbides, E.; Eikema, K. S. E.; Ubachs, W.; Jungen, Ch.

    2013-06-01

    With two electrons and two protons, molecular hydrogen is the simplest molecule displaying all features of a chemical bond. H_2 is therefore a fundamental system for testing molecular quantum mechanics and quantum electrodynamics in molecules. The test can be performed by comparing measured and calculated intervals between different rovibronic states of H_2. Two further quantities that can be used for this test are the dissociation and ionization energies of H_2, and considerable efforts have been invested over more than 80 years to improve the precision and accuracy of experimental and theoretical determination of these two quantities. The current status of the comparison is that the theoretical and experimental values of the ionization and dissociation energies of H_2 agree within the combined uncertainty of 30 MHz (see also). The factors currently limiting the precision of the experimental determination will be discussed and the strategies that are being implemented towards overcoming these limitations will be presented. A long-term goal is to achieve a precision of better than 15 kHz, which is the ultimate limit imposed on the accuracy of the theoretical determination by the current uncertainty of the proton-to-electron mass ratio. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov and W. Ubachs, {Phys. Rev. Lett.} 107 (4), 043005 (2011). K. Piszczatowski, G. Lach, M. Przybytek, J. Komasa, K. Pachuckiand and B. Jeziorski, {J. Chem. Theory Comput.} 5 (11), 3039 (2009). J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs and F. Merkt, {J. Chem. Phys.} 130 (17), 174306 (2009). D. Sprecher, Ch. Jungen, W. Ubachs and F. Merkt, {Faraday Discuss.} 150, 51 (2011).

  20. Rapid jetting status inspection and accurate droplet volume measurement for a piezo drop-on-demand inkjet print head using a scanning mirror for display applications

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Youn; Kim, Minsung

    2017-02-01

    Despite the inherent fabrication simplicity of piezo drop-on-demand inkjet printing, the non-uniform deposition of colourants or electroluminescent organic materials leads to faulty display products, and hence, the importance of rapid jetting status inspection and accurate droplet volume measurement increases from a process perspective. In this work, various jetting status inspections and droplet volume measurement methods are reviewed by discussing their advantages and disadvantages, and then, the opportunities for the developed prototype with a scanning mirror are explored. This work demonstrates that jetting status inspection of 384 fictitious droplets can be performed within 17 s with maximum and minimum measurement accuracies of 0.2 ± 0.5 μ m for the fictitious droplets of 50 μ m in diameter and -1.2 ± 0.3 μ m for the fictitious droplets of 30 μ m in diameter, respectively. In addition to the new design of an inkjet monitoring instrument with a scanning mirror, two novel methods to accurately measure the droplet volume by amplifying a minute droplet volume difference and then converting to other physical properties are suggested and the droplet volume difference of ±0.3% is demonstrated to be discernible using numerical simulations, even with the low measurement accuracy of 1 μ m . When the fact is considered that the conventional vision-based method with a CCD camera requires the optical measurement accuracy less than 25 nm to measure the volume of an in-flight droplet in the nominal diameter of 50 μ m at the same volume measurement accuracy, the suggested method with the developed prototype offers a whole new opportunity to inkjet printing for display applications.

  1. Rapid jetting status inspection and accurate droplet volume measurement for a piezo drop-on-demand inkjet print head using a scanning mirror for display applications.

    PubMed

    Shin, Dong-Youn; Kim, Minsung

    2017-02-01

    Despite the inherent fabrication simplicity of piezo drop-on-demand inkjet printing, the non-uniform deposition of colourants or electroluminescent organic materials leads to faulty display products, and hence, the importance of rapid jetting status inspection and accurate droplet volume measurement increases from a process perspective. In this work, various jetting status inspections and droplet volume measurement methods are reviewed by discussing their advantages and disadvantages, and then, the opportunities for the developed prototype with a scanning mirror are explored. This work demonstrates that jetting status inspection of 384 fictitious droplets can be performed within 17 s with maximum and minimum measurement accuracies of 0.2 ± 0.5 μm for the fictitious droplets of 50 μm in diameter and -1.2 ± 0.3 μm for the fictitious droplets of 30 μm in diameter, respectively. In addition to the new design of an inkjet monitoring instrument with a scanning mirror, two novel methods to accurately measure the droplet volume by amplifying a minute droplet volume difference and then converting to other physical properties are suggested and the droplet volume difference of ±0.3% is demonstrated to be discernible using numerical simulations, even with the low measurement accuracy of 1 μm. When the fact is considered that the conventional vision-based method with a CCD camera requires the optical measurement accuracy less than 25 nm to measure the volume of an in-flight droplet in the nominal diameter of 50 μm at the same volume measurement accuracy, the suggested method with the developed prototype offers a whole new opportunity to inkjet printing for display applications.

  2. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    SciTech Connect

    Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  3. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    NASA Astrophysics Data System (ADS)

    Thompson, A. P.; Swiler, L. P.; Trott, C. R.; Foiles, S. M.; Tucker, G. J.

    2015-03-01

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  4. An experimental device for accurate ultrasounds measurements in liquid foods at high pressure

    NASA Astrophysics Data System (ADS)

    Hidalgo-Baltasar, E.; Taravillo, M.; Baonza, V. G.; Sanz, P. D.; Guignon, B.

    2012-12-01

    The use of high hydrostatic pressure to ensure safe and high-quality product has markedly increased in the food industry during the last decade. Ultrasonic sensors can be employed to control such processes in an equivalent way as they are currently used in processes carried out at room pressure. However, their installation, calibration and use are particularly challenging in the context of a high pressure environment. Besides, data about acoustic properties of food under pressure and even for water are quite scarce in the pressure range of interest for food treatment (namely, above 200 MPa). The objective of this work was to establish a methodology to determine the speed of sound in foods under pressure. An ultrasonic sensor using the multiple reflections method was adapted to a lab-scale HHP equipment to determine the speed of sound in water between 253.15 and 348.15 K, and at pressures up to 700 MPa. The experimental speed-of-sound data were compared to the data calculated from the equation of state of water (IAPWS-95 formulation). From this analysis, the way to calibrate cell path was validated. After this calibration procedure, the speed of sound could be determined in liquid foods by using this sensor with a relative uncertainty between (0.22 and 0.32) % at a confidence level of 95 % over the whole pressure domain.

  5. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods

    NASA Astrophysics Data System (ADS)

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Wilkinson, A. G.; MacNaught, Gillian; Semple, Scott I.; Boardman, James P.

    2016-03-01

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases ‘uniformly’ distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course.

  6. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods.

    PubMed

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Wilkinson, A G; Macnaught, Gillian; Semple, Scott I; Boardman, James P

    2016-03-24

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases 'uniformly' distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course.

  7. Cleveland Clinic intelligent mouthguard: a new technology to accurately measure head impact in athletes and soldiers

    NASA Astrophysics Data System (ADS)

    Bartsch, Adam; Samorezov, Sergey

    2013-05-01

    Nearly 2 million Traumatic Brain Injuries (TBI) occur in the U.S. each year, with societal costs approaching $60 billion. Including mild TBI and concussion, TBI's are prevalent in soldiers returning from Iraq and Afghanistan as well as in domestic athletes. Long-term risks of single and cumulative head impact dosage may present in the form of post traumatic stress disorder (PTSD), depression, suicide, Chronic Traumatic Encephalopathy (CTE), dementia, Alzheimer's and Parkinson's diseases. Quantifying head impact dosage and understanding associated risk factors for the development of long-term sequelae is critical toward developing guidelines for TBI exposure and post-exposure management. The current knowledge gap between head impact exposure and clinical outcomes limits the understanding of underlying TBI mechanisms, including effective treatment protocols and prevention methods for soldiers and athletes. In order to begin addressing this knowledge gap, Cleveland Clinic is developing the "Intelligent Mouthguard" head impact dosimeter. Current testing indicates the Intelligent Mouthguard can quantify linear acceleration with 3% error and angular acceleration with 17% error during impacts ranging from 10g to 174g and 850rad/s2 to 10000rad/s2, respectively. Correlation was high (R2 > 0.99, R2 = 0.98, respectively). Near-term development will be geared towards quantifying head impact dosages in vitro, longitudinally in athletes and to test new sensors for possible improved accuracy and reduced bias. Long-term, the IMG may be useful to soldiers to be paired with neurocognitive clinical data quantifying resultant TBI functional deficits.

  8. Calculation of accurate channel spacing of an AWG optical demultiplexer applying proportional method

    NASA Astrophysics Data System (ADS)

    Seyringer, D.; Hodzic, E.

    2015-06-01

    We present the proportional method to correct the channel spacing between the transmitted output channels of an AWG. The developed proportional method was applied to 64-channel, 50 GHz AWG and the achieved results confirm very good correlation between designed channel spacing (50 GHz) and the channel spacing calculated from simulated AWG transmission characteristics.

  9. A second-order accurate kinetic-theory-based method for inviscid compressible flows

    NASA Technical Reports Server (NTRS)

    Deshpande, Suresh M.

    1986-01-01

    An upwind method for the numerical solution of the Euler equations is presented. This method, called the kinetic numerical method (KNM), is based on the fact that the Euler equations are moments of the Boltzmann equation of the kinetic theory of gases when the distribution function is Maxwellian. The KNM consists of two phases, the convection phase and the collision phase. The method is unconditionally stable and explicit. It is highly vectorizable and can be easily made total variation diminishing for the distribution function by a suitable choice of the interpolation strategy. The method is applied to a one-dimensional shock-propagation problem and to a two-dimensional shock-reflection problem.

  10. Efficiency Analysis and Comparison of Different Radon Progeny Measurement Methods

    PubMed Central

    Zhang, Lei

    2013-01-01

    Radon exposure to the public contributes more than half of all the radiation doses caused by natural radiation; accurate measurement of radon progeny is quite essential for the dose evaluation of radon exposure in environment. For the purpose of establishing a radon progeny standard and controlling measurement quality of commercial devices, it is quite important to analyze the efficiency of different measurement methods and determine which would be the most appropriate for radon progeny measurements. Through theoretical analysis and experimental measurement, some commonly used measurement methods were compared in this study and the development trends of those methods were reviewed. Results show that for radon progeny measurement, the spectroscopic analysis method is better than the gross count method, while least-square calculation methods is better than traditional three-count or five-count method. Multiperiod counting of α plus β spectrum as well as using weighted least-square calculation method might be the best choice for accurate measurement on radon progeny in standard radon chamber when calibrating commercial radon progeny monitors. PMID:24385873

  11. Accurate and efficient velocity estimation using Transmission matrix formalism based on the domain decomposition method

    NASA Astrophysics Data System (ADS)

    Wang, Benfeng; Jakobsen, Morten; Wu, Ru-Shan; Lu, Wenkai; Chen, Xiaohong

    2017-03-01

    Full waveform inversion (FWI) has been regarded as an effective tool to build the velocity model for the following pre-stack depth migration. Traditional inversion methods are built on Born approximation and are initial model dependent, while this problem can be avoided by introducing Transmission matrix (T-matrix), because the T-matrix includes all orders of scattering effects. The T-matrix can be estimated from the spatial aperture and frequency bandwidth limited seismic data using linear optimization methods. However the full T-matrix inversion method (FTIM) is always required in order to estimate velocity perturbations, which is very time consuming. The efficiency can be improved using the previously proposed inverse thin-slab propagator (ITSP) method, especially for large scale models. However, the ITSP method is currently designed for smooth media, therefore the estimation results are unsatisfactory when the velocity perturbation is relatively large. In this paper, we propose a domain decomposition method (DDM) to improve the efficiency of the velocity estimation for mode