Science.gov

Sample records for accurate measurement techniques

  1. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  2. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  3. A novel technique for highly accurate gas exchange measurements

    NASA Astrophysics Data System (ADS)

    Kalkenings, R. K.; Jähne, B. J.

    2003-04-01

    The Heidelberg Aeolotron is a circular wind-wave facility for investigating air-sea gas exchange. In this contribution a novel technique for measuring highly accurate transfer velocities k of mass transfer will be presented. Traditionally, in mass balance techniques the constant of decay for gas concentrations over time is measured. The major drawback of this concept is the long time constant. At low wind speeds and a water height greater than 1 m the period of observation has to be several days. In a gas-tight facility such as the Aeolotron, the transfer velocity k can be computed from the concentration in the water body and the change of concentration in the gas space. Owing to this fact, transfer velocities are gained while greatly reducing the measuring times to less than one hour. The transfer velocity k of a tracer can be parameterized as k=1/β \\cdot u_* \\cdot Sc^n, with the Schmidt Number Sc, shear velocity u_* and the dimensionless transfer resistance β. The Schmidt Number exponent n can be derived from simultaneous measurements of different tracers. Since these tracers are of different Schmidt number, the shear velocity is not needed. To allow for Schmidt numbers spanning a hole decade, in our experiments He, H_2, N_2O and F12 are used. The relative accuracy of measuring the transfer velocity was improved to less than 2%. In 9 consecutive experiments conducted at a wind speed of 6.2 m/s, the deviation of the Schmidt number exponent was found to be just under 0.02. This high accuracy will allow precisely determining the transition of the Schmidt number exponent from n=2/3 to n=0.5 from a flat to wavy water surface. In order to quantify gas exchange not only the wind speed is important. Surfactants have a pronounced effect on the wave field and lead to a drastic reduction in the transfer velocity. In the Aeolotron measurements were conducted with a variety of measuring devices, ranging from an imaging slope gauge (ISG) to thermal techniques with IR

  4. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  5. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  6. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  7. Radial artery blood pressure measurement in neonates: an accurate and convenient technique in clinical practice.

    PubMed

    Gevers, M; van Genderingen, H R; Lafeber, H N; Hack, W W

    1995-01-01

    To achieve accurate blood pressure measurement through radial artery catheters in infants, we previously developed an experimental high-fidelity catheter-manometer system (CMS). As this system lacks facilities for flushing and for blood sampling, we aimed to further develop this technique in order to make the system suitable for clinical practice. In addition, we aimed to develop methods to automate processing of the pressure wave forms. The high-fidelity system to be improved consisted of a 24 Gauge catheter, a threeway stopcock and a tip-manometer. We inserted this system in the catheter-manometer system as routinely used i.e. the remaining end of the stopcock was connected to the fluid-filled CMS as used routinely. This combined system became clinically applicable, since blood samples could be obtained and flushing could be performed. The measurement chain was completed by application of a modified physiological monitor and a computerized method to analyze pressure wave forms. In this manner accurate beat-to-beat pressure parameters were obtained. This technique was applied to 25 neonates admitted for intensive care and requiring arterial access. Gestational age of these infants ranged from 25-40 (median 29) weeks and birth weight ranges from 500-3375 (median 1060) grams. In all infants the technique was found to be convenient and the high-fidelity blood pressure measurements were performed without any problems. The advantage of the present system is the potential for both correct intermittent recordings of arterial wave forms in close relation to clinical condition and for the establishment of accurate radial artery beat-to-beat pressure values in clinical practice.

  8. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  9. An accurate scatter measurement and correction technique for cone beam breast CT imaging using scanning sampled measurement (SSM)technique

    NASA Astrophysics Data System (ADS)

    Liu, Xinming; Shaw, Chris C.; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C.; Kappadath, S. Cheenu

    2006-03-01

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images. Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  10. Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms

  11. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required.

  12. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required. PMID:18488965

  13. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique.

    PubMed

    Huang, Y S; Huang, Y P; Huang, K N; Young, M S

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  14. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  15. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth W.; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M.

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10-3 for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  16. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity.

    PubMed

    Allen, Kenneth W; Scott, Mark M; Reid, David R; Bean, Jeffrey A; Ellis, Jeremy D; Morris, Andrew P; Marsh, Jeramy M

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10(-3) for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands. PMID:27250447

  17. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  18. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  19. A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels.

    PubMed

    Bachir, Alexia I; Kolin, David L; Heinze, Katrin G; Hebert, Benedict; Wiseman, Paul W

    2008-06-14

    Fluctuation-based fluorescence correlation techniques are widely used to study dynamics of fluorophore labeled biomolecules in cells. Semiconductor quantum dots (QDs) have been developed as bright and photostable fluorescent probes for various biological applications. However, the fluorescence intermittency of QDs, commonly referred to as "blinking", is believed to complicate quantitative correlation spectroscopy measurements of transport properties, as it is an additional source of fluctuations that contribute on a wide range of time scales. The QD blinking fluctuations obey power-law distributions so there is no single characteristic fluctuation time for this phenomenon. Consequently, it is highly challenging to separate fluorescence blinking fluctuations from those due to transport dynamics. Here, we quantify the bias introduced by QD blinking in transport measurements made using fluctuation methods. Using computer simulated image time series of diffusing point emitters with set "on" and "off" time emission characteristics, we show that blinking results in a systematic overestimation of the diffusion coefficients measured with correlation analysis when a simple diffusion model is used to fit the time correlation decays. The relative error depends on the inherent blinking power-law statistics, the sampling rate relative to the characteristic diffusion time and blinking times, and the total number of images in the time series. This systematic error can be significant; moreover, it can often go unnoticed in common transport model fits of experimental data. We propose an alternative fitting model that incorporates blinking and improves the accuracy of the recovered diffusion coefficients. We also show how to completely eliminate the bias by applying k-space image correlation spectroscopy, which completely separates the diffusion and blinking dynamics, and allows the simultaneous recovery of accurate diffusion coefficients and QD blinking probability distribution

  20. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  1. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  2. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  3. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  4. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  5. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  8. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    To understand different aspects of life at the molecular level, one would think that ideally all components of specific processes should be individually isolated and studied in details. Reductionist approaches, i.e., studying one biological event at a one-gene or one-protein-at-a-time basis, indeed have made significant contributions to our understanding of many basic facts of biology. However, these individual “building blocks” can not be visualized as a comprehensive “model” of the life of cells, tissues, and organisms, without using more integrative approaches.1,2 For example, the emerging field of “systems biology” aims to quantify all of the components of a biological system to assess their interactions and to integrate diverse types of information obtainable from this system into models that could explain and predict behaviors.3-6 Recent breakthroughs in genomics, proteomics, and bioinformatics are making this daunting task a reality.7-14 Proteomics, the systematic study of the entire complement of proteins expressed by an organism, tissue, or cell under a specific set of conditions at a specific time (i.e., the proteome), has become an essential enabling component of systems biology. While the genome of an organism may be considered static over short timescales, the expression of that genome as the actual gene products (i.e., mRNAs and proteins) is a dynamic event that is constantly changing due to the influence of environmental and physiological conditions. Exclusive monitoring of the transcriptomes can be carried out using high-throughput cDNA microarray analysis,15-17 however the measured mRNA levels do not necessarily correlate strongly with the corresponding abundances of proteins,18-20 The actual amount of functional proteins can be altered significantly and become independent of mRNA levels as a result of post-translational modifications (PTMs),21 alternative splicing,22,23 and protein turnover.24,25 Moreover, the functions of expressed

  9. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  10. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  11. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  12. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion.

    PubMed

    Otero-Millan, Jorge; Roberts, Dale C; Lasker, Adrian; Zee, David S; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines. PMID:26587699

  13. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion

    PubMed Central

    Otero-Millan, Jorge; Roberts, Dale C.; Lasker, Adrian; Zee, David S.; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines. PMID:26587699

  14. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion.

    PubMed

    Otero-Millan, Jorge; Roberts, Dale C; Lasker, Adrian; Zee, David S; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines.

  15. Completely automated multiresolution edge snapper (CAMES): a new technique for an accurate carotid ultrasound IMT measurement and its validation on a multi-institutional database

    NASA Astrophysics Data System (ADS)

    Molinari, Filippo; Loizou, Christos; Zeng, Guang; Pattichis, Costantinos; Pantziaris, Marios; Liboni, William; Nicolaides, Andrew; Suri, Jasjit S.

    2011-03-01

    Since 2005, our research team has been developing automated techniques for carotid artery (CA) wall segmentation and intima-media thickness (IMT) measurement. We developed a snake-based technique (which we named CULEX1,2), a method based on an integrated approach of feature extraction, fitting, and classification (which we named CALEX3), and a watershed transform based algorithm4. Each of the previous methods substantially consisted in two distinct stages: Stage-I - Automatic carotid artery detection. In this step, intelligent procedures were adopted to automatically locate the CA in the image frame. Stage-II - CA wall segmentation and IMT measurement. In this second step, the CA distal (or far) wall is segmented in order to trace the lumen-intima (LI) and media-adventitia (MA) boundaries. The distance between the LI/MA borders is the IMT estimation. The aim of this paper is the description of a novel and completely automated technique for carotid artery segmentation and IMT measurement based on an innovative multi-resolution approach.

  16. Preparation and accurate measurement of pure ozone.

    PubMed

    Janssen, Christof; Simone, Daniela; Guinet, Mickaël

    2011-03-01

    Preparation of high purity ozone as well as precise and accurate measurement of its pressure are metrological requirements that are difficult to meet due to ozone decomposition occurring in pressure sensors. The most stable and precise transducer heads are heated and, therefore, prone to accelerated ozone decomposition, limiting measurement accuracy and compromising purity. Here, we describe a vacuum system and a method for ozone production, suitable to accurately determine the pressure of pure ozone by avoiding the problem of decomposition. We use an inert gas in a particularly designed buffer volume and can thus achieve high measurement accuracy and negligible degradation of ozone with purities of 99.8% or better. The high degree of purity is ensured by comprehensive compositional analyses of ozone samples. The method may also be applied to other reactive gases. PMID:21456766

  17. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  18. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  19. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  20. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  1. Precise and accurate isotopic measurements using multiple-collector ICPMS

    NASA Astrophysics Data System (ADS)

    Albarède, F.; Telouk, Philippe; Blichert-Toft, Janne; Boyet, Maud; Agranier, Arnaud; Nelson, Bruce

    2004-06-01

    New techniques of isotopic measurements by a new generation of mass spectrometers equipped with an inductively-coupled-plasma source, a magnetic mass filter, and multiple collection (MC-ICPMS) are quickly developing. These techniques are valuable because of (1) the ability of ICP sources to ionize virtually every element in the periodic table, and (2) the large sample throughout. However, because of the complex trajectories of multiple ion beams produced in the plasma source whether from the same or different elements, the acquisition of precise and accurate isotopic data with this type of instrument still requires a good understanding of instrumental fractionation processes, both mass-dependent and mass-independent. Although physical processes responsible for the instrumental mass bias are still to be understood more fully, we here present a theoretical framework that allows for most of the analytical limitations to high precision and accuracy to be overcome. After a presentation of unifying phenomenological theory for mass-dependent fractionation in mass spectrometers, we show how this theory accounts for the techniques of standard bracketing and of isotopic normalization by a ratio of either the same or a different element, such as the use of Tl to correct mass bias on Pb. Accuracy is discussed with reference to the concept of cup efficiencies. Although these can be simply calibrated by analyzing standards, we derive a straightforward, very general method to calculate accurate isotopic ratios from dynamic measurements. In this study, we successfully applied the dynamic method to Nd and Pb as examples. We confirm that the assumption of identical mass bias for neighboring elements (notably Pb and Tl, and Yb and Lu) is both unnecessary and incorrect. We further discuss the dangers of straightforward standard-sample bracketing when chemical purification of the element to be analyzed is imperfect. Pooling runs to improve precision is acceptable provided the pooled

  2. A New Multiscale Technique for Time-Accurate Geophysics Simulations

    NASA Astrophysics Data System (ADS)

    Omelchenko, Y. A.; Karimabadi, H.

    2006-12-01

    Large-scale geophysics systems are frequently described by multiscale reactive flow models (e.g., wildfire and climate models, multiphase flows in porous rocks, etc.). Accurate and robust simulations of such systems by traditional time-stepping techniques face a formidable computational challenge. Explicit time integration suffers from global (CFL and accuracy) timestep restrictions due to inhomogeneous convective and diffusion processes, as well as closely coupled physical and chemical reactions. Application of adaptive mesh refinement (AMR) to such systems may not be always sufficient since its success critically depends on a careful choice of domain refinement strategy. On the other hand, implicit and timestep-splitting integrations may result in a considerable loss of accuracy when fast transients in the solution become important. To address this issue, we developed an alternative explicit approach to time-accurate integration of such systems: Discrete-Event Simulation (DES). DES enables asynchronous computation by automatically adjusting the CPU resources in accordance with local timescales. This is done by encapsulating flux- conservative updates of numerical variables in the form of events, whose execution and synchronization is explicitly controlled by imposing accuracy and causality constraints. As a result, at each time step DES self- adaptively updates only a fraction of the global system state, which eliminates unnecessary computation of inactive elements. DES can be naturally combined with various mesh generation techniques. The event-driven paradigm results in robust and fast simulation codes, which can be efficiently parallelized via a new preemptive event processing (PEP) technique. We discuss applications of this novel technology to time-dependent diffusion-advection-reaction and CFD models representative of various geophysics applications.

  3. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement

    NASA Astrophysics Data System (ADS)

    Dong, J. W.; Wang, B.; Gao, C.; Wang, L. J.

    2016-09-01

    An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The system achieves a high measurement accuracy of 0.2 ps with a 0.1 ps measurement resolution and a large dynamic range up to 50 km as well as no dead zone.

  4. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  5. Modified algesimeter provides accurate depth measurements

    NASA Technical Reports Server (NTRS)

    Turner, D. P.

    1966-01-01

    Algesimeter which incorporates a standard sensory needle with a sensitive micrometer, measures needle point depth penetration in pain tolerance research. This algesimeter provides an inexpensive, precise instrument with assured validity of recordings in those biomedical areas with a requirement for repeated pain detection or ascertaining pain sensitivity.

  6. EMR Gage Would Measure Coal Thickness Accurately

    NASA Technical Reports Server (NTRS)

    King, J. D.; Rollwitz, W. L.

    1982-01-01

    Laboratory tests indicate electron magnetic resonance (EMR) would be effective in measuring thickness of coal overlying rock substrate. In prototype dual-frequency EMR system, Sample is irradiated by two radio frequencies. Signals are mixed, producing sum and difference output frequencies that are detected by receiver. Magnetic field is varied to scan resonant spot through sample. In system designed for field use, electromagnet is U-shaped, so that sample can be adjacent to, rather than inside the probe. Same coil is used for transmitting and receiving.

  7. Accurate measurements of dynamics and reproducibility in small genetic networks

    PubMed Central

    Dubuis, Julien O; Samanta, Reba; Gregor, Thomas

    2013-01-01

    Quantification of gene expression has become a central tool for understanding genetic networks. In many systems, the only viable way to measure protein levels is by immunofluorescence, which is notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that careful identification and control of experimental error allows for highly accurate gene expression measurements. We generated antibodies in different host species, allowing for simultaneous staining of four Drosophila gap genes in individual embryos. Careful error analysis of hundreds of expression profiles reveals that less than ∼20% of the observed embryo-to-embryo fluctuations stem from experimental error. These measurements make it possible to extract not only very accurate mean gene expression profiles but also their naturally occurring fluctuations of biological origin and corresponding cross-correlations. We use this analysis to extract gap gene profile dynamics with ∼1 min accuracy. The combination of these new measurements and analysis techniques reveals a twofold increase in profile reproducibility owing to a collective network dynamics that relays positional accuracy from the maternal gradients to the pair-rule genes. PMID:23340845

  8. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  9. Remote Raman measurement techniques

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.

    1981-01-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  10. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  11. The attribute measurement technique

    SciTech Connect

    Macarthur, Duncan W; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  12. Foraminal height measurement techniques

    PubMed Central

    Phan, Kevin; Rao, Prashanth J.

    2015-01-01

    Background One of the proposed advantages of anterior lumbar interbody fusion (ALIF) is restoration of disc height and hence an indirect foraminal height restoration. While this proposed advantage is often quoted in the literature, there are few robust studies demonstrating restoration of foraminal volume. Thus, this study aimed to review the literature and discuss the progression and development of foramen measurement techniques. Methods A review of the literature was performed to identify studies which reported foraminal height and dimensions following fusion surgery in cadaveric models or patients. Results Techniques in prior studies used to quantify foraminal dimensions before and after fusion operations include analysis from plain radiographs, computed tomography (CT) scans and magnetic resonance imaging (MRI) scans. Recent studies have attempted to standardize foraminal dimension measurements with the use of orthogonal software, accelerator-based measurements and the use of multiple images for three-dimensional reconstruction of the foramen volume. Conclusions Consistent results have demonstrated significant increases in foraminal area and height following anterior lumbar interbody distraction, providing evidence that ALIF can indirectly increase foraminal height. Future studies should use standardized measurement approaches such as the Pedicle-to-Pedicle technique with CT or MRI images to determine changes in foraminal dimensions.

  13. Foraminal height measurement techniques

    PubMed Central

    Phan, Kevin; Rao, Prashanth J.

    2015-01-01

    Background One of the proposed advantages of anterior lumbar interbody fusion (ALIF) is restoration of disc height and hence an indirect foraminal height restoration. While this proposed advantage is often quoted in the literature, there are few robust studies demonstrating restoration of foraminal volume. Thus, this study aimed to review the literature and discuss the progression and development of foramen measurement techniques. Methods A review of the literature was performed to identify studies which reported foraminal height and dimensions following fusion surgery in cadaveric models or patients. Results Techniques in prior studies used to quantify foraminal dimensions before and after fusion operations include analysis from plain radiographs, computed tomography (CT) scans and magnetic resonance imaging (MRI) scans. Recent studies have attempted to standardize foraminal dimension measurements with the use of orthogonal software, accelerator-based measurements and the use of multiple images for three-dimensional reconstruction of the foramen volume. Conclusions Consistent results have demonstrated significant increases in foraminal area and height following anterior lumbar interbody distraction, providing evidence that ALIF can indirectly increase foraminal height. Future studies should use standardized measurement approaches such as the Pedicle-to-Pedicle technique with CT or MRI images to determine changes in foraminal dimensions. PMID:27683677

  14. Accurate measurement of liquid transport through nanoscale conduits

    PubMed Central

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  15. Accurate measurement of liquid transport through nanoscale conduits

    NASA Astrophysics Data System (ADS)

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-04-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems.

  16. Accurate measurement of liquid transport through nanoscale conduits.

    PubMed

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  17. Accurately measuring MPI broadcasts in a computational grid

    SciTech Connect

    Karonis N T; de Supinski, B R

    1999-05-06

    An MPI library's implementation of broadcast communication can significantly affect the performance of applications built with that library. In order to choose between similar implementations or to evaluate available libraries, accurate measurements of broadcast performance are required. As we demonstrate, existing methods for measuring broadcast performance are either inaccurate or inadequate. Fortunately, we have designed an accurate method for measuring broadcast performance, even in a challenging grid environment. Measuring broadcast performance is not easy. Simply sending one broadcast after another allows them to proceed through the network concurrently, thus resulting in inaccurate per broadcast timings. Existing methods either fail to eliminate this pipelining effect or eliminate it by introducing overheads that are as difficult to measure as the performance of the broadcast itself. This problem becomes even more challenging in grid environments. Latencies a long different links can vary significantly. Thus, an algorithm's performance is difficult to predict from it's communication pattern. Even when accurate pre-diction is possible, the pattern is often unknown. Our method introduces a measurable overhead to eliminate the pipelining effect, regardless of variations in link latencies. choose between different available implementations. Also, accurate and complete measurements could guide use of a given implementation to improve application performance. These choices will become even more important as grid-enabled MPI libraries [6, 7] become more common since bad choices are likely to cost significantly more in grid environments. In short, the distributed processing community needs accurate, succinct and complete measurements of collective communications performance. Since successive collective communications can often proceed concurrently, accurately measuring them is difficult. Some benchmarks use knowledge of the communication algorithm to predict the

  18. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  19. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  20. New simple method for fast and accurate measurement of volumes

    NASA Astrophysics Data System (ADS)

    Frattolillo, Antonio

    2006-04-01

    A new simple method is presented, which allows us to measure in just a few minutes but with reasonable accuracy (less than 1%) the volume confined inside a generic enclosure, regardless of the complexity of its shape. The technique proposed also allows us to measure the volume of any portion of a complex manifold, including, for instance, pipes and pipe fittings, valves, gauge heads, and so on, without disassembling the manifold at all. To this purpose an airtight variable volume is used, whose volume adjustment can be precisely measured; it has an overall capacity larger than that of the unknown volume. Such a variable volume is initially filled with a suitable test gas (for instance, air) at a known pressure, as carefully measured by means of a high precision capacitive gauge. By opening a valve, the test gas is allowed to expand into the previously evacuated unknown volume. A feedback control loop reacts to the resulting finite pressure drop, thus contracting the variable volume until the pressure exactly retrieves its initial value. The overall reduction of the variable volume achieved at the end of this process gives a direct measurement of the unknown volume, and definitively gets rid of the problem of dead spaces. The method proposed actually does not require the test gas to be rigorously held at a constant temperature, thus resulting in a huge simplification as compared to complex arrangements commonly used in metrology (gas expansion method), which can grant extremely accurate measurement but requires rather expensive equipments and results in time consuming methods, being therefore impractical in most applications. A simple theoretical analysis of the thermodynamic cycle and the results of experimental tests are described, which demonstrate that, in spite of its simplicity, the method provides a measurement accuracy within 0.5%. The system requires just a few minutes to complete a single measurement, and is ready immediately at the end of the process. The

  1. Accurate Insertion Loss Measurements of the Juno Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Chen, Jacqueline; Hodges, Richard; Demas, John

    2010-01-01

    This paper describes two independent methods for estimating the insertion loss of patch array antennas that were developed for the Juno Microwave Radiometer instrument. One method is based principally on pattern measurements while the other method is based solely on network analyzer measurements. The methods are accurate to within 0.1 dB for the measured antennas and show good agreement (to within 0.1dB) of separate radiometric measurements.

  2. Accurate MTF measurement in digital radiography using noise response

    PubMed Central

    Kuhls-Gilcrist, Andrew; Jain, Amit; Bednarek, Daniel R.; Hoffmann, Kenneth R.; Rudin, Stephen

    2010-01-01

    an average of 20%. Deviations of the experimental results largely followed the trend seen in the simulation results, suggesting that differences between the two methods could be explained as resulting from the inherent inaccuracies of the edge-response measurement technique used in this study. Aliasing of the correlated noise component was shown to have a minimal effect on the measured MTF for the three detectors studied. Systems with significant aliasing of the correlated noise component (e.g., a-Se based detectors) would likely require a more sophisticated fitting scheme to provide accurate results. Conclusions: Results indicate that the noise-response method, a simple technique, can be used to accurately measure the MTF of digital x-ray detectors, while alleviating the problems and inaccuracies associated with use of precision test objects, such as a slit or an edge. PMID:20229882

  3. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  4. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  5. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  6. Instrument accurately measures small temperature changes on test surface

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Miller, H. B.

    1966-01-01

    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material.

  7. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  8. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  9. Toward more accurate loss tangent measurements in reentrant cavities

    SciTech Connect

    Moyer, R. D.

    1980-05-01

    Karpova has described an absolute method for measurement of dielectric properties of a solid in a coaxial reentrant cavity. His cavity resonance equation yields very accurate results for dielectric constants. However, he presented only approximate expressions for the loss tangent. This report presents more exact expressions for that quantity and summarizes some experimental results.

  10. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, G.; Horton, K.A.; Elias, T.; Garbeil, H.; Mouginis-Mark, P. J.; Sutton, A.J.; Harris, A.J.L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Ki??lauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s-1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements. ?? Springer-Verlag 2006.

  11. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  12. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect

    Haugh, M. J.

    2011-07-28

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  13. Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions

    SciTech Connect

    Trabert, E

    2009-02-19

    A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

  14. A method for accurate temperature measurement using infrared thermal camera.

    PubMed

    Tokunaga, Tomoharu; Narushima, Takashi; Yonezawa, Tetsu; Sudo, Takayuki; Okubo, Shuichi; Komatsubara, Shigeyuki; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2012-08-01

    The temperature distribution on a centre-holed thin foil of molybdenum, used as a sample and heated using a sample-heating holder for electron microscopy, was measured using an infrared thermal camera. The temperature on the heated foil area located near the heating stage of the heating holder is almost equal to the temperature on the heating stage. However, during the measurement of the temperature at the edge of the hole of the foil located farthest from the heating stage, a drop in temperature should be taken into consideration; however, so far, no method has been developed to locally measure the temperature distribution on the heated sample. In this study, a method for the accurate measurement of temperature distribution on heated samples for electron microscopy is discussed.

  15. Accurate Runout Measurement for HDD Spinning Motors and Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Bi, Chao; Lin, Song

    As hard disk drive (HDD) areal density increases, its track width becomes smaller and smaller and so is non-repeatable runout. HDD industry needs more accurate and better resolution runout measurements of spinning spindle motors and media platters in both axial and radial directions. This paper introduces a new system how to precisely measure the runout of HDD spinning disks and motors through synchronously acquiring the rotor position signal and the displacements in axial or radial directions. In order to minimize the synchronizing error between the rotor position and the displacement signal, a high resolution counter is adopted instead of the conventional phase-lock loop method. With Laser Doppler Vibrometer and proper signal processing, the proposed runout system can precisely measure the runout of the HDD spinning disks and motors with 1 nm resolution and 0.2% accuracy with a proper sampling rate. It can provide an effective and accurate means to measure the runout of high areal density HDDs, in particular the next generation HDDs, such as, pattern media HDDs and HAMR HDDs.

  16. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2016-08-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  17. Accurate frequency noise measurement of free-running lasers.

    PubMed

    Schiemangk, Max; Spiessberger, Stefan; Wicht, Andreas; Erbert, Götz; Tränkle, Günther; Peters, Achim

    2014-10-20

    We present a simple method to accurately measure the frequency noise power spectrum of lasers. It relies on creating the beat note between two lasers, capturing the corresponding signal in the time domain, and appropriately postprocessing the data to derive the frequency noise power spectrum. In contrast to methods already established, it does not require stabilization of the laser to an optical reference, i.e., a second laser, to an optical cavity or to an atomic transition. It further omits a frequency discriminator and hence avoids bandwidth limitation and nonlinearity effects common to high-resolution frequency discriminators.

  18. Technological Basis and Scientific Returns for Absolutely Accurate Measurements

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Anderson, J.

    2011-12-01

    The 2006 NRC Decadal Survey fostered a new appreciation for societal objectives as a driving motivation for Earth science. Many high-priority societal objectives are dependent on predictions of weather and climate. These predictions are based on numerical models, which derive from approximate representations of well-founded physics and chemistry on space and timescales appropriate to global and regional prediction. These laws of chemistry and physics in turn have a well-defined quantitative relationship with physical measurement units, provided these measurement units are linked to international measurement standards that are the foundation of contemporary measurement science and standards for engineering and commerce. Without this linkage, measurements have an ambiguous relationship to scientific principles that introduces avoidable uncertainty in analyses, predictions, and improved understanding of the Earth system. Since the improvement of climate and weather prediction is fundamentally dependent on the improvement of the representation of physical processes, measurement systems that reduce the ambiguity between physical truth and observations represent an essential component of a national strategy for understanding and living with the Earth system. This paper examines the technological basis and potential science returns of sensors that make measurements that are quantitatively tied on-orbit to international measurement standards, and thus testable to systematic errors. This measurement strategy provides several distinct benefits. First, because of the quantitative relationship between these international measurement standards and fundamental physical constants, measurements of this type accurately capture the true physical and chemical behavior of the climate system and are not subject to adjustment due to excluded measurement physics or instrumental artifacts. In addition, such measurements can be reproduced by scientists anywhere in the world, at any time

  19. Probabilistic techniques for obtaining accurate patient counts in Clinical Data Warehouses.

    PubMed

    Myers, Risa B; Herskovic, Jorge R

    2011-12-01

    Proposal and execution of clinical trials, computation of quality measures and discovery of correlation between medical phenomena are all applications where an accurate count of patients is needed. However, existing sources of this type of patient information, including Clinical Data Warehouses (CDWs) may be incomplete or inaccurate. This research explores applying probabilistic techniques, supported by the MayBMS probabilistic database, to obtain accurate patient counts from a Clinical Data Warehouse containing synthetic patient data. We present a synthetic Clinical Data Warehouse, and populate it with simulated data using a custom patient data generation engine. We then implement, evaluate and compare different techniques for obtaining patients counts. We model billing as a test for the presence of a condition. We compute billing's sensitivity and specificity both by conducting a "Simulated Expert Review" where a representative sample of records are reviewed and labeled by experts, and by obtaining the ground truth for every record. We compute the posterior probability of a patient having a condition through a "Bayesian Chain", using Bayes' Theorem to calculate the probability of a patient having a condition after each visit. The second method is a "one-shot" approach that computes the probability of a patient having a condition based on whether the patient is ever billed for the condition. Our results demonstrate the utility of probabilistic approaches, which improve on the accuracy of raw counts. In particular, the simulated review paired with a single application of Bayes' Theorem produces the best results, with an average error rate of 2.1% compared to 43.7% for the straightforward billing counts. Overall, this research demonstrates that Bayesian probabilistic approaches improve patient counts on simulated patient populations. We believe that total patient counts based on billing data are one of the many possible applications of our Bayesian framework. Use of

  20. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  1. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  2. Alternative reliable techniques in femoral torsion measurement.

    PubMed

    Delialioglu, M Onder; Tasbas, Bulent A; Bayrakci, Kenan; Daglar, Bulent; Kurt, Murat; Agar, Mustafa; Gunel, Ugur

    2006-01-01

    The clinical and conventional bi-planar determinations of femoral torsion were compared with the tomographic technique, the reliability of which was confirmed. Femoral torsions were measured with the trochanteric prominence angle test, the sinus-wave bi-planar conventional radiographic technique, the modified Hermann bi-planar conventional radiographic technique and the limited three-dimensional volumetric tomography technique in 34 femora of 17 patients. There was a strong correlation between the modified Hermann and the limited tomography techniques for 14 intact and 20 fractured femora. If limited three-dimensional volumetric tomography cannot be obtained, the modified Hermann bi-planar conventional radiographic technique must be used in patients who have scarring about the proximal femur and obesity. Otherwise use of the trochanteric prominence angle test is much more cost-effective and is as accurate as the limited three-dimensional volumetric tomography technique.

  3. Accurate measurement of RF exposure from emerging wireless communication systems

    NASA Astrophysics Data System (ADS)

    Letertre, Thierry; Monebhurrun, Vikass; Toffano, Zeno

    2013-04-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  4. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  5. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  6. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  7. Light absorption measurements: new techniques.

    PubMed

    Hänel, G; Busen, R; Hillenbrand, C; Schloss, R

    1982-02-01

    A new radiometer is described which simplifies measurement of the radiation supply of solar wavelengths. Two methods of measuring the radiant energy absorbed by aerosol particles are described: A photometric technique is used for particles collected on filters, and a calorimetric technique is used for in situ measurements. Data collected with the radiometer and the light absorption techniques yield the heating rate of the atmosphere due to light absorption by the particles. Sample measurements show substantial atmospheric temperature increases due to absorption, especially in industrial regions.

  8. Slim hole MWD tool accurately measures downhole annular pressure

    SciTech Connect

    Burban, B.; Delahaye, T. )

    1994-02-14

    Measurement-while-drilling of downhole pressure accurately determines annular pressure losses from circulation and drillstring rotation and helps monitor swab and surge pressures during tripping. In early 1993, two slim-hole wells (3.4 in. and 3 in. diameter) were drilled with continuous real-time electromagnetic wave transmission of downhole temperature and annular pressure. The data were obtained during all stages of the drilling operation and proved useful for operations personnel. The use of real-time measurements demonstrated the characteristic hydraulic effects of pressure surges induced by drillstring rotation in the small slim-hole annulus under field conditions. The interest in this information is not restricted to the slim-hole geometry. Monitoring or estimating downhole pressure is a key element for drilling operations. Except in special cases, no real-time measurements of downhole annular pressure during drilling and tripping have been used on an operational basis. The hydraulic effects are significant in conventional-geometry wells (3 1/2-in. drill pipe in a 6-in. hole). This paper describes the tool and the results from the field test.

  9. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  10. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    NASA Astrophysics Data System (ADS)

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  11. Measurement of Fracture Geometry for Accurate Computation of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Chae, B.; Ichikawa, Y.; Kim, Y.

    2003-12-01

    Fluid flow in rock mass is controlled by geometry of fractures which is mainly characterized by roughness, aperture and orientation. Fracture roughness and aperture was observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wavelength of laser is 488nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The system improves resolution in the light axis (namely z) direction because of the confocal optics. The sampling is managed in a spacing 2.5 μ m along x and y directions. The highest measurement resolution of z direction is 0.05 μ m, which is the more accurate than other methods. For the roughness measurements, core specimens of coarse and fine grained granites were provided. Measurements were performed along three scan lines on each fracture surface. The measured data were represented as 2-D and 3-D digital images showing detailed features of roughness. Spectral analyses by the fast Fourier transform (FFT) were performed to characterize on the roughness data quantitatively and to identify influential frequency of roughness. The FFT results showed that components of low frequencies were dominant in the fracture roughness. This study also verifies that spectral analysis is a good approach to understand complicate characteristics of fracture roughness. For the aperture measurements, digital images of the aperture were acquired under applying five stages of uniaxial normal stresses. This method can characterize the response of aperture directly using the same specimen. Results of measurements show that reduction values of aperture are different at each part due to rough geometry of fracture walls. Laboratory permeability tests were also conducted to evaluate changes of hydraulic conductivities related to aperture variation due to different stress levels. The results showed non-uniform reduction of hydraulic conductivity under increase of the normal stress and different values of

  12. Accurate measurement of intestinal transit in the rat

    SciTech Connect

    Miller, M.S.; Galligan, J.J.; Burks, T.F.

    1981-11-01

    A new method for quantifying intestinal transit was evaluated by comparison with two other popular techniques. The distribution of radiochromium (51Cr) throughout the small intestine of rats previously treated with saline (1.0 ml/kg s.c.), capsaicin (10 mg/kg s.c.), hexamethonium (20 mg/kg i.p.), D-ala2-met-enkephalinamide (1.0 microgram i.c.v.), or neostigmine (0.1 mg/kg i.p.) was quantified by (1) measuring the most distal intestinal segment reached by chromium, (2) calculating the slope produced by linear regression analysis on cumulative percent chromium that had passed through each segment, and (3) determining the geometric center of the distribution of chromium throughout the small intestine. It was concluded that the geometric center methods for quantifying intestinal transit provides the most sensitive and reliable measure of intestinal transit. Less sensitive techniques often fail to detect important effects of drugs on intestinal transit.

  13. Highly Accurate Photogrammetric Measurements of the Planck Reflectors

    NASA Astrophysics Data System (ADS)

    Amiri Parian, J.; Gruen, Armin; Cozzani, Alessandro

    2006-06-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000000 and 1:400000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  14. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  15. Accurate blood flow measurements: are artificial tracers necessary?

    PubMed

    Poelma, Christian; Kloosterman, Astrid; Hierck, Beerend P; Westerweel, Jerry

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  16. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  17. Particle Image Velocimetry Measurements in an Anatomically-Accurate Scaled Model of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent

    2013-11-01

    The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.

  18. A technique for managing and accurate registration of periimplant soft tissues.

    PubMed

    Ntounis, Athanasios; Petropoulou, Aikaterini

    2010-10-01

    This article describes an indirect impression technique that accurately captures the soft tissue contours around an implant-supported provisional restoration. Customized impression copings are used to transfer the soft tissue architecture created by the interim prosthesis. The definitive restoration is shaped like the provisional restoration, maintaining the emergence profile and optimizing esthetics.

  19. Technique for determination of accurate heat capacities of volatile, powdered, or air-sensitive samples using relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Marriott, Robert A.; Stancescu, Maria; Kennedy, Catherine A.; White, Mary Anne

    2006-09-01

    We introduce a four-step technique for the accurate determination of the heat capacity of volatile or air-sensitive samples using relaxation calorimetry. The samples are encapsulated in a hermetically sealed differential scanning calorimetry pan, in which there is an internal layer of Apiezon N grease to assist thermal relaxation. Using the Quantum Design physical property measurement system to investigate benzoic acid and copper standards, we find that this method can lead to heat capacity determinations accurate to ±2% over the temperature range of 1-300K, even for very small samples (e.g., <10mg and contributing ca. 20% to the total heat capacity).

  20. Accurate measurement of spatial noise portraits of photosensors of digital cameras

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Kulakov, M. N.; Starikov, R. S.

    2016-08-01

    Method of measurement of accurate portraits of light and dark spatial noise of photosensors is described. The method consists of four steps: creation of spatially homogeneous illumination; shooting light and dark frames; digital processing and filtering. Unlike standard technique, this method uses iterative creation of spatially homogeneous illumination by display, compensation of photosensor dark spatial noise portrait and improved procedure of elimination of dark temporal noise. Portraits of light and dark spatial noise of photosensors of a scientific digital camera were found. Characteristics of the measured portraits were compared with values of photo response and dark signal non-uniformities of camera's photosensor.

  1. Mucosal Wave Measurement and Visualization Techniques

    PubMed Central

    Krausert, Christopher R.; Olszewski, Aleksandra E.; Taylor, Lindsay N.; McMurray, James S.; Dailey, Seth H.; Jiang, Jack J.

    2010-01-01

    Organized vibration of the vocal folds is critical to high quality voice production. When the vocal folds oscillate, the superficial tissue of the vocal fold is displaced in a wave-like fashion, creating the so called “mucosal wave”. Because the mucosal wave is dependent on vocal fold structure, physical alterations of that structure cause mucosal wave abnormalities. Visualization and quantification of mucosal wave properties have become useful parameters in diagnosing and managing vocal fold pathology. Mucosal wave measurement provides information about vocal fold characteristics that cannot be determined with other assessment techniques. Here, we discuss the benefits, disadvantages, and clinical applicability of the different mucosal wave measurement techniques, such as electroglottography (EGG), photoglottography (PGG), and ultrasound and visualization techniques that include videokymography (VKG), stroboscopy, and high-speed digital imaging (HSDI). The various techniques and their specific uses are reviewed with the intention of helping researchers and clinicians choose a method for a given situation and understand its limitations as well as its potential applications. Recent applications of these techniques for quantitative assessment demonstrate that additional research must be conducted to realize the full potential of these tools. Evaluations of existing research and recommendations for future research are given to promote both the quantitative study of the mucosal wave through accurate and standardized measurement of mucosal wave parameters and the development of reliable methods with which physicians can diagnose vocal disorders. PMID:20471798

  2. A simple technique for accurate and complete characterisation of a Fabry-Perot cavity.

    PubMed

    Locke, C R; Stuart, D; Ivanov, E N; Luiten, A N

    2009-11-23

    It has become a significant challenge to accurately characterise the properties of recently developed very high finesse optical resonators (F > 10(6)). A similar challenge is encountered when trying to measure the properties of cavities in which either the probing laser or the cavity length is intrinsically unstable. We demonstrate in this article the means by which the finesse, mode-matching, free spectral range, mirror transmissions and dispersion may be measured easily and accurately even when the laser or cavity has a relatively poor intrinsic frequency stability. PMID:19997438

  3. Accurate Histological Techniques to Evaluate Critical Temperature Thresholds for Prostate In Vivo

    NASA Astrophysics Data System (ADS)

    Bronskill, Michael; Chopra, Rajiv; Boyes, Aaron; Tang, Kee; Sugar, Linda

    2007-05-01

    Various histological techniques have been compared to evaluate the boundaries of thermal damage produced by ultrasound in vivo in a canine model. When all images are accurately co-registered, H&E stained micrographs provide the best assessment of acute cellular damage. Estimates of the boundaries of 100% and 0% cell killing correspond to maximum temperature thresholds of 54.6 ± 1.7°C and 51.5 ± 1.9°C, respectively.

  4. Accurate measurement of intraarterial pressure through radial artery catheters in neonates.

    PubMed

    Hack, W W; Westerhof, N; Leenhoven, T; Okken, A

    1990-07-01

    A technique is described for accurate measurement of intraarterial pressure through radial artery catheters in neonates. The technique, which can be used for short-term monitoring, uses cannulation of the radial artery with a 24-gauge Teflon catheter, connected by a Luer-Lok fitting to a three-way stopcock and a high-fidelity tip transducer. In vitro studies showed that the system is linear and the frequency response is flat (+/- 3 dB) up to 50 Hz. The technique permits gathering of high-quality pressure data and can be used in the area of neonatal clinical research for short-term monitoring. It needs to be developed further before routine application in clinical practice can be recommended.

  5. Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer

    USGS Publications Warehouse

    Claassen, Hans C.

    1982-01-01

    Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.

  6. An universal and accurate replica technique for scanning electron microscope study in clinical dentistry.

    PubMed

    Lambrechts, P; Vanherle, G; Davidson, C

    1981-09-01

    One of the main concerns of dental research is the observation of the oral tissues and the materials applied to the dentition. The changes in composition and structure of the outer surfaces and the materials deposited on these surfaces are of special interest. In the literature, a variety of replica techniques for these purposes is described (Grundy in 1971 [12]; Saxton in 1973 [25]). The use of these techniques is limited because of artifacts in the samples, and a restricted resolution power resulting from useful magnifications in the order of 800x. An accurate and universal replica technique for the examination of specimens to be viewed under the SEM has been developed. The first impression is made by a light body silicone elastomer (President Coltene). The positive replica is made by electrodeposition of copper in an electro plating bath (Acru plat 5 electronic, Dr. Th. Wieland, D-7530 Pforzheim). The reliability and accuracy of this replica technique was verified by a scanning electron microscopic comparison of the replicas and the actual structures of etched enamel. To illustrate the applicability of the replica technique to structures with much lower hardness, also high resolution images of dental plaque were produced. The copper surface offers a perfect, original and proper electroconductive medium that withstands the bombardment of electrons and the relatively severe conditions in the scanning electron microscope. Reproducibility was accurate as judged by the duplication in position, size, and shape of the fine detail at magnifications of 7500x offering a resolution of 25 nm.

  7. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  8. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.

  9. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown. PMID:26767640

  10. A measurement technique for hydroxyacetone

    SciTech Connect

    Klotz, P.J.

    1999-10-04

    Hydroxyacetone (HA) is mainly produced in the atmosphere from oxidation of hydrocarbons of the type, CH{sub 3}(R)C{double{underscore}bond}CH{sub 2}. Tuazon and Atkinson (1990) reported HA yield of 41% from the OH-initiated oxidation of methacrolein in the presence of NOx. Since methacrolein is a major product of isoprene oxidation (Carter and Atkinson, 1996), isoprene, a key biogenic hydrocarbon, is therefore expected to be an important source for HA. Consequently, knowledge of ambient concentration of HA would provide information needed to examine the applicability of isoprene reaction mechanisms developed in laboratory and to assess the contribution of isoprene to photooxidant production. The commonly used GC-FID technique involving cryo-focusing is unsuitable for HA owing to HA's thermal instability. When subjected to a temperature of 100 C for only a few seconds, HA was found to disappear completely. Since HA is highly soluble in water, the authors developed a wet chemical technique similar in principle to the one they reported earlier, namely, derivatization following liquid scrubbing. To increase the sensitivity, they adopted a fluorescence detection scheme based on o-phthaldialdehyde (OPA) chemistry. The technique was deployed in the field during two measurement periods at a NARSTO site located on Long Island, New York. The authors report the principle and the operation of this technique and the results obtained from these field studies.

  11. Novel procedures accurately measure drilling mud dynamic filtration

    SciTech Connect

    Chenevert, M.E.; Al-Abri, S. ); Jin, L. )

    1994-04-25

    New equipment and test procedures can determine dynamic mud cake properties such as equilibrium cake thickness, porosity, permeability, compressibility, and erosion resistance. The following were developed to study dynamic filtration: a dynamic filtration cell; a recommended filtration medium; a mud cake thickness device; mud cake porosity determination method; calculation methods for shear rate determination beneath a rotating cone; determination of equilibrium cake thickness, erosion resistance, and compressibility; and preferred filtration display techniques. The article describes the equipment, test procedures, and typical filtration results.

  12. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  13. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  14. Magnetic field models of nine CP stars from "accurate" measurements

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2013-01-01

    The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.

  15. An accurate and simple method for measurement of paw edema.

    PubMed

    Fereidoni, M; Ahmadiani, A; Semnanian, S; Javan, M

    2000-01-01

    Several methods for measuring inflammation are available that rely on the parameters changing during inflammation. The most commonly used methods estimate the volume of edema formed. In this study, we present a novel method for measuring the volume of pathologically or artificially induced edema. In this model, a liquid column is placed on a balance. When an object is immersed, the liquid applies a force F to attempt its expulsion. Physically, F is the weight (W) of the volume of liquid displaced by that part of the object inserted into the liquid. A balance is used to measure this force (F=W).Therefore, the partial or entire volume of any object, for example, the inflamed hind paw of a rat, can be calculated thus, using the specific gravity of the immersion liquid, at equilibrium mass/specific gravity=volume (V). The extent of edema at time t (measured as V) will be V(t)-V(o). This method is easy to use, materials are of low cost and readily available. It is important that the rat paw (or any object whose volume is being measured) is kept from contacting the wall of the column containing the fluid whilst the value on the balance is read.

  16. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    PubMed Central

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  17. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement.

    PubMed

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  18. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  19. Measuring Fisher information accurately in correlated neural populations.

    PubMed

    Kanitscheider, Ingmar; Coen-Cagli, Ruben; Kohn, Adam; Pouget, Alexandre

    2015-06-01

    Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively.

  20. How accurately can suborbital experiments measure the CMB?

    SciTech Connect

    Oliveira-Costa, Angelica de; Tegmark, Max; Devlin, Mark J.; Page, Lyman; Miller, Amber D.; Netterfield, C. Barth; Xu Yongzhong

    2005-02-15

    Great efforts are currently being channeled into ground- and balloon-based CMB experiments, mainly to explore polarization and anisotropy on small angular scales. To optimize instrumental design and assess experimental prospects, it is important to understand in detail the atmosphere-related systematic errors that limit the science achievable with new instruments. As a step in this direction, we spatially compare the 648 square degree ground- and balloon-based QMASK map with the atmosphere-free WMAP map, finding beautiful agreement on all angular scales where both are sensitive. Although much work remains on quantifying atmospheric effects on CMB experiments, this is a reassuring quantitative assessment of the power of the state-of-the-art fast-Fourier-transform- and matrix-based mapmaking techniques that have been used for QMASK and virtually all subsequent experiments.

  1. Air toxics being measured more accurately, controlled more effectively

    SciTech Connect

    1995-04-01

    In response to the directives of the Clean Air Act Amendments, Argonne National Laboratory is developing new or improved pollutant control technologies for industries that burn fossil fuels. This research continues Argonne`s traditional support for the US DOE Flue Gas Cleanup Program. Research is underway to measure process emissions and identify new and improved control measures. Argonne`s emission control research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing to pilot-scale field tests of several technologies. Whenever appropriate, the work has emphasized integrated or combined control systems as the best approach to technologies that offer low cost and good operating characteristics.

  2. Inflation model building with an accurate measure of e -folding

    NASA Astrophysics Data System (ADS)

    Chongchitnan, Sirichai

    2016-08-01

    It has become standard practice to take the logarithmic growth of the scale factor as a measure of the amount of inflation, despite the well-known fact that this is only an approximation for the true amount of inflation required to solve the horizon and flatness problems. The aim of this work is to show how this approximation can be completely avoided using an alternative framework for inflation model building. We show that using the inverse Hubble radius, H =a H , as the key dynamical parameter, the correct number of e -folding arises naturally as a measure of inflation. As an application, we present an interesting model in which the entire inflationary dynamics can be solved analytically and exactly, and, in special cases, reduces to the familiar class of power-law models.

  3. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  4. A MEASUREMENT TECHNIQUE FOR HYDROXYACETONE.

    SciTech Connect

    KLOTZ,P.J.

    1999-10-04

    Hydroxyacetone (HA) is mainly produced in the atmosphere from oxidation of hydrocarbons of the type, CH{sub 3}(R)C=CH{sub 2}. Tuazon and Atkinson (1990) reported HA yield of 41% from the OH-initiated oxidation of methacrolein in the presence of NO{sub x}. Since methacrolein is a major product of isoprene oxidation (Carter and Atkinson, 1996), isoprene, a key biogenic hydrocarbon, is therefore expected to be an important source for HA. Consequently, knowledge of ambient concentration of HA would provide information needed to examine the applicability of isoprene reaction mechanisms developed in laboratory and to assess the contribution of isoprene to photooxidant production. The commonly used GC-FID technique involving cryo-focusing is unsuitable for HA owing to HA's thermal instability. When subjected to a temperature of 100 C for only a few seconds, HA was found to disappear completely. Since HA is highly soluble in water (it's Henry's law constant being {approx}2 x 10{sup 4} M atm{sup -1} at 20 C, Zhou and Lee, unpublished data), we developed a wet chemical technique similar in principle to the one we reported earlier (Lee and Zhou, 1993), namely, based on derivatization following liquid scrubbing. To increase the sensitivity, we adopted a fluorescence detection scheme based on o-phthaldialdehyde (OPA) chemistry. The technique was deployed in the field during two measurement periods at a NARSTO site located on Long Island (LI), New York. We report the principle and the operation of this technique and the results obtained from these field studies.

  5. ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD

    SciTech Connect

    Kurzeja, R.

    2009-09-09

    Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

  6. Mobil unit provides fast and accurate Btu measurements

    SciTech Connect

    Lansing, J. )

    1991-05-01

    Southern California Gas Co. (SoCalGas) provides service to more than four million customers in a 23,000-plus square mile area. Some 95% of these customers fall under the residential category and the remaining customers are industrial and commercial. To ensure Btu value received from the supplier and delivered to the user is accounted for properly, SoCalGas has divided its service area into 47 districts according to the gas Btu content. The company obtains the information by collecting approximately 200 sample cylinders each week from field monitoring points and transporting them to one of four laboratories for analysis. For collecting the information from each lab site, SoCalGas uses a computerized Gas Quality Measurement System (GQMS) that utilizes a Hewlett-Packard 1000 computer. Information on all the gas sample analysis is transmitted each day to the company's measurement office. About two- thirds of the lab work is performed in Los Angeles and the remaining at three satellite laboratories. Sample points are strategically located to monitor gas entering each district. By measuring gas volumes at these key points, a volume- weighted average can be determined and the customers' monthly bills then can be adjusted for gas energy content by this volume-weighted four-week average. The engineering department uses sample-cylinder analysis data to establish and maintain correct Btu boundaries. However, the time it takes for this information to be processed makes it difficult for engineering to process the data.

  7. Blood-Pressure Measuring System Gives Accurate Graphic Output

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.

  8. Accurate on line measurements of low fluences of charged particles

    NASA Astrophysics Data System (ADS)

    Palla, L.; Czelusniak, C.; Taccetti, F.; Carraresi, L.; Castelli, L.; Fedi, M. E.; Giuntini, L.; Maurenzig, P. R.; Sottili, L.; Taccetti, N.

    2015-03-01

    Ion beams supplied by the 3MV Tandem accelerator of LABEC laboratory (INFN-Firenze), have been used to study the feasibility of irradiating materials with ion fluences reproducible to about 1%. Test measurements have been made with 7.5 MeV 7Li2+ beams of different intensities. The fluence control is based on counting ions contained in short bursts generated by chopping the continuous beam with an electrostatic deflector followed by a couple of adjustable slits. Ions are counted by means of a micro-channel plate (MCP) detecting the electrons emitted from a thin layer of Al inserted along the beam path in between the pulse defining slits and the target. Calibration of the MCP electron detector is obtained by comparison with the response of a Si detector.

  9. An approach for the accurate measurement of social morality levels.

    PubMed

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the "5∶1 rewards-to-punishment rule," which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials.

  10. An Approach for the Accurate Measurement of Social Morality Levels

    PubMed Central

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the “5∶1 rewards-to-punishment rule,” which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials. PMID:24312189

  11. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  12. No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Suchyta, E.; Huff, E. M.; Aleksić, J.; Melchior, P.; Jouvel, S.; MacCrann, N.; Ross, A. J.; Crocce, M.; Gaztanaga, E.; Honscheid, K.; Leistedt, B.; Peiris, H. V.; Rykoff, E. S.; Sheldon, E.; Abbott, T.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Percival, W. J.; Reil, K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Zhang, Y.; DES Collaboration

    2016-03-01

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of detectable stars or galaxies. We have implemented our proposal in BALROG, software which embeds fake objects in real imaging to accurately characterize measurement biases. We demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the Landy-Szalay estimator suppresses the effects of variable survey selection by at least two orders of magnitude. With this correction, our measured angular clustering is found to be in excellent agreement with that of a matched sample from much deeper, higher resolution space-based Cosmological Evolution Survey (COSMOS) imaging; over angular scales of 0.004° < θ < 0.2°, we find a best-fitting scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending measurements' statistical reach in a variety of upcoming imaging surveys.

  13. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    DOE PAGES

    Suchyta, E.

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases.more » We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.« less

  14. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  15. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  16. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided. PMID:26099201

  17. An acoustic mode measurement technique

    NASA Astrophysics Data System (ADS)

    Joppa, P. D.

    1984-10-01

    Turbomachinery noise propagates in aircraft jet engine ducts in a complicated manner. Measurement of this propagation is useful both to identify source mechanisms and to design efficient linings. A practical method of making these measurements has been developed, using linear arrays of equally spaced microphones mounted flush with the duct wall. Circumferential or axial arrays are analyzed by spatial Fourier transform, giving sound level as a function of spinning order or axial wavenumber respectively. Complex demodulation is used to acquire data in a modest bandwidth around a high frequency of interest. A joint NASA/Boeing test of the system used 32 microphones in a JT15D turbofan engine inlet. A 400-Hz bandwidth centered at blade passage frequency and at half blade passage frequency was studied. The theoretically predicted modes were clearly seen at blade passage frequency; broadband noise at half blade passage frequency was biased towards modes corotating with the fan. Interference between similar modes was not a significant problem. A lining design study indicated a 15 percent improvement in lining efficiency was possible when mode data were used, for this particular engine. The technique has proven reliable and useful for source diagnostics and lining design.

  18. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and

  19. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  20. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  1. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    SciTech Connect

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  2. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  3. Medical Image Watermarking Technique for Accurate Tamper Detection in ROI and Exact Recovery of ROI.

    PubMed

    Eswaraiah, R; Sreenivasa Reddy, E

    2014-01-01

    In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss.

  4. Medical Image Watermarking Technique for Accurate Tamper Detection in ROI and Exact Recovery of ROI

    PubMed Central

    Eswaraiah, R.; Sreenivasa Reddy, E.

    2014-01-01

    In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss. PMID:25328515

  5. Emerging measurement techniques for studies of mesoscopic superconductors.

    SciTech Connect

    Rydh, A.; Tagliati, S.; Nilsson, R. A.; Xie, R.; Pearson, J. E.; Welp, U.; Kwok, W. K.; Divan, R.

    2008-01-01

    Experimental research on mesoscopic systems puts high demands on the measurement infrastructure, including measurement system with associated sample preparation, experimental design, measurement electronics, and data collection. Successful experiments require both the ability to manufacture small samples and to successfully and accurately study their novel properties. Here, we discuss some aspects and recent advancements of general measurement techniques that should benefit several characterization methods such as thermodynamic, magnetic, and transport studies of mesoscopic superconductors.

  6. Highly accurate isotope measurements of surface material on planetary objects in situ

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Neuland, Maike; Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2013-04-01

    Studies of isotope variations in solar system objects are of particular interest and importance. Highly accurate isotope measurements provide insight into geochemical processes, constrain the time of formation of planetary material (crystallization ages) and can be robust tracers of pre-solar events and processes. A detailed understanding of the chronology of the early solar system and dating of planetary materials require precise and accurate measurements of isotope ratios, e.g. lead, and abundance of trace element. However, such measurements are extremely challenging and until now, they never have been attempted in space research. Our group designed a highly miniaturized and self-optimizing laser ablation time-of-flight mass spectrometer for space flight for sensitive and accurate measurements of the elemental and isotopic composition of extraterrestrial materials in situ. Current studies were performed by using UV radiation for ablation and ionization of sample material. High spatial resolution is achieved by focusing the laser beam to about Ø 20μm onto the sample surface. The instrument supports a dynamic range of at least 8 orders of magnitude and a mass resolution m/Δm of up to 800—900, measured at iron peak. We developed a measurement procedure, which will be discussed in detail, that allows for the first time to measure with the instrument the isotope distribution of elements, e.g. Ti, Pb, etc., with a measurement accuracy and precision in the per mill and sub per mill level, which is comparable to well-known and accepted measurement techniques, such as TIMS, SIMS and LA-ICP-MS. The present instrument performance offers together with the measurement procedure in situ measurements of 207Pb/206Pb ages with the accuracy for age in the range of tens of millions of years. Furthermore, and in contrast to other space instrumentation, our instrument can measure all elements present in the sample above 10 ppb concentration, which offers versatile applications

  7. A particle-tracking approach for accurate material derivative measurements with tomographic PIV

    NASA Astrophysics Data System (ADS)

    Novara, Matteo; Scarano, Fulvio

    2013-08-01

    The evaluation of the instantaneous 3D pressure field from tomographic PIV data relies on the accurate estimate of the fluid velocity material derivative, i.e., the velocity time rate of change following a given fluid element. To date, techniques that reconstruct the fluid parcel trajectory from a time sequence of 3D velocity fields obtained with Tomo-PIV have already been introduced. However, an accurate evaluation of the fluid element acceleration requires trajectory reconstruction over a relatively long observation time, which reduces random errors. On the other hand, simple integration and finite difference techniques suffer from increasing truncation errors when complex trajectories need to be reconstructed over a long time interval. In principle, particle-tracking velocimetry techniques (3D-PTV) enable the accurate reconstruction of single particle trajectories over a long observation time. Nevertheless, PTV can be reliably performed only at limited particle image number density due to errors caused by overlapping particles. The particle image density can be substantially increased by use of tomographic PIV. In the present study, a technique to combine the higher information density of tomographic PIV and the accurate trajectory reconstruction of PTV is proposed (Tomo-3D-PTV). The particle-tracking algorithm is applied to the tracers detected in the 3D domain obtained by tomographic reconstruction. The 3D particle information is highly sparse and intersection of trajectories is virtually impossible. As a result, ambiguities in the particle path identification over subsequent recordings are easily avoided. Polynomial fitting functions are introduced that describe the particle position in time with sequences based on several recordings, leading to the reduction in truncation errors for complex trajectories. Moreover, the polynomial regression approach provides a reduction in the random errors due to the particle position measurement. Finally, the acceleration

  8. Measuring nonlinear oscillations using a very accurate and low-cost linear optical position transducer

    NASA Astrophysics Data System (ADS)

    Donoso, Guillermo; Ladera, Celso L.

    2016-09-01

    An accurate linear optical displacement transducer of about 0.2 mm resolution over a range of ∼40 mm is presented. This device consists of a stack of thin cellulose acetate strips, each strip longitudinally slid ∼0.5 mm over the precedent one so that one end of the stack becomes a stepped wedge of constant step. A narrowed light beam from a white LED orthogonally incident crosses the wedge at a known point, the transmitted intensity being detected with a phototransistor whose emitter is connected to a diode. We present the interesting analytical proof that the voltage across the diode is linearly dependent upon the ordinate of the point where the light beam falls on the wedge, as well as the experimental validation of such a theoretical proof. Applications to nonlinear oscillations are then presented—including the interesting case of a body moving under dry friction, and the more advanced case of an oscillator in a quartic energy potential—whose time-varying positions were accurately measured with our transducer. Our sensing device can resolve the dynamics of an object attached to it with great accuracy and precision at a cost considerably less than that of a linear neutral density wedge. The technique used to assemble the wedge of acetate strips is described.

  9. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  10. Comparison of Holdup Measurement Techniques

    SciTech Connect

    Lousteau, Angela L; Stooksbury, John C; Cleveland, Steven L

    2012-01-01

    The measurement of uranium holdup, the residual material left in process equipment such as pipes or ducts, is an integral element of material control and accountability. Not only are the measurements important for accountability, they are also important for criticality safety. The goal in measuring holdup is to quantify the amount of material in the pipes to verify that all material is accounted for (inventory in [inventory out + holdup] = 0) and to ensure that the amount of material heldup is not a criticality risk. There are a number of ways to measure holdup in process equipment; however, this paper will evaluate only two methods (i.e., Holdup Measurement System 4 (HMS-4) and In Situ Object Counting Software (ISOCS)) for specific measurement scenarios. The comparison will use measurements of well-known reference materials in various configurations and will examine the results, uncertainties, repeatability, time required, portability, and cost of each system.

  11. The application of measurement techniques to track flutter testing

    NASA Technical Reports Server (NTRS)

    Roglin, H. R.

    1975-01-01

    The application is discussed of measurement techniques to captive flight flutter tests at the Supersonic Naval Ordnance Research Track (SNORT), U. S. Naval Ordnance Test Station, China Lake, California. The high-speed track, by its ability to prove the validity of design and to accurately determine the actual margin of safety, offers a unique method of flutter testing for the aircraft design engineer.

  12. Measurement of fuel spray vaporisation by laser techniques

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Seng, C. A.; Felton, P. G.; Ungut, A.; Chigier, N. A.

    1980-01-01

    Comparison of fuel spray structures in heated and in cold environments is made by using a new laser tomographic technique and laser anemometry. The tomography technique is shown to give accurate and rapid 'point' measurements of droplet sizes and concentrations. Experimental results show acceleration of droplets to the local gas velocity, preferential vaporisation of the smallest droplets and the dispersion of droplets by the turbulence.

  13. Measurement Techniques for Clock Jitter

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin; Schlesinger, Adam

    2012-01-01

    NASA is in the process of modernizing its communications infrastructure to accompany the development of a Crew Exploration Vehicle (CEV) to replace the shuttle. With this effort comes the opportunity to infuse more advanced coded modulation techniques, including low-density parity-check (LDPC) codes that offer greater coding gains than the current capability. However, in order to take full advantage of these codes, the ground segment receiver synchronization loops must be able to operate at a lower signal-to-noise ratio (SNR) than supported by equipment currently in use.

  14. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  15. Enhancements in luminescence measurement techniques.

    PubMed

    Bøtter-Jensen, L; Bulur, E; Murray, A S; Poolton, N R J

    2002-01-01

    New developments in the Risø TL/OSL system includes a software controlled heater fitted underneath the beta source to enable irradiation of samples at an elevated temperature. This allows investigations of competition effects from thermally shallow traps and centres. Significant additional software developments include the facility to vary linearly the stimulation power during stimulation (linearly modulated OSL). The elevated temperature irradiator facility has been further expanded to allow the measurement of radioluminescence (RL) during beta irradiation. This additional facility allows the measurement of TL, OSL and RL in the same software controlled automatic sequence. This paper provides a description of the capabilities of the new combined automatic TL/OSL/RL reader, and illustrates the application of the elevated temperature irradiator facility, and the RL unit. The new measurement facilities have provided preliminary information about possible trap competition during storage, and changes in recombination processes. PMID:12382719

  16. Helium-flow measurement using ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Sondericker, J. H.

    1983-08-01

    The ideal cryogenic instrumentation for the colliding beam accelerator helium distribution system does not add pressure drop to the system, functions over the entire temperature range, has high resolution, and delivers accurate mass flow measurement data. The design and testing of an ultrasonic flowmeter which measures helium flow under different temperatures are described.

  17. A new direct absorption measurement for high precision and accurate measurement of water vapor in the UT/LS

    NASA Astrophysics Data System (ADS)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Anderson, J.

    2011-12-01

    Highly accurate and precise water vapor measurements in the upper troposphere and lower stratosphere are critical to understanding the climate feedbacks of water vapor and clouds in that region. However, the continued disagreement among water vapor measurements (~1 - 2 ppmv) are too large to constrain the role of different hydration and dehydration mechanisms operating in the UT/LS, with model validation dependent upon which dataset is chosen. In response to these issues, we present a new instrument for measurement of water vapor in the UT/LS that was flown during the April 2011 MACPEX mission out of Houston, TX. The dual axis instrument combines the heritage and validated accuracy of the Harvard Lyman-alpha instrument with a newly designed direct IR absorption instrument, the Harvard Herriott Hygrometer (HHH). The Lyman-alpha detection axis has flown aboard NASA's WB-57 and ER2 aircraft since 1994, and provides a requisite link between the new HHH instrument and the long history of Harvard water vapor measurements. The instrument utilizes the highly sensitive Lyman-alpha photo-fragment fluorescence detection method; its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. The Harvard Herriott Hygrometer employs a fiber coupled near-IR laser with state-of-the-art electronics to measure water vapor via direct absorption in a spherical Herriott cell of 10 cm length. The instrument demonstrated in-flight precision of 0.1 ppmv (1-sec, 1-sigma) at mixing ratios as low as 5 ppmv with accuracies of 10% based on careful laboratory calibrations and in-flight performance. We present a description of the measurement technique along with our methodology for calibration and details of the measurement uncertainties. The simultaneous utilization of radically different measurement techniques in a single duct in the new Harvard Water Vapor (HWV) instrument allows for the constraint of systematic errors inherent in each technique

  18. Wind tunnel buffet load measuring technique

    NASA Technical Reports Server (NTRS)

    Chang, C. S.; Ellison, A. M.

    1972-01-01

    Indirect force measurement technique estimates unsteady forces acting on elastic model during wind tunnel tests. Measurement of forces is practically insensitive to errors in aeroelastic scaling between model and full-scale structure, simplifying design, fabrication and dynamic calibration.

  19. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application.

  20. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application. PMID:22497159

  1. CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

    SciTech Connect

    Haugh, M J; Charest, M R; Ross, P W; Lee, J J; Schneider, M B; Palmer, N E; Teruya, A T

    2012-02-16

    National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

  2. Highly accurate SNR measurement using the covariance of two SEM images with the identical view.

    PubMed

    Oho, Eisaku; Suzuki, Kazuhiko

    2012-01-01

    Quality of an SEM image is strongly influenced by the extent of noise. As a well-known method in the field of SEM, the covariance is applied to measure the signal-to-noise ratio (SNR). This method has potential ability for highly accurate measurement of the SNR, which is hardly known until now. If the precautions discussed in this article are adopted, that method can demonstrate its real ability. These precautions are strongly related to "proper acquisition of two images with the identical view," "alignment of an aperture diaphragm," "reduction of charging phenomena," "elimination of particular noises," and "accurate focusing," As necessary, characteristics in SEM signal and noise are investigated from a few standpoints. When using the maximum performance of this measurement, SNR of many SEM images obtained in a variety of the SEM operating conditions and specimens can be measured accurately.

  3. Technique for Measuring Gas Conversion Factors

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Technique for measuring calibration conversion factors for hydrocarbon mass flowmeters applied to widely used type of commercial thermal mass flowmeter for hydrocarbon gases. Values of conversion factors for two common hydrocarbons measured using this technique in good agreement with empirical values cited by manufacturer. Similar agreement expected for all other hydrocarbons. Technique based on Nernst theorem for matching partial pressure of oxygen in combustion product gases with that in normal air. Simple, quick, and relatively safe, particularly for toxic/poisonous hydrocarbons.

  4. A remote surface pressure measurement technique for rotating elements

    SciTech Connect

    Hubner, J.P.; Abbitt, J.D.; Carroll, B.F.; Schanze, K.S.

    1997-04-01

    This technical note describes a photoluminescent paint technique developed to measure the steady-state surface pressure distributions on rotating elements. The application of pressure-sensitive paints (PSPs) as a means of measuring surface pressure has emerged in recent years as a viable alternative to conventional transducers, yielding accurate quantitative results (Morris et al., 1993; McLachlan et al., 1993; Morris, 1995). Burns and Sullivan (1995) describe a lifetime-based technique to measure pressure on rotating machinery with tip speeds exceeding 200 m/s. Their method measures the phase shift that occurs between a modulated excitation source and the corresponding emission response of the paint. The technique performed in this paper uses an unmodulated light source and measures the actual intensity decay with respect to time. The corresponding lifetimes of decay are then calibrated with the steady-state pressure.

  5. Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  6. A review on creatinine measurement techniques.

    PubMed

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr; Ganbari, Ahmad

    2012-08-15

    This paper reviews the entire recent global tendency for creatinine measurement. Creatinine biosensors involve complex relationships between biology and micro-mechatronics to which the blood is subjected. Comparison between new and old methods shows that new techniques (e.g. Molecular Imprinted Polymers based algorithms) are better than old methods (e.g. Elisa) in terms of stability and linear range. All methods and their details for serum, plasma, urine and blood samples are surveyed. They are categorized into five main algorithms: optical, electrochemical, impedometrical, Ion Selective Field-Effect Transistor (ISFET) based technique and chromatography. Response time, detection limit, linear range and selectivity of reported sensors are discussed. Potentiometric measurement technique has the lowest response time of 4-10 s and the lowest detection limit of 0.28 nmol L(-1) belongs to chromatographic technique. Comparison between various techniques of measurements indicates that the best selectivity belongs to MIP based and chromatographic techniques.

  7. Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHZ

    NASA Technical Reports Server (NTRS)

    Lang, R.H.; Tarkocin, Y.; Utku, C.; Le Vine, D.M.

    2008-01-01

    Measurements of the complex. dielectric constant of seawater at 30.00 psu, 35.00 psu and 38.27 psu over the temperature range from 5 C to 3 5 at 1.413 GHz are given and compared with the Klein-Swift results. A resonant cavity technique is used. The calibration constant used in the cavity perturbation formulas is determined experimentally using methanol and ethanediol (ethylene glycol) as reference liquids. Analysis of the data shows that the measurements are accurate to better than 1.0% in almost all cases studied.

  8. Archimedes Revisited: A Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2005-01-01

    A little-known method of measuring the volume of small objects based on Archimedes' principle is described, which involves suspending an object in a water-filled container placed on electronic scales. The suspension technique is a variation on the hydrostatic weighing technique used for measuring volume. The suspension method was compared with two…

  9. An accurate, convective energy equation based automated meshing technique for analysis of blood vessels and tissues.

    PubMed

    White, J A; Dutton, A W; Schmidt, J A; Roemer, R B

    2000-01-01

    An automated three-element meshing method for generating finite element based models for the accurate thermal analysis of blood vessels imbedded in tissue has been developed and evaluated. The meshing method places eight noded hexahedral elements inside the vessels where advective flows exist, and four noded tetrahedral elements in the surrounding tissue. The higher order hexahedrals are used where advective flow fields occur, since high accuracy is required and effective upwinding algorithms exist. Tetrahedral elements are placed in the remaining tissue region, since they are computationally more efficient and existing automatic tetrahedral mesh generators can be used. Five noded pyramid elements connect the hexahedrals and tetrahedrals. A convective energy equation (CEE) based finite element algorithm solves for the temperature distributions in the flowing blood, while a finite element formulation of a generalized conduction equation is used in the surrounding tissue. Use of the CEE allows accurate solutions to be obtained without the necessity of assuming ad hoc values for heat transfer coefficients. Comparisons of the predictions of the three-element model to analytical solutions show that the three-element model accurately simulates temperature fields. Energy balance checks show that the three-element model has small, acceptable errors. In summary, this method provides an accurate, automatic finite element gridding procedure for thermal analysis of irregularly shaped tissue regions that contain important blood vessels. At present, the models so generated are relatively large (in order to obtain accurate results) and are, thus, best used for providing accurate reference values for checking other approximate formulations to complicated, conjugated blood heat transfer problems.

  10. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  11. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    PubMed

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  12. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  13. Toward Accurate Measurement of Participation: Rethinking the Conceptualization and Operationalization of Participatory Evaluation

    ERIC Educational Resources Information Center

    Daigneault, Pierre-Marc; Jacob, Steve

    2009-01-01

    While participatory evaluation (PE) constitutes an important trend in the field of evaluation, its ontology has not been systematically analyzed. As a result, the concept of PE is ambiguous and inadequately theorized. Furthermore, no existing instrument accurately measures stakeholder participation. First, this article attempts to overcome these…

  14. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  15. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  16. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  17. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  18. Experimental Techniques for Thermodynamic Measurements of Ceramics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Putnam, Robert L.; Navrotsky, Alexandra

    1999-01-01

    Experimental techniques for thermodynamic measurements on ceramic materials are reviewed. For total molar quantities, calorimetry is used. Total enthalpies are determined with combustion calorimetry or solution calorimetry. Heat capacities and entropies are determined with drop calorimetry, differential thermal methods, and adiabatic calorimetry . Three major techniques for determining partial molar quantities are discussed. These are gas equilibration techniques, Knudsen cell methods, and electrochemical techniques. Throughout this report, issues unique to ceramics are emphasized. Ceramic materials encompass a wide range of stabilities and this must be considered. In general data at high temperatures is required and the need for inert container materials presents a particular challenge.

  19. Laser Doppler measurement techniques for spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1986-01-01

    Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.

  20. Multidirectional mobilities: Advanced measurement techniques and applications

    NASA Astrophysics Data System (ADS)

    Ivarsson, Lars Holger

    Today high noise-and-vibration comfort has become a quality sign of products in sectors such as the automotive industry, aircraft, components, households and manufacturing. Consequently, already in the design phase of products, tools are required to predict the final vibration and noise levels. These tools have to be applicable over a wide frequency range with sufficient accuracy. During recent decades a variety of tools have been developed such as transfer path analysis (TPA), input force estimation, substructuring, coupling by frequency response functions (FRF) and hybrid modelling. While these methods have a well-developed theoretical basis, their application combined with experimental data often suffers from a lack of information concerning rotational DOFs. In order to measure response in all 6 DOFs (including rotation), a sensor has been developed, whose special features are discussed in the thesis. This transducer simplifies the response measurements, although in practice the excitation of moments appears to be more difficult. Several excitation techniques have been developed to enable measurement of multidirectional mobilities. For rapid and simple measurement of the loaded mobility matrix, a MIMO (Multiple Input Multiple Output) technique is used. The technique has been tested and validated on several structures of different complexity. A second technique for measuring the loaded 6-by-6 mobility matrix has been developed. This technique employs a model of the excitation set-up, and with this model the mobility matrix is determined from sequential measurements. Measurements on ``real'' structures show that both techniques give results of similar quality, and both are recommended for practical use. As a further step, a technique for measuring the unloaded mobilities is presented. It employs the measured loaded mobility matrix in order to calculate compensation forces and moments, which are later applied in order to compensate for the loading of the

  1. Principles and techniques of blood pressure measurement

    PubMed Central

    Ogedegbe, Gbenga; Pickering, Thomas

    2013-01-01

    Although the mercury sphygmomanometer is widely regarded as the “gold standard” for office blood pressure measurement, the ban on use of mercury devices continues to diminish their role in office and hospital settings. To date, mercury devices have largely been phased out in US hospitals. This has led to the proliferation of non-mercury devices and has changed (probably for ever) the preferable modality of blood pressure measurement in clinic and hospital settings. In this article, the basic techniques of blood pressure measurement and the technical issues associated with measurements in clinical practice are discussed. The devices currently available for hospital and clinic measurements and their important sources of error are presented. Practical advice is given on how the different devices and measurement techniques should be used. Blood pressure measurements in different circumstances and in special populations such as infants, children, pregnant women, elderly persons, and obese subjects are discussed. PMID:20937442

  2. Defining allowable physical property variations for high accurate measurements on polymer parts

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Sonne, M. R.; Madruga, D. G.; De Chiffre, L.; Hattel, J. H.

    2016-06-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which is a challenge in today`s production and metrology environments. The residual deformations in polymer products at room temperature after injection molding are important when micrometer accuracy needs to be achieved. Numerical modelling can give a valuable insight to what is happening in the polymer during cooling down after injection molding. In order to obtain accurate simulations, accurate inputs to the model are crucial. In reality however, the material and physical properties will have some variations. Although these variations may be small, they can act as a source of uncertainty for the measurement. In this paper, we investigated how big the variation in material and physical properties are allowed in order to reach the 5 μm target on the uncertainty.

  3. Radiometer for accurate (+ or - 1%) measurement of solar irradiance equal to 10,000 solar constants

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.

    1981-01-01

    The 10,000 solar constant radiometer was developed for the accurate (+ or - 1%) measurement of the irradiance produced in the image formed by a parabolic reflector or by a multiple mirror solar installation. This radiometer is water cooled, weighs about 1 kg, and is 5 cm (2 in.) in diameter by 10 cm (4 in.) long. A sting is provided for mounting the radiometer in the solar installation capable of measuring irradiances as high as 20,000 solar constants, the instrument is self calibrating. Its accuracy depends on the accurate determination of the cavity aperture, and absorptivity of the cavity, and accurate electrical measurements. The spectral response is flat over the entire spectrum from far UV to far IR. The radiometer responds to a measurement within 99.7% of the final value within 8 s. During a measurement of the 10,000 solar constant irradiance, the temperature rise of the water is about 20 C. The radiometer has perfect cosine response up to 60 deg off the radiometer axis.

  4. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    SciTech Connect

    Jonathan D Buttram

    2005-03-11

    Described is a manual,portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary coolling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification.

  5. Wastewater Sampling Methodologies and Flow Measurement Techniques.

    ERIC Educational Resources Information Center

    Harris, Daniel J.; Keffer, William J.

    This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA),…

  6. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  7. Development and application of accurate detection and assay techniques for oilfield scale inhibitors in produced water samples

    SciTech Connect

    Graham, G.M.; Sorbie, K.S.; Boak, L.S.; Taylor, K.; Blilie, L.

    1995-11-01

    In the application of chemical inhibitors in field squeeze treatments for the prevention of sulfate and carbonate mineral scale formation, it is very important that the chemical species involved can be accurately assayed. When the inhibitor concentration drops below a predetermined threshold level for scale inhibition (C{sub t}) then the well may need to be resqueezed. The accurate assay of scale inhibitors down to concentration levels of a few ppm in real field brines can be a difficult task. In this paper, the authors examine a number of interferences which often make assay techniques very difficult to apply in field produced brines. The inhibitors examined include phosphonates (PH), polyacrylates (PAA) and phosphinopolycarboxylates (PPCA). The main objective of this work is to develop suitable pre-treatment/purification techniques which allow the standard wet chemical techniques to be applied effectively after appropriate modification. Successful techniques all based on careful modification of existing methods have been developed by which these common inhibitors can be assayed very accurately at ppm and sub-ppm levels in a variety of North Sea field produced waters. This paper examines some of the major problems and interferences associated with poor analysis and introduces modified methods which can be applied in the field without the use of expensive equipment. It is also shown that different detection methods can often be employed in order to avoid more extensive clean-up strategies. Finally, instrumental methods such as ICP analysis (commonly used for phosphonates) are examined and pre-treatment methods are developed which allow phosphino-polycarboxylic acid based inhibitors to be assayed very accurately by this method. The results from an independent assessment by a North Sea operator, using spiked field produced water, are also presented as an independent verification of the accuracy of the techniques which have been developed in this work.

  8. Practical do-it-yourself device for accurate volume measurement of breast.

    PubMed

    Tezel, E; Numanoğlu, A

    2000-03-01

    A simple and accurate method of measuring differences in breast volume based on Archimedes' principle is described. In this method, a plastic container is placed on the breast of the patient who is lying in supine position. While the breast occupies part of the container, the remaining part is filled with water and the volume is measured. This method allows the measurement of the volume differences of asymmetric breasts and also helps the surgeon to estimate the size of the prosthesis to be used in augmentation mammaplasty. PMID:10724264

  9. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  10. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  11. Bronchoalveolar lavage cell differential on microscope glass cover. A simple and accurate technique

    SciTech Connect

    Laviolette, M.; Carreau, M.; Coulombe, R.

    1988-08-01

    We describe a quick and easy technique to perform cell differentials on bronchoalveolar lavage: the microscope glass cover. Lavage fluids of 72 subjects were analyzed by 3 techniques: glass cover, filter, and cytocentrifuge preparations. Seventy-seven other lavages were analyzed by glass cover and cytocentrifuge preparations alone. Data for the 72 subjects studied by all 3 techniques showed that the cell counts on glass cover and filter preparations were similar, e.g., lymphocytes, 19.2% (range, 0.5 to 94%) and 20.9% (range, 3 to 95%), respectively (Spearman's correlation coefficient, 0.98). However, on cytocentrifuge preparations, lymphocyte counts were lower (8.3%; range, zero to 87%) and macrophage counts were higher (p less than 0.005). Comparison of glass cover and cytocentrifuge preparation mixtures with varying amounts (20 to 80%) of purified blood leukocytes labeled with 51Cr (greater than or equal to 72% lymphocytes) showed that a significant amount of radioactive cells was lost during the cytocentrifuge technique in contrast to the glass cover technique. Because neutrophils represented a low proportion of lavage cells, we also evaluated cell suspensions with known neutrophil contents (10 to 70%); we found no difference in neutrophil counts obtained with the 3 techniques. Lavage data analysis of 40 young nonsmoking volunteers showed that glass cover lymphocyte count was also higher than counts on cytocentrifuge preparations: 16.5% (range, 3 to 45%) and 8.2% (range, 2.5 to 35%), respectively. In this group, the distribution of glass cover lymphocyte percentages was normal (p = 0.21, chi 2 test), and the one-tailed 95% confidence interval was 18.6 to 34.7% (mean plus 1.65 standard deviation).

  12. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    SciTech Connect

    Heinrich, Martin; Kluska, Sven; Binder, Sebastian; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given on how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.

  13. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  14. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation. PMID:27517769

  15. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard

    NASA Astrophysics Data System (ADS)

    Wallace, W. C.; Ghafur, O.; Khurmi, C.; Sainadh U, Satya; Calvert, J. E.; Laban, D. E.; Pullen, M. G.; Bartschat, K.; Grum-Grzhimailo, A. N.; Wells, D.; Quiney, H. M.; Tong, X. M.; Litvinyuk, I. V.; Sang, R. T.; Kielpinski, D.

    2016-07-01

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  16. Are External Knee Load and EMG Measures Accurate Indicators of Internal Knee Contact Forces during Gait?

    PubMed Central

    Meyer, Andrew J.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Colwell, Clifford W.; Fregly, Benjamin J.

    2013-01-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle EMG signals) would be clinically valuable. This study quantifies how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. PMID:23280647

  17. Accurate Determination of Torsion and Pure Bending Moment for Viscoelastic Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Che; Ko, Chih-Chin; Shiau, Li-Ming

    Measurements of time-dependent material properties in the context of linear viscoelasticity, at a given frequency and temperature, require accurate determination of both loading and deformation that are subjected to the testing materials. A pendulum-type viscoelastic spectroscopy is developed to experimentally measure loss tangent and the magnitude of dynamic modulus of solid materials. The mechanical system of the device is based on the behavior of the cantilever beam, and torsion and pure bending moment are generated from the interaction between a permanent magnet and the Helmholtz coils. The strength of the magnetic interactions may be determined with a material with known mechanical properties, such as aluminum 6061T4 alloy. The sensitivity of the torque measurement is on the order of one micro N-m level. With the high accurate torque measurement and deformation detection from a laser-based displacement measurement system, viscoelastic properties of materials can be experimentally measured in different frequency regimes. Sinusoidal driving signals are adopted for measuring complex modulus in the sub-resonant regime, and dc bias driving for creep tests in the low frequency limit. At structural resonant frequencies, the full-width-at-half-maximum (FWHM) method or Lorentzian curve fitting method is adopted to extract material properties. The completion of determining material properties in the wide frequency spectrum may help to identify the deformation mechanisms of the material and to create better models for simulation work.

  18. A discussion of dynamic stability measurement techniques

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1975-01-01

    Techniques for the measurement of the dynamic stability of linear systems are discussed. Particular attention is given to an analysis of the errors in the procedures, and to methods for calculating the system damping from the data. The techniques discussed include: transient decay, moving block analysis, spectral analysis, random decrement signatures, transfer function analysis, and parameter identification methods. The special problems of rotorcraft dynamic stability testing are discussed.

  19. A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation

    NASA Astrophysics Data System (ADS)

    Parand, Kourosh; Yousefi, Hossein; Delkhosh, Mehdi; Ghaderi, Amin

    2016-07-01

    In this paper, a new algorithm based on the fractional order of rational Euler functions (FRE) is introduced to study the Thomas-Fermi (TF) model which is a nonlinear singular ordinary differential equation on a semi-infinite interval. This problem, using the quasilinearization method (QLM), converts to the sequence of linear ordinary differential equations to obtain the solution. For the first time, the rational Euler (RE) and the FRE have been made based on Euler polynomials. In addition, the equation will be solved on a semi-infinite domain without truncating it to a finite domain by taking FRE as basic functions for the collocation method. This method reduces the solution of this problem to the solution of a system of algebraic equations. We demonstrated that the new proposed algorithm is efficient for obtaining the value of y'(0) , y(x) and y'(x) . Comparison with some numerical and analytical solutions shows that the present solution is highly accurate.

  20. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    PubMed

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  1. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  2. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  3. Solar Cell Calibration and Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    1997-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WDI 5387, 'Requirements for Measurement and Calibration Procedures for Space Solar Cells' was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and the international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  4. Solar Cell Calibration and Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    2004-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  5. An intercomparison of five ammonia measurement techniques

    NASA Technical Reports Server (NTRS)

    Williams, E. J.; Sandholm, S. T.; Bradshaw, J. D.; Schendel, J. S.; Langford, A. O.; Quinn, P. K.; Lebel, P. J.; Vay, S. A.; Roberts, P. D.; Norton, R. B.

    1992-01-01

    Results obtained from five techniques for measuring gas-phase ammonia at low concentration in the atmosphere are compared. These methods are: (1) a photofragmentation/laser-induced fluorescence (PF/LIF) instrument; (2) a molybdenum oxide annular denuder sampling/chemiluminescence detection technique; (3) a tungsten oxide denuder sampling/chemiluminescence detection system; (4) a citric-acid-coated denuder sampling/ion chromatographic analysis (CAD/IC) method; and (5) an oxalic-acid-coated filter pack sampling/colorimetric analysis method. It was found that two of the techniques, the PF/LIF and the CAD/IC methods, measured approximately 90 percent of the calculated ammonia added in the spiking tests and agreed very well with each other in the ambient measurements.

  6. Radionuclide counting technique for measuring wind velocity

    SciTech Connect

    Singh, J.J.; Khandelwal, G.S.

    1981-12-01

    A technique for measuring wind velocities of meteorological interest is described. It is based on inverse-square-law variation of the counting rates as the radioactive source-to-counter distance is changed by wind drag on the source ball. Results of a feasibility study using a weak bismuth 207 radiation source and three Geiger-Muller radiation counters are reported. The use of the technique is not restricted to Martian or Mars-like environments. A description of the apparatus, typical results, and frequency response characteristics are included. A discussion of a double-pendulum arrangement is presented. Measurements reported herein indicate that the proposed technique may be suitable for measuring wind speeds up to 100 m/sec, which are either steady or whose rates of fluctuation are less than 1 kHz.

  7. Accurate phase measurements for thick spherical objects using optical quadrature microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2009-02-01

    In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.

  8. Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy.

    PubMed

    Bernard, Simon; Grimal, Quentin; Laugier, Pascal

    2013-02-01

    Resonant ultrasound spectroscopy (RUS) allows to accurately characterize the complete set of elastic constants of an anisotropic material from a set of measured mechanical resonant frequencies of a specimen. This method does not suffer from the drawbacks and limitations of the conventional sound velocity approach, but has been reported to fail to measure bone because of its strong viscoelastic damping. In this study, we take advantage of recent developments of RUS to overcome this limitation. The frequency response of a human cortical bone specimen (about 5 × 7 × 7 mm(3)) was measured between 100 and 280 kHz. Despite an important overlapping of the resonant peaks 20 resonant frequencies could be retrieved by using a dedicated signal processing method. The experimental frequencies were progressively matched to the frequencies predicted by a model of the sample whose elastic constants were adjusted. The determined diagonal elastic constants were in good agreement with concurrent sound velocity measurements performed in the principal directions of the specimen. This study demonstrates that RUS is suitable for an accurate measurement of cortical bone anisotropic elasticity. In particular, precision of measured Young and shear moduli is about 0.5%.

  9. Accurate validation of visible infrared double extinction simultaneous measurements of particle sizes and number densities by using densely laden standard media.

    PubMed

    Guidt, J B; Gouesbet, G; Toulouzan, J N

    1990-03-01

    Simultaneous measurements of particle sizes and number densities by means of the visible infrared double extinction technique are carried out and accurately validated. Accurate validation has been made possible by using a new kind of standard media, i.e., embedding the particles under study in a high viscosity gel. A byproduct of the work is a discussion of Beer-Lambert law limitations for multiple scattering in densely laden media.

  10. Microwave techniques for physical property measurements

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1993-01-01

    Industrial processing of metals and ceramics is now being streamlined by the development of theoretical models. High temperature thermophysical properties of these materials are required to successfully apply these theories. Unfortunately, there is insufficient experimental data available for many of these properties, particularly in the molten state. Microwave fields can be used to measure specific heat, thermal diffusivity, thermal conductivity and dielectric constants at high temperatures. We propose to (1) develop a microwave flash method (analogous to the laser flash technique) that can simultaneously measure the thermal diffusivity and specific heat of insulators and semiconductors at high temperatures, (2) an appropriate theory and experimental apparatus to demonstrate the measurement of the specific heat of a metal using a new microwave ac specific heat technique, and (3) experimental methods for noncontact measurement of the real and imaginary dielectric constants.

  11. Apparatus and techniques for measuring bedload

    USGS Publications Warehouse

    Hubbell, David Wellington

    1964-01-01

    The need for accurate determinations of the total sediment discharge of particles of bedload size has prompted this investigation of available and possible measuring apparatus and procedures. The accuracy of measurements of sediment discharge made with trap-type samplers is affected by the variability of sampler efficiency, by the oscillatory variation of bedload discharge, and by sampler placement. Equations that were developed for determining total discharge from measured bedioad discharge and measured suspended-sediment discharge are simplest if the bedload apparatus measures only the true bedload. Early bedload samplers are generally unsatisfactory. Recently developed or suggested apparatus include various improved samplers of the pressure-difference type, a pumping sampler, a magnetic sampler, acoustical instruments that measure the magnitude of the sound of particle collisions, an ultrasonic bedload sampler designed to measure and integrate electronically the concentration and velocity, and a tiltmeter designed to measure the total sediment discharge from the ground tilt that results from the passage of flow. All the pressure-difference samplers are improvements over early samplers, but none are void of the inherent shortcomings of trap-type apparatus; probably the Sphinx (Dutch) and VUV (Hungarian) samplers are the most satisfactory. The acoustical instruments are capable of measuring only the relative discharge. The ultrasonic sampler and the tiltmeter are not adequate without further development. Some new possible apparatus and means for measuring or aiding in measuring bedload discharge are small pit samplers, ultrasonic sounders, pressure transducers, and photography. A small pit sampler for measuring bedload discharge was designed to provide self-placement and portability ; however, its practicability and efficiency are undetermined. Exploratory films show that by using slowmotion photography the discharge of particles larger than about pea size can be

  12. Material interactions with the low earth orbital environment Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, J. T.; Leger, L. J.

    1985-01-01

    Interactions between spacecraft surfaces and atomic oxygen within the low earth orbital (LEO) environment have been observed and measured during Space Shuttle flights over the past 3 yr. The results of these experiments have demonstrated that interaction rates for many materials proposed for spacecraft applications are high and that protective coatings must be developed to enable long-lived operation of spacecraft structures in the LEO environment. A flight experiment discussed herein uses the Space Shuttle as an orbiting exposure laboratory to obtain accurate reaction rate measurements for materials typically used in spacecraft construction. An ion-neutral mass spectrometer, installed in the Orbiter cargo bay, will measure diurnal ambient oxygen densities while material samples are exposed at low altitude (222 km) to the orbital environment. From in situ atomic oxygen density information and postflight material recession measurements, accurate reaction rates can be derived to update the Space Station materials interaction data base. Additionally, gases evolved from a limited number of material surfaces subjected to direct oxygen impingement will be identified using the mass spectrometer. These measurements will aid in mechanistic definitions of chemical reactions which cause atom-surface interactions and in validating results of upcoming degradation studies conducted in ground-based neutral beam laboratories.

  13. Accurate time-of-flight measurement of particle based on ECL-TTL Timer

    NASA Astrophysics Data System (ADS)

    Li, Deping; Liu, Jianguo; Huang, Shuhua; Gui, Huaqiao; Cheng, Yin; Wang, Jie; Lu, Yihuai

    2014-11-01

    Because of its aerodynamic diameter of the aerosol particles are stranded in different parts of different human respiratory system, thus affecting human health. Therefore, how to continue to effectively monitor the aerosol particles become increasingly concerned about. Use flight time of aerosol particle beam spectroscopy of atmospheric aerosol particle size distribution is the typical method for monitoring atmospheric aerosol particle size and particle concentration measurement , and it is the key point to accurate measurement of aerosol particle size spectra that measurement of aerosol particle flight time. In order to achieve accurate measurements of aerosol particles in time-of-flight, this paper design an ECL-TTL high-speed timer with ECL counter and TTL counter. The high-speed timer includes a clock generation, high-speed timer and the control module. Clock Generation Module using a crystal plus multiplier design ideas, take advantage of the stability of the crystal to provide a stable 500MHz clock signal is high counter. High count module design using ECL and TTL counter mix design, timing accuracy while effectively maintaining , expanding the timing range, and simplifies circuit design . High-speed counter control module controls high-speed counter start, stop and reset timely based on aerosol particles time-of-flight, is a key part of the high-speed counting. The high-speed counting resolution of 4ns, the full scale of 4096ns, has been successfully applied Aerodynamic Particle Sizer, to meet the precise measurement of aerosol particles time-of-flight.

  14. Recent advancement of turbulent flow measurement techniques

    NASA Technical Reports Server (NTRS)

    Battle, T.; Wang, P.; Cheng, D. Y.

    1974-01-01

    Advancements of the fluctuating density gradient cross beam laser Schlieren technique, the fluctuating line-reversal temperature measurement and the development of the two-dimensional drag-sensing probe to a three-dimensional drag-sensing probe are discussed. The three-dimensionality of the instantaneous momentum vector can shed some light on the nature of turbulence especially with swirling flow. All three measured fluctuating quantities (density, temperature, and momentum) can provide valuable information for theoreticians.

  15. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    PubMed Central

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-01-01

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739

  16. Ionospheric Measurements Using Environmental Sampling Techniques

    NASA Technical Reports Server (NTRS)

    Bourdeau, R. E.; Jackson, J. E.; Kane, J. A.; Serbu, G. P.

    1960-01-01

    Two rockets were flown to peak altitudes of 220 km in September 1959 to test various methods planned for future measurements of ionization parameters in the ionosphere, exosphere, and interplanetary plasma. The experiments used techniques which sample the ambient environment in the immediate vicinity of the research vehicle. Direct methods were chosen since indirect propagation techniques do not provide the temperatures of charged particles, are insensitive to ion densities, and cannot measure local electron densities under all conditions. Very encouraging results have been obtained from a preliminary analysis of data provided by one of the two flights. A new rf probe technique was successfully used to determine the electron density profile. This was indicated by its agreement with the results of a companion cw propagation experiment, particularly when the probe data were corrected for the effects of the ion sheath which surrounds the vehicle. The characteristics of this sheath were determined directly in flight by an electric field meter which provided the sheath field, and by a Langmuir probe which measured the total potential across the sheath. The electron temperatures deduced from the Langmuir probe data are greater than the neutral gas temperatures previously measured for the same location and season, but these measurements possibly were taken under different atmospheric conditions. Ion densities were calculated from the ion trap data for several altitudes ranging from 130 to 210 km and were found to be within 20 percent of the measured electron densities.

  17. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    This grant provides for some investigations related to weather radar measurement techniques applicable to meteorological radar systems in Thailand. Quality data are needed from those systems to support TRMM and other scientific investigations. Activities carried out during a trip to the radar facilities at Phuket are described.

  18. Radionuclide Counting Technique Measures Wind Velocity

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Khandelwal, G. S.; Mall, G. H.

    1983-01-01

    Proposed technique for measuring wind velocity based on inverse-squarelaw variation of radioactive counting rates. In proposal, radioative source is deposited on bottom of light, hollow sphere and suspended by flexible wire over radiation counter, Anemometer based on this concept is self-contained, portable, yet not too fragile. Used for extended periods of time, even at remote, inhospitable and inaccessible sites.

  19. Techniques for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, Michael R.; Bland, Roger

    1999-01-01

    An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. The relative magnitude of equipment errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second. Typical maximum flow rates during the data-collection period averaged 750 cubic meters per second.

  20. Accurate High-Resolution Measurements of 3-D Tissue Dynamics With Registration-Enhanced Displacement Encoded MRI

    PubMed Central

    Merchant, Samer S.; Hsu, Edward W.

    2014-01-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI. PMID:24771572

  1. A new carrier gas type for accurate measurement of N2O by GC-ECD

    NASA Astrophysics Data System (ADS)

    Wang, Yinghong; Wang, Yuesi; Ling, Hong

    2010-11-01

    The accurate measurement of concentration is the basis for determining emission sources and sinks of nitrous oxide (N2O). The detection of N2O showed that the presence of carbon dioxide (CO2) biased the N2O response when pure nitrogen (N2) was used as a carrier gas for gas chromatography (GC) equipped with an electron capture detector (GC-ECD). In this study, laboratory experiments were carried out to explore how the presence of CO2 interferes with the accurate determination of N2O. The aims were to address the extent of the influence to try and explain the underlying mechanism, and to uncover technical options for solving the problem. Three GC carrier gases are discussed: pure nitrogen (DN); a mixture of argon and methane (AM); and a high concentration CO2, which was introduced into the ECD cell with a low flow rate based on DN (DN-CO2). The results show that when DN was used, the existence of CO2 in the ECD cell greatly enhanced the response of N2O, which increased with CO2 content and remained constant when the content reached a limit. Comparisons between the three methods show that the DN method is defective for the accurate determination of N2O. The bias is caused by different electron capture mechanisms of CO2 and N2O and depends heavily on the detector temperature. New GC carrier gas types with make-up gases that can remove the CO2-induced influence, such as the DN-CO2 and DN-CH4 methods reported in this paper, are recommended for the accurate measurement of N2O.

  2. Internal Mammary Sentinel Lymph Node Biopsy With Modified Injection Technique: High Visualization Rate and Accurate Staging.

    PubMed

    Qiu, Peng-Fei; Cong, Bin-Bin; Zhao, Rong-Rong; Yang, Guo-Ren; Liu, Yan-Bing; Chen, Peng; Wang, Yong-Sheng

    2015-10-01

    Although the 2009 American Joint Committee on Cancer incorporated the internal mammary sentinel lymph node biopsy (IM-SLNB) concept, there has been little change in surgical practice patterns because of the low visualization rate of internal mammary sentinel lymph nodes (IMSLN) with the traditional radiotracer injection technique. In this study, various injection techniques were evaluated in term of the IMSLN visualization rate, and the impact of IM-SLNB on the diagnostic and prognostic value were analyzed.Clinically, axillary lymph nodes (ALN) negative patients (n = 407) were divided into group A (traditional peritumoral intraparenchymal injection) and group B (modified periareolar intraparenchymal injection). Group B was then separated into group B1 (low volume) and group B2 (high volume) according to the injection volume. Clinically, ALN-positive patients (n = 63) were managed as group B2. Internal mammary sentinel lymph node biopsy was performed for patients with IMSLN visualized.The IMSLN visualization rate was significantly higher in group B than that in group A (71.1% versus 15.5%, P < 0.001), whereas the axillary sentinel lymph nodes were reliably identified in both groups (98.9% versus 98.3%, P = 0.712). With high injection volume, group B2 was found to have higher IMSLN visualization rate than group B1 (75.1% versus 45.8%, P < 0.001). The IMSLN metastasis rate was only 8.1% (12/149) in clinically ALN-negative patients with successful IM-SLNB, and adjuvant treatment was altered in a small proportion. The IMSLN visualization rate was 69.8% (44/63) in clinically ALN-positive patients with the IMSLN metastasis rate up to 20.5% (9/44), and individual radiotherapy strategy could be guided with the IM-SLNB results.The modified injection technique (periareolar intraparenchymal, high volume, and ultrasound guidance) significantly improved the IMSLN visualization rate, making the routine IM-SLNB possible in daily practice. Internal mammary

  3. Internal Mammary Sentinel Lymph Node Biopsy With Modified Injection Technique: High Visualization Rate and Accurate Staging.

    PubMed

    Qiu, Peng-Fei; Cong, Bin-Bin; Zhao, Rong-Rong; Yang, Guo-Ren; Liu, Yan-Bing; Chen, Peng; Wang, Yong-Sheng

    2015-10-01

    Although the 2009 American Joint Committee on Cancer incorporated the internal mammary sentinel lymph node biopsy (IM-SLNB) concept, there has been little change in surgical practice patterns because of the low visualization rate of internal mammary sentinel lymph nodes (IMSLN) with the traditional radiotracer injection technique. In this study, various injection techniques were evaluated in term of the IMSLN visualization rate, and the impact of IM-SLNB on the diagnostic and prognostic value were analyzed.Clinically, axillary lymph nodes (ALN) negative patients (n = 407) were divided into group A (traditional peritumoral intraparenchymal injection) and group B (modified periareolar intraparenchymal injection). Group B was then separated into group B1 (low volume) and group B2 (high volume) according to the injection volume. Clinically, ALN-positive patients (n = 63) were managed as group B2. Internal mammary sentinel lymph node biopsy was performed for patients with IMSLN visualized.The IMSLN visualization rate was significantly higher in group B than that in group A (71.1% versus 15.5%, P < 0.001), whereas the axillary sentinel lymph nodes were reliably identified in both groups (98.9% versus 98.3%, P = 0.712). With high injection volume, group B2 was found to have higher IMSLN visualization rate than group B1 (75.1% versus 45.8%, P < 0.001). The IMSLN metastasis rate was only 8.1% (12/149) in clinically ALN-negative patients with successful IM-SLNB, and adjuvant treatment was altered in a small proportion. The IMSLN visualization rate was 69.8% (44/63) in clinically ALN-positive patients with the IMSLN metastasis rate up to 20.5% (9/44), and individual radiotherapy strategy could be guided with the IM-SLNB results.The modified injection technique (periareolar intraparenchymal, high volume, and ultrasound guidance) significantly improved the IMSLN visualization rate, making the routine IM-SLNB possible in daily practice. Internal mammary

  4. Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system

    NASA Astrophysics Data System (ADS)

    Kennedy, Catherine A.; Stancescu, Maria; Marriott, Robert A.; White, Mary Anne

    2007-02-01

    A commercial instrument for determination of heat capacities of solids from ca. 400 K to 0.4 K, the physical property measurement system from Quantum Design, has been used to determine the heat capacities of a standard samples (sapphire [single crystal] and copper). We extend previous tests of the PPMS in three important ways: to temperatures as low as 0.4 K; to samples with poor thermal conductivity; to compare uncertainty with accuracy. We find that the accuracy of heat capacity determinations can be within 1% for 5 K < T < 300 K and 5% for 0.7 K < T < 5 K. Careful attention should be paid to the relative uncertainty for each data point, as determined from multiple measurements. While we have found that it is possible in some circumstances to obtain excellent results by measurement of samples that contribute more than ca. 1/3 to the total heat capacity, there is no "ideal" sample mass and sample geometry also is an important consideration. In fact, our studies of pressed pellets of zirconium tungstate, a poor thermal conductor, show that several samples of different masses should be determined for the highest degree of certainty.

  5. Techniques in audio and acoustic measurement

    NASA Astrophysics Data System (ADS)

    Kite, Thomas D.

    2003-10-01

    Measurement of acoustic devices and spaces is commonly performed with time-delay spectrometry (TDS) or maximum length sequence (MLS) analysis. Both techniques allow an impulse response to be measured with a signal-to-noise ratio (SNR) that can be traded off against the measurement time. However, TDS suffers from long measurement times because of its linear sweep, while MLS suffers from the corruption of the impulse response by distortion. Recently a logarithmic sweep-based method has been devised which offers high SNR, short measurement times, and the ability to separate the linear impulse response from the impulse responses of distortion products. The applicability of these methods to audio and acoustic measurement will be compared.

  6. The road towards accurate optical width measurements at the industrial level

    NASA Astrophysics Data System (ADS)

    Bodermann, Bernd; Köning, Rainer; Bergmann, Detlef; Buhr, Egbert; Hässler-Grohne, Wolfgang; Flügge, Jens; Bosse, Harald

    2013-04-01

    Optical vision systems require both unidirectional and bidirectional measurements for the calibrations and the verification of the tool performance to enable accurate measurements traceable to the SI unit Metre. However, for bidirectional measurements up to now the national metrology institutes are unable to provide internationally recognized calibrations of suitable standards. Furthermore often users are not aware of the specific difficulties of these measurements. In this paper the current status and limitations of bidirectional optical measurements at the industrial level are summarised and compared to state-of-the-art optical linewidth measurements performed at PTB on measurement objects of semiconductor industry. It turns out, that for optical widths measurements at an uncertainty level below 1 μm edge localisation schemes are required, which are based on tool and sample dependent threshold values, which usually need to be determined by a rigorous simulation of the microscopic image. Furthermore the calibration samples and structures must have a sufficient quality, e. g. high edge angle and low edge roughness and the structure materials and their material parameters have to be known. The experience obtained within the accreditation process of industrial labs for width calibrations shows that, in order to be able to achieve a desired measurement uncertainties of about 100 nm, the imaging system needs to have a monochromatic Koehler illumination, numerical aperture larger than 0.5, a magnification greater than 50x and the ability to control the deviation of the focus position to better than 100 nm.

  7. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    PubMed

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p < 0.001). With calcified cartilage included, the correlation was ρ = 0.85 (p < 0.001). The mean cartilage SOS (1,636 m/s) was in agreement with the literature. However, SOS and the other properties of cartilage lacked any statistically significant correlation. Interpretation - OCT can give an accurate measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  8. Accurate measurements of the collision stopping powers for 5 to 30 MeV electrons

    NASA Astrophysics Data System (ADS)

    MacPherson, Miller Shawn

    Accurate knowledge of electron stopping powers is crucial for accurate radiation dosimetry and radiation transport calculations. Current values for stopping powers are based on a theoretical model, with estimated uncertainties of 0.5-1% (1σ) for electron energies greater than 100 keV. This work presents the first measurements of electron collision stopping powers capable of testing the theoretical values within these stated uncertainties. A large NaI spectrometer was used to measure the change in electron energy when an absorbing disk of known thickness was placed in an electron beam. Monte Carlo simulations of the experiment were performed to account for the effects of surrounding materials. Energy differences between the calculated and measured spectra were used to determine corrections to the soft collision component of the theoretical stopping powers employed by the Monte Carlo simulations. Four different elemental materials were studied: Be, Al, Cu, and Ta. This provided a wide range of atomic numbers and densities over which to test the theory. In addition, stopping powers were measured for graphite (both standard and pyrolytic), A-150 tissue equivalent plastic, C-552 air equivalent plastic, and water. The incident electron energies ranged from 5 to 30 MeV. Generally, the measured stopping powers agree with the theoretical values within the experimental uncertainties, which range from 0.4% to 0.7% (1σ). Aluminum, however, exhibits a 0.7% discrepancy at higher electron energies. Furthermore, these measurements have established that the grain density stopping power is appropriate for graphite, contrary to the recommendations of ICRU Report 37. This removes a 0.2% uncertainty in air kerma calibrations, and impacts on dosimetric quantities determined via graphite calorimetry, such as ɛG for Fricke dosimetry and (W/ e)air for ion chamber measurements.

  9. Ultrasonic techniques for aircraft ice accretion measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Lichtenfelts, Fred

    1990-01-01

    Results of tests to measure ice growth in natural (flight) and artificial (icing wind tunnel) icing conditions are presented. Ice thickness is measured using an ultrasonic pulse-echo technique. Two icing regimes, wet and dry ice growth, are identified and the unique ultrasonic signal characteristics associated with these different types of ice growth are described. Ultrasonic measurements of ice growth on cylinders and airfoils exposed to artificial and natural icing conditions are presented. An accuracy of plus or minus 0.5 mm is achieved for ice thickness measurement using the pulse-echo technique. The performance of two-probe type ice detectors is compared to the surface mounted ultrasonic system. The ultrasonically measured ice accretion rates and ice surface condition (wet or dry) are used to compare the heat transfer characteristics for flight and icing wind tunnel environments. In general the heat transfer coefficient is inferred to be higher in the wind tunnel environment, not likely due to higher freestream turbulence levels. Finally, preliminary results of tests to measure ice growth on airfoil using an array of ultrasonic transducers are described. Ice profiles obtained during flight in natural icing conditions are shown and compared with mechanical and stereo image measurements.

  10. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module

  11. Accurate Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative Humidity.

    PubMed

    Rovelli, Grazia; Miles, Rachael E H; Reid, Jonathan P; Clegg, Simon L

    2016-06-30

    Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations that account for both the heat and mass transport governing the droplet evaporation kinetics, these measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e., the variations with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water activity (from >0.99 to, in principle, <0.05) on time scales of <10 s for droplets containing involatile or volatile solutes. The approach is benchmarked for binary and ternary inorganic solution aerosols with typical uncertainties in water activity of <±0.2% at water activities >0.9 and ∼±1% below 80% RH, and maximum uncertainties in diameter growth factor of ±0.7%. For all of the inorganic systems examined, the time-dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1). PMID:27285052

  12. Financial volatility: Issues and measuring techniques

    NASA Astrophysics Data System (ADS)

    Daly, Kevin

    2008-04-01

    This paper explains in non-technical terms various techniques used to measure volatility ranging from time invariant measures to time variant measures. It is shown that a weakness of the former measures arises from the underlying assumption that volatility is considered to be constant over time. This observation has led researchers to develop time variant measures based on the assumption that volatility changes over time. The introduction of the original ARCH model by Engle has spawned an ever increasing variety of models such as GARCH, EGARCH, NARCH, ARCH-M MARCH and the Taylor-Schwert model. The degree of sophistication employed in developing these models is discussed in detail as are the models characteristics used to capture the underlying economic and financial time series data including volatility clustering, leverage effects and the persistence of volatility itself. A feature of these more elaborate models is that they generally obtain a better fit to the data in-sample.

  13. Accurate Young's modulus measurement based on Rayleigh wave velocity and empirical Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Li, Mingxia; Feng, Zhihua

    2016-07-01

    This paper presents a method for Young's modulus measurement based on Rayleigh wave speed. The error in Poisson's ratio has weak influence on the measurement of Young's modulus based on Rayleigh wave speed, and Poisson's ratio minimally varies in a certain material; thus, we can accurately estimate Young's modulus with surface wave speed and a rough Poisson's ratio. We numerically analysed three methods using Rayleigh, longitudinal, and transversal wave speed, respectively, and the error in Poisson's ratio shows the least influence on the result in the method involving Rayleigh wave speed. An experiment was performed and has proved the feasibility of this method. Device for speed measuring could be small, and no sample pretreatment is needed. Hence, developing a portable instrument based on this method is possible. This method makes a good compromise between usability and precision.

  14. Non-intrusive temperature measurement using microscale visualization techniques

    NASA Astrophysics Data System (ADS)

    Chamarthy, Pramod; Garimella, Suresh V.; Wereley, Steven T.

    2009-07-01

    μPIV is a widely accepted tool for making accurate measurements in microscale flows. The particles that are used to seed the flow, due to their small size, undergo Brownian motion which adds a random noise component to the measurements. Brownian motion introduces an undesirable error in the velocity measurements, but also contains valuable temperature information. A PIV algorithm which detects both the location and broadening of the correlation peak can measure velocity as well as temperature simultaneously using the same set of images. The approach presented in this work eliminates the use of the calibration constant used in the literature (Hohreiter et al. in Meas Sci Technol 13(7):1072-1078, 2002), making the method system-independent, and reducing the uncertainty involved in the technique. The temperature in a stationary fluid was experimentally measured using this technique and compared to that obtained using the particle tracking thermometry method and a novel method, low image density PIV. The method of cross-correlation PIV was modified to measure the temperature of a moving fluid. A standard epi-fluorescence μPIV system was used for all the measurements. The experiments were conducted using spherical fluorescent polystyrene-latex particles suspended in water. Temperatures ranging from 20 to 80°C were measured. This method allows simultaneous non-intrusive temperature and velocity measurements in integrated cooling systems and lab-on-a-chip devices.

  15. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans

    SciTech Connect

    McKenzie, Elizabeth M.; Balter, Peter A.; Stingo, Francesco C.; Jones, Jimmy; Followill, David S.; Kry, Stephen F.

    2014-12-15

    was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.

  16. Measurements of Gastric Emptying by Biomagnetic Techniques

    NASA Astrophysics Data System (ADS)

    Vázquez, L. A.; Sosa, M.; Córdova, T.; Vargas, F. M.; Huerta, M. R.

    2006-09-01

    In the present work a new method to measure the average time of gastric emptying by using a magnetic tracer is showed, this work shows the application of foundations of the electromagnetic theory in the study of the gastrointestinal system. The presented technique is relatively cheap and can be used it to diagnose of diseases, is a noninvasive method, is a technique that does not use ionizing radiation. In this investigation was possible to measure the average time of gastric emptying with a very high precision. In this investigation measurements of 10 healthy volunteers were made, and an average time of gastric emptying of 36.45 minutes in the space of the time was obtained, in addition with the analysis to the signal by means of the use of a pass-band filter it was possible to measure the peristaltic frequencies of the stomach and an average time of 37.24 minutes in the space of frequencies. With this technique it is possible to obtain data of the walls of the stomach. A peristaltic frequency of 2.79 was obtained cpm (cycles per minute).

  17. Equivalence and Accuracy of MOSFET Channel Length Measurement Techniques

    NASA Astrophysics Data System (ADS)

    Jain, Sanjay

    1989-02-01

    It is shown that the MOSFET channel length measurement techniques of Terada and Muta, Peng et al., Whitfield, Suciu and Johnston, and De La Moneda et al. are actually equivalent, i.e. merely different expressions of the same formula for channel length in terms of measured resistance, and that some of the transresistance methods of Jain, although not equivalent, are also related to the same formula. The accuracy of this formula is evaluated for the general case and related to the error components due to source and drain resistance asymmetry, short channel geometry effect, and variation of series resistance with bias. No independent error component due to field-induced mobility degradation is found. Finally the errors in the methods of Terada and Muta, Chen et al., Sheu et al., Wordeman et al. and Jain, are determined and compared. The gate transresistance technique is found to be the most accurate method.

  18. Absorption technique for OH measurements and calibration

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; James, J. V.; Wang, C. C.

    1982-01-01

    An absorption technique is described which utilizes a stabilized frequency-doubled tunable dye laser and a long-path White cell with high mirror reflectivities both in the red and UV. In laboratory conditions it has been possible to routinely obtain a detection sensitivity of 3 parts in 1,000,000 over absorption paths less than 1 m in length and a detection sensitivity of approximately 6 parts in 100,000 over an absorption path of the order of 1 km. The latter number corresponds to 3,000,000 OH molecules/cu cm, and therefore the technique should be particularly useful for calibration the fluorescence instrument for OH measurements. However, the presence of atmospheric fluctuations coupled with intensity variation accompanying frequency scanning appears to degrade the detection sensitivity in outdoor ambient conditions, thus making it unlikely that this technique can be employed for direct OH monitoring.

  19. Object strength--an accurate measure for small objects that is insensitive to partial volume effects.

    PubMed

    Tofts, P S; Silver, N C; Barker, G J; Gass, A

    2005-07-01

    There are currently four problems in characterising small nonuniform lesions or other objects in Magnetic Resonance images where partial volume effects are significant. Object size is over- or under-estimated; boundaries are often not reproducible; mean object value cannot be measured; and fuzzy borders cannot be accommodated. A new measure, Object Strength, is proposed. This is the sum of all abnormal intensities, above a uniform background value. For a uniform object, this is simply the product of the increase in intensity and the size of the object. Biologically, this could be at least as relevant as existing measures of size or mean intensity. We hypothesise that Object Strength will perform better than traditional area measurements in characterising small objects. In a pilot study, the reproducibility of object strength measurements was investigated using MR images of small multiple sclerosis (MS) lesions. In addition, accuracy was investigated using artificial lesions of known volume (0.3-6.2 ml) and realistic appearance. Reproducibility approached that of area measurements (in 33/90 lesion reports the difference between repeats was less than for area measurements). Total lesion volume was accurate to 0.2%. In conclusion, Object Strength has potential for improved characterisation of small lesions and objects in imaging and possibly spectroscopy.

  20. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  1. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  2. Techniques for measurement of thoracoabdominal asynchrony

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Hammer, J.; Newth, Christopher J L.

    2002-01-01

    Respiratory motion measured by respiratory inductance plethysmography often deviates from the sinusoidal pattern assumed in the traditional Lissajous figure (loop) analysis used to determine thoraco-abdominal asynchrony, or phase angle phi. We investigated six different time-domain methods of measuring phi, using simulated data with sinusoidal and triangular waveforms, phase shifts of 0-135 degrees, and 10% noise. The techniques were then used on data from 11 lightly anesthetized rhesus monkeys (Macaca mulatta; 7.6 +/- 0.8 kg; 5.7 +/- 0.5 years old), instrumented with a respiratory inductive plethysmograph, and subjected to increasing levels of inspiratory resistive loading ranging from 5-1,000 cmH(2)O. L(-1). sec(-1).The best results were obtained from cross-correlation and maximum linear correlation, with errors less than approximately 5 degrees from the actual phase angle in the simulated data. The worst performance was produced by the loop analysis, which in some cases was in error by more than 30 degrees. Compared to correlation, other analysis techniques performed at an intermediate level. Maximum linear correlation and cross-correlation produced similar results on the data collected from monkeys (SD of the difference, 4.1 degrees ) but all other techniques had a high SD of the difference compared to the correlation techniques.We conclude that phase angles are best measured using cross-correlation or maximum linear correlation, techniques that are independent of waveform shape, and robust in the presence of noise. Copyright 2002 Wiley-Liss, Inc.

  3. Metrology of vibration measurements by laser techniques

    NASA Astrophysics Data System (ADS)

    von Martens, Hans-Jürgen

    2008-06-01

    Metrology as the art of careful measurement has been understood as uniform methodology for measurements in natural sciences, covering methods for the consistent assessment of experimental data and a corpus of rules regulating application in technology and in trade and industry. The knowledge, methods and tools available for precision measurements can be exploited for measurements at any level of uncertainty in any field of science and technology. A metrological approach to the preparation, execution and evaluation (including expression of uncertainty) of measurements of translational and rotational motion quantities using laser interferometer methods and techniques will be presented. The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and upgraded ISO standards are reviewed with respect to their suitability for ensuring traceable vibration measurements and calibrations in an extended frequency range of 0.4 Hz to higher than 100 kHz. Using adequate vibration exciters to generate sufficient displacement or velocity amplitudes, the upper frequency limits of the laser interferometer methods specified in ISO 16063-11 for frequencies <= 10 kHz can be expanded to 100 kHz and beyond. A comparison of different methods simultaneously used for vibration measurements at 100 kHz will be demonstrated. A statistical analysis of numerous experimental results proves the highest accuracy achievable currently in vibration measurements by specific laser methods, techniques and procedures (i.e. measurement uncertainty 0.05 % at frequencies <= 10 kHz, <= 1 % up to 100 kHz).

  4. Refined flicker photometry technique to measure ocular lens density.

    PubMed

    Teikari, Petteri; Najjar, Raymond P; Knoblauch, Kenneth; Dumortier, Dominique; Cornut, Pierre-Loïc; Denis, Philippe; Cooper, Howard M; Gronfier, Claude

    2012-11-01

    Many physiological and pathological conditions are associated with a change in the crystalline lens transmittance. Estimates of lens opacification, however, generally rely on subjective rather than objective measures in clinical practice. The goal of our study was to develop an improved psychophysical heterochromatic flicker photometry technique combined with existing mathematical models to evaluate the spectral transmittance of the human ocular media noninvasively. Our results show that it is possible to accurately estimate ocular media density in vivo in humans. Potential applications of our approach include basic research and clinical settings on visual and nonimage-forming visual systems.

  5. Optical coherence tomography as film thickness measurement technique

    NASA Astrophysics Data System (ADS)

    Manallah, Aissa; Bouafia, Mohamed; Meguellati, Said

    2015-01-01

    Optical coherence tomography (OCT) is a powerful optical method, noninvasive and noncontact diagnostic method. Although it is usually used for medical examinations, particularly in ocular exploration; it can also be used in optical metrology as measure technique. In this work, we use OCT to measure thicknesses of films. In OCT, depth profiles are constructed by measuring the time delay of back reflected light by interferometry measurements. Frequency in k-space is proportional to optical path difference. Then the reflectivity profile is obtained by a Fourier transformation, and the difference between two successive peaks of the resulting spectrum gives the film thickness. Several films, food-type, of different thicknesses were investigated and the results were very accurate.

  6. Vibration frequency measurement using a local multithreshold technique.

    PubMed

    Ferrer, Belen; Espinosa, Julian; Roig, Ana B; Perez, J; Mas, D

    2013-11-01

    In this paper, we demonstrate the use of a video camera for measuring the frequency of small-amplitude vibration movements. The method is based on image acquisition and multilevel thresholding and it only requires a video camera with high enough acquisition rate, not being necessary the use of targets or auxiliary laser beams. Our proposal is accurate and robust. We demonstrate the technique with a pocket camera recording low-resolution videos with AVI-JPEG compression and measuring different objects that vibrate in parallel or perpendicular direction to the optical sensor. Despite the low resolution and the noise, we are able to measure the main vibration modes of a tuning fork, a loudspeaker and a bridge. Results are successfully compared with design parameters and measurements with alternative devices.

  7. Dynamic measurement of bulk modulus of dielectric materials using a microwave phase shift technique

    NASA Technical Reports Server (NTRS)

    Barker, B. J.; Strand, L. D.

    1972-01-01

    A microwave Doppler shift technique was developed for measuring the dynamic bulk modulus of dielectric materials such as solid propellants. The system has a demonstrated time resolution on the order of milliseconds and a theoretical spatial resolution of a few microns. Accuracy of the technique is dependent on an accurate knowledge of the wavelength of the microwave in the sample being tested. Such measurement techniques are discussed. Preliminary tests with two solid propellants, one non-aluminized and one containing 16% aluminum, yielded reasonable, reproducible results. It was concluded that with refinements the technique holds promise as a practical means for obtaining accurate dynamic bulk modulus data over a variety of transient conditions.

  8. Surface Wear Measurement Using Optical Correlation Technique

    NASA Astrophysics Data System (ADS)

    Acinger, Kresimir

    1983-12-01

    The coherent optical correlation technique was applied for measuring the surface wear of a tappet (part of car engine), worn by friction with the camshaft. It was found that maximum correlation intensity decays exponentially with the number of wear cycles (i.e. camshaft revolutions). Tappets of the same make have an identical rate of correlation decay. Tappets of different makes have different rates of correlation decay which are in agreement with observed long term wear.

  9. Preoperative Planning and Intraoperative Technique for Accurate Translation of a Distal First Metatarsal Osteotomy.

    PubMed

    Wynes, Jacob; Lamm, Bradley M; Andrade, Bijan J; Malay, D Scot

    2016-01-01

    We used preoperative radiographic and intraoperative anatomic measurements to predict and achieve, respectively, the precise amount of capital fragment lateral translation required to restore anatomic balance to the first metatarsophalangeal joint. Correlation was used to relate the amount of capital fragment translation and operative reduction of the first intermetatarsal angle (IMA), hallux abductus angle (HAA), tibial sesamoid position (TSP), metatarsus adductus angle, and first metatarsal length. The mean capital fragment lateral translation was 5.54 ± 1.64 mm, and the mean radiographic reductions included a first IMA of 5.04° ± 2.85°, an HAA of 9.39° ± 8.38°, and a TSP of 1.38 ± 0.9. These changes were statistically (p < .001) and clinically (≥32.55%) significant. The mean reduction of the metatarsus adductus angle was 0.66° ± 4.44° and that for the first metatarsal length was 0.33 ± 7.27 mm, and neither of these were statistically (p = .5876 and 0.1247, respectively) or clinically (≤3.5%) significant. Pairwise correlations between the amount of lateral translation of the capital fragment and the first IMA, HAA, and TSP values were moderately positive and statistically significant (r = 0.4412, p = .0166; r = 0.5391, p = .0025; and r = 0.3729, p = .0463; respectively). In contrast, the correlation with metatarsus adductus and the first metatarsal shortening were weak and not statistically significant (r = 0.2296, p = .2308 and r = -0.2394, p = .2109, respectively). The results of our study indicate that predicted preoperative and executed intraoperative lateral translation of the capital fragment correlates with statistically and clinically significant reductions in the first IMA, HAA, and TSP.

  10. Airborne intercomparisons of carbon monoxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Sachse, Glen W.; Hill, Gerald F.; Condon, Estelle P.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of carbon monoxide (CO) are discussed. The intercomparison was conducted as part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and included a laser differential absorption method and two grab sample/gas chromatograph methods. Measurements were obtained during approximately 90 flight hours, during which the CO mixing ratios ranged from about 60 to 140 ppbv. The level of agreement observed for the ensemble of measurements was well within the overall accuracy stated for each instrument. The correlation observed between the measurements from the respective pairs of instruments ranged from 0.85 to 0.98, with no evidence for the presence of either a constant or proportional bias between any of the instruments.

  11. Aerosol pattern correlation techniques of wind measurement

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W.

    1985-01-01

    This paper reviews the current status of lidar image correlation techniques of remote wind measurement. It also examines the potential use of satellite borne lidar global wind measurements using this approach. Lidar systems can easily detect spatial variations in the volume scattering cross section of naturally occurring aerosols. Lidar derived RHI, PPI and range-time displays of aerosol backscatter have been extensively employed in the study of atmospheric structure. Descriptions of this type of data can be obtained in many references including Kunkel et al. (1977), Kunkel et al. (1980), Boers et al. (1984), Uthe et al. (1980), Melfi et al. (1985) and Browell et al. (1983). It is likely that the first space-borne lidars for atmospheric studies will observe aerosol backscatter to measure parameters such as boundary layer depth and cloud height. This paper examines the potential application of these relatively simple aerosol backscatter lidars to global wind measurements.

  12. Investigation of a noncontact strain measurement technique

    SciTech Connect

    Damiano, B.; Talarico, L.J.

    1996-05-01

    The goal of this project was to investigate the feasibility of a new noncontact technique for directly and continuously monitoring peak strain in rotating components. The technique utilizes the unique strain-sensitive magnetic material properties of transformation Induced Plasticity (TRIP) steel alloys to measure strain. These alloys are weakly magnetic when unstrained but become strongly ferromagnetic after mechanical deformation. A computer study was performed to determine whether the strain-induced change in the magnetic material properties of a TRIP steel gage bonded to a rotating component would cause significant perturbations in the magnetic flux of a stationary electromagnet. The effects of strain level, distance between the rotating component and the stationary electromagnet, and motion-induced eddy currents on flux perturbation magnitude were investigated. The calculated results indicate that a TRIP steel strain sensing element can cause a significant perturbation in the magnetic flux of a stationary electromagnet. The magnetic flux perturbation magnitude was found to be inversely proportional to the distance between the magnet face and the TRIP steel element and directly proportional to the TRIP steel strain level. The effect of motion-induced eddy currents on the magnetic flux was found to be negligible. It appears that the technique can be successfully applied to measure peak strain in rotating components; however, the sensitivity of the magnetic flux perturbation magnitude to the distance between the strain sensing element and the electromagnet may require making an independent proximity measurement.

  13. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Utku, Cuneyt; Tarkocin, Yalcin; LeVine, David M.

    2010-01-01

    This report describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz that is at the center of the L-Sand radiometric protected frequency spectrum. Aquarius will be sensing the sea surface salinity from space in this band. The objective of the project is to refine the model function for the dielectric constant as a function of salinity and temperature so that remote sensing measurements can be made with the accuracy needed to meet the measurement goals (0.2 psu) of the Aquarius mission. The measurements were made, using a microwave cavity operated in the transmission configuration. The cavity's temperature was accurately regulated to 0.02 C by immersing it in a temperature controlled bath of distilled water and ethanol glycol. Seawater had been purchased from Ocean Scientific International Limited (OS1L) at salinities of 30, 35 and 38 psu. Measurements of these seawater samples were then made over a range of temperatures, from l0 C to 35 C in 5 C intervals. Repeated measurements were made at each temperature and salinity, Mean values and standard deviations were then computed. Total error budgets indicated that the real and imaginary parts of the dielectric constant had a relative accuracy of about l%.

  14. A New Test Rig for Accurate Nonparametric Measurement and Characterization of Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Montecucco, Andrea; Buckle, James; Siviter, Jonathan; Knox, Andrew R.

    2013-07-01

    Thermoelectric generators (TEGs) are increasingly employed in large-scale applications, therefore accurate performance data are necessary to permit precise designs and simulations. However, there is still no standardized method to test the electrical and thermal performance of TEGs. This paper presents an innovative test system to assess device performance in the "real world." The fixture allows the hot temperature to be increased up to 800°C with minimal thermal losses and thermal shock; the clamping load can be adjusted up to 5 kN, and the temperatures are sensed by thermocouples placed directly on the TEG's surfaces. A computer program controls all the instruments in order to minimize errors and to aid accurate measurement and test repeatability. The test rig can measure four TEGs simultaneously, each one individually controlled and heated by a maximum electrical power of 2 kW. This allows testing of the effects of series and parallel connection of TEGs under mismatched conditions, e.g., dimensions, clamping force, temperature, etc. The test rig can be employed both as a performance evaluator and as a quality control unit, due to the ability to provide nonparametric testing of four TEGs concurrently. It can also be used to rapidly characterize devices of different dimensions at the same time.

  15. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    PubMed

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  16. Accurate and precise measurement of selenium by instrumental neutron activation analysis.

    PubMed

    Kim, In Jung; Watson, Russell P; Lindstrom, Richard M

    2011-05-01

    An accurate and precise measurement of selenium in Standard Reference Material (SRM) 3149, a primary calibration standard for the quantitative determination of selenium, has been accomplished by instrumental neutron activation analysis (INAA) in order to resolve a question arising during the certification process of the standard. Each limiting factor of the uncertainty in the activation analysis, including the sample preparation, irradiation, and γ-ray spectrometry steps, has been carefully monitored to minimize the uncertainty in the determined mass fraction. Neutron and γ-ray self-shielding within the elemental selenium INAA standards contributed most significantly to the uncertainty of the measurement. An empirical model compensating for neutron self-shielding and reducing the self-shielding uncertainty was successfully applied to these selenium standards. The mass fraction of selenium in the new lot of SRM 3149 was determined with a relative standard uncertainty of 0.6%.

  17. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    NASA Astrophysics Data System (ADS)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  18. Apparatus for accurate density measurements of fluids based on a magnetic suspension balance

    NASA Astrophysics Data System (ADS)

    Gong, Maoqiong; Li, Huiya; Guo, Hao; Dong, Xueqiang; Wu, J. F.

    2012-06-01

    A new apparatus for accurate pressure, density and temperature (p, ρ, T) measurements over wide ranges of (p, ρ, T) (90 K to 290 K; 0 MPa to 3 MPa; 0 kg/m3 to 2000 kg/m3) is described. This apparatus is based on a magnetic suspension balance which applies the Archimedes' buoyancy principle. In order to verify the new apparatus, comprehensive (p, ρ, T) measurements on pure nitrogen were carried out. The maximum relative standard uncertainty is 0.09% in density. The maximum standard uncertainty in temperature is 5 mK, and that in pressure is 250 Pa for 1.5 MPa and 390 Pa for 3MPa full scale range respectively. The experimental data were compared with selected literature data and good agreements were found.

  19. A DGT technique for plutonium bioavailability measurements.

    PubMed

    Cusnir, Ruslan; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal

    2014-09-16

    The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 × 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 × 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 × 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota.

  20. UF 6 enrichment measurements using TDLS techniques

    NASA Astrophysics Data System (ADS)

    Berezin, A. G.; Malyugin, S. L.; Nadezhdinskii, A. I.; Namestnikov, D. Yu.; Ponurovskii, Ya. Ya.; Stavrovskii, D. B.; Shapovalov, Yu. P.; Vyazov, I. E.; Zaslavskii, V. Ya.; Selivanov, Yu. G.; Gorshunov, N. M.; Grigoriev, G. Yu.; Nabiev, Sh. Sh.

    2007-04-01

    The objective of this work was investigation of possibility of tunable diode laser spectroscopy (TDLS) technique application for gaseous uranium hexafluoride (UF 6) isotope measurement. Spectra of uranium hexafluoride gas mixture were investigated using two different Fourier Transform Spectrometers Vector 22 and Bruker 66v. Observed spectral features were identified and model spectra of different gas mixture components were developed. Optimal spectral range for measurements was determined near maximum of UF 6 combination band ν1 + ν3. Laboratory prototype of multi-channel instrument under consideration based on tunable diode lasers was built and algorithms were developed to measure gaseous UF 6 isotopic ratios. Diode laser used operated at the wavelengths near λ = 7.68 μm. It was placed in a liquid nitrogen cooled cryostat. Three instrument channels were used for laser frequency calibration and spectra recording. Instrument was tested in measurements of real UF 6 gas mixtures. Measurement accuracy was analyzed and error sources were identified. The root-mean-square random error in the 235U isotopic content is characterized by a spread of about 0.27% for quick measurements (at times less than 1 min) and 1% for periods of more than an hour. It was estimated that the measurement accuracy could be improved by at least an order of magnitude by minimizing the error sources.

  1. UF6 enrichment measurements using TDLS techniques.

    PubMed

    Berezin, A G; Malyugin, S L; Nadezhdinskii, A I; Namestnikov, D Yu; Ponurovskii, Ya Ya; Stavrovskii, D B; Shapovalov, Yu P; Vyazov, I E; Zaslavskii, V Ya; Selivanov, Yu G; Gorshunov, N M; Grigoriev, G Yu; Nabiev, Sh Sh

    2007-04-01

    The objective of this work was investigation of possibility of tunable diode laser spectroscopy (TDLS) technique application for gaseous uranium hexafluoride (UF6) isotope measurement. Spectra of uranium hexafluoride gas mixture were investigated using two different Fourier Transform Spectrometers Vector 22 and Bruker 66v. Observed spectral features were identified and model spectra of different gas mixture components were developed. Optimal spectral range for measurements was determined near maximum of UF6 combination band nu1+nu3. Laboratory prototype of multi-channel instrument under consideration based on tunable diode lasers was built and algorithms were developed to measure gaseous UF6 isotopic ratios. Diode laser used operated at the wavelengths near lambda=7.68 microm. It was placed in a liquid nitrogen cooled cryostat. Three instrument channels were used for laser frequency calibration and spectra recording. Instrument was tested in measurements of real UF6 gas mixtures. Measurement accuracy was analyzed and error sources were identified. The root-mean-square random error in the 235U isotopic content is characterized by a spread of about 0.27% for quick measurements (at times less than 1 min) and 1% for periods of more than an hour. It was estimated that the measurement accuracy could be improved by at least an order of magnitude by minimizing the error sources. PMID:17142093

  2. Home Circadian Phase Assessments with Measures of Compliance Yield Accurate Dim Light Melatonin Onsets

    PubMed Central

    Burgess, Helen J.; Wyatt, James K.; Park, Margaret; Fogg, Louis F.

    2015-01-01

    Study Objectives: There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Design: Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Setting: Laboratory or participants' homes. Participants: Thirty-five healthy adults, age 21–62 y. Interventions: N/A. Measurements and Results: Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for < 9 min of the required 8.5 h. Most participants collected every saliva sample within 5 min of the scheduled time. Ninety-two percent of home DLMOs were not affected by light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P < 0.001). Conclusions: Participants were reasonably compliant to the home phase assessment procedures. The good agreement between the home and laboratory dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Clinical Trial Registration: Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. Citation: Burgess HJ, Wyatt JK, Park M, Fogg LF. Home circadian phase assessments with measures of compliance yield accurate dim light melatonin onsets. SLEEP 2015;38(6):889–897

  3. Technique for measuring the dielectric constant of thin materials

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Ulaby, F. T.

    1988-01-01

    A practical technique for measuring the dielectric constant of vegetation leaves and similarly thin materials is presented. A rectangular section of the leaf is placed in the tranverse plane in a rectangular waveguide and the magnitude and phase of the reflection coefficient are measured over the desired frequency band using a vector network analyzer. By treating the leaf as an infinitesimally thin resistive sheet, an explicit expression for its dielectric constant is obtained in terms of the reflection coefficient. Because of the thin-sheet approximation, however, this approach is valid only at frequencies below 1.5 GHz. To extend the technique to higher frequencies, higher order approximations are derived and their accuracies are compared to the exact dielectric-slab solution. For a material whose thickness is 0.5 mm or less, the proposed technique was found to provide accurate values of its dielectric constant up to frequencies of 12 GHz or higher. The technique was used to measure the 8 to 12 GHz dielectric spectrum for vegetation leaves, teflon and rock samples.

  4. Accurate localization of a fall in pH within the ileocecal region: validation using a dual-scintigraphic technique.

    PubMed

    Zarate, Natalia; Mohammed, Sahar D; O'Shaughnessy, Emma; Newell, Margaret; Yazaki, Etsuro; Williams, Norman S; Lunniss, Peter J; Semler, Jack R; Scott, S Mark

    2010-12-01

    Stereotypical changes in pH occur along the gastrointestinal (GI) tract. Classically, there is an abrupt increase in pH on exit from the stomach, followed later by a sharp fall in pH, attributed to passage through the ileocecal region. However, the precise location of this latter pH change has never been conclusively substantiated. We aimed to determine the site of fall in pH using a dual-scintigraphic technique. On day 1, 13 healthy subjects underwent nasal intubation with a 3-m-long catheter, which was allowed to progress to the distal ileum. On day 2, subjects ingested a pH-sensitive wireless motility capsule labeled with 4 MBq (51)Chromium [EDTA]. The course of this, as it travelled through the GI tract, was assessed with a single-headed γ-camera using static and dynamic scans. Capsule progression was plotted relative to a background of 4 MBq ¹¹¹Indium [diethylenetriamine penta-acetic acid] administered through the catheter. Intraluminal pH, as recorded by the capsule, was monitored continuously, and position of the capsule relative to pH was established. A sharp fall in pH was recorded in all subjects; position of the capsule relative to this was accurately determined anatomically in 9/13 subjects. In these nine subjects, a pH drop of 1.5 ± 0.2 U, from 7.6 ± 0.05 to 6.1 ± 0.1 occurred a median of 7.5 min (1-16) after passage through the ileocecal valve; location was either in the cecum (n = 5), ascending colon (n = 2), or coincident with a move from the cecum to ascending colon (n = 2). This study provides conclusive evidence that the fall in pH seen within the ileocolonic region actually occurs in the proximal colon. This phenomenon can be used as a biomarker of transition between the small and large bowel and validates assessment of regional GI motility using capsule technology that incorporates pH measurement. PMID:20847301

  5. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  6. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made

  7. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    USGS Publications Warehouse

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  8. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  9. Accurate label-free reaction kinetics determination using initial rate heat measurements.

    PubMed

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity.

  10. Accurate label-free reaction kinetics determination using initial rate heat measurements

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  11. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    SciTech Connect

    Charlton, William S

    1999-09-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels.

  12. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin

    PubMed Central

    Doud, Michael B.; Bloom, Jesse D.

    2016-01-01

    Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin—including the stalk epitopes targeted by broadly neutralizing antibodies—have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution. PMID:27271655

  13. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1).

  14. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin.

    PubMed

    Doud, Michael B; Bloom, Jesse D

    2016-01-01

    Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin-including the stalk epitopes targeted by broadly neutralizing antibodies-have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution. PMID:27271655

  15. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1). PMID:23498117

  16. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  17. Accurate measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  18. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  19. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  20. A comparison of two swirl measurement techniques

    NASA Astrophysics Data System (ADS)

    Edwards, R. J.; Jambunathan, K.; Button, B. L.; Rhine, J. M.

    1993-01-01

    Two experimental techniques for quantifying swirling airflow in the entrance region of annular ducts are presented. Swirl numbers derived from measurements of the torque on a pivoted honeycomb structure are compared with those obtained from the fringes on the inner surface of the duct sprayed with liquid crystals. The primary flow angles measured from the fringe patterns have been verified by using a Pitot tube and smoke trials. The swirl numbers range from 0.7 to 1.4 for Reynolds numbers of 4000-15,000. Data were obtained up to 11 hydraulic diameters from the entrance of two annular ducts that had diameter ratios of 0.66 and 0.79. The results show that the liquid crystal technique is an easy-to-use and attractive low-cost alternative to the more traditional approach, although the authors recognize that more expensive, nonintrusive, full-field velocity measurements, such as laser-Doppler anemometry, are superior to either of the methods considered here.

  1. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-01

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  2. Accurate VUV Laboratory Measurements of Fe III Transitions for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Blackwell-Whitehead, R. J.; Pickering, J. C.; Smillie, D.; Nave, G.; Szabo, C. I.; Smith, Peter L.; Nielsen, K. E.; Peters, G.

    2006-01-01

    We report preliminary measurements of Fe III spectra in the 1150 to 2500 A wavelength interval. Spectra have been recorded with an iron-neon Penning discharge lamp (PDL) between 1600 and 2500 A at Imperial College (IC) using high resolution Fourier (FT) transform spectroscopy. These FT spectrometer measurements were extended beyond 1600 A to 1150 A using high-resolution grating spectroscopy at the National Institute of Standards and Technology (NIST). These recorded spectra represent the first radiometrically calibrated measurements of a doubly-ionized iron-group element spectrum combining the techniques of vacuum ultraviolet FT and grating spectroscopy. The spectral range of the new laboratory measurements corresponds to recent HST/STIS observations of sharp-lined B stars and of Eta Carinae. The new improved atomic data can be applied to abundance studies and diagnostics of astrophysical plasmas.

  3. A sliding cell technique for diffusion measurements in liquid metals

    SciTech Connect

    Geng, Yongliang; Zhu, Chunao; Zhang, Bo

    2014-03-15

    The long capillary and shear cell techniques are the usual methods for diffusion measurements in liquid metals. Here we present a new “sliding cell technique” to measure interdiffusion in liquid alloys, which combines the merits of these two methods. Instead of a number of shear cells, as used in the shear cell method, only one sliding cell is designed to separate and join the liquid diffusion samples. Using the sliding cell technique, the influence of the heating process (which affects liquid diffusion measurements in the conventional long capillary method) can be eliminated. Time-dependent diffusion measurements at the same isothermal temperature were carried out in Al-Cu liquids. Compared with the previous results measured by in-situ X-ray radiography, the obtained liquid diffusion coefficient in this work is believed to be influenced by convective flow. The present work further supports the idea that to obtain accurate diffusion constants in liquid metals, the measurement conditions must be well controlled, and there should be no temperature gradients or other disturbances.

  4. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    SciTech Connect

    Spiridonov, Maxim; Toebaert, David

    2006-09-10

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes,and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator(typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  5. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    NASA Astrophysics Data System (ADS)

    Spiridonov, Maxim; Toebaert, David

    2006-09-01

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes, and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator (typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  6. On the tip calibration for accurate modulus measurement by contact resonance atomic force microscopy.

    PubMed

    Passeri, D; Rossi, M; Vlassak, J J

    2013-05-01

    Accurate quantitative elastic modulus measurements using contact resonance atomic force microscopy require the calibration of geometrical and mechanical properties of the tip as well as the choice of a suitable model for describing the cantilever-tip-sample system. In this work, we demonstrate with both simulations and experiments that the choice of the model influences the results of the calibration. Neglecting lateral force results in the underestimation of the tip indentation modulus and in the overestimation of the tip-sample contact radius. We propose a new approach to the calibration and data analysis, where lateral forces and cantilever inclination are neglected (which simplifies the calculations) and the tip parameters are assumed as fictitious.

  7. Viscosity measurement techniques in Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  8. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  9. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  10. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  11. Double threshold ultrasonic distance measurement technique and its application

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Chen, Qiang; Wu, Jiangtao

    2014-04-01

    The double threshold method realized by hardware circuits and high performance timing chip TDC-GP21 was successfully adapted to solve the key problem of ultrasonic distance measurement, the accurate time-of-flight (TOF) measurement of ultrasonic wave. Compared with other techniques of TOF measurement, the double threshold method presented in this work can suppress noise in the received signal, and achieve a time resolution of around 22 ps and real-time. This method is easy to realize and pertains the advantage of low cost. To compensate temperature and pressure deviations, a temperature measurement module of 10 mK in precision as well as a pressure measurement module of 0.01% in accuracy was developed. The system designed in this work can be exactly used as a two paths ultrasonic gas flowmeter without any adjustment of the hardware circuit. The double threshold method was further corroborated using experiment results of both the ultrasonic distance measurement and ultrasonic gas flow measurement. In distance measurement, the maximum absolute deviation and the maximum relative error are 0.69 mm and 0.28%, respectively, for a target distance range of 100-600 mm. In flow measurement, the maximum absolute deviation and the worst repeatability are 1.16% and 0.65% for a flow in the range of 50-700 m3/h.

  12. Double threshold ultrasonic distance measurement technique and its application.

    PubMed

    Li, Weihua; Chen, Qiang; Wu, Jiangtao

    2014-04-01

    The double threshold method realized by hardware circuits and high performance timing chip TDC-GP21 was successfully adapted to solve the key problem of ultrasonic distance measurement, the accurate time-of-flight (TOF) measurement of ultrasonic wave. Compared with other techniques of TOF measurement, the double threshold method presented in this work can suppress noise in the received signal, and achieve a time resolution of around 22 ps and real-time. This method is easy to realize and pertains the advantage of low cost. To compensate temperature and pressure deviations, a temperature measurement module of 10 mK in precision as well as a pressure measurement module of 0.01% in accuracy was developed. The system designed in this work can be exactly used as a two paths ultrasonic gas flowmeter without any adjustment of the hardware circuit. The double threshold method was further corroborated using experiment results of both the ultrasonic distance measurement and ultrasonic gas flow measurement. In distance measurement, the maximum absolute deviation and the maximum relative error are 0.69 mm and 0.28%, respectively, for a target distance range of 100-600 mm. In flow measurement, the maximum absolute deviation and the worst repeatability are 1.16% and 0.65% for a flow in the range of 50-700 m(3)/h. PMID:24784646

  13. Fourier transform approach in modulation technique of experimental measurements.

    PubMed

    Khazimullin, M V; Lebedev, Yu A

    2010-04-01

    An application of Fourier transform approach in modulation technique of experimental studies is considered. This method has obvious advantages compared with traditional lock-in amplifiers technique--simple experimental setup, a quickly available information on all the required harmonics, high speed of data processing using fast Fourier transform algorithm. A computationally simple, fast and accurate Fourier coefficients interpolation (FCI) method has been implemented to obtain a useful information from harmonics of a multimode signal. Our analysis shows that in this case FCI method has a systematical error (bias) of a signal parameters estimation, which became essential for the short data sets. Hence, a new differential Fourier coefficients interpolation (DFCI) method has been suggested, which is less sensitive to a presence of several modes in a signal. The analysis has been confirmed by simulations and measurements of a quartz wedge birefringence by means of the photoelastic modulator. The obtained bias, noise level, and measuring speed are comparable and even better than in lock-in amplifier technique. Moreover, presented DFCI method is expected to be promised candidate for using in actively developing imaging systems based on the modulation technique requiring fast digital signal processing of large data sets.

  14. Techniques for Measuring Surface Potentials in Space

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard

    2015-01-01

    Materials exposed to the space plasma environment charge to a net potential relative to the ambient plasma. The charging process is due to differential currents to the material surface that results in a net surface charge density. While this process is termed "spacecraft surface charging" when applied to aerospace hardware, it also applies to the surfaces of astronomical objects in direct contact with the space plasma environment including a number of planetary bodies, asteroids, and dust particles. The ability to measure surface potentials is important to many techniques used in conducting fundamental heliospheric science, spacecraft engineering operations, and space technology development activities. This presentation provides a survey of current technologies used to measure surface potentials of spacecraft and planetary bodies with examples of their application to space science and technology programs.

  15. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  16. Uncertainty Analysis Technique for OMEGA Dante Measurements

    SciTech Connect

    May, M J; Widmann, K; Sorce, C; Park, H; Schneider, M

    2010-05-07

    The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  17. Uncertainty analysis technique for OMEGA Dante measurements

    SciTech Connect

    May, M. J.; Widmann, K.; Sorce, C.; Park, H.-S.; Schneider, M.

    2010-10-15

    The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  18. A Comparison of Stellar Elemental Abundance Techniques and Measurements

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.; Desch, Steven J.; Anbar, Ariel D.; Adibekyan, Vardan; Blanco-Cuaresma, Sergi; Carlberg, Joleen K.; Delgado Mena, Elisa; Liu, Fan; Nordlander, Thomas; Sousa, Sergio G.; Korn, Andreas; Gruyters, Pieter; Heiter, Ulrike; Jofré, Paula; Santos, Nuno C.; Soubiran, Caroline

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.

  19. A vector boundary matching technique for efficient and accurate determination of photonic bandgaps in photonic bandgap fibers.

    PubMed

    Dong, Liang

    2011-06-20

    A vector boundary matching technique has been proposed and demonstrated for finding photonic bandgaps in photonic bandgap fibers with circular nodes. Much improved accuracy, comparing to earlier works, comes mostly from using more accurate cell boundaries for each mode at the upper and lower edges of the band of modes. It is recognized that the unit cell boundary used for finding each mode at band edges of the 2D cladding lattice is not only dependent on whether it is a mode at upper or lower band edge, but also on the azimuthal mode number and lattice arrangements. Unit cell boundaries for these modes are determined by mode symmetries which are governed by the azimuthal mode number as well as lattice arrangement due to mostly geometrical constrains. Unit cell boundaries are determined for modes at both upper and lower edges of bands of modes dominated by m = 1 and m = 2 terms in their longitudinal field Fourier-Bessel expansion series, equivalent to LP0s and LP1s modes in the approximate LP mode representations, for hexagonal lattice to illustrate the technique. The novel technique is also implemented in vector form and incorporates a transfer matrix algorithm for the consideration of nodes with arbitrary refractive index profiles. Both are desired new capabilities for further explorations of advanced new designs of photonic bandgap fibers. PMID:21716499

  20. Accurate DOSY measure for out-of-equilibrium systems using permutated DOSY (p-DOSY).

    PubMed

    Oikonomou, Maria; Asencio-Hernández, Julia; Velders, Aldrik H; Delsuc, Marc-André

    2015-09-01

    NMR spectroscopy is a excellent tool for monitoring in-situ chemical reactions. In particular, DOSY measurement is well suited to characterize transient species by the determination of their sizes. However, here we bring to light a difficulty in the DOSY experiments performed in out-of-equilibrium systems. On such a system, the evolution of the concentration of species interferes with the measurement process, and creates a bias on the diffusion coefficient determination that may lead to erroneous interpretations. We show that a random permutation of the series of gradient strengths used during the DOSY experiment allows to average out this bias. This approach, that we name p-DOSY does not require changes in the pulse sequences nor in the processing software, and restores completely the full accuracy of the measure. This technique is demonstrated on the monitoring of the anomerization reaction of α- to β-glucose.

  1. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  2. Intercomparison of NO sub 2 measurement techniques

    SciTech Connect

    Fehsenfeld, F.C.; Williams, E.J.; Buhr, M.P.; Hubler, G.; Langford, A.O.; Murphy, P.C. Univ. of Colorado, Boulder ); Parrish, D.D.; Norton, R.B.; Fahey, D.W. ); Drummond, J.W.; Mackay, G.I. ); Schiff, H.I. York Univ., North York, Ontario ); Roychowdhury, U.K.; Hovermale, C.; Mohnen, V.A.; Demerjian, K.L. ); Galvin, P.J. ); Calvert, J.G.; Ridley, B.A.; Grahek, F.; Heikes, B.G.; Kok, G.L.; Shetter, J.D.; Walega, J.G. ); Elsworth, C.M. )

    1990-03-20

    An intercomparison was made near Niwot Ridge, Colorado, of three different instruments for measuring NO{sub 2} at low concentrations in ambient air: (1) the photolysis/chemiluminescence (PC) instrument, (2) the tunable diode laser absorption spectrometer (TDLAS), and (3) the Luminox instrument. Calibrated mixtures of NO{sub 2} in air and NO{sub 2} with possible interferants (HNO{sub 3}, peroxyacetyl nitrate (PAN), H{sub 2}O{sub 2}, n-propyl nitrate, and O{sub 3}) were provided in simultaneous tests. Several conclusions were reached concerning the performance of these instruments during this intercomparison: (1) For NO{sub 2} levels above 2 parts per billion by volume (ppbv), similar results were obtained for all instruments; (2) Below 2 ppbv, the expected interferences from ozone and PAN influenced the NO{sub 2} measurements made using the Luminox instruments. Those interferences were sufficiently consistent that they could be corrected for by using the measured values of O{sub 3} and PAN down to about 0.3 ppbv NO{sub 2}; (3) The ozone interference on the Luminox instruments was removed by an ozone scrubber placed in the sampled air stream of the Luminox instrument. However, this did not remove PAN. In addition, the scrubber appeared to remove about 50% of the NO{sub 2} as well; (4) Although no interferences were identified for the TDLAS technique, care must be taken in the data analysis near (or below) the detection limit for the instrument. At these levels the data reduction program provided with the TDLAS will tend to find background noise that is correlated with the reference NO{sub 2} spectrum and calculate levels of NO{sub 2} that are too high; (5) No interferences or artifacts were found for the final results reported by the PC technique.

  3. Maximum Mass of Strange Stars and Pulsars with the Most Accurately Measured Masses

    NASA Astrophysics Data System (ADS)

    Vartanyan, Yu. L.; Grigoryan, A. K.; Shahinyan, H. A.

    2015-06-01

    Strange quark matter (SQM) is studied using a bag model in which the transition to the SQM state takes place at energy densities of no more than twice the density in atomic nuclei. Thus, low mass neutron stars with a configuration consisting of SQM form a single family on a plot of the mass M of equilibrium superdense configurations as a function of central energy density ρ c (the M(ρ c ) curve). The bag model considered here depends on three constants: the vacuum pressure B, the quark-gluon interaction constant α c , and the strange quark mass m s . Sets of values of these constants are determined, which if used in the equation of state for SQM yield a maximal mass M max of the equilibrium quark configurations which exceeds the recently accurately determined mass of 2.01 M ⊙ for the binary radio pulsar PSR J0348+0432. The mass, radius, total baryon number, and red shift from the surface of the strange star are calculated for these configurations as a function of central energy density ρ c . The values of these integrated parameters are also calculated for each series with M max > 2.01 M ⊙ for superdense configurations with masses of 2.01, 1.97, and 1.44 solar masses, which have been determined with great accuracy from observations. It turns out that, according to the resulting equations of state, all of the three pulsars with the most accurately measured masses, may be possible candidate strange stars.

  4. Accurate, in vivo NIR measurement of skeletal muscle oxygenation through fat

    NASA Astrophysics Data System (ADS)

    Jin, Chunguang; Zou, Fengmei; Ellerby, Gwenn E. C.; Scott, Peter; Peshlov, Boyan; Soller, Babs R.

    2010-02-01

    Noninvasive near infrared (NIR) spectroscopic measurement of muscle oxygenation requires the penetration of light through overlying skin and fat layers. We have previously demonstrated a dual-light source design and orthogonalization algorithm that corrects for inference from skin absorption and fat scattering. To achieve accurate muscle oxygen saturation (SmO2) measurement, one must select the appropriate source-detector distance (SD) to completely penetrate the fat layer. Methods: Six healthy subjects were supine for 15min to normalize tissue oxygenation across the body. NIR spectra were collected from the calf, shoulder, lower and upper thigh muscles with long SD distances of 30mm, 35mm, 40mm and 45mm. Spectral preprocessing with the short SD (3mm) spectrum preceded SmO2 calculation with a Taylor series expansion method. Three-way ANOVA was used to compare SmO2 values over varying fat thickness, subjects and SD distances. Results: Overlying fat layers varied in thickness from 4.9mm to 19.6mm across all subjects. SmO2 measured at the four locations were comparable for each subject (p=0.133), regardless of fat thickness and SD distance. SmO2 (mean+/-std dev) measured at calf, shoulder, low and high thigh were 62+/-3%, 59+/-8%, 61+/-2%, 61+/-4% respectively for SD distance of 30mm. In these subjects no significant influence of SD was observed (p=0.948). Conclusions: The results indicate that for our sensor design a 30mm SD is sufficient to penetrate through a 19mm fat layer and that orthogonalization with short SD effectively removed spectral interference from fat to result in a reproducible determination of SmO2.

  5. Accurate measurement of interferometer group delay using field-compensated scanning white light interferometer.

    PubMed

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2010-10-10

    Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interferometer calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region.

  6. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  7. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, B.; Hut, R.; Van De Giesen, N.

    2012-12-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the $150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  8. Acoustic resolution photoacoustic Doppler flowmetry: practical considerations for obtaining accurate measurements of blood flow

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2014-03-01

    An assessment has been made of various experimental factors affecting the accuracy of flow velocities measured using a pulsed time correlation photoacoustic Doppler technique. In this method, Doppler time shifts are quantified via crosscorrelation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves are detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. This enables penetration depths of several millimetres or centimetres, unlike methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1 mm. In the acoustic resolution mode, it is difficult to detect time shifts in highly concentrated suspensions of flowing absorbers, such as red blood cell suspensions and whole blood, and this challenge supposedly arises because of the lack of spatial heterogeneity. However, by assessing the effect of different absorption coefficients and tube diameters, we offer an alternative explanation relating to light attenuation and parabolic flow. We also demonstrate a new signal processing method that surmounts the previous problem of measurement under-reading. This method is a form of signal range gating and enables mapping of the flow velocity profile across the tube as well as measurement of the average flow velocity. We show that, using our signal processing scheme, it is possible to measure the flow of whole blood using a relatively low frequency detector. This important finding paves the way for application of the technique to measurements of blood flow several centimetres deep in living tissue.

  9. Millimeter-wave interferometry: an attractive technique for fast and accurate sensing of civil and mechanical structures

    NASA Astrophysics Data System (ADS)

    Kim, Seoktae; Nguyen, Cam

    2014-04-01

    This paper discusses the RF interferometry at millimeter-wave frequencies for sensing applications and reports the development of a millimeter-wave interferometric sensor operating around 35 GHz. The sensor is completely realized using microwave integrated circuits (MICs) and microwave monolithic integrated circuits (MMICs). It has been used for various sensing including displacement and velocity measurement. The sensor achieves a resolution and maximum error of only 10 μm and 27 μm, respectively, for displacement sensing and can measure velocity as low as 27.7 mm/s with a resolution about 2.7mm/s. Quick response and accurate sensing, as demonstrated by the developed millimeter-wave interferometric sensor, make the millimeter-wave interferometry attractive for sensing of various civil and mechanical structures.

  10. Erosive Burning Study Utilizing Ultrasonic Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Furfaro, James A.

    2003-01-01

    A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.

  11. How Accurate is Your Sclerostin Measurement? Comparison Between Three Commercially Available Sclerostin ELISA Kits.

    PubMed

    Piec, Isabelle; Washbourne, Christopher; Tang, Jonathan; Fisher, Emily; Greeves, Julie; Jackson, Sarah; Fraser, William D

    2016-06-01

    Sclerostin, bone formation antagonist is in the spotlight as a potential biomarker for diseases presenting with associated bone disorders such as chronic kidney disease (CDK-MBD). Accurate measurement of sclerostin is therefore important. Several immunoassays are available to measure sclerostin in serum and plasma. We compared the performance of three commercial ELISA kits. We measured sclerostin concentrations in serum and EDTA plasma obtained from healthy young (18-26 years) human subjects using kits from Biomedica, TECOmedical and from R&D Systems. The circulating sclerostin concentrations were systematically higher when measured with the Biomedica assay (serum: 35.5 ± 1.1 pmol/L; EDTA: 39.4 ± 2.0 pmol/L; mean ± SD) as compared with TECOmedical (serum: 21.8 ± 0.7 pmol/L; EDTA: 27.2 ± 1.3 pmol/L) and R&D Systems (serum: 7.6 ± 0.3 pmol/L; EDTA: 30.9 ± 1.5 pmol/L). We found a good correlation between the assay for EDTA plasma (r > 0.6; p < 0.001) while in serum, only measurements obtained using TECOmedical and R&D Systems assays correlated significantly (r = 0.78; p < 0.001). There was no correlation between matrices results when using the Biomedica kit (r = 0.20). The variability in values generated from Biomedica, R&D Systems and TECOmedical assays raises questions regarding the accuracy and specificity of the assays. Direct comparison of studies using different kits is not possible and great care should be given to measurement of sclerostin, with traceability of reagents. Standardization with appropriate material is required before different sclerostin assays can be introduced in clinical practice. PMID:26749312

  12. How Accurate is Your Sclerostin Measurement? Comparison Between Three Commercially Available Sclerostin ELISA Kits.

    PubMed

    Piec, Isabelle; Washbourne, Christopher; Tang, Jonathan; Fisher, Emily; Greeves, Julie; Jackson, Sarah; Fraser, William D

    2016-06-01

    Sclerostin, bone formation antagonist is in the spotlight as a potential biomarker for diseases presenting with associated bone disorders such as chronic kidney disease (CDK-MBD). Accurate measurement of sclerostin is therefore important. Several immunoassays are available to measure sclerostin in serum and plasma. We compared the performance of three commercial ELISA kits. We measured sclerostin concentrations in serum and EDTA plasma obtained from healthy young (18-26 years) human subjects using kits from Biomedica, TECOmedical and from R&D Systems. The circulating sclerostin concentrations were systematically higher when measured with the Biomedica assay (serum: 35.5 ± 1.1 pmol/L; EDTA: 39.4 ± 2.0 pmol/L; mean ± SD) as compared with TECOmedical (serum: 21.8 ± 0.7 pmol/L; EDTA: 27.2 ± 1.3 pmol/L) and R&D Systems (serum: 7.6 ± 0.3 pmol/L; EDTA: 30.9 ± 1.5 pmol/L). We found a good correlation between the assay for EDTA plasma (r > 0.6; p < 0.001) while in serum, only measurements obtained using TECOmedical and R&D Systems assays correlated significantly (r = 0.78; p < 0.001). There was no correlation between matrices results when using the Biomedica kit (r = 0.20). The variability in values generated from Biomedica, R&D Systems and TECOmedical assays raises questions regarding the accuracy and specificity of the assays. Direct comparison of studies using different kits is not possible and great care should be given to measurement of sclerostin, with traceability of reagents. Standardization with appropriate material is required before different sclerostin assays can be introduced in clinical practice.

  13. Accurate and precise Pb isotope ratio measurements in environmental samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik J.; Kober, Bernd; Dolgopolova, Alla; Gallagher, Kerry; Spiro, Baruch; Le Roux, Gaël; Mason, Thomas F. D.; Kylander, Malin; Coles, Barry J.

    2004-04-01

    Analytical protocols for accurate and precise Pb isotope ratio determinations in peat, lichen, vegetable, chimney dust, and ore-bearing granites using MC-ICP-MS and their application to environmental studies are presented. Acid dissolution of various matrix types was achieved using high temperature/high pressure microwave and hot plate digestion procedures. The digests were passed through a column packed with EiChrom Sr-resin employing only hydrochloric acid and one column passage. This simplified column chemistry allowed high sample throughput. Typically, internal precisions for approximately 30 ng Pb were below 100 ppm (+/-2[sigma]) on all Pb ratios in all matrices. Thallium was employed to correct for mass discrimination effects and the achieved accuracy was below 80 ppm for all ratios. This involved an optimization procedure for the 205Tl/203Tl ratio using least square fits relative to certified NIST-SRM 981 Pb values. The long-term reproducibility (+/-2[sigma]) for the NIST-SRM 981 Pb standard over a 5-month period (35 measurements) was better than 350 ppm for all ratios. Selected ore-bearing granites were measured with TIMS and MC-ICP-MS and showed good correlation (e.g., r=0.999 for 206Pb/207Pb ratios, slope=0.996, n=13). Mass bias and signal intensities of Tl spiked into natural (after matrix separation) and in synthetic samples did not differ significantly, indicating that any residual components of the complex peat and lichen matrix did not influence mass bias correction. Environmental samples with very different matrices were analyzed during two different studies: (i) lichens, vegetables, and chimney dust around a Cu smelter in the Urals, and (ii) peat samples from an ombrotrophic bog in the Faroe Islands. The presented procedure for sample preparation, mass spectrometry, and data processing tools resulted in accurate and precise Pb isotope data that allowed the reliable differentiation and identification of Pb sources with variations as small as 0

  14. An accurate mass and radius measurement for an ultracool white dwarf

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Bergeron, P.; Copperwheat, C. M.; Dhillon, V. S.; Bento, J.; Littlefair, S. P.; Schreiber, M. R.

    2012-11-01

    Studies of cool white dwarfs in the solar neighbourhood have placed a limit on the age of the Galactic disc of 8-9 billion years. However, determining their cooling ages requires the knowledge of their effective temperatures, masses, radii and atmospheric composition. So far, these parameters could only be inferred for a small number of ultracool white dwarfs for which an accurate distance is known, by fitting their spectral energy distributions in conjunction with a theoretical mass-radius relation. However, the mass-radius relation remains largely untested, and the derived cooling ages are hence model dependent. Here we report direct measurements of the mass and radius of an ultracool white dwarf in the double-lined eclipsing binary SDSS J013851.54-001621.6. We find MWD = 0.529 ± 0.010 M⊙ and RWD = 0.0131 ± 0.0003 R⊙. Our measurements are consistent with the mass-radius relation and we determine a robust cooling age of 9.5 billion years for the 3570 K white dwarf. We find that the mass and radius of the low-mass companion star, Msec = 0.132 ± 0.003 M⊙ and Rsec = 0.165 ± 0.001 R⊙, are in agreement with evolutionary models. We also find evidence that this >9.5 Gyr old M5 star is still active, far beyond the activity lifetime for a star of its spectral type. This is likely caused by the high tidally enforced rotation rate of the star. The companion star is close to filling its Roche lobe and the system will evolve into a cataclysmic variable in only 70 Myr. Our direct measurements demonstrate that this system can be used to calibrate ultracool white dwarf atmospheric models.

  15. Measuring Three-Dimensional Thorax Motion Via Biplane Radiographic Imaging: Technique and Preliminary Results.

    PubMed

    Baumer, Timothy G; Giles, Joshua W; Drake, Anne; Zauel, Roger; Bey, Michael J

    2016-01-01

    Measures of scapulothoracic motion are dependent on accurate imaging of the scapula and thorax. Advanced radiographic techniques can provide accurate measures of scapular motion, but the limited 3D imaging volume of these techniques often precludes measurement of thorax motion. To overcome this, a thorax coordinate system was defined based on the position of rib pairs and then compared to a conventional sternum/spine-based thorax coordinate system. Alignment of the rib-based coordinate system was dependent on the rib pairs used, with the rib3:rib4 pairing aligned to within 4.4 ± 2.1 deg of the conventional thorax coordinate system.

  16. Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements.

    PubMed

    Kairn, T; Charles, P H; Cranmer-Sargison, G; Crowe, S B; Langton, C M; Thwaites, D I; Trapp, J V

    2015-06-01

    There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6 × 6 to 98 × 98 mm(2). Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26  %, for the "very small" fields smaller than 15 mm, and 0.18 % for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within uncertainties. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2 % to the very small field output factors. The overall uncertainties in the field output factors were 1.8 % for the very small fields and 1.1 % for the fields larger than 15 mm across. Recommended steps for acquiring small field output

  17. Quantitative Proton Magnetic Resonance Techniques for Measuring Fat

    PubMed Central

    Harry, Houchun; Kan, Hermien E.

    2014-01-01

    Accurate, precise, and reliable techniques for quantifying body and organ fat distributions are important tools in physiology research. They are critically needed in studies of obesity and diseases involving excess fat accumulation. Proton magnetic resonance methods address this need by providing an array of relaxometry-based (T1, T2) and chemical-shift-based approaches. These techniques can generate informative visualizations of regional and whole-body fat distributions, yield measurements of fat volumes within specific body depots, and quantify fat accumulation in abdominal organs and muscles. MR methods are commonly used to investigate the role of fat in nutrition and metabolism, to measure the efficacy of short and long-term dietary and exercise interventions, to study the implications of fat in organ steatosis and muscular dystrophies, and to elucidate pathophysiological mechanisms in the context of obesity and its comorbidities. The purpose of this review is to provide a summary of mainstream MR strategies for fat quantification. The article will succinctly describe the principles that differentiate water and fat proton signals, summarize advantages and limitations of various techniques, and offer a few illustrative examples. The article will also highlight recent efforts in MR of brown adipose tissue and conclude by briefly discussing some future research directions. PMID:24123229

  18. Weathering: methods and techniques to measure

    NASA Astrophysics Data System (ADS)

    Lopez-Arce, P.; Zornoza-Indart, A.; Alvarez de Buergo, M.; Fort, R.

    2012-04-01

    Surface recession takes place when weathered material is removed from the rocks. In order to know how fast does weathering and erosion occur, a review of several methods, analyses and destructive and non-destructive techniques to measure weathering of rocks caused by physico-chemical changes that occur in bedrocks due to salt crystallization, freezing-thaw, thermal shock, influence of water, wind, temperature or any type of environmental agent leading to weathering processes and development of soils, in-situ in the field or through experimental works in the laboratory are addressed. From micro-scale to macro-scale, from the surface down to more in depth, several case studies on in-situ monitoring of quantification of decay on soils and rocks from natural landscapes (mountains, cliffs, caves, etc) or from urban environment (foundations or facades of buildings, retaining walls, etc) or laboratory experimental works, such as artificial accelerated ageing tests (a.a.e.e.) or durability tests -in which one or more than one weathering agents are selected to assess the material behaviour in time and in a cyclic way- performed on specimens of these materials are summarised. Discoloration, structural alteration, precipitation of weathering products (mass transfer), and surface recession (mass loss) are all products of weathering processes. Destructive (SEM-EDX, optical microscopy, mercury intrusion porosimetry, drilling resistance measurement, flexural and compression strength) and Non-destructive (spectrophotocolorimetry, 3D optical surface roughness, Schmidt hammer rebound tester, ultrasound velocity propagation, Nuclear Magnetic Resonance NMR, X ray computed micro-tomography or CT-scan, geo-radar differential global positioning systems) techniques and characterization analyses (e.g. water absorption, permeability, open porosity or porosity accessible to water) to assess their morphological, physico-chemical, mechanical and hydric weathering; consolidation products or

  19. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  20. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system.

    PubMed

    Koubar, Khodor; Bekaert, Virgile; Brasse, David; Laquerriere, Patrice

    2015-06-01

    Bone mineral density plays an important role in the determination of bone strength and fracture risks. Consequently, it is very important to obtain accurate bone mineral density measurements. The microcomputerized tomography system provides 3D information about the architectural properties of bone. Quantitative analysis accuracy is decreased by the presence of artefacts in the reconstructed images, mainly due to beam hardening artefacts (such as cupping artefacts). In this paper, we introduced a new beam hardening correction method based on a postreconstruction technique performed with the use of off-line water and bone linearization curves experimentally calculated aiming to take into account the nonhomogeneity in the scanned animal. In order to evaluate the mass correction rate, calibration line has been carried out to convert the reconstructed linear attenuation coefficient into bone masses. The presented correction method was then applied on a multimaterial cylindrical phantom and on mouse skeleton images. Mass correction rate up to 18% between uncorrected and corrected images were obtained as well as a remarkable improvement of a calculated mouse femur mass has been noticed. Results were also compared to those obtained when using the simple water linearization technique which does not take into account the nonhomogeneity in the object.

  1. An improved method for accurate and rapid measurement of flight performance in Drosophila.

    PubMed

    Babcock, Daniel T; Ganetzky, Barry

    2014-01-01

    Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens. PMID:24561810

  2. Produced water toxicity tests accurately measure the produced water toxicity in marine environments?

    SciTech Connect

    Douglas, W.S.; Veil, J.A.

    1996-10-01

    U.S. Environmental Protection Agency (EPA) Region VI has issued a general permit for offshore oil and gas discharges to the Gulf of Mexico that places numerical limits on whole effluent toxicity (WEI) for produced water. Recently proposed EPA general permits for other produced water discharges in Regions VI and X also include enforceable numerical limits on WET. Clearly, the industry will be conducting extensive produced water WET testing. Unfortunately, the WET test may not accurately measure the toxicity of the chemical constituents of produced water. Rather the mortality of test organisms may be attributable to (1) the high salinity of produced water, which causes salinity shock to the organisms, or (2) an ionic imbalance caused by excesses or deficiencies of one or more of seawater`s essential ions in the test chambers. Both of these effects are likely to be mitigated in actual offshore discharge settings, where the receiving water will be seawater and substantial dilution will be probable. Thus, the additional salinity of produced water will be rapidly assimilated, and the proper marine ionic balance will be quickly restored. Regulatory authorities should be aware of these factors when interpreting WET test results.

  3. Accurate measurement of refraction and dispersion of a solid by a double-layer interferometer.

    PubMed

    Nassif, A Y

    1997-02-01

    A silica plate of plane-parallel faces is inserted into one gap of a double-layer interferometer that transmits white light to a prism spectrograph in order to produce elliptic rings of equal chromatic order (RECO's). The silica plate is rotated and the expanding RECO's are counted at their center while this center is coincident with a standard wavelength. An analytic formula that relates the fringe count to the rotated angle enables the refractive index of the rotated plate to be accurately determined for different wavelengths. The results are fitted to a single-term Sellmeier dispersion function to find the peak wavelength of the ultraviolet absorption band and the atomic number density for such a transition. The variation of either the dispersion coefficient or the group-velocity factor with wavelength is determined from either the displacement of the RECO center across the visible spectrum if one of the double-layer interferometer's mirrors is displaced parallel to itself or from measurements on the RECO diameters. PMID:18250738

  4. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer.

    PubMed

    Arsac, L M; Belli, A; Lacour, J R

    1996-01-01

    A friction loaded cycle ergometer was instrumented with a strain gauge and an incremental encoder to obtain accurate measurement of human mechanical work output during the acceleration phase of a cycling sprint. This device was used to characterise muscle function in a group of 15 well-trained male subjects, asked to perform six short maximal sprints on the cycle against a constant friction load. Friction loads were successively set at 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75 N.kg-1 body mass. Since the sprints were performed from a standing start, and since the acceleration was not restricted, the greatest attention was paid to the measurement of the acceleration balancing load due to flywheel inertia. Instantaneous pedalling velocity (v) and power output (P) were calculated each 5 ms and then averaged over each downstroke period so that each pedal downstroke provided a combination of v, force and P. Since an 8-s acceleration phase was composed of about 21 to 34 pedal downstrokes, this many v-P combinations were obtained amounting to 137-180 v-P combinations for all six friction loads in one individual, over the widest functional range of pedalling velocities (17-214 rpm). Thus, the individual's muscle function was characterised by the v-P relationships obtained during the six acceleration phases of the six sprints. An important finding of the present study was a strong linear relationship between individual optimal velocity (vopt) and individual maximal power output (Pmax) (n = 15, r = 0.95, P < 0.001) which has never been observed before. Since vopt has been demonstrated to be related to human fibre type composition both vopt, Pmax and their inter-relationship could represent a major feature in characterising muscle function in maximal unrestricted exercise. It is suggested that the present method is well suited to such analyses.

  5. MELIFT - A new device for accurate measurements in a snow rich environment

    NASA Astrophysics Data System (ADS)

    Dorninger, M.

    2012-04-01

    A deep snow pack, remote locations, no external power supply and very low temperatures are often the main ingredients when it comes to the deployment of meteorological stations in mountainous terrain. The accurate position of the sensor related to the snow surface is normally not known. A new device called METLIFT overcomes the problems. WMO recommends a height between 1.2 m and 2 m above ground level for the measurement of air temperature and humidity. The height above ground level is specified to take care of the possible strong vertical temperature and humidity gradients at the lowest layers in the atmosphere. Especially in snow rich and remote locations it may be hardly possible to follow this advice. Therefore most of the meteorological stations in mountainous terrain are situated at mountain tops where strong winds will blow off the snow or in valleys where a daily inspection of the sensors is possible. In other unpopulated mountainous areas, e.g. basins, plateaus, the distance of the sensor to the snow surface is not known or the sensor will be snow-covered. A new device was developed to guarantee the sensor height above surface within the WMO limits in harsh and remote environments. An ultrasonic snow height sensor measures the distance to the snow surface. If it exceeds certain limits due to snow accumulation or snow melt the lift adapts its height accordingly. The prototype of METLIFT has been installed in Lower Austria at an altitude of 1000m. The lift is 6 m high and can pull out for another 4 m. Sensor arms are mounted every meter to allow the connection of additional sensors or to measure a profile of a certain parameter of the lowest 5 m above surface. Sensors can be added easily since cable wiring is provided to each sensor arm. Horizontal winds are measured at 7 m height above surface. METLIFT is independent of external power supply. Three lead gel accumulators recharged by three solar panels provide the energy necessary for the sensors, the data

  6. A Robust Method of Vehicle Stability Accurate Measurement Using GPS and INS

    NASA Astrophysics Data System (ADS)

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-12-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) is a very practical method to get high-precision measurement data. Usually, the Kalman filter is used to fuse the data from GPS and INS. In this paper, a robust method is used to measure vehicle sideslip angle and yaw rate, which are two important parameters for vehicle stability. First, a four-wheel vehicle dynamic model is introduced, based on sideslip angle and yaw rate. Second, a double level Kalman filter is established to fuse the data from Global Positioning System and Inertial Navigation System. Then, this method is simulated on a sample vehicle, using Carsim software to test the sideslip angle and yaw rate. Finally, a real experiment is made to verify the advantage of this approach. The experimental results showed the merits of this method of measurement and estimation, and the approach can meet the design requirements of the vehicle stability controller.

  7. Laser Sounder Technique for Remotely Measuring Atmospheric CO2 Concentrations

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Collatz, G. J.; Sun, X.; Riris, H.; Andrews, A. E.; Krainak, M.

    2001-12-01

    We describe progress in developing a lidar technique for the remote measurement of the tropospheric CO2 concentrations. Our goal is to demonstrate a technique and technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate remote sensing measurements of CO2 mixing ratio from aircraft and space appear difficult. Potential error sources include possible interferences from other trace gas species, the effects of clouds and aerosols in the path, and variability in dry air density caused by pressure or topographic changes. Some potential instrumental errors include frequency drifts in the transmitter and sensitivity drifts in the receiver. High signal-to-noise ratios are needed for estimates at the few ppm level. We are developing a laser sounder approach as a candidate for these measurements. It uses 3 laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter at 1064 nm in the same atmospheric path. It directs the co-aligned laser beams from the lidar toward nadir, and measures the energy of the laser backscatter from land and water surfaces. During each measurement period, the two narrow linewidth lasers are rapidly tuned on and off the selected CO2 and O2 absorption lines. The receiver records and averages the energies of the laser echoes. The column extinction and column densities of both CO2 and O2 are estimated via the differential absorption lidar technique. For the on-line wavelength, the side of the gas absorption line is used, which weights its measurements to 0-4 km in the troposphere. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line near 770 nm. Atmospheric baskscatter profiles are measured with the 1064 nm channel, which permits identifying and excluding measurements containing clouds or aerosols backscatter

  8. Impact during equine locomotion: techniques for measurement and analysis.

    PubMed

    Burn, J F; Wilson, A; Nason, G P

    1997-05-01

    Impact is implicated in the development of several types of musculoskeletal injury in the horse. Characterisation of impact experienced during strenuous exercise is an important first step towards understanding the mechanism for injury. Measurement and analysis of large, short duration impacts is difficult. The measurement system must be able to record transient peaks and high frequencies accurately. The analysis technique must be able to characterise the impact signal in time and frequency. This paper presents a measurement system and analysis technique for the characterisation of large impacts. A piezo-electric accelerometer was securely mounted on the dorsal surface of the horses hoof. Saddle mounted charge amplifiers and a 20 m coaxial cable transferred these data to a PC based logging system. Data were down-loaded onto a UNIX workstation and analysed using a proprietary statistics package. The values of parameters calculated from the time series data were comparable to those of other authors. A wavelet decomposition showed that the frequency profile of the signal changed with time. While most spectral energy was seen at impact, a significant amount of energy was contained in the signal immediately following impact. Over 99% of this energy was contained in frequencies less than 1250 Hz. The sampling rate and the frequency response of a measurement system for recording impact should be chosen carefully to prevent loss or corruption of data. Time scale analysis using a wavelet decomposition is a powerful technique which can be used to characterise impact data. The use of contour plots provides a highly visual representation of the time and frequency localisation of power during impact.

  9. Can imaging techniques measure neuroprotection and remyelination in multiple sclerosis?

    PubMed

    Zivadinov, Robert

    2007-05-29

    MRI is the most important paraclinical measure for assessing and monitoring the pathologic changes implicated in the onset and progression of multiple sclerosis (MS). Conventional MRI sequences, such as T1-weighted gadolinium-enhanced and spin-echo T2-weighted imaging, are unable to provide full details about the degree of inflammation and underlying neurodegenerative changes. Newer nonconventional MRI techniques have the potential to detect clinical impairment, disease progression, accumulation of disability, and the neuroprotective effects of treatment. Unenhanced T1-weighted imaging can reveal hypointense black holes, a measure of chronic neurodegeneration. Two- and three-dimensional fluid-attenuated inversion recovery sequences allow better identification of cortical lesions. Ultrahigh-field strength MRI has the potential to detect subpial cortical and deep gray matter lesions. Magnetization transfer imaging is increasingly used to characterize the evolution of MS lesions and normal-appearing brain tissue. Evidence suggests that the dynamics of magnetization transfer changes correlate with the extent of demyelination and remyelination. Magnetic resonance spectroscopy, which provides details on tissue biochemistry, metabolism, and function, also has the capacity to reveal neuroprotective mechanisms. By measuring the motion of water, diffusion imaging can provide information about the orientation, size, and geometry of tissue damage in white and gray matter. Functional MRI may help clarify the brain's plasticity-dependent compensatory mechanisms in patients with MS. High-resolution microautoradiography and new contrast agents are proving to be sensitive means for characterizing molecular markers of disease activity, such as activated microglia and macrophages. Optical coherence tomography, a new research technique, makes it possible to investigate relevant physiologic systems that provide accurate measures of tissue changes secondary to the MS disease process

  10. Donnan membrane technique (DMT) for anion measurement.

    PubMed

    Vega, Flora Alonso; Weng, Liping; Temminghoff, Erwin J M; Van Riemsdijk, Willem H

    2010-04-01

    Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl(-), 1-2 days for NO(3)(-), 1-4 days for SO(4)(2-) and SeO(4)(2-), and 1-14 days for H(2)PO(4)(-) in a background of 2-200 mM KCl or K(2)SO(4). The strongest effect of ionic strength on equilibrium time is found for H(2)PO(4)(-), followed by SO(4)(2-) and SeO(4)(2-), and then by Cl(-) and NO(3)(-). The negatively charged organic particles of fulvic and humic acids do not pass the membrane. Two approaches for the measurement of different anion species of the same element, such as SeO(4)(2-) and HSeO(3)(-), using DMT are proposed and tested. These two approaches are based on transport kinetics or response to ionic strength difference. A transport model that was developed previously for cation DMT is applied in this work to analyze the rate-limiting step in the anion DMT. In the absence of mobile/labile complexes, transport tends to be controlled by diffusion in solution at a low ionic strength, whereas at a higher ionic strength, diffusion in the membrane starts to control the transport.

  11. A novel, integrated PET-guided MRS technique resulting in more accurate initial diagnosis of high-grade glioma.

    PubMed

    Kim, Ellen S; Satter, Martin; Reed, Marilyn; Fadell, Ronald; Kardan, Arash

    2016-06-01

    Glioblastoma multiforme (GBM) is the most common and lethal malignant glioma in adults. Currently, the modality of choice for diagnosing brain tumor is high-resolution magnetic resonance imaging (MRI) with contrast, which provides anatomic detail and localization. Studies have demonstrated, however, that MRI may have limited utility in delineating the full tumor extent precisely. Studies suggest that MR spectroscopy (MRS) can also be used to distinguish high-grade from low-grade gliomas. However, due to operator dependent variables and the heterogeneous nature of gliomas, the potential for error in diagnostic accuracy with MRS is a concern. Positron emission tomography (PET) imaging with (11)C-methionine (MET) and (18)F-fluorodeoxyglucose (FDG) has been shown to add additional information with respect to tumor grade, extent, and prognosis based on the premise of biochemical changes preceding anatomic changes. Combined PET/MRS is a technique that integrates information from PET in guiding the location for the most accurate metabolic characterization of a lesion via MRS. We describe a case of glioblastoma multiforme in which MRS was initially non-diagnostic for malignancy, but when MRS was repeated with PET guidance, demonstrated elevated choline/N-acetylaspartate (Cho/NAA) ratio in the right parietal mass consistent with a high-grade malignancy. Stereotactic biopsy, followed by PET image-guided resection, confirmed the diagnosis of grade IV GBM. To our knowledge, this is the first reported case of an integrated PET/MRS technique for the voxel placement of MRS. Our findings suggest that integrated PET/MRS may potentially improve diagnostic accuracy in high-grade gliomas.

  12. Response Surface Methods For Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatially-resolved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/- 30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-lightweight, inflatable space antenna at NASA Langley Research Center. Photogrammetry is used to simultaneously measure the shape of the antenna at approximately 500 discrete spatial locations. RSM allows an analytic model to be developed that describes the shape of the majority of the antenna with an uncertainty of 0.4 mm, with 95% confidence. This model would allow a quantitative comparison between the actual shape of the antenna and the original design shape. Accurately determining this shape also allows confident interpolation between the measured points. Such a model could, for example, be used for ray tracing of radio-frequency waves up to 95 GHz. to predict the performance of the antenna.

  13. Spectroscopic Measurement Techniques for Aerospace Flows

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Johansen, Craig T.; Cutler, Andrew D.; Hurley, Samantha

    2014-01-01

    The conditions that characterize aerospace flows are so varied, that a single diagnostic technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity to help categorize and focus on different flow conditions. For example, the Reynolds number represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length scales, and gas density are large and the magnitude of the molecular viscosity is low, the Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in water), or flows with low dynamic viscosity (e.g. skydiver in air). In each of these cases, the inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous forces become very important and often the flows can be steady and laminar. The Mach number, which is the ratio of the velocity to the speed of sound in the medium, also helps to differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). As the object speed approaches the speed of sound, the gas density can become variable (e.g. flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 1), the presences of shock waves and other gas dynamic features can become important to the vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large changes in temperature begin to affect flow properties, causing real

  14. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    SciTech Connect

    Hong Xinguo; Hao Quan

    2009-01-15

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  15. Low cost varying synthetic wavelength technique for absolute distance measurement

    NASA Astrophysics Data System (ADS)

    Le Floch, S.; Salvadé, Y.

    2010-04-01

    A new low-cost superheterodyne configuration, without acousto-optic modulator, is applied to the two-wavelength interferometry for absolute distance measurement. The principle relies on a synchronized frequency sweep of two optical signals, but with different frequency excursions. The frequency difference between the two optical waves is highly accurate. This is realized by injecting a frequency modulated laser signal in an intensity modulator that is biased at halfwave voltage and driven by a digitally swept radio-frequency signal between 13 and 15 GHz. This latter is a continuous up and down ramp. The two synchronized optical signals emerging from the modulator produce in a Michelson interferometer a distance dependent superheterodyne signal, with a variable synthetic wavelength of about 10 mm. The superheterodyne frequency depends linearly on distance and on the radio-frequency excursion. The integration time for a distance measurement point corresponds to the duration of single sweep (i.e. one millisecond in our case). Absolute distance measurements from 1 to 15 meters yield an accuracy of +/-50 μm, showing the validity of the technique.

  16. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    USGS Publications Warehouse

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among

  17. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor.

    PubMed

    Hu, Wei; Zhao, Zhangyan; Wang, Yunfeng; Zhang, Haiying; Lin, Fujiang

    2014-03-01

    The designed sensor enables accurate reconstruction of chest-wall movement caused by cardiopulmonary activities, and the algorithm enables estimation of respiration, heartbeat rate, and some indicators of heart rate variability (HRV). In particular, quadrature receiver and arctangent demodulation with calibration are introduced for high linearity representation of chest displacement; 24-bit ADCs with oversampling are adopted for radar baseband acquisition to achieve a high signal resolution; continuous-wavelet filter and ensemble empirical mode decomposition (EEMD) based algorithm are applied for cardio/pulmonary signal recovery and separation so that accurate beat-to-beat interval can be acquired in time domain for HRV analysis. In addition, the wireless sensor is realized and integrated on a printed circuit board compactly. The developed sensor system is successfully tested on both simulated target and human subjects. In simulated target experiments, the baseband signal-to-noise ratio (SNR) is 73.27 dB, high enough for heartbeat detection. The demodulated signal has 0.35% mean squared error, indicating high demodulation linearity. In human subject experiments, the relative error of extracted beat-to-beat intervals ranges from 2.53% to 4.83% compared with electrocardiography (ECG) R-R peak intervals. The sensor provides an accurate analysis for heart rate with the accuracy of 100% for p = 2% and higher than 97% for p = 1%. PMID:24235293

  18. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor.

    PubMed

    Hu, Wei; Zhao, Zhangyan; Wang, Yunfeng; Zhang, Haiying; Lin, Fujiang

    2014-03-01

    The designed sensor enables accurate reconstruction of chest-wall movement caused by cardiopulmonary activities, and the algorithm enables estimation of respiration, heartbeat rate, and some indicators of heart rate variability (HRV). In particular, quadrature receiver and arctangent demodulation with calibration are introduced for high linearity representation of chest displacement; 24-bit ADCs with oversampling are adopted for radar baseband acquisition to achieve a high signal resolution; continuous-wavelet filter and ensemble empirical mode decomposition (EEMD) based algorithm are applied for cardio/pulmonary signal recovery and separation so that accurate beat-to-beat interval can be acquired in time domain for HRV analysis. In addition, the wireless sensor is realized and integrated on a printed circuit board compactly. The developed sensor system is successfully tested on both simulated target and human subjects. In simulated target experiments, the baseband signal-to-noise ratio (SNR) is 73.27 dB, high enough for heartbeat detection. The demodulated signal has 0.35% mean squared error, indicating high demodulation linearity. In human subject experiments, the relative error of extracted beat-to-beat intervals ranges from 2.53% to 4.83% compared with electrocardiography (ECG) R-R peak intervals. The sensor provides an accurate analysis for heart rate with the accuracy of 100% for p = 2% and higher than 97% for p = 1%.

  19. Making Accurate Topographic Maps of the Schoolyard Using Ideas and Techniques Learned and Adapted from Multi-beam Sonar Mapping of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fuerst, S. I.; Roberts, J. D.

    2010-12-01

    Having participated in a University of Rhode Island Project Armada expedition to join the University of New Hampshire Center for Coastal and Oceanographic Studies in making multi-beam sonar contour maps of the Arctic Ocean floor, I was able to bring the principles learned from this trip to my earth science high school students and create a project in our "mapping the earth" unit. Students learn basic surveying techniques and create authentic, accurately detailed topographic maps of the schoolyard. Models of their maps are then constructed of either Styrofoam or wood which enables them to make the transition from a 2-dimensional map to a 3-dimensional representation. Even though our maps are created using sticks, line levels, compasses and GPS, the scientific concepts of using location and elevation data to draw contour lines are identical to those used in underwater mapping. Once the students understand the science in mapping and creating contour maps to scale on graph paper by hand, they are able to easily relate this knowledge to what I was doing onboard ship using multi-beam sonar and computer mapping programs. We would like to share with you the lab and techniques that we have developed to make this activity possible with minimal materials and simple technology. As a background extension, it is also possible to replicate sonar measurements using an aquarium, food coloring, and a surface grid to map the topography of a teacher created landscape on the aquarium bottom. Earth Science students using simple tools to accurately map the topography of the school grounds

  20. Phase Space Tomography: A Simple, Portable and Accurate Technique to Map Phase Spaces of Beams with Space Charge

    SciTech Connect

    Stratakis, D.; Kishek, R. A.; Bernal, S.; Walter, M.; Haber, I.; Fiorito, R.; Thangaraj, J. C. T.; Quinn, B.; Reiser, M.; O'Shea, P. G.; Li, H.

    2006-11-27

    In order to understand the charged particle dynamics, e.g. the halo formation, emittance growth, x-y energy transfer and coupling, knowledge of the actual phase space is needed. Other the past decade there is an increasing number of articles who use tomography to map the beam phase space and measure the beam emittance. These studies where performed at high energy facilities where the effect of space charge was neglible and therefore not considered in the analysis. This work extends the tomography technique to beams with space charge. In order to simplify the analysis linear forces where assumed. By carefully modeling the tomography process using the particle-in-cell code WARP we test the validity of our assumptions and the accuracy of the reconstructed phase space. Finally, we report experimental results of phase space mapping at the University of Maryland Electron Ring (UMER) using tomography.

  1. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.

    PubMed

    Zheng, Tianyu; Bott, Steven; Huo, Qun

    2016-08-24

    Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications. PMID:27472008

  2. The EEG measurement technique under exercising.

    PubMed

    Hosaka, Naoya; Tanaka, Junya; Koyama, Akira; Magatani, Kazushige

    2006-01-01

    Our purpose of the research is a development of the detecting method of EEG under exercising. Usually, measuring EEG is done in the quiet state. In case of the measuring EEG under exercising, a movement of the body causes vibration of electrodes and artifact for the EEG. Therefore, generally detection of the EEG under exercising is said to be difficult. So, we developed the measuring method of EEG under exercising by using algorithm that we designed. Five normal subjects were tested with our method, and EEG without artifact was able to be measured in all cases. PMID:17945632

  3. Precise and accurate measurement of U and Th isotopes via ICP-MS using a single solution

    NASA Astrophysics Data System (ADS)

    Mertz-Kraus, R.; Sharp, W. D.; Ludwig, K. R.

    2012-04-01

    U-series isotope measurements by ICP-MS commonly utilize separate runs for U and Th and standard-sample bracketing to determine correction factors for mass fractionation and ion counter yields. Here we present an approach where all information necessary to calculate an age (aside from background/baseline levels) is determined while analyzing a single solution containing both U and Th. This internally calibrated procedure should reduce any bias caused by distinct behavior of sample versus standard solutions during analysis and offers advantages including simplicity of operation, calculation of preliminary ages in real time, and simplified analysis of errors and their sources. Hellstrom (2003) developed a single-solution, internally-calibrated technique for an ICP-MS with multiple ion counters, but to our knowledge no such technique is available for an ICP-MS with a single ion counter. We use a Thermo Neptune Plus multi-collector ICP-MS with eight movable Faraday cups and a fixed center cup/ion counter equipped with a high abundance-sensitivity filter (RPQ). We use Faraday cups to measure all masses except 230 and 234, which are measured on the ion counter with the RPQ detuned (i.e., Suppressor voltage = 9950 V). 238U is maintained in a cup throughout the analysis to avoid reflections and is used to normalize signal instabilities related to sample introduction. Each analysis has a three-part structure, i.e. 1) background/baseline levels, 2) sample composition, and 3) peak-tails are sequentially determined. In step 1, multiplier dark noise/Faraday baselines plus background intensities at each mass are determined while aspirating running solution. During sample measurement in step 2, ion counter yields for Th and U are determined using signals of 300-400 kcps for 229Th and 233U by measuring 229Th/238U and 233U/238U ratios first with the minor masses on the ion counter and then with both masses in cups. Mass bias can be determined using the 233U/236U ratio of the spike

  4. A Simple Technique for High Resistance Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguia; Landin, Ramon Ochoa

    2012-01-01

    A simple electronic system for the measurement of high values of resistance is shown. This system allows the measurement of resistance in the range of a few megohm up to 10[superscript 9] [omega]. We have used this system for the evaluation of CdS thin film resistance, but other practical uses in the basic physics laboratory are presented.…

  5. A Wireless Fluid-Level Measurement Technique

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    This paper presents the application of a recently developed wireless measurement acquisition system to fluid-level measurement. This type of fluid-level measurement system alleviates many shortcomings of fluid-level measurement methods currently being used, including limited applicability of any one fluid-level sensor design. Measurement acquisition shortcomings include the necessity for power to be supplied to each sensor and for the measurement to be extracted from each sensor via a physical connection to the sensor. Another shortcoming is existing measurement systems require that a data channel and signal conditioning electronics be dedicated to each sensor. Use of wires results in other shortcomings such as logistics needed to add or replace sensors, weight, potential for electrical arcing and wire degradations. The fluid level sensor design is a simple passive inductor-capacitor circuit that is not subject to mechanical failure that is possible when float and lever-arm systems are used. Methods are presented for using the sensor in caustic, acidic or cryogenic fluids. Oscillating magnetic fields are used to power the sensor. Once electrically excited, the sensor produces a magnetic field response. The response frequency corresponds to the amount to fluid within the capacitor s electric field. The sensor design can be modified for measuring the level of any fluid or fluent substance that can be stored in a non-conductive reservoir. The interrogation method for discerning changes in the sensor response frequency is also presented.

  6. Helium bottle pressure measurement by portable ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Olson, Alden

    1989-02-01

    The report details the application of a portable ultrasonic method to accurately check the pressure in a helium bottle. The subject helium bottle provides an initial launch boost to the Short Range Attack Missile's (SRAM-A, or AGM-69A) hydraulic flight control system. The method described would apply to any pressure vessel, with minor variations from those procedures and equipment detailed in the report. A series of tests was conducted at the Boeing Aerospace facility in Kent, Washington on a SRAM-A helium gas bottle, to determine the feasibility of measuring gas pressure within the helium bottle by ultrasonic technique. The method, based on measurement of the speed of ultrasonic waves transmitted through a medium at constant pressure and temperature, provides the ability to determine bottle pressure without the necessity of removing the bottle from the missile. This bottle had previously been used for pressurizing the Flight Control Actuation System. The ultrasonic waves were introduced into the bottle by a transducer attached to one side of the gas bottle and received by a transducer attached 180 directly opposite the input transducer. The amplitude of the ultrasonic signal decreased with decreasing pressure, proving that the method was feasible.

  7. A Fabry-Perot interferometer for accurate measurement of temporal changes in stellar Doppler shift

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. S.; Smith, P. H.; Frecker, J. E.; Merline, W. J.; Perry, M. L.

    1986-01-01

    The scrambling of incident light by an optical filter, and the stability obtainable through wavelength calibration by means of a tilt-tunable Fabry-Perot etalon, allow the accurate observation of Doppler shift changes in stellar absorption lines. Distinct, widely spaced monochromatic images of the entrance aperture are formed in the focal plane of the camera through a sampling of about 350 points on the profile of the stellar spectrum by successive orders of interferometric transmission through the etalon. Changes in Doppler shift modify the relative intensities of these images, in proportion to the slope of the spectral profile at each point sampled.

  8. Development of techniques for measuring pilot workload

    NASA Technical Reports Server (NTRS)

    Spyker, D. A.; Stackhouse, S. P.; Khalafalla, A. S.; Mclane, R. C.

    1971-01-01

    An objective method of assessing information workload based on physiological measurements was developed. Information workload, or reserve capacity, was measured using a visual discrimination secondary task and subjective rating of task difficulty. The primary task was two axis (pitch and roll) tracking, and the independent variables in this study were aircraft pitch dynamics and wind gust disturbances. The study was structured to provide: (1) a sensitive, nonloading measure of reserve capacity, and (2) an unencumbering reliable measurement of the psychophysiological state. From these, a measured workload index (MWI) and physiological workload index (PWI) were extracted. An important measure of the success of this study was the degree to which the MWI and PWI agreed across the 243 randomly-presented, four-minute trials (9 subjects X 9 tasks X 3 replications). The electrophysiological data collected included vectorcardiogaram, respiration, electromyogram, skin impedance, and electroencephalogram. Special computer programs were created for the analysis of each physiological variable. The digital data base then consisted of 82 physiological features for each of the 243 trials. A prediction of workload based on physiological observations was formulated as a simultaneous least-squares prediction problem. A best subset of 10 features was chosen to predict the three measures of reserve capacity. The cannonical correlation coefficient was .754 with a chi squared value of 91.3 which allows rejection of the null hypothesis with p of .995.

  9. Technique for measuring gas conversion factors

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R. (Inventor)

    1985-01-01

    A method for determining hydrocarbon conversion factors for a flowmeter. A mixture of air, O2 and C sub x H sub y is burned and the partial paressure of O2 in the resulting gas is forced to equal the partial pressure of O2 in air. The flowrate of O2 flowing into the mixture is measured by flowmeter and the flowrate of C sub x H sub y flowing into the mixture is measured by the flowmeter conversion factor is to be determined. These measured values are used to calculate the conversion factor.

  10. Accurate measurement of the relative abundance of different DNA species in complex DNA mixtures.

    PubMed

    Jeong, Sangkyun; Yu, Hyunjoo; Pfeifer, Karl

    2012-06-01

    A molecular tool that can compare the abundances of different DNA sequences is necessary for comparing intergenic or interspecific gene expression. We devised and verified such a tool using a quantitative competitive polymerase chain reaction approach. For this approach, we adapted a competitor array, an artificially made plasmid DNA in which all the competitor templates for the target DNAs are arranged with a defined ratio, and melting analysis for allele quantitation for accurate quantitation of the fractional ratios of competitively amplified DNAs. Assays on two sets of DNA mixtures with explicitly known compositional structures of the test sequences were performed. The resultant average relative errors of 0.059 and 0.021 emphasize the highly accurate nature of this method. Furthermore, the method's capability of obtaining biological data is demonstrated by the fact that it can illustrate the tissue-specific quantitative expression signatures of the three housekeeping genes G6pdx, Ubc, and Rps27 by using the forms of the relative abundances of their transcripts, and the differential preferences of Igf2 enhancers for each of the multiple Igf2 promoters for the transcription.

  11. Accurate Measurement of the Relative Abundance of Different DNA Species in Complex DNA Mixtures

    PubMed Central

    Jeong, Sangkyun; Yu, Hyunjoo; Pfeifer, Karl

    2012-01-01

    A molecular tool that can compare the abundances of different DNA sequences is necessary for comparing intergenic or interspecific gene expression. We devised and verified such a tool using a quantitative competitive polymerase chain reaction approach. For this approach, we adapted a competitor array, an artificially made plasmid DNA in which all the competitor templates for the target DNAs are arranged with a defined ratio, and melting analysis for allele quantitation for accurate quantitation of the fractional ratios of competitively amplified DNAs. Assays on two sets of DNA mixtures with explicitly known compositional structures of the test sequences were performed. The resultant average relative errors of 0.059 and 0.021 emphasize the highly accurate nature of this method. Furthermore, the method's capability of obtaining biological data is demonstrated by the fact that it can illustrate the tissue-specific quantitative expression signatures of the three housekeeping genes G6pdx, Ubc, and Rps27 by using the forms of the relative abundances of their transcripts, and the differential preferences of Igf2 enhancers for each of the multiple Igf2 promoters for the transcription. PMID:22334570

  12. Accurate radiocarbon age estimation using "early" measurements: a new approach to reconstructing the Paleolithic absolute chronology

    NASA Astrophysics Data System (ADS)

    Omori, Takayuki; Sano, Katsuhiro; Yoneda, Minoru

    2014-05-01

    This paper presents new correction approaches for "early" radiocarbon ages to reconstruct the Paleolithic absolute chronology. In order to discuss time-space distribution about the replacement of archaic humans, including Neanderthals in Europe, by the modern humans, a massive data, which covers a wide-area, would be needed. Today, some radiocarbon databases focused on the Paleolithic have been published and used for chronological studies. From a viewpoint of current analytical technology, however, the any database have unreliable results that make interpretation of radiocarbon dates difficult. Most of these unreliable ages had been published in the early days of radiocarbon analysis. In recent years, new analytical methods to determine highly-accurate dates have been developed. Ultrafiltration and ABOx-SC methods, as new sample pretreatments for bone and charcoal respectively, have attracted attention because they could remove imperceptible contaminates and derive reliable accurately ages. In order to evaluate the reliability of "early" data, we investigated the differences and variabilities of radiocarbon ages on different pretreatments, and attempted to develop correction functions for the assessment of the reliability. It can be expected that reliability of the corrected age is increased and the age applied to chronological research together with recent ages. Here, we introduce the methodological frameworks and archaeological applications.

  13. New technique for oil backstreaming contamination measurements

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Speier, H. J.; Sieg, R. M.; Drotos, M. N.; Dunning, J. E.

    1993-01-01

    Due to the large size and the number of diffusion pumps, space simulation chambers cannot be easily calibrated by the usual test dome method for measuring backstreaming from oil diffusion pumps. In addition, location dependent contamination may be an important parameter of the test. The backstreaming contamination in the Space Power Facility (SPF) near Sandusky, Ohio, the largest space simulation vacuum test chamber in the U.S.A. was measured. Small size clean silicon wafers as contamination sensors placed at all desired measurement sites were used. The facility used diffusion pumps with DC 705 oil. The thickness of the contamination oil film was measured using ellipsometry. Since the oil did not wet uniformly the silicon substrate, two analysis models were developed to measure the oil film: continuous, homogeneous film and islands of oil with the islands varying in coverage fraction and height. In both cases, the contamination film refractive index was assumed to be that of DC 705. The second model improved the ellipsometric analysis quality parameter by up to two orders of magnitude, especially for the low coverage cases. Comparison of the two models for our case shows that the continuous film model overestimates the oil volume by less than 50 percent. Absolute numbers for backstreaming are in good agreement with published results for diffusion pumps. Good agreement was also found between the ellipsometric results and measurements done by x ray photoelectron spectroscopy (XPS) and by scanning electron microscopy (SEM) on samples exposed to the same vacuum runs.

  14. Electromagnetic probe technique for fluid flow measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Carl, J. R.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.

  15. Electromagnetic Probe Technique for Fluid Flow Measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Carl, J. R.; Nguyen, T. X.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constants of each fluid is possible, several or even many fluids can be measured in the same flow steam. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this industry, a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans and program to solve this problem will be discussed herein.

  16. Water induced geohazards measured with spaceborne interferometry techniques

    NASA Astrophysics Data System (ADS)

    Poncos, V.; Serban, F.; Teleaga, D.; Ciocan, V.; Sorin, M.; Caranda, D.; Zamfirescu, F.; Andrei, M.; Copaescu, S.; Radu, M.; Raduca, V.

    2012-04-01

    Natural and anthropogenic occurrence of groundwater is inducing surficial crustal deformation processes that can be accurately measured with high spatial density from space, regardless of the ground access conditions. The detection of the surface deformation allows uncovering spatial and temporal patterns of subsurface processes such as land subsidence, cave-ins and differential ground settlement related to water content. InSAR measurements combined with ground truth data permit estimation of the mechanical properties of the rocks and the development of models and scenarios to predict disaster events such as cave-ins, landslides and soil liquefaction in the case of an Earthquake. A number of three sites in Romania that suffer of ground instability because of the water component will be presented. The DInSAR, Interferograms Stacking and Persistent Scatterers Interferometry techniques were applied to retrieve as accurate as possible the displacement information. The first studied site is the city of Bucharest; using 7 years of ERS data ground instability was detected on a large area that represents the historical watershed of the Dambovita river. A network of water wells shows that the ground instability is directly proportional to the groundwater depth. The second site is the Ocnele Mari brine extraction area. The exploitation of the Ocnele Mari salt deposit started from the Roman Empire time using the mining technology and from 1954 the salt dissolution technology which involves injecting water into the ground using a well and extracting the brine (water and salt) through another well. The extraction of salt through dissolution led to slow ground subsidence but the flooding and dissolution of the Roman caves led to catastrophic cave-ins and the relocation of an entire village. The water injection technique is still applied and the Roman cave system is an unknown, therefore further catastrophic events are expected. The existing theoretical simulations of the

  17. Measurement of the Dielectric Constant of Seawater at L-Band: Techniques and Measurements

    NASA Technical Reports Server (NTRS)

    Lang, R.; Utku, C.; Tarkocin, Y.; LeVine, D.

    2009-01-01

    Satellite instruments, that will monitor salinity from space in the near future, require an accurate relationship between salinity/temperature and seawater dielectric constant. This paper will review measurements that were made of the dielectric constant of seawater during the past several years. The objective of the measurements is to determine the dependence of the dielectric constant of seawater on salinity and on temperature, more accurately than in the past. by taking advantage of modem instrumentation. The measurements of seawater permittivity have been performed as a function of salinity and temperature using a transmission resonant cavity technique. The measurements have been made in the salinity range of 10 to 38 psu and in the temperature range of IOU C to 35 C. These results will be useful in algorithm development for sensor systems such as SMOS and Aquarius. The measurement system consists of a brass microwave cavity that is resonant at 1.413 GHz. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The diameter of the tube has been made very small so that the amount of seawater introduced in the cavity is small - thus maintaining the sensitivity of the measurements and allowing the use of perturbation theory predicting the seawater permittivity. The change in resonant frequency and the change in cavity Q can be used to determine the real and imaginary pare of the dielectric constant of seawater introduced into the slender tube. The microwave measurements are made by an HPS722D network analyzer. The cavity has been immersed in a uateriethylene-glycol bath which is connected to a Lauda circulator. The circulator keeps the brass cavity at a temperature constant to within 0.01 degrees. The system is automated using a Visual Basic program to control the analyzer and to collect the data. The results of the dielectric constant measurements of seawater will be presented. The measurement results will be

  18. Ultrasonic techniques for aircraft ice accretion measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Lichtenfelts, Fred

    1988-01-01

    Ultrasonic pulse-echo measurements of ice growth on cylinders and airfoils exposed to both artificial (icing wind tunnel) and natural (flight) icing conditions are presented. An accuracy of + or - 0.5 mm is achieved with the present method. The ultrasonic signal characteristics associated with each of the two types of icing regimes identified, wet and dry ice growth, are discussed. Heat transfer coefficients are found to be higher in the wind tunnel environment than in flight. Results for ice growth on airfoils have also been obtained using an array of ultrasonic transducers. Icing profiles obtained during flight are compared with mechanical and stereo image measurements.

  19. Model measurements for new accelerating techniques

    SciTech Connect

    Aronson, S.; Haseroth, H.; Knott, J.; Willis, W.

    1988-06-01

    We summarize the work carried out for the past two years, concerning some different ways for achieving high-field gradients, particularly in view of future linear lepton colliders. These studies and measurements on low power models concern the switched power principle and multifrequency excitation of resonant cavities. 15 refs., 12 figs.

  20. Amplitude Frequency Response Measurement: A Simple Technique

    ERIC Educational Resources Information Center

    Satish, L.; Vora, S. C.

    2010-01-01

    A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the "Linear-Sweep" frequency mode, while the oscilloscope…

  1. Establishing traceability of photometric absorbance values for accurate measurements of the haemoglobin concentration in blood

    NASA Astrophysics Data System (ADS)

    Witt, K.; Wolf, H. U.; Heuck, C.; Kammel, M.; Kummrow, A.; Neukammer, J.

    2013-10-01

    Haemoglobin concentration in blood is one of the most frequently measured analytes in laboratory medicine. Reference and routine methods for the determination of the haemoglobin concentration in blood are based on the conversion of haeme, haemoglobin and haemiglobin species into uniform end products. The total haemoglobin concentration in blood is measured using the absorbance of the reaction products. Traceable absorbance measurement values on the highest metrological level are a prerequisite for the calibration and evaluation of procedures with respect to their suitability for routine measurements and their potential as reference measurement procedures. For this purpose, we describe a procedure to establish traceability of spectral absorbance measurements for the haemiglobincyanide (HiCN) method and for the alkaline haematin detergent (AHD) method. The latter is characterized by a higher stability of the reaction product. In addition, the toxic hazard of cyanide, which binds to the iron ion of the haem group and thus inhibits the oxygen transport, is avoided. Traceability is established at different wavelengths by applying total least-squares analysis to derive the conventional quantity values for the absorbance from the measured values. Extrapolation and interpolation are applied to get access to the spectral regions required to characterize the Q-absorption bands of the HiCN and AHD methods, respectively. For absorbance values between 0.3 and 1.8, the contributions of absorbance measurements to the total expanded uncertainties (95% level of confidence) of absorbance measurements range from 1% to 0.4%.

  2. A More Accurate Measurement of the {sup 28}Si Lattice Parameter

    SciTech Connect

    Massa, E. Sasso, C. P.; Mana, G.; Palmisano, C.

    2015-09-15

    In 2011, a discrepancy between the values of the Planck constant measured by counting Si atoms and by comparing mechanical and electrical powers prompted a review, among others, of the measurement of the spacing of {sup 28}Si (220) lattice planes, either to confirm the measured value and its uncertainty or to identify errors. This exercise confirmed the result of the previous measurement and yields the additional value d{sub 220} = 192 014 711.98(34) am having a reduced uncertainty.

  3. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi

    2012-11-01

    Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.

  4. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... an accuracy reading of ±2 percent or better; (3) If the meter measures steam flowing at less than 100,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±4 percent or better; (4) If...

  5. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... an accuracy reading of ±2 percent or better; (3) If the meter measures steam flowing at less than 100,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±4 percent or better; (4) If...

  6. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... an accuracy reading of ±2 percent or better; (3) If the meter measures steam flowing at less than 100,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±4 percent or better; (4) If...

  7. Transient particle emission measurement with optical techniques

    NASA Astrophysics Data System (ADS)

    Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.

  8. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments

    PubMed Central

    Zhang, Wei; Ma, Hong; Yang, Simon X.

    2016-01-01

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products. PMID:26999161

  9. Measuring laser power as a force: a new paradigm to accurately monitor optical power during laser-based machining operations

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Simonds, Brian; Sowards, Jeffrey; Hadler, Joshua

    2016-03-01

    In laser manufacturing operations, accurate measurement of laser power is important for product quality, operational repeatability, and process validation. Accurate real-time measurement of high-power lasers, however, is difficult. Typical thermal power meters must absorb all the laser power in order to measure it. This constrains power meters to be large, slow and exclusive (that is, the laser cannot be used for its intended purpose during the measurement). To address these limitations, we have developed a different paradigm in laser power measurement where the power is not measured according to its thermal equivalent but rather by measuring the laser beam's momentum (radiation pressure). Very simply, light reflecting from a mirror imparts a small force perpendicular to the mirror which is proportional to the optical power. By mounting a high-reflectivity mirror on a high-sensitivity force transducer (scale), we are able to measure laser power in the range of tens of watts up to ~ 100 kW. The critical parameters for such a device are mirror reflectivity, angle of incidence, and scale sensitivity and accuracy. We will describe our experimental characterization of a radiation-pressure-based optical power meter. We have tested it for modulated and CW laser powers up to 92 kW in the laboratory and up to 20 kW in an experimental laser welding booth. We will describe present accuracy, temporal response, sources of measurement uncertainty, and hurdles which must be overcome to have an accurate power meter capable of routine operation as a turning mirror within a laser delivery head.

  10. Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors

    PubMed Central

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-01-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961

  11. A Proposed Frequency Synthesis Approach to Accurately Measure the Angular Position of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Bagri, D. S.

    2005-01-01

    This article describes an approach for measuring the angular position of a spacecraft with reference to a nearby calibration source (quasar) with an accuracy of a few tenths of a nanoradian using a very long baseline interferometer of two antennas that measures the interferometer phase with a modest accuracy. It employs (1) radio frequency phase to determine the spacecraft position with high precision and (2) multiple delay measurements using either frequency tones or telemetry signals at different frequency spacings to resolve ambiguity of the location of the fringe (cycle) containing the direction of the spacecraft.

  12. Vascular wall shear rate measurement using coded excitation techniques

    NASA Astrophysics Data System (ADS)

    Tsou, Jean K.; Liu, Jie; Insana, Michael F.

    2005-04-01

    Wall shear rate (WSR) is the derivative of blood velocity with respect to vessel radius at the endothelial surface. The product of WSR and blood viscosity is the wall shear stress (WSS) that must remain relatively high to maintain normal endothelial cell function, arterial health and prevent plaque formation. Accurate WSR estimation requires the lowest possible variance and bias for blood velocity estimates near the wall. This situation is achieved for conditions where the echo signal-to-noise ratio (eSNR) and spatial resolution for velocity are high. We transmitted coded pulses, i.e., those with time-bandwidth product greater than 1, to increase eSNR from weak blood scatter without increasing instantaneous power or reducing spatial resolution. This paper is a summary of WSR measurements from a flow phantom where a variety of acoustic pulses were transmitted: frequencymodulated (FM) codes and phase-modulated (PM) codes were compared with uncoded broadband and narrow band pulse transmissions. Both simulation and experimental results show that coded-pulse excitation increases accuracy and precision in WSR estimation when compared to standard pulsing techniques. Additionally, PM codes can reduce WSR errors more than FM codes for equal pulse energy. This reduction in WSR error could greatly extend the application of ultrasound in the study of cardiovascular disease.

  13. POF strain sensor using phase measurement techniques

    NASA Astrophysics Data System (ADS)

    Poisel, H.

    2008-03-01

    Polymer optical fiber (POF) elongation sensors have been proposed e.g. by Doering as a low-cost alternative to FBG (single mode Fiber Bragg Gratings) sensors targeting the lower sensitivity range. A recently recovered detection system known from laser distance meters turned out to be very sensitive while staying simple and thus offering low cost potential. The approach is based on measuring the phase shift of a (e.g. sinusoidally) modulated light signal guided in a POF under different tensions resulting in different transit times and thus different phase shifts.

  14. A feasibility study for measuring accurate tendon displacements using an audio-based Fourier analysis of pulsed-wave Doppler ultrasound signals.

    PubMed

    Stegman, K J; Podhorodeski, R P; Park, E J

    2009-01-01

    The accuracy of Pulsed-Wave Doppler Ultrasound displacement measurements of a slow moving "tendon-like" string was investigated in this study. This was accomplished by estimating string displacements using an audio-based Fourier analysis of a Pulsed-Wave Doppler signal from a commercial ultrasound scanner. Our feasibility study showed that the proposed technique is much more accurate at estimating the actual string displacement in comparison to the scanner's onboard software. Furthermore, this study also shows that a real-time Doppler data acquisition from an ultrasound scanner is possible for the ultimate purpose of real-time biological tendon displacement monitoring.

  15. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  16. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    NASA Astrophysics Data System (ADS)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  17. A more accurate method for measurement of tuberculocidal activity of disinfectants.

    PubMed Central

    Ascenzi, J M; Ezzell, R J; Wendt, T M

    1987-01-01

    The current Association of Official Analytical Chemists method for testing tuberculocidal activity of disinfectants has been shown to be inaccurate and to have a high degree of variability. An alternate test method is proposed which is more accurate, more precise, and quantitative. A suspension of Mycobacterium bovis BCG was exposed to a variety of disinfectant chemicals and a kill curve was constructed from quantitative data. Data are presented that show the discrepancy between current claims, determined by the Association of Official Analytical Chemists method, of selected commercially available products and claims generated by the proposed method. The effects of different recovery media were examined. The data indicated that Mycobacteria 7H11 and Middlebrook 7H10 agars were equal in recovery of the different chemically treated cells, with Lowenstein-Jensen agar having approximately the same recovery rate but requiring incubation for up to 3 weeks longer for countability. The kill curves generated for several different chemicals were reproducible, as indicated by the standard deviations of the slopes and intercepts of the linear regression curves. PMID:3314707

  18. Remote measurement of corrosion using ultrasonic techniques

    SciTech Connect

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy`s treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation.

  19. Tear film measurement by optical reflectometry technique.

    PubMed

    Lu, Hui; Wang, Michael R; Wang, Jianhua; Shen, Meixiao

    2014-02-01

    Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle.

  20. Tear film measurement by optical reflectometry technique.

    PubMed

    Lu, Hui; Wang, Michael R; Wang, Jianhua; Shen, Meixiao

    2014-02-01

    Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519

  1. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  2. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  3. Improved Hanle effect measurement technique for fast ions.

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Gardiner, R. B.; Church, D. A.

    1973-01-01

    An improved averaging technique for use with foil-excited fast ions is applied to a Hanle-effect measurement of the mean life of some fast ions. With improved data analysis, the employed technique is expected to be more precise, as well as experimentally simpler than previously used techniques.

  4. Accurate GPS measurement of the location and orientation of a floating platform. [for sea floor geodesy

    NASA Technical Reports Server (NTRS)

    Purcell, G. H., Jr.; Young, L. E.; Wolf, S. K.; Meehan, T. K.; Duncan, C. B.; Fisher, S. S.; Spiess, F. N.; Austin, G.; Boegeman, D. E.; Lowenstein, C. D.

    1990-01-01

    This article describes the design and initial tests of the GPS portion of a system for making seafloor geodesy measurements. In the planned system, GPS antennas on a floating platform will be used to measure the location of an acoustic transducer, attached below the platform, which interrogates an array of transponders on the seafloor. Since the GPS antennas are necessarily some distance above the transducer, a short-baseline GPS interferometer consisting of three antennas is used to measure the platform's orientation. A preliminary test of several crucial elements of the system was performed. The test involved a fixed antenna on the pier and a second antenna floating on a buoy about 80 m away. GPS measurements of the vertical component of this baseline, analyzed independently by two groups using different software, agree with each other and with an independent measurement within a centimeter. The first test of an integrated GPS/acoustic system took place in the Santa Cruz Basin off the coast of southern California in May 1990. In this test a much larger buoy, designed and built at SIO, was equipped with three GPS antennas and an acoustic transducer that interrogated a transponder on the ocean floor. Preliminary analysis indicates that the horizontal position of the transponder can be determined with a precision of about a centimeter.

  5. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography.

    PubMed

    Hayashida, Misa; Kumagai, Kazuhiro; Malac, Marek

    2015-12-01

    Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.

  6. Accurate measurement of body weight and food intake in environmentally enriched male Wistar rats.

    PubMed

    Beale, Kylie E L; Murphy, Kevin G; Harrison, Eleanor K; Kerton, Angela J; Ghatei, Mohammad A; Bloom, Stephen R; Smith, Kirsty L

    2011-08-01

    Laboratory animals are crucial in the study of energy homeostasis. In particular, rats are used to study alterations in food intake and body weight. To accurately record food intake or energy expenditure it is necessary to house rats individually, which can be stressful for social animals. Environmental enrichment may reduce stress and improve welfare in laboratory rodents. However, the effect of environmental enrichment on food intake and thus experimental outcome is unknown. We aimed to determine the effect of environmental enrichment on food intake, body weight, behavior and fecal and plasma stress hormones in male Wistar rats. Singly housed 5-7-week-old male rats were given either no environmental enrichment, chew sticks, a plastic tube of 67 mm internal diameter, or both chew sticks and a tube. No differences in body weight or food intake were seen over a 7-day period. Importantly, the refeeding response following a 24-h fast was unaffected by environmental enrichment. Rearing, a behavior often associated with stress, was significantly reduced in all enriched groups compared to controls. There was a significant increase in fecal immunoglobulin A (IgA) in animals housed with both forms of enrichment compared to controls at the termination of the study, suggesting enrichment reduces hypothalamo-pituitary-adrenal (HPA) axis activity in singly housed rats. In summary, environmental enrichment does not influence body weight and food intake in singly housed male Wistar rats and may therefore be used to refine the living conditions of animals used in the study of energy homeostasis without compromising experimental outcome.

  7. A method to measure the density of seawater accurately to the level of 10-6

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Wolf, Henning; Hassel, Egon

    2016-04-01

    A substitution method to measure seawater density relative to pure water density using vibrating tube densimeters was realized and validated. Standard uncertainties of 1 g m-3 at atmospheric pressure, 10 g m-3 up to 10 MPa, and 20 g m-3 to 65 MPa in the temperature range of 5 °C to 35 °C and for salt contents up to 35 g kg-1 were achieved. The realization was validated by comparison measurements with a hydrostatic weighing apparatus for atmospheric pressure. For high pressures, literature values of seawater compressibility were compared with substitution measurements of the realized apparatus.

  8. Accurate heteronuclear J-coupling measurements in dilute spin systems using the multiple-quantum filtered J-resolved experiment.

    PubMed

    Martineau, Charlotte; Fayon, Franck; Legein, Christophe; Buzaré, Jean-Yves; Silly, Gilles; Massiot, Dominique

    2007-07-14

    A new solid-state MAS NMR experiment is proposed to accurately measure heteronuclear (19)F-(207)Pb J-coupling constants, even though these couplings are not visible on high speed (19)F 1D MAS spectra; in particular, we demonstrate that the J-resolved experiment combined with scalar multiple-quantum filtering considerably improves the resolution of J-multiplet patterns for dilute spin systems. PMID:17594032

  9. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect

    Wells, C

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  10. Optical fiber sensor technique for strain measurement

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  11. New insights for accurate chemically specific measurements of slow diffusing molecules.

    PubMed

    Hou, Jianbo; Madsen, Louis A

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using (2)H(2)O and obtain expected results, but we observe crippling artifacts when measuring (1)H-glycerol diffusion with the same experimental parameters. A mathematical analysis of (2)H(2)O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration. PMID:23406112

  12. New insights for accurate chemically specific measurements of slow diffusing molecules

    NASA Astrophysics Data System (ADS)

    Hou, Jianbo; Madsen, Louis A.

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using 2H2O and obtain expected results, but we observe crippling artifacts when measuring 1H-glycerol diffusion with the same experimental parameters. A mathematical analysis of 2H2O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration.

  13. An affordable and accurate conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Carminati, Marco; Luzzatto-Fegiz, Paolo

    2015-11-01

    In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.

  14. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  15. High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments

    NASA Technical Reports Server (NTRS)

    Fagot, R. J.; Mc Donald, R. T.; Roman, J. A.

    1968-01-01

    Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration.

  16. GAP on EJSM: an accelerometer for accurate gravity and atmospheric measurements of Ganymede

    NASA Astrophysics Data System (ADS)

    Lenoir, Benjamin; Christophe, Bruno

    2010-05-01

    The Gravity Advanced Package (GAP) is an electrostatic accelerometer with a bias calibration system proposed on EJSM Jupiter Ganymede Orbiter (JGO) for fundamental physics objectives - more precisely for testing the law of gravity at the scale of the solar system - and for planetary objectives. GAP can provide decisive information during the planetary phase of the mission. During the orbit of JGO around Ganymede or the flyby of Callisto, such an instrument will measure the non-gravitational forces acting on the spacecraft, mainly due to the atmosphere. By combining these measurements with the ones provided by the radio-science instrument, which measures the total acceleration of the spacecraft, the gravitational forces acting on the spacecraft can be derived without using any model of the atmosphere. This is a major contribution of GAP to the mission considering the low altitude and the size of the solar panel, which would otherwise require precise models. Indeed, the presence of the instrument on board would provide data to better understand the atmosphere and the gravity field of Ganymede and Callisto. This combination of measurements from the accelerometer and from radio-science is similar to what is currently done for determining precise model of the Earth gravity potential with CHAMP, GRACE and GOCE missions. The GAP instrument is proposed by the ONERA team which has already built the 9 accelerometers in orbit for these geodetic missions. The presentation will describe the scientific objectives of the instrument with a review of the impact of the non-gravitational forces on the gravity measurement of Jupiter's moons. Then, a description of the instrument with its performance will be given, as well as the requirements for its implementation in the spacecraft.

  17. Measurement of testicular volume in smaller testes: how accurate is the conventional orchidometer?

    PubMed

    Lin, Chih-Chieh; Huang, William J S; Chen, Kuang-Kuo

    2009-01-01

    The aim of this study was to evaluate the accuracy of different methods, including the Seager orchidometer (SO) and ultrasonography (US), for assessing testicular volume of smaller testes (testes volume less than 18 mL). Moreover, the equations used for the calculations--the Hansen formula (length [L] x width [W](2) x 0.52, equation A), the prolate ellipsoid formula (L x W x height [H] x 0.52, equation B), and the Lambert equation (L x W x H x 0.71, equation C)--were also examined and compared with the gold standard testicular volume obtained by water displacement (Archimedes principle). In this study, 30 testes from 15 men, mean age 75.3 (+/-8.3) years, were included. They all had advanced prostate cancer and were admitted for orchiectomy. Before the procedure, all the testes were assessed using SO and US. The dimensions were then input into each equation to obtain the volume estimates. The testicular volume by water displacement was 8.1 +/- 3.5 mL. Correlation coefficients (R(2)) of the 2 different methods (SO, US) to the gold standard were 0.70 and 0.85, respectively. The calculated testicular volumes were 9.2 +/- 3.9 mL (measured by SO, equation A), 11.9 +/- 5.2 mL (measured by SO, equation C), 7.3 +/- 4.2 mL (measured by US, equation A), 6.5 +/- 3.3 mL (measured by US, equation B) and 8.9 +/- 4.5 mL (measured by US, equation C). Only the mean size measured by US and volume calculated with the Hansen equation (equation A) and the mean size measured by US and volume calculated with the Lambert equation (equation C) showed no significant differences when compared with the volumes estimated by water displacement (mean difference 0.81 mL, P = .053, and 0.81 mL, P = .056, respectively). Based on our measurements, we categorized testicular volume by different cutoff values (7.0 mL, 7.5 mL, 8.0 mL, and 8.5 mL) to calculate a new constant for use in the Hansen equation. The new constant was 0.59. We then reexamined the equations using the new 0.59 constant, and found

  18. Describing and compensating gas transport dynamics for accurate instantaneous emission measurement

    NASA Astrophysics Data System (ADS)

    Weilenmann, Martin; Soltic, Patrik; Ajtay, Delia

    Instantaneous emission measurements on chassis dynamometers and engine test benches are becoming increasingly usual for car-makers and for environmental emission factor measurement and calculation, since much more information about the formation conditions can be extracted than from the regulated bag measurements (integral values). The common exhaust gas analysers for the "regulated pollutants" (carbon monoxide, total hydrocarbons, nitrogen oxide, carbon dioxide) allow measurement at a rate of one to ten samples per second. This gives the impression of having after-the-catalyst emission information with that chronological precision. It has been shown in recent years, however, that beside the reaction time of the analysers, the dynamics of gas transport in both the exhaust system of the car and the measurement system last significantly longer than 1 s. This paper focuses on the compensation of all these dynamics convoluting the emission signals. Most analysers show linear and time-invariant reaction dynamics. Transport dynamics can basically be split into two phenomena: a pure time delay accounting for the transport of the gas downstream and a dynamic signal deformation since the gas is mixed by turbulence along the way. This causes emission peaks to occur which are smaller in height and longer in time at the sensors than they are after the catalyst. These dynamics can be modelled using differential equations. Both mixing dynamics and time delay are constant for modelling a raw gas analyser system, since the flow in that system is constant. In the exhaust system of the car, however, the parameters depend on the exhaust volume flow. For gasoline cars, the variation in overall transport time may be more than 6 s. It is shown in this paper how all these processes can be described by invertible mathematical models with the focus on the more complex case of the car's exhaust system. Inversion means that the sharp emission signal at the catalyst out location can be

  19. A step toward standardization: development of accurate measurements of X-ray absorption and fluorescence.

    PubMed

    Chantler, Christopher T; Barnea, Zwi; Tran, Chanh Q; Rae, Nicholas A; de Jonge, Martin D

    2012-11-01

    This paper explains how to take the counting precision available for XAFS (X-ray absorption fine structure) and attenuation measurements, of perhaps one part in 10(6) in special cases, to produce a local variance below 0.01% and an accuracy of attenuation of the order 0.01%, with an XAFS accuracy at a similar level leading to the determination of dynamical bond lengths to an accuracy similar to that obtained by standard and experienced crystallographic measurements. This includes the necessary corrections for the detector response to be linear, including a correction for dark current and air-path energy dependencies; a proper interpretation of the range of sample thicknesses for absorption experiments; developments of methods to measure and correct for harmonic contamination, especially at lower energies without mirrors; the significance of correcting for the actual bandwidth of the beam on target after monochromation, especially for the portability of results and edge structure from one beamline to another; definitions of precision, accuracy and XAFS accuracy suitable for theoretical model analysis; the role of additional and alternative high-accuracy procedures; and discusses some principles regarding data formats for XAFS and for the deposition of data sets with manuscripts or to a database. Increasingly, the insight of X-ray absorption and the standard of accuracy needed requires data with high intrinsic precision and therefore with allowance for a range of small but significant systematic effects. This is always crucial for absolute measurements of absorption, and is of equal importance but traditionally difficult for (usually relative) measurements of fluorescence XAFS or even absorption XAFS. Robust error analysis is crucial so that the significance of conclusions can be tested within the uncertainties of the measurements. Errors should not just include precision uncertainty but should attempt to include estimation of the most significant systematic error

  20. A Procedure for Accurately Measuring the Shaker Overturning Moment During Random Vibration Tests

    NASA Technical Reports Server (NTRS)

    Nayeri, Reza D.

    2011-01-01

    Motivation: For large system level random vibration tests, there may be some concerns about the shaker's capability for the overturning moment. It is the test conductor's responsibility to predict and monitor the overturning moment during random vibration tests. If the predicted moment is close to the shaker's capability, test conductor must measure the instantaneous moment at low levels and extrapolate to higher levels. That data will be used to decide whether it is safe to proceed to the next test level. Challenge: Kistler analog formulation for computing the real-time moment is only applicable to very limited cases in which we have 3 or 4 load cells installed at shaker interface with hardware. Approach: To overcome that limitation, a simple procedure was developed for computing the overturning moment time histories using the measured time histories of the individual load cells.

  1. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  2. Switched integration amplifier-based photocurrent meter for accurate spectral responsivity measurement of photometers.

    PubMed

    Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop

    2016-03-20

    This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer. PMID:27140564

  3. Accurate metrology of polarization curves measured at the speckle size of visible light scattering.

    PubMed

    Ghabbach, A; Zerrad, M; Soriano, G; Amra, C

    2014-06-16

    An optical procedure is presented to measure at the speckle size and with high accuracy, the polarization degree of patterns scattered by disordered media. Whole mappings of polarization ratio, polarimetric phase and polarization degree are pointed out. Scattered clouds are emphasized on the Poincaré sphere, and are completed by probability density functions of the polarization degree. A special care is attributed to the accuracy of data. The set-up provides additional signatures of scattering media.

  4. Development of Filtered Rayleigh Scattering for Accurate Measurement of Gas Velocity

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Lempert, Walter R.

    1995-01-01

    The overall goals of this research were to develop new diagnostic tools capable of capturing unsteady and/or time-evolving, high-speed flow phenomena. The program centers around the development of Filtered Rayleigh Scattering (FRS) for velocity, temperature, and density measurement, and the construction of narrow linewidth laser sources which will be capable of producing an order MHz repetition rate 'burst' of high power pulses.

  5. Exercise-induced hyperthermia may prevent accurate core temperature measurement by tympanic membrane thermometer.

    PubMed

    Yeo, S; Scarbough, M

    1996-01-01

    The purpose of this study was to assess the effect of exercise-induced hyperthermia on brain and deep trunk temperature measurement in order to determine the optimal temperature site of the body for varying nursing practices in outpatient clinical settings. Eight women, 18 to 50 years old (30.9 +/- 12.6; mean +/- SD), participated in the study. Subjects were asked to perform their regular aerobic exercise in a natural environment while body temperature (ear and rectal) and heart rate (HR) were measured simultaneously and repeatedly before, during, and after exercise. Glass mercury rectal thermometers were used for measurement of deep trunk temperature, an infrared tympanic membrane thermometer for measurement of brain temperature, and a portable heart rate monitor for monitoring heart rate. Rectal temperature was higher than ear temperature for all but one of the 40 pairs of observation. The time pattern varied for the two modes of temperature (F = 9.67; df 4,28; p < .001). Rectal temperature changed over time (F = 7.86; df 4,28; p < .002), and ear temperature did not (F = 1.5; df 4,28; p = .25), indicating that ear temperature did not respond to exercise. While rectal temperature was strongly correlated with HR (r = .60), ear temperature did not correlate either with rectal temperature (r = .02) or with HR (r = .08). Thus deep trunk temperature responds to exercise at moderate levels. On the other hand, ear temperature does not increase due to exercise. Ear temperature is not a valid indicator of trunk temperature during and immediately after exercise.

  6. Regular, Fast and Accurate Airborne In-Situ Methane Measurements Around the Tropopause

    NASA Astrophysics Data System (ADS)

    Dyroff, Christoph; Rauthe-Schöch, Armin; Schuck, Tanja J.; Zahn, Andreas

    2013-04-01

    We present a laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft. The instrument is based on a commercial fast methane analyzer (FMA, Los Gatos Res.), which was modified for fully unattended employment. A laboratory characterization was performed and the results with emphasis on the precision, cross sensitivity to H2O, and accuracy are presented. An in-flight calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. By statistical comparison of the in-situ measurements with the flask samples we derive a total uncetrainty estimate of ~ 3.85 ppbv (1?) around the tropopause, and ~ 12.4 ppbv (1?) during aircraft ascent and descent. Data from the first two years of airborne operation are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere, with occasional crossings of the tropics on flights to southern Africa. With its high spatial resolution and high accuracy this data set is unprecedented in the highly important atmospheric layer of the tropopause.

  7. Optical aperture area determination for accurate illuminance and luminous efficacy measurements of LED lamps

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Mäntynen, Henrik; Ikonen, Erkki

    2016-06-01

    The measurement uncertainty of illuminance and, consequently, luminous flux and luminous efficacy of LED lamps can be reduced with a recently introduced method based on the predictable quantum efficient detector (PQED). One of the most critical factors affecting the measurement uncertainty with the PQED method is the determination of the aperture area. This paper describes an upgrade to an optical method for direct determination of aperture area where superposition of equally spaced Gaussian laser beams is used to form a uniform irradiance distribution. In practice, this is accomplished by scanning the aperture in front of an intensity-stabilized laser beam. In the upgraded method, the aperture is attached to the PQED and the whole package is transversely scanned relative to the laser beam. This has the benefit of having identical geometry in the laser scanning of the aperture area and in the actual photometric measurement. Further, the aperture and detector assembly does not have to be dismantled for the aperture calibration. However, due to small acceptance angle of the PQED, differences between the diffraction effects of an overfilling plane wave and of a combination of Gaussian laser beams at the circular aperture need to be taken into account. A numerical calculation method for studying these effects is discussed in this paper. The calculation utilizes the Rayleigh-Sommerfeld diffraction integral, which is applied to the geometry of the PQED and the aperture. Calculation results for various aperture diameters and two different aperture-to-detector distances are presented.

  8. Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets

    PubMed Central

    Park, Jimin; Han, Hyung-Seop; Kim, Yu-Chan; Ahn, Jae-Pyeong; Ok, Myoung-Ryul; Lee, Kyung Eun; Lee, Jee-Wook; Cha, Pil-Ryung; Seok, Hyun-Kwang; Jeon, Hojeong

    2015-01-01

    The size-dependent wettability of sessile water droplets is an important matter in wetting science. Although extensive studies have explored this problem, it has been difficult to obtain empirical data for microscale sessile droplets at a wide range of diameters because of the flaws resulting from evaporation and insufficient imaging resolution. Herein, we present the size-dependent quantitative change of wettability by directly visualizing the three phase interfaces of droplets using a cryogenic-focused ion beam milling and SEM-imaging technique. With the fundamental understanding of the formation pathway, evaporation, freezing, and contact angle hysteresis for sessile droplets, microdroplets with diameters spanning more than three orders of magnitude on various metal substrates were examined. Wetting nature can gradually change from hydrophobic at the hundreds-of-microns scale to super-hydrophobic at the sub-μm scale, and a nonlinear relationship between the cosine of the contact angle and contact line curvature in microscale water droplets was demonstrated. We also showed that the wettability could be further tuned in a size-dependent manner by introducing regular heterogeneities to the substrate. PMID:26657208

  9. Examining factors that may influence accurate measurement of testosterone in sea turtles.

    PubMed

    Graham, Katherine M; Mylniczenko, Natalie D; Burns, Charlene M; Bettinger, Tammie L; Wheaton, Catharine J

    2016-01-01

    Differences in reported testosterone concentrations in male sea turtle blood samples are common in the veterinary literature, but may be accounted for by differences in sample handling and processing prior to assay. Therefore, our study was performed to determine best practices for testosterone analysis in male sea turtles (Caretta caretta and Chelonia mydas). Blood samples were collected into 5 collection tube types, and assay validation and measured testosterone concentrations were compared across different sample storage (fresh, refrigerated 1 week, or frozen), extraction (unextracted or ether-extracted), and processing treatment (untreated, homogenized, or dissociation reagent) conditions. Ether-extracted and dissociation reagent-treated samples validated in all conditions tested and are recommended for use, as unextracted samples validated only if assayed fresh. Dissociation reagent treatment was simpler to perform than ether extraction and resulted in total testosterone concentrations ~2.7-3.5 times greater than free testosterone measured in ether-extracted samples. Sample homogenization did not affect measured testosterone concentrations, and could be used to increase volume in gelled samples. An annual seasonal testosterone increase was observed in both species when ether extraction or dissociation reagent treatment was used. Annual deslorelin implant treatments in a Chelonia mydas male resulted in suppression of seasonal testosterone following the fourth treatment. Seasonal testosterone patterns resumed following discontinuation of deslorelin. Comparison of in-house and commercially available enzyme immunoassay kits revealed similar patterns of seasonal testosterone increases and deslorelin-induced suppression. Our study highlights the importance of methodological validation and provides laboratorians with best practices for testosterone enzyme immunoassay in sea turtles.

  10. Examining factors that may influence accurate measurement of testosterone in sea turtles.

    PubMed

    Graham, Katherine M; Mylniczenko, Natalie D; Burns, Charlene M; Bettinger, Tammie L; Wheaton, Catharine J

    2016-01-01

    Differences in reported testosterone concentrations in male sea turtle blood samples are common in the veterinary literature, but may be accounted for by differences in sample handling and processing prior to assay. Therefore, our study was performed to determine best practices for testosterone analysis in male sea turtles (Caretta caretta and Chelonia mydas). Blood samples were collected into 5 collection tube types, and assay validation and measured testosterone concentrations were compared across different sample storage (fresh, refrigerated 1 week, or frozen), extraction (unextracted or ether-extracted), and processing treatment (untreated, homogenized, or dissociation reagent) conditions. Ether-extracted and dissociation reagent-treated samples validated in all conditions tested and are recommended for use, as unextracted samples validated only if assayed fresh. Dissociation reagent treatment was simpler to perform than ether extraction and resulted in total testosterone concentrations ~2.7-3.5 times greater than free testosterone measured in ether-extracted samples. Sample homogenization did not affect measured testosterone concentrations, and could be used to increase volume in gelled samples. An annual seasonal testosterone increase was observed in both species when ether extraction or dissociation reagent treatment was used. Annual deslorelin implant treatments in a Chelonia mydas male resulted in suppression of seasonal testosterone following the fourth treatment. Seasonal testosterone patterns resumed following discontinuation of deslorelin. Comparison of in-house and commercially available enzyme immunoassay kits revealed similar patterns of seasonal testosterone increases and deslorelin-induced suppression. Our study highlights the importance of methodological validation and provides laboratorians with best practices for testosterone enzyme immunoassay in sea turtles. PMID:26699527

  11. Possibility of detecting anisotropic expansion of the universe by very accurate astrometry measurements.

    PubMed

    Quercellini, Claudia; Quartin, Miguel; Amendola, Luca

    2009-04-17

    Refined astrometry measurements allow us to detect large-scale deviations from isotropy through real-time observations of changes in the angular separation between sources at cosmic distances. This "cosmic parallax" effect is a powerful consistency test of the Friedmann-Robertson-Walker metric and may set independent constraints on cosmic anisotropy. We apply this novel general test to Lemaitre-Tolman-Bondi cosmologies with off-center observers and show that future satellite missions such as Gaia might achieve accuracies that would put limits on the off-center distance which are competitive with cosmic microwave background dipole constraints. PMID:19518616

  12. Accurate mass measurements of short-lived isotopes with the MISTRAL* rf spectrometer

    SciTech Connect

    Toader, C.; Audi, G.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Le Scornet, G.; Lunney, D.; Monsanglant, C.; Saint Simon, M. de; Thibault, C.; Borcea, C.; Duma, M.; Lebee, G.

    1999-01-15

    The MISTRAL* experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  13. The dark art of light measurement: accurate radiometry for low-level light therapy.

    PubMed

    Hadis, Mohammed A; Zainal, Siti A; Holder, Michelle J; Carroll, James D; Cooper, Paul R; Milward, Michael R; Palin, William M

    2016-05-01

    Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement

  14. The dark art of light measurement: accurate radiometry for low-level light therapy.

    PubMed

    Hadis, Mohammed A; Zainal, Siti A; Holder, Michelle J; Carroll, James D; Cooper, Paul R; Milward, Michael R; Palin, William M

    2016-05-01

    Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement

  15. A simple and reliable sensor for accurate measurement of angular speed for low speed rotating machinery

    NASA Astrophysics Data System (ADS)

    Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo

    2014-01-01

    This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.

  16. A simple and reliable sensor for accurate measurement of angular speed for low speed rotating machinery.

    PubMed

    Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo

    2014-01-01

    This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.

  17. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations

    PubMed Central

    Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice. PMID:26090400

  18. Recent Advances in Highly Accurate Range Measurements with TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Eineder, Michael; Balss, Ulrich; Gisinger, Christoph; Cong, Xiao Ying; Brcic, Ramon; Steigenberger, Peter

    2013-04-01

    Earth surface displacement measurement from space using Synthetic Aperture Radar (SAR) imagery is an interesting alternative to SAR interferometry (InSAR). The advantages are that 2D information can be retrieved (InSAR only 1D), absolute displacements can be retrieved (no reference point required) and it is very robust (phase unwrapping not required). On the other hand, the accuracy is limited by the pixel resolution, the object contrast, the orbit accuracy, by wave propagation distortion and by geodetic effects. Therefore the accuracy was more in the meter / decimeter level in the past, compared to millimeter accuracy of InSAR. During the recent years our team established a test and validation site at the geodetic observatory Wettzell, Germany and developed compensation methods to reduce the overall error of absolute range measurements from decimeters to only one centimeter. The methods include correction of dry and wet atmospheric delays, ionospheric corrections, solid earth tides, continental drift, atmospheric pressure loading and ocean tidal loading. For more one year a radar reflector was monitored and each image evaluated. Our presentation gives and overview of methods and achieved results. Futhermore, examples of real world applications and an outlook on more applications is given such as phase unwrapping augmentation.

  19. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations.

    PubMed

    Douxfils, Jonathan; Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel; Mullier, François

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice. PMID:26090400

  20. Surface EMG measurements during fMRI at 3T: accurate EMG recordings after artifact correction.

    PubMed

    van Duinen, Hiske; Zijdewind, Inge; Hoogduin, Hans; Maurits, Natasha

    2005-08-01

    In this experiment, we have measured surface EMG of the first dorsal interosseus during predefined submaximal isometric contractions (5, 15, 30, 50, and 70% of maximal force) of the index finger simultaneously with fMRI measurements. Since we have used sparse sampling fMRI (3-s scanning; 2-s non-scanning), we were able to compare the mean amplitude of the undisturbed EMG (non-scanning) intervals with the mean amplitude of the EMG intervals during scanning, after MRI artifact correction. The agreement between the mean amplitudes of the corrected and the undisturbed EMG was excellent and the mean difference between the two amplitudes was not significantly different. Furthermore, there was no significant difference between the corrected and undisturbed amplitude at different force levels. In conclusion, we have shown that it is feasible to record surface EMG during scanning and that, after MRI artifact correction, the EMG recordings can be used to quantify isometric muscle activity, even at very low activation intensities.

  1. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears

    NASA Astrophysics Data System (ADS)

    Ferreira, N.; Krah, T.; Jeong, D. C.; Metz, D.; Kniel, K.; Dietzel, A.; Büttgenbach, S.; Härtig, F.

    2014-06-01

    The integration of silicon micro probing systems into conventional gear measuring instruments (GMIs) allows fully automated measurements of external involute micro spur gears of normal modules smaller than 1 mm. This system, based on a silicon microprobe, has been developed and manufactured at the Institute for Microtechnology of the Technische Universität Braunschweig. The microprobe consists of a silicon sensor element and a stylus which is oriented perpendicularly to the sensor. The sensor is fabricated by means of silicon bulk micromachining. Its small dimensions of 6.5 mm × 6.5 mm allow compact mounting in a cartridge to facilitate the integration into a GMI. In this way, tactile measurements of 3D microstructures can be realized. To enable three-dimensional measurements with marginal forces, four Wheatstone bridges are built with diffused piezoresistors on the membrane of the sensor. On the reverse of the membrane, the stylus is glued perpendicularly to the sensor on a boss to transmit the probing forces to the sensor element during measurements. Sphere diameters smaller than 300 µm and shaft lengths of 5 mm as well as measurement forces from 10 µN enable the measurements of 3D microstructures. Such micro probing systems can be integrated into universal coordinate measuring machines and also into GMIs to extend their field of application. Practical measurements were carried out at the Physikalisch-Technische Bundesanstalt by qualifying the microprobes on a calibrated reference sphere to determine their sensitivity and their physical dimensions in volume. Following that, profile and helix measurements were carried out on a gear measurement standard with a module of 1 mm. The comparison of the measurements shows good agreement between the measurement values and the calibrated values. This result is a promising basis for the realization of smaller probe diameters for the tactile measurement of micro gears with smaller modules.

  2. New linear sweep technique to measure generation lifetimes in thin-film SOI MOSFET's

    NASA Astrophysics Data System (ADS)

    Venkatesan, S.; Pierret, R. F.; Neudeck, G. W.

    1994-04-01

    A new linear sweep technique to measure generation lifetimes (tau(sub g)) in silicon-on-insulator (SOI) material is presented. A detailed analytic formulation is applied to fully-depleted and partially-depleted SOI films and used to simulate the behavior of the SOI devices under linear sweep conditions. A novel algorithm accurately determines the effective generation width in fully depleted SOI films. The measurement technique is experimentally verified by applying the algorithm to fully depleted SIMOX P-channel MOSFET's where observed lifetimes ranged from 0.3 mu s to 2.4 mu s.

  3. Accurate measurement of the 12.6 GHz "clock" transition in trapped (171)Yb(+) ions.

    PubMed

    Fisk, P H; Sellars, M J; Lawn, M A; Coles, G

    1997-01-01

    We have measured the frequency of the (171)Yb(+) 12.6 GHz M(F)=0-->0 ground state hyperfine "clock" transition in buffer gas-cooled ion clouds confined in two similar, but not identical, linear Paul traps. After correction for the known differences between the two ion traps, including significantly different second-order Doppler shifts, the frequencies agree within an uncertainty of less than 2 parts in 10(13). Our best value, based on an analytic model for the second-order Doppler shift, for the frequency of the clock transition of an isolated ion at zero temperature, velocity, electric field and magnetic field, is 12642812118.466+0.002 Hz.

  4. Material interactions with the Low Earth Orbital (LEO) environment: Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Leger, Lubert J.

    1987-01-01

    To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.

  5. Autonomous Instrumentation for Fast, Continuous and Accurate Isotopic Measurements of Water Vapor (δ18O, δ 2H, H2O) in the Field

    NASA Astrophysics Data System (ADS)

    Liem, J. S.; Dong, F.; Owano, T. G.; Baer, D. S.

    2010-12-01

    Stable isotopes of water vapor are powerful tracers to investigate the hydrological cycle and ecological processes. Therefore, continuous, in-situ and accurate measurements of δ18O and δ2H are critical to advance the understanding of water-cycle dynamics worldwide. Furthermore, the combination of meteorological techniques and high-frequency isotopic water measurements can provide detailed time-resolved information on the eco-physiological performance of plants and enable improved understanding of water fluxes at ecosystem scales. In this work, we present recent development and field deployment of a novel Water Vapor Isotope Measurement System (WVIMS) capable of simultaneous in situ measurements of δ18O and δ2H and water mixing ratio (H2O) with high precision, accuracy and speed (up to 10 Hz measurement rate). The WVIMS consists of an Analyzer (Water Vapor Isotope Analyzer), based on cavity enhanced laser absorption spectroscopy, and a Standard Source (Water Vapor Isotope Standard Source), based on quantitative evaporation of a liquid water standard (with known isotopic content), and operates in a dual-inlet configuration. The WVIMS automatically controls the entire sample and data collection, data analysis and calibration process to allow for continuous, autonomous unattended long-term operation. The WVIMS has been demonstrated for accurate (i.e. fully calibrated) measurements ranging from 500 ppmv (typical of arctic environments) to over 30,000 ppmv (typical of tropical environments) in air. Dual-inlet operation, which involves regular calibration with isotopic water vapor reference standards, essentially eliminates measurement drift, ensures data reliability, and allows operation over an extremely wide ambient temperature range (5-45C). This presentation will include recent measurements recorded using the WVIMS in plant growth chambers and in arctic environments. The availability of this new instrumentation provides new opportunities for detailed continuous

  6. Accurate measurement of the sticking time and sticking probability of Rb atoms on a polydimethylsiloxane coating

    SciTech Connect

    Atutov, S. N. Plekhanov, A. I.

    2015-01-15

    We present the results of a systematic study of Knudsen’s flow of Rb atoms in cylindrical capillary cells coated with a polydimethylsiloxane (PDMS) compound. The purpose of the investigation is to determine the characterization of the coating in terms of the sticking probability and sticking time of Rb on the two types of coating of high and medium viscosities. We report the measurement of the sticking probability of a Rb atom to the coating equal to 4.3 × 10{sup −5}, which corresponds to the number of bounces 2.3 × 10{sup 4} at room temperature. These parameters are the same for the two kinds of PDMS used. We find that at room temperature, the respective sticking times for high-viscosity and medium-viscosity PDMS are 22 ± 3 μs and 49 ± 6 μs. These sticking times are about million times larger than the sticking time derived from the surface Rb atom adsorption energy and temperature of the coating. A tentative explanation of this surprising result is proposed based on the bulk diffusion of the atoms that collide with the surface and penetrate inside the coating. The results can be important in many resonance cell experiments, such as the efficient magnetooptical trapping of rare elements or radioactive isotopes and in experiments on the light-induced drift effect.

  7. Pushing the frontiers of T-cell vaccines: accurate measurement of human T-cell responses

    PubMed Central

    Saade, Fadi; Gorski, Stacey Ann; Petrovsky, Nikolai

    2013-01-01

    There is a need for novel approaches to tackle major vaccine challenges such as malaria, tuberculosis and HIV, among others. Success will require vaccines able to induce a cytotoxic T-cell response – a deficiency of most current vaccine approaches. The successful development of T-cell vaccines faces many hurdles, not least being the lack of consensus on a standardized T-cell assay format able to be used as a correlate of vaccine efficacy. Hence, there remains a need for reproducible measures of T-cell immunity proven in human clinical trials to correlate with vaccine protection. The T-cell equivalent of a neutralizing antibody assay would greatly accelerate the development and commercialization of T-cell vaccines. Recent advances have seen a plethora of new T-cell assays become available, including some like cytometry by time-of-flight with extreme multiparameter T-cell phenotyping capability. However, whether it is historic thymidine-based proliferation assays or sophisticated new cytometry assays, each assay has its relative advantages and disadvantages, and relatively few of these assays have yet to be validated in large-scale human vaccine trials. This review examines the current range of T-cell assays and assesses their suitability for use in human vaccine trials. Should one or more of these assays be accepted as an agreed surrogate of T-cell protection by a regulatory agency, this would significantly accelerate the development of T-cell vaccines. PMID:23252389

  8. The need for preoperative baseline arm measurement to accurately quantify breast cancer-related lymphedema.

    PubMed

    Sun, Fangdi; Skolny, Melissa N; Swaroop, Meyha N; Rawal, Bhupendra; Catalano, Paul J; Brunelle, Cheryl L; Miller, Cynthia L; Taghian, Alphonse G

    2016-06-01

    Breast cancer-related lymphedema (BCRL) is a feared outcome of breast cancer treatment, yet the push for early screening is hampered by a lack of standardized quantification. We sought to determine the necessity of preoperative baseline in accounting for temporal changes of upper extremity volume. 1028 women with unilateral breast cancer were prospectively screened for lymphedema by perometry. Thresholds were defined: relative volume change (RVC) ≥10 % for clinically significant lymphedema and ≥5 % including subclinical lymphedema. The first postoperative measurement (pseudo-baseline) simulated the case of no baseline. McNemar's test and binomial logistic regression models were used to analyze BCRL misdiagnoses. Preoperatively, 28.3 and 2.9 % of patients had arm asymmetry of ≥5 and 10 %, respectively. Without baseline, 41.6 % of patients were underdiagnosed and 40.1 % overdiagnosed at RVC ≥ 5 %, increasing to 50.0 and 54.8 % at RVC ≥ 10 %. Increased pseudo-baseline asymmetry, increased weight change between baselines, hormonal therapy, dominant use of contralateral arm, and not receiving axillary lymph node dissection (ALND) were associated with increased risk of underdiagnosis at RVC ≥ 5 %; not receiving regional lymph node radiation was significant at RVC ≥ 10 %. Increased pseudo-baseline asymmetry, not receiving ALND, and dominant use of ipsilateral arm were associated with overdiagnosis at RVC ≥ 5 %; increased pseudo-baseline asymmetry and not receiving ALND were significant at RVC ≥ 10 %. The use of a postoperative proxy even early after treatment results in poor sensitivity for identifying BCRL. Providers with access to patients before surgery should consider the consequent need for proper baseline, with specific strategy tailored by institution. PMID:27154787

  9. Accurate determination of the thickness or mass per unit area of thin foils and single-crystal wafers for x-ray attenuation measurements

    NASA Astrophysics Data System (ADS)

    Tran, C. Q.; Chantler, C. T.; Barnea, Z.; de Jonge, M. D.

    2004-09-01

    The determination of the local mass per unit area m/A=∫ρdt and the thickness of a specimen is an important aspect of its characterization and is often required for material quality control in fabrication. We discuss common methods which have been used to determine the local thickness of thin specimens. We then propose an x-ray technique which is capable of determining the local thickness and the x-ray absorption profile of a foil or wafer to high accuracy. This technique provides an accurate integration of the column density which is not affected by the presence of voids and internal defects in the material. The technique is best suited to specimens with thickness substantially greater than the dimensions of the surface and void structure. We also show that the attenuation of an x-ray beam by a nonuniform specimen is significantly different from that calculated by using a simple linear average of the mass per unit area and quantify this effect. For much thinner specimens or in the presence of a very structured surface profile we propose a complementary technique capable of attaining high accuracy by the use of a secondary standard. The technique is demonstrated by absolute measurements of the x-ray mass attenuation coefficient of copper and silver.

  10. Accurate determination of the thickness or mass per unit area of thin foils and single-crystal wafers for x-ray attenuation measurements

    SciTech Connect

    Tran, C.Q.; Chantler, C.T.; Barnea, Z.; Jonge, M.D. de

    2004-09-01

    The determination of the local mass per unit area m/A={integral}{rho}dt and the thickness of a specimen is an important aspect of its characterization and is often required for material quality control in fabrication. We discuss common methods which have been used to determine the local thickness of thin specimens. We then propose an x-ray technique which is capable of determining the local thickness and the x-ray absorption profile of a foil or wafer to high accuracy. This technique provides an accurate integration of the column density which is not affected by the presence of voids and internal defects in the material. The technique is best suited to specimens with thickness substantially greater than the dimensions of the surface and void structure. We also show that the attenuation of an x-ray beam by a nonuniform specimen is significantly different from that calculated by using a simple linear average of the mass per unit area and quantify this effect. For much thinner specimens or in the presence of a very structured surface profile we propose a complementary technique capable of attaining high accuracy by the use of a secondary standard. The technique is demonstrated by absolute measurements of the x-ray mass attenuation coefficient of copper and silver.

  11. Patient safety measures in burn care: do National reporting systems accurately reflect quality of burn care?

    PubMed

    Mandell, Samuel P; Robinson, Ellen F; Cooper, Claudette L; Klein, Matthew B; Gibran, Nicole S

    2010-01-01

    UHC CDB provide a potential to benchmark quality of care. However, reporting quality data for trauma and burns requires stringent understanding of injury data collection. Although quality measures are important for improving patient safety and establishing benchmarks for complication and mortality rates, caution must be taken when applying them to specific product lines.

  12. A poloidal field measurement technique: Pitch angle measurements via injected He/sup +/ ions

    SciTech Connect

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He/sup +/ ions injected into the plasma by a perpendicular He/sup 0/ beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b/sub x/ and b/sub y/, respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to /delta/b/sub x/, which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs.

  13. A Two-Sinker Densimeter for Accurate Measurements of the Density of Natural Gases at Standard Conditions

    NASA Astrophysics Data System (ADS)

    Richter, Markus; Kleinrahm, Reiner; Glos, Stefan; Wagner, Wolfgang; Span, Roland; Schley, Peter; Uhrig, Martin

    2010-05-01

    A special reference densimeter has been developed for accurate measurements of densities of natural gases and multicomponent gas mixtures at standard conditions of temperature and pressure ( T s = 273.15 K and p s = 0.101325 MPa). The densimeter covers the range from 0.7 kg · m-3 to 1.3 kg · m-3; the total measurement uncertainty in density is 0.020 % (95 % level of confidence). The measurement principle used is the two-sinker method, which is based on the Archimedes buoyancy principle. The certified calibration laboratory of E.ON Ruhrgas AG, Germany, uses this densimeter to verify the standard densities of certified calibration gases (binary and multicomponent gas mixtures). Moreover, the densimeter is used to determine the compositions of commercially available binary gas mixtures with a small uncertainty of (0.01-0.03) mol%.

  14. Accurate measurement of dispersion data through short and narrow tubes used in very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2015-09-01

    An original method is proposed for the accurate and reproducible measurement of the time-based dispersion properties of short L< 50cm and narrow rc< 50μm tubes at mobile phase flow rates typically used in very high-pressure liquid chromatography (vHPLC). Such tubes are used to minimize sample dispersion in vHPLC; however, their dispersion characteristics cannot be accurately measured at such flow rates due to system dispersion contribution of vHPLC injector and detector. It is shown that using longer and wider tubes (>10μL) enables a reliable measurement of the dispersion data. We confirmed that the dimensionless plot of the reduced dispersion coefficient versus the reduced linear velocity (Peclet number) depends on the aspect ratio, L/rc, of the tube, and unexpectedly also on the diffusion coefficient of the analyte. This dimensionless plot could be easily obtained for a large volume tube, which has the same aspect ratio as that of the short and narrow tube, and for the same diffusion coefficient. The dispersion data for the small volume tube are then directly extrapolated from this plot. For instance, it is found that the maximum volume variances of 75μm×30.5cm and 100μm×30.5cm prototype finger-tightened connecting tubes are 0.10 and 0.30μL(2), respectively, with an accuracy of a few percent and a precision smaller than seven percent.

  15. Evaluation of the sample needed to accurately estimate outcome-based measurements of dairy welfare on farm.

    PubMed

    Endres, M I; Lobeck-Luchterhand, K M; Espejo, L A; Tucker, C B

    2014-01-01

    Dairy welfare assessment programs are becoming more common on US farms. Outcome-based measurements, such as locomotion, hock lesion, hygiene, and body condition scores (BCS), are included in these assessments. The objective of the current study was to investigate the proportion of cows in the pen or subsamples of pens on a farm needed to provide an accurate estimate of the previously mentioned measurements. In experiment 1, we evaluated cows in 52 high pens (50 farms) for lameness using a 1- to 5-scale locomotion scoring system (1 = normal and 5 = severely lame; 24.4 and 6% of animals were scored ≥ 3 or ≥ 4, respectively). Cows were also given a BCS using a 1- to 5-scale, where 1 = emaciated and 5 = obese; cows were rarely thin (BCS ≤ 2; 0.10% of cows) or fat (BCS ≥ 4; 0.11% of cows). Hygiene scores were assessed on a 1- to 5-scale with 1 = clean and 5 = severely dirty; 54.9% of cows had a hygiene score ≥ 3. Hock injuries were classified as 1 = no lesion, 2 = mild lesion, and 3 = severe lesion; 10.6% of cows had a score of 3. Subsets of data were created with 10 replicates of random sampling that represented 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10, 5, and 3% of the cows measured/pen. In experiment 2, we scored the same outcome measures on all cows in lactating pens from 12 farms and evaluated using pen subsamples: high; high and fresh; high, fresh, and hospital; and high, low, and hospital. For both experiments, the association between the estimates derived from all subsamples and entire pen (experiment 1) or herd (experiment 2) prevalence was evaluated using linear regression. To be considered a good estimate, 3 criteria must be met: R(2)>0.9, slope = 1, and intercept = 0. In experiment 1, on average, recording 15% of the pen represented the percentage of clinically lame cows (score ≥ 3), whereas 30% needed to be measured to estimate severe lameness (score ≥ 4). Only 15% of the pen was needed to estimate the percentage of the herd with a hygiene

  16. Technique for Obtaining Vertical Profiles of Backscattering and Extinction Cross Sections Using Slant Path Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Herman, B. M.

    1973-01-01

    A method is presented for solving for vertical profiles of atmospheric particulate extinction and backscattering cross-sections utilizing monostatic lidar slant path measurements. The method is an extension of work by Fernald. It is shown that the number of assumptions necessary for an iterative solution of extinction and backscattering cross sections can be reduced if lidar slant path measurements are used to solve directly for optical depths. The technique is useful only if sufficiently accurate lidar measurements are available. With highly accurate measurements it is also possible to solve directly for extinction cross sections without an iterative solution of a transcendental equation if the proper reduction scheme is used. The required accuracy is discussed and results showing the effect of errors are presented.

  17. Tone-burst technique measures high-intensity sound absorption

    NASA Technical Reports Server (NTRS)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  18. Measuring Speed Using a Computer--Several Techniques.

    ERIC Educational Resources Information Center

    Pearce, Jon M.

    1988-01-01

    Introduces three different techniques to facilitate the measurement of speed and the associated kinematics and dynamics using a computer. Discusses sensing techniques using optical or ultrasonic sensors, interfacing with a computer, software routines for the interfaces, and other applications. Provides circuit diagrams, pictures, and a program to…

  19. Non-Contact Electrical Conductivity Measurement Technique for Molten Metals

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    A non-contact technique of measuring the electrical conductivity (or resistivity) of conducting liquids while they are levitated by the high temperature electrostatic levitator in a high vacuum is reported.

  20. Accurate kinematic measurement at interfaces between dissimilar materials using conforming finite-element-based digital image correlation

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Moussawi, Ali; Lubineau, Gilles; Pan, Bing

    2016-06-01

    Digital image correlation (DIC) is now an extensively applied full-field measurement technique with subpixel accuracy. A systematic drawback of this technique, however, is the smoothening of the kinematic field (e.g., displacement and strains) across interfaces between dissimilar materials, where the deformation gradient is known to be large. This can become an issue when a high level of accuracy is needed, for example, in the interfacial region of composites or joints. In this work, we described the application of global conforming finite-element-based DIC technique to obtain precise kinematic fields at interfaces between dissimilar materials. Speckle images from both numerical and actual experiments processed by the described global DIC technique better captured sharp strain gradient at the interface than local subset-based DIC.

  1. Accurate Measurements of Refractive Indices for Dielectrics in an Undergraduate Optics Laboratory for Science and Engineering Students

    ERIC Educational Resources Information Center

    Hsu, Wei-Tai; Bahrim, Cristian

    2009-01-01

    Based on our novel method recently published in the "Am. J. Phys." 77 337-43 (2009) for finding precise values of the indices of refraction for dielectrics from measurements of the polarized light reflected by the surface, in this paper we propose an improved technique for finding Brewster angles with a better precision, of 0.001 degrees, using…

  2. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles

    PubMed Central

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-01-01

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases. PMID:25744850

  3. Optimization of the tungsten oxide technique for measurement of atmospheric ammonia

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.

    1987-01-01

    Hollow tubes coated with tungstic acid have been shown to be of value in the determination of ammonia and nitric acid in ambient air. Practical application of this technique was demonstrated utilizing an automated sampling system for in-flight collection and analysis of atmospheric samples. Due to time constraints these previous measurements were performed on tubes that had not been well characterized in the laboratory. As a result the experimental precision could not be accurately estimated. Since the technique was being compared to other techniques for measuring these compounds, it became necessary to perform laboratory tests which would establish the reliability of the technique. This report is a summary of these laboratory experiments as they are applied to the determination of ambient ammonia concentration.

  4. Measuring elastic constants using non-contact ultrasonic techniques

    NASA Astrophysics Data System (ADS)

    Edwards, R. S.; Perry, R.; Cleanthous, D.; Backhouse, D. J.; Moore, I. J.; Clough, A. R.; Stone, D. I.

    2012-05-01

    The use of ultrasound for measuring elastic constants and phase transitions is well established. Standard measurements use piezoelectric transducers requiring couplant and contact with the sample. Recently, non-destructive testing (NDT) has seen an increase in the use of non-contact ultrasonic techniques, for example electromagnetic acoustic transducers (EMATs) and laser ultrasound, due to their many benefits. For measurements of single crystals over a range of temperatures non-contact techniques could also bring many benefits. These techniques do not require couplant, and hence do not suffer from breaking of the bond between transducer and sample during thermal cycling, and will potentially lead to a simpler and more adaptable measurement system with lower risk of sample damage. We present recent work adapting EMAT advances from NDT to measurements of single crystals at cryogenic temperatures and illustrate this with measurements of magnetic phase transitions in Gd64Sc36 using both contact and non-contact transducers. We discuss the measurement techniques implemented to overcome noise problems, and a digital pulse-echo-overlap technique, using data analysis in the frequency domain to measure the velocity.

  5. Optical Fiber Technique for In-Reactor Mechanical Properties Measurement

    SciTech Connect

    Robert S. Schley; Zilong Hua; David H. Hurley; Heng Ban

    2012-07-01

    In-reactor measurement of material properties is required for a better understanding of radiation effects on materials. We present an optical fiber based technique for measuring changes in elastic properties which involves exciting and measuring flexural vibrations in a thin cantilever beam. By exciting the beam and measuring the natural frequency, changes in the modulus of elasticity can be monitored. The technique is demonstrated by monitoring the elastic property changes of a beam fabricated from copper, as the copper undergoes recrystallization at elevated temperature.

  6. Novel phase measurement technique of the heterodyne laser interferometer

    SciTech Connect

    Choi, Hyunseung; Park, Kyihwan; La, Jongpil

    2005-09-15

    This article describes a novel phase measurement technique to increase the measurement velocity compared to the previous arc-tangent method in the heterodyne laser interferometer. The proposed method can reduce the calculation load because the pulse width modulation signal has a linear relation between the phase difference, while the nonlinear function such as arc tangent is required to demodulate the sinusoidal interferent signal. The brief analysis and measurement scheme of the system, and the experimental result using a Zeeman-stabilized He-Ne laser are presented. They demonstrate that the proposed phase measurement technique is proven to be three times faster and more robust than previous arc-tangent method.

  7. Optical fiber technique for in-reactor mechanical properties measurement

    SciTech Connect

    Schley, R. S.; Hurley, D. H.; Hua, Z. A.

    2013-01-25

    In-reactor measurement of material properties is required for a better understanding of radiation effects on materials. We present an optical fiber based technique for measuring changes in elastic properties which involves exciting and measuring flexural vibrations in a thin cantilever beam. By exciting the beam and measuring the resonant frequency, changes in the modulus of elasticity can be monitored. The technique is demonstrated by monitoring the elastic property changes of a beam fabricated from copper, as the copper undergoes recrystallization at elevated temperature.

  8. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies.

    PubMed

    Wong, William W; Clarke, Lucinda L

    2012-11-01

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to hydrogen gas (H(2)) for mass spectrometric analysis are labor intensive, require special reagent, and involve memory effect and potential isotope fractionation. The objective of this study was to determine the accuracy and precision of a platinum catalyzed H(2)-water equilibration method for stable hydrogen isotope ratio measurements. Time to reach isotopic equilibrium, day-to-day and week-to-week reproducibility, accuracy, and precision of stable hydrogen isotope ratio measurements by the H(2)-water equilibration method were assessed using a Thermo DELTA V Advantage continuous-flow isotope ratio mass spectrometer. It took 3 h to reach isotopic equilibrium. The day-to-day and week-to-week measurements on water and urine samples with natural abundance and enriched levels of deuterium were highly reproducible. The method was accurate to within 2.8 (o)/oo and reproducible to within 4.0 (o)/oo based on analysis of international references. All the outcome variables, whether in urine samples collected in 10 doubly labeled water studies or plasma samples collected in 26 body water studies, did not differ from those obtained using the reference zinc reduction method. The method produced highly accurate estimation on ad libitum energy intakes, body composition, and water turnover rates. The method greatly reduces the analytical cost and could easily be adopted by laboratories equipped with a continuous-flow isotope ratio mass spectrometer.

  9. A Hydrogen Gas-Water Equilibration Method Produces Accurate and Precise Stable Hydrogen Isotope Ratio Measurements in Nutrition Studies12

    PubMed Central

    Wong, William W.; Clarke, Lucinda L.

    2012-01-01

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to hydrogen gas (H2) for mass spectrometric analysis are labor intensive, require special reagent, and involve memory effect and potential isotope fractionation. The objective of this study was to determine the accuracy and precision of a platinum catalyzed H2-water equilibration method for stable hydrogen isotope ratio measurements. Time to reach isotopic equilibrium, day-to-day and week-to-week reproducibility, accuracy, and precision of stable hydrogen isotope ratio measurements by the H2-water equilibration method were assessed using a Thermo DELTA V Advantage continuous-flow isotope ratio mass spectrometer. It took 3 h to reach isotopic equilibrium. The day-to-day and week-to-week measurements on water and urine samples with natural abundance and enriched levels of deuterium were highly reproducible. The method was accurate to within 2.8 o/oo and reproducible to within 4.0 o/oo based on analysis of international references. All the outcome variables, whether in urine samples collected in 10 doubly labeled water studies or plasma samples collected in 26 body water studies, did not differ from those obtained using the reference zinc reduction method. The method produced highly accurate estimation on ad libitum energy intakes, body composition, and water turnover rates. The method greatly reduces the analytical cost and could easily be adopted by laboratories equipped with a continuous-flow isotope ratio mass spectrometer. PMID:23014490

  10. Techniques for measuring radiation induced effects of acousto optic devices

    SciTech Connect

    Taylor, E.W.

    1995-08-01

    Innovative measurement techniques for determining radiation induced changes in acousto optic devices are briefly discussed. Measurements of acousto optic operational parameters such as signal transmission efficiency, diffraction efficiency, spatial intensity and bandwidth responses during electron irradiations are described. During exposure to pulsed electrons, only transient perturbations to the acousto optic operational parameters were experienced. Examples of new measurement procedures and typical data resulting from the measurements are presented.

  11. Transmittance ratio constrained retrieval technique for lidar cirrus measurements.

    PubMed

    Su, Jia; McCormick, M Patrick; Liu, Zhaoyan; Lee, Robert B; Leavor, Kevin R; Lei, Liqiao

    2012-05-01

    This letter describes a lidar retrieval technique that uses the transmittance ratio as a constraint to determine an average lidar ratio as well as extinction and backscatter coefficients of transparent cirrus clouds. The cloud transmittance ratio is directly obtained from two adjacent elastic lidar backscatter signals. The technique can be applied to cirrus measurements where neither the molecular scattering dominant signals above and below the cloud layer are found nor cloudfree reference profiles are available. The technique has been tested with simulated lidar signals and applied to backscatter lidar measurements at Hampton University, Hampton, Virginia.

  12. New radiosonde techniques to measure radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Levrat, Gilbert

    2013-04-01

    Solar and thermal radiation fluxes are usually measured at Earth's surface and at the top of the atmosphere. Here we show radiosonde techniques that allow measuring radiation flux profiles and the radiation budget from the Earth's surface to above 30 km in the stratosphere. During two-hour flights solar shortwave and thermal longwave irradiance, downward and upward, is measured with four individual sensors at one-second resolution, along with standard PTU radiosonde profiles. Daytime and nighttime shortwave and longwave radiation measurements, and 24 hours surface measurements, allow determining radiation budget- and total net radiation profiles through the atmosphere. We use a double balloon technique to prevent pendulum motion during the ascent and to keep the sonde as horizontal as possible. New techniques using auto controlled airplanes are now investigated to retrieve the sonde after release at a certain altitude and to land it if possible at the launch station.

  13. Error reduction techniques for measuring long synchrotron mirrors

    SciTech Connect

    Irick, S.

    1998-07-01

    Many instruments and techniques are used for measuring long mirror surfaces. A Fizeau interferometer may be used to measure mirrors much longer than the interferometer aperture size by using grazing incidence at the mirror surface and analyzing the light reflected from a flat end mirror. Advantages of this technique are data acquisition speed and use of a common instrument. Disadvantages are reduced sampling interval, uncertainty of tangential position, and sagittal/tangential aspect ratio other than unity. Also, deep aspheric surfaces cannot be measured on a Fizeau interferometer without a specially made fringe nulling holographic plate. Other scanning instruments have been developed for measuring height, slope, or curvature profiles of the surface, but lack accuracy for very long scans required for X-ray synchrotron mirrors. The Long Trace Profiler (LTP) was developed specifically for long x-ray mirror measurement, and still outperforms other instruments, especially for aspheres. Thus, this paper focuses on error reduction techniques for the LTP.

  14. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    NASA Astrophysics Data System (ADS)

    Öz, E.; Batsch, F.; Muggli, P.

    2016-09-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.

  15. A confirmatory measurement technique for HEU (highly enriched uranium)

    SciTech Connect

    Sprinkle, J.K. Jr.; Goldman, A.; Russo, P.A.; Stovall, L.; Brumfield, T.L.; Gunn, C.S.; Watson, D.R.; Beedgen, R.

    1987-01-01

    Precise measurements of the special nuclear material (SNM) in an item can be used to confirm that the item has not been tampered with. These measurements do not require a highly accurate calibration, but they should be based on an attribute that is unique to the SNM. We describe an instrument that performs gamma-ray measurements at three energies: 185.7 keV, 1001 keV, and 2614 keV. This instrument collects data for 200 s from shipping containers (208-l barrels). These measurements help to distinguish the issue of material control - Has any material been diverted. - from the issue of measurement control - Is there a measurement bias.

  16. Application of the energy reassignment method to measure accurate Rayleigh and Love wave group velocities from ambient seismic noise cross-correlations

    NASA Astrophysics Data System (ADS)

    Witek, M.; Kang, T. S.; van der Lee, S.

    2015-12-01

    We have collected three-component data from 122 Korean accelerometer stations for the month of December in 2014. We apply similar techniques described by Zha et al. (2013) to retrieve accurate station orientation angles, in order to rotate the horizontal component data into the radial and transverse frame of reference, and for subsequent measurement of Love wave group velocity dispersion. We simultaneously normalize all three components of a daily noise record via the frequency-time normalization (FTN) method. Each component is divided by the average signal envelope in an effort to retain relative amplitude information between all three components. Station orientations are found by a grid search for the orientation azimuth which maximizes the coherency between the radial-vertical cross-correlation and the Hilbert transformed vertical-vertical cross-correlation. After measuring orientation angles, we cross-correlate and rotate the data. Typically, the group velocity dispersion curves are measured using the frequency time analysis technique (FTAN), effectively producing spectrograms with significant uncertainty in the time-frequency plane. The spectrogram approach retains only the amplitude information of the short-time Fourier transform (STFT). However, Kodera et al (1976) show that by taking into account the phase information, the concepts of instantaneous frequency and group-time delay can be used to compute the first moment of the signal power in the frequency and time domains. During energy reassignment, the signal power calculated using the STFT at a point (t0,f0t_0, f_0) is reassigned to the location of the first moment (t^g,f^ihat{t}_g,hat{f}_i), where t^ghat{t}_g is the group-time delay and f^ihat{f}_i is the instantaneous frequency. We apply the method of energy reassignment to produce precise Rayleigh and Love wave group velocity measurements in the frequency range 0.1 - 1.0 Hz. Tests on synthetic data show more accurate retrieval of group velocities at

  17. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  18. An ultrasonic technique for measuring stress in fasteners

    NASA Astrophysics Data System (ADS)

    Stevens, K. J.; Day, P.; Byron, D.

    1999-12-01

    High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring the stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.

  19. Specular surface measurement by using least squares light tracking technique

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Feng, Peng; Tao, Tao

    2010-02-01

    This paper presents a novel technique for measuring the three-dimensional (3-D) shapes of specular surfaces. In this technique, an LCD monitor plane is used as the diffusive light source. It can be vertically moved to two or more different positions. At each position, sinusoid fringe patterns are displayed on the LCD plane and reflected by the measured specular surface. The distorted fringe patterns are captured with a camera, so that the phase distributions at these positions are measured. From the phases, the locus of the incident ray for each pixel is determined in the least squares sense, and further the three-dimensional shape of the specular surface is reconstructed. In so doing, the restrictions and limitations of the existing techniques in computational complexities, phase ambiguities, and error accumulations are eliminated. The validity of this technique has been demonstrated by experimental results.

  20. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode

    PubMed Central

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    ABSTRACT Objectives To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. Materials and Methods We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recent pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered an inaccurate result. Results A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Conclusions Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH. PMID:27286119

  1. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    1999-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  2. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    2000-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  3. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).

    PubMed

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ∼10%. The dual-frequency TDTR approach is useful for future studies of thin films. PMID:27475589

  4. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).

    PubMed

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ∼10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  5. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR)

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ˜10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  6. An efficient and accurate technique to compute the absorption, emission, and transmission of radiation by the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.

    1990-01-01

    CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.

  7. Appraisal of Artificial Screening Techniques of Tomato to Accurately Reflect Field Performance of the Late Blight Resistance

    PubMed Central

    Nowakowska, Marzena; Nowicki, Marcin; Kłosińska, Urszula; Maciorowski, Robert; Kozik, Elżbieta U.

    2014-01-01

    Late blight (LB) caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant). In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with thefield experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultigen tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato. PMID:25279467

  8. Can endocranial volume be estimated accurately from external skull measurements in great-tailed grackles (Quiscalus mexicanus)?

    PubMed Central

    Palmstrom, Christin R.

    2015-01-01

    There is an increasing need to validate and collect data approximating brain size on individuals in the field to understand what evolutionary factors drive brain size variation within and across species. We investigated whether we could accurately estimate endocranial volume (a proxy for brain size), as measured by computerized tomography (CT) scans, using external skull measurements and/or by filling skulls with beads and pouring them out into a graduated cylinder for male and female great-tailed grackles. We found that while females had higher correlations than males, estimations of endocranial volume from external skull measurements or beads did not tightly correlate with CT volumes. We found no accuracy in the ability of external skull measures to predict CT volumes because the prediction intervals for most data points overlapped extensively. We conclude that we are unable to detect individual differences in endocranial volume using external skull measurements. These results emphasize the importance of validating and explicitly quantifying the predictive accuracy of brain size proxies for each species and each sex. PMID:26082858

  9. Measurement of water depth by multispectral ratio techniques

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.

    1970-01-01

    The technique for measuring the depth of water using a multispectral scanner is discussed. The procedure takes advantage of the absorption properties of different wavelengths of light. Making use of the property of the selected transmission of light at different wavelengths, an equation was developed relating the outputs of at least two channels of multispectral scanner to measure water depth.

  10. Blower-door techniques for measuring interzonal leakage

    SciTech Connect

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  11. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  12. First fusion proton measurements in TEXTOR plasmas using activation technique

    SciTech Connect

    Bonheure, G.; Wassenhove, G. Van; Mlynar, J.; Hult, M.; Gonzalez de Orduna, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-15

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R and D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -{approx}6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  13. A simple technique for measuring buoyant weight increment of entire, transplanted coral colonies in the field

    PubMed Central

    Herler, Jürgen; Dirnwöber, Markus

    2011-01-01

    Estimating the impacts of global and local threats on coral reefs requires monitoring reef health and measuring coral growth and calcification rates at different time scales. This has traditionally been mostly performed in short-term experimental studies in which coral fragments were grown in the laboratory or in the field but measured ex situ. Practical techniques in which growth and measurements are performed over the long term in situ are rare. Apart from photographic approaches, weight increment measurements have also been applied. Past buoyant weight measurements under water involved a complicated and little-used apparatus. We introduce a new method that combines previous field and laboratory techniques to measure the buoyant weight of entire, transplanted corals under water. This method uses an electronic balance fitted into an acrylic glass underwater housing and placed atop of an acrylic glass cube. Within this cube, corals transplanted onto artificial bases can be attached to the balance and weighed at predetermined intervals while they continue growth in the field. We also provide a set of simple equations for the volume and weight determinations required to calculate net growth rates. The new technique is highly accurate: low error of weight determinations due to variation of coral density (< 0.08%) and low standard error (< 0.01%) for repeated measurements of the same corals. We outline a transplantation technique for properly preparing corals for such long-term in situ experiments and measurements. PMID:22049248

  14. Model Deformation Measurement Technique NASA Langley HSR Experiences

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Wahls, R. A.; Owens, L. R.; Goad, W. K.

    1999-01-01

    Model deformation measurement techniques have been investigated and developed at NASA's Langley Research Center. The current technique is based upon a single video camera photogrammetric determination of two dimensional coordinates of wing targets with a fixed (and known) third dimensional coordinate, namely the spanwise location. Variations of this technique have been used to measure wing twist and bending at a few selected spanwise locations near the wing tip on HSR models at the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel. Automated measurements have been made at both the Transonic Dynamics Tunnel and at Unitary Plan Wind Tunnel during the past year. Automated measurements were made for the first time at the NTF during the recently completed HSR Reference H Test 78 in early 1996. A major problem in automation for the NTF has been the need for high contrast targets which do not exceed the stringent surface finish requirements. The advantages and limitations (including targeting) of the technique as well as the rationale for selection of this particular technique are discussed. Wing twist examples from the HSR Reference H model are presented to illustrate the run-to-run and test-to-test repeatability of the technique in air mode at the NTF. Examples of wing twist in cryogenic nitrogen mode at the NTF are also presented.

  15. Review of past and present techniques of measuring corneal topography.

    PubMed

    Fowler, C W; Dave, T N

    1994-01-01

    Various methods of measuring corneal topography are described. The advantages and disadvantages of the principles used in the measurement of corneal shape by the various techniques are discussed. The corneal surface may be described in a number of ways; some researchers have used conic sections while others have used more complex polynomial expressions. Computer algorithms have also been developed to calculate quantitative measures of corneal topography to augment the information obtained from topographical maps. These descriptors are discussed in this article.

  16. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  17. Application of impedance measurement techniques to accelerating cavity mode characterization

    NASA Astrophysics Data System (ADS)

    Hanna, S. M.; Stefan, P. M.

    1993-11-01

    Impedance measurements, using a central wire to simulate the electron beam, were performed on a 52 MHz accelerating cavity at the National Synchrotron Light Source (NSLS). This cavity was recently installed in the X-ray storage ring at the NSLS as a part of an upgrade of the ring. To damp higher-order modes (HOM) in this cavity, damping antennas have been installed. We implemented the impedance measurement technique to characterize the cavity modes up to 1 GHz and confirm the effectiveness of the damping antennas. Scattering parameters were measured using a network analyzer (HP 8510B) with a personal computer as a controller. Analysis based on S and T parameters for the system was used to solve for the cavity impedance, Z( ω), as a function of the measured transmission response, S21( ω). Search techniques were used to find the shunt resistance Rsh, and Q from the calculated Z( ω) for different modes. Our results for {R}/{Q} showed good agreement with URMEL simulations. The values of Q were compared with other independent Q measurement techniques. Our analytical technique offers an alternative approach for cases where full thru-reflection-line (TRL) calibration is not feasible and a more time-effective technique for obtaining {R}/{Q}, compared with the bead-pull method.

  18. Ultrasonic Measurement of Change in Elasticity due to Endothelium Dependent Relaxation Response by Accurate Detection of Artery-Wall Boundary

    NASA Astrophysics Data System (ADS)

    Kaneko, Takuya; Hasegawa, Hideyuki; Kanai, Hiroshi

    2007-07-01

    Ross hypothesized that an endothelial dysfunction is considered to be an initial step in atherosclerosis. Endothelial cells, which release nitric oxide (NO) in response to shear stress from blood flow, have a function of relaxing smooth muscle in the media of the arterial wall. For the assessment of the endothelial function, there is a conventional method in which the change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) is measured with ultrasound. However, despite the fact that the collagen-rich hard adventitia does not respond to NO, the conventional method measures the change in diameter depending on the mechanical property of the entire wall including the adventitia. Therefore, we developed a method of measuring the change in the thickness and the elasticity of the brachial artery during a cardiac cycle using the phased tracking method for the evaluation of the mechanical property of only the intima-media region. In this study, the initial positions of echoes from the lumen-intima and media-adventitia boundaries are determined using complex template matching to accurately estimate the minute change in the thickness and the elasticity of the brachial and radial arteries. The ambiguity in the determination of such boundaries was eliminated using complex template matching, and the change in elasticity measured by the proposed method was larger than the change in inner diameter obtained by the conventional method.

  19. Displacement measurements in structural elements by optical techniques

    NASA Astrophysics Data System (ADS)

    González-Peña, Rolando; Cibrián-Ortiz de Anda, Rosa María.; Pino-Velazquez, Angel J.; Soler-de la Cruz, José; González-Jorge, Yhoama

    2000-08-01

    Speckle metrology and holographic interferometry (HI) have been used in several civil engineering applications. We present the results obtained by applying speckle photography (SP) to the study of two quadratic shearwalls with different boundary conditions, and the potential of the technique in the study of this kind of structures is described. The analysis of Young's fringes obtained with this technique at certain points on each shearwall provides the whole field of displacement measurements. HI has been used to measure the three components of absolute displacement, verifying that the bulging phenomenon does not affect the in-plane components when the applied load remains on the same plane as the shearwall. A qualitative analysis is carried out following an electronic speckle pattern interferometry (ESPI) technique. The results obtained by optical techniques are compared to the numerical results obtained by the finite element method (FEM), finding good correlation between them in all the cases.

  20. Thermal properties measurements in biodiesel oils using photothermal techniques

    NASA Astrophysics Data System (ADS)

    Castro, M. P. P.; Andrade, A. A.; Franco, R. W. A.; Miranda, P. C. M. L.; Sthel, M.; Vargas, H.; Constantino, R.; Baesso, M. L.

    2005-08-01

    In this Letter, thermal lens and open cell photoacoustic techniques are used to measure the thermal properties of biodiesel oils. The absolute values of the thermal effusivity, thermal diffusivity, thermal conductivity and the temperature coefficient of the refractive index were determined for samples obtained from soy, castor bean, sunflower and turnip. The results suggest that the employed techniques may be useful as complementary methods for biodiesel certification.

  1. Effects of equipment and technique on peak flow measurements

    PubMed Central

    Bongers, Thomas; O'Driscoll, B Ronan

    2006-01-01

    Background Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF) results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients. Methods We studied 36 subjects (PEF range 80–570 l/min). All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique) or a forced maximal expiration to residual volume (FVC technique). Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer. Results The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p < 0.0001). The mean PEF recorded with the turbine spirometer was 5.5% lower than the Wright meter reading. The Fleisch spirometer result was 19.5% lower than the Wright reading. However, adjustment of the Wrights measurements from the traditional Wright's scale to the new EU Peak Flow scale produced results that were only 7.2% higher than the Fleisch pneumotachograph measurements. Conclusion Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments. PMID:16787543

  2. Mississippi River streamflow measurement techniques at St. Louis, Missouri

    USGS Publications Warehouse

    Wastson, Chester C.; Holmes, Jr., Robert R.; Biedenham, David S.

    2013-01-01

    Streamflow measurement techniques of the Mississippi River at St. Louis have changed through time (1866–present). In addition to different methods used for discrete streamflow measurements, the density and range of discrete measurements used to define the rating curve (stage versus streamflow) have also changed. Several authors have utilized published water surface elevation (stage) and streamflow data to assess changes in the rating curve, which may be attributed to be caused by flood control and/or navigation structures. The purpose of this paper is to provide a thorough review of the available flow measurement data and techniques and to assess how a strict awareness of the limitations of the data may affect previous analyses. It is concluded that the pre-1930s discrete streamflow measurement data are not of sufficient accuracy to be compared with modern streamflow values in establishing long-term trends of river behavior.

  3. Optical measurement techniques for high Reynolds number train investigations

    NASA Astrophysics Data System (ADS)

    Loose, S.; Richard, H.; Bosbach, J.; Thimm, M.; Becker, W.; Raffel, M.

    2006-04-01

    This article reports on experimental aerodynamic investigations on a generic high-speed train configuration performed within two different wind tunnels. Both wind tunnels are specialized facilities for high Reynolds number investigations and offer low turbulence levels. The wind tunnels are the cryogenic wind tunnel located in Cologne (KKK) and in the high-pressure wind tunnel located in Göttingen (HDG). Both facilities are part of the German Dutch wind tunnel association (DNW). The adaptation and application of three optical measurement techniques for such high Reynolds number investigations is described in the article. The optical methods are: Particle Image Velocimetry for the measurement of velocity fields, Background Oriented Schlieren technique for density gradient measurements, and a white light Digital Speckle Photography technique for model deformation monitoring.

  4. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions.

    PubMed

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-08-07

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10(-3) g/cm(3) (1%).

  5. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    PubMed Central

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%). PMID:26262619

  6. Intercomparison of Nitrous Acid (HONO) Measurement Techniques during SHARP

    NASA Astrophysics Data System (ADS)

    Pinto, J. P.; Meng, Q.; Dibb, J. E.; Lefer, B. L.; Rappenglueck, B.; Ren, X.; Stutz, J.; Zhang, R.

    2010-12-01

    HONO is regarded as a potentially important radical precursor in a number of diverse environments ranging from polar to semi-tropical. As part of the SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by five different measurement techniques. Techniques used were long path differential optical absorption spectroscopy (DOAS), long-path absorption photometry (LoPAP), mist chamber (MC), quantum cascade laser and ionization detection-chemical ionization mass spectrometry. Various combinations of techniques were in operation during the whole period from 15 April through 31 May 2009 with a common measurement period extending from 16 to 28 May. All instruments recorded a similar diurnal pattern of HONO concentrations with higher mean values from the in-situ techniques than either the low- or mid-path DOAS. The largest differences among techniques were found during the afternoon with measurements from the in-situ techniques higher than either the low- or mid-path DOAS. Principal components analysis using measurements of trace species was used to identify possible sources of interference in the chemical measurements. Two major components were identified: one associated with primary, mainly traffic related pollutants and the other with photochemical species. The afternoon differences between DOAS and MC and the U Miami LoPAP were found to be most strongly associated with the photochemical component. The results for comparison between DOAS and MC are in accord with those found previously during August-September 2006. All instruments showed some association between measurement differences and the primary component. Further details and associations with air coming from different areas of the Houston airshed will also be presented.

  7. Scale-model charge-transfer technique for measuring enhancement factors

    NASA Technical Reports Server (NTRS)

    Kositsky, J.; Nanevicz, J. E.

    1991-01-01

    Determination of aircraft electric field enhancement factors is crucial when using airborne field mill (ABFM) systems to accurately measure electric fields aloft. SRI used the scale model charge transfer technique to determine enhancement factors of several canonical shapes and a scale model Learjet 36A. The measured values for the canonical shapes agreed with known analytic solutions within about 6 percent. The laboratory determined enhancement factors for the aircraft were compared with those derived from in-flight data gathered by a Learjet 36A outfitted with eight field mills. The values agreed to within experimental error (approx. 15 percent).

  8. Unstable multipulsing can be invisible to some ultrashort pulse measurement techniques

    NASA Astrophysics Data System (ADS)

    Rhodes, Michelle; Guang, Zhe; Trebino, Rick

    2016-03-01

    Multiple pulsing is a feature of most mode-locked ultrafast laser systems at very high pump powers, and slight variations in the pump power around certain regimes can cause sinusoidally-varying or even chaotic separations among pulses. The impact of this type of unstable multipulsing on modern pulse measurement methods has not been studied. We have performed calculations and simulations and find that allowing only the relative phase of a satellite pulse to vary causes the satellite to wash out of the SPIDER measurement completely. Although techniques like FROG and autocorrelation cannot accurately determine the precise properties of satellite pulses, they do succeed in seeing them.

  9. Technique of torsion measurement of the lower extremity using computed tomography.

    PubMed

    Widjaja, P M; Ermers, J W; Sijbrandij, S; Damsma, H; Klinkhamer, A C

    1985-01-01

    Axial CT is the most accurate and convenient technique for the measurement of lower limb torsion; its accuracy is equal to that of cadaveric skeletal measurement. Both extremities are examined simultaneously, and the comparison of the right and the left leg provides the most important value. The torsion angulation is obtained directly by superimposing the magnified image of each scan on the other. Patient positioning is comfortable and a relatively short examination time is required. It does not require special equipment or skill on the part of the examiner. The radiation dose appears to be lower than that of the conventional radiographic method.

  10. Two-compartment, two-sample technique for accurate estimation of effective renal plasma flow: Theoretical development and comparison with other methods

    SciTech Connect

    Lear, J.L.; Feyerabend, A.; Gregory, C.

    1989-08-01

    Discordance between effective renal plasma flow (ERPF) measurements from radionuclide techniques that use single versus multiple plasma samples was investigated. In particular, the authors determined whether effects of variations in distribution volume (Vd) of iodine-131 iodohippurate on measurement of ERPF could be ignored, an assumption implicit in the single-sample technique. The influence of Vd on ERPF was found to be significant, a factor indicating an important and previously unappreciated source of error in the single-sample technique. Therefore, a new two-compartment, two-plasma-sample technique was developed on the basis of the observations that while variations in Vd occur from patient to patient, the relationship between intravascular and extravascular components of Vd and the rate of iodohippurate exchange between the components are stable throughout a wide range of physiologic and pathologic conditions. The new technique was applied in a series of 30 studies in 19 patients. Results were compared with those achieved with the reference, single-sample, and slope-intercept techniques. The new two-compartment, two-sample technique yielded estimates of ERPF that more closely agreed with the reference multiple-sample method than either the single-sample or slope-intercept techniques.

  11. Chromaticity measurement using a continuous head-tail kicking technique

    SciTech Connect

    Tan, C.Y.; Ranjbar, V.H.; /Tech-X, Boulder

    2007-06-01

    In the classical head-tail chromaticity measurement technique, a single large kick is applied transversely to the beam. The resulting phase difference between the head and the tail is measured and the chromaticity extracted. In the continuous head-tail kicking technique, a very small transverse kick is applied to the beam and the asymptotic phase difference between the head and the tail is found to be a function of chromaticity. The advantage of this method is that since the tune tracker PLL already supplies the small transverse kicks, no extra modulation is required.

  12. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  13. GRI-sponsored research tests gas measurement techniques

    SciTech Connect

    Kothari, K.M.; Gregor, J.G. )

    1991-09-01

    This paper reports on the Gas Research Institute (GRI) which is managing a comprehensive research and development (R and D) program in gas flow measurement to improve gas metering accuracy and to reduce operation and maintenance costs. A portion of the program is centered on construction of a Metering Research Facility (MRF) and collecting experimental data over a range of Reynolds numbers to determine the effects of upstream flow conditions on orifice and turbine meters. In addition, GRI is sponsoring the development of new concepts for energy content and energy rate measurement: a low-cost, low-power electronic flow measurement device and accurate gas mixtures for use with gas chromatographs and calorimeters.

  14. Problems in vibration measurement by laser techniques through combusting flows

    NASA Astrophysics Data System (ADS)

    Paone, Nicola; Revel, Gian M.

    1996-08-01

    A study of the metrologic problems connected to performing laser vibrometer measurements through combusting flows has been presented in this paper, in order to test the real applicability of laser vibrometer techniques to carry out measurements on full-scale burners. A model of the instrument is developed to describe main effects on the measurement system due to time varying refractive index within the flame; measurement uncertainty sources are discussed. Variations in the optical path length of the measuring arm of the interferometer due to changes in the laser beam wavelength and propagation direction caused by refractive index gradients seem to be the most influent effects and they are modulated at the natural flickering frequency of the flame. Experimental results from measurements performed by a single-point laser vibrometer through an unconfined CH4 flame from a Bunsen burner are in agreement with the model and provide an explanation of the phenomena which affect uncertainty in these particular measurements.

  15. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    SciTech Connect

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F.; Murányi, F.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  16. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators.

    PubMed

    Gyüre, B; Márkus, B G; Bernáth, B; Murányi, F; Simon, F

    2015-09-01

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation. PMID:26429462

  17. Measurement techniques for carbon dioxide sorption capacity on various coal samples: critical review

    NASA Astrophysics Data System (ADS)

    Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.

    2016-06-01

    Underground carbon sequestration is proposed as a geologic disposal technique for the long-term storage of CO2 emissions to mitigate climate change and air pollution. Coal bed seams have large CO2 adsorption capacity, long time CO2 trapping and extra enhanced coal-bed methane recovery (CBM). However, CO2 sorption capacity is one of significant steps required to be determined accurately in any feasibility evaluation of carbon sequestration. Hence, in lab scale, there are three methods for CO2 adsorption capacity measurements namely manometric/volumetric, gravimetric and new capsule techniques for gas sorption on variety of sorbents. The manometric and volumetric methods require accurate determination of cell and void volumes and suitable equation of state (EoS). The gravimetric method requires a very accurate sensitive balance and less buoyancy effect and it is the best technique for small amounts (milligrams) of sorbents and the adsorption equilibrium can be mentored. Among all gas adsorption measurement techniques, the newly developed method “capsule method” exhibits the highest CO2 adsorption capacity on Polish coal by 4.08 mmol/g because capsule method that directly measures CO2 uptake of solid coal matrix cylinders, without the application of the equation of state (EoS) for CO2 or volumetric corrections. The main advantage of capsule method is that it is independent of any Equation of State (EoS), and it has no volumetric effects or impurities distort the shape of the gas adsorption isotherm. The disadvantage of capsule method is time-consuming and it is not easy to implement.

  18. Total body water measurements using resonant cavity perturbation techniques

    NASA Astrophysics Data System (ADS)

    Stone, Darren A.; Robinson, Martin P.

    2004-05-01

    A recent paper proposed a novel technique for determining the total body water (TBW) of patients suffering with abnormal hydration levels, using a resonant cavity perturbation method. Current techniques to measure TBW are limited by resolution and technical constraints. However, this new method involves measuring the dielectric properties of the body, by placing a subject in a large cavity resonator and measuring the subsequent change in its resonant frequency, fres and its Q-factor. Utilizing the relationship that water content correlates to these dielectric properties, it has been shown that the measured response of these parameters enables determination of TBW. Results are presented for a preliminary study using data estimated from anthropometric measurements, where volunteers were asked to lie and stand in an electromagnetic screened room, before and after drinking between 1 and 2 l of water, and in some cases, after voiding the bladder. Notable changes in the parameters were observed; fres showed a negative shift and Q was reduced. Preliminary calibration curves using estimated values of water content have been developed from these results, showing that for each subject the measured resonant frequency is a linear function of TBW. Because the gradients of these calibration curves correlate to the mass-to-height-ratio of the volunteers, it has proved that a system in which TBW can be unequivocally obtained is possible. Measured values of TBW have been determined using this new pilot-technique, and the values obtained correlate well with theoretical values of body water (r = 0.87) and resolution is very good (750 ml). The results obtained are measurable, repeatable and statistically significant. This leads to confidence in the integrity of the proposed technique.

  19. Self-normalized photothermal techniques for thermal diffusivity measurements

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Mandelis, A.

    2000-12-01

    Two self-normalized photothermal techniques, to carry out thermal diffusivity measurements of condensed phase materials, are presented. These simple methodologies involve linear fitting procedures of the signal amplitude and phase. These procedures lead to the elimination of the usual requirement for instrumental transfer-function normalization. The thermal diffusivities for two dental resins and two pure liquids are measured with these simple methodologies and very good agreement is found with values reported in the literature, where more involved analysis is usually required.

  20. TEER measurement techniques for in vitro barrier model systems

    PubMed Central

    Srinivasan, Balaji; Kolli, Aditya Reddy; Esch, Mandy Brigitte; Abaci, Hasan Erbil; Shuler, Michael L.; Hickman, James J.

    2015-01-01

    Transepithelial/transendothelial electrical resistance (TEER) is a widely accepted quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial and epithelial monolayers. TEER values are strong indicators of the integrity of the cellular barriers before they are evaluated for transport of drugs or chemicals. TEER measurements can be performed in real-time without cell damage and generally are based on measuring ohmic resistance or measuring impedance across a wide spectrum of frequencies. TEER measurements for various cell types have been reported with commercially available measurement systems and also with custom built microfluidic implementations. Some of the barrier models that have been widely characterized utilizing TEER include the blood-brain barrier (BBB), gastrointestinal (GI) tract, and pulmonary models. Variations in TEER value can arise due to factors such as temperature, medium formulation and passage number of cells. The aim of this paper is to review the different TEER measurement techniques and analyze their strengths and weaknesses, the significance of TEER in drug toxicity studies, examine the various in vitro models and microfluidic organs-on-chips implementations utilizing TEER measurements in some widely studied barrier models (BBB, GI tract and pulmonary), and discuss the various factors that can affect TEER measurements. PMID:25586998