Science.gov

Sample records for accurate molecular dynamics

  1. On the accurate molecular dynamics analysis of biological molecules

    NASA Astrophysics Data System (ADS)

    Yamashita, Takefumi

    2016-12-01

    As the evolution of computational technology has now enabled long molecular dynamics (MD) simulation, the evaluation of many physical properties shows improved convergence. Therefore, we can examine the detailed conditions of MD simulations and perform quantitative MD analyses. In this study, we address the quantitative and accuracy aspects of MD simulations using two example systems. First, it is found that several conditions of the MD simulations influence the area/lipid of the lipid bilayer. Second, we successfully detect the small but important differences in antibody motion between the antigen-bound and unbound states.

  2. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    SciTech Connect

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lower temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.

  3. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    DOE PAGES

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lowermore » temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.« less

  4. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    USGS Publications Warehouse

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  5. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-01

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  6. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    SciTech Connect

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10{sup 3}-10{sup 5} molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  7. A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat.

    PubMed

    Liu, Jian; Li, Dezhang; Liu, Xinzijian

    2016-07-14

    We introduce a novel simple algorithm for thermostatting path integral molecular dynamics (PIMD) with the Langevin equation. The staging transformation of path integral beads is employed for demonstration. The optimum friction coefficients for the staging modes in the free particle limit are used for all systems. In comparison to the path integral Langevin equation thermostat, the new algorithm exploits a different order of splitting for the phase space propagator associated to the Langevin equation. While the error analysis is made for both algorithms, they are also employed in the PIMD simulations of three realistic systems (the H2O molecule, liquid para-hydrogen, and liquid water) for comparison. It is shown that the new thermostat increases the time interval of PIMD by a factor of 4-6 or more for achieving the same accuracy. In addition, the supplementary material shows the error analysis made for the algorithms when the normal-mode transformation of path integral beads is used.

  8. A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Li, Dezhang; Liu, Xinzijian

    2016-07-01

    We introduce a novel simple algorithm for thermostatting path integral molecular dynamics (PIMD) with the Langevin equation. The staging transformation of path integral beads is employed for demonstration. The optimum friction coefficients for the staging modes in the free particle limit are used for all systems. In comparison to the path integral Langevin equation thermostat, the new algorithm exploits a different order of splitting for the phase space propagator associated to the Langevin equation. While the error analysis is made for both algorithms, they are also employed in the PIMD simulations of three realistic systems (the H2O molecule, liquid para-hydrogen, and liquid water) for comparison. It is shown that the new thermostat increases the time interval of PIMD by a factor of 4-6 or more for achieving the same accuracy. In addition, the supplementary material shows the error analysis made for the algorithms when the normal-mode transformation of path integral beads is used.

  9. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure.

    PubMed

    Lippert, Ross A; Predescu, Cristian; Ierardi, Douglas J; Mackenzie, Kenneth M; Eastwood, Michael P; Dror, Ron O; Shaw, David E

    2013-10-28

    In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.

  10. Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations.

    PubMed

    Caro, Miguel A; Laurila, Tomi; Lopez-Acevedo, Olga

    2016-12-28

    We explore different schemes for improved accuracy of entropy calculations in aqueous liquid mixtures from molecular dynamics (MD) simulations. We build upon the two-phase thermodynamic (2PT) model of Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and explore new ways to obtain the partition between the gas-like and solid-like parts of the density of states, as well as the effect of the chosen ideal "combinatorial" entropy of mixing, both of which have a large impact on the results. We also propose a first-order correction to the issue of kinetic energy transfer between degrees of freedom (DoF). This problem arises when the effective temperatures of translational, rotational, and vibrational DoF are not equal, either due to poor equilibration or reduced system size/time sampling, which are typical problems for ab initio MD. The new scheme enables improved convergence of the results with respect to configurational sampling, by up to one order of magnitude, for short MD runs. To ensure a meaningful assessment, we perform MD simulations of liquid mixtures of water with several other molecules of varying sizes: methanol, acetonitrile, N, N-dimethylformamide, and n-butanol. Our analysis shows that results in excellent agreement with experiment can be obtained with little computational effort for some systems. However, the ability of the 2PT method to succeed in these calculations is strongly influenced by the choice of force field, the fluidicity (hard-sphere) formalism employed to obtain the solid/gas partition, and the assumed combinatorial entropy of mixing. We tested two popular force fields, GAFF and OPLS with SPC/E water. For the mixtures studied, the GAFF force field seems to perform as a slightly better "all-around" force field when compared to OPLS+SPC/E.

  11. Accurate path integral molecular dynamics simulation of ab-initio water at near-zero added cost

    NASA Astrophysics Data System (ADS)

    Elton, Daniel; Fritz, Michelle; Soler, José; Fernandez-Serra, Marivi

    It is now established that nuclear quantum motion plays an important role in determining water's structure and dynamics. These effects are important to consider when evaluating DFT functionals and attempting to develop better ones for water. The standard way of treating nuclear quantum effects, path integral molecular dynamics (PIMD), multiplies the number of energy/force calculations by the number of beads, which is typically 32. Here we introduce a method whereby PIMD can be incorporated into a DFT molecular dynamics simulation at virtually zero cost. The method is based on the cluster (many body) expansion of the energy. We first subtract the DFT monomer energies, using a custom DFT-based monomer potential energy surface. The evolution of the PIMD beads is then performed using only the more-accurate Partridge-Schwenke monomer energy surface. The DFT calculations are done using the centroid positions. Various bead thermostats can be employed to speed up the sampling of the quantum ensemble. The method bears some resemblance to multiple timestep algorithms and other schemes used to speed up PIMD with classical force fields. We show that our method correctly captures some of key effects of nuclear quantum motion on both the structure and dynamics of water. We acknowledge support from DOE Award No. DE-FG02-09ER16052 (D.E.) and DOE Early Career Award No. DE-SC0003871 (M.V.F.S.).

  12. Theory of bi-molecular association dynamics in 2D for accurate model and experimental parameterization of binding rates

    PubMed Central

    Yogurtcu, Osman N.; Johnson, Margaret E.

    2015-01-01

    The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute

  13. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.

    PubMed

    Arcon, Juan Pablo; Defelipe, Lucas A; Modenutti, Carlos P; López, Elias D; Alvarez-Garcia, Daniel; Barril, Xavier; Turjanski, Adrián G; Martí, Marcelo A

    2017-03-31

    One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 μs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.

  14. Nuclear Quantum Effects in Liquid Water: A Highly Accurate ab initio Path-Integral Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Distasio, Robert A., Jr.; Santra, Biswajit; Ko, Hsin-Yu; Car, Roberto

    2014-03-01

    In this work, we report highly accurate ab initio path-integral molecular dynamics (AI-PIMD) simulations on liquid water at ambient conditions utilizing the recently developed PBE0+vdW(SC) exchange-correlation functional, which accounts for exact exchange and a self-consistent pairwise treatment of van der Waals (vdW) or dispersion interactions, combined with nuclear quantum effects (via the colored-noise generalized Langevin equation). The importance of each of these effects in the theoretical prediction of the structure of liquid water will be demonstrated by a detailed comparative analysis of the predicted and experimental oxygen-oxygen (O-O), oxygen-hydrogen (O-H), and hydrogen-hydrogen (H-H) radial distribution functions as well as other structural properties. In addition, we will discuss the theoretically obtained proton momentum distribution, computed using the recently developed Feynman path formulation, in light of the experimental deep inelastic neutron scattering (DINS) measurements. DOE: DE-SC0008626, DOE: DE-SC0005180.

  15. Accurate and scalable O(N) algorithm for first-principles molecular-dynamics computations on large parallel computers.

    PubMed

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-31

    We present the first truly scalable first-principles molecular dynamics algorithm with O(N) complexity and controllable accuracy, capable of simulating systems with finite band gaps of sizes that were previously impossible with this degree of accuracy. By avoiding global communications, we provide a practical computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic wave functions are confined, and a cutoff beyond which the components of the overlap matrix can be omitted when computing selected elements of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to 101,952 atoms on 23,328 processors, with a wall-clock time of the order of 1 min per molecular dynamics time step and numerical error on the forces of less than 7×10(-4)  Ha/Bohr.

  16. Accurate and Scalable O(N) Algorithm for First-Principles Molecular-Dynamics Computations on Large Parallel Computers

    SciTech Connect

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-01

    We present the first truly scalable first-principles molecular dynamics algorithm with O(N) complexity and controllable accuracy, capable of simulating systems with finite band gaps of sizes that were previously impossible with this degree of accuracy. By avoiding global communications, we provide a practical computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic wave functions are confined, and a cutoff beyond which the components of the overlap matrix can be omitted when computing selected elements of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to 101 952 atoms on 23 328 processors, with a wall-clock time of the order of 1 min per molecular dynamics time step and numerical error on the forces of less than 7x10-4 Ha/Bohr.

  17. The CHARMM-TURBOMOLE interface for efficient and accurate QM/MM molecular dynamics, free energies, and excited state properties.

    PubMed

    Riahi, Saleh; Rowley, Christopher N

    2014-10-30

    The quantum mechanical (QM)/molecular mechanical (MM) interface between Chemistry at HARvard Molecular Mechanics (CHARMM) and TURBOMOLE is described. CHARMM provides an extensive set of simulation algorithms, like molecular dynamics (MD) and free energy perturbation, and support for mature nonpolarizable and Drude polarizable force fields. TURBOMOLE provides fast QM calculations using density functional theory or wave function methods and excited state properties. CHARMM-TURBOMOLE is well-suited for extended QM/MM MD simulations using first principles methods with large (triple-ζ) basis sets. We demonstrate these capabilities with a QM/MM simulation of Mg(2+) (aq), where the MM outer sphere water molecules are represented using the SWM4-NDP Drude polarizable force field and the ion and inner coordination sphere are represented using QM PBE, PBE0, and MP2 methods. The relative solvation free energies of Mg(2+) and Zn(2+) were calculated using thermodynamic integration. We also demonstrate the features for excited state properties. We calculate the time-averaged solution absorption spectrum of indole, the emission spectrum of the indole 1La excited state, and the electronic circular dichroism spectrum of an oxacepham.

  18. Efficient and accurate determination of lattice-vacancy diffusion coefficients via non equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sangiovanni, D. G.; Hellman, O.; Alling, B.; Abrikosov, I. A.

    2016-03-01

    We revisit the color-diffusion algorithm [Aeberhard et al., Phys. Rev. Lett. 108, 095901 (2012), 10.1103/PhysRevLett.108.095901] in non equilibrium ab initio molecular dynamics (NE-AIMD) and propose a simple efficient approach for the estimation of monovacancy jump rates in crystalline solids at temperatures well below melting. Color-diffusion applied to monovacancy migration entails that one lattice atom (colored atom) is accelerated toward the neighboring defect site by an external constant force F. Considering bcc molybdenum between 1000 and 2800 K as a model system, NE-AIMD results show that the colored-atom jump rate kNE increases exponentially with the force intensity F , up to F values far beyond the linear-fitting regime employed previously. Using a simple model, we derive an analytical expression which reproduces the observed kNE(F ) dependence on F . Equilibrium rates extrapolated by NE-AIMD results are in excellent agreement with those of unconstrained dynamics. The gain in computational efficiency achieved with our approach increases rapidly with decreasing temperatures and reaches a factor of 4 orders of magnitude at the lowest temperature considered in the present study.

  19. Dynamics of the C(1D)+D2 reaction: a comparison of crossed molecular-beam experiments with quasiclassical trajectory and accurate statistical calculations.

    PubMed

    Balucani, Nadia; Capozza, Giovanni; Segoloni, Enrico; Russo, Andrea; Bobbenkamp, Rolf; Casavecchia, Piergiorgio; Gonzalez-Lezana, Tomas; Rackham, Edward J; Bañares, Luis; Aoiz, F Javier

    2005-06-15

    In this paper we report a combined experimental and theoretical study on the dynamics of the insertion reaction C((1)D)+D(2) at 15.5 kJ mol(-1) collision energy. Product angular and velocity distributions have been obtained in crossed beam experiments and quasiclassical trajectory (QCT) and rigorous statistical calculations have been performed on the recent and accurate ab initio potential energy surface of Bussery-Honvault, Honvault, and Launay at the energy of the experiment. The molecular-beam results have been simulated using the theoretical calculations. Good agreement between experiment and both QCT and statistical predictions is found.

  20. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical

    NASA Astrophysics Data System (ADS)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2016-06-01

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH• radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH• radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  1. Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction

    PubMed Central

    Willow, Soohaeng Yoo; Salim, Michael A.; Kim, Kwang S.; Hirata, So

    2015-01-01

    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation. PMID:26400690

  2. Ring polymer molecular dynamics fast computation of rate coefficients on accurate potential energy surfaces in local configuration space: Application to the abstraction of hydrogen from methane.

    PubMed

    Meng, Qingyong; Chen, Jun; Zhang, Dong H

    2016-04-21

    To fast and accurately compute rate coefficients of the H/D + CH4 → H2/HD + CH3reactions, we propose a segmented strategy for fitting suitable potential energy surface (PES), on which ring-polymer molecular dynamics (RPMD) simulations are performed. On the basis of recently developed permutation invariant polynomial neural-network approach [J. Li et al., J. Chem. Phys. 142, 204302 (2015)], PESs in local configuration spaces are constructed. In this strategy, global PES is divided into three parts, including asymptotic, intermediate, and interaction parts, along the reaction coordinate. Since less fitting parameters are involved in the local PESs, the computational efficiency for operating the PES routine is largely enhanced by a factor of ∼20, comparing with that for global PES. On interaction part, the RPMD computational time for the transmission coefficient can be further efficiently reduced by cutting off the redundant part of the child trajectories. For H + CH4, good agreements among the present RPMD rates and those from previous simulations as well as experimental results are found. For D + CH4, on the other hand, qualitative agreement between present RPMD and experimental results is predicted.

  3. Ring polymer molecular dynamics fast computation of rate coefficients on accurate potential energy surfaces in local configuration space: Application to the abstraction of hydrogen from methane

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Chen, Jun; Zhang, Dong H.

    2016-04-01

    To fast and accurately compute rate coefficients of the H/D + CH4 → H2/HD + CH3 reactions, we propose a segmented strategy for fitting suitable potential energy surface (PES), on which ring-polymer molecular dynamics (RPMD) simulations are performed. On the basis of recently developed permutation invariant polynomial neural-network approach [J. Li et al., J. Chem. Phys. 142, 204302 (2015)], PESs in local configuration spaces are constructed. In this strategy, global PES is divided into three parts, including asymptotic, intermediate, and interaction parts, along the reaction coordinate. Since less fitting parameters are involved in the local PESs, the computational efficiency for operating the PES routine is largely enhanced by a factor of ˜20, comparing with that for global PES. On interaction part, the RPMD computational time for the transmission coefficient can be further efficiently reduced by cutting off the redundant part of the child trajectories. For H + CH4, good agreements among the present RPMD rates and those from previous simulations as well as experimental results are found. For D + CH4, on the other hand, qualitative agreement between present RPMD and experimental results is predicted.

  4. Accurate methods for large molecular systems.

    PubMed

    Gordon, Mark S; Mullin, Jonathan M; Pruitt, Spencer R; Roskop, Luke B; Slipchenko, Lyudmila V; Boatz, Jerry A

    2009-07-23

    Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.

  5. Multiscale reactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-12-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system.

  6. Developing accurate molecular mechanics force fields for conjugated molecular systems.

    PubMed

    Do, Hainam; Troisi, Alessandro

    2015-10-14

    A rapid method to parameterize the intramolecular component of classical force fields for complex conjugated molecules is proposed. The method is based on a procedure of force matching with a reference electronic structure calculation. It is particularly suitable for those applications where molecular dynamics simulations are used to generate structures that are therefore analysed by electronic structure methods, because it is possible to build force fields that are consistent with electronic structure calculations that follow classical simulations. Such applications are commonly encountered in organic electronics, spectroscopy of complex systems and photobiology (e.g. photosynthetic systems). We illustrate the method by parameterizing the force fields of a molecule used in molecular semiconductors (2,2-dicyanovinyl-capped S,N-heteropentacene or DCV-SN5), a polymeric semiconductor (thieno[3,2-b]thiophene-diketopyrrolopyrrole TT-DPP) and a chromophore embedded in a protein environment (15,16-dihydrobiliverdin or DBV) where several hundreds of parameters need to be optimized in parallel.

  7. Molecular dynamics investigations of ozone on an ab initio potential energy surface with the utilization of pattern-recognition neural network for accurate determination of product formation.

    PubMed

    Le, Hung M; Dinh, Thach S; Le, Hieu V

    2011-10-13

    The singlet-triplet transformation and molecular dissociation of ozone (O(3)) gas is investigated by performing quasi-classical molecular dynamics (MD) simulations on an ab initio potential energy surface (PES) with visible and near-infrared excitations. MP4(SDQ) level of theory with the 6-311g(2d,2p) basis set is executed for three different electronic spin states (singlet, triplet, and quintet). In order to simplify the potential energy function, an approximation is adopted by ignoring the spin-orbit coupling and allowing the molecule to switch favorably and instantaneously to the spin state that is more energetically stable (lowest in energy among the three spin states). This assumption has previously been utilized to study the SiO(2) system as reported by Agrawal et al. (J. Chem. Phys. 2006, 124 (13), 134306). The use of such assumption in this study probably makes the upper limits of computed rate coefficients the true rate coefficients. The global PES for ozone is constructed by fitting 5906 ab initio data points using a 60-neuron two-layer feed-forward neural network. The mean-absolute error and root-mean-squared error of this fit are 0.0446 eV (1.03 kcal/mol) and 0.0756 eV (1.74 kcal/mol), respectively, which reveal very good fitting accuracy. The parameter coefficients of the global PES are reported in this paper. In order to identify the spin state with high confidence, we propose the use of a pattern-recognition neural network, which is trained to predict the spin state of a given configuration (with a prediction accuracy being 95.6% on a set of testing data points). To enhance the prediction effectiveness, a buffer series of five points are validated to confirm the spin state during the MD process to gain better confidence. Quasi-classical MD simulations from 1.2 to 2.4 eV of total internal energy (including zero-point energy) result in rate coefficients of singlet-triplet transformation in the range of 0.027 ps(-1) to 1.21 ps(-1). Also, we find very

  8. Molecular dynamics and docking simulations as a proof of high flexibility in E. coli FabH and its relevance for accurate inhibitor modeling

    NASA Astrophysics Data System (ADS)

    Pérez-Castillo, Yunierkis; Froeyen, Matheus; Cabrera-Pérez, Miguel Ángel; Nowé, Ann

    2011-04-01

    Bacterial β-ketoacyl-acyl carrier protein synthase III (FabH) has become an attractive target for the development of new antibacterial agents which can overcome the increased resistance of these pathogens to antibiotics in clinical use. Despite several efforts have been dedicated to find inhibitors for this enzyme, it is not a straightforward task, mainly due its high flexibility which makes difficult the structure-based design of FabH inhibitors. Here, we present for the first time a Molecular Dynamics (MD) study of the E. colil FabH enzyme to explore its conformational space. We compare the flexibility of this enzyme for the unliganded protein and an enzyme-inhibitor complex and find a correspondence between our modeling results and the experimental evidence previously reported for this enzyme. Furthermore, through a 100 ns MD simulation of the unliganded enzyme we extract useful information related to the concerted motions that take place along the principal components of displacement. We also establish a relation between the presence of water molecules in the oxyanion hole with the conformational stability of structural important loops. Representative conformations of the binding pocket along the whole trajectory of the unliganded protein are selected through cluster analysis and we find that they contain a conformational diversity which is not provided by the X-ray structures of ecFabH. As a proof of this last hypothesis, we use a set of 10 FabH inhibitors and show that they cannot be correctly modeled in any available X-ray structure, while by using our set of conformations extracted from the MD simulations, this task can be accomplish. Finally, we show the ability of short MD simulations for the refinement of the docking binding poses and for MM-PBSA calculations to predict stable protein-inhibitor complexes in this enzyme.

  9. Hybrid Steered Molecular Dynamics Approach to Computing Absolute Binding Free Energy of Ligand-Protein Complexes: A Brute Force Approach That Is Fast and Accurate.

    PubMed

    Chen, Liao Y

    2015-04-14

    Computing the free energy of binding a ligand to a protein is a difficult task of essential importance for which purpose various theoretical/computational approaches have been pursued. In this paper, we develop a hybrid steered molecular dynamics (hSMD) method capable of resolving one ligand–protein complex within a few wall-clock days with high enough accuracy to compare with the experimental data. This hSMD approach is based on the relationship between the binding affinity and the potential of mean force (PMF) in the established literature. It involves simultaneously steering n (n = 1, 2, 3, ...) centers of mass of n selected segments of the ligand using n springs of infinite stiffness. Steering the ligand from a single initial state chosen from the bound state ensemble to the corresponding dissociated state, disallowing any fluctuations of the pulling centers along the way, one can determine a 3n-dimensional PMF curve connecting the two states by sampling a small number of forward and reverse pulling paths. This PMF constitutes a large but not the sole contribution to the binding free energy. Two other contributors are (1) the partial partition function containing the equilibrium fluctuations of the ligand at the binding site and the deviation of the initial state from the PMF minimum and (2) the partial partition function containing rotation and fluctuations of the ligand around one of the pulling centers that is fixed at a position far from the protein. We implement this hSMD approach for two ligand–protein complexes whose structures were determined and whose binding affinities were measured experimentally: caprylic acid binding to bovine β-lactoglobulin and glutathione binding to Schistosoma japonicum glutathione S-transferase tyrosine 7 to phenylalanine mutant. Our computed binding affinities agree with the experimental data within a factor of 1.5. The total time of computation for these two all-atom model systems (consisting of 96K and 114K atoms

  10. Towards Accurate Molecular Modeling of Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Chantawansri, T. L.; Andzelm, J.; Taylor, D.; Byrd, E.; Rice, B.

    2010-03-01

    There is substantial interest in identifying the controlling factors that influence the susceptibility of polymer bonded explosives (PBXs) to accidental initiation. Numerous Molecular Dynamics (MD) simulations of PBXs using the COMPASS force field have been reported in recent years, where the validity of the force field in modeling the solid EM fill has been judged solely on its ability to reproduce lattice parameters, which is an insufficient metric. Performance of the COMPASS force field in modeling EMs and the polymeric binder has been assessed by calculating structural, thermal, and mechanical properties, where only fair agreement with experimental data is obtained. We performed MD simulations using the COMPASS force field for the polymer binder hydroxyl-terminated polybutadiene and five EMs: cyclotrimethylenetrinitramine, 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane, 2,4,6,8,10,12-hexantirohexaazazisowurzitane, 2,4,6-trinitro-1,3,5-benzenetriamine, and pentaerythritol tetranitate. Predicted EM crystallographic and molecular structural parameters, as well as calculated properties for the binder will be compared with experimental results for different simulation conditions. We also present novel simulation protocols, which improve agreement between experimental and computation results thus leading to the accurate modeling of PBXs.

  11. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods

    NASA Astrophysics Data System (ADS)

    Kapil, V.; VandeVondele, J.; Ceriotti, M.

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

  12. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods

    SciTech Connect

    Kapil, V.; Ceriotti, M.; VandeVondele, J.

    2016-02-07

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

  13. Communication: Rate coefficients of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction from ring polymer molecular dynamics on a highly accurate potential energy surface

    SciTech Connect

    Meng, Qingyong Chen, Jun Zhang, Dong H.

    2015-09-14

    The ring polymer molecular dynamics (RPMD) calculations are performed to calculate rate constants for the title reaction on the recently constructed potential energy surface based on permutation invariant polynomial (PIP) neural-network (NN) fitting [J. Li et al., J. Chem. Phys. 142, 204302 (2015)]. By inspecting convergence, 16 beads are used in computing free-energy barriers at 300 K ≤ T ≤ 1000 K, while different numbers of beads are used for transmission coefficients. The present RPMD rates are in excellent agreement with quantum rates computed on the same potential energy surface, as well as with the experimental measurements, demonstrating further that the RPMD is capable of producing accurate rates for polyatomic chemical reactions even at rather low temperatures.

  14. Nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  15. Accurate tracking of high dynamic vehicles with translated GPS

    NASA Astrophysics Data System (ADS)

    Blankshain, Kenneth M.

    The GPS concept and the translator processing system (TPS) which were developed for accurate and cost-effective tracking of various types of high dynamic expendable vehicles are described. A technique used by the translator processing system (TPS) to accomplish very accurate high dynamic tracking is presented. Automatic frequency control and fast Fourier transform processes are combined to track 100 g acceleration and 100 g/s jerk with 1-sigma velocity measurement error less than 1 ft/sec.

  16. Substructured multibody molecular dynamics.

    SciTech Connect

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  17. A robust and accurate formulation of molecular and colloidal electrostatics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y C

    2016-08-07

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  18. A robust and accurate formulation of molecular and colloidal electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2016-08-01

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  19. Interactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  20. Dynamical correction of control laws for marine ships' accurate steering

    NASA Astrophysics Data System (ADS)

    Veremey, Evgeny I.

    2014-06-01

    The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an extensive population of certain dynamical conditions, requirements and restrictions, which must be satisfied by the appropriate choice of a steering control law. The aim of this paper is to simplify the procedure of the synthesis, providing accurate steering with desirable dynamics of the control system. The approach proposed here is based on the usage of a special unified multipurpose control law structure that allows decoupling a synthesis into simpler particular optimization problems. In particular, this structure includes a dynamical corrector to support the desirable features for the vehicle's motion under the action of sea wave disturbances. As a result, a specialized new method for the corrector design is proposed to provide an accurate steering or a trade-off between accurate steering and economical steering of the ship. This method guaranties a certain flexibility of the control law with respect to an actual environment of the sailing; its corresponding turning can be realized in real time onboard.

  1. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  2. Introduction to Accelerated Molecular Dynamics

    SciTech Connect

    Perez, Danny

    2012-07-10

    Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.

  3. Molecular Dynamics Calculations

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two

  4. VMD: visual molecular dynamics.

    PubMed

    Humphrey, W; Dalke, A; Schulten, K

    1996-02-01

    VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids. VMD can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods. Molecules are displayed as one or more "representations," in which each representation embodies a particular rendering method and coloring scheme for a selected subset of atoms. The atoms displayed in each representation are chosen using an extensive atom selection syntax, which includes Boolean operators and regular expressions. VMD provides a complete graphical user interface for program control, as well as a text interface using the Tcl embeddable parser to allow for complex scripts with variable substitution, control loops, and function calls. Full session logging is supported, which produces a VMD command script for later playback. High-resolution raster images of displayed molecules may be produced by generating input scripts for use by a number of photorealistic image-rendering applications. VMD has also been expressly designed with the ability to animate molecular dynamics (MD) simulation trajectories, imported either from files or from a direct connection to a running MD simulation. VMD is the visualization component of MDScope, a set of tools for interactive problem solving in structural biology, which also includes the parallel MD program NAMD, and the MDCOMM software used to connect the visualization and simulation programs. VMD is written in C++, using an object-oriented design; the program, including source code and extensive documentation, is freely available via anonymous ftp and through the World Wide Web.

  5. Floating orbital molecular dynamics simulations.

    PubMed

    Perlt, Eva; Brüssel, Marc; Kirchner, Barbara

    2014-04-21

    We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated.

  6. Liouville-von Neumann molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakowski, Jacek; Morokuma, Keiji

    2009-06-01

    We present a novel first principles molecular dynamics scheme, called Liouville-von Neumann molecular dynamics, based on Liouville-von Neumann equation for density matrices propagation and Magnus expansion of the time-evolution operator. The scheme combines formally accurate quantum propagation of electrons represented via density matrices and a classical propagation of nuclei. The method requires a few iterations per each time step where the Fock operator is formed and von Neumann equation is integrated. The algorithm (a) is free of constraint and fictitious parameters, (b) avoids diagonalization of the Fock operator, and (c) can be used in the case of fractional occupation as in metallic systems. The algorithm is very stable, and has a very good conservation of energy even in cases when a good quality conventional Born-Oppenheimer molecular dynamics trajectories is difficult to obtain. Test simulations include initial phase of fullerene formation from gaseous C2 and retinal system.

  7. Accurate determination of heteroclinic orbits in chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Li, Jizhou; Tomsovic, Steven

    2017-03-01

    Accurate calculation of heteroclinic and homoclinic orbits can be of significant importance in some classes of dynamical system problems. Yet for very strongly chaotic systems initial deviations from a true orbit will be magnified by a large exponential rate making direct computational methods fail quickly. In this paper, a method is developed that avoids direct calculation of the orbit by making use of the well-known stability property of the invariant unstable and stable manifolds. Under an area-preserving map, this property assures that any initial deviation from the stable (unstable) manifold collapses onto them under inverse (forward) iterations of the map. Using a set of judiciously chosen auxiliary points on the manifolds, long orbit segments can be calculated using the stable and unstable manifold intersections of the heteroclinic (homoclinic) tangle. Detailed calculations using the example of the kicked rotor are provided along with verification of the relation between action differences and certain areas bounded by the manifolds.

  8. CAST: a new program package for the accurate characterization of large and flexible molecular systems.

    PubMed

    Grebner, Christoph; Becker, Johannes; Weber, Daniel; Bellinger, Daniel; Tafipolski, Maxim; Brückner, Charlotte; Engels, Bernd

    2014-09-15

    The presented program package, Conformational Analysis and Search Tool (CAST) allows the accurate treatment of large and flexible (macro) molecular systems. For the determination of thermally accessible minima CAST offers the newly developed TabuSearch algorithm, but algorithms such as Monte Carlo (MC), MC with minimization, and molecular dynamics are implemented as well. For the determination of reaction paths, CAST provides the PathOpt, the Nudge Elastic band, and the umbrella sampling approach. Access to free energies is possible through the free energy perturbation approach. Along with a number of standard force fields, a newly developed symmetry-adapted perturbation theory-based force field is included. Semiempirical computations are possible through DFTB+ and MOPAC interfaces. For calculations based on density functional theory, a Message Passing Interface (MPI) interface to the Graphics Processing Unit (GPU)-accelerated TeraChem program is available. The program is available on request.

  9. Accurate phosphoregulation of kinetochore–microtubule affinity requires unconstrained molecular interactions

    PubMed Central

    Zaytsev, Anatoly V.; Sundin, Lynsie J.R.; DeLuca, Keith F.

    2014-01-01

    Accurate chromosome segregation relies on dynamic interactions between microtubules (MTs) and the NDC80 complex, a major kinetochore MT-binding component. Phosphorylation at multiple residues of its Hec1 subunit may tune kinetochore–MT binding affinity for diverse mitotic functions, but molecular details of such phosphoregulation remain elusive. Using quantitative analyses of mitotic progression in mammalian cells, we show that Hec1 phosphorylation provides graded control of kinetochore–MT affinity. In contrast, modeling the kinetochore interface with repetitive MT binding sites predicts a switchlike response. To reconcile these findings, we hypothesize that interactions between NDC80 complexes and MTs are not constrained, i.e., the NDC80 complexes can alternate their binding between adjacent kinetochore MTs. Experiments using cells with phosphomimetic Hec1 mutants corroborate predictions of such a model but not of the repetitive sites model. We propose that accurate regulation of kinetochore–MT affinity is driven by incremental phosphorylation of an NDC80 molecular “lawn,” in which the NDC80–MT bonds reorganize dynamically in response to the number and stability of MT attachments. PMID:24982430

  10. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    PubMed Central

    Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.

    2015-01-01

    Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results

  11. Computationally Efficient Multiconfigurational Reactive Molecular Dynamics

    PubMed Central

    Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.

    2012-01-01

    It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924

  12. Building dynamic population graph for accurate correspondence detection.

    PubMed

    Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang

    2015-12-01

    In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph.

  13. Molecular dynamics of silicon indentation

    NASA Astrophysics Data System (ADS)

    Kallman, J. S.; Hoover, W. G.; Hoover, C. G.; de Groot, A. J.; Lee, S. M.; Wooten, F.

    1993-04-01

    We use nonequilibrium molecular dynamics to simulate the elastic-plastic deformation of silicon under tetrahedral nanometer-sized indentors. The results are described in terms of a rate-dependent and temperature-dependent phenomenological yield strength. We follow the structural change during indentation with a computer technique that allows us to model the dynamic simulation of diffraction patterns.

  14. Accurate Langevin approaches to simulate Markovian channel dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yandong; Rüdiger, Sten; Shuai, Jianwei

    2015-12-01

    The stochasticity of ion-channels dynamic is significant for physiological processes on neuronal cell membranes. Microscopic simulations of the ion-channel gating with Markov chains can be considered to be an accurate standard. However, such Markovian simulations are computationally demanding for membrane areas of physiologically relevant sizes, which makes the noise-approximating or Langevin equation methods advantageous in many cases. In this review, we discuss the Langevin-like approaches, including the channel-based and simplified subunit-based stochastic differential equations proposed by Fox and Lu, and the effective Langevin approaches in which colored noise is added to deterministic differential equations. In the framework of Fox and Lu’s classical models, several variants of numerical algorithms, which have been recently developed to improve accuracy as well as efficiency, are also discussed. Through the comparison of different simulation algorithms of ion-channel noise with the standard Markovian simulation, we aim to reveal the extent to which the existing Langevin-like methods approximate results using Markovian methods. Open questions for future studies are also discussed.

  15. Spectroscopy and molecular dynamics in nonpolar fluids

    NASA Astrophysics Data System (ADS)

    Everitt, Karl Frederick

    This thesis considers the mechanisms by which molecular dynamics in nonpolar liquids influences solvation dynamics and vibrational energy relaxation. We use semiclassical molecular dynamics simulations to calculate photon echo signals for two simple fluids. We demonstrate that two new observables are directly related to the relevant molecular quantity, the frequency- frequency time correlation function (TCF), in contrast to the commonly measured 3PEPS, which cannot be simply related to this TCF at short times. We also present a semianalytic photon echo theory, based on an ansatz which determines the full time dependence from the short time expansion coefficients of the TCF. We demonstrate that this theory accurately predicts most photon echo observables, even when the theory's gaussian approximation is not accurate. We also consider vibrational energy relaxation (VER) in liquid oxygen. Using semiclassical molecular dynamics simulations and an intermolecular potential from the literature, we evaluate the required quantity (the spectral density of a certain force-force TCF) using the same ansatz described above. We demonstrate numerically that this procedure is accurate. Approximately relating this semiclassical rate to the fully quantum mechanical VER rate, using one of the more accurate ``quantum corrections'' available in the literature, yields a result which is in order-of-magnitude agreement with the experimental VER rate. We also calculate the VER rate for liquid oxygen/argon mixtures. The rotations of the solvent near a vibrationally excited molecule, and of that molecule itself, have important consequences for the short-time dynamics of the force-force TCF. We propose a simple statistical model which quantitatively explains the mole- fraction dependence of the observed VER rate. Next, we demonstrate that a newly-developed model for oxygen very accurately describes the liquid, by comparing to experimental measures of microscopic structure and dynamics. We also

  16. Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field

    SciTech Connect

    Romanov, V N; Cygan, R T; Myshakin, E M

    2012-06-21

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, CO2. Recent experimental studies have demonstrated the efficacy of intercalating CO2 in the interlayer of layered clays, but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 and H2O in the interlayer of montmorillonite clay and to help validate the models with experimental observation. An accurate and fully flexible set of interatomic potentials for CO2 is developed and combined with Clayff potentials to help evaluate the intercalation mechanism and examine the effect of molecular flexibility onthe diffusion rate of CO2 in water.

  17. Molecular modelling and molecular dynamics of CFTR.

    PubMed

    Callebaut, Isabelle; Hoffmann, Brice; Lehn, Pierre; Mornon, Jean-Paul

    2017-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.

  18. Molecular dynamics simulation of pyridine

    NASA Astrophysics Data System (ADS)

    Trumpakaj, Zygmunt; Linde, Bogumił

    2015-04-01

    Molecular Dynamics (MD) simulations are used for the investigation of molecular motions in pyridine in the temperature range 20-480 K under normal pressure. The results obtained are analyzed within the frame of the Mori Zwanzig memory function formalism. An analytical approximation of the first memory function K(t) is applied to predict some dependences on temperature. Experimental results of the Rayleigh scattering of depolarized light from liquid pyridine are used as the main base for the comparison.

  19. GAS PHASE MOLECULAR DYNAMICS

    SciTech Connect

    SEARS,T.J.; HALL,G.E.; PRESES,J.M.; WESTON,R.E.,JR.

    1999-06-09

    The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution, high-sensitivity, laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule. The work of group members Fockenberg and Muckerman is described in separate abstracts of this volume.

  20. Dynamic molecular graphs: "hopping" structures.

    PubMed

    Cortés-Guzmán, Fernando; Rocha-Rinza, Tomas; Guevara-Vela, José Manuel; Cuevas, Gabriel; Gómez, Rosa María

    2014-05-05

    This work aims to contribute to the discussion about the suitability of bond paths and bond-critical points as indicators of chemical bonding defined within the theoretical framework of the quantum theory of atoms in molecules. For this purpose, we consider the temporal evolution of the molecular structure of [Fe{C(CH2 )3 }(CO)3 ] throughout Born-Oppenheimer molecular dynamics (BOMD), which illustrates the changing behaviour of the molecular graph (MG) of an electronic system. Several MGs with significant lifespans are observed across the BOMD simulations. The bond paths between the trimethylenemethane and the metallic core are uninterruptedly formed and broken. This situation is reminiscent of a "hopping" ligand over the iron atom. The molecular graph wherein the bonding between trimethylenemethane and the iron atom takes place only by means of the tertiary carbon atom has the longest lifespan of all the considered structures, which is consistent with the MG found by X-ray diffraction experiments and quantum chemical calculations. In contrast, the η(4) complex predicted by molecular-orbital theory has an extremely brief lifetime. The lifespan of different molecular structures is related to bond descriptors on the basis of the topology of the electron density such as the ellipticities at the FeCH2 bond-critical points and electron delocalisation indices. This work also proposes the concept of a dynamic molecular graph composed of the different structures found throughout the BOMD trajectories in analogy to a resonance hybrid of Lewis structures. It is our hope that the notion of dynamic molecular graphs will prove useful in the discussion of electronic systems, in particular for those in which analysis on the basis of static structures leads to controversial conclusions.

  1. Available Instruments for Analyzing Molecular Dynamics Trajectories

    PubMed Central

    Likhachev, I. V.; Balabaev, N. K.; Galzitskaya, O. V.

    2016-01-01

    Molecular dynamics trajectories are the result of molecular dynamics simulations. Trajectories are sequential snapshots of simulated molecular system which represents atomic coordinates at specific time periods. Based on the definition, in a text format trajectory files are characterized by their simplicity and uselessness. To obtain information from such files, special programs and information processing techniques are applied: from molecular dynamics animation to finding characteristics along the trajectory (versus time). In this review, we describe different programs for processing molecular dynamics trajectories. The performance of these programs, usefulness for analyses of molecular dynamics trajectories, strong and weak aspects are discussed. PMID:27053964

  2. Accurate determination of membrane dynamics with line-scan FCS.

    PubMed

    Ries, Jonas; Chiantia, Salvatore; Schwille, Petra

    2009-03-04

    Here we present an efficient implementation of line-scan fluorescence correlation spectroscopy (i.e., one-dimensional spatio-temporal image correlation spectroscopy) using a commercial laser scanning microscope, which allows the accurate measurement of diffusion coefficients and concentrations in biological lipid membranes within seconds. Line-scan fluorescence correlation spectroscopy is a calibration-free technique. Therefore, it is insensitive to optical artifacts, saturation, or incorrect positioning of the laser focus. In addition, it is virtually unaffected by photobleaching. Correction schemes for residual inhomogeneities and depletion of fluorophores due to photobleaching extend the applicability of line-scan fluorescence correlation spectroscopy to more demanding systems. This technique enabled us to measure accurate diffusion coefficients and partition coefficients of fluorescent lipids in phase-separating supported bilayers of three commonly used raft-mimicking compositions. Furthermore, we probed the temperature dependence of the diffusion coefficient in several model membranes, and in human embryonic kidney cell membranes not affected by temperature-induced optical aberrations.

  3. An Accurate and Dynamic Computer Graphics Muscle Model

    NASA Technical Reports Server (NTRS)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  4. Novel methods for molecular dynamics simulations.

    PubMed

    Elber, R

    1996-04-01

    In the past year, significant progress was made in the development of molecular dynamics methods for the liquid phase and for biological macromolecules. Specifically, faster algorithms to pursue molecular dynamics simulations were introduced and advances were made in the design of new optimization algorithms guided by molecular dynamics protocols. A technique to calculate the quantum spectra of protein vibrations was introduced.

  5. Accurate direct Eulerian simulation of dynamic elastic-plastic flow

    SciTech Connect

    Kamm, James R; Walter, John W

    2009-01-01

    The simulation of dynamic, large strain deformation is an important, difficult, and unsolved computational challenge. Existing Eulerian schemes for dynamic material response are plagued by unresolved issues. We present a new scheme for the first-order system of elasto-plasticity equations in the Eulerian frame. This system has an intrinsic constraint on the inverse deformation gradient. Standard Godunov schemes do not satisfy this constraint. The method of Flux Distributions (FD) was devised to discretely enforce such constraints for numerical schemes with cell-centered variables. We describe a Flux Distribution approach that enforces the inverse deformation gradient constraint. As this approach is new and novel, we do not yet have numerical results to validate our claims. This paper is the first installment of our program to develop this new method.

  6. Dynamic force matching: Construction of dynamic coarse-grained models with realistic short time dynamics and accurate long time dynamics

    NASA Astrophysics Data System (ADS)

    Davtyan, Aram; Voth, Gregory A.; Andersen, Hans C.

    2016-12-01

    We recently developed a dynamic force matching technique for converting a coarse-grained (CG) model of a molecular system, with a CG potential energy function, into a dynamic CG model with realistic dynamics [A. Davtyan et al., J. Chem. Phys. 142, 154104 (2015)]. This is done by supplementing the model with additional degrees of freedom, called "fictitious particles." In that paper, we tested the method on CG models in which each molecule is coarse-grained into one CG point particle, with very satisfactory results. When the method was applied to a CG model of methanol that has two CG point particles per molecule, the results were encouraging but clearly required improvement. In this paper, we introduce a new type (called type-3) of fictitious particle that exerts forces on the center of mass of two CG sites. A CG model constructed using type-3 fictitious particles (as well as type-2 particles previously used) gives a much more satisfactory dynamic model for liquid methanol. In particular, we were able to construct a CG model that has the same self-diffusion coefficient and the same rotational relaxation time as an all-atom model of liquid methanol. Type-3 particles and generalizations of it are likely to be useful in converting more complicated CG models into dynamic CG models.

  7. Dynamic pseudos: How accurate outside their parent case?

    SciTech Connect

    Ekrann, S.; Mykkeltveit, J.

    1995-12-31

    If properly constructed, dynamic pseudos allow the parent solution from which they were derived to be exactly reproduced, in a certain well-defined sense, in a subsequent coarse grid simulation. The paper reports extensive numerical experimentation, in 1D homogeneous and heterogeneous media, to determine the performance of pseudos when used outside their parent case. The authors perturb fluid viscosities and injection rate, as well as realization. Parent solutions are produced analytically, via a generalization of the Buckley-Leverett technique, as are true solutions in off-parent cases. Capillarity is neglected in these experiments, while gravity is sometimes retained in order to force rate sensitivity.

  8. Scalable Molecular Dynamics with NAMD

    PubMed Central

    Phillips, James C.; Braun, Rosemary; Wang, Wei; Gumbart, James; Tajkhorshid, Emad; Villa, Elizabeth; Chipot, Christophe; Skeel, Robert D.; Kalé, Laxmikant; Schulten, Klaus

    2008-01-01

    NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This paper, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Next, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, e.g., the Tcl scripting language. Finally, the paper provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu. PMID:16222654

  9. Efficient and accurate simulation of dynamic dielectric objects.

    PubMed

    Barros, Kipton; Sinkovits, Daniel; Luijten, Erik

    2014-02-14

    Electrostatic interactions between dielectric objects are complex and of a many-body nature, owing to induced surface bound charge. We present a collection of techniques to simulate dynamical dielectric objects. We calculate the surface bound charge from a matrix equation using the Generalized Minimal Residue method (GMRES). Empirically, we find that GMRES converges very quickly. Indeed, our detailed analysis suggests that the relevant matrix has a very compact spectrum for all non-degenerate dielectric geometries. Each GMRES iteration can be evaluated using a fast Ewald solver with cost that scales linearly or near-linearly in the number of surface charge elements. We analyze several previously proposed methods for calculating the bound charge, and show that our approach compares favorably.

  10. Better, Cheaper, Faster Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent, revolutionary progress in genomics and structural, molecular and cellular biology has created new opportunities for molecular-level computer simulations of biological systems by providing vast amounts of data that require interpretation. These opportunities are further enhanced by the increasing availability of massively parallel computers. For many problems, the method of choice is classical molecular dynamics (iterative solving of Newton's equations of motion). It focuses on two main objectives. One is to calculate the relative stability of different states of the system. A typical problem that has' such an objective is computer-aided drug design. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), "native" state. Perhaps the best example of such a problem is protein folding. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to "quasi non-ergodicity", whereby a part of phase space is inaccessible on time scales of the simulation. To overcome this difficulty and to extend molecular dynamics to "biological" time scales (millisecond or longer) new physical formulations and new algorithmic developments are required. To be efficient they should account for natural limitations of multi-processor computer architecture. I will present work along these lines done in my group. In particular, I will focus on a new approach to calculating the free energies (stability) of different states and to overcoming "the curse of rare events". I will also discuss algorithmic improvements to multiple time step methods and to the treatment of slowly decaying, log-ranged, electrostatic effects.

  11. Wavelet Analysis for Molecular Dynamics

    DTIC Science & Technology

    2015-06-01

    simulation (and the computational work performed in the process). Slower processes, such as torsions and translations, are usually the more relevant ones. The...is no longer as simple as for H2O, nor are the eigenvalues except 0 simple; for the generalized Amber force field (GAFF), they are 14.7 and...short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. 9. Sun H, Mumby SJ, Maple JR, Hagler AT. An ab initio CFF93 all-atom force field for

  12. Non-Equilibrium Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ciccotti, Giovanni; Kapral, Raymond; Sergi, Alessandro

    Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and non-equilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws and the microscopic expressions for the transport properties that enter the constitutive relations. If the system is displaced far from equilibrium, no fully general theory exists to treat such systems. By restricting consideration to a class of non-equilibrium states which arise from perturbations (linear or non-linear) of an equilibrium state, methods can be developed to treat non-equilibrium states. Furthermore, non-equilibrium molecular dynamics (NEMD) simulation methods can be devised to provide estimates for the transport properties of these systems.

  13. Molecular dynamics of interface rupture

    NASA Technical Reports Server (NTRS)

    Koplik, Joel; Banavar, Jayanth R.

    1993-01-01

    Several situations have been studied in which a fluid-vapor or fluid-fluid interface ruptures, using molecular dynamics simulations of 3000 to 20,000 Lennard-Jones molecules in three dimensions. The cases studied are the Rayleigh instability of a liquid thread, the burst of a liquid drop immersed in a second liquid undergoing shear, and the rupture of a liquid sheet in an extensional flow. The late stages of the rupture process involve the gradual withdrawal of molecules from a thinning neck, or the appearance and growth of holes in a sheet. In all cases, it is found that despite the small size of the systems studied, tens of angstroms, the dynamics is in at least qualitative accord with the behavior expected from continuum calculations, and in some cases the agreement is to within tens of percent. Remarkably, this agreement occurs even though the Eulerian velocity and stress fields are essentially unmeasurable - dominated by thermal noise. The limitations and prospects for such molecular simulation techniques are assessed.

  14. Coarse-grained protein molecular dynamics simulations.

    PubMed

    Derreumaux, Philippe; Mousseau, Normand

    2007-01-14

    A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Abeta16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50 ns time scale. Based on two 220 ns trajectories starting from disordered chains, we find that four Abeta16-22 peptides can form a three-stranded beta sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.

  15. Coarse-grained protein molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Derreumaux, Philippe; Mousseau, Normand

    2007-01-01

    A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Aβ16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50ns time scale. Based on two 220ns trajectories starting from disordered chains, we find that four Aβ16-22 peptides can form a three-stranded β sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.

  16. Reaction Ensemble Molecular Dynamics: Direct Simulation of the Dynamic Equilibrium Properties of Chemically Reacting Mixtures

    DTIC Science & Technology

    2006-09-01

    Therefore, dynamic quantities of reaction mixtures such as the velocity autocorrelation functions and the diffusion coefficients can be accurately...using the virial expression [25]. A standard NVT molecular dynamics method was em- ployed with the equations of motion solved using the Verlet leapfrog...configurational energy, pressure, and species concen- trations) are compared to quantities calculated by the RxMC approach. Second , the dynamic quantities

  17. Nonadiabatic Molecular Dynamics with Trajectories

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano

    2012-02-01

    In the mixed quantum-classical description of molecular systems, only the quantum character of the electronic degrees of freedom is considered while the nuclear motion is treated at a classical level. In the adiabatic case, this picture corresponds to the Born-Oppenheimer limit where the nuclei move as point charges on the potential energy surface (PES) associated with a given electronic state. Despite the success of this approximation, many physical and chemical processes do not fall in the regime where nuclei and electrons can be considered decoupled. In particular, most photoreactions pass through regions of the PES in which electron-nuclear quantum interference effects are sizeable and often crucial for a correct description of the phenomena. Recently, we have developed a trajectory-based nonadiabatic molecular dynamics scheme that describes the nuclear wavepacket as an ensemble of particles following classical trajectories on PESs derived from time-dependent density functional theory (TDDFT) [1]. The method is based on Tully's fewest switches trajectories surface hopping (TSH) where the nonadiabatic coupling elements between the different potential energy surfaces are computed on-the-fly as functionals of the ground state electron density or, equivalently, of the corresponding Kohn-Sham orbitals [2]. Here, we present the theoretical fundamentals of our approach together with an extension that allows for the direct coupling of the dynamics to an external electromagnetic field [3] as well as to the external potential generated by the environment (solvent effects) [4]. The method is applied to the study of the photodissociation dynamics of simple molecules in gas phase and to the description of the fast excited state dynamics of molecules in solution (in particular Ruthenium (II) tris(bipyridine) in water). [4pt] [1] E. Tapavicza, I. Tavernelli, U. Rothlisberger, Phys. Rev. Lett., 98, (2007) 023001. [0pt] [2] Tavernelli I.; Tapavicza E.; Rothlisberger U., J. Chem

  18. Uncertainty quantification in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Rizzi, Francesco

    This dissertation focuses on uncertainty quantification (UQ) in molecular dynamics (MD) simulations. The application of UQ to molecular dynamics is motivated by the broad uncertainty characterizing MD potential functions and by the complexity of the MD setting, where even small uncertainties can be amplified to yield large uncertainties in the model predictions. Two fundamental, distinct sources of uncertainty are investigated in this work, namely parametric uncertainty and intrinsic noise. Intrinsic noise is inherently present in the MD setting, due to fluctuations originating from thermal effects. Averaging methods can be exploited to reduce the fluctuations, but due to finite sampling, this effect cannot be completely filtered, thus yielding a residual uncertainty in the MD predictions. Parametric uncertainty, on the contrary, is introduced in the form of uncertain potential parameters, geometry, and/or boundary conditions. We address the UQ problem in both its main components, namely the forward propagation, which aims at characterizing how uncertainty in model parameters affects selected observables, and the inverse problem, which involves the estimation of target model parameters based on a set of observations. The dissertation highlights the challenges arising when parametric uncertainty and intrinsic noise combine to yield non-deterministic, noisy MD predictions of target macroscale observables. Two key probabilistic UQ methods, namely Polynomial Chaos (PC) expansions and Bayesian inference, are exploited to develop a framework that enables one to isolate the impact of parametric uncertainty on the MD predictions and, at the same time, properly quantify the effect of the intrinsic noise. Systematic applications to a suite of problems of increasing complexity lead to the observation that an uncertain PC representation built via Bayesian regression is the most suitable model for the representation of uncertain MD predictions of target observables in the

  19. Molecular dynamics of membrane proteins.

    SciTech Connect

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  20. On the errors in molecular dipole moments derived from accurate diffraction data.

    PubMed

    Coppens; Volkov; Abramov; Koritsanszky

    1999-09-01

    The error in the molecular dipole moment as derived from accurate X-ray diffraction data is shown to be origin dependent in the general case. It is independent of the choice of origin if an electroneutrality constraint is introduced, even when additional constraints are applied to the monopole populations. If a constraint is not applied to individual moieties, as is appropriate for multicomponent crystals or crystals containing molecular ions, the geometric center of the entity considered is a suitable choice of origin for the error treatment.

  1. Direct anharmonic correction method by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Li; Li, Rui; Zhang, Xiu-Lu; Qu, Nuo; Cai, Ling-Cang

    2017-04-01

    The quick calculation of accurate anharmonic effects of lattice vibrations is crucial to the calculations of thermodynamic properties, the construction of the multi-phase diagram and equation of states of materials, and the theoretical designs of new materials. In this paper, we proposed a direct free energy interpolation (DFEI) method based on the temperature dependent phonon density of states (TD-PDOS) reduced from molecular dynamics simulations. Using the DFEI method, after anharmonic free energy corrections we reproduced the thermal expansion coefficients, the specific heat, the thermal pressure, the isothermal bulk modulus, and the Hugoniot P- V- T relationships of Cu easily and accurately. The extensive tests on other materials including metal, alloy, semiconductor and insulator also manifest that the DFEI method can easily uncover the rest anharmonicity that the quasi-harmonic approximation (QHA) omits. It is thus evidenced that the DFEI method is indeed a very efficient method used to conduct anharmonic effect corrections beyond QHA. More importantly it is much more straightforward and easier compared to previous anharmonic methods.

  2. Modeling Nanocomposites for Molecular Dynamics (MD) Simulations

    DTIC Science & Technology

    2015-01-01

    Maximum 200 Words) The minimum energy configuration for Molecular Dynamics (MD) simulations is found for a carbon nanotube (CNT)/polymer...Carbon Nanotubes (CNTs), Molecular Dynamics Simulations 15. NUMBER OF PAGES 18 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...fiber composites have shown success in improving mechanical properties. Carbon nanotube (CNT)-based nanocomposites have been studied for

  3. Dynamical Localization in Molecular Systems.

    NASA Astrophysics Data System (ADS)

    Wang, Xidi

    In the first four chapters of this thesis we concentrate on the Davydov model which describes the vibrational energy quanta of Amide I bonds (C=O bonds on the alpha -helix) coupled to the acoustic phonon modes of the alpha-helix backbone in the form of a Frohlich Hamiltonian. Following a brief introduction in chapter one, in chapter two we formulate the dynamics of vibrational quanta at finite temperature by using coherent state products. The fluctuation-dissipation relation is derived. At zero temperature, in the continuum limit, we recover the original results of Davydov. We also achieve good agreement with numerical simulations. In chapter three, the net contraction of the lattice is calculated exactly at any temperature, and its relation to the so -call "topological stability" of the Davydov soliton is discussed. In the second section of the chapter three we calculate the overtone spectra of crystalline acetanilide (according to some opinions ACN provides experimental evidence for the existence of Davydov solitons). Good agreement with experimental data has been obtained. In chapter four we study the self-trapped vibrational excitations by the Quantum Monte Carlo technique. For a single excitation, the temperature dependence of different physical observables is calculated. The quasi-particle which resembles the Davydov soliton has been found to be fairly narrow using the most commonly used data for the alpha -helix; at temperatures above a few Kelvin, the quasi-particle reaches its smallest limit (extends over three sites), which implies diffusive motion of the small polaron-like quasi-particle at high temperatures. For the multi-excitation case, bound pairs and clusters of excitations are found at low temperatures; they gradually dissociate when the temperature of the system is increased as calculated from the density-density correlation function. In the last chapter of this thesis, we study a more general model of dynamical local modes in molecular systems

  4. Quantum wave packet ab initio molecular dynamics: an approach to study quantum dynamics in large systems.

    PubMed

    Iyengar, Srinivasan S; Jakowski, Jacek

    2005-03-15

    A methodology to efficiently conduct simultaneous dynamics of electrons and nuclei is presented. The approach involves quantum wave packet dynamics using an accurate banded, sparse and Toeplitz representation for the discrete free propagator, in conjunction with ab initio molecular dynamics treatment of the electronic and classical nuclear degree of freedom. The latter may be achieved either by using atom-centered density-matrix propagation or by using Born-Oppenheimer dynamics. The two components of the methodology, namely, quantum dynamics and ab initio molecular dynamics, are harnessed together using a time-dependent self-consistent field-like coupling procedure. The quantum wave packet dynamics is made computationally robust by using adaptive grids to achieve optimized sampling. One notable feature of the approach is that important quantum dynamical effects including zero-point effects, tunneling, as well as over-barrier reflections are treated accurately. The electronic degrees of freedom are simultaneously handled at accurate levels of density functional theory, including hybrid or gradient corrected approximations. Benchmark calculations are provided for proton transfer systems and the dynamics results are compared with exact calculations to determine the accuracy of the approach.

  5. Molecular Dynamics Simulation of Supercritical Spray Phenomena

    DTIC Science & Technology

    2008-09-26

    Dynamics of the Rheological and Structural Properties of Linear and Branched Molecules. Simple Shear and Poiseuille Flows ; Instabilities and Slip...Michael Barrucco Publications: "Comparison of Wall Models for the Molecular Dynamics Simulation of Micro flows ," R. D. Branam and M. M...Performance 3. DATES COVERED (From - To) 1 Dec. 2003 - 31 May 2008 4. TITLE AND SUBTITLE Molecular Dynamics Simulation of Supercritical

  6. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver

    2015-06-01

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  7. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.

    PubMed

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O Anatole; Müller, Klaus-Robert; Tkatchenko, Alexandre

    2015-06-18

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  8. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  9. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    SciTech Connect

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  10. Ab initio molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi

    2000-12-01

    We present an accurate calculational scheme for many-body systems composed of electrons and nuclei, by path integral molecular dynamics technique combined with the ab initio molecular orbital theory. Based upon the scheme, the simulation of a water molecule at room temperature is demonstrated, applying all-electron calculation at the Hartree-Fock level of theory.

  11. Communication: Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics

    SciTech Connect

    Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.

    2015-05-21

    We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the “Classical Wigner” approximation. Here, we show that the further approximation of this “Matsubara dynamics” gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.

  12. Molecular rheology of perfluoropolyether lubricant via nonequilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Guo, Qian; Chung, Pil Seung; Chen, Haigang; Jhon, Myung S.

    2006-04-01

    Molecular rheology of perfluoropolyether (PFPE) systems is particularly important in designing effective lubricants that control the friction and wear in tribological applications. Using the coarse-grained, bead-spring model, equilibrium molecular dynamics based on the Langevin equation in a quiescent flow was first employed to examine the nanostructure of PFPE. Further, by integrating the modified Langevin equation and imposing the Lees-Edwards boundary condition, nonequilibrium molecular dynamics of steady shear was investigated. We observe that the shear viscosity of PFPE system depends strongly on molecular architecture (e.g., molecular weight and endgroup functionality) and external conditions (e.g., temperature and shear rate). Our study of the flow activation energy/entropy and their correlations with nanostructure visualization showed that the PFPE structure was substantially modified.

  13. Fundamental frequency from classical molecular dynamics.

    PubMed

    Yamada, Tomonori; Aida, Misako

    2015-02-07

    We give a theoretical validation for calculating fundamental frequencies of a molecule from classical molecular dynamics (MD) when its anharmonicity is small enough to be treated by perturbation theory. We specifically give concrete answers to the following questions: (1) What is the appropriate initial condition of classical MD to calculate the fundamental frequency? (2) From that condition, how accurately can we extract fundamental frequencies of a molecule? (3) What is the benefit of using ab initio MD for frequency calculations? Our analytical approaches to those questions are classical and quantum normal form theories. As numerical examples we perform two types of MD to calculate fundamental frequencies of H2O with MP2/aug-cc-pVTZ: one is based on the quartic force field and the other one is direct ab initio MD, where the potential energies and the gradients are calculated on the fly. From those calculations, we show comparisons of the frequencies from MD with the post vibrational self-consistent field calculations, second- and fourth-order perturbation theories, and experiments. We also apply direct ab initio MD to frequency calculations of C-H vibrational modes of tetracene and naphthalene. We conclude that MD can give the same accuracy in fundamental frequency calculation as second-order perturbation theory but the computational cost is lower for large molecules.

  14. Molecular dynamics on hypercube parallel computers

    NASA Astrophysics Data System (ADS)

    Smith, W.

    1991-03-01

    The implementation of molecular dynamics on parallel computers is described, with particular reference to hypercube computers. Three particular algorithms are described: replicated data (RD); systolic loop (SLS-G), and parallelised link-cells (PLC), all of which have good load balancing. The performance characteristics of each algorithm and the factors affecting their scaling properties are discussed. The article is pedagogic in intent, to introduce a novice to the main aspects of parallel computing in molecular dynamics.

  15. Modeling the Hydrogen Bond within Molecular Dynamics

    ERIC Educational Resources Information Center

    Lykos, Peter

    2004-01-01

    The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.

  16. Molecular ions, Rydberg spectroscopy and dynamics

    SciTech Connect

    Jungen, Ch.

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  17. Protein dynamics: Moore's law in molecular biology.

    PubMed

    Vendruscolo, Michele; Dobson, Christopher M

    2011-01-25

    The millisecond barrier has been broken in molecular dynamics simulations of proteins. Such simulations are increasingly revealing the inner workings of biological systems by generating atomic-level descriptions of their behaviour that make testable predictions about key molecular processes.

  18. Molecular Dynamics Simulations of Simple Liquids

    ERIC Educational Resources Information Center

    Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.

    2004-01-01

    An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.

  19. An accurate predictor-corrector HOC solver for the two dimensional Riemann problem of gas dynamics

    NASA Astrophysics Data System (ADS)

    Gogoi, Bidyut B.

    2016-10-01

    The work in the present manuscript is concerned with the simulation of twodimensional (2D) Riemann problem of gas dynamics. We extend our recently developed higher order compact (HOC) method from one-dimensional (1D) to 2D solver and simulate the problem on a square geometry with different initial conditions. The method is fourth order accurate in space and second order accurate in time. We then compare our results with the available benchmark results. The comparison shows an excellent agreement of our results with the existing ones in the literature. Being a finite difference solver, it is quite straight-forward and simple.

  20. Molecular dynamics simulations of nanostructures

    NASA Astrophysics Data System (ADS)

    Yuan, Zaoshi

    This dissertation is focused on multimillion-atom molecular dynamics (MD) simulations of nanoscale materials. In the past decade, nanoscale materials have made significant commercial impacts, which will potentially lead to the next industrial revolution. The interest lies in the novel and promising features nanoscale materials exhibit due to their confined sizes. However, not all novel behaviors are understood or controllable. Many uncontrollable parameters, e.g. defects and dangling bonds, are known to hinder the performance of nanodevices. Solutions to these problems rely on our understanding of fundamental elements in nanoscience: isolated individual nanostructures and their assemblies. In this dissertation, we will address atomistic foundations of several problems of technological importance in nanoscience. Specifically, three basic problems are discussed: (1) embrittlement of nanocrystalline metal; (2) novel thermo-mechanical behaviors of nanowires (NWs); and (3) planar defect generation in NWs. With a scalable algorithm implemented on massively parallel computing platforms and various data mining methods, MD simulations can provide valuable insights into these problems. An essential role of sulfur segregation-induced amorphization of crystalline nickel was recently discovered experimentally, but the atomistic mechanism of the amorphization remains unexplained. Our MD simulations reveal that the large steric size of sulfur impurity causes strong sulfur-sulfur interaction mediated by lattice distortion, which leads to amorphization near the percolation threshold at the sulfur-sulfur network in nickel crystal. The generality of the mechanism due to the percolation of an impurity network is further confirmed by a model binary system. In our study of novel behaviors of semiconductor NWs, MD simulations construct a rich size-temperature `phase diagram' for the mechanical response of a zinc-oxide NW under tension. For smaller diameters and higher temperatures, novel

  1. A hierarchical approach to accurate predictions of macroscopic thermodynamic behavior from quantum mechanics and molecular simulations

    NASA Astrophysics Data System (ADS)

    Garrison, Stephen L.

    2005-07-01

    The combination of molecular simulations and potentials obtained from quantum chemistry is shown to be able to provide reasonably accurate thermodynamic property predictions. Gibbs ensemble Monte Carlo simulations are used to understand the effects of small perturbations to various regions of the model Lennard-Jones 12-6 potential. However, when the phase behavior and second virial coefficient are scaled by the critical properties calculated for each potential, the results obey a corresponding states relation suggesting a non-uniqueness problem for interaction potentials fit to experimental phase behavior. Several variations of a procedure collectively referred to as quantum mechanical Hybrid Methods for Interaction Energies (HM-IE) are developed and used to accurately estimate interaction energies from CCSD(T) calculations with a large basis set in a computationally efficient manner for the neon-neon, acetylene-acetylene, and nitrogen-benzene systems. Using these results and methods, an ab initio, pairwise-additive, site-site potential for acetylene is determined and then improved using results from molecular simulations using this initial potential. The initial simulation results also indicate that a limited range of energies important for accurate phase behavior predictions. Second virial coefficients calculated from the improved potential indicate that one set of experimental data in the literature is likely erroneous. This prescription is then applied to methanethiol. Difficulties in modeling the effects of the lone pair electrons suggest that charges on the lone pair sites negatively impact the ability of the intermolecular potential to describe certain orientations, but that the lone pair sites may be necessary to reasonably duplicate the interaction energies for several orientations. Two possible methods for incorporating the effects of three-body interactions into simulations within the pairwise-additivity formulation are also developed. A low density

  2. Modeling hybrid perovskites by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  3. Modeling hybrid perovskites by molecular dynamics.

    PubMed

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  4. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  5. Retrieving the Molecular Composition of Planet-Forming Material: An Accurate Non-LTE Radiative Transfer Code for JWST

    NASA Astrophysics Data System (ADS)

    Pontoppidan, Klaus

    Based on the observed distributions of exoplanets and dynamical models of their evolution, the primary planet-forming regions of protoplanetary disks are thought to span distances of 1-20 AU from typical stars. A key observational challenge of the next decade will be to understand the links between the formation of planets in protoplanetary disks and the chemical composition of exoplanets. Potentially habitable planets in particular are likely formed by solids growing within radii of a few AU, augmented by unknown contributions from volatiles formed at larger radii of 10-50 AU. The basic chemical composition of these inner disk regions is characterized by near- to far-infrared (2-200 micron) emission lines from molecular gas at temperatures of 50-1500 K. A critical step toward measuring the chemical composition of planet-forming regions is therefore to convert observed infrared molecular line fluxes, profiles and images to gas temperatures, densities and molecular abundances. However, current techniques typically employ approximate radiative transfer methods and assumptions of local thermodynamic equilibrium (LTE) to retrieve abundances, leading to uncertainties of orders of magnitude and inconclusive comparisons to chemical models. Ultimately, the scientific impact of the high quality spectroscopic data expected from the James Webb Space Telescope (JWST) will be limited by the availability of radiative transfer tools for infrared molecular lines. We propose to develop a numerically accurate, non-LTE 3D line radiative transfer code, needed to interpret mid-infrared molecular line observations of protoplanetary and debris disks in preparation for the James Webb Space Telescope (JWST). This will be accomplished by adding critical functionality to the existing Monte Carlo code LIME, which was originally developed to support (sub)millimeter interferometric observations. In contrast to existing infrared codes, LIME calculates the exact statistical balance of arbitrary

  6. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.

  7. Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies.

    PubMed

    Arielly, Rani; Ofarim, Ayelet; Noy, Gilad; Selzer, Yoram

    2011-07-13

    Current rectification, i.e., induction of dc current by oscillating electromagnetic fields, is demonstrated in molecular junctions at an optical frequency. The magnitude of rectification is used to accurately determine the effective oscillating potentials in the junctions induced by the irradiating laser. Since the gap size of the junctions used in this study is precisely determined by the length of the embedded molecules, the oscillating potential can be used to calculate the plasmonic enhancement of the electromagnetic field in the junctions. With a set of junctions based on alkyl thiolated molecules with identical HOMO-LUMO gap and different lengths, an exponential dependence of the plasmonic field enhancement on gap size is observed.

  8. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology.

    PubMed

    Spinelli, Orietta; Rambaldi, Alessandro; Rigo, Francesca; Zanghì, Pamela; D'Agostini, Elena; Amicarelli, Giulia; Colotta, Francesco; Divona, Mariadomenica; Ciardi, Claudia; Coco, Francesco Lo; Minnucci, Giulia

    2015-01-01

    The diagnostic work-up of acute promyelocytic leukemia (APL) includes the cytogenetic demonstration of the t(15;17) translocation and/or the PML-RARA chimeric transcript by RQ-PCR or RT-PCR. This latter assays provide suitable results in 3-6 hours. We describe here two new, rapid and specific assays that detect PML-RARA transcripts, based on the RT-QLAMP (Reverse Transcription-Quenching Loop-mediated Isothermal Amplification) technology in which RNA retrotranscription and cDNA amplification are carried out in a single tube with one enzyme at one temperature, in fluorescence and real time format. A single tube triplex assay detects bcr1 and bcr3 PML-RARA transcripts along with GUS housekeeping gene. A single tube duplex assay detects bcr2 and GUSB. In 73 APL cases, these assays detected in 16 minutes bcr1, bcr2 and bcr3 transcripts. All 81 non-APL samples were negative by RT-QLAMP for chimeric transcripts whereas GUSB was detectable. In 11 APL patients in which RT-PCR yielded equivocal breakpoint type results, RT-QLAMP assays unequivocally and accurately defined the breakpoint type (as confirmed by sequencing). Furthermore, RT-QLAMP could amplify two bcr2 transcripts with particularly extended PML exon 6 deletions not amplified by RQ-PCR. RT-QLAMP reproducible sensitivity is 10(-3) for bcr1 and bcr3 and 10(-)2 for bcr2 thus making this assay particularly attractive at diagnosis and leaving RQ-PCR for the molecular monitoring of minimal residual disease during the follow up. In conclusion, PML-RARA RT-QLAMP compared to RT-PCR or RQ-PCR is a valid improvement to perform rapid, simple and accurate molecular diagnosis of APL.

  9. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology

    PubMed Central

    Spinelli, Orietta; Rambaldi, Alessandro; Rigo, Francesca; Zanghì, Pamela; D'Agostini, Elena; Amicarelli, Giulia; Colotta, Francesco; Divona, Mariadomenica; Ciardi, Claudia; Coco, Francesco Lo; Minnucci, Giulia

    2015-01-01

    The diagnostic work-up of acute promyelocytic leukemia (APL) includes the cytogenetic demonstration of the t(15;17) translocation and/or the PML-RARA chimeric transcript by RQ-PCR or RT-PCR. This latter assays provide suitable results in 3-6 hours. We describe here two new, rapid and specific assays that detect PML-RARA transcripts, based on the RT-QLAMP (Reverse Transcription-Quenching Loop-mediated Isothermal Amplification) technology in which RNA retrotranscription and cDNA amplification are carried out in a single tube with one enzyme at one temperature, in fluorescence and real time format. A single tube triplex assay detects bcr1 and bcr3 PML-RARA transcripts along with GUS housekeeping gene. A single tube duplex assay detects bcr2 and GUSB. In 73 APL cases, these assays detected in 16 minutes bcr1, bcr2 and bcr3 transcripts. All 81 non-APL samples were negative by RT-QLAMP for chimeric transcripts whereas GUSB was detectable. In 11 APL patients in which RT-PCR yielded equivocal breakpoint type results, RT-QLAMP assays unequivocally and accurately defined the breakpoint type (as confirmed by sequencing). Furthermore, RT-QLAMP could amplify two bcr2 transcripts with particularly extended PML exon 6 deletions not amplified by RQ-PCR. RT-QLAMP reproducible sensitivity is 10−3 for bcr1 and bcr3 and 10−2 for bcr2 thus making this assay particularly attractive at diagnosis and leaving RQ-PCR for the molecular monitoring of minimal residual disease during the follow up. In conclusion, PML-RARA RT-QLAMP compared to RT-PCR or RQ-PCR is a valid improvement to perform rapid, simple and accurate molecular diagnosis of APL. PMID:25815362

  10. PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-06-01

    The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).

  11. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  12. Random Matrix Theory in molecular dynamics analysis.

    PubMed

    Palese, Luigi Leonardo

    2015-01-01

    It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes.

  13. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments

    PubMed Central

    De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944

  14. Clustering molecular dynamics trajectories for optimizing docking experiments.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.

  15. Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics.

    PubMed

    Montoya-Castillo, Andrés; Reichman, David R

    2016-05-14

    We present a formalism that explicitly unifies the commonly used Nakajima-Zwanzig approach for reduced density matrix dynamics with the more versatile Mori theory in the context of nonequilibrium dynamics. Employing a Dyson-type expansion to circumvent the difficulty of projected dynamics, we obtain a self-consistent equation for the memory kernel which requires only knowledge of normally evolved auxiliary kernels. To illustrate the properties of the current approach, we focus on the spin-boson model and limit our attention to the use of a simple and inexpensive quasi-classical dynamics, given by the Ehrenfest method, for the calculation of the auxiliary kernels. For the first time, we provide a detailed analysis of the dependence of the properties of the memory kernels obtained via different projection operators, namely, the thermal (Redfield-type) and population based (NIBA-type) projection operators. We further elucidate the conditions that lead to short-lived memory kernels and the regions of parameter space to which this program is best suited. Via a thorough analysis of the different closures available for the auxiliary kernels and the convergence properties of the self-consistently extracted memory kernel, we identify the mechanisms whereby the current approach leads to a significant improvement over the direct usage of standard semi- and quasi-classical dynamics.

  16. Molecular dynamics simulations of substitutional diffusion

    SciTech Connect

    Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob

    2016-12-18

    In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example, we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.

  17. Molecular dynamics simulations of substitutional diffusion

    DOE PAGES

    Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob

    2016-12-18

    In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example,more » we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.« less

  18. Accurate structure and dynamics of the metal-site of paramagnetic metalloproteins from NMR parameters using natural bond orbitals.

    PubMed

    Hansen, D Flemming; Westler, William M; Kunze, Micha B A; Markley, John L; Weinhold, Frank; Led, Jens J

    2012-03-14

    A natural bond orbital (NBO) analysis of unpaired electron spin density in metalloproteins is presented, which allows a fast and robust calculation of paramagnetic NMR parameters. Approximately 90% of the unpaired electron spin density occupies metal-ligand NBOs, allowing the majority of the density to be modeled by only a few NBOs that reflect the chemical bonding environment. We show that the paramagnetic relaxation rate of protons can be calculated accurately using only the metal-ligand NBOs and that these rates are in good agreement with corresponding rates measured experimentally. This holds, in particular, for protons of ligand residues where the point-dipole approximation breaks down. To describe the paramagnetic relaxation of heavy nuclei, also the electron spin density in the local orbitals must be taken into account. Geometric distance restraints for (15)N can be derived from the paramagnetic relaxation enhancement and the Fermi contact shift when local NBOs are included in the analysis. Thus, the NBO approach allows us to include experimental paramagnetic NMR parameters of (15)N nuclei as restraints in a structure optimization protocol. We performed a molecular dynamics simulation and structure determination of oxidized rubredoxin using the experimentally obtained paramagnetic NMR parameters of (15)N. The corresponding structures obtained are in good agreement with the crystal structure of rubredoxin. Thus, the NBO approach allows an accurate description of the geometric structure and the dynamics of metalloproteins, when NMR parameters are available of nuclei in the immediate vicinity of the metal-site.

  19. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers.

    PubMed

    Liu, Yun; Lehn, Jean-Marie; Hirsch, Anna K H

    2017-02-21

    Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular

  20. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers

    PubMed Central

    2017-01-01

    Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition

  1. Understanding Modularity in Molecular Networks Requires Dynamics

    PubMed Central

    Alexander, Roger P.; Kim, Philip M.; Emonet, Thierry; Gerstein, Mark B.

    2014-01-01

    The era of genome sequencing has produced long lists of the molecular parts from which cellular machines are constructed. A fundamental goal in systems biology is to understand how cellular behavior emerges from the interaction in time and space of genetically encoded molecular parts, as well as non-genetically encoded small molecules. Networks provide a natural framework for the organization and quantitative representation of all the available data about molecular interactions. The structural and dynamic properties of molecular networks have been the subject of intense research. Despite major advances, bridging network structure to dynamics – and therefore to behavior – remains challenging. A key concept of modern engineering that recurs in the functional analysis of biological networks is modularity. Most approaches to molecular network analysis rely to some extent on the assumption that molecular networks are modular – that is, they are separable and can be studied to some degree in isolation. We describe recent advances in the analysis of modularity in biological networks, focusing on the increasing realization that a dynamic perspective is essential to grouping molecules into modules and determining their collective function. PMID:19638611

  2. Molecular dynamic simulations of ocular tablet dissolution.

    PubMed

    Ru, Qian; Fadda, Hala M; Li, Chung; Paul, Daniel; Khaw, Peng T; Brocchini, Steve; Zloh, Mire

    2013-11-25

    Small tablets for implantation into the subconjunctival space in the eye are being developed to inhibit scarring after glaucoma filtration surgery (GFS). There is a need to evaluate drug dissolution at the molecular level to determine how the chemical structure of the active may correlate with dissolution in the nonsink conditions of the conjunctival space. We conducted molecular dynamics simulations to study the dissolution process of tablets derived from two drugs that can inhibit fibrosis after GFS, 5-fluorouracil (5-FU) and the matrix metalloprotease inhibitor (MMPi), ilomastat. The dissolution was simulated in the presence of simple point charge (SPC) water molecules, and the liquid turnover of the aqueous humor in the subconjunctival space was simulated by removal of the dissolved drug molecules at regular intervals and replacement by new water molecules. At the end of the simulation, the total molecular solvent accessible surface area of 5-FU tablets increased by 60 times more than that of ilomastat as a result of tablet swelling and release of molecules into solution. The tablet dissolution pattern shown in our molecular dynamic simulations tends to correlate with experimental release profiles. This work indicates that a series of molecular dynamic simulations can be used to predict the influence of the molecular properties of a drug on its dissolution profile and could be useful during preformulation where sufficient amounts of the drug are not always available to perform dissolution studies.

  3. Molecular scale dynamics of large ring polymers.

    PubMed

    Gooßen, S; Brás, A R; Krutyeva, M; Sharp, M; Falus, P; Feoktystov, A; Gasser, U; Pyckhout-Hintzen, W; Wischnewski, A; Richter, D

    2014-10-17

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.

  4. Molecular Scale Dynamics of Large Ring Polymers

    NASA Astrophysics Data System (ADS)

    Gooßen, S.; Brás, A. R.; Krutyeva, M.; Sharp, M.; Falus, P.; Feoktystov, A.; Gasser, U.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D.

    2014-10-01

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.

  5. Semiclassical guided optimal control of molecular dynamics

    SciTech Connect

    Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.

    2005-10-15

    An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.

  6. Shapiro like steps reveals molecular nanomagnets’ spin dynamics

    SciTech Connect

    Abdollahipour, Babak; Abouie, Jahanfar Ebrahimi, Navid

    2015-09-15

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.

  7. The estimation of tumor cell percentage for molecular testing by pathologists is not accurate.

    PubMed

    Smits, Alexander J J; Kummer, J Alain; de Bruin, Peter C; Bol, Mijke; van den Tweel, Jan G; Seldenrijk, Kees A; Willems, Stefan M; Offerhaus, G Johan A; de Weger, Roel A; van Diest, Paul J; Vink, Aryan

    2014-02-01

    Molecular pathology is becoming more and more important in present day pathology. A major challenge for any molecular test is its ability to reliably detect mutations in samples consisting of mixtures of tumor cells and normal cells, especially when the tumor content is low. The minimum percentage of tumor cells required to detect genetic abnormalities is a major variable. Information on tumor cell percentage is essential for a correct interpretation of the result. In daily practice, the percentage of tumor cells is estimated by pathologists on hematoxylin and eosin (H&E)-stained slides, the reliability of which has been questioned. This study aimed to determine the reliability of estimated tumor cell percentages in tissue samples by pathologists. On 47 H&E-stained slides of lung tumors a tumor area was marked. The percentage of tumor cells within this area was estimated independently by nine pathologists, using categories of 0-5%, 6-10%, 11-20%, 21-30%, and so on, until 91-100%. As gold standard, the percentage of tumor cells was counted manually. On average, the range between the lowest and the highest estimate per sample was 6.3 categories. In 33% of estimates, the deviation from the gold standard was at least three categories. The mean absolute deviation was 2.0 categories (range between observers 1.5-3.1 categories). There was a significant difference between the observers (P<0.001). If 20% of tumor cells were considered the lower limit to detect a mutation, samples with an insufficient tumor cell percentage (<20%) would have been estimated to contain enough tumor cells in 27/72 (38%) observations, possibly causing false negative results. In conclusion, estimates of tumor cell percentages on H&E-stained slides are not accurate, which could result in misinterpretation of test results. Reliability could possibly be improved by using a training set with feedback.

  8. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em

    2010-05-19

    Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary.

  9. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  10. Reaction dynamics in polyatomic molecular systems

    SciTech Connect

    Miller, W.H.

    1993-12-01

    The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

  11. Accurate formula for conversion of tunneling current in dynamic atomic force spectroscopy

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Sugimoto, Yoshiaki

    2010-07-01

    Recent developments in frequency modulation atomic force microscopy enable simultaneous measurement of frequency shift and time-averaged tunneling current. Determination of the interaction force is facilitated using an analytical formula, valid for arbitrary oscillation amplitudes [Sader and Jarvis, Appl. Phys. Lett. 84, 1801 (2004)]. Here we present the complementary formula for evaluation of the instantaneous tunneling current from the time-averaged tunneling current. This simple and accurate formula is valid for any oscillation amplitude and current law. The resulting theoretical framework allows for simultaneous measurement of the instantaneous tunneling current and interaction force in dynamic atomic force microscopy.

  12. Structural and dynamical properties of hot dense matter by a Thomas-Fermi-Dirac molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lambert, F.; Clérouin, J.; Mazevet, S.

    2006-09-01

    We use a model combining, in a consistent way, orbital-free density functional theory (OF-DFT) and molecular dynamics (MD), to compute the thermodynamical, structural and dynamical properties of Fe and Au plasmas at conditions relevant to astrophysics and inertial confinement fusion (ICF). The newly developed parallel numerical scheme presented here allows to propagate hundreds of particles and to obtain accurate transport properties. This allows us to investigate the validity of the commonly used one-component plasma (OCP) model in predicting the pair correlation, the diffusion and viscosity coefficients for these two high-temperature high-density plasmas.

  13. Excited State Quantum-Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    The development of a new theoretical, algorithmic, and computational framework is reported describing the corresponding excited state many-body dynamics by applying multiphysics described by classical equations of motion for nuclei and Hartree-Fock/Multi-Configuration Hartree-Fock and multiresolution techniques for solving the quantum part of the problem (i.e. the motion of the electrons). We primarily have in mind reactive and electron-transition dynamics which involves molecular clusters, containing hundreds of atoms, perturbed by a slow ionic/atomic/molecular projectile, with possible applications in plasma-surface interactions, cluster physics, chemistry and biotechnology. The validation of the developed technique is performed at three-body systems. Application to the transition dynamics in small carbon clusters and hydrocarbons perturbed by slow carbon ions resolves some long-standing issues in the ion-surface interactions in fusion tokamaks.

  14. Multifrequency excitation method for rapid and accurate dynamic test of micromachined gyroscope chips.

    PubMed

    Deng, Yan; Zhou, Bin; Xing, Chao; Zhang, Rong

    2014-10-17

    A novel multifrequency excitation (MFE) method is proposed to realize rapid and accurate dynamic testing of micromachined gyroscope chips. Compared with the traditional sweep-frequency excitation (SFE) method, the computational time for testing one chip under four modes at a 1-Hz frequency resolution and 600-Hz bandwidth was dramatically reduced from 10 min to 6 s. A multifrequency signal with an equal amplitude and initial linear-phase-difference distribution was generated to ensure test repeatability and accuracy. The current test system based on LabVIEW using the SFE method was modified to use the MFE method without any hardware changes. The experimental results verified that the MFE method can be an ideal solution for large-scale dynamic testing of gyroscope chips and gyroscopes.

  15. Accurate molecular structure and spectroscopic properties for nucleobases: A combined computational - microwave investigation of 2-thiouracil as a case study

    PubMed Central

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2015-01-01

    The computational composite scheme purposely set up for accurately describing the electronic structure and spectroscopic properties of small biomolecules has been applied to the first study of the rotational spectrum of 2-thiouracil. The experimental investigation was made possible thanks to the combination of the laser ablation technique with Fourier Transform Microwave spectrometers. The joint experimental – computational study allowed us to determine accurate molecular structure and spectroscopic properties for the title molecule, but more important, it demonstrates a reliable approach for the accurate investigation of isolated small biomolecules. PMID:24002739

  16. Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George E

    2009-01-01

    We present a coarse-grained red blood cell (RBC) model with accurate and realistic mechanical properties, rheology and dynamics. The modeled membrane is represented by a triangular mesh which incorporates shear inplane energy, bending energy, and area and volume conservation constraints. The macroscopic membrane elastic properties are imposed through semi-analytic theory, and are matched with those obtained in optical tweezers stretching experiments. Rheological measurements characterized by time-dependent complex modulus are extracted from the membrane thermal fluctuations, and compared with those obtained from the optical magnetic twisting cytometry results. The results allow us to define a meaningful characteristic time of the membrane. The dynamics of RBCs observed in shear flow suggests that a purely elastic model for the RBC membrane is not appropriate, and therefore a viscoelastic model is required. The set of proposed analyses and numerical tests can be used as a complete model testbed in order to calibrate the modeled viscoelastic membranes to accurately represent RBCs in health and disease.

  17. Exploring the Photophysical Properties of Molecular Systems Using Excited State Accelerated ab Initio Molecular Dynamics.

    PubMed

    Ortiz-Sánchez, Juan Manuel; Bucher, Denis; Pierce, Levi C T; Markwick, Phineus R L; McCammon, J Andrew

    2012-08-14

    In the present work, we employ excited state accelerated ab initio molecular dynamics (A-AIMD) to efficiently study the excited state energy landscape and photophysical topology of a variety of molecular systems. In particular, we focus on two important challenges for the modeling of excited electronic states: (i) the identification and characterization of conical intersections and crossing seams, in order to predict different and often competing radiationless decay mechanisms, and (ii) the description of the solvent effect on the absorption and emission spectra of chemical species in solution. In particular, using as examples the Schiff bases formaldimine and salicylidenaniline, we show that A-AIMD can be readily employed to explore the conformational space around crossing seams in molecular systems with very different photochemistry. Using acetone in water as an example, we demonstrate that the enhanced configurational space sampling may be used to accurately and efficiently describe both the prominent features and line-shapes of absorption and emission spectra.

  18. Exciton dynamics in perturbed vibronic molecular aggregates

    PubMed Central

    Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.

    2015-01-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  19. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    SciTech Connect

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-21

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C{sub 6} alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C{sub 8} and C{sub 10} between small molecules. We find that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C{sub 8} and 7% for C{sub 10}. Inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.

  20. Exploiting molecular dynamics in Nested Sampling simulations of small peptides

    NASA Astrophysics Data System (ADS)

    Burkoff, Nikolas S.; Baldock, Robert J. N.; Várnai, Csilla; Wild, David L.; Csányi, Gábor

    2016-04-01

    Nested Sampling (NS) is a parameter space sampling algorithm which can be used for sampling the equilibrium thermodynamics of atomistic systems. NS has previously been used to explore the potential energy surface of a coarse-grained protein model and has significantly outperformed parallel tempering when calculating heat capacity curves of Lennard-Jones clusters. The original NS algorithm uses Monte Carlo (MC) moves; however, a variant, Galilean NS, has recently been introduced which allows NS to be incorporated into a molecular dynamics framework, so NS can be used for systems which lack efficient prescribed MC moves. In this work we demonstrate the applicability of Galilean NS to atomistic systems. We present an implementation of Galilean NS using the Amber molecular dynamics package and demonstrate its viability by sampling alanine dipeptide, both in vacuo and implicit solvent. Unlike previous studies of this system, we present the heat capacity curves of alanine dipeptide, whose calculation provides a stringent test for sampling algorithms. We also compare our results with those calculated using replica exchange molecular dynamics (REMD) and find good agreement. We show the computational effort required for accurate heat capacity estimation for small peptides. We also calculate the alanine dipeptide Ramachandran free energy surface for a range of temperatures and use it to compare the results using the latest Amber force field with previous theoretical and experimental results.

  1. Concise NMR approach for molecular dynamics characterizations in organic solids.

    PubMed

    Aliev, Abil E; Courtier-Murias, Denis

    2013-08-22

    Molecular dynamics characterisations in solids can be carried out selectively using dipolar-dephasing experiments. Here we show that the introduction of a sum of Lorentzian and Gaussian functions greatly improve fittings of the "intensity versus time" data for protonated carbons in dipolar-dephasing experiments. The Lorentzian term accounts for remote intra- and intermolecular (1)H-(13)C dipole-dipole interactions, which vary from one molecule to another or for different carbons within the same molecule. Thus, by separating contributions from weak remote interactions, more accurate Gaussian decay constants, T(dd), can be extracted for directly bonded (1)H-(13)C dipole-dipole interactions. Reorientations of the (1)H-(13)C bonds lead to the increase of T(dd), and by measuring dipolar-dephasing constants, insight can be gained into dynamics in solids. We have demonstrated advantages of the method using comparative dynamics studies in the α and γ polymorphs of glycine, cyclic amino acids L-proline, DL-proline and trans-4-hydroxy-L-proline, the Ala residue in different dipeptides, as well as adamantane and hexamethylenetetramine. It was possible to distinguish subtle differences in dynamics of different carbon sites within a molecule in polymorphs and in L- and DL-forms. The presence of overall molecular motions is shown to lead to particularly large differences in dipolar-dephasing experiments. The differences in dynamics can be attributed to differences in noncovalent interactions. In the case of hexamethylenetetramine, for example, the presence of C-H···N interactions leads to nearly rigid molecules. Overall, the method allows one to gain insight into the role of noncovalent interactions in solids and their influence on the molecular dynamics.

  2. Choice of timestep in molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fincham, David

    1986-06-01

    In molecular dynamics computer simulation of liquids it is important to use as large a timestep as possible in order to sample phase space rapidly and save on computer expense. The effect of the resulting algorithm errors in the trajectories of the molecules is not well understood. An empirical investigation into this question is reported. Several simulations differing only in the timestep used are compared. It is found that much larger timesteps than usual can be employed without producing significant errors in observed thermodynamic, structural or dynamic properties.

  3. Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions.

    PubMed

    Montoya-Castillo, Andrés; Reichman, David R

    2017-02-28

    The ability to efficiently and accurately calculate equilibrium time correlation functions of many-body condensed phase quantum systems is one of the outstanding problems in theoretical chemistry. The Nakajima-Zwanzig-Mori formalism coupled to the self-consistent solution of the memory kernel has recently proven to be highly successful for the computation of nonequilibrium dynamical averages. Here, we extend this formalism to treat symmetrized equilibrium time correlation functions for the spin-boson model. Following the first paper in this series [A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. 144, 184104 (2016)], we use a Dyson-type expansion of the projected propagator to obtain a self-consistent solution for the memory kernel that requires only the calculation of normally evolved auxiliary kernels. We employ the approximate mean-field Ehrenfest method to demonstrate the feasibility of this approach. Via comparison with numerically exact results for the correlation function Czz(t)=Re⟨σz(0)σz(t)⟩, we show that the current scheme affords remarkable boosts in accuracy and efficiency over bare Ehrenfest dynamics. We further explore the sensitivity of the resulting dynamics to the choice of kernel closures and the accuracy of the initial canonical density operator.

  4. Molecular dynamics studies of polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.

    2013-10-01

    Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.

  5. Molecular dynamics at constant Cauchy stress.

    PubMed

    Miller, Ronald E; Tadmor, Ellad B; Gibson, Joshua S; Bernstein, Noam; Pavia, Fabio

    2016-05-14

    The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress.

  6. Multiscale molecular dynamics using the matched interface and boundary method

    SciTech Connect

    Geng Weihua; Wei, G.W.

    2011-01-20

    The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems.

  7. Molecular dynamics modelling of solidification in metals

    SciTech Connect

    Boercker, D.B.; Belak, J.; Glosli, J.

    1997-12-31

    Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.

  8. Molecular crowding and protein enzymatic dynamics.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2012-05-21

    The effects of molecular crowding on the enzymatic conformational dynamics and transport properties of adenylate kinase are investigated. This tridomain protein undergoes large scale hinge motions in the course of its enzymatic cycle and serves as prototype for the study of crowding effects on the cyclic conformational dynamics of proteins. The study is carried out at a mesoscopic level where both the protein and the solvent in which it is dissolved are treated in a coarse grained fashion. The amino acid residues in the protein are represented by a network of beads and the solvent dynamics is described by multiparticle collision dynamics that includes effects due to hydrodynamic interactions. The system is crowded by a stationary random array of hard spherical objects. Protein enzymatic dynamics is investigated as a function of the obstacle volume fraction and size. In addition, for comparison, results are presented for a modification of the dynamics that suppresses hydrodynamic interactions. Consistent with expectations, simulations of the dynamics show that the protein prefers a closed conformation for high volume fractions. This effect becomes more pronounced as the obstacle radius decreases for a given volume fraction since the average void size in the obstacle array is smaller for smaller radii. At high volume fractions for small obstacle radii, the average enzymatic cycle time and characteristic times of internal conformational motions of the protein deviate substantially from their values in solution or in systems with small density of obstacles. The transport properties of the protein are strongly affected by molecular crowding. Diffusive motion adopts a subdiffusive character and the effective diffusion coefficients can change by more than an order of magnitude. The orientational relaxation time of the protein is also significantly altered by crowding.

  9. Equipartition Principle for Internal Coordinate Molecular Dynamics.

    PubMed

    Jain, Abhinandan; Park, In-Hee; Vaidehi, Nagarajan

    2012-08-14

    The principle of equipartition of (kinetic) energy for all-atom Cartesian molecular dynamics states that each momentum phase space coordinate on the average has ½kT of kinetic energy in a canonical ensemble. This principle is used in molecular dynamics simulations to initialize velocities, and to calculate statistical properties such as entropy. Internal coordinate molecular dynamics (ICMD) models differ from Cartesian models in that the overall kinetic energy depends on the generalized coordinates and includes cross-terms. Due to this coupled structure, no such equipartition principle holds for ICMD models. In this paper we introduce non-canonical modal coordinates to recover some of the structural simplicity of Cartesian models and develop a new equipartition principle for ICMD models. We derive low-order recursive computational algorithms for transforming between the modal and physical coordinates. The equipartition principle in modal coordinates provides a rigorous method for initializing velocities in ICMD simulations thus replacing the ad hoc methods used until now. It also sets the basis for calculating conformational entropy using internal coordinates.

  10. Monoamine transporters: insights from molecular dynamics simulations

    PubMed Central

    Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit

    2015-01-01

    The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185

  11. Bead-Fourier path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei D.; Lyubartsev, Alexander P.; Laaksonen, Aatto

    2003-06-01

    Molecular dynamics formulation of Bead-Fourier path integral method for simulation of quantum systems at finite temperatures is presented. Within this scheme, both the bead coordinates and Fourier coefficients, defining the path representing the quantum particle, are treated as generalized coordinates with corresponding generalized momenta and masses. Introduction of the Fourier harmonics together with the center-of-mass thermostating scheme is shown to remove the ergodicity problem, known to pose serious difficulties in standard path integral molecular dynamics simulations. The method is tested for quantum harmonic oscillator and hydrogen atom (Coulombic potential). The simulation results are compared with the exact analytical solutions available for both these systems. Convergence of the results with respect to the number of beads and Fourier harmonics is analyzed. It was shown that addition of a few Fourier harmonics already improves the simulation results substantially, even for a relatively small number of beads. The proposed Bead-Fourier path integral molecular dynamics is a reliable and efficient alternative to simulations of quantum systems.

  12. Learning generative models of molecular dynamics

    PubMed Central

    2012-01-01

    We introduce three algorithms for learning generative models of molecular structures from molecular dynamics simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified covariates (e.g., fluctuations, distances, angles, etc). L1 reg-ularization is used to ensure sparse models and thus reduce the risk of over-fitting the data. The topology of the resulting model reveals important couplings between different parts of the protein, thus aiding in the analysis of molecular motions. The generative nature of the model makes it well-suited to making predictions about the global effects of local structural changes (e.g., the binding of an allosteric regulator). Additionally, the model can be used to sample new conformations. The second algorithm learns a time-varying graphical model where the topology and parameters change smoothly along the trajectory, revealing the conformational sub-states. The last algorithm learns a Markov Chain over undirected graphical models which can be used to study and simulate kinetics. We demonstrate our algorithms on multiple molecular dynamics trajectories. PMID:22369071

  13. Fragment Molecular Orbital Nonadiabatic Molecular Dynamics for Condensed Phase Systems.

    PubMed

    Nebgen, Ben; Prezhdo, Oleg V

    2016-09-15

    A method for efficiently simulating nonadiabatic molecular dynamics (NAMD) of nanoscale and condensed phase systems is developed and tested. The electronic structure, including force and nonadiabatic coupling, are obtained with the fragment molecular orbital (FMO) approximation, which provides significant computational savings by splitting the system into fragments and computing electronic properties of each fragment subject to the external field due to other all other fragments. The efficiency of the developed technique is demonstrated by studying the effect of explicit solvent molecules on excited state relaxation in the Fe(CO)4 complex. The relaxation in the gas phase occurs on a 50 fs time scale, which is in excellent agreement with previously recorded femtosecond pump-probe spectroscopy. Adding a solvation shell of ethanol molecules to the simulation results in an increase in the excited state lifetime to 100 fs, in agreement with recent femtosecond X-ray spectroscopy measurements.

  14. 5D model for accurate representation and visualization of dynamic cardiac structures

    NASA Astrophysics Data System (ADS)

    Lin, Wei-te; Robb, Richard A.

    2000-05-01

    Accurate cardiac modeling is challenging due to the intricate structure and complex contraction patterns of myocardial tissues. Fast imaging techniques can provide 4D structural information acquired as a sequence of 3D images throughout the cardiac cycle. To mode. The beating heart, we created a physics-based surface model that deforms between successive time point in the cardiac cycle. 3D images of canine hearts were acquired during one complete cardiac cycle using the DSR and the EBCT. The left ventricle of the first time point is reconstructed as a triangular mesh. A mass-spring physics-based deformable mode,, which can expand and shrink with local contraction and stretching forces distributed in an anatomically accurate simulation of cardiac motion, is applied to the initial mesh and allows the initial mesh to deform to fit the left ventricle in successive time increments of the sequence. The resulting 4D model can be interactively transformed and displayed with associated regional electrical activity mapped onto anatomic surfaces, producing a 5D model, which faithfully exhibits regional cardiac contraction and relaxation patterns over the entire heart. The model faithfully represents structural changes throughout the cardiac cycle. Such models provide the framework for minimizing the number of time points required to usefully depict regional motion of myocardium and allow quantitative assessment of regional myocardial motion. The electrical activation mapping provides spatial and temporal correlation within the cardiac cycle. In procedures which as intra-cardiac catheter ablation, visualization of the dynamic model can be used to accurately localize the foci of myocardial arrhythmias and guide positioning of catheters for optimal ablation.

  15. High temperature phonon dispersion in graphene using classical molecular dynamics

    SciTech Connect

    Anees, P. Panigrahi, B. K.; Valsakumar, M. C.

    2014-04-24

    Phonon dispersion and phonon density of states of graphene are calculated using classical molecular dynamics simulations. In this method, the dynamical matrix is constructed based on linear response theory by computing the displacement of atoms during the simulations. The computed phonon dispersions show excellent agreement with experiments. The simulations are done in both NVT and NPT ensembles at 300 K and found that the LO/TO modes are getting hardened at the Γ point. The NPT ensemble simulations capture the anharmonicity of the crystal accurately and the hardening of LO/TO modes is more pronounced. We also found that at 300 K the C-C bond length reduces below the equilibrium value and the ZA bending mode frequency becomes imaginary close to Γ along K-Γ direction, which indicates instability of the flat 2D graphene sheets.

  16. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    PubMed

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  17. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification

    PubMed Central

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows. PMID:28125723

  18. Molecular dynamics simulations of magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Reichstein, Torben; Wilms, Jochen

    2012-10-01

    The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)

  19. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.

    PubMed

    Janowski, Pawel A; Liu, Chunmei; Deckman, Jason; Case, David A

    2016-01-01

    Molecular dynamics simulations of crystals can enlighten interpretation of experimental X-ray crystallography data and elucidate structural dynamics and heterogeneity in biomolecular crystals. Furthermore, because of the direct comparison against experimental data, they can inform assessment of molecular dynamics methods and force fields. We present microsecond scale results for triclinic hen egg-white lysozyme in a supercell consisting of 12 independent unit cells using four contemporary force fields (Amber ff99SB, ff14ipq, ff14SB, and CHARMM 36) in crystalline and solvated states (for ff14SB only). We find the crystal simulations consistent across multiple runs of the same force field and robust to various solvent equilibration schemes. However, convergence is slow compared with solvent simulations. All the tested force fields reproduce experimental structural and dynamic properties well, but Amber ff14SB maintains structure and reproduces fluctuations closest to the experimental model: its average backbone structure differs from the deposited structure by 0.37Å; by contrast, the average backbone structure in solution differs from the deposited by 0.65Å. All the simulations are affected by a small progressive deterioration of the crystal lattice, presumably due to imperfect modeling of hydrogen bonding and other crystal contact interactions; this artifact is smallest in ff14SB, with average lattice positions deviating by 0.20Å from ideal. Side-chain disorder is surprisingly low with fewer than 30% of the nonglycine or alanine residues exhibiting significantly populated alternate rotamers. Our results provide helpful insight into the methodology of biomolecular crystal simulations and indicate directions for future work to obtain more accurate energy models for molecular dynamics.

  20. Application of optimal prediction to molecular dynamics

    SciTech Connect

    Barber, IV, John Letherman

    2004-12-01

    Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is δ-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.

  1. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-07

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

  2. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2008-11-30

    Prediction of the microbial growth rate as a response to changing temperatures is an important aspect in the control of food safety and food spoilage. Accurate model predictions of the microbial evolution ask for correct model structures and reliable parameter values with good statistical quality. Given the widely accepted validity of the Cardinal Temperature Model with Inflection (CTMI) [Rosso, L., Lobry, J. R., Bajard, S. and Flandrois, J. P., 1995. Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Microbiology, 61: 610-616], this paper focuses on the accurate estimation of its four parameters (T(min), T(opt), T(max) and micro(opt)) by applying the technique of optimal experiment design for parameter estimation (OED/PE). This secondary model describes the influence of temperature on the microbial specific growth rate from the minimum to the maximum temperature for growth. Dynamic temperature profiles are optimized within two temperature regions ([15 degrees C, 43 degrees C] and [15 degrees C, 45 degrees C]), focusing on the minimization of the parameter estimation (co)variance (D-optimal design). The optimal temperature profiles are implemented in a computer controlled bioreactor, and the CTMI parameters are identified from the resulting experimental data. Approximately equal CTMI parameter values were derived irrespective of the temperature region, except for T(max). The latter could only be estimated accurately from the optimal experiments within [15 degrees C, 45 degrees C]. This observation underlines the importance of selecting the upper temperature constraint for OED/PE as close as possible to the true T(max). Cardinal temperature estimates resulting from designs within [15 degrees C, 45 degrees C] correspond with values found in literature, are characterized by a small uncertainty error and yield a good result during validation. As compared to estimates from non-optimized dynamic

  3. Towards an accurate understanding of UHMWPE visco-dynamic behaviour for numerical modelling of implants.

    PubMed

    Quinci, Federico; Dressler, Matthew; Strickland, Anthony M; Limbert, Georges

    2014-04-01

    Considerable progress has been made in understanding implant wear and developing numerical models to predict wear for new orthopaedic devices. However any model of wear could be improved through a more accurate representation of the biomaterial mechanics, including time-varying dynamic and inelastic behaviour such as viscosity and plastic deformation. In particular, most computational models of wear of UHMWPE implement a time-invariant version of Archard's law that links the volume of worn material to the contact pressure between the metal implant and the polymeric tibial insert. During in-vivo conditions, however, the contact area is a time-varying quantity and is therefore dependent upon the dynamic deformation response of the material. From this observation one can conclude that creep deformations of UHMWPE may be very important to consider when conducting computational wear analyses, in stark contrast to what can be found in the literature. In this study, different numerical modelling techniques are compared with experimental creep testing on a unicondylar knee replacement system in a physiologically representative context. Linear elastic, plastic and time-varying visco-dynamic models are benchmarked using literature data to predict contact deformations, pressures and areas. The aim of this study is to elucidate the contributions of viscoelastic and plastic effects on these surface quantities. It is concluded that creep deformations have a significant effect on the contact pressure measured (experiment) and calculated (computational models) at the surface of the UHMWPE unicondylar insert. The use of a purely elastoplastic constitutive model for UHMWPE lead to compressive deformations of the insert which are much smaller than those predicted by a creep-capturing viscoelastic model (and those measured experimentally). This shows again the importance of including creep behaviour into a constitutive model in order to predict the right level of surface deformation

  4. Ab initio centroid path integral molecular dynamics: Application to vibrational dynamics of diatomic molecular systems

    NASA Astrophysics Data System (ADS)

    Ohta, Yasuhito; Ohta, Koji; Kinugawa, Kenichi

    2004-01-01

    An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.

  5. A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi

    2001-11-01

    We present a general approach for accurate calculation of chemical substances which treats both nuclei and electrons quantum mechanically, adopting ab initio molecular orbital theory for the electronic structure and path integral molecular dynamics for the nuclei. The present approach enables the evaluation of physical quantities dependent on the nuclear configuration as well as the electronic structure, within the framework of Born-Oppenheimer adiabatic approximation. As an application, we give the path integral formulation of electric response properties—dipole moment and polarizability, which characterize the changes both in electronic structure and nuclear configuration at a given temperature when uniform electrostatic field is present. We also demonstrate the calculation of a water molecule using the present approach and the result of temperature and isotope effects is discussed.

  6. Molecular Dynamics: New Frontier in Personalized Medicine.

    PubMed

    Sneha, P; Doss, C George Priya

    2016-01-01

    The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine.

  7. Molecular Dynamics Simulations of Interface Failure

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Cao, Deng; Leonard, Robert H.; Owens, Eli T.; Swan, Wm. Trevor, III; Ducatman, Samuel C.

    2007-03-01

    The mechanical integrity of silicon/silicon nitride interfaces is of great importance in their applications in micro electronics and solar cells. Large-scale molecular dynamics simulations are an excellent tool to study mechanical and structural failure of interfaces subjected to externally applied stresses and strains. When pulling the system parallel to the interface, cracks in silicon nitride and slip and pit formation in silicon are typical failure mechanisms. Hypervelocity impact perpendicular to the interface plane leads to structural transformation and delamination at the interface. Influence of system temperature, strain rate, impact velocity, and system size on type and characteristics of failure will be discussed.

  8. Molecular beam studies of reaction dynamics

    SciTech Connect

    Lee, Y.T.

    1987-03-01

    Purpose of this research project is two-fold: (1) to elucidate detailed dynamics of simple elementary reactions which are theoretically important and to unravel the mechanism of complex chemical reactions or photo chemical processes which play an important role in many macroscopic processes and (2) to determine the energetics of polyatomic free radicals using microscopic experimental methods. Most of the information is derived from measurement of the product fragment translational energy and angular distributions using unique molecular beam apparati designed for these purposes.

  9. Exchange frequency in replica exchange molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sindhikara, Daniel; Meng, Yilin; Roitberg, Adrian E.

    2008-01-01

    The effect of the exchange-attempt frequency on sampling efficiency is studied in replica exchange molecular dynamics (REMD). We show that sampling efficiency increases with increasing exchange-attempt frequency. This conclusion is contrary to a commonly expressed view in REMD. Five peptides (1-21 residues long) are studied with a spectrum of exchange-attempt rates. Convergence rates are gauged by comparing ensemble properties between fixed length test REMD simulations and longer reference simulations. To show the fundamental correlation between exchange frequency and convergence time, a simple model is designed and studied, displaying the same basic behavior of much more complex systems.

  10. Exploring Hamiltonian dielectric solvent molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-09-01

    Hamiltonian dielectric solvent (HADES) is a recent method [7,25], which enables Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric continua. Sample simulations of an α-helical decapeptide with and without explicit solvent demonstrate the high efficiency of HADES-MD. Addressing the folding of this peptide by replica exchange MD we study the properties of HADES by comparing melting curves, secondary structure motifs and salt bridges with explicit solvent results. Despite the unoptimized ad hoc parametrization of HADES, calculated reaction field energies correlate well with numerical grid solutions of the dielectric Poisson equation.

  11. Molecular dynamics simulations of dense plasmas

    SciTech Connect

    Collins, L.A.; Kress, J.D.; Kwon, I.; Lynch, D.L.; Troullier, N.

    1993-12-31

    We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.

  12. Charge transport network dynamics in molecular aggregates

    SciTech Connect

    Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.

    2016-07-20

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.

  13. Charge transport network dynamics in molecular aggregates

    PubMed Central

    Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.

    2016-01-01

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ∼100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed. PMID:27439871

  14. Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics.

    PubMed

    Ramírez, C L; Martí, M A; Roitberg, A E

    2016-01-01

    One of the main goals of chemistry is to understand the underlying principles of chemical reactions, in terms of both its reaction mechanism and the thermodynamics that govern it. Using hybrid quantum mechanics/molecular mechanics (QM/MM)-based methods in combination with a biased sampling scheme, it is possible to simulate chemical reactions occurring inside complex environments such as an enzyme, or aqueous solution, and determining the corresponding free energy profile, which provides direct comparison with experimental determined kinetic and equilibrium parameters. Among the most promising biasing schemes is the multiple steered molecular dynamics method, which in combination with Jarzynski's Relationship (JR) allows obtaining the equilibrium free energy profile, from a finite set of nonequilibrium reactive trajectories by exponentially averaging the individual work profiles. However, obtaining statistically converged and accurate profiles is far from easy and may result in increased computational cost if the selected steering speed and number of trajectories are inappropriately chosen. In this small review, using the extensively studied chorismate to prephenate conversion reaction, we first present a systematic study of how key parameters such as pulling speed, number of trajectories, and reaction progress are related to the resulting work distributions and in turn the accuracy of the free energy obtained with JR. Second, and in the context of QM/MM strategies, we introduce the Hybrid Differential Relaxation Algorithm, and show how it allows obtaining more accurate free energy profiles using faster pulling speeds and smaller number of trajectories and thus smaller computational cost.

  15. Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.

    2016-10-01

    SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.

  16. MDLab: a molecular dynamics simulation prototyping environment.

    PubMed

    Cickovski, Trevor; Chatterjee, Santanu; Wenger, Jacob; Sweet, Christopher R; Izaguirre, Jesús A

    2010-05-01

    Molecular dynamics (MD) simulation involves solving Newton's equations of motion for a system of atoms, by calculating forces and updating atomic positions and velocities over a timestep Deltat. Despite the large amount of computing power currently available, the timescale of MD simulations is limited by both the small timestep required for propagation, and the expensive algorithm for computing pairwise forces. These issues are currently addressed through the development of efficient simulation methods, some of which make acceptable approximations and as a result can afford larger timesteps. We present MDLab, a development environment for MD simulations built with Python which facilitates prototyping, testing, and debugging of these methods. MDLab provides constructs which allow the development of propagators, force calculators, and high level sampling protocols that run several instances of molecular dynamics. For computationally demanding sampling protocols which require testing on large biomolecules, MDL includes an interface to the OpenMM libraries of Friedrichs et al. which execute on graphical processing units (GPUs) and achieve considerable speedup over execution on the CPU. As an example of an interesting high level method developed in MDLab, we present a parallel implementation of the On-The-Fly string method of Maragliano and Vanden-Eijnden. MDLab is available at http://mdlab.sourceforge.net.

  17. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  18. An accurate theoretical description for electronic transport properties of single molecular junctions

    NASA Astrophysics Data System (ADS)

    Luo, Yi

    2002-03-01

    We have developed a new theoretical approach to characterize the electron transport process in molecular devices based on the elastic-scattering Green's function theory in connection with the hybrid density functional theory without using any fitting parameters. Two molecular devices with benzene-1,4-dithiol and octanedithiol molecules embedded between two gold electrodes have been studied. The calculated current-voltage characteristics are in very good agreement with existing experimental results reported by Reed et. al for benzene-1,4-dithiol [Science, 278(1997) 252] and by Cui et al. for octanedithiol [Science, 294(2001) 571]. Our approach is very straightforward and can apply to quite large systems. Most importantly, it provides a reliable way to design and optimize molecular devices theoretically, thereby avoiding extremely difficult, time consuming laboratory tests.

  19. Dynamic transitions in molecular dynamics simulations of supercooled silicon

    NASA Astrophysics Data System (ADS)

    Mei, Xiaojun; Eapen, Jacob

    2013-04-01

    Two dynamic transitions or crossovers, one at a low temperature (T* ≈ 1006 K) and the other at a high temperature (T0 ≈ 1384 K), are shown to emerge in supercooled liquid silicon using molecular dynamics simulations. The high-temperature transition (T0) marks the decoupling of stress, density, and energy relaxation mechanisms. At the low-temperature transition (T*), depending on the cooling rate, supercooled silicon can either undergo a high-density-liquid to low-density-liquid (HDL-LDL) phase transition or experience an HDL-HDL crossover. Dynamically heterogeneous domains that emerge with supercooling become prominent across the HDL-HDL transition at 1006 K, with well-separated mobile and immobile regions. Interestingly, across the HDL-LDL transition, the most mobile atoms form large prominent aggregates while the least mobile atoms get spatially dispersed akin to that in a crystalline state. The attendant partial return to spatial uniformity with the HDL-LDL phase transition indicates a dynamic mechanism for relieving the frustration in supercooled states.

  20. Dynamic Wetting on Graphene-Coated Surface: Molecular Dynamics Investigation

    NASA Astrophysics Data System (ADS)

    Hung, Shih-Wei; Shiomi, Junichiro

    2015-11-01

    Wettability of graphene-coated surface gained significant attention recently due to discussion on the ``transparency'' (whether the wetting characteristics follow that of graphene or the underlying surface) and practical applications of graphene. In terms of static contact angle, the wettability of graphene-coated surfaces have been widely studied by experiments, simulations, and theory in recent years. However, the studies of dynamic wetting on graphene-coated surfaces are limited. In the present study, molecular dynamics simulation was performed to study the dynamic wetting of water droplet on graphene-coated surfaces from a microscopic point of view. The results show that the degree of similarity between the spreading behavior on graphene-coated surface and that on pure graphene (or that on the underlying surface) depends on time, i.e. how nonequilibrium the interface dynamics is. We also found that this feature can be altered by introducing defects into graphene. The work is partially supported by Grant-in-Aid for JSPS Fellows 26-04364 and JST CREST.

  1. The 2011 Dynamics of Molecular Collisions Conference

    SciTech Connect

    Nesbitt, David J.

    2011-07-11

    The Dynamics of Molecular Collisions Conference focuses on all aspects of molecular collisions--experimental & theoretical studies of elastic, inelastic, & reactive encounters involving atoms, molecules, ions, clusters, & surfaces--as well as half collisions--photodissociation, photo-induced reaction, & photodesorption. The scientific program for the meeting in 2011 included exciting advances in both the core & multidisciplinary forefronts of the study of molecular collision processes. Following the format of the 2009 meeting, we also invited sessions in special topics that involve interfacial dynamics, novel emerging spectroscopies, chemical dynamics in atmospheric, combustion & interstellar environments, as well as a session devoted to theoretical & experimental advances in ultracold molecular samples. Researchers working inside & outside the traditional core topics of the meeting are encouraged to join the conference. We invite contributions of work that seeks understanding of how inter & intra-molecular forces determine the dynamics of the phenomena under study. In addition to invited oral sessions & contributed poster sessions, the scientific program included a formal session consisting of five contributed talks selected from the submitted poster abstracts. The DMC has distinguished itself by having the Herschbach Medal Symposium as part of the meeting format. This tradition of the Herschbach Medal was first started in the 2007 meeting chaired by David Chandler, based on a generous donation of funds & artwork design by Professor Dudley Herschbach himself. There are two such awards made, one for experimental & one for theoretical contributions to the field of Molecular Collision Dynamics, broadly defined. The symposium is always held on the last night of the meeting & has the awardees are asked to deliver an invited lecture on their work. The 2011 Herschbach Medal was dedicated to the contributions of two long standing leaders in Chemical Physics, Professor

  2. Molecular structures and intramolecular dynamics of pentahalides

    NASA Astrophysics Data System (ADS)

    Ischenko, A. A.

    2017-03-01

    This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.

  3. Molecular Dynamic Simulations on Surface Tension of Methanol

    NASA Astrophysics Data System (ADS)

    Obeidat, Abdalla

    2015-04-01

    Molecular dynamic simulations have been performed to study the surface tension of methanol at low temperatures. Six different models of methanol have been studied to compute the surface tension of different models. The models have been used to predict the surface tensions are: OPLS, Gromos 96, H1, J1, J2, and van Leeuwen model. Our results show that the most accurate model compared to true methanol was van Leeuwen model. The results were fitted to a straight line to predict other data of surface tension at specific temperature. The simulation were performed using the Gromacs package at temperatures: 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, and 300 K. This work is supported by JUST.

  4. Warm dense iron equation of state from quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sjostrom, Travis; Crockett, Scott

    Through quantum molecular dynamics (QMD), utilizing both Kohn-Sham (orbital-based) and orbital-free density functional theory, we calculate the equation of state of warm dense iron in the density range 7-30 g/cm3 and temperatures from 1 to 100 eV. A critical examination of the iron pseudopotential is made, from which we find the previous QMD calculations of Wang et al. [Phys. Rev. E 89, 023101 (2014)] to be in error. Our results also significantly extend the ranges of density and temperature which are attempted in that prior work. We calculate the shock Hugoniot and find very good agreement with experimental results to pressures over 20 TPa. Additionally we have utilized the QMD results to generate a new SESAME tabular equation of state for fluid iron, accurate in the warm dense matter region, and also extending to much broader regions of density and temperature than can be accessed by the QMD alone.

  5. Thermodynamic properties of gold-water nanofluids using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Puliti, Gianluca; Paolucci, Samuel; Sen, Mihir

    2012-12-01

    The physical behavior of a nanofluids is still not fully understood. This work focuses on the study and understanding of equilibrium thermodynamic properties of several gold-water nanofluids using molecular dynamics simulations. Three different systems are considered, where gold nanoparticles with diameters of 2.6, 5.8, and 6.6 nm are suspended in water for effective nanoparticle volume fractions of 1, 10, and 15 %, respectively. Novelties of this study are in the use of accurate force fields for modeling the inter- and intramolecular interactions of the components, and providing comprehensive thermodynamic properties of the nanofluids. The results are validated with the pure fluid and solid properties. Results indicate that the thermodynamics of the system does not behave as an ideal mixture, due to a combination of several factors such as liquid layering, anisotropicity, and other solid-liquid interfacial effects.

  6. Molecular dynamics of shock loading of metals with defects

    SciTech Connect

    Belak, J.F.

    1997-12-31

    The finite rise time of shock waves in metals is commonly attributed to dissipative or viscous behavior of the metal. This viscous or plastic behavior is commonly attributed to the motion of defects such as dislocations. Despite this intuitive understanding, the experimental observation of defect motion or nucleation during shock loading has not been possible due to the short time scales involved. Molecular dynamics modeling with realistic interatomic potentials can provide some insight into defect motion during shock loading. However, until quite recently, the length scale required to accurately represent a metal with defects has been beyond the scope of even the most powerful supercomputers. Here, the author presents simulations of the shock response of single defects and indicate how simulation might provide some insight into the shock loading of metals.

  7. Osmosis : a molecular dynamics computer simulation study

    NASA Astrophysics Data System (ADS)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  8. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry

    PubMed Central

    Kind, Tobias; Fiehn, Oliver

    2007-01-01

    Background Structure elucidation of unknown small molecules by mass spectrometry is a challenge despite advances in instrumentation. The first crucial step is to obtain correct elemental compositions. In order to automatically constrain the thousands of possible candidate structures, rules need to be developed to select the most likely and chemically correct molecular formulas. Results An algorithm for filtering molecular formulas is derived from seven heuristic rules: (1) restrictions for the number of elements, (2) LEWIS and SENIOR chemical rules, (3) isotopic patterns, (4) hydrogen/carbon ratios, (5) element ratio of nitrogen, oxygen, phosphor, and sulphur versus carbon, (6) element ratio probabilities and (7) presence of trimethylsilylated compounds. Formulas are ranked according to their isotopic patterns and subsequently constrained by presence in public chemical databases. The seven rules were developed on 68,237 existing molecular formulas and were validated in four experiments. First, 432,968 formulas covering five million PubChem database entries were checked for consistency. Only 0.6% of these compounds did not pass all rules. Next, the rules were shown to effectively reducing the complement all eight billion theoretically possible C, H, N, S, O, P-formulas up to 2000 Da to only 623 million most probable elemental compositions. Thirdly 6,000 pharmaceutical, toxic and natural compounds were selected from DrugBank, TSCA and DNP databases. The correct formulas were retrieved as top hit at 80–99% probability when assuming data acquisition with complete resolution of unique compounds and 5% absolute isotope ratio deviation and 3 ppm mass accuracy. Last, some exemplary compounds were analyzed by Fourier transform ion cyclotron resonance mass spectrometry and by gas chromatography-time of flight mass spectrometry. In each case, the correct formula was ranked as top hit when combining the seven rules with database queries. Conclusion The seven rules enable an

  9. Nonequilibrium molecular dynamics: The first 25 years

    SciTech Connect

    Hoover, W.G. |

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments.

  10. Molecular Dynamics Simulations of Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Owens, Eli T.; Bachlechner, Martina E.

    2007-03-01

    Outer space silicon solar cells are exposed to impacts with micro meteors that can destroy the surface leading to device failure. A protective coating of silicon nitride will protect against such failure. Large-scale molecular dynamics simulations are used to study how silicon/silicon nitride fails due to hypervelocity impacts. Three impactors made of silicon nitride are studied. Their cross-sectional areas, relative to the target, are as follows: the same as the target, half of the target, and a quarter of the target. Impactor speeds from 5 to 11 km/second yield several modes of failure, such as deformation of the target by the impactor and delimitation of the silicon nitride from the silicon at the interface. These simulations will give a much clearer picture of how solar cells composed of a silicon/silicon nitride interface will respond to impacts in outer space. This will ultimately lead to improved devices with longer life spans.

  11. Molecular-dynamics simulations of lead clusters

    NASA Astrophysics Data System (ADS)

    Hendy, S. C.; Hall, B. D.

    2001-08-01

    Molecular-dynamics simulations of nanometer-sized lead clusters have been performed using the Lim-Ong-Ercolessi glue potential [Surf. Sci. 269/270, 1109 (1992)]. The binding energies of clusters forming crystalline (fcc), decahedron and icosahedron structures are compared, showing that fcc cuboctahedra are the most energetically favored of these polyhedral model structures. However, simulations of the freezing of liquid droplets produced a characteristic form of surface-reconstructed ``shaved'' icosahedron, in which atoms are absent at the edges and apexes of the polyhedron. This arrangement is energetically favored for 600-4000 atom clusters. Larger clusters favor crystalline structures. Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect fcc Wulff particle, containing a number of parallel stacking faults. The effects of temperature on the preferred structure of crystalline clusters below the melting point have been considered. The implications of these results for the interpretation of experimental data is discussed.

  12. Cluster production within antisymmetrized molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ono, Akira

    2016-06-01

    Clusters are quite important at various situations in heavy-ion collisions. Antisymmetrized molecular dynamics was improved to take into account the correlations to form light clusters, such as deuterons and α particles, and light nuclei composed of several clusters. The momentum fluctuations of emitted particles are also taken into account by a simple method. Formation of fragments and light clusters in a wide range of heavy-ion collisions was well described with a single set of model parameters. Fragmentation in a proton induced reaction was also well reproduced by introducing cluster correlations. Calculated results demonstrate strong impacts of clusters in various observables including those usually regarded as probes of the density dependence of symmetry energy.

  13. On the parallelization of molecular dynamics codes

    NASA Astrophysics Data System (ADS)

    Trabado, G. P.; Plata, O.; Zapata, E. L.

    2002-08-01

    Molecular dynamics (MD) codes present a high degree of spatial data locality and a significant amount of independent computations. However, most of the parallelization strategies are usually based on the manual transformation of sequential programs either by completely rewriting the code with message passing routines or using specific libraries intended for writing new MD programs. In this paper we propose a new library-based approach (DDLY) which supports parallelization of existing short-range MD sequential codes. The novelty of this approach is that it can directly handle the distribution of common data structures used in MD codes to represent data (arrays, Verlet lists, link cells), using domain decomposition. Thus, the insertion of run-time support for distribution and communication in a MD program does not imply significant changes to its structure. The method is simple, efficient and portable. It may be also used to extend existing parallel programming languages, such as HPF.

  14. Nanodrop contact angles from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ravipati, Srikanth; Aymard, Benjamin; Yatsyshin, Petr; Galindo, Amparo; Kalliadasis, Serafim

    2016-11-01

    The contact angle between three phases being in thermodynamic equilibrium is highly sensitive to the nature of the intermolecular forces as well as to various fluctuation effects. Determining the Young contact angle of a sessile drop sitting on a substrate from molecular dynamics (MD) simulations is a highly non-trivial task. Most commonly employed methods for finding droplet contact angles from MD simulation data either require large numbers of particles or are system-dependent. We propose a systematic geometry based methodology for extracting the contact angle from simulated sessile droplets by analysing an appropriately coarse-grained density field. To demonstrate the method, we consider Lennard-Jones (LJ) and SPC/E water nanodroplets of different sizes sitting on planar LJ walls. Our results are in good agreement with Young contact angle values computed employing test-area perturbation method.

  15. Cell list algorithms for nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Dobson, Matthew; Fox, Ian; Saracino, Alexandra

    2016-06-01

    We present two modifications of the standard cell list algorithm that handle molecular dynamics simulations with deforming periodic geometry. Such geometry naturally arises in the simulation of homogeneous, linear nonequilibrium flow modeled with periodic boundary conditions, and recent progress has been made developing boundary conditions suitable for general 3D flows of this type. Previous works focused on the planar flows handled by Lees-Edwards or Kraynik-Reinelt boundary conditions, while the new versions of the cell list algorithm presented here are formulated to handle the general 3D deforming simulation geometry. As in the case of equilibrium, for short-ranged pairwise interactions, the cell list algorithm reduces the computational complexity of the force computation from O(N2) to O(N), where N is the total number of particles in the simulation box. We include a comparison of the complexity and efficiency of the two proposed modifications of the standard algorithm.

  16. Ion mobility analysis of molecular dynamics.

    PubMed

    Wyttenbach, Thomas; Pierson, Nicholas A; Clemmer, David E; Bowers, Michael T

    2014-01-01

    The combination of mass spectrometry and ion mobility spectrometry (IMS) employing a temperature-variable drift cell or a drift tube divided into sections to make IMS-IMS experiments possible allows information to be obtained about the molecular dynamics of polyatomic ions in the absence of a solvent. The experiments allow the investigation of structural changes of both activated and native ion populations on a timescale of 1-100 ms. Five different systems representing small and large, polar and nonpolar molecules, as well as noncovalent assemblies, are discussed in detail: a dinucleotide, a sodiated polyethylene glycol chain, the peptide bradykinin, the protein ubiquitin, and two types of peptide oligomers. Barriers to conformational interconversion can be obtained in favorable cases. In other cases, solution-like native structures can be observed, but care must be taken in the experimental protocols. The power of theoretical modeling is demonstrated.

  17. Classical Molecular Dynamics Simulation of Nuclear Fuel

    SciTech Connect

    Devanathan, Ram; Krack, Matthias; Bertolus, Marjorie

    2015-10-10

    Molecular dynamics simulation is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermo-mechanical properties. In these simulations, the forces on the ions are dictated by interaction potentials generated by fitting properties of interest to experimental data. The results obtained from the present generation of potentials are qualitatively similar, but quantitatively different. There is a need to refine existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, and to develop models that are equipped to handle deviations from stoichiometry. In addition to providing insights into fundamental mechanisms governing the behaviour of nuclear fuel, MD simulations can also provide parameters that can be used as inputs for mesoscale models.

  18. Fiber lubrication: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Liu, Hongyi

    Molecular and mesoscopic level description of friction and lubrication remains a challenge because of difficulties in the phenomenological understanding of to the behaviors of solid-liquid interfaces during sliding. Fortunately, there is the computational simulation approach opens an opportunity to predict and analyze interfacial phenomena, which were studied with molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) simulations. Polypropylene (PP) and cellulose are two of most common polymers in textile fibers. Confined amorphous surface layers of PP and cellulose were built successfully with xenon crystals which were used to compact the polymers. The physical and surface properties of the PP and cellulose surface layers were investigated by MD simulations, including the density, cohesive energy, volumetric thermal expansion, and contact angle with water. The topology method was employed to predict the properties of poly(alkylene glycol) (PAG) diblock copolymers and Pluronic triblock copolymers used as lubricants on surfaces. Density, zero shear viscosity, shear module, cohesive energy and solubility parameter were predicted with each block copolymer. Molecular dynamics simulations were used to study the interaction energy per unit contact area of block copolymer melts with PP and cellulose surfaces. The interaction energy is defined as the ratio of interfacial interaction energy to the contact area. Both poly(proplene oxide) (PPO) and poly(ethylene oxide) (PEO) segments provided a lipophilic character to both PP and cellulose surfaces. The PPO/PEO ratio and the molecular weight were found to impact the interaction energy on both PP and cellulose surfaces. In aqueous solutions, the interaction energy is complicated due to the presence of water and the cross interactions between the multiple molecular components. The polymer-water-surface (PWS) calculation method was proposed to calculate such complex systems. In a contrast with a vacuum condition, the presence

  19. Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB).

    PubMed

    Brandenburg, Jan Gerit; Grimme, Stefan

    2014-06-05

    The ambitious goal of organic crystal structure prediction challenges theoretical methods regarding their accuracy and efficiency. Dispersion-corrected density functional theory (DFT-D) in principle is applicable, but the computational demands, for example, to compute a huge number of polymorphs, are too high. Here, we demonstrate that this task can be carried out by a dispersion-corrected density functional tight binding (DFTB) method. The semiempirical Hamiltonian with the D3 correction can accurately and efficiently model both solid- and gas-phase inter- and intramolecular interactions at a speed up of 2 orders of magnitude compared to DFT-D. The mean absolute deviations for interaction (lattice) energies for various databases are typically 2-3 kcal/mol (10-20%), that is, only about two times larger than those for DFT-D. For zero-point phonon energies, small deviations of <0.5 kcal/mol compared to DFT-D are obtained.

  20. Accurate polyatomic quantum dynamics studies of combustion reactions. Final progress report, July 1, 1994--June 30, 1998

    SciTech Connect

    Zhang, J.Z.H.

    1998-12-31

    This program is designed to develop accurate yet practical computational methods, primarily based on time-dependent quantum mechanics, for studying the dynamics of polyatomic reactions beyond the atom-diatom systems. Efficient computational methodologies are developed and the applications of these methods to practical chemical reactions relevant to combustion processes are carried out. The program emphasizes the practical aspects of accurate quantum dynamics calculations in order to understand, explain and predict the dynamical properties of important combustion reactions. The aim of this research is to help provide not only qualitative dynamics information but also quantitative prediction of reaction dynamics of combustion reactions at the microscopic level. Through accurate theoretical calculations, the authors wish to be able to quantitatively predict reaction cross sections and rate constants of relatively small gas-phase reactions from first principles that are of direct interest to combustion. The long-term goal of this research is to develop practical computational methods that are capable of quantitatively predicting dynamics of more complex polyatomic gas-phase reactions that are of interest to combustion.

  1. Molecular dynamics simulations of microscale fluid transport

    SciTech Connect

    Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.

    1998-02-01

    Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.

  2. Molecular Dynamics Simulation of a RNA Aptasensor.

    PubMed

    Ruan, Min; Seydou, Mahamadou; Noel, Vincent; Piro, Benoit; Maurel, François; Barbault, Florent

    2017-04-14

    Single-stranded RNA aptamers have emerged as novel biosensor tools. However, the immobilization procedure of the aptamer onto a surface generally induces a loss of affinity. To understand this molecular process, we conducted a complete simulation study for the Flavin mononucleotide aptamer for which experimental data are available. Several molecular dynamics simulations (MD) of the Flavin in complex with its RNA aptamer were conducted in solution, linked with six thymidines (T6) and, finally, immobilized on an hexanol-thiol-functionalized gold surface. First, we demonstrated that our MD computations were able to reproduce the experimental solution structure and to provide a meaningful estimation of the Flavin free energy of binding. We also demonstrated that the T6 linkage, by itself, does not generate a perturbation of the Flavin recognition process. From the simulation of the complete biosensor system, we observed that the aptamer stays oriented parallel to the surface at a distance around 36 Å avoiding, this way, interaction with the surface. We evidenced a structural reorganization of the Flavin aptamer binding mode related to the loss of affinity and induced by an anisotropic distribution of sodium cationic densities. This means that ionic diffusion is different between the surface and the aptamer than above this last one. We suggest that these findings might be extrapolated to other nucleic acids systems for the future design of biosensors with higher efficiency and selectivity.

  3. A new sensor system for accurate and precise determination of sediment dynamics and position.

    NASA Astrophysics Data System (ADS)

    Maniatis, Georgios; Hoey, Trevor; Sventek, Joseph; Hodge, Rebecca

    2014-05-01

    Sediment transport processes control many significant geomorphological changes. Consequently, sediment transport dynamics are studied across a wide range of scales leading to application of a variety of conceptually different mathematical descriptions (models) and data acquisition techniques (sensing). For river sediment transport processes both Eulerian and Lagrangian formulations are used. Data are gathered using a very wide range of sensing techniques that are not always compatible with the conceptual formulation applied. We are concerned with small to medium sediment grain-scale motion in gravel-bed rivers, and other coarse-grained environments, and: a) are developing a customised environmental sensor capable of providing coherent data that reliably record the motion; and, b) provide a mathematical framework in which these data can be analysed and interpreted, this being compatible with current stochastic approaches to sediment transport theory. Here we present results from three different aspects of the above developmental process. Firstly, we present a requirement analysis for the sensor based on the state of the art of the existing technologies. We focus on the factors that enhance data coherence and representativeness, extending the common practice for optimization which is based exclusively on electronics/computing related criteria. This analysis leads to formalization of a method that permits accurate control on the physical properties of the sensor using contemporary rapid prototyping techniques [Maniatis et al. 2013]. Secondly the first results are presented from a series of entrainment experiments in a 5 x 0.8 m flume in which a prototype sensor was deployed to monitor entrainment dynamics under increasing flow conditions (0.037 m3.s-1). The sensor was enclosed in an idealized spherical case (111 mm diameter) and placed on a constructed bed of hemispheres of the same diameter. We measured 3-axial inertial acceleration (as a measure of flow stress

  4. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety.

    PubMed

    Mangal, Manisha; Bansal, Sangita; Sharma, Satish K; Gupta, Ram K

    2016-07-03

    Food safety is a global health concern. For the prevention and recognition of problems related to health and safety, detection of foodborne pathogen is of utmost importance at all levels of food production chain. For several decades, a lot of research has been targeted at the development of rapid methodology as reducing the time needed to complete pathogen detection tests has been the primary goal of food microbiologists. With the result, food microbiology laboratories now have a wide array of detection methods and automated technologies such as enzyme immunoassay, polymerase chain reaction, and microarrays, which can cut test times considerably. Nucleic acid amplification strategies and advances in amplicon detection methodologies have been the key factors in the progress of molecular microbiology. A comprehensive literature survey has been carried out to give an overview in the field of foodborne pathogen detection. In this paper, we describe the conventional methods, as well as recent developments in food pathogen detection, identification, and quantification, with a major emphasis on molecular detection methods.

  5. Molecular beam studies of reaction dynamics

    SciTech Connect

    Lee, Y.T.

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  6. Molecular dynamics simulation in virus research

    PubMed Central

    Ode, Hirotaka; Nakashima, Masaaki; Kitamura, Shingo; Sugiura, Wataru; Sato, Hironori

    2012-01-01

    Virus replication in the host proceeds by chains of interactions between viral and host proteins. The interactions are deeply influenced by host immune molecules and anti-viral compounds, as well as by mutations in viral proteins. To understand how these interactions proceed mechanically and how they are influenced by mutations, one needs to know the structures and dynamics of the proteins. Molecular dynamics (MD) simulation is a powerful computational method for delineating motions of proteins at an atomic-scale via theoretical and empirical principles in physical chemistry. Recent advances in the hardware and software for biomolecular simulation have rapidly improved the precision and performance of this technique. Consequently, MD simulation is quickly extending the range of applications in biology, helping to reveal unique features of protein structures that would be hard to obtain by experimental methods alone. In this review, we summarize the recent advances in MD simulations in the study of virus–host interactions and evolution, and present future perspectives on this technique. PMID:22833741

  7. Molecular-dynamic study of liquid ethylenediamine

    NASA Astrophysics Data System (ADS)

    Balabaev, N. K.; Kraevskii, S. V.; Rodnikova, M. N.; Solonina, I. A.

    2016-10-01

    Models of liquid ethylenediamine (ED) are built using the molecular dynamics approach at temperatures of 293-363 K and a size of 1000 molecules in a basic cell as a cuboid. The structural and dynamic characteristics of liquid ED versus temperature are derived. The gauche conformation of the ED molecule that is characteristic of the gas phase is shown to transition easily into the trans conformation of the molecules in the liquid. NH···N hydrogen bonds are analyzed in liquid ED. The number of H-bonds per ED molecule is found to vary from 5.02 at 293 K to 3.86 at 363 K. The lifetimes in the range of the temperatures and dissociation activation energy for several H-bonds in liquid ED are found to range from 0.574 to 4.524 ps at 293 K; the activation energies are 8.8 kJ/mol for 50% of the H-bonds and 16.3 kJ/mol for 6.25% of them. A weaker and more mobile spatial grid of H-bonds in liquid ED is observed, compared to data calculated earlier for monoethanolamine.

  8. Molecular beam studies of reaction dynamics

    SciTech Connect

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  9. GAS-PHASE MOLECULAR DYNAMICS: VIBRATIONAL DYNAMICS OF POLYATOMIC MOLECULES

    SciTech Connect

    MUCKERMAN,J.T.

    1999-06-09

    The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions and properties of short-lived chemical intermediates. High-resolution, high-sensitivity, laser absorption methods are augmented by high-temperature, flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in radicals involved in chemical systems. The experimental work is supported by theoretical studies using time-dependent quantum wavepacket calculations, which provide insight into energy flow among the vibrational modes of polyatomic molecules and interference effects in multiple-surface dynamics.

  10. Internal coordinate molecular dynamics: a foundation for multiscale dynamics.

    PubMed

    Vaidehi, Nagarajan; Jain, Abhinandan

    2015-01-29

    Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics.

  11. Internal Coordinate Molecular Dynamics: A Foundation for Multiscale Dynamics

    PubMed Central

    2015-01-01

    Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics. PMID:25517406

  12. Towards More Accurate Measurements of the Ionization Energy of Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Sprecher, D.; Beyer, M.; Liu, J.; Merkt, F.; Salumbides, E.; Eikema, K. S. E.; Ubachs, W.; Jungen, Ch.

    2013-06-01

    With two electrons and two protons, molecular hydrogen is the simplest molecule displaying all features of a chemical bond. H_2 is therefore a fundamental system for testing molecular quantum mechanics and quantum electrodynamics in molecules. The test can be performed by comparing measured and calculated intervals between different rovibronic states of H_2. Two further quantities that can be used for this test are the dissociation and ionization energies of H_2, and considerable efforts have been invested over more than 80 years to improve the precision and accuracy of experimental and theoretical determination of these two quantities. The current status of the comparison is that the theoretical and experimental values of the ionization and dissociation energies of H_2 agree within the combined uncertainty of 30 MHz (see also). The factors currently limiting the precision of the experimental determination will be discussed and the strategies that are being implemented towards overcoming these limitations will be presented. A long-term goal is to achieve a precision of better than 15 kHz, which is the ultimate limit imposed on the accuracy of the theoretical determination by the current uncertainty of the proton-to-electron mass ratio. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov and W. Ubachs, {Phys. Rev. Lett.} 107 (4), 043005 (2011). K. Piszczatowski, G. Lach, M. Przybytek, J. Komasa, K. Pachuckiand and B. Jeziorski, {J. Chem. Theory Comput.} 5 (11), 3039 (2009). J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs and F. Merkt, {J. Chem. Phys.} 130 (17), 174306 (2009). D. Sprecher, Ch. Jungen, W. Ubachs and F. Merkt, {Faraday Discuss.} 150, 51 (2011).

  13. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations

    PubMed Central

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-01-01

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840

  14. Classical molecular dynamics simulation of electronically non-adiabatic processes.

    PubMed

    Miller, William H; Cotton, Stephen J

    2016-12-22

    Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).

  15. Predicting accurate fluorescent spectra for high molecular weight polycyclic aromatic hydrocarbons using density functional theory

    NASA Astrophysics Data System (ADS)

    Powell, Jacob; Heider, Emily C.; Campiglia, Andres; Harper, James K.

    2016-10-01

    The ability of density functional theory (DFT) methods to predict accurate fluorescence spectra for polycyclic aromatic hydrocarbons (PAHs) is explored. Two methods, PBE0 and CAM-B3LYP, are evaluated both in the gas phase and in solution. Spectra for several of the most toxic PAHs are predicted and compared to experiment, including three isomers of C24H14 and a PAH containing heteroatoms. Unusually high-resolution experimental spectra are obtained for comparison by analyzing each PAH at 4.2 K in an n-alkane matrix. All theoretical spectra visually conform to the profiles of the experimental data but are systematically offset by a small amount. Specifically, when solvent is included the PBE0 functional overestimates peaks by 16.1 ± 6.6 nm while CAM-B3LYP underestimates the same transitions by 14.5 ± 7.6 nm. These calculated spectra can be empirically corrected to decrease the uncertainties to 6.5 ± 5.1 and 5.7 ± 5.1 nm for the PBE0 and CAM-B3LYP methods, respectively. A comparison of computed spectra in the gas phase indicates that the inclusion of n-octane shifts peaks by +11 nm on average and this change is roughly equivalent for PBE0 and CAM-B3LYP. An automated approach for comparing spectra is also described that minimizes residuals between a given theoretical spectrum and all available experimental spectra. This approach identifies the correct spectrum in all cases and excludes approximately 80% of the incorrect spectra, demonstrating that an automated search of theoretical libraries of spectra may eventually become feasible.

  16. Structure and dynamics of layered molecular assemblies

    NASA Astrophysics Data System (ADS)

    Horne, Jennifer Conrad

    This dissertation focuses on the goal of understanding and controlling layered material properties from a molecular perspective. With this understanding, materials can be synthetically tailored to exhibit predetermined bulk properties. This investigation describes the optical response of a family of metal-phosphonate (MP) monolayers and multilayers, materials that are potentially useful because the films are easy to synthesize and are chemically and thermally stable. MP films have shown potential in a variety of chemical sensing and optical applications, and in this dissertation, the suitability of MP films for optical information storage is explored For this application, the extent of photonic energy transport within and between optically active layers is an important factor in determining the stability and specificity of optical modifications made to a material. Intralayer and interlayer energy transport processes can be studied selectively in MP films because the composition, and thus the properties, of each layer are controlled synthetically. It was determined by fluorescence relaxation dynamics in conjunction with atomic force microscopy (AFM) that the substrate and layer morphologies are key factors in determining the layer optical and physical properties. The initial MP layers in a multilayer are structurally heterogeneous, characterized by randomly distributed islands that are ~50 A in diameter. The population dynamics measured for these layers are non-exponential, chromophore concentration-independent, and identical for two different chromophores. The data is explained in the context of an excitation hopping model in a system where the surface is characterized by islands of aggregated chromophores as well as non-aggregated monomers. Within a MP monolayer, the dynamics are dominated by intra-island excitation hopping. Forster (dipolar) energy transfer between the energetically overlapped chromophores does not play a significant role in determining the

  17. Molecular Dynamics Modeling of Hydrated Calcium-Silicate-Hydrate (CSH) Cement Molecular Structure

    DTIC Science & Technology

    2014-08-30

    properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown...public release; distribution is unlimited. Molecular Dynamics Modeling of Hydrated Calcium-Silicate- Hydrate (CSH) Cement Molecular Structure The views... Cement Molecular Structure Report Title Multi-scale modeling of complex material systems requires starting from fundamental building blocks to

  18. Accurate vibrational spectra via molecular tailoring approach: a case study of water clusters at MP2 level.

    PubMed

    Sahu, Nityananda; Gadre, Shridhar R

    2015-01-07

    In spite of the recent advents in parallel algorithms and computer hardware, high-level calculation of vibrational spectra of large molecules is still an uphill task. To overcome this, significant effort has been devoted to the development of new algorithms based on fragmentation methods. The present work provides the details of an efficient and accurate procedure for computing the vibrational spectra of large clusters employing molecular tailoring approach (MTA). The errors in the Hessian matrix elements and dipole derivatives arising due to the approximation nature of MTA are reduced by grafting the corrections from a smaller basis set. The algorithm has been tested out for obtaining vibrational spectra of neutral and charged water clusters at Møller-Plesset second order level of theory, and benchmarking them against the respective full calculation (FC) and/or experimental results. For (H2O)16 clusters, the estimated vibrational frequencies are found to differ by a maximum of 2 cm(-1) with reference to the corresponding FC values. Unlike the FC, the MTA-based calculations including grafting procedure can be performed on a limited hardware, yet take a fraction of the FC time. The present methodology, thus, opens a possibility of the accurate estimation of the vibrational spectra of large molecular systems, which is otherwise impossible or formidable.

  19. Accurate vibrational spectra via molecular tailoring approach: A case study of water clusters at MP2 level

    NASA Astrophysics Data System (ADS)

    Sahu, Nityananda; Gadre, Shridhar R.

    2015-01-01

    In spite of the recent advents in parallel algorithms and computer hardware, high-level calculation of vibrational spectra of large molecules is still an uphill task. To overcome this, significant effort has been devoted to the development of new algorithms based on fragmentation methods. The present work provides the details of an efficient and accurate procedure for computing the vibrational spectra of large clusters employing molecular tailoring approach (MTA). The errors in the Hessian matrix elements and dipole derivatives arising due to the approximation nature of MTA are reduced by grafting the corrections from a smaller basis set. The algorithm has been tested out for obtaining vibrational spectra of neutral and charged water clusters at Møller-Plesset second order level of theory, and benchmarking them against the respective full calculation (FC) and/or experimental results. For (H2O)16 clusters, the estimated vibrational frequencies are found to differ by a maximum of 2 cm-1 with reference to the corresponding FC values. Unlike the FC, the MTA-based calculations including grafting procedure can be performed on a limited hardware, yet take a fraction of the FC time. The present methodology, thus, opens a possibility of the accurate estimation of the vibrational spectra of large molecular systems, which is otherwise impossible or formidable.

  20. Accurate Gaussian basis sets for atomic and molecular calculations obtained from the generator coordinate method with polynomial discretization.

    PubMed

    Celeste, Ricardo; Maringolo, Milena P; Comar, Moacyr; Viana, Rommel B; Guimarães, Amanda R; Haiduke, Roberto L A; da Silva, Albérico B F

    2015-10-01

    Accurate Gaussian basis sets for atoms from H to Ba were obtained by means of the generator coordinate Hartree-Fock (GCHF) method based on a polynomial expansion to discretize the Griffin-Wheeler-Hartree-Fock equations (GWHF). The discretization of the GWHF equations in this procedure is based on a mesh of points not equally distributed in contrast with the original GCHF method. The results of atomic Hartree-Fock energies demonstrate the capability of these polynomial expansions in designing compact and accurate basis sets to be used in molecular calculations and the maximum error found when compared to numerical values is only 0.788 mHartree for indium. Some test calculations with the B3LYP exchange-correlation functional for N2, F2, CO, NO, HF, and HCN show that total energies within 1.0 to 2.4 mHartree compared to the cc-pV5Z basis sets are attained with our contracted bases with a much smaller number of polarization functions (2p1d and 2d1f for hydrogen and heavier atoms, respectively). Other molecular calculations performed here are also in very good accordance with experimental and cc-pV5Z results. The most important point to be mentioned here is that our generator coordinate basis sets required only a tiny fraction of the computational time when compared to B3LYP/cc-pV5Z calculations.

  1. Molecular dynamics and spectra. II. Diatomic Raman

    NASA Astrophysics Data System (ADS)

    Berens, Peter H.; White, Steven R.; Wilson, Kent R.

    1981-07-01

    This paper and paper I in this series [P.H. Berens and K.R. Wilison, J. Chem. Phys. 74, 4872 (1981)] indicate that infrared and Raman rotational and fundamental vibrational-rotational spectra of dense systems (high pressure gases, liquids, and solids) are essentially classical, in that they can be computed and understood from a basically classical mechanical viewpoint, with some caveats for features in which anharmonicity is important, such as the detailed shape of Q branches. It is demonstrated here, using the diatomic case as an example, that ordinary, i.e., nonresonant, Raman band contours can be computed from classical mechanics plus simple quantum corrections. Classical versions of molecular dynamics, linear response theory, and ensemble averaging, followed by straightforward quantum corrections, are used to compute the pure rotational and fundamental vibration-rotational Raman band contours of N2 for the gas phase and for solutions of N2 in different densities of gas phase Ar and in liquid Ar. The evolution is seen from multiple peaked line shapes characteristic of free rotation in the gas phase to single peaks characteristic of hindered rotation in the liquid phase. Comparison is made with quantum and correspondence principle classical gas phase spectral calculations and with experimental measurements for pure N2 and N2 in liquid Ar. Three advantages are pointed out for a classical approach to infrared and Raman spectra. First, a classical approach can be used to compute the spectra of complex molecular systems, e.g., of large molecules, clusters, liquids, solutions, and solids. Second, this classical approach can be extended to compute the spectra of nonequilibrium and time-dependent systems, e.g., infrared and Raman spectra during the course of chemical reactions. Third, a classical viewpoint allows experimental infrared and Raman spectra to be understood and interpreted in terms of atomic motions with the considerable aid of classical models and of our

  2. Thermal transpiration: A molecular dynamics study

    SciTech Connect

    T, Joe Francis; Sathian, Sarith P.

    2014-12-09

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  3. How Dynamic Visualization Technology Can Support Molecular Reasoning

    ERIC Educational Resources Information Center

    Levy, Dalit

    2013-01-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and…

  4. Nonlinear Resonance Artifacts in Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar; Mandziuk, Margaret; Skeel, Robert D.; Srinivas, K.

    1998-02-01

    The intriguing phenomenon of resonance, a pronounced integrator-induced corruption of a system's dynamics, is examined for simple molecular systems subject to the classical equations of motion. This source of timestep limitation is not well appreciated in general, and certainly analyses of resonance patterns have been few in connection to biomolecular dynamics. Yet resonances are present in the commonly used Verlet integrator, in symplectic implicit schemes, and also limit the scope of current multiple-timestep methods that are formulated as symplectic and reversible. The only general remedy to date has been to reduce the timestep. For this purpose, we derive method-dependent timestep thresholds (e.g., Tables 1 and 2) that serve as useful guidelines in practice for biomolecular simulations. We also devise closely related symplectic implicit schemes for which the limitation on the discretization stepsize is much less severe. Specifically, we design methods to remove third-order, or both the third- and fourth-order, resonances. These severe low-order resonances can lead to instability or very large energies. Our tests on two simple molecular problems (Morse and Lennard-Jones potentials), as well as a 22-atom molecule, N-acetylalanyl-N '-methylamide, confirm this prediction; our methods can delay resonances so that they occur only at larger timesteps (EW method) or are essentially removed (LIM2 method). Although stable for large timesteps by this approach, trajectories show large energy fluctuations, perhaps due to the coupling with other factors that induce instability in complex nonlinear systems. Thus, the methods developed here may be more useful for conformational sampling of biomolecular structures. The analysis presented here for the blocked alanine model emphasizes that one-dimensional analysis of resonances can be applied to a more complex, multimode system to analyze resonance behavior, but that resonance due to frequency coupling is more complex to pinpoint

  5. Nanoscale deicing by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-07-01

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice

  6. Oleic acid phase behavior from molecular dynamics simulations.

    PubMed

    Janke, J Joel; Bennett, W F Drew; Tieleman, D Peter

    2014-09-09

    Fatty acid aggregation is important for a number of diverse applications: from origins of life research to industrial applications to health and disease. Experiments have characterized the phase behavior of oleic acid mixtures, but the molecular details are complex and hard to probe with many experiments. Coarse-grained molecular dynamics computer simulations and free energy calculations are used to model oleic acid aggregation. From random dispersions, we observe the aggregation of oleic acid monomers into micelles, vesicles, and oil phases, depending on the protonation state of the oleic acid head groups. Worm-like micelles are observed when all the oleic acid molecules are deprotonated and negatively charged. Vesicles form spontaneously if significant amounts of both neutral and negative oleic acid are present. Oil phases form when all the fatty acids are protonated and neutral. This behavior qualitatively matches experimental observations of oleic acid aggregation. To explain the observed phase behavior, we use umbrella sampling free energy calculations to determine the stability of individual monomers in aggregates compared to water. We find that both neutral and negative oleic acid molecules prefer larger aggregates, but neutral monomers prefer negatively charged aggregates and negative monomers prefer neutral aggregates. Both neutral and negative monomers are most stable in a DOPC bilayer, with implications on fatty acid adsorption and cellular membrane evolution. Although the CG model qualitatively reproduces oleic acid phase behavior, we show that an updated polarizable water model is needed to more accurately predict the shift in pKa for oleic acid in model bilayers.

  7. Combining docking and molecular dynamic simulations in drug design.

    PubMed

    Alonso, Hernán; Bliznyuk, Andrey A; Gready, Jill E

    2006-09-01

    A rational approach is needed to maximize the chances of finding new drugs, and to exploit the opportunities of potential new drug targets emerging from genomic and proteomic initiatives, and from the large libraries of small compounds now readily available through combinatorial chemistry. Despite a shaky early history, computer-aided drug design techniques can now be effective in reducing costs and speeding up drug discovery. This happy outcome results from development of more accurate and reliable algorithms, use of more thoughtfully planned strategies to apply them, and greatly increased computer power to allow studies with the necessary reliability to be performed. Our review focuses on applications and protocols, with the main emphasis on critical analysis of recent studies where docking calculations and molecular dynamics (MD) simulations were combined to dock small molecules into protein receptors. We highlight successes to demonstrate what is possible now, but also point out drawbacks and future directions. The review is structured to lead the reader from the simpler to more compute-intensive methods. Thus, while inexpensive and fast docking algorithms can be used to scan large compound libraries and reduce their size, more accurate but expensive MD simulations can be applied when a few selected ligand candidates remain. MD simulations can be used: during the preparation of the protein receptor before docking, to optimize its structure and account for protein flexibility; for the refinement of docked complexes, to include solvent effects and account for induced fit; to calculate binding free energies, to provide an accurate ranking of the potential ligands; and in the latest developments, during the docking process itself to find the binding site and correctly dock the ligand a priori.

  8. Statistical coarse-graining of molecular dynamics into peridynamics.

    SciTech Connect

    Silling, Stewart Andrew; Lehoucq, Richard B.

    2007-10-01

    This paper describes an elegant statistical coarse-graining of molecular dynamics at finite temperature into peridynamics, a continuum theory. Peridynamics is an efficient alternative to molecular dynamics enabling dynamics at larger length and time scales. In direct analogy with molecular dynamics, peridynamics uses a nonlocal model of force and does not employ stress/strain relationships germane to classical continuum mechanics. In contrast with classical continuum mechanics, the peridynamic representation of a system of linear springs and masses is shown to have the same dispersion relation as the original spring-mass system.

  9. Multimillion atom molecular dynamics simulations of glasses and ceramic materials

    NASA Astrophysics Data System (ADS)

    Vashishta, Priya; Kalia, Rajiv K.; Nakano, Aiichiro

    1999-11-01

    Molecular dynamics simulations are a powerful tool for studying physical and chemical phenomena in materials. In these lectures we shall review the molecular dynamics method and its implementation on parallel computer architectures. Using the molecular dynamics method we will study a number of materials in different ranges of density, temperature, and uniaxial strain. These include structural correlations in silica glass under pressure, crack propagation in silicon nitride films, sintering of silicon nitride nanoclusters, consolidation of nanophase materials, and dynamic fracture. Multimillion atom simulations of oxidation of aluminum nanoclusters and nanoindentation in silicon nitride will also be discussed.

  10. Constant pressure and temperature discrete-time Langevin molecular dynamics

    SciTech Connect

    Grønbech-Jensen, Niels; Farago, Oded

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.

  11. Dynamical Systems and Control Theory Inspired by Molecular Biology

    DTIC Science & Technology

    2014-10-02

    AFRL-OSR-VA-TR-2014-0282 DYNAMICAL SYSTEMS AND CONTROL THEORY INSPIRED BY MOLECULAR BIOLOGY Eduardo Sontag RUTGERS THE STATE UNIVERSITY OF NEW JERSEY...Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 DYNAMICAL SYSTEMS AND CONTROL THEORY INSPIRED BY MOLECULAR BIOLOGY AFOSR FA9550-11-1-0247...is to develop new concepts, theory, and algorithms for control and signal processing using ideas inspired by molecular systems biology. Cell biology

  12. Molecular Simulations of Shear-Induced Dynamics in Nitromethane

    DTIC Science & Technology

    2016-09-01

    the shear response of single-crystal and bicrystal nitromethane (NM) are simulated using molecular dynamics simulations. The atomic interactions are...compressed to 28 GPa and then sheared, Raman studies show that the decomposition is sudden and explosive.5 In addition, structural modifications are...Molecular dynamics simulations are performed using the LAMMPS (Large-scale Atomic /Molecular Massively Parallel Simulator) simulation package.9 The

  13. Liquid Jet Cavitation via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ashurst, W. T.

    1997-11-01

    A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).

  14. Dynamics, flexibility, and allostery in molecular chaperonins.

    PubMed

    Skjærven, Lars; Cuellar, Jorge; Martinez, Aurora; Valpuesta, José María

    2015-09-14

    The chaperonins are a family of molecular chaperones present in all three kingdoms of life. They are classified into Group I and Group II. Group I consists of the bacterial variants (GroEL) and the eukaryotic ones from mitochondria and chloroplasts (Hsp60), while Group II consists of the archaeal (thermosomes) and eukaryotic cytosolic variants (CCT or TRiC). Both groups assemble into a dual ring structure, with each ring providing a protective folding chamber for nascent and denatured proteins. Their functional cycle is powered by ATP binding and hydrolysis, which drives a series of structural rearrangements that enable encapsulation and subsequent release of the substrate protein. Chaperonins have elaborate allosteric mechanisms to regulate their functional cycle. Long-range negative cooperativity between the two rings ensures alternation of the folding chambers. Positive intra-ring cooperativity, which facilitates concerted conformational transitions within the protein subunits of one ring, has only been demonstrated for Group I chaperonins. In this review, we describe our present understanding of the underlying mechanisms and the structure-function relationships in these complex protein systems with a particular focus on the structural dynamics, allostery, and associated conformational rearrangements.

  15. Molecular chaperone-mediated nuclear protein dynamics.

    PubMed

    Echtenkamp, Frank J; Freeman, Brian C

    2014-05-01

    Homeostasis requires effective action of numerous biological pathways including those working along a genome. The variety of processes functioning in the nucleus is considerable, yet the number of employed factors eclipses this total. Ideally, individual components assemble into distinct complexes and serially operate along a pathway to perform work. Adding to the complexity is a multitude of fluctuating internal and external signals that must be monitored to initiate, continue or halt individual activities. While cooperative interactions between proteins of the same process provide a mechanism for rapid and precise assembly, the inherent stability of such organized structures interferes with the proper timing of biological events. Further prolonging the longevity of biological complexes are crowding effects resulting from the high concentration of intracellular macromolecules. Hence, accessory proteins are required to destabilize the various assemblies to efficiently transition between structures, avoid off-pathway competitive interactions, and to terminate pathway activity. We suggest that molecular chaperones have evolved, in part, to manage these challenges by fostering a general and continuous dynamic protein environment within the nucleus.

  16. Molecular Dynamics Simulations of Ferroelectric Phase Transitions

    NASA Astrophysics Data System (ADS)

    Yu, Rici; Krakauer, Henry

    1997-03-01

    Based on an analysis of the wavevector dependence of the lattice instabilities in KNbO_3, we proposed a real-space chain-like instability and a scenario of sequential freezing out or onset of coherence of these instabilities, which qualitatively explains the sequence of observed temperature-dependent ferroelectric phases.(R. Yu and H. Krakauer, Phys. Rev. Lett. 74), 4067 (1995). We suggested that this chain-like instability should also be found in BaTiO_3, and this has been subsequently confirmed by Ghosez et al.(P. Ghosez et al.), Proc. 4th Williamsburg Workshop on First-Principles Calculations for Ferroelectrics, to be published We will present molecular dynamics simulations on BaTiO_3, using effective Hamiltonians constructed from first-principles calculations,(W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. Lett. 73), 1861 (1994). that reproduce the essential features of diffuse x-ray scattering measurements in the cubic, tetragonal, orthorhombic, and rhombohedral phases. The good agreement supports the interpretation of real-space chain-formation. Simulations for KNbO3 may also be reported.

  17. Integrating influenza antigenic dynamics with molecular evolution

    PubMed Central

    Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew

    2014-01-01

    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547

  18. Molecular dynamics simulation of fractal aggregate diffusion

    NASA Astrophysics Data System (ADS)

    Pranami, Gaurav; Lamm, Monica H.; Vigil, R. Dennis

    2010-11-01

    The diffusion of fractal aggregates constructed with the method by Thouy and Jullien [J. Phys. A 27, 2953 (1994)10.1088/0305-4470/27/9/012] comprised of Np spherical primary particles was studied as a function of the aggregate mass and fractal dimension using molecular dynamics simulations. It is shown that finite-size effects have a strong impact on the apparent value of the diffusion coefficient (D) , but these can be corrected by carrying out simulations using different simulation box sizes. Specifically, the diffusion coefficient is inversely proportional to the length of a cubic simulation box, and the constant of proportionality appears to be independent of the aggregate mass and fractal dimension. Using this result, it is possible to compute infinite dilution diffusion coefficients (Do) for aggregates of arbitrary size and fractal dimension, and it was found that Do∝Np-1/df , as is often assumed by investigators simulating Brownian aggregation of fractal aggregates. The ratio of hydrodynamic radius to radius of gyration is computed and shown to be independent of mass for aggregates of fixed fractal dimension, thus enabling an estimate of the diffusion coefficient for a fractal aggregate based on its radius of gyration.

  19. Quantum molecular dynamics simulations of dense matter

    SciTech Connect

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I.

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  20. Molecular Dynamics Study of Helicobacter pylori Urease.

    PubMed

    Minkara, Mona S; Ucisik, Melek N; Weaver, Michael N; Merz, Kenneth M

    2014-05-13

    Helicobacter pylori have been implicated in an array of gastrointestinal disorders including, but not limited to, gastric and duodenal ulcers and adenocarcinoma. This bacterium utilizes an enzyme, urease, to produce copious amounts of ammonia through urea hydrolysis in order to survive the harsh acidic conditions of the stomach. Molecular dynamics (MD) studies on the H. pylori urease enzyme have been employed in order to study structural features of this enzyme that may shed light on the hydrolysis mechanism. A total of 400 ns of MD simulation time were collected and analyzed in this study. A wide-open flap state previously observed in MD simulations on Klebsiella aerogenes [Roberts et al. J. Am. Chem. Soc.2012, 134, 9934] urease has been identified in the H. pylori enzyme that has yet to be experimentally observed. Critical distances between residues on the flap, contact points in the closed state, and the separation between the active site Ni(2+) ions and the critical histidine α322 residue were used to characterize flap motion. An additional flap in the active site was elaborated upon that we postulate may serve as an exit conduit for hydrolysis products. Finally we discuss the internal hollow cavity and present analysis of the distribution of sodium ions over the course of the simulation.

  1. Including Quantum Effects in the Dynamics of Complex (i.e., Large)Molecular Systems

    SciTech Connect

    Miller, William H.

    2006-04-27

    The development in the 1950's and 60's of crossed molecular beam methods for studying chemical reactions at the single-collision molecular level stimulated the need and desire for theoretical methods to describe these and other dynamical processes in molecular systems. Chemical dynamics theory has made great strides in the ensuing decades, so that methods are now available for treating the quantum dynamics of small molecular systems essentially completely. For the large molecular systems that are of so much interest nowadays (e.g. chemical reactions in solution, in clusters, in nano-structures, in biological systems, etc.), however, the only generally available theoretical approach is classical molecular dynamics (MD) simulations. Much effort is currently being devoted to the development of approaches for describing the quantum dynamics of these complex systems. This paper reviews some of these approaches, especially the use of semiclassical approximations for adding quantum effects to classical MD simulations, also showing some new versions that should make these semiclassical approaches even more practical and accurate.

  2. Combined molecular dynamics-spin dynamics simulations of bcc iron

    SciTech Connect

    Perera, Meewanage Dilina N; Yin, Junqi; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Brown, Greg

    2014-01-01

    Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.

  3. Molecular Dynamics Simulation of Disordered Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2004-02-27

    The melting of zircon and the amorphous state produced by quenching from the melt were simulated by molecular dynamics using a new partial charge model combined with the Ziegler-Biersack-Littmark potential. The model has been established for the description of the crystalline and aperiodic structures of zircon in order to be used for the simulation of displacement cascades. It provides an excellent fit to the structure, and accounts with convenient precision the mechanical and thermodynamic properties of zircon. The calculated melting temperature is about 2100 K. The activation energy for self-diffusion of ions in the liquid state was determined to be 190-200 kJ/mole. Melt quenching was employed to produce two different disordered states with distinct densities and structures. In the high density disordered state, the zircon structure is intact but the bond angle distributions are broader, 4% of the Si units are polymerized, and the volume swelling is about 8%. In the low density amorphous state, the Zr and Si coordination numbers are lower, and the Zr-O and Si-O bond lengths are shorter than corresponding values for the crystal. In addition, a highly polymerized Si network, with average connectivity of two, is observed in the low density amorphous state. These features have all been experimentally observed in natural metamict zircon. The present findings, when considered in light of experimental radiation effects studies, suggest that the swelling in zircon arises initially from disorder in the zircon crystal, and at high doses the disordered crystal is unable to accommodate the volume expansion and transforms to the amorphous state.

  4. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids

    SciTech Connect

    Dunn, Nicholas J. H.; Noid, W. G.

    2015-12-28

    The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed “pressure-matching” variational principle to determine a volume-dependent contribution to the potential, U{sub V}(V), that approximates the volume-dependence of the PMF. We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing U{sub V}, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that U{sub V} accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the “simplicity” of the model.

  5. Search for Length Dependent Stable Structures of Polyglutamaine Proteins with Replica Exchange Molecular Dynamic

    NASA Astrophysics Data System (ADS)

    Kluber, Alexander; Hayre, Robert; Cox, Daniel

    2012-02-01

    Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.

  6. The MOLDY short-range molecular dynamics package

    NASA Astrophysics Data System (ADS)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    measuring thermodynamic properities, diffusion, radiation damage, fracture, twinning deformation, nucleation and growth of phase transitions, sputtering etc. In the vast majority of materials, the interactions are non-pairwise, and the code must be able to deal with many-body forces. Solution method: Molecular dynamics involves integrating Newton's equations of motion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for accurate trajectories) algorithms. It is parallelised using open MP. It also includes a static minimisation routine to find the lowest energy structure. Boundary conditions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-Rahman), and externally applied strain are provided. The initial configuration can be either a repeated unit cell or have all atoms given explictly. Initial velocities are generated internally, but it is also possible to specify the velocity of a particular atom. A wide range of interatomic force models are implemented, including embedded atom, Morse or Lennard-Jones. Thus the program is especially well suited to calculations of metals. Restrictions: The code is designed for short-ranged potentials, and there is no Ewald sum. Thus for long range interactions where all particles interact with all others, the order- N scaling will fail. Different interatomic potential forms require recompilation of the code. Additional comments: There is a set of associated open-source analysis software for postprocessing and visualisation. This includes local crystal structure recognition and identification of topological defects. Running time: A set of test modules for running time are provided. The code scales as order N. The parallelisation shows near-linear scaling with number of processors in a shared memory environment. A typical run of a few tens of nanometers for a few nanoseconds will run on a timescale of days on a multiprocessor desktop.

  7. Dispersion curves from short-time molecular dynamics simulation. 1. Diatomic chain results

    SciTech Connect

    Noid, D.W.; Broocks, B.T.; Gray, S.K.; Marple, S.L.

    1988-06-16

    The multiple signal classification method (MUSIC) for frequency estimation is used to compute the frequency dispersion curves of a diatomic chain from the time-dependent structure factor. In this paper, the authors demonstrate that MUSIC can accurately determine the frequencies from very short time trajectories. MUSIC is also used to show how the frequencies can vary in time, i.e., along a trajectory. The method is ideally suited for analyzing molecular dynamics simulations of large systems.

  8. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.

    2016-10-01

    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.

  9. When do perturbative approaches accurately capture the dynamics of complex quantum systems?

    PubMed Central

    Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.

    2016-01-01

    Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model. PMID:27335176

  10. Capillary dynamics driven by molecular self-layering.

    PubMed

    Wu, Pingkeng; Nikolov, Alex; Wasan, Darsh

    2017-02-10

    Capillary dynamics is a ubiquitous everyday phenomenon. It has practical applications in diverse fields, including ink-jet printing, lab-on-a-chip, biotechnology, and coating. Understanding capillary dynamics requires essential knowledge on the molecular level of how fluid molecules interact with a solid substrate (the wall). Recent studies conducted with the surface force apparatus (SFA), atomic force microscope (AFM), and statistical mechanics simulation revealed that molecules/nanoparticles confined into the film/wall surfaces tend to self-layer into 2D layer/s and even 2D in-layer with increased confinement and fluid volume fraction. Here, the capillary rise dynamics of simple molecular fluids in cylindrical capillary is explained by the molecular self-layering model. The proposed model considers the role of the molecular shape on self-layering and its effect on the molecularly thin film viscosity in regards to the advancing (dynamic) contact angle. The model was tested to explain the capillary rise dynamics of fluids of spherical, cylindrical, and disk shape molecules in borosilicate glass capillaries. The good agreement between the capillary rise data and SFA data from the literature for simple fluid self-layering shows the validity of the present model. The present model provides new insights into the design of many applications where dynamic wetting is important because it reveals the significant impact of molecular self-layering close to the wall on dynamic wetting.

  11. Dynamics of Flexible MLI-type Debris for Accurate Orbit Prediction

    DTIC Science & Technology

    2014-09-01

    SUBJECT TERMS EOARD, orbital debris , HAMR objects, multi-layered insulation, orbital dynamics, orbit predictions, orbital propagation 16. SECURITY...illustration are orbital debris [Souce: NASA...piece of space junk (a paint fleck) during the STS-7 mission (Photo: NASA Orbital Debris Program Office

  12. Describing and compensating gas transport dynamics for accurate instantaneous emission measurement

    NASA Astrophysics Data System (ADS)

    Weilenmann, Martin; Soltic, Patrik; Ajtay, Delia

    Instantaneous emission measurements on chassis dynamometers and engine test benches are becoming increasingly usual for car-makers and for environmental emission factor measurement and calculation, since much more information about the formation conditions can be extracted than from the regulated bag measurements (integral values). The common exhaust gas analysers for the "regulated pollutants" (carbon monoxide, total hydrocarbons, nitrogen oxide, carbon dioxide) allow measurement at a rate of one to ten samples per second. This gives the impression of having after-the-catalyst emission information with that chronological precision. It has been shown in recent years, however, that beside the reaction time of the analysers, the dynamics of gas transport in both the exhaust system of the car and the measurement system last significantly longer than 1 s. This paper focuses on the compensation of all these dynamics convoluting the emission signals. Most analysers show linear and time-invariant reaction dynamics. Transport dynamics can basically be split into two phenomena: a pure time delay accounting for the transport of the gas downstream and a dynamic signal deformation since the gas is mixed by turbulence along the way. This causes emission peaks to occur which are smaller in height and longer in time at the sensors than they are after the catalyst. These dynamics can be modelled using differential equations. Both mixing dynamics and time delay are constant for modelling a raw gas analyser system, since the flow in that system is constant. In the exhaust system of the car, however, the parameters depend on the exhaust volume flow. For gasoline cars, the variation in overall transport time may be more than 6 s. It is shown in this paper how all these processes can be described by invertible mathematical models with the focus on the more complex case of the car's exhaust system. Inversion means that the sharp emission signal at the catalyst out location can be

  13. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.

    PubMed

    Sapsis, Themistoklis P; Majda, Andrew J

    2013-08-20

    A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.

  14. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.; Schwegler, Eric

    2016-10-01

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. Such simulations are often performed at elevated temperatures to artificially "correct" for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. To address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na+, K+, and Cl- ions. We show that simulations at 390-400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. Our results suggest that an elevated temperature around 390-400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.

  15. The effect of external dynamic loads on the lifetime of rolling element bearings: accurate measurement of the bearing behaviour

    NASA Astrophysics Data System (ADS)

    Jacobs, W.; Boonen, R.; Sas, P.; Moens, D.

    2012-05-01

    Accurate prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. Recent research emphasizes an important influence of external dynamic loads on the lifetime of bearings. However, most lifetime calculations of bearings are based on the classical ISO 281 standard, neglecting this influence. For bearings subjected to highly varying loads, this leads to inaccurate estimations of the lifetime, and therefore excessive safety factors during the design and unexpected failures during operation. This paper presents a novel test rig, developed to analyse the behaviour of rolling element bearings subjected to highly varying loads. Since bearings are very precise machine components, their motion can only be measured in an accurately controlled environment. Otherwise, noise from other components and external influences such as temperature variations will dominate the measurements. The test rig is optimised to perform accurate measurements of the bearing behaviour. Also, the test bearing is fitted in a modular structure, which guarantees precise mounting and allows testing different types and sizes of bearings. Finally, a fully controlled multi-axial static and dynamic load is imposed on the bearing, while its behaviour is monitored with capacitive proximity probes.

  16. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor.

    PubMed

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-28

    The properties of water under confinement are of practical and fundamental interest. In this work, we study the properties of water in the self-assembled lyotropic phases of Gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments, the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, D(T), and rotational relaxation time, τ(R). We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the de-coupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of D(T) and τ(R) can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale.

  17. Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Radak, Brian K.; Roux, Benoît

    2016-10-01

    Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance. An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Finally, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.

  18. Accurate dynamic power estimation for CMOS combinational logic circuits with real gate delay model.

    PubMed

    Fadl, Omnia S; Abu-Elyazeed, Mohamed F; Abdelhalim, Mohamed B; Amer, Hassanein H; Madian, Ahmed H

    2016-01-01

    Dynamic power estimation is essential in designing VLSI circuits where many parameters are involved but the only circuit parameter that is related to the circuit operation is the nodes' toggle rate. This paper discusses a deterministic and fast method to estimate the dynamic power consumption for CMOS combinational logic circuits using gate-level descriptions based on the Logic Pictures concept to obtain the circuit nodes' toggle rate. The delay model for the logic gates is the real-delay model. To validate the results, the method is applied to several circuits and compared against exhaustive, as well as Monte Carlo, simulations. The proposed technique was shown to save up to 96% processing time compared to exhaustive simulation.

  19. A Variable Coefficient Method for Accurate Monte Carlo Simulation of Dynamic Asset Price

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Hung, Chih-Young; Yu, Shao-Ming; Chiang, Su-Yun; Chiang, Yi-Hui; Cheng, Hui-Wen

    2007-07-01

    In this work, we propose an adaptive Monte Carlo (MC) simulation technique to compute the sample paths for the dynamical asset price. In contrast to conventional MC simulation with constant drift and volatility (μ,σ), our MC simulation is performed with variable coefficient methods for (μ,σ) in the solution scheme, where the explored dynamic asset pricing model starts from the formulation of geometric Brownian motion. With the method of simultaneously updated (μ,σ), more than 5,000 runs of MC simulation are performed to fulfills basic accuracy of the large-scale computation and suppresses statistical variance. Daily changes of stock market index in Taiwan and Japan are investigated and analyzed.

  20. Dynamic saturation in Semiconductor Optical Amplifiers: accurate model, role of carrier density, and slow light.

    PubMed

    Berger, Perrine; Alouini, Mehdi; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel

    2010-01-18

    We developed an improved model in order to predict the RF behavior and the slow light properties of the SOA valid for any experimental conditions. It takes into account the dynamic saturation of the SOA, which can be fully characterized by a simple measurement, and only relies on material fitting parameters, independent of the optical intensity and the injected current. The present model is validated by showing a good agreement with experiments for small and large modulation indices.

  1. Dynamical analysis of highly excited molecular spectra

    SciTech Connect

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  2. Nucleation of carbon nanostructures: Molecular dynamics with reactive potentials

    NASA Astrophysics Data System (ADS)

    Galiullina, G. M.; Orekhov, N. D.; Stegailov, V. V.

    2016-11-01

    In this paper, we present our first results in the study of the details of nucleation in the homogeneous carbon gas phase using computer calculations with molecular dynamics methods. Direct and controlled molecular-dynamics approaches are used and two reactive potentials (ReaxFF and AIREBO) are compared. The calculations have shown that the nucleation process in the AIREBO model is going more actively than in the ReaxFF one.

  3. Special issue on ultrafast electron and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hishikawa, Akiyoshi; Martin, Fernando; Vrakking, Marc

    2013-07-01

    Your invitation to submit. Journal of Physics. B: Atomic Molecular and Optical Physics (JPhysB) is delighted to announce a forthcoming special issue on ultrafast electron and molecular dynamics to appear in 2014, and invites you to submit a paper. Within the last decade, a number of novel approaches have emerged, both experimental and theoretical, that allow the investigation of (time-resolved) molecular dynamics in novel ways not anticipated before. Experimentally, the introduction of novel light sources such as high-harmonic generation and XUV/x-ray free electron lasers, and the emergence of novel detection strategies, such as time-resolved electron/x-ray diffraction and the fully coincident detection of electrons and fragment ions in reaction microscopes, has significantly expanded the arsenal of available techniques, and has taken studies of molecular dynamics into new domains of spectroscopic, spatial and temporal resolution, the latter including first explorations into the attosecond domain. Along the way, particular types of molecular dynamics, such as dynamics around conical intersections, have gained an increased prominence, sparked by an emerging realization about the essential role that this dynamics plays in relaxation pathways in important bio-molecular systems. The progress on the theoretical side has been no less impressive. Novel generations of supercomputers and a series of novel computational strategies have allowed nearly exact calculations in small molecules, as well as highly successful approximate calculations in large, polyatomic molecules. Frequent and intensive collaborations involving both theory and experiment have been essential for the progress that has been accomplished. The special issue 'Ultrafast electron and molecular dynamics' seeks to provide an overview of some of the most important developments in the field, while at the same time indicating how studies of (time-resolved) molecular dynamics are likely to evolve in the coming

  4. Dynamics of nitrogen dissociation from direct molecular simulation

    NASA Astrophysics Data System (ADS)

    Valentini, Paolo; Schwartzentruber, Thomas E.; Bender, Jason D.; Candler, Graham V.

    2016-08-01

    dissociating nitrogen systems involving both atomic and molecular nitrogen. Such direct comparisons also illustrate how the DMS method is able to reveal all relevant nonequilibrium physics without the need to compute large numbers of state-transition probabilities. In this manner, DMS presents an accurate and tractable approach to construct models for direct-simulation Monte Carlo and computational fluid dynamics simulations from first principles.

  5. Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew

    1991-01-01

    Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.

  6. Elucidation of molecular dynamics of invasive species of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice fields are aggressively invaded by weedy rice in the U.S. and worldwide. Weedy rice results in loss of yield and seed contamination. The molecular dynamics of the evolutionary adaptive traits of weedy rice are not fully understood. To understand the molecular basis and identify the i...

  7. Attosecond molecular dynamics: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Lépine, Franck; Ivanov, Misha Y.; Vrakking, Marc J. J.

    2014-03-01

    The emerging application of attosecond techniques to molecular systems allows the role of electronic coherence in the control of chemical reactions to be investigated. Prompt ionization of molecules by an attosecond pulse may induce charge migration across a molecular structure on attosecond to few-femtosecond timescales, thereby possibly determining the subsequent relaxation pathways that a molecule may take. We discuss how proposals for this 'charge-directed reactivity' fit within the current understanding of quantum control and review the current state of the art of attosecond molecular science. Specifically, we review the role of electronic coherence and coupling of the electronic and nuclear degrees of freedom in high-harmonic spectroscopy and in the first attosecond pump-probe experiments on molecular systems.

  8. Molecular dynamics simulation of interfacial adhesion

    SciTech Connect

    Yarovsky, I.; Chaffee, A.L.

    1996-12-31

    Chromium salts are often used in the pretreatment stages of steel painting processes in order to improve adhesion at the metal oxide/primer interface. Although well established empirically, the chemical basis for the improved adhesion conferred by chromia is not well understood. A molecular level understanding of this behaviour should provide a foundation for the design of materials offering improved adhesion control. Molecular modelling of adhesion involves simulation and analysis of molecular behaviour at the interface between two interacting phases. The present study concerns behaviour at the boundary between the metal coated steel surface (with or without chromium pretreatment) and an organic primer based on a solid epoxide resin produced from bisphenol A and epichlorohydrin. An epoxy resin oligomer of molecular weight 3750 was used as the model for the primer.

  9. Accurate Dynamic Response Predictions of Plug-and-Play Sat I

    DTIC Science & Technology

    2010-03-01

    damping. The foam pads are necessary to damp out the s ystem b etween s trikes f rom t he s haker . Elevating t he f oam p ads p rovides i ncreased... haker set to a ct as an au tomatic p ing h ammer ( Figure 15) provides impulse like excitiations. A Hewlett Packard 33120A 15MHz/Arbitray...n M B Dynamics C al50 E xciter el ectrodynamic s haker b eing d riven b y a H ewlett P ackard 33120A 15M Hz/Arbitrary waveform generator p

  10. Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations

    NASA Astrophysics Data System (ADS)

    Kelly, Aaron; Brackbill, Nora; Markland, Thomas E.

    2015-03-01

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  11. Accurate nonadiabatic quantum dynamics on the cheap: making the most of mean field theory with master equations.

    PubMed

    Kelly, Aaron; Brackbill, Nora; Markland, Thomas E

    2015-03-07

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  12. Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations

    SciTech Connect

    Kelly, Aaron; Markland, Thomas E.; Brackbill, Nora

    2015-03-07

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  13. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    PubMed

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  14. Efficient and accurate evaluation of potential energy matrix elements for quantum dynamics using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Alborzpour, Jonathan P.; Tew, David P.; Habershon, Scott

    2016-11-01

    Solution of the time-dependent Schrödinger equation using a linear combination of basis functions, such as Gaussian wavepackets (GWPs), requires costly evaluation of integrals over the entire potential energy surface (PES) of the system. The standard approach, motivated by computational tractability for direct dynamics, is to approximate the PES with a second order Taylor expansion, for example centred at each GWP. In this article, we propose an alternative method for approximating PES matrix elements based on PES interpolation using Gaussian process regression (GPR). Our GPR scheme requires only single-point evaluations of the PES at a limited number of configurations in each time-step; the necessity of performing often-expensive evaluations of the Hessian matrix is completely avoided. In applications to 2-, 5-, and 10-dimensional benchmark models describing a tunnelling coordinate coupled non-linearly to a set of harmonic oscillators, we find that our GPR method results in PES matrix elements for which the average error is, in the best case, two orders-of-magnitude smaller and, in the worst case, directly comparable to that determined by any other Taylor expansion method, without requiring additional PES evaluations or Hessian matrices. Given the computational simplicity of GPR, as well as the opportunities for further refinement of the procedure highlighted herein, we argue that our GPR methodology should replace methods for evaluating PES matrix elements using Taylor expansions in quantum dynamics simulations.

  15. Discrete Molecular Dynamics Approach to the Study of Disordered and Aggregating Proteins.

    PubMed

    Emperador, Agustí; Orozco, Modesto

    2017-03-14

    We present a refinement of the Coarse Grained PACSAB force field for Discrete Molecular Dynamics (DMD) simulations of proteins in aqueous conditions. As the original version, the refined method provides good representation of the structure and dynamics of folded proteins but provides much better representations of a variety of unfolded proteins, including some very large, impossible to analyze by atomistic simulation methods. The PACSAB/DMD method also reproduces accurately aggregation properties, providing good pictures of the structural ensembles of proteins showing a folded core and an intrinsically disordered region. The combination of accuracy and speed makes the method presented here a good alternative for the exploration of unstructured protein systems.

  16. The Computer Simulation of Liquids by Molecular Dynamics.

    ERIC Educational Resources Information Center

    Smith, W.

    1987-01-01

    Proposes a mathematical computer model for the behavior of liquids using the classical dynamic principles of Sir Isaac Newton and the molecular dynamics method invented by other scientists. Concludes that other applications will be successful using supercomputers to go beyond simple Newtonian physics. (CW)

  17. Multilevel summation with B-spline interpolation for pairwise interactions in molecular dynamics simulations

    PubMed Central

    Wolff, Matthew A.; Xia, Jianlin; Schulten, Klaus

    2016-01-01

    The multilevel summation method for calculating electrostatic interactions in molecular dynamics simulations constructs an approximation to a pairwise interaction kernel and its gradient, which can be evaluated at a cost that scales linearly with the number of atoms. The method smoothly splits the kernel into a sum of partial kernels of increasing range and decreasing variability with the longer-range parts interpolated from grids of increasing coarseness. Multilevel summation is especially appropriate in the context of dynamics and minimization, because it can produce continuous gradients. This article explores the use of B-splines to increase the accuracy of the multilevel summation method (for nonperiodic boundaries) without incurring additional computation other than a preprocessing step (whose cost also scales linearly). To obtain accurate results efficiently involves technical difficulties, which are overcome by a novel preprocessing algorithm. Numerical experiments demonstrate that the resulting method offers substantial improvements in accuracy and that its performance is competitive with an implementation of the fast multipole method in general and markedly better for Hamiltonian formulations of molecular dynamics. The improvement is great enough to establish multilevel summation as a serious contender for calculating pairwise interactions in molecular dynamics simulations. In particular, the method appears to be uniquely capable for molecular dynamics in two situations, nonperiodic boundary conditions and massively parallel computation, where the fast Fourier transform employed in the particle–mesh Ewald method falls short. PMID:27004867

  18. Temperature dependence of protein hydration hydrodynamics by molecular dynamics simulations.

    SciTech Connect

    Lau, E Y; Krishnan, V V

    2007-07-18

    The dynamics of water molecules near the protein surface are different from those of bulk water and influence the structure and dynamics of the protein itself. To elucidate the temperature dependence hydration dynamics of water molecules, we present results from the molecular dynamic simulation of the water molecules surrounding two proteins (Carboxypeptidase inhibitor and Ovomucoid) at seven different temperatures (T=273 to 303 K, in increments of 5 K). Translational diffusion coefficients of the surface water and bulk water molecules were estimated from 2 ns molecular dynamics simulation trajectories. Temperature dependence of the estimated bulk water diffusion closely reflects the experimental values, while hydration water diffusion is retarded significantly due to the protein. Protein surface induced scaling of translational dynamics of the hydration waters is uniform over the temperature range studied, suggesting the importance protein-water interactions.

  19. Investigation of Ribosomes Using Molecular Dynamics Simulation Methods.

    PubMed

    Makarov, G I; Makarova, T M; Sumbatyan, N V; Bogdanov, A A

    2016-12-01

    The ribosome as a complex molecular machine undergoes significant conformational changes while synthesizing a protein molecule. Molecular dynamics simulations have been used as complementary approaches to X-ray crystallography and cryoelectron microscopy, as well as biochemical methods, to answer many questions that modern structural methods leave unsolved. In this review, we demonstrate that all-atom modeling of ribosome molecular dynamics is particularly useful in describing the process of tRNA translocation, atomic details of behavior of nascent peptides, antibiotics, and other small molecules in the ribosomal tunnel, and the putative mechanism of allosteric signal transmission to functional sites of the ribosome.

  20. Quantum Dynamics of Vinylidene Photodetachment on an Accurate Global Acetylene-Vinylidene Potential Energy Surface.

    PubMed

    Guo, Lifen; Han, Huixian; Ma, Jianyi; Guo, Hua

    2015-08-06

    Vinylidene is a high-energy isomer of acetylene, and the rearrangement of bonds in the two species serves as a prototype for isomerization reactions. Here, a full-dimensional quantum mechanical study of the vinylidene vibration is carried out on a recently developed global acetylene-vinylidene potential energy surface by simulating the photodetachment dynamics of the vinylidene anion. Several low-lying vibrational levels of the anion were first determined on a new ab initio based potential energy surface, and their photoelectron spectra were obtained within the Condon approximation. The vibrational features of the vinylidene isomer are found to agree well with the experiment in both positions and intensities, validating the global acetylene-vinylidene potential energy surface.

  1. Time-Accurate Computational Fluid Dynamics Simulation of a Pair of Moving Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Williams, Brandon R.

    2011-01-01

    Since the Columbia accident, the threat to the Shuttle launch vehicle from debris during the liftoff timeframe has been assessed by the Liftoff Debris Team at NASA/MSFC. In addition to engineering methods of analysis, CFD-generated flow fields during the liftoff timeframe have been used in conjunction with 3-DOF debris transport methods to predict the motion of liftoff debris. Early models made use of a quasi-steady flow field approximation with the vehicle positioned at a fixed location relative to the ground; however, a moving overset mesh capability has recently been developed for the Loci/CHEM CFD software which enables higher-fidelity simulation of the Shuttle transient plume startup and liftoff environment. The present work details the simulation of the launch pad and mobile launch platform (MLP) with truncated solid rocket boosters (SRBs) moving in a prescribed liftoff trajectory derived from Shuttle flight measurements. Using Loci/CHEM, time-accurate RANS and hybrid RANS/LES simulations were performed for the timeframe T0+0 to T0+3.5 seconds, which consists of SRB startup to a vehicle altitude of approximately 90 feet above the MLP. Analysis of the transient flowfield focuses on the evolution of the SRB plumes in the MLP plume holes and the flame trench, impingement on the flame deflector, and especially impingment on the MLP deck resulting in upward flow which is a transport mechanism for debris. The results show excellent qualitative agreement with the visual record from past Shuttle flights, and comparisons to pressure measurements in the flame trench and on the MLP provide confidence in these simulation capabilities.

  2. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods

    PubMed Central

    Flynn, Jullien M; Brown, Emily A; Chain, Frédéric J J; MacIsaac, Hugh J; Cristescu, Melania E

    2015-01-01

    Metabarcoding has the potential to become a rapid, sensitive, and effective approach for identifying species in complex environmental samples. Accurate molecular identification of species depends on the ability to generate operational taxonomic units (OTUs) that correspond to biological species. Due to the sometimes enormous estimates of biodiversity using this method, there is a great need to test the efficacy of data analysis methods used to derive OTUs. Here, we evaluate the performance of various methods for clustering length variable 18S amplicons from complex samples into OTUs using a mock community and a natural community of zooplankton species. We compare analytic procedures consisting of a combination of (1) stringent and relaxed data filtering, (2) singleton sequences included and removed, (3) three commonly used clustering algorithms (mothur, UCLUST, and UPARSE), and (4) three methods of treating alignment gaps when calculating sequence divergence. Depending on the combination of methods used, the number of OTUs varied by nearly two orders of magnitude for the mock community (60–5068 OTUs) and three orders of magnitude for the natural community (22–22191 OTUs). The use of relaxed filtering and the inclusion of singletons greatly inflated OTU numbers without increasing the ability to recover species. Our results also suggest that the method used to treat gaps when calculating sequence divergence can have a great impact on the number of OTUs. Our findings are particularly relevant to studies that cover taxonomically diverse species and employ markers such as rRNA genes in which length variation is extensive. PMID:26078860

  3. A modified ELISA accurately measures secretion of high molecular weight hyaluronan (HA) by Graves' disease orbital cells.

    PubMed

    Krieger, Christine C; Gershengorn, Marvin C

    2014-02-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated.

  4. Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations.

    PubMed

    Slovin, Mitchell R; Shirts, Michael R

    2015-07-28

    We quantify some of the effects of patterned nanoscale surface texture on static contact angles, dynamic contact angles, and dynamic contact angle hysteresis using molecular dynamics simulations of a moving Lennard-Jones droplet in contact with a solid surface. We observe static contact angles that change with the introduction of surface texture in a manner consistent with theoretical and experimental expectations. However, we find that the introduction of nanoscale surface texture at the length scale of 5-10 times the fluid particle size does not affect dynamic contact angle hysteresis even though it changes both the advancing and receding contact angles significantly. This result differs significantly from microscale experimental results where dynamic contact angle hysteresis decreases with the addition of surface texture due to an increase in the receding contact angle. Instead, we find that molecular-kinetic theory, previously applied only to nonpatterned surfaces, accurately describes dynamic contact angle and dynamic contact angle hysteresis behavior as a function of terminal fluid velocity. Therefore, at length scales of tens of nanometers, the kinetic phenomena such as contact line pinning observed at larger scales become insignificant in comparison to the effects of molecular fluctuations for moving droplets, even though the static properties are essentially scale-invariant. These findings may have implications for the design of highly hierarchical structures with particular wetting properties. We also find that quantitatively determining the trends observed in this article requires the careful selection of system and analysis parameters in order to achieve sufficient accuracy and precision in calculated contact angles. Therefore, we provide a detailed description of our two-surface, circular-fit approach to calculating static and dynamic contact angles on surfaces with nanoscale texturing.

  5. Determination of the experimental equilibrium structure of solid nitromethane using path-integral molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony M.; Habershon, Scott; Morrison, Carole A.; Rankin, David W. H.

    2010-03-01

    Path-integral molecular dynamics (PIMD) simulations with an empirical interaction potential have been used to determine the experimental equilibrium structure of solid nitromethane at 4.2 and 15 K. By comparing the time-averaged molecular structure determined in a PIMD simulation to the calculated minimum-energy (zero-temperature) molecular structure, we have derived structural corrections that describe the effects of thermal motion. These corrections were subsequently used to determine the equilibrium structure of nitromethane from the experimental time-averaged structure. We find that the corrections to the intramolecular and intermolecular bond distances, as well as to the torsion angles, are quite significant, particularly for those atoms participating in the anharmonic motion of the methyl group. Our results demonstrate that simple harmonic models of thermal motion may not be sufficiently accurate, even at low temperatures, while molecular simulations employing more realistic potential-energy surfaces can provide important insight into the role and magnitude of anharmonic atomic motions.

  6. Interfacial Molecular Searching Using Forager Dynamics

    NASA Astrophysics Data System (ADS)

    Monserud, Jon H.; Schwartz, Daniel K.

    2016-03-01

    Many biological and technological systems employ efficient non-Brownian intermittent search strategies where localized searches alternate with long flights. Coincidentally, molecular species exhibit intermittent behavior at the solid-liquid interface, where periods of slow motion are punctuated by fast flights through the liquid phase. Single-molecule tracking was used here to observe the interfacial search process of DNA for complementary DNA. Measured search times were qualitatively consistent with an intermittent-flight model, and ˜10 times faster than equivalent Brownian searches, suggesting that molecular searches for reactive sites benefit from similar efficiencies as biological organisms.

  7. Force fields for classical molecular dynamics.

    PubMed

    Monticelli, Luca; Tieleman, D Peter

    2013-01-01

    In this chapter we review the basic features and the principles underlying molecular mechanics force fields commonly used in molecular modeling of biological macromolecules. We start by summarizing the historical background and then describe classical pairwise additive potential energy functions. We introduce the problem of the calculation of nonbonded interactions, of particular importance for charged macromolecules. Different parameterization philosophies are then presented, followed by a section on force field validation. We conclude with a brief overview on future perspectives for the development of classical force fields.

  8. Gas Diffusion in Polyethylene Terepthalate By Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Butler, Simon; Adolf, David

    2006-03-01

    Molecular dynamics simulations of the diffusion of small penetrants through PET have been performed utilising the anisotropic united atom model [1] and a virtual liquid technique. [2] The accuracy and reliability of these two approaches has been assessed in terms of the improvement in equation of state behaviour and of diffusion co-efficients and solubilities. The effect of the diffusion of nitrogen, carbon dioxide, and oxygen on the local dynamics of PET have been investigated as a result. Attention has been focused on the dual mode effect [3] observed during mixed gas diffusion. [1] Molecular dynamics calculation of the equation of state of alkanes, J. Chem. Phys. 93, 6 (1990) [2] Kikuchi, Kuwajima, Fukada, Novel method to estimate the solubility of small molecules in cis-polyisoprene by molecular dynamics simulations, J. Chem. Phys, 115, 13 (2001) [3] Lewis, Duckett, Ward, Fairclough, Ryan, The barrier properties of polyethylene terephthalate to mixtures of oxygen, carbon dioxide and nitrogen, Polymer, 1631, 44 (2003)

  9. Ab initio molecular dynamics with noisy forces: Validating the quantum Monte Carlo approach with benchmark calculations of molecular vibrational properties

    SciTech Connect

    Luo, Ye Sorella, Sandro; Zen, Andrea

    2014-11-21

    We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.

  10. First principles molecular dynamics without self-consistent field optimization

    SciTech Connect

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-28

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.

  11. First principles molecular dynamics without self-consistent field optimization.

    PubMed

    Souvatzis, Petros; Niklasson, Anders M N

    2014-01-28

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.

  12. Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.

    PubMed

    Halloran, John T; Bilmes, Jeff A; Noble, William S

    2016-08-05

    A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit .

  13. Accurate Prediction of the Dynamical Changes within the Second PDZ Domain of PTP1e

    PubMed Central

    Cilia, Elisa; Vuister, Geerten W.; Lenaerts, Tom

    2012-01-01

    Experimental NMR relaxation studies have shown that peptide binding induces dynamical changes at the side-chain level throughout the second PDZ domain of PTP1e, identifying as such the collection of residues involved in long-range communication. Even though different computational approaches have identified subsets of residues that were qualitatively comparable, no quantitative analysis of the accuracy of these predictions was thus far determined. Here, we show that our information theoretical method produces quantitatively better results with respect to the experimental data than some of these earlier methods. Moreover, it provides a global network perspective on the effect experienced by the different residues involved in the process. We also show that these predictions are consistent within both the human and mouse variants of this domain. Together, these results improve the understanding of intra-protein communication and allostery in PDZ domains, underlining at the same time the necessity of producing similar data sets for further validation of thses kinds of methods. PMID:23209399

  14. Hybrid molecular dynamics simulation for plasma induced damage analysis

    NASA Astrophysics Data System (ADS)

    Matsukuma, Masaaki

    2016-09-01

    In order to enable further device size reduction (also known as Moore's law) and improved power performance, the semiconductor industry is introducing new materials and device structures into the semiconductor fabrication process. Materials now include III-V compounds, germanium, cobalt, ruthenium, hafnium, and others. The device structure in both memory and logic has been evolving from planar to three dimensional (3D). One such device is the FinFET, where the transistor gate is a vertical fin made either of silicon, silicon-germanium or germanium. These changes have brought renewed interests in the structural damages caused by energetic ion bombardment of the fin sidewalls which are exposed to the ion flux from the plasma during the fin-strip off step. Better control of the physical damage of the 3D devices requires a better understanding of the damage formation mechanisms on such new materials and structures. In this study, the damage formation processes by ion bombardment have been simulated for Si and Ge substrate by Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid simulations and compared to the results from the classical molecular dynamics (MD) simulations. In our QM/MM simulations, the highly reactive region in which the structural damage is created is simulated with the Density Functional based Tight Binding (DFTB) method and the region remote from the primary region is simulated using classical MD with the Stillinger-Weber and Moliere potentials. The learn on the fly method is also used to reduce the computational load. Hence our QM/MM simulation is much faster than the full QC-MD simulations and the original QM/MM simulations. The amorphous layers profile simulated with QM/MM have obvious differences in their thickness for silicon and germanium substrate. The profile of damaged structure in the germanium substrate is characterized by a deeper tail then in silicon. These traits are also observed in the results from the mass selected ion beam

  15. Accurate method for the Brownian dynamics simulation of spherical particles with hard-body interactions

    NASA Astrophysics Data System (ADS)

    Barenbrug, Theo M. A. O. M.; Peters, E. A. J. F. (Frank); Schieber, Jay D.

    2002-11-01

    In Brownian Dynamics simulations, the diffusive motion of the particles is simulated by adding random displacements, proportional to the square root of the chosen time step. When computing average quantities, these Brownian contributions usually average out, and the overall simulation error becomes proportional to the time step. A special situation arises if the particles undergo hard-body interactions that instantaneously change their properties, as in absorption or association processes, chemical reactions, etc. The common "naı̈ve simulation method" accounts for these interactions by checking for hard-body overlaps after every time step. Due to the simplification of the diffusive motion, a substantial part of the actual hard-body interactions is not detected by this method, resulting in an overall simulation error proportional to the square root of the time step. In this paper we take the hard-body interactions during the time step interval into account, using the relative positions of the particles at the beginning and at the end of the time step, as provided by the naı̈ve method, and the analytical solution for the diffusion of a point particle around an absorbing sphere. Öttinger used a similar approach for the one-dimensional case [Stochastic Processes in Polymeric Fluids (Springer, Berlin, 1996), p. 270]. We applied the "corrected simulation method" to the case of a simple, second-order chemical reaction. The results agree with recent theoretical predictions [K. Hyojoon and Joe S. Kook, Phys. Rev. E 61, 3426 (2000)]. The obtained simulation error is proportional to the time step, instead of its square root. The new method needs substantially less simulation time to obtain the same accuracy. Finally, we briefly discuss a straightforward way to extend the method for simulations of systems with additional (deterministic) forces.

  16. VUV studies of molecular photofragmentation dynamics

    SciTech Connect

    White, M.G.

    1993-12-01

    State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.

  17. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    DOE PAGES

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-24

    The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, DT , and rotational relaxation time, τR. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the valuesmore » to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of DT and τR can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.« less

  18. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    SciTech Connect

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-24

    The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, DT , and rotational relaxation time, τR. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of DT and τR can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.

  19. Three-Dimensional Molecular Theory of Solvation Coupled with Molecular Dynamics in Amber

    SciTech Connect

    Luchko, T.; Simmerling, C.; Gusarov, S.; Roe, D.R., Case, D.A.; Tuszynski, J.; Kovalenko, A.

    2010-02-01

    We present the three-dimensional molecular theory of solvation (also known as 3D-RISM) coupled with molecular dynamics (MD) simulation by contracting solvent degrees of freedom, accelerated by extrapolating solvent-induced forces and applying them in large multiple time steps (up to 20 fs) to enable simulation of large biomolecules. The method has been implemented in the Amber molecular modeling package and is illustrated here on alanine-dipeptide and protein-G.

  20. Molecular Dynamics Simulations of Network Glasses

    NASA Astrophysics Data System (ADS)

    Drabold, David A.

    The following sections are included: * Introduction and Background * History and use of MD * The role of the potential * Scope of the method * Use of a priori information * Appraising a model * MD Method * Equations of motion * Energy minimization and equilibration * Deeper or global minima * Simulated annealing * Genetic algorithms * Activation-relaxation technique * Alternate dynamics * Modeling infinite systems: Periodic boundary conditions * The Interatomic Interactions * Overview * Empirical classical potentials * Potentials from electronic structure * The tight-binding method * Approximate methods based on tight-binding * First principles * Local basis: "ab initio tight binding" * Plane-waves: Car-Parrinello methods * Efficient ab initio methods for large systems * The need for locality of electron states in real space * Avoiding explicit orthogonalization * Connecting Simulation to Experiment * Structure * Network dynamics * Computing the harmonic modes * Dynamical autocorrelation functions * Dynamical structure factor * Electronic structure * Density of states * Thermal modulation of the electron states * Transport * Applications * g-GeSe2 * g-GexSe1-x glasses * Amorphous carbon surface * Where to Get Codes to Get Started * Acknowledgments * References

  1. Electron-Nuclear Dynamics of Molecular Systems

    DTIC Science & Technology

    1994-04-18

    approach with a completely general form of trial function yields the time - dependent Schr ~ dinger equation . Restricting the...dynamical equations approximating the time - dependent SchrOdinger equation . These equations govern the time evolution of the relevant state vector parameters... equations that apprximate the Apuit 18, 1994 time - dependent Schradinger equation and govern the time evolution of

  2. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    SciTech Connect

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I.; Winey, J. Michael; Gupta, Yogendra Mohan; Lane, J. Matthew D.; Ditmire, Todd; Quevedo, Hernan J.

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  3. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  4. Theoretical Analysis of Dynamic Processes for Interacting Molecular Motors.

    PubMed

    Teimouri, Hamid; Kolomeisky, Anatoly B; Mehrabiani, Kareem

    2015-02-13

    Biological transport is supported by collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by analyzing a new class of totally asymmetric exclusion processes where interactions are accounted for in a thermodynamically consistent fashion. It allows us to connect explicitly microscopic features of motor proteins with their collective dynamic properties. Theoretical analysis that combines various mean-field calculations and computer simulations suggests that dynamic properties of molecular motors strongly depend on interactions, and correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motors transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.

  5. Theoretical analysis of dynamic processes for interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Kolomeisky, Anatoly B.; Mehrabiani, Kareem

    2015-02-01

    Biological transport is supported by the collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by carrying out an analysis of a new class of totally asymmetric exclusion processes, in which interactions are accounted for in a thermodynamically consistent fashion. This allows us to explicitly connect microscopic features of motor proteins with their collective dynamic properties. A theoretical analysis that combines various mean-field calculations and computer simulations suggests that the dynamic properties of molecular motors strongly depend on the interactions, and that the correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motor transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.

  6. State-to-state dynamics of molecular energy transfer

    SciTech Connect

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  7. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  8. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    PubMed

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  9. Trillion-atom molecular dynamics becomes a reality

    SciTech Connect

    Kadau, Kai; Germann, Timothy C

    2008-01-01

    By utilizing the molecular dynamics code SPaSM on Livermore's BlueGene/L architecture, consisting of 212 992 IBM PowerPC440 700 MHz processors, a molecular dynamics simulation was run with one trillion atoms. To demonstrate the practicality and future potential of such ultra large-scale simulations, the onset of the mechanical shear instability occurring in a system of Lennard-Jones particles arranged in a simple cubic lattice was simulated. The evolution of the instability was analyzed on-the-fly using the in-house developed massively parallel graphical object-rendering code MD{_}render.

  10. Nonholonomic Hamiltonian method for molecular dynamics simulations of reacting shocks

    NASA Astrophysics Data System (ADS)

    Bass, Joseph; Fahrenthold, Eric P.

    2017-01-01

    Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general the potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new nonholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations, and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted parameters.

  11. Validity boundary of orbital-free molecular dynamics method corresponding to thermal ionization of shell structure

    NASA Astrophysics Data System (ADS)

    Gao, Chang; Zhang, Shen; Kang, Wei; Wang, Cong; Zhang, Ping; He, X. T.

    2016-11-01

    With 6LiD as an example, we show that the applicable region of the orbital-free molecular dynamics (OFMD) method in a large temperature range is determined by the thermal ionization process of bound electrons in shell structures. The validity boundary of the OFMD method is defined roughly by the balance point of the average thermal energy of an electron and the ionization energy of the lowest localized electronic state. This theoretical proposition is based on the observation that the deviation of the OFMD method originates from its less accurate description to the charge density in partially ionized shells, as compared with the results of the extended first-principles molecular dynamics method, which well reproduces the charge density of shell structures.

  12. Restoring electronic coherence/decoherence for a trajectory-based nonadiabatic molecular dynamics

    PubMed Central

    Zhu, Chaoyuan

    2016-01-01

    By utilizing the time-independent semiclassical phase integral, we obtained modified coupled time-dependent Schrödinger equations that restore coherences and induce decoherences within original simple trajectory-based nonadiabatic molecular dynamic algorithms. Nonadiabatic transition probabilities simulated from both Tully’s fewest switches and semiclassical Ehrenfest algorithms follow exact quantum electronic oscillations and amplitudes for three out of the four well-known model systems. Within the present theory, nonadiabatic transitions estimated from statistical ensemble of trajectories accurately follow those of the modified electronic wave functions. The present theory can be immediately applied to the molecular dynamic simulations of photochemical and photophysical processes involving electronic excited states. PMID:27063337

  13. Electron-phonon interaction within classical molecular dynamics

    SciTech Connect

    Tamm, A.; Samolyuk, G.; Correa, A. A.; Klintenberg, M.; Aabloo, A.; Caro, A.

    2016-07-14

    Here, we present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e-ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computer simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.

  14. Electron-phonon interaction within classical molecular dynamics

    DOE PAGES

    Tamm, A.; Samolyuk, G.; Correa, A. A.; ...

    2016-07-14

    Here, we present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e-ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computermore » simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.« less

  15. Electron-phonon interaction within classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tamm, A.; Samolyuk, G.; Correa, A. A.; Klintenberg, M.; Aabloo, A.; Caro, A.

    2016-07-01

    We present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e -ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computer simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.

  16. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  17. Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems

    PubMed Central

    Bernardi, Rafael C.; Melo, Marcelo C. R.; Schulten, Klaus

    2014-01-01

    Background Molecular Dynamics has emerged as an important research methodology covering systems to the level of millions of atoms. However, insufficient sampling often limits its application. The limitation is due to rough energy landscapes, with many local minima separated by high-energy barriers, which govern the biomolecular motion. Scope of review In the past few decades methods have been developed that address the sampling problem, such as replica-exchange molecular dynamics, metadynamics and simulated annealing. Here we present an overview over theses sampling methods in an attempt to shed light on which should be selected depending on the type of system property studied. Major Conclusions Enhanced sampling methods have been employed for a broad range of biological systems and the choice of a suitable method is connected to biological and physical characteristics of the system, in particular system size. While metadynamics and replica-exchange molecular dynamics are the most adopted sampling methods to study biomolecular dynamics, simulated annealing is well suited to characterize very flexible systems. The use of annealing methods for a long time was restricted to simulation of small proteins; however, a variant of the method, generalized simulated annealing, can be employed at a relatively low computational cost to large macromolecular complexes. General Significance Molecular dynamics trajectories frequently do not reach all relevant conformational substates, for example those connected with biological function, a problem that can be addressed by employing enhanced sampling algorithms. PMID:25450171

  18. Imaging the molecular dynamics of dissociative electron attachment to water

    SciTech Connect

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  19. Molecular dynamics studies of supercooled water using a monatomic model

    NASA Astrophysics Data System (ADS)

    Moore, Emily Brooke

    There remain many unanswered questions regarding the structure and behavior of water, particularly when cooled below the melting temperature into water's supercooled region. In this region, liquid water is metastable, and rapid crystallization makes it difficult to study experimentally the liquid and the crystallization process. Computational studies are hindered by the complexity of accurately modeling water and the computational cost of simulating processes such as crystallization. In this work, the development and validation of mW, a monatomic water model, is presented. This model is able to quantitatively reproduce the structure, dynamic anomalies and phase behavior of water without hydrogen atoms or electrostatics by reproducing water's propensity to form locally tetrahedral structures. Using the mW water model in molecular dynamics simulations, we show the evolution of the local structure of water from 300--100 K. We find that the thermodynamic and structural properties studied, density, tetrahedrality and structural correlation length, change maximally or are maximum at 202 +/- 2 K, the liquid-liquid transformation temperature. Shifting to water confined within cylindrical nanopores, we present the development of a rotationally invariant method, the CHILL algorithm, to distinguish between liquid, hexagonal and cubic ice. We analyze the process of homogeneous nucleation, growth and melting within hydrophilic pores, as well as the effect of water-pore interaction strength on the melting of ice and liquid-ice coexistence within pores. Crystallization within the nanopores results in cubic ice with hexagonal stacking faults in agreement with experiments. We also investigate crystallization of bulk liquid within water's experimentally inaccessible "no man's land." Crystallization occurs through rapid development of ice nuclei that grow and consolidate, precluding the measurement of diffusion within the liquid. Analysis of how ice structure develops shows that

  20. Mesoscopic Dynamics of Biopolymers and Protein Molecular Machines

    NASA Astrophysics Data System (ADS)

    Kapral, Raymond

    2013-03-01

    The dynamics of biopolymers in solution and in crowded molecular environments, which mimic some features of the interior of a biochemical cell, will be discussed. In particular, the dynamics of protein machines that utilize chemical energy to effect cyclic conformational changes to carry out their catalytic functions will be described. The investigation of the dynamics of such complex systems requires knowledge of the time evolution on physically relevant long distance and time scales. This often necessitates a coarse grained or mesoscopic treatment of the dynamics. A hybrid particle-based mesoscopic dynamical method, which combines molecular dynamics for a coarse-grain model of the proteins with multiparticle collision dynamics for the solvent, will be described and utilized to study the dynamics of such systems. See, C. Echeverria, Y. Togashi, A. S. Mikhailov, and R. Kapral, Phys. Chem. Chem. Phys 13, 10527 (2011); C. Echeverria and R. Kapral, Phys. Chem. Chem. Phys., 14, 6755 (2012); J. M. Schofield, P. Inder and R. Kapral, J. Chem. Phys. 136, 205101 (2012). Work was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

  1. Algorithms and novel applications based on the isokinetic ensemble. II. Ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Minary, Peter; Martyna, Glenn J.; Tuckerman, Mark E.

    2003-02-01

    In this paper (Paper II), the isokinetic dynamics scheme described in Paper I is combined with the plane-wave based Car-Parrinello (CP) ab initio molecular dynamics (MD) method [R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)] to enable the efficient study of chemical reactions and metallic systems. The Car-Parrinello approach employs "on the fly" electronic structure calculations as a means of generating accurate internuclear forces for use in a molecular dynamics simulation. This is accomplished by the introduction of an extended Lagrangian that contains the electronic orbitals as fictitious dynamical variables (often expressed directly in terms of the expansion coefficients of the orbitals in a particular basis set). Thus, rather than quench the expansion coefficients to obtain the ground state energy and nuclear forces at every time step, the orbitals are "propagated" under conditions that allow them to fluctuate rapidly around their global minimum and, hence, generate an accurate approximation to the nuclear forces as the simulation proceeds. Indeed, the CP technique requires the dynamics of the orbitals to be both fast compared to the nuclear degrees of freedom while keeping the fictitious kinetic energy that allows them to be propagated dynamically as small as possible. While these conditions can be easy to achieve in many types of systems, in metals and highly exothermic chemical reactions difficulties arise. (Note, the CP dynamics of metals is incorrect because the nuclear motion does not occur on the ground state electronic surface but it can, nonetheless, provide useful information.) In order to alleviate these difficulties the isokinetic methods of Paper I are applied to derive isokinetic CP equations of motion. The efficacy of the new isokinetic CPMD method is demonstrated on model and realistic systems. The latter include, metallic systems, liquid aluminum, a small silicon sample, the 2×1 reconstruction of the silicon 100 surface, and the

  2. Applications of Langevin and Molecular Dynamics methods

    NASA Astrophysics Data System (ADS)

    Lomdahl, P. S.

    Computer simulation of complex nonlinear and disordered phenomena from materials science is rapidly becoming an active and new area serving as a guide for experiments and for testing of theoretical concepts. This is especially true when novel massively parallel computer systems and techniques are used on these problems. In particular the Langevin dynamics simulation technique has proven useful in situations where the time evolution of a system in contact with a heat bath is to be studied. The traditional way to study systems in contact with a heat bath has been via the Monte Carlo method. While this method has indeed been used successfully in many applications, it has difficulty addressing true dynamical questions. Large systems of coupled stochastic ODE's (or Langevin equations) are commonly the end result of a theoretical description of higher dimensional nonlinear systems in contact with a heat bath. The coupling is often local in nature, because it reflects local interactions formulated on a lattice, the lattice for example represents the underlying discreteness of a substrate of atoms or discrete k-values in Fourier space. The fundamental unit of parallelism thus has a direct analog in the physical system the authors are interested in. In these lecture notes the authors illustrate the use of Langevin stochastic simulation techniques on a number of nonlinear problems from materials science and condensed matter physics that have attracted attention in recent years. First, the authors review the idea behind the fluctuation-dissipation theorem which forms that basis for the numerical Langevin stochastic simulation scheme. The authors then show applications of the technique to various problems from condensed matter and materials science.

  3. Theory of multiexciton dynamics in molecular chains

    NASA Astrophysics Data System (ADS)

    Wang, Luxia; May, Volkhard

    2016-11-01

    Ultrafast and strong optical excitation of a molecular system is considered which is formed by a regular one-dimensional arrangement of identical molecules. As it is typical for zinc chlorine-type molecules the transition energy from the ground state to the first excited singlet state is assumed to be smaller than the energy difference between the first excited state and the following one. This enables the creation of many excitons without their immediate quenching due to exciton-exciton annihilation. As a first step into the field of dense Frenkel-exciton systems the present approach stays at a mean-field type of description and ignores vibrational contributions. The resulting nonlinear kinetic equations mix Rabi-type oscillations with those caused by energy transfer and suggest an excitation-dependent narrowing of the exciton band. The indication of this effect in the framework of a two-color pump-probe experiment and of the detection of photon emission is discussed.

  4. Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation.

    PubMed

    Prince, J A; Feuk, L; Howell, W M; Jobs, M; Emahazion, T; Blennow, K; Brookes, A J

    2001-01-01

    We recently introduced a generic single nucleotide polymorphism (SNP) genotyping method, termed DASH (dynamic allele-specific hybridization), which entails dynamic tracking of probe (oligonucleotide) to target (PCR product) hybridization as reaction temperature is steadily increased. The reliability of DASH and optimal design rules have not been previously reported. We have now evaluated crudely designed DASH assays (sequences unmodified from genomic DNA) for 89 randomly selected and confirmed SNPs. Accurate genotype assignment was achieved for 89% of these worst-case-scenario assays. Failures were determined to be caused by secondary structures in the target molecule, which could be reliably predicted from thermodynamic theory. Improved design rules were thereby established, and these were tested by redesigning six of the failed DASH assays. This involved reengineering PCR primers to eliminate amplified target sequence secondary structures. This sophisticated design strategy led to complete functional recovery of all six assays, implying that SNPs in most if not all sequence contexts can be effectively scored by DASH. Subsequent empirical support for this inference has been evidenced by approximately 30 failure-free DASH assay designs implemented across a range of ongoing genotyping programs. Structured follow-on studies employed standardized assay conditions, and revealed that assay reproducibility (733 duplicated genotypes, six different assays) was as high as 100%, with an assay accuracy (1200 genotypes, three different assays) that exceeded 99.9%. No post-PCR assay failures were encountered. These findings, along with intrinsic low cost and high flexibility, validate DASH as an effective procedure for SNP genotyping.

  5. Accurate segmentation of partially overlapping cervical cells based on dynamic sparse contour searching and GVF snake model.

    PubMed

    Guan, Tao; Zhou, Dongxiang; Liu, Yunhui

    2015-07-01

    Overlapping cells segmentation is one of the challenging topics in medical image processing. In this paper, we propose to approximately represent the cell contour as a set of sparse contour points, which can be further partitioned into two parts: the strong contour points and the weak contour points. We consider the cell contour extraction as a contour points locating problem and propose an effective and robust framework for segmentation of partially overlapping cells in cervical smear images. First, the cell nucleus and the background are extracted by a morphological filtering-based K-means clustering algorithm. Second, a gradient decomposition-based edge enhancement method is developed for enhancing the true edges belonging to the center cell. Then, a dynamic sparse contour searching algorithm is proposed to gradually locate the weak contour points in the cell overlapping regions based on the strong contour points. This algorithm involves the least squares estimation and a dynamic searching principle, and is thus effective to cope with the cell overlapping problem. Using the located contour points, the Gradient Vector Flow Snake model is finally employed to extract the accurate cell contour. Experiments have been performed on two cervical smear image datasets containing both single cells and partially overlapping cells. The high accuracy of the cell contour extraction result validates the effectiveness of the proposed method.

  6. Molecular dynamics simulation of aqueous solutions of glycine betaine

    NASA Astrophysics Data System (ADS)

    Civera, Monica; Fornili, Arianna; Sironi, Maurizio; Fornili, Sandro L.

    2003-01-01

    Molecular dynamics simulation is used to investigate hydration properties of glycine betaine in a large range of solute concentrations. Statistical analyses of the system trajectories evidence microscopic details suggesting an interpretation of experimental results recently obtained for aqueous solutions of trimethylamine- N-oxide, a bioprotectant closely related to glycine betaine.

  7. Quantum Molecular Dynamics Simulations of Nanotube Tip Assisted Reactions

    NASA Technical Reports Server (NTRS)

    Menon, Madhu

    1998-01-01

    In this report we detail the development and application of an efficient quantum molecular dynamics computational algorithm and its application to the nanotube-tip assisted reactions on silicon and diamond surfaces. The calculations shed interesting insights into the microscopic picture of tip surface interactions.

  8. Membrane Insertion Profiles of Peptides Probed by Molecular Dynamics Simulations

    DTIC Science & Technology

    2008-07-17

    Medical Research and Materiel Command, Fort Detrick, Maryland #Department of Cell Biology and Biochemistry , U.S. Army Medical Research Institute of...Molecular dynamics of n- alkanes ," J. Comput. Phys., vol. 23, pp. 327-341, 1977. [24] S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M

  9. Reasoning with Atomic-Scale Molecular Dynamic Models

    ERIC Educational Resources Information Center

    Pallant, Amy; Tinker, Robert F.

    2004-01-01

    The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate…

  10. Optimizing legacy molecular dynamics software with directive-based offload

    SciTech Connect

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.

  11. Optimizing legacy molecular dynamics software with directive-based offload

    DOE PAGES

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; ...

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less

  12. Molecular Dynamic Screening Sesquiterpenoid Pogostemon Herba as Suggested Cyclooxygenase Inhibitor

    PubMed Central

    Raharjo, Sentot Joko; Kikuchi, Takeshi

    2016-01-01

    Objective: Virtual molecular dynamic sesquiterpenoid Pogostemon Herba (CID56928117, CID94275, CID107152, and CID519743) have screening as cyclooxygenase (COX-1/COX-2) selective inhibitor. Methods: Molecular interaction studies sesquiterpenoid compounds with COX-1 and COX-2 were using the molecular docking tools by Hex 8.0 and interactions were further visualized using by Discovery Studio Client 3.5 software tool and Virtual Molecular Dynamic 1.9.1 software. The binding energy calculation of molecular dynamic interaction was calculated by AMBER12 software. Result: The analysis of the sesquiterpenoid compounds showed that CID56928117, CID94275, CID107152, and CID519743 have suggested as inhibitor of COX-1 and COX-2. Conclusion: Collectively, the scoring binding energy calculation (with PBSA Model Solvent) sesquiterpenoid compounds: CID519743 had suggested as candidate for non-selective inhibitor; CID56928117 and CID94275 had suggested as candidate for a selective COX-1 inhibitor; and CID107152 had suggested as candidate for a selective COX-2 inhibitor. PMID:28077888

  13. High-throughput all-atom molecular dynamics simulations using distributed computing.

    PubMed

    Buch, I; Harvey, M J; Giorgino, T; Anderson, D P; De Fabritiis, G

    2010-03-22

    Although molecular dynamics simulation methods are useful in the modeling of macromolecular systems, they remain computationally expensive, with production work requiring costly high-performance computing (HPC) resources. We review recent innovations in accelerating molecular dynamics on graphics processing units (GPUs), and we describe GPUGRID, a volunteer computing project that uses the GPU resources of nondedicated desktop and workstation computers. In particular, we demonstrate the capability of simulating thousands of all-atom molecular trajectories generated at an average of 20 ns/day each (for systems of approximately 30 000-80 000 atoms). In conjunction with a potential of mean force (PMF) protocol for computing binding free energies, we demonstrate the use of GPUGRID in the computation of accurate binding affinities of the Src SH2 domain/pYEEI ligand complex by reconstructing the PMF over 373 umbrella sampling windows of 55 ns each (20.5 mus of total data). We obtain a standard free energy of binding of -8.7 +/- 0.4 kcal/mol within 0.7 kcal/mol from experimental results. This infrastructure will provide the basis for a robust system for high-throughput accurate binding affinity prediction.

  14. Diversity dynamics: molecular phylogenies need the fossil record.

    PubMed

    Quental, Tiago B; Marshall, Charles R

    2010-08-01

    Over the last two decades, new tools in the analysis of molecular phylogenies have enabled study of the diversification dynamics of living clades in the absence of information about extinct lineages. However, computer simulations and the fossil record show that the inability to access extinct lineages severely limits the inferences that can be drawn from molecular phylogenies. It appears that molecular phylogenies can tell us only when there have been changes in diversification rates, but are blind to the true diversity trajectories and rates of origination and extinction that have led to the species that are alive today. We need to embrace the fossil record if we want to fully understand the diversity dynamics of the living biota.

  15. Molecular dynamics simulation of friction of hydrocarbon thin films

    SciTech Connect

    Tamura, Hiroyuki; Yoshida, Muneo; Kusakabe, Kenichi

    1999-10-26

    Molecular Dynamics (MD) simulations were performed to investigate the dynamic behavior of hydrocarbon molecules under shear conditions. Frictional properties of cyclohexane, n-hexane, and iso-hexane thin films confirmed between two solid surfaces were calculated. Because the affinity of the solid surfaces in these simulations is strong, slippages occurred at inner parts of the confined films, whereas no slippages were observed at the solid boundaries. The hexagonal closest packing structure was observed for the adsorbed cyclohexane molecular layers. The branched methyl groups in the iso-hexane molecules increase the shear stress between the molecular layers. For the n-hexane monolayer, molecules were observed to roll during the sliding simulations. Rolling of the n-hexane molecules decreased the shear stress.

  16. Multiscale equation-free algorithms for molecular dynamics

    NASA Astrophysics Data System (ADS)

    Abi Mansour, Andrew

    Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.

  17. Communication: Kirkwood-Buff integrals in the thermodynamic limit from small-sized molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cortes-Huerto, R.; Kremer, K.; Potestio, R.

    2016-10-01

    We present an accurate and efficient method to obtain Kirkwood-Buff (KB) integrals in the thermodynamic limit from small-sized molecular dynamics simulations. By introducing finite size effects into integral equations of statistical mechanics, we derive an analytical expression connecting the KB integrals of the bulk system with the fluctuations of the number of molecules in the corresponding closed system. We validate the method by calculating the activity coefficients of aqueous urea mixtures and the KB integrals of Lennard-Jones fluids. Moreover, our results demonstrate how to identify simulation conditions under which computer simulations reach the thermodynamic limit.

  18. Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces.

    PubMed

    Li, Zhenwei; Kermode, James R; De Vita, Alessandro

    2015-03-06

    We present a molecular dynamics scheme which combines first-principles and machine-learning (ML) techniques in a single information-efficient approach. Forces on atoms are either predicted by Bayesian inference or, if necessary, computed by on-the-fly quantum-mechanical (QM) calculations and added to a growing ML database, whose completeness is, thus, never required. As a result, the scheme is accurate and general, while progressively fewer QM calls are needed when a new chemical process is encountered for the second and subsequent times, as demonstrated by tests on crystalline and molten silicon.

  19. Molecular Dynamics with On-the-Fly Machine Learning of Quantum-Mechanical Forces

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Kermode, James R.; De Vita, Alessandro

    2015-03-01

    We present a molecular dynamics scheme which combines first-principles and machine-learning (ML) techniques in a single information-efficient approach. Forces on atoms are either predicted by Bayesian inference or, if necessary, computed by on-the-fly quantum-mechanical (QM) calculations and added to a growing ML database, whose completeness is, thus, never required. As a result, the scheme is accurate and general, while progressively fewer QM calls are needed when a new chemical process is encountered for the second and subsequent times, as demonstrated by tests on crystalline and molten silicon.

  20. Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules.

    PubMed

    Kolafa, Jirí

    2004-02-01

    An improved method for classic molecular dynamics of polarizable molecules is proposed. The method uses a predictor, one evaluation of the electrostatic field per integration step, and relaxation (damping). The self-consistent solution is approximated with error of the second order (with respect to the timestep). The time reversibility (long-time energy conservation) error is of the (2n - 1)th order, where n is the predictor length. The method is easy to implement, efficient, accurate, and suitable for any model of polarizability.

  1. Evaporation kinetics of Mg2SiO4 crystals and melts from molecular dynamics simulations

    NASA Technical Reports Server (NTRS)

    Kubicki, J. D.; Stolper, E. M.

    1993-01-01

    Computer simulations based on the molecular dynamics (MD) technique were used to study the mechanisms and kinetics of free evaporation from crystalline and molten forsterite (i.e., Mg2SiO4) on an atomic level. The interatomic potential employed for these simulations reproduces the energetics of bonding in forsterite and in gas-phase MgO and SiO2 reasonably accurately. Results of the simulation include predicted evaporation rates, diffusion rates, and reaction mechanisms for Mg2SiO4(s or l) yields 2Mg(g) + 20(g) + SiO2(g).

  2. Molecular Dynamics Simulations of Perylenediimide DNA Base Surrogates.

    PubMed

    Markegard, Cade B; Mazaheripour, Amir; Jocson, Jonah-Micah; Burke, Anthony M; Dickson, Mary N; Gorodetsky, Alon A; Nguyen, Hung D

    2015-09-03

    Perylene-3,4,9,10-tetracarboxylic diimides (PTCDIs) are a well-known class of organic materials. Recently, these molecules have been incorporated within DNA as base surrogates, finding ready applications as probes of DNA structure and function. However, the assembly dynamics and kinetics of PTCDI DNA base surrogates have received little attention to date. Herein, we employ constant temperature molecular dynamics simulations to gain an improved understanding of the assembly of PTCDI dimers and trimers. We also use replica-exchange molecular dynamics simulations to elucidate the energetic landscape dictating the formation of stacked PTCDI structures. Our studies provide insight into the equilibrium configurations of multimeric PTCDIs and hold implications for the construction of DNA-inspired systems from perylene-derived organic semiconductor building blocks.

  3. Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation

    PubMed Central

    2014-01-01

    Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585

  4. A random rotor molecule: Vibrational analysis and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Rui-Qin; Shi, Xing-Qiang; Lin, Zijing; Van Hove, Michel A.

    2012-12-01

    Molecular structures that permit intramolecular rotational motion have the potential to function as molecular rotors. We have employed density functional theory and vibrational frequency analysis to study the characteristic structure and vibrational behavior of the molecule (4',4″″-(bicyclo[2,2,2]octane-1,4-diyldi-4,1-phenylene)-bis-2,2':6',2″-terpyridine. IR active vibrational modes were found that favor intramolecular rotation. To demonstrate the rotor behavior of the isolated single molecule, ab initio molecular dynamics simulations at various temperatures were carried out. This molecular rotor is expected to be thermally triggered via excitation of specific vibrational modes, which implies randomness in its direction of rotation.

  5. Molecular dynamics computer simulation of permeation in solids

    SciTech Connect

    Pohl, P.I.; Heffelfinger, G.S.; Fisler, D.K.; Ford, D.M.

    1997-12-31

    In this work the authors simulate permeation of gases and cations in solid models using molecular mechanics and a dual control volume grand canonical molecular dynamics technique. The molecular sieving nature of microporous zeolites are discussed and compared with that for amorphous silica made by sol-gel methods. One mesoporous and one microporous membrane model are tested with Lennard-Jones gases corresponding to He, H{sub 2}, Ar and CH{sub 4}. The mesoporous membrane model clearly follows a Knudsen diffusion mechanism, while the microporous model having a hard-sphere cutoff pore diameter of {approximately}3.4 {angstrom} demonstrates molecular sieving of the methane ({sigma} = 3.8 {angstrom}) but anomalous behavior for Ar ({sigma} = 3.4 {angstrom}). Preliminary results of Ca{sup +} diffusion in calcite and He/H{sub 2} diffusion in polyisobutylene are also presented.

  6. Special issue on ultrafast electron and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Martin, Fernando; Hishikawa, Akiyoshi; Vrakking, Marc

    2014-06-01

    In the last few years, the advent of novel experimental and theoretical approaches has made possible the investigation of (time-resolved) molecular dynamics in ways not anticipated before. Experimentally, the introduction of novel light sources such as high-harmonic generation (HHG) and XUV/x-ray free electron lasers, and the emergence of novel detection strategies, such as time-resolved electron/x-ray diffraction and the fully coincident detection of electrons and fragment ions in reaction microscopes, has significantly expanded the arsenal of available techniques, and has taken studies of molecular dynamics into new domains of spectroscopic, spatial and temporal resolution, the latter including first explorations into the attosecond domain, thus opening completely new avenues for imaging electronic and nuclear dynamics in molecules. Along the way, particular types of molecular dynamics, e.g., dynamics around conical intersections, have gained an increased prominence, sparked by the realization of the essential role that this dynamics plays in relaxation pathways in important bio-molecular systems. In the short term, this will allow one to uncover and control the dynamics of elementary chemical processes such as, e.g., ultrafast charge migration, proton transfer, isomerization or multiple ionization, and to address new key questions about the role of attosecond coherent electron dynamics in chemical reactivity. The progress on the theoretical side has been no less impressive. Novel generations of supercomputers and a series of novel computational strategies have allowed nearly exact calculations in small molecules, as well as highly successful approximate calculations in large, polyatomic molecules, including biomolecules. Frequent and intensive collaborations involving both theory and experiment have been essential for the progress that has been accomplished. The special issue 'Ultrafast electron and molecular dynamics' seeks to provide an overview of the current

  7. Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method

    NASA Astrophysics Data System (ADS)

    Fujita, Takatoshi; Watanabe, Hirofumi; Tanaka, Shigenori

    2009-10-01

    We have developed an ab initio path integral molecular dynamics method based on the fragment molecular orbital method. This “FMO-PIMD” method can treat both nuclei and electrons quantum mechanically, and is useful to simulate large hydrogen-bonded systems with high accuracy. After a benchmark calculation for water monomer, water trimer and glycine pentamer have been studied using the FMO-PIMD method to investigate nuclear quantum effects on structure and molecular interactions. The applicability of the present approach is demonstrated through a number of test calculations.

  8. Viscosity of heptane-toluene mixtures. Comparison of molecular dynamics and group contribution methods.

    PubMed

    Velásquez, Ana Milena; Hoyos, Bibian A

    2017-02-01

    Three methods of molecular dynamics simulation [Green-Kubo (G-K), non-equilibrium molecular dynamics (NEMD) and reversed non-equilibrium molecular dynamics (RNEMD)], and two group contribution methods [UNIFAC-VISCO and Grunberg-Nissan (G-N)] were used to calculate the viscosity of mixtures of n-heptane and toluene (known as heptol). The results obtained for the viscosity and density of heptol were compared with reported experimental data, and the advantages and disadvantages of each method are discussed. Overall, the five methods showed good agreement between calculated and experimental viscosities. In all cases, the deviation was lower than 9%. It was found that, as the concentration of toluene increases, the deviation of the density of the mixture (as calculated with molecular dynamics methods) also increases, which directly affects the viscosity result obtained. Among the molecular simulation techniques evaluated here, G-K produced the best results, and represents the optimal balance between quality of result and time required for simulation. The NEMD method produced acceptable results for the viscosity of the system but required more simulation time as well as the determination of an appropriate shear rate. The RNEMD method was fast and eliminated the need to determine a set of values for shear rate, but introduced large fluctuations in measurements of shear rate and viscosity. The two group contribution methods were accurate and fast when used to calculate viscosity, but require knowledge of the viscosity of the pure compounds, which is a serious limitation for applications in complex multicomponent systems.

  9. Molecular dynamics simulation: A tool for exploration and discovery

    NASA Astrophysics Data System (ADS)

    Rapaport, Dennis C.

    2009-03-01

    The exploratory and didactic aspects of science both benefit from the ever-growing role played by computer simulation. One particularly important simulational approach is the molecular dynamics method, used for studying the nature of matter from the molecular to much larger scales. The effectiveness of molecular dynamics can be enhanced considerably by employing visualization and interactivity during the course of the computation and afterwards, allowing the modeler not only to observe the detailed behavior of the systems simulated in different ways, but also to steer the computations in alternative directions by manipulating parameters that govern the actual behavior. This facilitates the creation of potentially rich simulational environments for examining a multitude of complex phenomena, as well as offering an opportunity for enriching the learning process. A series of relatively advanced examples involving molecular dynamics will be used to demonstrate the value of this approach, in particular, atomistic simulations of spontaneously emergent structured fluid flows (the classic Rayleigh--B'enard and Taylor--Couette problems), supramolecular self-assembly of highly symmetric shell structures (involved in the formation of viral capsids), and that most counterintuitive of phenomena, granular segregation (e.g., axial and radial separation in a rotating cylinder).

  10. Molecular dynamics simulations of nanoindentation and nanoscratching of silicon carbide

    NASA Astrophysics Data System (ADS)

    Noreyan, Alisa A.

    Parallel molecular dynamics simulations were carried out to investigate the interaction between a diamond indenter and silicon carbide during nanoindentation and nanoscratching. The dependence of the critical depth and pressure for the elastic-to-plastic transition on indentation velocity, tip size, and workpiece temperature was studied along with the nature of the deformation due to indentation and scratching. The two most widely used polytypes---cubic silicon carbide (3C-SiC) and hexagonal silicon carbide (6H-SiC)---were considered while the Si-terminated (001) ((0001)) surface was used in each case. Simulations were implemented using the Tersoff SiC potential, which accurately reproduces the lattice and elastic constants of 3C-SiC and 6H-SiC. Nanoindentation experiments were also carried out for 6H-SiC. For the 3C polytype, both the critical pressure and indentation depth for the elastic-to-plastic transition were found to decrease with increasing indenter size over the nanoscale range of indenter sizes used in our simulations. As a result, the measured hardness was found to be significantly higher than obtained experimentally for significantly larger indenter sizes. In addition, for indentation depths beyond the critical depth a phase transition to the rocksalt structure was observed. A similar phase transition was observed for the 6H polytype, but the transition pressure was found to be somewhat higher than for 3C-SiC. Both of these results are in good agreement with experimental results for bulk SiC. Thus, for nanoscale indentation of 3C and 6H-SiC, the onset of plastic behavior is related to the existence of a phase transition under the indenter tip. For the 6H case a weak dependence on indentation velocity was also observed. This claim was also confirmed by nanoindentation experiments, in which the strain rate sensitivity of mono-crystal 6H was investigated. Simulations of the nanoscratching of 3C-SiC were also carried out. Significant anisotropy in the

  11. Ab initio molecular dynamics using hybrid density functionals.

    PubMed

    Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; VandeVondele, Joost

    2008-06-07

    Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.

  12. Ab initio molecular dynamics using hybrid density functionals

    NASA Astrophysics Data System (ADS)

    Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost

    2008-06-01

    Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.

  13. Three-body interactions and solid-liquid phase equilibria: application of a molecular dynamics algorithm.

    PubMed

    Wang, Liping; Sadus, Richard J

    2006-09-01

    The effect of three-body interactions on the solid-liquid phase boundaries of argon, krypton, and xenon is investigated via a novel technique that combines both nonequilibrium and equilibrium molecular dynamics. The simulations involve the evaluation of two- and three-body forces using accurate two-body and three-body intermolecular potentials. The effect of three-body interactions is to substantially increase the coexistence pressure and to lower the densities of liquid and solid phases. Comparison with experiment indicates that three-body interactions are required to accurately determine the total pressure. In contrast to vapor-liquid phase equilibria, the relative contribution of three-body interactions to the freezing pressure exceeds the contribution of two-body interactions at all temperatures.

  14. First-principles and molecular dynamics studies of twin boundaries in hcp zirconium

    SciTech Connect

    Morris, J.R.; Ye, Y.Y.; Ho, K.M.; Chan, C.T.; Yoo, M.H.

    1993-12-31

    We use a combination of molecular dynamics (MD) and first-principles techniques to study the structure and energies of twin boundaries in hcp zirconium. The empirical many-body potential of Zr is used to test the stability of various possible twin structures, but the final relaxed positions are accurately determined using fully self-consistent ab initio energy and Hellman-Feynman force calculations. This combination of techniques is powerful, as it provides a stringent test of our empirical potential, while producing reliable results for Zr that do not depend upon any empirical parameters. This paper summarizes our work to date on the compression twins, which demonstrates the importance of supporting empirical modeling with more accurate calculations. We also present new results on the empirical modeling of the tension twins of Zr.

  15. Improving structure-based function prediction using molecular dynamics

    PubMed Central

    Glazer, Dariya S.; Radmer, Randall J.; Altman, Russ B.

    2009-01-01

    Summary The number of molecules with solved three-dimensional structure but unknown function is increasing rapidly. Particularly problematic are novel folds with little detectable similarity to molecules of known function. Experimental assays can determine the functions of such molecules, but are time-consuming and expensive. Computational approaches can identify potential functional sites; however, these approaches generally rely on single static structures and do not use information about dynamics. In fact, structural dynamics can enhance function prediction: we coupled molecular dynamics simulations with structure-based function prediction algorithms that identify Ca2+ binding sites. When applied to 11 challenging proteins, both methods showed substantial improvement in performance, revealing 22 more sites in one case and 12 more in the other, with a modest increase in apparent false positives. Thus, we show that treating molecules as dynamic entities improves the performance of structure-based function prediction methods. PMID:19604472

  16. Molecular dynamics of liquid lead near its melting point

    SciTech Connect

    Khusnutdinov, R. M.; Mokshin, A. V. Yul'met'ev, R. M.

    2009-03-15

    The molecular dynamics of liquid lead is simulated at T = 613 K using the following three models of an interparticle interaction potential: the Dzugutov pair potential and two multiparticle potentials (the 'glue' potential and the Gupta potential). One of the purposes of this work is to determine the optimal model potential of the interatomic interaction in liquid lead. The calculated structural static and dynamic characteristics are compared with the experimental data on X-ray and neutron scattering. On the whole, all three model potentials adequately reproduce the experimental data. The calculations using the Dzugutov pair potential are found to reproduce the structural properties and dynamics of liquid lead on the nanoscale best of all. The role of a multiparticle contribution to the glue and Gupta potentials is studied, and its effect on the dynamic properties of liquid lead in nanoregions is revealed. In particular, the neglect of this contribution is shown to noticeably decrease the acoustic-mode frequency.

  17. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  18. A molecular dynamics study of polymer/graphene interfacial systems

    SciTech Connect

    Rissanou, Anastassia N.; Harmandaris, Vagelis

    2014-05-15

    Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.

  19. Anomalous flow behavior in nanochannels: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Murad, Sohail; Luo, Lin; Chu, Liang-Yin

    2010-06-01

    We report molecular dynamics simulations of flow of water in nanochannels with a range of surface wettability characteristics (hydrophobic to strongly hydrophilic) and driving forces (pressures). Our results show apparently anomalous behavior. At low pressures, the rate is higher in nanochannels with hydrophilic surfaces than that with hydrophobic surfaces; however, with high pressure driven flow we observe opposite trends. This apparently anomalous behavior can be explained on the basis of molecular thermodynamics and fluid mechanics considerations. Understanding such behavior is important in many nanofluidic devices such as nanoreactors, nanosensors, and nanochips that are increasingly being designed and used.

  20. Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps.

    PubMed

    Ruggerone, Paolo; Vargiu, Attilio V; Collu, Francesca; Fischer, Nadine; Kandt, Christian

    2013-01-01

    Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa.

  1. Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps

    PubMed Central

    Ruggerone, Paolo; Vargiu, Attilio V.; Collu, Francesca; Fischer, Nadine; Kandt, Christian

    2013-01-01

    Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa. PMID:24688701

  2. A Series of Molecular Dynamics and Homology Modeling Computer Labs for an Undergraduate Molecular Modeling Course

    ERIC Educational Resources Information Center

    Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E.

    2010-01-01

    As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…

  3. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    NASA Astrophysics Data System (ADS)

    Rastogi, Monisha; Vaish, Rahul

    2015-05-01

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  4. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    SciTech Connect

    Rastogi, Monisha; Vaish, Rahul

    2015-05-15

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  5. Application of two dimensional periodic molecular dynamics to interfaces.

    NASA Astrophysics Data System (ADS)

    Gay, David H.; Slater, Ben; Catlow, C. Richard A.

    1997-08-01

    We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.

  6. Finite Temperature Quasicontinuum: Molecular Dynamics without all the Atoms

    SciTech Connect

    Dupuy, L; Tadmor, E B; Miller, R E; Phillips, R

    2005-02-02

    Using a combination of statistical mechanics and finite-element interpolation, the authors develop a coarse-grained (CG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature. The new approach is significantly more efficient than MD and generalizes earlier work on the quasi-continuum method. The method is validated by recovering equilibrium properties of single crystal Ni as a function of temperature. CG dynamical simulations of nanoindentation reveal a strong dependence on temperature of the critical stress to nucleate dislocations under the indenter.

  7. Molecular Dynamics Simulations of Gas Transport in Polymer Films

    NASA Astrophysics Data System (ADS)

    Whitley, David; Butler, Simon; Adolf, David

    2010-03-01

    Parallel molecular dynamics simulations have been carried out to determine the permeability of O2 and N2 through polyethylene terephthalate, polypropylene and cis(1-4) polybutadiene. The permeability of both mixed and unmixed gas penetrants is studied within films of these well known gas barrier polymers. Results are obtained either through the solubility and diffusion (i.e. P=D*S) or via the permeability directly. Encouraging results are obtained. Additional analysis focuses on ``unmixed/mixed gas'' intracomparisons of the simulated permeability data in addition to corresponding penetrant and host polymer local dynamics.

  8. Molecular dynamical simulations of melting behaviors of metal clusters

    SciTech Connect

    Hamid, Ilyar; Fang, Meng; Duan, Haiming

    2015-04-15

    The melting behaviors of metal clusters are studied in a wide range by molecular dynamics simulations. The calculated results show that there are fluctuations in the heat capacity curves of some metal clusters due to the strong structural competition; For the 13-, 55- and 147-atom clusters, variations of the melting points with atomic number are almost the same; It is found that for different metal clusters the dynamical stabilities of the octahedral structures can be inferred in general by a criterion proposed earlier by F. Baletto et al. [J. Chem. Phys. 116 3856 (2002)] for the statically stable structures.

  9. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  10. Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method

    SciTech Connect

    Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S

    2014-10-16

    The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree–Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.

  11. Efficient molecular dynamics simulations of multiple radical center systems based on the fragment molecular orbital method.

    PubMed

    Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S

    2014-10-16

    The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree-Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.

  12. Effects of Molecular Dynamics Thermostats on Descriptions of Chemical Nonequilibrium.

    PubMed

    Page, Alister J; Isomoto, Tetsushi; Knaup, Jan M; Irle, Stephan; Morokuma, Keiji

    2012-11-13

    The performance of popular molecular dynamics (MD) thermostat algorithms in constant temperature simulations of equilibrium systems is well-known. This is not the case, however, in the context of nonequilibrium chemical systems, such as chemical reactions or nanoscale self-assembly processes. In this work, we investigate the effect of popular thermostat algorithms on the "natural" (i.e., Hamiltonian) dynamics of a nonequilibrium, chemically reacting system. By comparing constant-temperature quantum mechanical MD (QM/MD) simulations of carbon vapor condensation using velocity scaling, Berendsen, Andersen, Langevin, and Nosé-Hoover chain thermostat algorithms with natural NVE simulations, we show that efficient temperature control and reliable reaction dynamics are mutually exclusive in such a system. This problem may be circumvented, however, by placing the reactive system in an inert He atmosphere, which is itself described using NVT MD. We demonstrate that both realistic temperature control and dynamics consistent with natural NVE dynamics can then be obtained simultaneously. In essence, the thermal energy created by the natural dynamics of the NVE subsystem is drained by the thermostat acting on the NVT atmosphere, without adversely affecting the dynamics of the reactive system itself.

  13. Molecular Dynamics and Electron Density Studies of Siderophores and Peptides.

    NASA Astrophysics Data System (ADS)

    Fidelis, Krzysztof Andrzej

    1990-08-01

    The dissertation comprises three separate studies of siderophores and peptides. In the first of these studies the relative potential energies for a series of diastereomers of a siderophore neocoprogen I are evaluated with molecular mechanics force field methods. Charges on the hydroxamate moiety are determined with a synthetic model siderophore compound using valence population refinements, and alternatively, with the theoretical ab initio/ESP calculations. The single diastereomer found in the crystal structure is among four characterized by the low potential energy, while prevalence of Delta vs. Lambda configuration about the iron is found to be a property of the entire series. In the second study the crystal structure of a ferrichrome siderophore ferrirhodin is reported. The crystal structure conformation of the molecular backbone as well as the iron coordination geometry compare well with other ferrichrome structures. The differences between the acyl groups of ferrirubin and ferrirhodin are explored using the methods of molecular mechanics. The third study a 300 ps, 300 K, in vacuo molecular dynamics simulation of didemnin A and B yields distinct molecular conformers, which are different from the one found in the crystal structure or modeled in solution, using the Nuclear Overhauser Effect data. Evaluations of the relative potential energy are performed with short 10 ps simulations in solution. Didemnins are natural depsipeptides isolated from a Caribbean tunicate and characterized by particularly potent antiproliferative and immunomodulatory activity. Conformationally rigid and flexible regions of the molecule are described. A short review of the molecular mechanics methodology is given in the introduction.

  14. Visual verification and analysis of cluster detection for molecular dynamics.

    PubMed

    Grottel, Sebastian; Reina, Guido; Vrabec, Jadran; Ertl, Thomas

    2007-01-01

    A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular clusters, which currently is a not completely resolved issue. In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters' evolution. This allows to rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection algorithms. Several examples for the effective and efficient usage of our tool are presented.

  15. Description of ferrocenylalkylthiol SAMs on gold by molecular dynamics simulations.

    PubMed

    Goujon, F; Bonal, C; Limoges, B; Malfreyt, P

    2009-08-18

    Molecular dynamics simulations of mixed monolayers consisting of Fc(CH2)12S-/C10S-Au SAMs are carried out to calculate structural (density profiles, angular distributions, positions of atoms) and energetic properties. The purpose of this paper is to explore the possible inhomogeneity of the neutral ferrocene moieties within the monolayer. Five systems have been studied using different grafting densities for the ferrocenylalkylthiolates. The angular distributions are described in terms of the relative contributions from isolated and clustered ferrocene moieties in the binary SAMs. It is shown that the energetic contributions strongly depend on the state of the ferrocene. The ability of molecular dynamics simulations to enable better understanding the SAM structure is illustrated in this work.

  16. Shock induced phase transition of water: Molecular dynamics investigation

    SciTech Connect

    Neogi, Anupam; Mitra, Nilanjan

    2016-02-15

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.

  17. Long Timestep Molecular Dynamics on the Graphical Processing Unit.

    PubMed

    Sweet, James C; Nowling, Ronald J; Cickovski, Trevor; Sweet, Christopher R; Pande, Vijay S; Izaguirre, Jesús A

    2013-08-13

    Molecular dynamics (MD) simulations now play a key role in many areas of theoretical chemistry, biology, physics, and materials science. In many cases, such calculations are significantly limited by the massive amount of computer time needed to perform calculations of interest. Herein, we present Long Timestep Molecular Dynamics (LTMD), a method to significantly speed MD simulations. In particular, we discuss new methods to calculate the needed terms in LTMD as well as issues germane to a GPU implementation. The resulting code, implemented in the OpenMM MD library, can achieve a significant 6-fold speed increase, leading to MD simulations on the order of 5 μs/day using implicit solvent models.

  18. Enhancing Protein Adsorption Simulations by Using Accelerated Molecular Dynamics

    PubMed Central

    Mücksch, Christian; Urbassek, Herbert M.

    2013-01-01

    The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ( s) and experiment (up to hours), and the accordingly different ‘final’ adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces. PMID:23755156

  19. Atomistic molecular dynamics simulations of model C36 fullerite

    NASA Astrophysics Data System (ADS)

    Abramo, Maria C.; Caccamo, C.

    2008-02-01

    We report atomistic molecular dynamics investigations of a model C36 fullerite in which the fullerene molecules are modeled as rigid cages over which the carbon atoms occupy fixed interaction sites, distributed in space according to the experimentally known atomic positions in the molecule. Carbon sites belonging to different molecules are assumed to interact via a 12-6 Lennard-Jones-type potential; the parameters of the latter are employed in the framework of a molecular dynamics fitting procedure, through which the ambient condition physical quantities characterizing the hcp structure of solid C36 are eventually reproduced. We discuss applications of the adopted modelization to the C36 phases in a temperature range spanning from 300to1500K, and compare the obtained results to the available data for C36 and other fullerenes, and to the predictions of the well known Girifalco central potential modelization of interactions in fullerenes, as applied to the C36 case.

  20. Adiabatic molecular-dynamics-simulation-method studies of kinetic friction

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Sokoloff, J. B.

    2005-06-01

    An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.

  1. Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations.

    PubMed

    Omelyan, I P

    2006-09-01

    A class of symplectic algorithms is introduced to integrate the equations of motion in many-body systems. The algorithms are derived on the basis of an advanced gradientlike decomposition approach. Its main advantage over the standard gradient scheme is the avoidance of time-consuming evaluations of force gradients by force extrapolation without any loss of precision. As a result, the efficiency of the integration improves significantly. The algorithms obtained are analyzed and optimized using an error-function theory. The best among them are tested in actual molecular dynamics and celestial mechanics simulations for comparison with well-known nongradient and gradient algorithms such as the Störmer-Verlet, Runge-Kutta, Cowell-Numerov, Forest-Ruth, Suzuki-Chin, and others. It is demonstrated that for moderate and high accuracy, the extrapolated algorithms should be considered as the most efficient for the integration of motion in molecular dynamics simulations.

  2. Establishment of an accurate and fast detection method using molecular beacons in loop-mediated isothermal amplification assay

    PubMed Central

    Liu, Wei; Huang, Simo; Liu, Ningwei; Dong, Derong; Yang, Zhan; Tang, Yue; Ma, Wen; He, Xiaoming; Ao, Da; Xu, Yaqing; Zou, Dayang; Huang, Liuyu

    2017-01-01

    This study established a constant-temperature fluorescence quantitative detection method, combining loop-mediated isothermal amplification (LAMP) with molecular beacons. The advantages of LAMP are its convenience and efficiency, as it does not require a thermocycler and results are easily visualized by the naked eye. However, a major disadvantage of current LAMP techniques is the use of indirect evaluation methods (e.g., electrophoresis, SYBR Green I dye, precipitation, hydroxynaphthol blue dye, the turbidimetric method, calcein/Mn2+ dye, and the composite probe method), which cannot distinguish between the desired products and products of nonspecific amplification, thereby leading to false positives. Use of molecular beacons avoids this problem because molecular beacons produce fluorescence signals only when binding to target DNA, thus acting as a direct indicator of amplification products. Our analyses determined the optimal conditions for molecular beacons as an evaluation tool in LAMP: beacon length of 25–45 bp, beacon concentration of 0.6–1 pmol/μL, and reaction temperature of 60–65 °C. In conclusion, we validated a novel molecular beacon loop-mediated isothermal amplification method (MB-LAMP), realizing the direct detection of LAMP product. PMID:28059137

  3. Coarse-grained molecular dynamics simulation of binary charged lipid membranes: Phase separation and morphological dynamics

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Higuchi, Yuji; Shimokawa, Naofumi

    2016-10-01

    Biomembranes, which are mainly composed of neutral and charged lipids, exhibit a large variety of functional structures and dynamics. Here, we report a coarse-grained molecular dynamics (MD) simulation of the phase separation and morphological dynamics in charged lipid bilayer vesicles. The screened long-range electrostatic repulsion among charged head groups delays or inhibits the lateral phase separation in charged vesicles compared with neutral vesicles, suggesting the transition of the phase-separation mechanism from spinodal decomposition to nucleation or homogeneous dispersion. Moreover, the electrostatic repulsion causes morphological changes, such as pore formation, and further transformations into disk, string, and bicelle structures, which are spatiotemporally coupled to the lateral segregation of charged lipids. Based on our coarse-grained MD simulation, we propose a plausible mechanism of pore formation at the molecular level. The pore formation in a charged-lipid-rich domain is initiated by the prior disturbance of the local molecular orientation in the domain.

  4. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.

    PubMed

    Calcagno, Claudia; Lobatto, Mark E; Dyvorne, Hadrien; Robson, Philip M; Millon, Antoine; Senders, Max L; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F; Black, Alexandra; Mulder, Willem J M; Fayad, Zahi A

    2015-10-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for

  5. Dynamically Arranging Gold Nanoparticles on DNA Origami for Molecular Logic Gates.

    PubMed

    Yang, Jing; Song, Zhichao; Liu, Shi; Zhang, Qiang; Zhang, Cheng

    2016-08-31

    In molecular engineering, DNA molecules have been extensively studied owing to their capacity for accurate structural control and complex programmability. Recent studies have shown that the versatility and predictability of DNA origami make it an excellent platform for constructing nanodevices. In this study, we developed a strand-displacing strategy to selectively and dynamically release specific gold nanoparticles (AuNPs) on a rectangular DNA origami. A set of DNA logic gates ("OR", "AND", and "three-input majority gate") were established based on this strategy, in which computing results were identified by disassembly between the AuNPs and DNA origami. The computing results were detected using experimental approaches such as gel electrophoresis and transmission electron microscopy (TEM). This method can be used to assemble more complex nanosystems and may have potential applications for molecular engineering.

  6. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    PubMed

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  7. Understanding molecular dynamics quantum-state by quantum-state

    SciTech Connect

    Lawrance, W.D.; Moore, C.B.; Petek, H.

    1985-02-22

    It is now possible to resolve completely the initial and final quantum states in chemical processes. Spectra of reactive intermediates, of highly vibrationally excited molecules, and even of molecules in the process of falling apart have been recorded. This information has led to greater understanding of the molecular structure and dynamics of small gas-phase molecules. Many of the concepts and spectroscopic techniques that have been developed will be valuable throughout chemistry.

  8. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  9. Symplectic integrator for molecular dynamics of a protein in water

    NASA Astrophysics Data System (ADS)

    Ishida, Hisashi; Nagai, Yoshinori; Kidera, Akinori

    1998-01-01

    The symplectic integrator is an algorithm for solving equations of motion, preserving the volume in phase space and ensuring a stable simulation. We carried out molecular dynamics simulations of liquid water and a protein in water using several variations of symplectic integrators. It was found that a fourth-order symplectic integrator of Calvo and Sanz-Serna generated a trajectory of much higher accuracy than the conventional Verlet and Gear methods with the same requirements for CPU time.

  10. Molecular dynamics simulation of carbon disulphide with a Gaussian correction

    NASA Astrophysics Data System (ADS)

    Trumpakaj, Zygmunt; Linde, Bogumił B. J.

    2017-02-01

    Molecular Dynamics (MD) simulations of liquid carbon disulphide (CS2) in the temperature range 164-318 K under normal pressure and at experimental density were performed using an expa-6 potential with a Gaussian correction plus electrostatic interactions. This correction allowed to modify the curvature of the potential. The results of the MD simulation are compared with available experimental data. The agreement is good.

  11. Molecular dynamics modeling of a nanomaterials-water surface interaction

    NASA Astrophysics Data System (ADS)

    Nejat Pishkenari, Hossein; Keramati, Ramtin; Abdi, Ahmad; Minary-Jolandan, Majid

    2016-04-01

    In this article, we study the formation of nanomeniscus around a nanoneedle using molecular dynamics simulation approach. The results reveal three distinct phases in the time-evolution of meniscus before equilibrium according to the contact angle, meniscus height, and potential energy. In addition, we investigated the correlation between the nanoneedle diameter and nanomeniscus characteristics. The results have applications in various fields such as scanning probe microscopy and rheological measurements.

  12. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics 'smoothed-particle hydrodynamics,' in 1977. It is a likely contributor to 'hybrid' simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  13. Molecular Dynamics study of Pb overlayer on Cu(100)

    NASA Technical Reports Server (NTRS)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  14. Variational path integral molecular dynamics study of a water molecule

    NASA Astrophysics Data System (ADS)

    Miura, Shinichi

    2013-08-01

    In the present study, a variational path integral molecular dynamics method developed by the author [Chem. Phys. Lett. 482, 165 (2009)] is applied to a water molecule on the adiabatic potential energy surface. The method numerically generates an exact wavefunction using a trial wavefunction of the target system. It has been shown that even if a poor trial wavefunction is employed, the exact quantum distribution is numerically extracted, demonstrating the robustness of the variational path integral method.

  15. Quantum tunneling splittings from path-integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mátyus, Edit; Wales, David J.; Althorpe, Stuart C.

    2016-03-01

    We illustrate how path-integral molecular dynamics can be used to calculate ground-state tunnelling splittings in molecules or clusters. The method obtains the splittings from ratios of density matrix elements between the degenerate wells connected by the tunnelling. We propose a simple thermodynamic integration scheme for evaluating these elements. Numerical tests on fully dimensional malonaldehyde yield tunnelling splittings in good overall agreement with the results of diffusion Monte Carlo calculations.

  16. Molecular dynamics simulations of ordering of polydimethylsiloxane under uniaxial extension

    SciTech Connect

    Lacevic, N M; Gee, R H

    2005-03-11

    Molecular dynamics simulations of a bulk melts of polydimethylsiloxane (PDMS) are utilized to study chain conformation and ordering under constant uniaxial tension. We find that large extensions induce chain ordering in the direction of applied tension. We also find that voids are created via a cavitation mechanism. This study represents a validation of the current model for PDMS and benchmark for the future study of mechanical properties of PDMS melts enriched with fillers under tension.

  17. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations.

    PubMed

    Tadano, T; Gohda, Y; Tsuneyuki, S

    2014-06-04

    A systematic method to calculate anharmonic force constants of crystals is presented. The method employs the direct-method approach, where anharmonic force constants are extracted from the trajectory of first-principles molecular dynamics simulations at high temperature. The method is applied to Si where accurate cubic and quartic force constants are obtained. We observe that higher-order correction is crucial to obtain accurate force constants from the trajectory with large atomic displacements. The calculated harmonic and anharmonic force constants are, then, combined with the Boltzmann transport equation (BTE) and non-equilibrium molecular dynamics (NEMD) methods in calculating the thermal conductivity. The BTE approach successfully predicts the lattice thermal conductivity of bulk Si, whereas NEMD shows considerable underestimates. To evaluate the linear extrapolation method employed in NEMD to estimate bulk values, we analyze the size dependence in NEMD based on BTE calculations. We observe strong nonlinearity in the size dependence of NEMD in Si, which can be ascribed to acoustic phonons having long mean-free-paths and carrying considerable heat. Subsequently, we also apply the whole method to a thermoelectric material Mg2Si and demonstrate the reliability of the NEMD method for systems with low thermal conductivities.

  18. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers.

    PubMed

    Jin, Yinghua; Wang, Qi; Taynton, Philip; Zhang, Wei

    2014-05-20

    The current research in the field of dynamic covalent chemistry includes the study of dynamic covalent reactions, catalysts, and their applications. Unlike noncovalent interactions utilized in supramolecular chemistry, the formation/breakage of covalent bonding has slower kinetics and usually requires the aid of a catalyst. Catalytic systems that enable efficient thermodynamic equilibrium are thus essential. In this Account, we describe the development of efficient catalysts for alkyne metathesis, and discuss the application of dynamic covalent reactions (mainly imine, olefin, and alkyne metathesis) in the development of organic functional materials. Alkyne metathesis is an emerging dynamic covalent reaction that offers robust and linear acetylene linkages. By introducing a podand motif into the catalyst ligand design, we have developed a series of highly active and robust alkyne metathesis catalysts, which, for the first time, enabled the one-step covalent assembly of ethynylene-linked functional molecular cages. Imine chemistry and olefin metathesis are among the most well-established reversible reactions, and have also been our main synthetic tools. Various shape-persistent macrocycles and covalent organic polyhedrons have been efficiently constructed in one-step through dynamic imine chemistry and olefin metathesis. The geometrical features and solubilizing groups of the building blocks as well as the reaction kinetics have significant effect on the outcome of a covalent assembly process. More recently, we explored the orthogonality of imine and olefin metatheses, and successfully synthesized heterosequenced macrocycles and molecular cages through one-pot orthogonal dynamic covalent chemistry. In addition to discrete molecular architectures, functional polymeric materials can also be accessed through dynamic covalent reactions. Defect-free solution-processable conjugated polyaryleneethynylenes and polydiacetylenes have been prepared through alkyne metathesis

  19. Insights from molecular dynamics simulations for computational protein design.

    PubMed

    Childers, Matthew Carter; Daggett, Valerie

    2017-02-01

    A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.

  20. Communications: Evaluation of the nondiabaticity of quantum molecular dynamics with the dephasing representation of quantum fidelity.

    PubMed

    Zimmermann, Tomás; Vanícek, Jirí

    2010-06-28

    We propose an approximate method for evaluating the importance of non-Born-Oppenheimer effects on the quantum dynamics of nuclei. The method uses a generalization of the dephasing representation (DR) of quantum fidelity to several diabatic potential energy surfaces and its computational cost is the cost of dynamics of a classical phase space distribution. It can be implemented easily into any molecular dynamics program and also can utilize on-the-fly ab initio electronic structure information. We test the methodology on three model problems introduced by Tully and on the photodissociation of NaI. The results show that for dynamics close to the diabatic limit, the decay of fidelity due to nondiabatic effects is described accurately by the DR. In this regime, unlike the mixed quantum-classical methods such as surface hopping or Ehrenfest dynamics, the DR can capture more subtle quantum effects than the population transfer between potential energy surfaces. Hence we propose using the DR to estimate the dynamical importance of diabatic, spin-orbit, or other couplings between potential energy surfaces. The acquired information can help reduce the complexity of a studied system without affecting the accuracy of the quantum simulation.

  1. Fast parallel algorithms for short-range molecular dynamics

    SciTech Connect

    Plimpton, S.

    1993-05-01

    Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a subset of atoms; the second assigns each a subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently -- those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 10,000,000 atoms on three parallel supercomputers, the nCUBE 2, Intel iPSC/860, and Intel Delta. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and the Intel Delta performs about 30 times faster than a single Y-MP processor and 12 times faster than a single C90 processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

  2. Molecular dynamics simulations of solutions at constant chemical potential

    NASA Astrophysics Data System (ADS)

    Perego, C.; Salvalaglio, M.; Parrinello, M.

    2015-04-01

    Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.

  3. Ultrafast Molecular Dynamics probed by Vacuum Ultraviolet Pulses

    NASA Astrophysics Data System (ADS)

    Cryan, James; Champenois, Elio; Shivaram, Niranjan; Wright, Travis; Yang, Chan-Shan; Falcone, Roger; Belkacem, Ali

    2014-05-01

    We present time-resolved measurements of the relaxation dynamics in small molecular systems (CO2 and C2H4) following ultraviolet (UV) photo-excitation. We probe these excitations through photoionization and velocity map imaging (VMI) spectroscopy. Vacuum and extreme ultraviolet (VUV/XUV) pump and probe pulses are created by exploiting strong-field high harmonic generation (HHG) from our state-of-the-art 30 mJ, 1 kHz laser system. Three dimensional photoelectron and photoion momentum images recorded with our VMI spectrometer reveal non-Born Oppenheimer dynamics in the vicinity of a conical intersection, and allow us track the state of the system as a function of time. We also present initial experiments with the goal of controlling the dynamics near a conical intersection using a strong-field IR pulse. Finally, we will show progress towards measurements of time-resolved molecular frame photoelectron angular distributions (TRMFPADs) by applying our VUV/XUV pulse sequence to an aligned molecular ensemble. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  4. Molecular Structure and Transport Dynamics in Perfluoro Sulfonyl Imide Membranes

    SciTech Connect

    Idupulapati, Nagesh B.; Devanathan, Ramaswami; Dupuis, Michel

    2011-05-25

    We report a detailed and comprehensive analysis of the nanostructure, transport dynamics of water and hydronium and water percolation in hydrated perfluoro sulfonyl imides (PFSI), a polymer considered for proton transport in PEM fuel cells, using classical molecular dynamics simulations. The dynamical changes are related to the changes in the membrane nanostructure. Water network percolation threshold, the level at which a consistent spanning water network starts to develop in the membrane, lies between hydration level (λ) 6 and 7. The higher acidity of the sulfonyl imide acid group of PFSI compared to Nafion reported in our earlier ab initio study, translates into more free hydronium ions at low hydration levels. Nevertheless, the calculated diffusion coefficients of the H3O+ ions and H2O molecules as a function the hydration level were observed to be almost the same as that of Nafion, indicating similar conductivity and consistent with the experimental observations. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  5. MDVRY: a polarizable classical molecular dynamics package for biomolecules

    NASA Astrophysics Data System (ADS)

    Souaille, M.; Loirat, H.; Borgis, D.; Gaigeot, M. P.

    2009-02-01

    The MDVRY classical molecular dynamics package is presented for the study of biomolecules in the gas and liquid phase. Electrostatic polarization has been implemented in the formalism of point induced dipoles following the model of Thole. Two schemes have been implemented for the calculation of induced dipoles, i.e. resolution of the self-consistent equations and a 'Car-Parrinello' dynamical approach. In this latter, the induced dipoles are calculated at each time step of the dynamics through the dynamics of additional degrees of freedom associated with the dipoles. This method saves computer time and allows to study polarized solvated proteins at a very low CPU cost. The program is written in C-language and runs on LINUX machines. A detailed manual of the code is given. The main features of the package are illustrated taking on examples of proteins in the gas phase or immersed in liquid water. Program summaryProgram title: MDVRY Catalogue identifier: AEBY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 39 156 No. of bytes in distributed program, including test data, etc.: 277 197 Distribution format: tar.bz2 Programming language: C Computer: Linux machines with FFTW Fourier Transform package installed Operating system: Linux machines, SUSE & RedHat distributions Classification: 3, 16.13, 23 External routines: FFTW ( http://www.fftw.org/) Nature of problem: Molecular Dynamics Software package. Solution method: Velocity Verlet algorithm. The implemented force field is composed of intra-molecular interactions and inter-molecular interactions (electrostatics, polarization, van der Waals). Polarization is accounted through induced point dipoles at each atomic site. Supplementary degrees of freedom are

  6. Adsorption dynamics of molecular nitrogen at an Fe(111) surface.

    PubMed

    Nosir, M A; Martin-Gondre, L; Bocan, G A; Díez Muiño, R

    2017-03-08

    We present an extensive theoretical study of N2 adsorption mechanisms on an Fe(111) surface. We combine the static analysis of a six-dimensional potential energy surface (6D-PES), based on ab initio density functional theory (DFT) calculations for the system, with quasi-classical trajectory (QCT) calculations to simulate the adsorption dynamics. There are four molecular adsorption states, usually called γ, δ, α, and ε, arising from our DFT calculations. We find that N2 adsorption in the γ-state is non-activated, while the threshold energy is associated with the entrance channel for the other three adsorption states. Our QCT calculations confirm that there are activated and nonactivated paths for the adsorption of N2 on the Fe(111) surface, which is in agreement with previous experimental investigations. Molecular dynamics at a surface temperature Ts = 300 K and impact energies Ei in the 0-5 eV range show the relative occupancy of the γ, δ, α, and ε states. The δ-state, however, is only marginally populated despite its adsorption energy being very similar to that of the γ-state. Our QCT calculations trace the dependence of molecular trapping on the surface temperature Ts and initial impact energy Ei and quantify the rates of the different competitive channels that eventually lead to molecular adsorption.

  7. Hidden Markov models from molecular dynamics simulations on DNA.

    PubMed

    Thayer, Kelly M; Beveridge, D L

    2002-06-25

    An enhanced bioinformatics tool incorporating the participation of molecular structure as well as sequence in protein DNA recognition is proposed and tested. Boltzmann probability models of sequence-dependent DNA structure from all-atom molecular dynamics simulations were obtained and incorporated into hidden Markov models (HMMs) that can recognize molecular structural signals as well as sequence in protein-DNA binding sites on a genome. The binding of catabolite activator protein (CAP) to cognate DNA sequences was used as a prototype case for implementation and testing of the method. The results indicate that even HMMs based on probabilistic roll/tilt dinucleotide models of sequence-dependent DNA structure have some capability to discriminate between known CAP binding and nonbinding sites and to predict putative CAP binding sites in unknowns. Restricting HMMs to sequence only in regions of strong consensus in which the protein makes base specific contacts with the cognate DNA further improved the discriminatory capabilities of the HMMs. Comparison of results with controls based on sequence only indicates that extending the definition of consensus from sequence to structure improves the transferability of the HMMs, and provides further supportive evidence of a role for dynamical molecular structure as well as sequence in genomic regulatory mechanisms.

  8. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  9. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  10. Efficient molecular dynamics using geodesic integration and solvent–solute splitting

    PubMed Central

    Leimkuhler, Benedict

    2016-01-01

    We present an approach to Langevin dynamics in the presence of holonomic constraints based on decomposition of the system into components representing geodesic flow, constrained impulse and constrained diffusion. We show that a particular ordering of the components results in an integrator that is an order of magnitude more accurate for configurational averages than existing alternatives. Moreover, by combining the geodesic integration method with a solvent–solute force splitting, we demonstrate that stepsizes of at least 8 fs can be used for solvated biomolecules with high sampling accuracy and without substantially altering diffusion rates, approximately increasing by a factor of two the efficiency of molecular dynamics sampling for such systems. The methods described in this article are easily implemented using the standard apparatus of modern simulation codes. PMID:27279779

  11. Combining coarse-grained protein models with replica-exchange all-atom molecular dynamics.

    PubMed

    Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej

    2013-05-10

    We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.

  12. Coarse master equation from Bayesian analysis of replica molecular dynamics simulations.

    PubMed

    Sriraman, Saravanapriyan; Kevrekidis, Ioannis G; Hummer, Gerhard

    2005-04-14

    We use Bayesian inference to derive the rate coefficients of a coarse master equation from molecular dynamics simulations. Results from multiple short simulation trajectories are used to estimate propagators. A likelihood function constructed as a product of the propagators provides a posterior distribution of the free coefficients in the rate matrix determining the Markovian master equation. Extensions to non-Markovian dynamics are discussed, using the trajectory "paths" as observations. The Markovian approach is illustrated for the filling and emptying transitions of short carbon nanotubes dissolved in water. We show that accurate thermodynamic and kinetic properties, such as free energy surfaces and kinetic rate coefficients, can be computed from coarse master equations obtained through Bayesian inference.

  13. Photofragmentation and vibrational relaxation of size-selected clusters ions : Non-adiabatic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Douady, J.; Gervais, B.; Jacquet, E.; Zanuttini, D.; Giglio, E.

    2009-11-01

    We present non-adiabatic molecular dynamics simulations of size-selected Na2+ Arn (n=6-11-17) cluster. Their electronic structure is obtained from an accurate 1-electron model using core polarization pseudopotentials. We follow the dynamics of two specific photoexcitation processes (X2 Σ+g → A2Σ+u) and (X2 Σ+g → B2 Πu) during the first 10 ps. We identify a variety of processes in these clusters, such as dissociation of the Na2+ chromophore, solvation of the Na+ fragment as Na+ Arp and the recombination to the ground state of the Na2+ Arp with an important solvent evaporation. These processes depend significantly on the transition and on the isomer. We discuss these processes as a function of the cluster size.

  14. Molecular dynamics test of the Brownian description of Na(+) motion in water

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.

    1985-01-01

    The present paper provides the results of molecular dynamics calculations on a Na(+) ion in aqueous solution. Attention is given to the sodium-oxygen and sodium-hydrogen radial distribution functions, the velocity autocorrelation function for the Na(+) ion, the autocorrelation function of the force on the stationary ion, and the accuracy of Brownian motion assumptions which are basic to hydrodynamic models of ion dyanmics in solution. It is pointed out that the presented calculations provide accurate data for testing theories of ion dynamics in solution. The conducted tests show that it is feasible to calculate Brownian friction constants for ions in aqueous solutions. It is found that for Na(+) under the considered conditions the Brownian mobility is in error by only 60 percent.

  15. Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes.

    PubMed

    Prior, Javier; Castro, Enrique; Chin, Alex W; Almeida, Javier; Huelga, Susana F; Plenio, Martin B

    2013-12-14

    New experimental techniques based on nonlinear ultrafast spectroscopies have been developed over the last few years, and have been demonstrated to provide powerful probes of quantum dynamics in different types of molecular aggregates, including both natural and artificial light harvesting complexes. Fourier transform-based spectroscopies have been particularly successful, yet "complete" spectral information normally necessitates the loss of all information on the temporal sequence of events in a signal. This information though is particularly important in transient or multi-stage processes, in which the spectral decomposition of the data evolves in time. By going through several examples of ultrafast quantum dynamics, we demonstrate that the use of wavelets provide an efficient and accurate way to simultaneously acquire both temporal and frequency information about a signal, and argue that this greatly aids the elucidation and interpretation of physical process responsible for non-stationary spectroscopic features, such as those encountered in coherent excitonic energy transport.

  16. Wavelet analysis of molecular dynamics: Efficient extraction of time-frequency information in ultrafast optical processes

    SciTech Connect

    Prior, Javier; Castro, Enrique; Chin, Alex W.; Almeida, Javier; Huelga, Susana F.; Plenio, Martin B.

    2013-12-14

    New experimental techniques based on nonlinear ultrafast spectroscopies have been developed over the last few years, and have been demonstrated to provide powerful probes of quantum dynamics in different types of molecular aggregates, including both natural and artificial light harvesting complexes. Fourier transform-based spectroscopies have been particularly successful, yet “complete” spectral information normally necessitates the loss of all information on the temporal sequence of events in a signal. This information though is particularly important in transient or multi-stage processes, in which the spectral decomposition of the data evolves in time. By going through several examples of ultrafast quantum dynamics, we demonstrate that the use of wavelets provide an efficient and accurate way to simultaneously acquire both temporal and frequency information about a signal, and argue that this greatly aids the elucidation and interpretation of physical process responsible for non-stationary spectroscopic features, such as those encountered in coherent excitonic energy transport.

  17. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    SciTech Connect

    Balliou, A.; Douvas, A. M.; Normand, P.; Argitis, P.; Glezos, N.; Tsikritzis, D.; Kennou, S.

    2014-10-14

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW₁₂O₄₀³⁻, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  18. Structural and dynamic properties of calcium aluminosilicate melts: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2013-06-01

    The structural and dynamic properties of calcium aluminosilicate (CaO-Al2O3)1-x(SiO2)x melts with low silica content, namely, along the concentration ratio R = 1 are studied by classical molecular dynamics. An empirical potential has been developed here on the basis of our previous ab initio molecular dynamics. The new potential gives a description of the structural as well as the dynamics with a good accuracy. The self-intermediate scattering function and associated α-relaxation times are analyzed within the mode-coupling theory. Our results indicate a decrease of the fragility whose structural origin is a reduction of the number of fivefold coordinated Al atoms and non-bridging oxygen.

  19. Path integrals for Fokker-Planck dynamics with singular diffusion: Accurate factorization for the time evolution operator

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander N.; Talkner, Peter

    1998-08-01

    Fokker-Planck processes with a singular diffusion matrix are quite frequently met in Physics and Chemistry. For a long time the resulting noninvertability of the diffusion matrix has been looked as a serious obstacle for treating these Fokker-Planck equations by various powerful numerical methods of quantum and statistical mechanics. In this paper, a path-integral method is presented that takes advantage of the singularity of the diffusion matrix and allows one to solve such problems in a simple and economic way. The basic idea is to split the Fokker-Planck equation into one of a linear system and an anharmonic correction and then to employ a symmetric decomposition of the short time propagator, which is exact up to a high order in the time step. Just because of the singularity of the diffusion matrix, the factors of the resulting product formula consist of well behaved propagators. In this way one obtains a highly accurate propagation scheme, which is simultaneously fast, stable, and computationally simple. Because it allows much larger time steps, it is more efficient than the standard propagation scheme based on the Trotter splitting formula. The proposed method is tested for Brownian motion in different types of potentials. For a harmonic potential we compare to the known analytic results. For a symmetric double well potential we determine the transition rates between the two wells for different friction strengths and compare them with the crossover theories of Mel'nikov and Meshkov and Pollak, Grabert, and Hänggi. Using a properly defined energy loss of the deterministic particle dynamics, we obtain excellent agreement. The methodology is outlined for a large class of processes defined by generalized Langevin equations and processes driven by colored noise.

  20. Molecular interferometer to decode attosecond electron–nuclear dynamics

    PubMed Central

    Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando

    2014-01-01

    Understanding the coupled electronic and nuclear dynamics in molecules by using pump–probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses. PMID:24591647

  1. The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering

    NASA Astrophysics Data System (ADS)

    Zaccai, Giuseppe; Natali, Francesca; Peters, Judith; Řihová, Martina; Zimmerman, Ella; Ollivier, J.; Combet, J.; Maurel, Marie-Christine; Bashan, Anat; Yonath, Ada

    2016-11-01

    Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.

  2. The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering

    PubMed Central

    Zaccai, Giuseppe; Natali, Francesca; Peters, Judith; Řihová, Martina; Zimmerman, Ella; Ollivier, J.; Combet, J.; Maurel, Marie-Christine; Bashan, Anat; Yonath, Ada

    2016-01-01

    Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome. PMID:27849042

  3. A rotary nano ion pump: a molecular dynamics study.

    PubMed

    Lohrasebi, A; Feshanjerdi, M

    2012-09-01

    The dynamics of a rotary nano ion pump, inspired by the F (0) part of the F(0)F(1)-ATP synthase biomolecular motor, were investigated. This nanopump is composed of a rotor, which is constructed of two carbon nanotubes with benzene rings, and a stator, which is made of six graphene sheets. The molecular dynamics (MD) method was used to simulate the dynamics of the ion nanopump. When the rotor of the nanopump rotates mechanically, an ion gradient will be generated between the two sides of the nanopump. It is shown that the ion gradient generated by the nanopump is dependant on parameters such as the rotary frequency of the rotor, temperature and the amounts and locations of the positive and negative charges of the stator part of the nanopump. Also, an electrical potential difference is generated between the two sides of the pump as a result of its operation.

  4. The classical and quantum dynamics of molecular spins on graphene

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  5. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  6. Molecular dynamics simulations of lysozyme in water/sugar solutions

    NASA Astrophysics Data System (ADS)

    Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.

    2008-04-01

    Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.

  7. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall,G.E.; Sears, T.J.

    2009-04-03

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopy, augmented by theoretical and computational methods, is used to investigate the structure and collision dynamics of chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry. Applications and methods development are equally important experimental components of this work.

  8. Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations.

    PubMed

    Soddemann, Thomas; Dünweg, Burkhard; Kremer, Kurt

    2003-10-01

    We discuss dissipative particle dynamics as a thermostat to molecular dynamics, and highlight some of its virtues: (i) universal applicability irrespective of the interatomic potential; (ii) correct and unscreened reproduction of hydrodynamic correlations; (iii) stabilization of the numerical integration of the equations of motion; and (iv) the avoidance of a profile bias in boundary-driven nonequilibrium simulations of shear flow. Numerical results on a repulsive Lennard-Jones fluid illustrate our arguments.

  9. Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach.

    PubMed

    Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A

    2013-03-21

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  10. Molecular modeling of imidazolium-based [Tf2N-] ionic liquids: microscopic structure, thermodynamic and dynamic properties, and segmental dynamics.

    PubMed

    Logotheti, Georgia-Evangelia; Ramos, Javier; Economou, Ioannis G

    2009-05-21

    The microscopic structure, thermodynamic properties, local segmental dynamics, and self-diffusion coefficients of three ionic liquids (ILs) with a common anion, namely, the bis(trifluoromethylsulfonyl) imide ([Tf2N-]), and imidazolium-based cations that differ in the alkyl tail length, namely, the 1-butyl-3-methylimidazolium ([C4mim+]), the 1-hexyl-3-methylimidazolium ([C6mim+]), and the 1-octyl-3-methylimidazolium ([C8mim+]), are calculated over the temperature range of 298.15-333.15 K and pressure range of 0.1-60 MPa. Quantum calculations based on density functional theory are performed on isolated ion pairs, and minimum energy conformers are identified. Electronic density results are used to estimate the electrostatic potential of a molecular force field that is used subsequently for long molecular dynamics (MD) simulations of bulk ILs. Thermodynamic properties calculated from MD are shown to be in excellent agreement for the bulk density and good agreement for derivative properties when compared to experimental data. The new force field is an improvement over earlier ones for the same ILs. The microscopic structure as expressed through the radial distribution function is thoroughly calculated, and it is shown that the bulk structure characteristics are very similar to those obtained from the quantum calculations on isolated ion pairs. The segmental dynamics expressed in terms of bond and torsion angle decorrelation is shown to assume a broad range of characteristic times. Molecular segments in the alkyl tail of the cations are significantly faster than segments in the vicinity of the imidazolium ring. Finally, the new force field predicts accurately the self-diffusion coefficients of the cations and the anions over the entire temperature range examined, thus confirming its validity for a broad range of physical properties.

  11. Decoration of gold nanoparticles with cysteine in solution: reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Monti, Susanna; Carravetta, Vincenzo; Ågren, Hans

    2016-06-01

    The dynamics of gold nanoparticle functionalization by means of adsorption of cysteine molecules in water solution is simulated through classical reactive molecular dynamics simulations based on an accurately parametrized force field. The adsorption modes of the molecules are characterized in detail disclosing the nature of the cysteine-gold interactions and the stability of the final material. The simulation results agree satisfactorily with recent experimental and theoretical data and confirm previous findings for a similar system. The covalent attachments of the molecules to the gold support are all slow physisorptions followed by fast chemisorptions. However, a great variety of binding arrangements can be observed. Interactions with the adsorbate caused surface modulations in terms of adatoms and dislocations which contributed to strengthen the cysteine adsorption.The dynamics of gold nanoparticle functionalization by means of adsorption of cysteine molecules in water solution is simulated through classical reactive molecular dynamics simulations based on an accurately parametrized force field. The adsorption modes of the molecules are characterized in detail disclosing the nature of the cysteine-gold interactions and the stability of the final material. The simulation results agree satisfactorily with recent experimental and theoretical data and confirm previous findings for a similar system. The covalent attachments of the molecules to the gold support are all slow physisorptions followed by fast chemisorptions. However, a great variety of binding arrangements can be observed. Interactions with the adsorbate caused surface modulations in terms of adatoms and dislocations which contributed to strengthen the cysteine adsorption. Electronic supplementary information (ESI) available: Different views of the AuNP surface coverage. Distance map describing the position of each molecule in relation to the others on the AuNP (alpha carbon distances). See DOI: 10.1039/C

  12. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    PubMed

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  13. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity

    PubMed Central

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations. PMID:26075210

  14. Simulation of carbohydrates, from molecular docking to dynamics in water.

    PubMed

    Sapay, Nicolas; Nurisso, Alessandra; Imberty, Anne

    2013-01-01

    Modeling of carbohydrates is particularly challenging because of the variety of structures resulting for the high number of monosaccharides and possible linkages and also because of their intrinsic flexibility. The development of carbohydrate parameters for molecular modeling is still an active field. Nowadays, main carbohydrates force fields are GLYCAM06, CHARMM36, and GROMOS 45A4. GLYCAM06 includes the largest choice of compounds and is compatible with the AMBER force fields and associated. Furthermore, AMBER includes tools for the implementation of new parameters. When looking at protein-carbohydrate interaction, the choice of the starting structure is of importance. Such complex can be sometimes obtained from the Protein Data Bank-although the stereochemistry of sugars may require some corrections. When no experimental data is available, molecular docking simulation is generally used to the obtain protein-carbohydrate complex coordinates. As molecular docking parameters are not specifically dedicated to carbohydrates, inaccuracies should be expected, especially for the docking of polysaccharides. This issue can be addressed at least partially by combining molecular docking with molecular dynamics simulation in water.

  15. Self-Assembly and Dynamics of Organic 2D Molecular Sieves: Ab Initio and Molecular Dynamics Studies

    NASA Astrophysics Data System (ADS)

    St. John, Alexander; Wexler, Carlos

    2015-03-01

    Spontaneous molecular self-assembly is a promising route for bottom-up manufacturing of two-dimensional (2D) nanostructures with specific topologies on atomically flat surfaces. Of particular interest is the possibility of selective lock-and-key interaction of guest molecules inside cavities formed by complex self-assembled host structures. Our host structure is a monolayer consisting of interdigitated 1,3,5-tristyrylbenzene substituted by alkoxy peripheral chains containing n = 6, 8, 10, 12, or 14 carbon atoms (TSB3,5-C n) deposited on a highly ordered pyrolytic graphite (HOPG) surface. Using ab initio methods from quantum chemistry and molecular dynamics simulations, we construct and analyze the structure and functionality of the TSB3,5-C n monolayer as a molecular sieve. Supported by ACS-PRF 52696-ND5.

  16. Molecular dynamics simulation of structure, thermodynamic, and dynamic properties of poly(dimethylsilamethylene), poly(dimethylsilatrimethylene) and their alternating copolymer.

    PubMed

    Makrodimitri, Zoi A; Raptis, Vasilios E; Economou, Ioannis G

    2006-08-17

    Molecular dynamics is used for the simulation of silicon-containing polymers with promising membrane material properties. An atomistic force field is developed for the description of bond bending, torsional angle variation, and nonbonded intra- and intermolecular interactions. Detailed ab initio quantum mechanics calculations on corresponding monomers that appeared recently in the literature are used for the parametrization of the bonded and nonbonded local intramolecular force field. For the intermolecular and nonbonded nonlocal intramolecular interactions, parameters are obtained from accurate force fields proposed in the literature for similar compounds. The force field is used subsequently for the calculation of thermodynamic, structure, and dynamic properties of two homopolymers, namely, poly(dimethylsilamethylene) and poly(dimethylsilatrimethylene), and their alternating copolymer. A wide range of temperatures and pressures is examined. Polymer systems of different molecular weights are simulated. Experimental data available for these polymers are very limited. In all cases, simulation results are in good agreement with these data. Furthermore, simulation results agree very well with empirical macroscopic correlations used widely for rubbery polymers for the properties under consideration.

  17. Ice formation on kaolinite: Insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sosso, Gabriele C.; Tribello, Gareth A.; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-12-01

    The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.

  18. Accelerated molecular dynamics methods: introduction and recent developments

    SciTech Connect

    Uberuaga, Blas Pedro; Voter, Arthur F; Perez, Danny; Shim, Y; Amar, J G

    2009-01-01

    A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usually involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) [10, 19, 23] to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what

  19. Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression.

    PubMed

    Safaei, B; Naseradinmousavi, P; Rahmani, A

    2016-04-01

    In the present paper, an analytical solution based on a molecular mechanics model is developed to evaluate the elastic critical axial buckling strain of chiral multi-walled carbon nanotubes (MWCNTs). To this end, the total potential energy of the system is calculated with the consideration of the both bond stretching and bond angular variations. Density functional theory (DFT) in the form of generalized gradient approximation (GGA) is implemented to evaluate force constants used in the molecular mechanics model. After that, based on the principle of molecular mechanics, explicit expressions are proposed to obtain elastic surface Young's modulus and Poisson's ratio of the single-walled carbon nanotubes corresponding to different types of chirality. Selected numerical results are presented to indicate the influence of the type of chirality, tube diameter, and number of tube walls in detailed. An excellent agreement is found between the present numerical results and those found in the literature which confirms the validity as well as the accuracy of the present closed-form solution. It is found that the value of critical axial buckling strain exhibit significant dependency on the type of chirality and number of tube walls.

  20. Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics

    SciTech Connect

    Yu H. G.; Muckerman, J.T.

    2012-05-29

    The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.

  1. Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics

    SciTech Connect

    Yu, H.G.; Muckerman, J.T.

    2010-06-01

    The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.

  2. Ab Initio Molecular Dynamics Study of Dissociation of Water under an Electric Field

    NASA Astrophysics Data System (ADS)

    Saitta, A. Marco; Saija, Franz; Giaquinta, Paolo V.

    2012-05-01

    The behavior of liquid water under an electric field is a crucial phenomenon in science and engineering. However, its detailed description at a microscopic level is difficult to achieve experimentally. Here we report on the first ab initio molecular-dynamics study on water under an electric field. We observe that the hydrogen-bond length and the molecular orientation are significantly modified at low-to-moderate field intensities. Fields beyond a threshold of about 0.35V/Å are able to dissociate molecules and sustain an ionic current via a series of correlated proton jumps. Upon applying even more intense fields (˜1.0V/Å), a 15%-20% fraction of molecules are instantaneously dissociated and the resulting ionic flow yields a conductance of about 7.8Ω-1cm-1, in good agreement with experimental values. This result paves the way to quantum-accurate microscopic studies of the effect of electric fields on aqueous solutions and, thus, to massive applications of ab initio molecular dynamics in neurobiology, electrochemistry, and hydrogen economy.

  3. Parallel molecular dynamics: Communication requirements for massively parallel machines

    NASA Astrophysics Data System (ADS)

    Taylor, Valerie E.; Stevens, Rick L.; Arnold, Kathryn E.

    1995-05-01

    Molecular mechanics and dynamics are becoming widely used to perform simulations of molecular systems from large-scale computations of materials to the design and modeling of drug compounds. In this paper we address two major issues: a good decomposition method that can take advantage of future massively parallel processing systems for modest-sized problems in the range of 50,000 atoms and the communication requirements needed to achieve 30 to 40% efficiency on MPPs. We analyzed a scalable benchmark molecular dynamics program executing on the Intel Touchstone Deleta parallelized with an interaction decomposition method. Using a validated analytical performance model of the code, we determined that for an MPP with a four-dimensional mesh topology and 400 MHz processors the communication startup time must be at most 30 clock cycles and the network bandwidth must be at least 2.3 GB/s. This configuration results in 30 to 40% efficiency of the MPP for a problem with 50,000 atoms executing on 50,000 processors.

  4. Molecular Dynamics Simulation of Carbon Nanotube Based Gears

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.

  5. Molecular dynamics simulation of TCDD adsorption on organo-montmorillonite.

    PubMed

    Zhu, Runliang; Hu, Wenhao; You, Zhimin; Ge, Fei; Tian, Kaixun

    2012-07-01

    In this work, molecular dynamics simulation was applied to investigate the adsorption of Tetrachlorodibenzo-p-Dioxin (TCDD) on tetramethylammonium (TMA) and tetrapropylammonium (TPA) modified montmorillonite, with the aim of providing novel information for understanding the adsorptive characteristics of organo-montmorillonite toward organic contaminants. The simulation results showed that on both outer surface and interlayer space of TPA modified montmorillonite (TPA-mont), TCDD was adsorbed between the TPA cations with the molecular edge facing siloxane surface. Similar result was observed for the adsorption on the outer surface of TMA modified montmorillonite (TMA-mont). These results indicated that TCDD had stronger interaction with organic cation than with siloxane surface. While in the interlayer space of TMA-mont, TCDD showed a coplanar orientation with the siloxane surfaces, which could be ascribed to the limited gallery height within TMA-mont interlayer. Comparing with TMA-mont, TPA-mont had larger adsorption energy toward TCDD but smaller interlayer space to accommodate TCDD. Our results indicated that molecular dynamics simulation can be a powerful tool in characterizing the adsorptive characteristics of organoclays and provided additional proof that for the organo-montmorillonite synthesized with small organic cations, the available interlayer space rather than the attractive force plays the dominant role for their adsorption capacity toward HOCs.

  6. Autoinhibitory mechanisms of ERG studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Salsbury, Freddie R.

    2015-01-01

    ERG, an ETS-family transcription factor, acts as a regulator of differentiation of early hematopoietic cells. It contains an autoinhibitory domain, which negatively regulates DNA-binding. The mechanism of autoinhibitory is still illusive. To understand the mechanism, we study the dynamical properties of ERG protein by molecular dynamics simulations. These simulations suggest that DNA binding autoinhibition associates with the internal dynamics of ERG. Specifically, we find that (1), The N-C terminal correlation in the inhibited ERG is larger than that in uninhibited ERG that contributes to the autoinhibition of DNA-binding. (2), DNA-binding changes the property of the N-C terminal correlation from being anti-correlated to correlated, that is, changing the relative direction of the correlated motions and (3), For the Ets-domain specifically, the inhibited and uninhibited forms exhibit essentially the same dynamics, but the binding of the DNA decreases the fluctuation of the Ets-domain. We also find from PCA analysis that the three systems, even with quite different dynamics, do have highly similar free energy surfaces, indicating that they share similar conformations.

  7. Recovering position-dependent diffusion from biased molecular dynamics simulations

    SciTech Connect

    Ljubetič, Ajasja; Urbančič, Iztok; Štrancar, Janez

    2014-02-28

    All atom molecular dynamics (MD) models provide valuable insight into the dynamics of biophysical systems, but are limited in size or length by the high computational demands. The latter can be reduced by simulating long term diffusive dynamics (also known as Langevin dynamics or Brownian motion) of the most interesting and important user-defined parts of the studied system, termed collective variables (colvars). A few hundred nanosecond-long biased MD trajectory can therefore be extended to millisecond lengths in the colvars subspace at a very small additional computational cost. In this work, we develop a method for determining multidimensional anisotropic position- and timescale-dependent diffusion coefficients (D) by analysing the changes of colvars in an existing MD trajectory. As a test case, we obtained D for dihedral angles of the alanine dipeptide. An open source Mathematica{sup ®} package, capable of determining and visualizing D in one or two dimensions, is available at https://github.com/lbf-ijs/DiffusiveDynamics . Given known free energy and D, the package can also generate diffusive trajectories.

  8. Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authentication.

    PubMed

    Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Bellato, Cláudia M; Motilal, Lambert; Zhang, Dapeng

    2014-01-15

    Cacao (Theobroma cacao L.), the source of cocoa, is an economically important tropical crop. One problem with the premium cacao market is contamination with off-types adulterating raw premium material. Accurate determination of the genetic identity of single cacao beans is essential for ensuring cocoa authentication. Using nanofluidic single nucleotide polymorphism (SNP) genotyping with 48 SNP markers, we generated SNP fingerprints for small quantities of DNA extracted from the seed coat of single cacao beans. On the basis of the SNP profiles, we identified an assumed adulterant variety, which was unambiguously distinguished from the authentic beans by multilocus matching. Assignment tests based on both Bayesian clustering analysis and allele frequency clearly separated all 30 authentic samples from the non-authentic samples. Distance-based principle coordinate analysis further supported these results. The nanofluidic SNP protocol, together with forensic statistical tools, is sufficiently robust to establish authentication and to verify gourmet cacao varieties. This method shows significant potential for practical application.

  9. Path integral molecular dynamics calculations of the H6+ and D6+ clusters on an ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Kakizaki, Akira; Takayanagi, Toshiyuki; Shiga, Motoyuki

    2007-11-01

    Path integral molecular dynamics simulations for the H6+ and D6+ cluster cations have been carried out in order to understand the floppy nature of their molecular structure due to quantum-mechanical fluctuation. A full-dimensional analytical potential energy surface for the ground electronic state of H6+ has been developed on the basis of accurate ab initio electronic structure calculations at the CCSD(T)/cc-pVTZ level. It is found that the outer H 2(D 2) nuclei rotate almost freely and that the probability density distributions of the central H 2(D 2) nuclei show strong spatial delocalization.

  10. The route to MBxNyCz molecular wheels: II. Results using accurate functionals and basis sets

    NASA Astrophysics Data System (ADS)

    Güthler, A.; Mukhopadhyay, S.; Pandey, R.; Boustani, I.

    2014-04-01

    Applying ab initio quantum chemical methods, molecular wheels composed of metal and light atoms were investigated. High quality basis sets 6-31G*, TZPV, and cc-pVTZ as well as exchange and non-local correlation functionals B3LYP, BP86 and B3P86 were used. The ground-state energy and structures of cyclic planar and pyramidal clusters TiBn (for n = 3-10) were computed. In addition, the relative stability and electronic structures of molecular wheels TiBxNyCz (for x, y, z = 0-10) and MBnC10-n (for n = 2 to 5 and M = Sc to Zn) were determined. This paper sustains a follow-up study to the previous one of Boustani and Pandey [Solid State Sci. 14 (2012) 1591], in which the calculations were carried out at the HF-SCF/STO3G/6-31G level of theory to determine the initial stability and properties. The results show that there is a competition between the 2D planar and the 3D pyramidal TiBn clusters (for n = 3-8). Different isomers of TiB10 clusters were also studied and a structural transition of 3D-isomer into 2D-wheel is presented. Substitution boron in TiB10 by carbon or/and nitrogen atoms enhances the stability and leads toward the most stable wheel TiB3C7. Furthermore, the computations show that Sc, Ti and V at the center of the molecular wheels are energetically favored over other transition metal atoms of the first row.

  11. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  12. Molecular dynamics simulation of liquid water: Hybrid density functionals

    SciTech Connect

    Todorova, T; Seitsonen, A; Hutter, J; Kuo, W; Mundy, C

    2005-09-12

    The structure, dynamical and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta functional, four gradient corrected functionals, the local density and Hartree-Fock approximation. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and under-structured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller averaged numbers of hydrogen bonds and similar hydrogen bond populations as pure density functionals. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than from the corresponding pure density functionals.

  13. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGES

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  14. Molecular dynamics study of tethered polymers in shear flow.

    PubMed

    Gratton, Y; Slater, G W

    2005-08-01

    Single macromolecules can now be isolated and characterized experimentally using techniques such as optical tweezers and videomicroscopy. An interesting and important single-molecule problem is that of the dynamics of a polymer chain tethered to a solid surface and subjected to a shear flow. An experimental study of such a system was reported by Doyle et al. (Phys. Rev. Lett. 84, 4769 (2000)), and their results showed a surprising recirculating motion of the DNA chain. We explore this problem using molecular dynamics computer simulations with explicit hydrodynamic interactions. The dynamical properties of a Freely Jointed Chain (FJC) with Finitely Extensible Nonlinear Elastic (FENE) links are examined in similar conditions (i.e., confined between two surfaces and in the presence of a Poiseuille flow). We see the remarkable cyclic polymer motion observed experimentally, and we show that a simple cross-correlation function can be used to measure the corresponding period of motion. We also propose a new empirical equation relating the magnitude of the shear flow to the amount of chain deformation, an equation that appears to apply for both weak and strong flows. Finally, we report on packing effects near the molecularly flat wall, an associated chain-sticking phenomenon, and the impact of the chain hydrodynamic drag on the local fluid flow.

  15. Acoustic properties in glycerol glass-former: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Remi; Pezeril, Thomas; Institut des Materiaux et Molecules du Mans Team

    2013-03-01

    Study of high-frequency collective dynamics around TeraHertz region in glass former has been a subject of intense investigations and debates over the past decade. In particular, the presence of the Boson peak characteristic of glassy material and its relation to other glass anomalies. Recently, experiments and simulations have underlined possible relation between Boson peak and transverse acoustic modes in glassy materials. In particular, simulations of simple Lennard Jones glass former have shown a relation between Ioffe-Regel criterion in transverse modes and Boson peak. We present here molecular dynamics simulation on high frequency dynamics of glycerol. In order to study mesoscopic order (0.5-5nm-1), we made use of large simulation box containing 80000 atoms. Analysis of collective longitudinal and transverse acoustic modes shows striking similarities in comparison with simulation of Lennard-Jones particles. In particular, it seems that a connection may exist between Ioffe-Regel criterion for transverse modes and Bose Peak frequency. However,in our case we show that this connection may be related with structural correlation arising from molecular clusters.

  16. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2017-03-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  17. Properties of hot dense plasmas by Orbital-Free Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Clerouin, Jean

    2011-10-01

    During the last decade DFT calculations have been successfully applied to the WDM regime. To overcome the limitations of DFT in temperature and density we propose to return to the very basis of DFT by using an ``only on the density'' formulation of the electronic kinetic energy, essentially captured by the finite temperature formulation of the Thomas-Fermi theory. High temperatures (up to few KeV) and high densities (up to 10 ×ρ0) systems can be addressed by orbital free molecular dynamics simulations (OFMD) at the expense of a fine description of atomic properties such as binding properties. Thanks to an efficient numerical scheme, up to thousands of particles can be propagated giving accurate static and dynamical properties without any assumptions on the ionization state or on the screening of interactions. Simulations of hydrogen and iron up to 5 keV and boron up to 10 times the normal density were performed. Very dissymmetrical mixtures can be also treated without difficulties. More recently, this method has been applied to hydrogen at high density (up to 160 g/cc) and high temperature (up to 1 KeV) to generate long trajectories for a later computation of the thermal conductivity with classical DFT. This method bridges the gap between quantum and classical molecular dynamics in the field of hot-dense plasmas and could be also used as a platform to include more physics such as nuclear reactions or interaction with a radiative field.

  18. Thermal vibration of a single-layered graphene with initial stress predicted by semiquantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Rumeng; Wang, Lifeng; Jiang, Jingnong

    2016-09-01

    Thermal vibration of a rectangular single-layered graphene sheet (RSLGS) with initial stress is investigated by a semiquantum molecular dynamics (SQMD) method on the basis of modified Langevin dynamics. The quantum effect in the thermal vibration of RSLGS is accounted by introducing a quantum thermal bath. The spectrum of the thermal vibration of RSLGSs is obtained both by SQMD and classical molecular dynamics (CMD). The RSLGS vibrates with the same frequencies via both the SQMD simulation and the CMD simulation. The root of mean squared (rms) amplitude obtained via the CMD is greater than that obtained via the SQMD. The energy in high order mode is frozen at very low temperature if quantum effect is taken into consideration. An elastic plate model with initial stress considering quantum effects is established to describe the thermal vibration of the RSLGS. The rms amplitude of RSLGS calculated by plate model with the law of energy equipartition and that obtained from the CMD coincide very well. The plate model considering the quantum effects provides accurate prediction of the rms amplitude of the RSLGS obtained from the SQMD. These results indicate that quantum effects cannot be neglected in the thermal vibration of the RSLGS at low temperature case.

  19. Analysis of nucleation using mean first-passage time data from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Nicholson, David A.; Rutledge, Gregory C.

    2016-04-01

    We introduce a method for the analysis of nucleation using mean first-passage time (MFPT) statistics obtained by molecular dynamics simulation. The method is based on the Becker-Döring model for the dynamics of a nucleation-mediated phase change and rigorously accounts for the system size dependence of first-passage statistics. It is thus suitable for the analysis of systems in which the separation between time scales for nucleation and growth is small, due to either a small free energy barrier or a large system size. The method is made computationally practical by an approximation of the first-passage time distribution based on its cumulant expansion. Using this approximation, the MFPT of the model can be fit to data from molecular dynamics simulation in order to estimate valuable kinetic parameters, including the free energy barrier, critical nucleus size, and monomer attachment pre-factor, as well as the steady-state rates of nucleation and growth. The method is demonstrated using a case study on nucleation of n-eicosane crystals from the melt. For this system, we found that the observed distribution of first-passage times do not follow an exponential distribution at short times, rendering it incompatible with the assumptions made by some other methods. Using our method, the observed distribution of first-passage times was accurately described, and reasonable estimates for the kinetic parameters and steady-state rates of nucleation and growth were obtained.

  20. Generalized image charge solvation model for electrostatic interactions in molecular dynamics simulations of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Deng, Shaozhong; Xue, Changfeng; Baumketner, Andriy; Jacobs, Donald; Cai, Wei

    2013-07-01

    This paper extends the image charge solvation model (ICSM) [Y. Lin, A. Baumketner, S. Deng, Z. Xu, D. Jacobs, W. Cai, An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions, J. Chem. Phys. 131 (2009) 154103], a hybrid explicit/implicit method to treat electrostatic interactions in computer simulations of biomolecules formulated for spherical cavities, to prolate spheroidal and triaxial ellipsoidal cavities, designed to better accommodate non-spherical solutes in molecular dynamics (MD) simulations. In addition to the utilization of a general truncated octahedron as the MD simulation box, central to the proposed extension is an image approximation method to compute the reaction field for a point charge placed inside such a non-spherical cavity by using a single image charge located outside the cavity. The resulting generalized image charge solvation model (GICSM) is tested in simulations of liquid water, and the results are analyzed in comparison with those obtained from the ICSM simulations as a reference. We find that, for improved computational efficiency due to smaller simulation cells and consequently a less number of explicit solvent molecules, the generalized model can still faithfully reproduce known static and dynamic properties of liquid water at least for systems considered in the present paper, indicating its great potential to become an accurate but more efficient alternative to the ICSM when bio-macromolecules of irregular shapes are to be simulated.

  1. Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates?

    SciTech Connect

    Hele, Timothy J. H.; Suleimanov, Yury V.

    2015-08-21

    We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time transition-state theory limit is identical to rigorous quantum transition-state theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H + H{sub 2}, D + MuH, and F + H{sub 2}, and the prototypical polyatomic reaction H + CH{sub 4}. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is approximately equal to, or less accurate than, ring polymer molecular dynamics for symmetric reactions, and for certain asymmetric systems and friction parameters closer to the quantum result, providing a basis for further assessment of the accuracy of this method.

  2. Dynamics of Nanoscale Grain-Boundary Decohesion in Aluminum by Molecular-Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Phillips, D. R.; Glaessegen, E. H.

    2007-01-01

    The dynamics and energetics of intergranular crack growth along a flat grain boundary in aluminum is studied by a molecular-dynamics simulation model for crack propagation under steady-state conditions. Using the ability of the molecular-dynamics simulation to identify atoms involved in different atomistic mechanisms, it was possible to identify the energy contribution of different processes taking place during crack growth. The energy contributions were divided as: elastic energy, defined as the potential energy of the atoms in fcc crystallographic state; and plastically stored energy, the energy of stacking faults and twin boundaries; grain-boundary and surface energy. In addition, monitoring the amount of heat exchange with the molecular-dynamics thermostat gives the energy dissipated as heat in the system. The energetic analysis indicates that the majority of energy in a fast growing crack is dissipated as heat. This dissipation increases linearly at low speed, and faster than linear at speeds approaching 1/3 the Rayleigh wave speed when the crack tip becomes dynamically unstable producing periodic dislocation bursts until the crack is blunted.

  3. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.

    PubMed

    Graziani, F R; Bauer, J D; Murillo, M S

    2014-09-01

    Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD

  4. Protons in polar media: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, Tycho

    1998-10-01

    The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations

  5. Extending the molecular size in accurate quantum-chemical calculations: the equilibrium structure and spectroscopic properties of uracil.

    PubMed

    Puzzarini, Cristina; Barone, Vincenzo

    2011-04-21

    The equilibrium structure of uracil has been investigated using both theoretical and experimental data. With respect to the former, quantum-chemical calculations at the coupled-cluster level in conjunction with a triple-zeta basis set have been carried out. Extrapolation to the basis set limit, performed employing the second-order Møller-Plesset perturbation theory, and inclusion of core-correlation and diffuse-function corrections have also been considered. Based on the available rotational constants for various isotopic species together with corresponding computed vibrational corrections, the semi-experimental equilibrium structure of uracil has been determined for the first time. Theoretical and semi-experimental structures have been found in remarkably good agreement, thus pointing out the limitations of previous experimental determinations. Molecular and spectroscopic properties of uracil have then been studied by means of the composite computational approach introduced for the molecular structure evaluation. Among the results achieved, we mention the revision of the dipole moment. On the whole, it has been proved that the computational procedure presented is able to provide parameters with the proper accuracy to support experimental investigations of large molecules of biological interest.

  6. Vibrational spectrum at a water surface: a hybrid quantum mechanics/molecular mechanics molecular dynamics approach.

    PubMed

    Ishiyama, Tatsuya; Takahashi, Hideaki; Morita, Akihiro

    2012-03-28

    A hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulation is applied to the calculation of surface orientational structure and vibrational spectrum (second-order nonlinear susceptibility) at the vapor/water interface for the first time. The surface orientational structure of the QM water molecules is consistent with the previous MD studies, and the calculated susceptibility reproduces the experimentally reported one, supporting the previous results using the classical force field MD simulation. The present QM/MM MD simulation also demonstrates that the positive sign of the imaginary part of the second-order nonlinear susceptibility at the lower hydrogen bonding OH frequency region originates not from individual molecular orientational structure, but from cooperative electronic structure through the hydrogen bonding network.

  7. Analysis of molecular oxygen exit pathways in cyanobacterial photosystem II: Molecular dynamics studies

    NASA Astrophysics Data System (ADS)

    Gabdulkhakov, A. G.; Kljashtorny, V. G.; Dontsova, M. V.

    2015-11-01

    In thylakoids of cyanobacteria and other photosynthetic organisms, the light-induced production of molecular oxygen is catalyzed by the giant lipid-pigment-protein complex called photosystem II (PSII). The oxygen-evolving complex is buried deep in the lumenal part of PSII, and dioxygen molecules need to pass through the protein environment in order to leave the active site of the enzyme free. Previous studies aimed at finding oxygen channels in PSII were based on either an analysis of the cavities within is static structure or experiments on the insertion of noble gas molecules into PSII crystals under elevated pressure. In these studies, some possible exit pathways for the molecules were found and the static positions of molecular oxygen were determined. In the present work, the oxygen movement in the transport system of PSII is simulated by molecular dynamics.

  8. Quantum dynamics in the highly discrete, commensurate Frenkel Kontorova model: A path-integral molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Krajewski, Florian R.; Müser, Martin H.

    2005-03-01

    The commensurate Frenkel Kontorova (FK) model is studied using path-integral molecular dynamics (PIMD). We focus on the highly discrete case, in which the embedding potential has a much greater maximum curvature than the harmonic potential connecting two particles in the FK chain. When efficient sampling methods are used, the dynamical interpretation of adiabatic PIMD appears to represent quite accurately the true time correlation functions of this highly correlated many-body system. We have found that the discrete, quantum FK model shows different behavior than its continuum version. The spectral density does not show the characteristic ω-2Θ(ω-ωc) cusp of the continuum solution in the pinned phase (m>mc). We also identify a dynamical quantum hysteresis in addition to the regular classical hysteresis when an external force is applied to the FK chain. In the unpinned phase (m⩽mc), we find a linear response damping coefficient which is finite and only weakly dependent on temperature T at small values of T.

  9. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers.

    PubMed

    Liu, Rui; Wang, Xiangdong; Aihara, Kazuyuki; Chen, Luonan

    2014-05-01

    Many studies have been carried out for early diagnosis of complex diseases by finding accurate and robust biomarkers specific to respective diseases. In particular, recent rapid advance of high-throughput technologies provides unprecedented rich information to characterize various disease genotypes and phenotypes in a global and also dynamical manner, which significantly accelerates the study of biomarkers from both theoretical and clinical perspectives. Traditionally, molecular biomarkers that distinguish disease samples from normal samples are widely adopted in clinical practices due to their ease of data measurement. However, many of them suffer from low coverage and high false-positive rates or high false-negative rates, which seriously limit their further clinical applications. To overcome those difficulties, network biomarkers (or module biomarkers) attract much attention and also achieve better performance because a network (or subnetwork) is considered to be a more robust form to characterize diseases than individual molecules. But, both molecular biomarkers and network biomarkers mainly distinguish disease samples from normal samples, and they generally cannot ensure to identify predisease samples due to their static nature, thereby lacking ability to early diagnosis. Based on nonlinear dynamical theory and complex network theory, a new concept of dynamical network biomarkers (DNBs, or a dynamical network of biomarkers) has been developed, which is different from traditional static approaches, and the DNB is able to distinguish a predisease state from normal and disease states by even a small number of samples, and therefore has great potential to achieve "real" early diagnosis of complex diseases. In this paper, we comprehensively review the recent advances and developments on molecular biomarkers, network biomarkers, and DNBs in particular, focusing on the biomarkers for early diagnosis of complex diseases considering a small number of samples and high

  10. Molecular Dynamics Simulations of Fracture of Model Epoxies

    SciTech Connect

    STEVENS,MARK J.

    2000-01-18

    The failure of thermosetting polymer adhesives is an important problem which particularly lacks understanding from the molecular viewpoint. While linear elastic fracture mechanics works well for such polymers far from the crack tip, the method breaks down near the crack tip where large plastic deformation occurs and the molecular details become important [1]. Results of molecular dynamics simulations of highly crosslinked polymer networks bonded to a solid surface are presented here. Epoxies are used as the guide for modeling. The focus of the simulations is the network connectivity and the interfacial strength. In a random network, the bond stress is expected to vary, and the most stressed bonds will break first [2]. Crack initiation should occur where a cluster of highly constrained bonds exists. There is no reason to expect crack initiation to occur at the interface. The results to be presented show that the solid surface limits the interfacial bonding resulting in stressed interfacial bonds and interfacial fracture. The bonds in highly-crosslinked random networks do not become stressed as expected. The sequence of molecular structural deformations that lead to failure has been determined and found to be strongly dependent upon the network connectivity. The structure of these networks and its influence on the stress-strain behavior will be discussed in general. A set of ideal, ordered networks have been constructed to manipulate the deformation sequence to achieve different fracture modes (i.e. cohesive vs. adhesive).

  11. Homogenous mixing of ionic liquids: molecular dynamics simulations.

    PubMed

    Payal, Rajdeep Singh; Balasubramanian, Sundaram

    2013-12-28

    Binary mixtures of room temperature ionic liquids (IL) with a common cation were investigated using atomistic molecular dynamics (MD) simulations. Two different binary ILs, viz., [C4mim][PF6]-[C4mim][Cl] and [C4mim][PF6]-[C4mim][BF4], were studied with varying fractions of either anion. The coordination environment of an anion around the cation is altered in the presence of another type of anion. The extent of change is larger for anions with much different radii. Atomistic MD and coarse grain MD simulations do not show any evidence for the clustering of like anions at any concentration. The binary liquids are well mixed at the molecular level.

  12. Nanoscopic spontaneous motion of liquid trains: Nonequilibrium molecular dynamics simulation.

    PubMed

    Bahrami, Amir Houshang; Jalali, Mir Abbas

    2010-01-14

    Macroscale experiments show that a train of two immiscible liquid drops, a bislug, can spontaneously move in a capillary tube because of surface tension asymmetries. We use molecular dynamics simulation of Lennard-Jones fluids to demonstrate this phenomenon for NVT ensembles in submicron tubes. We deliberately tune the strength of intermolecular forces and control the velocity of bislug in different wetting and viscosity conditions. We compute the velocity profile of particles across the tube and explain the origin of deviations from the classical parabolae. We show that the self-generated molecular flow resembles the Poiseuille law when the ratio of the tube radius to its length is less than a critical value.

  13. Molecular Dynamics Simulations of Homogeneous Crystallization in Polymer Melt

    NASA Astrophysics Data System (ADS)

    Kong, Bin

    2015-03-01

    Molecular mechanisms of homogeneous nucleation and crystal growth from the melt of polyethylene-like polymer were investigated by molecular dynamics simulations. The crystallinity was determined by using the site order parameter method (SOP), which described local order degree around an atom. Snapshots of the simulations showed evolution of the nucleation and the crystal growth through SOP images clearly. The isothermal crystallization kinetics was determined at different temperatures. The rate of crystallization, Kc, and the Avrami exponents, n, were determined as a function of temperature. The forming of nucleis was traced to reveal that the nucleis were formed with more ordered cores and less ordered shells. A detailed statistical analysis of the MD snapshots and trajectories suggested conformations of the polymer chains changed smoothly from random coil to chain folded lamella in the crystallization processes.

  14. Molecular-dynamics simulation of two-dimensional thermophoresis

    PubMed

    Paredes; Idler; Hasmy; Castells; Botet

    2000-11-01

    A numerical technique is presented for the thermal force exerted on a solid particle by a gaseous medium between two flat plates at different temperatures, in the free molecular or transition flow. This is a two-dimensional molecular-dynamics simulation of hard disks in a inhomogeneous thermal environment. All steady-state features exhibited by the compressible hard-disk gas are shown to be consistent with the expected behaviors. Moreover the thermal force experienced by a large solid disk is investigated, and compared to the analytical case of cylinders moving perpendicularly to the constant temperature gradient for an infinite Knudsen number and in an infinite medium. We show precise examples of how this technique can be used simply to investigate more difficult practical problems, in particluar the influence of nonlinear gradients for large applied differences of temperature, of proximity of the walls, and of smaller Knudsen numbers.

  15. Thermal Transport in Carbon Nanotubes using Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Moore, Andrew; Khatun, Mahfuza

    2011-10-01

    We will present results of thermal transport phenomena in Carbon Nanotube (CNT) structures. CNTs have many interesting physical properties, and have the potential for device applications. Specifically, CNTs are robust materials with high thermal conductance and excellent electrical conduction properties. A review of electrical and thermal conduction of the structures will be discussed. The research requires analytical analysis as well as simulation. The major thrust of this study is the usage of the molecular dynamics (MD) simulator, LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). A significant investigation using the LAMMPS code is conducted on the existing Beowulf Computing Cluster at BSU. NanoHUB, an open online resource to the entire nanotechnology community developed by the researchers of Purdue University, is used for further supplementary resources. Results will include the time-dependence of temperature, kinetic energy, potential energy, heat flux correlation, and heat conduction.

  16. Molecular dynamics of water at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Brodholt, John; Wood, Bernard

    1990-09-01

    There are currently no precise P-V-T data for water at pressures above 8.9 kbars and temperatures above 900°C. Many petrological processes in the lower crust and upper mantle take place under more extreme conditions, however and petrologists commonly rely on empirical equations of state such as the modified Redlich-Kwong equation (MRK) to extrapolate the low pressure data. In this study we have taken an alternative approach and attempted to simulate the P-V-T properties of water using molecular dynamics. The TIP4P intermolecular potential for H 2O ( JORGENSEN et al., 1983) has had considerable success predicting the properties of water at low temperatures and pressures up to 10 kbar ( MADURA et al., 1988). We have extended its application by making molecular dynamics (MD) simulations at a density of 1.0 g/cc from 300 to 2300 K and 0.5 to 40 kbars. The results agree with the P-V-T data of BURNHAM et al. (1969) (up to 10 kbars) with an average error of under 2%. This is a much better concordance than is obtained with any of the currently used versions of MRK. At 300 kbars and 2000 K the MD simulations predict densities within 8% of those obtained in the shock wave experiments of KORMER (1968). This is a very good agreement given the fact that water ionizes to some extent at high pressures ( MITCHELL and NELLIS, 1982) and we have made no provisions for this effect. We conclude that molecular dynamics simulations provide the possibility of estimating P-V-T properties in the upper mantle P-T regime with very good accuracy.

  17. Full molecular dynamics simulations of liquid water and carbon tetrachloride for two-dimensional Raman spectroscopy in the frequency domain

    NASA Astrophysics Data System (ADS)

    Jo, Ju-Yeon; Ito, Hironobu; Tanimura, Yoshitaka

    2016-12-01

    Frequency-domain two-dimensional (2D) Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium-nonequilibrium hybrid molecular dynamics (MD) simulation algorithm. An appropriate representation of the 2D Raman spectrum obtained from MD simulations provides an easy-to-understand depiction of structural and dynamical properties. We elucidate mechanisms governing the 2D signal profiles involving anharmonic mode-mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal profiles and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently. Moreover, the MD simulation results allow us to visualize the molecular structure and dynamics by comparing the accurately calculated spectrum with experimental result.

  18. Using molecular dynamics to obtain Maxwell-Stefan diffusion coefficients in liquid systems

    NASA Astrophysics Data System (ADS)

    van de Ven-Lucassen Thijs, Irma M. J. J.; Vlugt Antonius, J. H.; van der Zanden Piet, J. J.; Kerkhof, J. A. M.

    Two methods are compared for the calculation of Maxwell-Stefan diffusion coefficients. The first method is a non-equilibrium molecular dynamics (NEMD) algorithm, in which the system is driven away from equilibrium and the system response is monitored. The second method is the equilibrium molecular dynamics (EMD) calculation of the appropriate GreenKubo equation. Simulations were performed for systems of 250 and 300 Lennard-Jones particles at various densities and temperatures. The systems were divided into two or three components by attaching a colour label to the particles. Since a colour label plays no role in the dynamics, the Maxwell-Stefan diffusion coefficients of the binary and ternary systems are equal to the self-diffusion coefficient. In dense fluids, the system response to an external perturbation is not a first-order process, and the diffusion coefficients cannot be determined from the short term response in the NEMD method. Only the long term response can be used, after a steady state has been reached. In binary systems the Maxwell-Stefan diffusion coefficients, determined by the Green-Kubo (EMD) method, are more accurate than the NEMD coefficients. Since in the NEMD method only the long term response can be used, the GreenKubo method is also less time consuming and is therefore preferred for the calculation of the Maxwell-Stefan diffusion coefficients. In ternary systems the Green-Kubo method is tested for the 250 particle system. The Maxwell-Stefan diffusion coefficients agree well with the selfdiffusion coefficient. For low mole fractions of the coloured components the diffusion coefficients were less accurate.

  19. Efficient implementation of constant pH molecular dynamics on modern graphics processors.

    PubMed

    Arthur, Evan J; Brooks, Charles L

    2016-09-15

    The treatment of pH sensitive ionization states for titratable residues in proteins is often omitted from molecular dynamics (MD) simulations. While static charge models can answer many questions regarding protein conformational equilibrium and protein-ligand interactions, pH-sensitive phenomena such as acid-activated chaperones and amyloidogenic protein aggregation are inaccessible to such models. Constant pH molecular dynamics (CPHMD) coupled with the Generalized Born with a Simple sWitching function (GBSW) implicit solvent model provide an accurate framework for simulating pH sensitive processes in biological systems. Although this combination has demonstrated success in predicting pKa values of protein structures, and in exploring dynamics of ionizable side-chains, its speed has been an impediment to routine application. The recent availability of low-cost graphics processing unit (GPU) chipsets with thousands of processing cores, together with the implementation of the accurate GBSW implicit solvent model on those chipsets (Arthur and Brooks, J. Comput. Chem. 2016, 37, 927), provide an opportunity to improve the speed of CPHMD and ionization modeling greatly. Here, we present a first implementation of GPU-enabled CPHMD within the CHARMM-OpenMM simulation package interface. Depending on the system size and nonbonded force cutoff parameters, we find speed increases of between one and three orders of magnitude. Additionally, the algorithm scales better with system size than the CPU-based algorithm, thus allowing for larger systems to be modeled in a cost effective manner. We anticipate that the improved performance of this methodology will open the door for broad-spread application of CPHMD in its modeling pH-mediated biological processes. © 2016 Wiley Periodicals, Inc.

  20. Hypervelocity Impact on Interfaces: A Molecular-Dynamics Simulations Study

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Owens, Eli T.; Leonard, Robert H.; Cockburn, Bronwyn C.

    2008-03-01

    Silicon/silicon nitride interfaces are found in micro electronics and solar cells. In either application the mechanical integrity of the interface is of great importance. Molecular-dynamics simulations are performed to study the failure of interface materials under the influence of hypervelocity impact. Silicon nitride plates impacting on silicon/silicon nitride interface targets of different thicknesses result in structural phase transformation and delamination at the interface. Detailed analyses of atomic velocities, bond lengths, and bond angles are used to qualitatively examine the respective failure mechanisms.

  1. Molecular nonlinear dynamics and protein thermal uncertainty quantification

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    This work introduces molecular nonlinear dynamics (MND) as a new approach for describing protein folding and aggregation. By using a mode system, we show that the MND of disordered proteins is chaotic while that of folded proteins exhibits intrinsically low dimensional manifolds (ILDMs). The stability of ILDMs is found to strongly correlate with protein energies. We propose a novel method for protein thermal uncertainty quantification based on persistently invariant ILDMs. Extensive comparison with experimental data and the state-of-the-art methods in the field validate the proposed new method for protein B-factor prediction. PMID:24697365

  2. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    PubMed

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  3. A molecular dynamics study of freezing in a confined geometry

    NASA Technical Reports Server (NTRS)

    Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.

  4. Coupling lattice Boltzmann and molecular dynamics models for dense fluids

    NASA Astrophysics Data System (ADS)

    Dupuis, A.; Kotsalis, E. M.; Koumoutsakos, P.

    2007-04-01

    We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.

  5. Coupling lattice Boltzmann and molecular dynamics models for dense fluids.

    PubMed

    Dupuis, A; Kotsalis, E M; Koumoutsakos, P

    2007-04-01

    We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.

  6. Molecular-dynamics simulation of thermal conductivity in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lee, Young Hee; Biswas, R.; Soukoulis, C. M.; Wang, C. Z.; Chan, C. T.; Ho, K. M.

    1991-03-01

    The temperature-dependent thermal conductivity κ(T) of amorphous silicon has been calculated from equilibrium molecular-dynamics simulations using the time correlations of the heat flux operator in which anharmonicity is explicitly incorporated. The Stillinger-Weber two- and three-body Si potential and the Wooten-Weaire-Winer a-Si model were utilized. The calculations correctly predict an increasing thermal conductivity at low temperatures (below 400 K). The κ(T), for T>400 K, is affected by the thermally generated coordination-defect states. Comparisons to both experiment and previous calculations will be described.

  7. Role of molecular dynamics on descriptions of shock front processes

    NASA Astrophysics Data System (ADS)

    Karo, A. M.

    1981-07-01

    A computational approach, based on classical molecular dynamics, is used to form a realistic picture of shock induced processes occurring at the shock front and resulting from the detailed, violent motion associated with shock motion on an atomic scale. Prototype studies of phase transitions are discussed. The interaction of the shock front with defects, surfaces, voids, and inclusions, and across grain boundaries are summarized. The critical question of how mechanical energy imparted to a condensed material by shock loading is converted to the activation energy required to overcome some initial energy barrier in an initiation process, is addressed.

  8. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    SciTech Connect

    Mugnai, Mauro L.; Elber, Ron

    2015-01-07

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide.

  9. Molecular dynamics studies of interfacial crack propagation in heterogeneous media

    SciTech Connect

    Corbett, J.M. |; Selinger, R.L.B.

    1999-08-01

    The authors use molecular dynamics simulation to investigate the evolution of a crack front in interfacial fracture in three dimensions. They find that when a crack passes through a localized region of heterogeneous toughness, crack front waves are initiated and propagate laterally. They also investigate the development of roughness of the crack front when the crack propagates in a region of heterogeneous toughness. They find that in steady state the mean square width W of the front scales with system size L as W {approximately} L{sup 0.35}, in agreement with recent theoretical predictions.

  10. Limits of hardness at the nanoscale: Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Vo, Nhon Q.; Averback, Robert S.; Bellon, Pascal; Caro, Alfredo

    2008-12-01

    Contrary to the often reported findings from molecular dynamics computer simulation that metals soften as their grain sizes fall below 10-15 nm, we do not observe such softening in nanocrystalline specimens when they are first thermally relaxed. We offer a simple model that illustrates that the increased hardening is a consequence of grain-boundary relaxation, which suppresses grain-boundary sliding and forces the material to deform by dislocation glide. These observations provide an explanation for why some experiments observe an inverse Hall-Petch relationship at grain sizes below 10-20 nm while others do not.

  11. Generalized extended Lagrangian Born-Oppenheimer molecular dynamics

    SciTech Connect

    Niklasson, Anders M. N. Cawkwell, Marc J.

    2014-10-28

    Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.

  12. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  13. Using collective variables to drive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fiorin, Giacomo; Klein, Michael L.; Hénin, Jérôme

    2013-12-01

    A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.

  14. Easy creation of polymeric systems for molecular dynamics with Assemble!

    NASA Astrophysics Data System (ADS)

    Degiacomi, Matteo T.; Erastova, Valentina; Wilson, Mark R.

    2016-05-01

    We present Assemble!, a program greatly simplifying the preparation of molecular dynamics simulations of polymeric systems. The program is controlled either via command line or an intuitive Graphical User Interface, and runs on all major operating systems. Assemble! allows the creation of a desired system of polymer chains from constituent monomers, packs the chains into a box according to the required concentration and returns all the files needed for simulation with Gromacs. We illustrate the capabilities of Assemble! by demonstrating the easy preparation of a 300 monomers-long polyisoprene in hexane, and a heterogeneous mixture of polybutadiene.

  15. Molecular dynamics simulation of threshold displacement energies in zircon

    SciTech Connect

    Moreira, Pedro A.; Devanathan, Ramaswami; Yu, Jianguo; Weber, William J.

    2009-10-15

    Molecular-dynamics simulations were used to examine the displacement threshold energy (Ed) surface for Zr, Si and O in zircon using two different interatomic potentials. For each sublattice, the simulation was repeated from different initial conditions to estimate the uncertainty in the calculated value of Ed. The displacement threshold energies vary considerably with crystallographic direction and sublattice. The average displacement energy calculated with a recently developed transferable potential is about 120 and 60 eV for cations and anions, respectively. The oxygen displacement energy shows good agreement with experimental estimates in ceramics.

  16. Superionicity in Na3 PO4 : A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yin, Wei-Guo; Liu, Jianjun; Duan, Chun-Gang; Mei, W. N.; Smith, R. W.; Hardy, J. R.

    2004-08-01

    Fast ionic conduction in solid Na3PO4 is studied by use of molecular dynamics simulation based on the modified Lu -Hardy approach. We obtain reasonable agreement with experiment for the structural transition and diffusion of the sodium ions. All the sodium ions are found to contribute comparably to the high ionic conductivity. The results of the simulation are discussed in terms of the relative magnitude of the two proposed transport mechanisms: percolation and paddle-wheel. It appears to us that the percolation mechanism dominates the sodium diffusion.

  17. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    NASA Astrophysics Data System (ADS)

    Mugnai, Mauro L.; Elber, Ron

    2015-01-01

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide.

  18. Molecular dynamics simulation of hollow thick-walled cylinder collapse

    SciTech Connect

    Nikonov, A. Yu.

    2015-10-27

    The generation and evolution of plastic deformation in a hollow single-crystal cylinder under high-rate axisymmetric loading were studied. An advantage of the proposed loading scheme is that all loading modes are applied simultaneously within the chosen crystallographic plane of the cylinder base and different strain degrees are achieved along the specimen cross section. Molecular dynamics simulation was performed to show that the achievement of a certain strain causes the formation of structural defects on the inner surface of the specimen. The obtained results can be used to explain the main plastic deformation mechanisms of crystalline solids.

  19. Molecular Dynamics Simulation of Telomere and TRF1

    NASA Astrophysics Data System (ADS)

    Kaburagi, Masaaki; Fukuda, Masaki; Yamada, Hironao; Miyakawa, Takeshi; Morikawa, Ryota; Takasu, Masako; Kato, Takamitsu A.; Uesaka, Mitsuru

    Telomeres play a central role in determining longevity of a cell. Our study focuses on the interaction between telomeric guanines and TRF1 as a means to observe the telomeric based mechanism of the genome protection. In this research, we performed molecular dynamics simulations of a telomeric DNA and TRF1. Our results show a stable structure with a high affinity for the specific protein. Additionally, we calculated the distance between guanines and the protein in their complex state. From this comparison, we found the calculated values of distance to be very similar, and the angle of guanines in their complex states was larger than that in their single state.

  20. Higher-order symplectic Born-Oppenheimer molecular dynamics

    SciTech Connect

    Niklasson, Anders; Bock, Nicolas; Challacombe, Matt; Odell, Anders; Delin, Anna; Johansson, Borje

    2009-01-01

    The extended Lagrangian formulation of time-reversible Born-Oppenheimer molecular dynamics (TR-BOMD) enables the use of geometric integrators in the propagation of both the nuclear and the electronic degrees of freedom on the Born-Oppenheimer potential energy surface. Different symplectic integrators up to the 6th order have been adapted and optimized to TR-BOMD in the framework of ab initio self-consistent-field theory. It is shown how the accuracy can be significantly improved compared to a conventional Verlet integration at the same level of computational cost, in particular for the case of very high accuracy requirements.