NASA Technical Reports Server (NTRS)
Tang, Charles C. H.
1988-01-01
By using Von Zeipel's generating function procedure the perturbing earth gravitational potential is averaged with respect to the fast variable (mean anomaly) and a set of 'fictitous' mean orbital elements which can be used as a long-term satellite orbit predictor is obtained. The set of elements is shown to be a function of the nonlinear square of the second zonal harmonic coefficient. It is found that the long-term orbit prediction using the 'fictitous' mean elements is as accurate as that using the osculating elements, but has a computing speed about two orders of magnitude faster. For short-term orbit predictions, the osculating elements approach must be used.
Conversion of Osculating Orbital Elements to Mean Orbital Elements
NASA Technical Reports Server (NTRS)
Der, Gim J.; Danchick, Roy
1996-01-01
Orbit determination and ephemeris generation or prediction over relatively long elapsed times can be accomplished with mean elements. The most simple and efficient method for orbit determination, which is also known as epoch point conversion, performs the conversion of osculating elements to mean elements by iterative procedures. Previous epoch point conversion methods are restricted to shorter elapsed times with linear convergence. The new method presented in this paper calculates an analytic initial guess of the unknown mean elements from a first order theory of secular perturbations and computes a transition matrix with accurate numerical partials. It thereby eliminates the problem of an inaccurate initial guess and an identity transition matrix employed by previous methods. With a good initial guess of the unknown mean elements and an accurate transition matrix, converging osculating elements to mean elements can be accomplished over long elapsed times with quadratic convergence.
Accurate orbit propagation with planetary close encounters
NASA Astrophysics Data System (ADS)
Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca
2015-08-01
We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).
Orbital element distributions in the Oort cloud
NASA Astrophysics Data System (ADS)
Serafin, R. A.
Orbital-element distributions are studied for comets moving on admissible orbits in the Oort cloud and for some functions that depend on the orbital elements. Also found is the probability that an arbitrarily chosen admissible orbit belongs to the set of orbital elements and the distribution of circular velocities in the cloud.
Orbital correlation of space objects based on orbital elements
NASA Astrophysics Data System (ADS)
Wang, Xiu-Hong; Li, Jun-Feng; Du, Xin-Peng; Zhang, Xuan
2016-03-01
Orbital correlation of space objects is one of the most important elements in space object identification. Using the orbital elements, we provide correlation criteria to determine if objects are coplanar, co-orbital or the same. We analyze the prediction error of the correlation parameters for different orbital types and propose an orbital correlation method for space objects. The method is validated using two line elements and multisatellite launching data. The experimental results show that the proposed method is effective, especially for space objects in near-circular orbits.
Maneuver Design Using Relative Orbital Elements
NASA Astrophysics Data System (ADS)
Spencer, David A.; Lovell, Thomas A.
2015-12-01
Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit.
Radio interferometric measurements for accurate planetary orbiter navigation
NASA Technical Reports Server (NTRS)
Poole, S. R.; Ananda, M.; Hildebrand, C. E.
1979-01-01
The use of narrowband delta-VLBI to achieve accurate orbit determination is presented by viewing a spacecraft from widely separated stations followed by viewing a nearby quasar from the same stations. Current analysis is examined that establishes the orbit determination accuracy achieved with data arcs spanning up to 3.5 d. Strategies for improving prediction accuracy are given, and the performance of delta-VLBI is compared with conventional radiometric tracking data. It is found that accuracy 'within the fit' is on the order of 0.5 km for data arcs having delta-VLBI on the ends of the arcs and for arc lengths varying from one baseline to 3.5 d. The technique is discussed with reference to the proposed Venus Orbiting Imaging Radar mission.
Extremely Accurate On-Orbit Position Accuracy using TDRSS
NASA Technical Reports Server (NTRS)
Stocklin, Frank; Toral, Marco; Bar-Sever, Yoaz; Rush, John
2006-01-01
NASA is planning to launch a new service for Earth satellites providing them with precise GPS differential corrections and other ancillary information enabling decimeter level orbit determination accuracy and nanosecond time-transfer accuracy, onboard, in real-time. The TDRSS Augmentation Service for Satellites (TASS) will broadcast its message on the S-band multiple access forward channel of NASA s Tracking and Data Relay Satellite System (TDRSS). The satellite's phase array antenna has been configured to provide a wide beam, extending coverage up to 1000 km altitude over the poles. Global coverage will be ensured with broadcast from three or more TDRSS satellites. The GPS differential corrections are provided by the NASA Global Differential GPS (GDGPS) System, developed and operated by JPL. The GDGPS System employs global ground network of more than 70 GPS receivers to monitor the GPS constellation in real time. The system provides real-time estimates of the GPS satellite states, as well as many other real-time products such as differential corrections, global ionospheric maps, and integrity monitoring. The unique multiply redundant architecture of the GDGPS System ensures very high reliability, with 99.999% demonstrated since the inception of the system in early 2000. The estimated real time GPS orbit and clock states provided by the GDGPS system are accurate to better than 20 cm 3D RMS, and have been demonstrated to support sub-decimeter real time positioning and orbit determination for a variety of terrestrial, airborne, and spaceborne applications. In addition to the GPS differential corrections, TASS will provide real-time Earth orientation and solar flux information that enable precise onboard knowledge of the Earth-fixed position of the spacecraft, and precise orbit prediction and planning capabilities. TASS will also provide 5 seconds alarms for GPS integrity failures based on the unique GPS integrity monitoring service of the GDGPS System.
NASA Astrophysics Data System (ADS)
Iorio, L.
2016-01-01
By using the most recently published Doppler tomography measurements and accurate theoretical modelling of the oblateness-driven orbital precessions, we tightly constrain some of the physical and orbital parameters of the planetary system hosted by the fast rotating star WASP-33. In particular, the measurements of the orbital inclination ip to the plane of the sky and of the sky-projected spin-orbit misalignment λ at two epochs about six years apart allowed for the determination of the longitude of the ascending node Ω and of the orbital inclination I to the apparent equatorial plane at the same epochs. As a consequence, average rates of change dot{Ω }_exp, dot{I}_exp of this two orbital elements, accurate to a ≈10-2 deg yr-1 level, were calculated as well. By comparing them to general theoretical expressions dot{Ω }_{J_2}, dot{I}_{J_2} for their precessions induced by an oblate star whose symmetry axis is arbitrarily oriented, we were able to determine the angle i⋆ between the line of sight the star's spin {S}^{star } and its first even zonal harmonic J_2^{star } obtaining i^{star } = {142}^{+10}_{-11} deg, J_2^{star } = 2.1^{+0.8}_{-0.5}times; 10^{-4}. As a by-product, the angle between {S}^{star } and the orbital angular momentum L is as large as about ψ ≈ 100 ° psi; ^{2008} = 99^{+5}_{-4} deg, ψ ^{{2014}} = 103^{+5}_{-4} deg and changes at a rate dot{ψ }= 0.{7}^{+1.5}_{-1.6} deg {yr}^{-1}. The predicted general relativistic Lense-Thirring precessions, of the order of ≈10-3deg yr-1, are, at present, about one order of magnitude below the measurability threshold.
Mercury's resonant rotation from secular orbital elements
NASA Astrophysics Data System (ADS)
Stark, Alexander; Oberst, Jürgen; Hussmann, Hauke
2015-11-01
We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet's measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury's interior structure. In particular, we derive a mean orbital period of (87.96934962 ± 0.00000037) days and (assuming a perfect resonance) a spin rate of (6.138506839± 0.000000028)°/day. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101-135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury's rotation.
Exoplanet's Atmospheres Characteristics vs. Exoplanet's Orbital Elements
NASA Astrophysics Data System (ADS)
Molaverdikhani, Karan
2009-10-01
400 years after Galileo Galilei was detected Jovian system, we know about 400 exoplanets in other stellar systems. But we identify just about their major properties like some of orbital elements, planet's radii or density. Also, there are many scientists who interested in searching for life or habitability on these planets. They are working in different ways such as planetary formation, planetary orbital stability or immigration, HabStars, composition of atmospheres, most probable zone in sky for exoplanets detection, etc. In this research we distinct and defined some main characteristics of terrestrial planet's atmospheres with surveying on solar system's planets and matching with current theorems on atmosphere formation. On the other hand, we were modeled Mars, Venus, Titan, single Hadley Earth and virtual Venus with different tilt angel (applying Global Circulation Modeling) to finding a critical limit on Polar Vortex formation in our last research. With extension this method on hypothetical terrestrial planets in constraint mass between 0.7 to 2.5 Earth's mass on Green Belt and applying host stars from 0.5 to 1.5 Sun's mass, we found some limitations on planet's atmosphere formation and estimation values of atmosphere's main characteristics.
Determination of AES Orbit Elements Using Mixed Data
NASA Astrophysics Data System (ADS)
Kolesnik, S. Ja.; Strakhova, S. L.
An algorithm is worked out and a program is compiled for a determination of AES (artificial Earth satellite) orbit elements using both goniometrical and range-finder observations of different precision. The observations of one or several passages carried out from one or several stations can be used. A number of observational stations and a number of observations are not limited in principle. When solving this task the AES ephemerides on the moments of observations are calculated for different sets of orbit elements. A parameter F is considered which is a function of orbit elements. The parameter presents a square-mean deviation of AES ephemeris position on the moments {J;} from its observed one. The determination of real orbit elements comes to minimizing of parameter F by orbit elements using a method of deformed polyhedron. When calculating the ephemeris the amendments for 2-d, 3-d, 4-th geopotential zone harmonics are considered.
Accurate optical CD profiler based on specialized finite element method
NASA Astrophysics Data System (ADS)
Carrero, Jesus; Perçin, Gökhan
2012-03-01
As the semiconductor industry is moving to very low-k1 patterning solutions, the metrology problems facing process engineers are becoming much more complex. Choosing the right optical critical dimension (OCD) metrology technique is essential for bridging the metrology gap and achieving the required manufacturing volume throughput. The critical dimension scanning electron microscope (CD-SEM) measurement is usually distorted by the high aspect ratio of the photoresist and hard mask layers. CD-SEM measurements cease to correlate with complex three-dimensional profiles, such as the cases for double patterning and FinFETs, thus necessitating sophisticated, accurate and fast computational methods to bridge the gap. In this work, a suite of computational methods that complement advanced OCD equipment, and enabling them to operate at higher accuracies, are developed. In this article, a novel method for accurately modeling OCD profiles is presented. A finite element formulation in primal form is used to discretize the equations. The implementation uses specialized finite element spaces to solve Maxwell equations in two dimensions.
Accurate interlaminar stress recovery from finite element analysis
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Riggs, H. Ronald
1994-01-01
The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.
A finite-element analysis model of orbital biomechanics.
Schutte, Sander; van den Bedem, Sven P W; van Keulen, Fred; van der Helm, Frans C T; Simonsz, Huibert J
2006-05-01
To reach a better understanding of the suspension of the eye in the orbit, an orbital mechanics model based upon finite-element analysis (FEA) has been developed. The FEA model developed contains few prior assumptions or constraints (e.g., the position of the eye in the orbit), allowing modeling of complex three-dimensional tissue interactions; unlike most current models of eye motility. Active eye movements and forced ductions were simulated and showed that the supporting action of the orbital fat plays an important role in the suspension of the eye in the orbit and in stabilization of rectus muscle paths. PMID:16413594
Design requirements for orbit maintenance of SPS elements
Not Available
1980-11-01
The objective of this study is to identify the design and operational requirements that will be imposed by the need to avoid unplanned reentry of SPS elements. The LEO Staging Base, Electric Orbit Transfer Vehicle, the LEO Construction Base, and SPS Self-Power Module are the SPS elements selected for this analysis. The orbit decay rates and attitude control/orbit maintenance propellant requirements for nominal and worst case conditions are defined. The sequence of events that could cause unplanned reentry are defined. The design and operational requirements that will be used to prevent the various elements from deorbiting are defined.
Calculation of precision satellite orbits with nonsingular elements /VOP formulation/
NASA Technical Reports Server (NTRS)
Velez, C. E.; Cefola, P. J.; Long, A. C.; Nimitz, K. S.
1974-01-01
Review of some results obtained in an effort to develop efficient, high-precision trajectory computation processes for artificial satellites by optimum selection of the form of the equations of motion of the satellite and the numerical integration method. In particular, the matching of a Gaussian variation-of-parameter (VOP) formulation is considered which is expressed in terms of equinoctial orbital elements and partially decouples the motion of the orbital frame from motion within the orbital frame. The performance of the resulting orbit generators is then compared with the popular classical Cowell/Gauss-Jackson formulation/integrator pair for two distinctly different orbit types - namely, the orbit of the ATS satellite at near-geosynchronous conditions and the near-circular orbit of the GEOS-C satellite at 1000 km.
Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE=La-Lu)
NASA Astrophysics Data System (ADS)
Topsakal, Mehmet; Wentzcovitch, Renata
2015-03-01
We provide accurate projected augmented wave (PAW) datasets for rare-earth (RE) elements with some suggested Hubbard U values allowing efficient plane-wave calculations. Solid state tests of generated datasets were performed on rare-earth nitrides. Through density of state (DOS) and equation of state (EoS) comparisons, generated datasets were shown to yield excellent results comparable to highly accurate all-electron full-potential linearized augmented plane-wave plus local orbital (FLAPW+LO) calculations. Hubbard U values for trivalent RE ions are determined according to hybrid functional calculations. We believe that these new and open-source PAW datasets will allow further studies on rare-earth materials. NSF/EAR 1319361
Orbital elements of Charon from speckle interferometry
NASA Technical Reports Server (NTRS)
Beletic, J. W.; Goody, R. M.; Tholen, D. J.
1989-01-01
The semimajor axis and the inclination are the two most important quantities presently determined from 56 well-calibrated speckle-interferometric observations of the position of Charon, which are presented in conjunction with an orbit solution that incorporates them. Both values in the best solution obtained are noted to significantly differ from earlier determinations. The new value for the semimajor axis represents a 2.7 percent increase over the previously accepted value; the mean density of the system, however, remains unaltered.
Orbital elements of Charon from speckle interferometry
Beletic, J.W.; Goody, R.M.; Tholen, D.J.; Hawaii Univ., Honolulu )
1989-05-01
The semimajor axis and the inclination are the two most important quantities presently determined from 56 well-calibrated speckle-interferometric observations of the position of Charon, which are presented in conjunction with an orbit solution that incorporates them. Both values in the best solution obtained are noted to significantly differ from earlier determinations. The new value for the semimajor axis represents a 2.7 percent increase over the previously accepted value; the mean density of the system, however, remains unaltered. 18 refs.
Effective Echo Detection and Accurate Orbit Estimation Algorithms for Space Debris Radar
NASA Astrophysics Data System (ADS)
Isoda, Kentaro; Sakamoto, Takuya; Sato, Toru
Orbit estimation of space debris, objects of no inherent value orbiting the earth, is a task that is important for avoiding collisions with spacecraft. The Kamisaibara Spaceguard Center radar system was built in 2004 as the first radar facility in Japan devoted to the observation of space debris. In order to detect the smaller debris, coherent integration is effective in improving SNR (Signal-to-Noise Ratio). However, it is difficult to apply coherent integration to real data because the motions of the targets are unknown. An effective algorithm is proposed for echo detection and orbit estimation of the faint echoes from space debris. The characteristics of the evaluation function are utilized by the algorithm. Experiments show the proposed algorithm improves SNR by 8.32dB and enables estimation of orbital parameters accurately to allow for re-tracking with a single radar.
Definition of Relative Orbit Elements of Spacecraft Formation Flying for Purpose of Orbit Design
NASA Astrophysics Data System (ADS)
Xiao, Yelun
Much efforts have been made to the research concerning the dynamical characteristics of spacecraft formation flying, several articles have been published including the authors' IAC papers IAF-98-A.2.06, IAA-99-IAA.11.1.09, IAA-01-IAA.11.4.08. The problem can be deduced to the issue of relative orbit motion of one satellite called accompany satellite around another called reference or central satellite, the latter being supposed to move in circular or near-circular orbit and to have equal semimajor axis as the former. It has been shown that the trajectory of relative motion is an ellipse constantly fixed to the orbital frame of the central satellite. It is known that the relative motion is completely determined by initial state of relative motion x0, y0, z0, vx0, vy0, vz0 (called parameter set 1). On the other hand the relative motion is caused by difference in eccentricity vectors and by non-coplanarity vector and influenced by the angle btw. the two vectors (called parameter set 2). Now the authors try to define relative orbit elements determining all geometrical and kinematical properties of the relative motion and having clear physical meaning similar to traditional orbit elements. Based on deep study of the dynamical characteristics we decide to define the elements as follows: (1) semimajor axis of the ellipse of relative trajectory; (2 and 3) elevation and azimuth angles of the normal determining the orientation of the relative motion plane wrt the reference orbit frame; (4) argument of latitude at epoch (initial instant) of reference satellite and (5) phase angle of the accompany satellite at epoch. These are minimum-required and independent elements. All others are secondary (or derived) parameters. For example, aspect ratio, i.e., ratio of major axis to minor axis, describing the shape of relative trajectory, is determined by elements 2 and 3, because of the inherent property that the projection of relative trajectory on reference orbit plane must be a 2
NASA Astrophysics Data System (ADS)
Weisman, R. M.; Majji, M.; Alfriend, K. T.
2014-02-01
This paper presents an approach to characterize the uncertainty associated with the state vector obtained from the Herrick-Gibbs orbit determination approach using transformation of variables. The approach is applied to estimate the state vector and its probability density function for objects in low Earth orbit using sparse observations. The state vector and associated uncertainty estimates are computed in Cartesian coordinates and Keplerian elements. The approach is then extended to accommodate the J_2 perturbation where the state vector is written in terms of mean orbital elements. The results obtained from the analytical approach presented in this paper are validated using Monte Carlo simulations and compared with the often utilized similarity transformation for Kepler, mean, and nonsingular elements. The measurement uncertainty characterization obtained is used to initialize conventional nonlinear filters as well as operate a Bayesian approach for orbit determination and object tracking.
A general time element for orbit integration in Cartesian coordinates
NASA Technical Reports Server (NTRS)
Janin, G.; Bond, V. R.
1981-01-01
Two techniques are discussed for increasing the accuracy of the numerical integration of eccentric orbits in Cartesian coordinates. One involves the use of an independent variable different from time; this increases the efficiency of the numerical integration. The other uses a time element, which reduces the in-track error. A general expression is given of a time element valid for an arbitrary independent variable. It is pointed out that this time element makes it possible to switch the independent variable merely by applying a scaling factor; there is no need to change the differential equations of the motion. Eccentric, true, and elliptic anomalies are used as independent variables in the case of a transfer orbit for a geosynchronous orbit. The elliptic anomaly is shown to perform much better than the other classical anomalies.
Accurate orbit determination strategies for the tracking and data relay satellites
NASA Technical Reports Server (NTRS)
Oza, D. H.; Bolvin, D. T.; Lorah, J. M.; Lee, T.; Doll, C. E.
1995-01-01
The National Aeronautics and Space Administration (NASA) has developed the Tracking and Data Relay Satellite (TDRS) System (TDRSS) for tracking and communications support of low Earth-orbiting satellites. TDRSS has the operational capability of providing 85% coverage for TDRSS-user spacecraft. TDRSS currently consists of five geosynchronous spacecraft and the White Sands Complex (WSC) at White Sands, New Mexico. The Bilateration Ranging Transponder System (BRTS) provides range and Doppler measurements for each TDRS. The ground-based BRTS transponders are tracked as if they were TDRSS-user spacecraft. Since the positions of the BRTS transponders are known, their radiometric tracking measurements can be used to provide a well-determined ephemeris for the TDRS spacecraft. For high-accuracy orbit determination of a TDRSS user, such as the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft, high-accuracy TDRS orbits are required. This paper reports on successive refinements in improved techniques and procedures leading to more accurate TDRS orbit determination strategies using the Goddard Trajectory Determination System (GTDS). These strategies range from the standard operational solution using only the BRTS tracking measurements to a sophisticated iterative process involving several successive simultaneous solutions for multiple TDRSs and a TDRSS-user spacecraft. Results are presented for GTDS-generated TDRS ephemerides produced in simultaneous solutions with the TOPEX/Poseidon spacecraft. Strategies with different user spacecraft, as well as schemes for recovering accurate TDRS orbits following a TDRS maneuver, are also presented. In addition, a comprehensive assessment and evaluation of alternative strategies for TDRS orbit determination, excluding BRTS tracking measurements, are presented.
Fast Geometric Method for Calculating Accurate Minimum Orbit Intersection Distances (MOIDs)
NASA Astrophysics Data System (ADS)
Wiźniowski, T.; Rickman, H.
2013-06-01
We present a new method to compute Minimum Orbit Intersection Distances (MOIDs) for arbitrary pairs of heliocentric orbits and compare it with Giovanni Gronchi's algebraic method. Our procedure is numerical and iterative, and the MOID configuration is found by geometric scanning and tuning. A basic element is the meridional plane, used for initial scanning, which contains one of the objects and is perpendicular to the orbital plane of the other. Our method also relies on an efficient tuning technique in order to zoom in on the MOID configuration, starting from the first approximation found by scanning. We work with high accuracy and take special care to avoid the risk of missing the MOID, which is inherent to our type of approach. We demonstrate that our method is both fast, reliable and flexible. It is freely available and its source Fortran code downloadable via our web page.
DETERMINATION OF ORBITAL ELEMENTS OF SPECTROSCOPIC BINARIES USING HIGH-DISPERSION SPECTROSCOPY
Katoh, Noriyuki; Itoh, Yoichi; Toyota, Eri; Sato, Bun'ei
2013-02-01
Orbital elements of 37 single-lined spectroscopic binary systems (SB1s) and 5 double-lined spectroscopic binary systems (SB2s) were determined using high-dispersion spectroscopy. To determine the orbital elements accurately, we carried out precise Doppler shift measurements using the HIgh Dispersion Echelle Spectrograph mounted on the Okayama Astrophysical Observatory 1.88 m telescope. We achieved a radial-velocity precision of {approx}10 m s{sup -1} over seven years of observations. The targeted binaries have spectral types between F5 and K3, and are brighter than the 7th magnitude in the V band. The orbital elements of 28 SB1s and 5 SB2s were determined at least 10 times more precisely than previous measurements. Among the remaining nine SB1s, five objects were found to be single stars, and the orbital elements of four objects were not determined because our observations did not cover the entire orbital period. We checked the absorption lines from the secondary star for 28 SB1s and found that three objects were in fact SB2s.
Time elements for enhanced performance of the Dromo orbit propagator
Baù, Giulio; Bombardelli, Claudio E-mail: claudio.bombardelli@upm.es
2014-09-01
We propose two time elements for the orbit propagator named Dromo. One is linear and the other constant with respect to the independent variable, which coincides with the osculating true anomaly in the Keplerian motion. They are defined from a generalized Kepler's equation written for negative values of the total energy and, unlike the few existing time elements of this kind, are free of singularities. To our knowledge it is the first time that a constant time element is associated with a second-order Sundman time transformation. Numerical tests to assess the performance of the Dromo method equipped with a time element show the remarkable improvement in accuracy for the perturbed bounded motion around the Earth compared to the case in which the physical time is a state variable. Moreover, the method is competitive with and even better than other efficient sets of elements. Finally, we also derive a time element for a null and positive total energy.
On Orbital Elements of Extrasolar Planetary Candidates and Spectroscopic Binaries
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Black, D. C.
2001-01-01
We estimate probability densities of orbital elements, periods, and eccentricities, for the population of extrasolar planetary candidates (EPC) and, separately, for the population of spectroscopic binaries (SB) with solar-type primaries. We construct empirical cumulative distribution functions (CDFs) in order to infer probability distribution functions (PDFs) for orbital periods and eccentricities. We also derive a joint probability density for period-eccentricity pairs in each population. Comparison of respective distributions reveals that in all cases EPC and SB populations are, in the context of orbital elements, indistinguishable from each other to a high degree of statistical significance. Probability densities of orbital periods in both populations have P(exp -1) functional form, whereas the PDFs of eccentricities can he best characterized as a Gaussian with a mean of about 0.35 and standard deviation of about 0.2 turning into a flat distribution at small values of eccentricity. These remarkable similarities between EPC and SB must be taken into account by theories aimed at explaining the origin of extrasolar planetary candidates, and constitute an important clue us to their ultimate nature.
Generating unaveraged equations of motion in common orbital elements
NASA Astrophysics Data System (ADS)
Veras, Dimitri
2014-05-01
Cartesian equations of motion must be converted or integrated in order to impart information about the evolution of orbital elements such as the semimajor axis, eccentricity, inclination, longitude of ascending node, argument of pericentre and true anomaly. Alternatively, equations of motion in terms of only these orbital elements can reveal aspects of the motion simply by inspection. I advertise a quick method to generate such equations for perturbed two-body problems, where the perturbation may be arbitrarily large, and where no averaging is involved. I use the method to generate complete unaveraged equations from perturbations due to Poynting-Robertson drag, general relativity, mass loss, Galactic tides, and additional massive bodies under the guise of the general restricted few-body problem.
Highly accurate adaptive finite element schemes for nonlinear hyperbolic problems
NASA Astrophysics Data System (ADS)
Oden, J. T.
1992-08-01
This document is a final report of research activities supported under General Contract DAAL03-89-K-0120 between the Army Research Office and the University of Texas at Austin from July 1, 1989 through June 30, 1992. The project supported several Ph.D. students over the contract period, two of which are scheduled to complete dissertations during the 1992-93 academic year. Research results produced during the course of this effort led to 6 journal articles, 5 research reports, 4 conference papers and presentations, 1 book chapter, and two dissertations (nearing completion). It is felt that several significant advances were made during the course of this project that should have an impact on the field of numerical analysis of wave phenomena. These include the development of high-order, adaptive, hp-finite element methods for elastodynamic calculations and high-order schemes for linear and nonlinear hyperbolic systems. Also, a theory of multi-stage Taylor-Galerkin schemes was developed and implemented in the analysis of several wave propagation problems, and was configured within a general hp-adaptive strategy for these types of problems. Further details on research results and on areas requiring additional study are given in the Appendix.
Accurate Energies and Orbital Description in Semi-Local Kohn-Sham DFT
NASA Astrophysics Data System (ADS)
Lindmaa, Alexander; Kuemmel, Stephan; Armiento, Rickard
2015-03-01
We present our progress on a scheme in semi-local Kohn-Sham density-functional theory (KS-DFT) for improving the orbital description while still retaining the level of accuracy of the usual semi-local exchange-correlation (xc) functionals. DFT is a widely used tool for first-principles calculations of properties of materials. A given task normally requires a balance of accuracy and computational cost, which is well achieved with semi-local DFT. However, commonly used semi-local xc functionals have important shortcomings which often can be attributed to features of the corresponding xc potential. One shortcoming is an overly delocalized representation of localized orbitals. Recently a semi-local GGA-type xc functional was constructed to address these issues, however, it has the trade-off of lower accuracy of the total energy. We discuss the source of this error in terms of a surplus energy contribution in the functional that needs to be accounted for, and offer a remedy for this issue which formally stays within KS-DFT, and, which does not harshly increase the computational effort. The end result is a scheme that combines accurate total energies (e.g., relaxed geometries) with an improved orbital description (e.g., improved band structure).
Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination
NASA Astrophysics Data System (ADS)
Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael
2014-05-01
Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of
Study on Orbital Decay of Near Earth Satellites with KS Orthogonal Elements
NASA Astrophysics Data System (ADS)
Ps, Sandeep
STUDY ON ORBITAL DECAY OF NEAR EARTH SATELLITES WITH KS ORTHOGONAL ELEMENTS SANDEEP P S The knowledge of satellite orbit decay and its expected life prior to launch is necessary for mission planning purpose. Several sets of data for various parametric studies is sought quite often, it is necessary to minimize computational time involved for generating decay predictions, keeping the prediction accuracy normally good. A number of factors play dominant role in perturbation modelling for near earth satellites such as oblateness of the Earth, presence of the atmosphere, luni-solar attraction and solar radiation pressure. This paper concerns with the study of orbital decay of near earth satellites with KS orthogonal elements, which provide accurate orbit predictions at low computational time. Perturbations considered are due to oblateness of the Earth and the atmospheric drag. The Earth’s zonal harmonic terms J2 to J6 are included and the drag is modeled with an analytical diurnally oblate atmosphere. Effect of Earth’s geomagnetic and solar activity is included in density and density scale height computations. JACCHIA77 atmospheric model is utilized. The developed software is validated with the orbital data of decayed objects taken from www.space-track.org.
Accurate Determination of Comet and Asteroid Orbits Leading to Collision With Earth
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Kay-Bunnell, Linda; Mazanek, Daniel D.; Kumar, Renjith R.; Seywald, Hans; Hausman, Matthew A.
2005-01-01
Movements of the celestial bodies in our solar system inspired Isaac Newton to work out his profound laws of gravitation and motion; with one or two notable exceptions, all of those objects move as Newton said they would. But normally harmonious orbital motion is accompanied by the risk of collision, which can be cataclysmic. The Earth s moon is thought to have been produced by such an event, and we recently witnessed magnificent bombardments of Jupiter by several pieces of what was once Comet Shoemaker-Levy 9. Other comets or asteroids may have met the Earth with such violence that dinosaurs and other forms of life became extinct; it is this possibility that causes us to ask how the human species might avoid a similar catastrophe, and the answer requires a thorough understanding of orbital motion. The two red square flags with black square centers displayed are internationally recognized as a warning of an impending hurricane. Mariners and coastal residents who know the meaning of this symbol and the signs evident in the sky and ocean can act in advance to try to protect lives and property; someone who is unfamiliar with the warning signs or chooses to ignore them is in much greater jeopardy. Although collisions between Earth and large comets or asteroids occur much less frequently than landfall of a hurricane, it is imperative that we learn to identify the harbingers of such collisions by careful examination of an object s path. An accurate determination of the orbit of a comet or asteroid is necessary in order to know if, when, and where on the Earth s surface a collision will occur. Generally speaking, the longer the warning time, the better the chance of being able to plan and execute action to prevent a collision. The more accurate the determination of an orbit, the less likely such action will be wasted effort or, what is worse, an effort that increases rather than decreases the probability of a collision. Conditions necessary for a collision to occur are
The CHARA Catalog of Orbital Elements of Spectroscopic Binary Stars
NASA Astrophysics Data System (ADS)
Taylor, Stuart F.; Harvin, James A.; McAlister, Harold A.
2003-05-01
Optical interferometry is entering a new age, with several ground-based long-baseline observatories now making observations of unprecedented resolution. Interferometers bring a new level of resolution to bear on spectroscopic binaries, enabling the full extraction of the physical parameters for the component stars with high accuracy. In the case of double-lined systems, a geometrically determined orbital parallax becomes available as well. The first step in preparing to observe spectroscopic binaries is to list them, which has not been done since the 1989 publication of the Eighth Catalogue of the Orbital Elements of Spectroscopic Binaries by Batten et al. We present a new catalog with roughly half again as many listings as the Eighth Catalogue. Angular separation predictions are made for each catalog entry. The numbers of spectroscopic binaries available for study as a function of several important observational parameters are explored, and in particular, the number of spectroscopic binaries as a function of expected separation is discussed.
Orbital Advection by Interpolation: A Fast and Accurate Numerical Scheme for Super-Fast MHD Flows
Johnson, B M; Guan, X; Gammie, F
2008-04-11
In numerical models of thin astrophysical disks that use an Eulerian scheme, gas orbits supersonically through a fixed grid. As a result the timestep is sharply limited by the Courant condition. Also, because the mean flow speed with respect to the grid varies with position, the truncation error varies systematically with position. For hydrodynamic (unmagnetized) disks an algorithm called FARGO has been developed that advects the gas along its mean orbit using a separate interpolation substep. This relaxes the constraint imposed by the Courant condition, which now depends only on the peculiar velocity of the gas, and results in a truncation error that is more nearly independent of position. This paper describes a FARGO-like algorithm suitable for evolving magnetized disks. Our method is second order accurate on a smooth flow and preserves {del} {center_dot} B = 0 to machine precision. The main restriction is that B must be discretized on a staggered mesh. We give a detailed description of an implementation of the code and demonstrate that it produces the expected results on linear and nonlinear problems. We also point out how the scheme might be generalized to make the integration of other supersonic/super-fast flows more efficient. Although our scheme reduces the variation of truncation error with position, it does not eliminate it. We show that the residual position dependence leads to characteristic radial variations in the density over long integrations.
Improving Low-Earth Orbit Predictions Using Two-line Element Data with Bias Correction
NASA Astrophysics Data System (ADS)
Bennett, J.; Sang, J.; Smith, C.; Zhang, K.
2012-09-01
In this paper we present results from our orbit prediction study using the publicly available Two-Line Element (TLE) sets. The method presented here is similar to that introduced by Levit and Marshall; however, we also consider the non-spherical low-Earth orbit satellites Grace A and Grace B. The method uses 10 days of TLE data which is interpolated using SGP4. A state vector is generated every 10 minutes in the orbit determination (OD) period. These generated states are subsequently used as observations in an orbit determination run considering a full set of forces to determine the orbit over the 10-day time span. All information used is from the TLE data sets. Once the orbit has been determined, it is then numerically propagated to obtain a prediction of the object's position. The TLE-determined orbit is compared to highly accurate satellite laser ranging (SLR) Consolidated Prediction Format (CPF) data to assess the accuracy. We tested the technique by performing 200 independent simulations for Stella, Starlette, Grace A and Grace B and found that it resulted in better orbit predictions 98.5%, 93.4%, 97.5% and 95.5% of the time, respectively, when compared to standard SGP4 propagation. For Stella and Starlette after a 7 day prediction period the average absolute maximum along track bias was reduced by approximately 64% and 74%, respectively. For Grace A and Grace B after a 7 day prediction period the average absolute maximum along track bias was reduced by approximately 68% and 64%, respectively. The TLE-determined orbit contains bias in the along, across and radial tracks with the along track error dominating. If these can be estimated we can obtain an improved orbit prediction. We used our TLE-determined orbit as an initial state and determined an orbit 3 days after the 10 day OD period from only two passes of SLR data from a single station (Mount Stromlo, Australia). We then estimated the bias in the along track direction by fitting a quadratic function to the
Orbital theory in terms of KS elements with luni-solar perturbations
NASA Astrophysics Data System (ADS)
Sellamuthu, Harishkumar; Sharma, Ram
2016-07-01
Precise orbit computation of Earth orbiting satellites is essential for efficient mission planning of planetary exploration, navigation and satellite geodesy. The third-body perturbations of the Sun and the Moon predominantly affect the satellite motion in the high altitude and elliptical orbits, where the effect of atmospheric drag is negligible. The physics of the luni-solar gravity effect on Earth satellites have been studied extensively over the years. The combined luni-solar gravitational attraction will induce a cumulative effect on the dynamics of satellite orbits, which mainly oscillates the perigee altitude. Though accurate orbital parameters are computed by numerical integration with respect to complex force models, analytical theories are highly valued for the manifold of solutions restricted to relatively simple force models. During close approach, the classical equations of motion in celestial mechanics are almost singular and they are unstable for long-term orbit propagation. A new singularity-free analytical theory in terms of KS (Kustaanheimo and Stiefel) regular elements with respect to luni-solar perturbation is developed. These equations are regular everywhere and eccentric anomaly is the independent variable. Plataforma Solar de Almería (PSA) algorithm and a Fourier series algorithm are used to compute the accurate positions of the Sun and the Moon, respectively. Numerical studies are carried out for wide range of initial parameters and the analytical solutions are found to be satisfactory when compared with numerically integrated values. The symmetrical nature of the equations allows only two of the nine equations to be solved for computing the state vectors and the time. Only a change in the initial conditions is required to solve the other equations. This theory will find multiple applications including on-board software packages and for mission analysis purposes.
Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements
NASA Astrophysics Data System (ADS)
Singh, Chandan; Saini, Jaswinder Singh
2016-07-01
In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.
Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements
NASA Astrophysics Data System (ADS)
Singh, Chandan; Saini, Jaswinder Singh
2016-05-01
In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.
Basis-set extensions for two-component spin-orbit treatments of heavy elements.
Armbruster, Markus K; Klopper, Wim; Weigend, Florian
2006-11-14
The accuracy of standard basis sets of quadruple-zeta and lower quality for the use in two-component self-consistent field procedures including spin-orbit coupling is investigated for the elements In-I and Au-At. Spin-orbit coupling leads to energetic and spatial splittings of inner shells, which are not described accurately with standard basis sets optimized for scalar relativistic calculations. This results in large errors in total atomic energies and significant errors in atomization energies of compounds containing these atoms. We show how these errors can be corrected by adding just a few steep sets of basis functions and demonstrate the quality of the resulting extended basis sets. PMID:17066175
Accurate 2d finite element calculations for hydrogen in magnetic fields of arbitrary strength
NASA Astrophysics Data System (ADS)
Schimeczek, C.; Wunner, G.
2014-02-01
Recent observations of hundreds of hydrogen-rich magnetic white dwarf stars with magnetic fields up to 105 T (103 MG) have called for more comprehensive and accurate databases for wavelengths and oscillator strengths of the H atom in strong magnetic fields for all states evolving from the field-free levels with principal quantum numbers n≤10. We present a code to calculate the energy eigenvalues and wave functions of such states which is capable of covering the entire regime of field strengths B=0 T to B˜109 T. We achieve this high flexibility by using a two-dimensional finite element expansion of the wave functions in terms of B-splines in the directions parallel and perpendicular to the magnetic field, instead of using asymptotically valid basis expansions in terms of spherical harmonics or Landau orbitals. We have paid special attention to the automation of the program such that the data points for the magnetic field strengths at which the energy of a given state are calculated can be selected automatically. Furthermore, an elaborate method for varying the basis parameters is applied to ensure that the results reach a pre-selected precision, which also can be adjusted freely. Energies and wave functions are stored in a convenient format for further analysis, e.g. for the calculation of transition energies and oscillator strengths. The code has been tested to work for 300 states with an accuracy of better than 10-6 Rydberg across several symmetry subspaces over the entire regime of magnetic field strengths.
The CHARA Catalog of Orbital Elements of Spectroscopic Binary Stars
NASA Astrophysics Data System (ADS)
Taylor, S. F.; McAlister, H. A.; Harvin, J. A.
2003-12-01
Optical interferometry is entering a new age with several ground-based longbaseline observatories now making observations of unprecedented resolution. Interferometers bring a new level of resolution to bear on spectroscopic binaries, enabling the full extraction of the physical parameters for the component stars with high accuracy. In the case of double-lined systems, a geometrically determined orbital parallax becomes available as well. The first step in preparing to observe spectroscopic binaries is to list them, which has not been done since the 1989 publication of the Eighth Catalogue of the Orbital Elements of Spectroscopic Binaries by Batten, et al. (1989). We present a new catalog with roughly half again as many listings as the Eighth Catalog. Angular separation predictions are made for each catalog entry. The numbers of spectroscopic binaries available for study as a function of several important observational parameters are explored, and in particular, the number of spectroscopic binaries as a function of expected separation is discussed. CHARA gratefully acknowledges the support of the National Science Foundation, the offices of the Dean of the College of Arts and Sciences, the Vice President for Research at Georgia State University, the W.M. Keck Foundation, and the David and Lucile Packard Foundation.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
Alpha Virginis: line-profile variations and orbital elements
NASA Astrophysics Data System (ADS)
Harrington, David; Koenigsberger, Gloria; Olguín, Enrique; Ilyin, Ilya; Berdyugina, Svetlana V.; Lara, Bruno; Moreno, Edmundo
2016-05-01
Context. Alpha Virginis (Spica) is a B-type binary system whose proximity and brightness allow detailed investigations of the internal structure and evolution of stars undergoing time-variable tidal interactions. Previous studies have led to the conclusion that the internal structure of Spica's primary star may be more centrally condensed than predicted by theoretical models of single stars, raising the possibility that the interactions could lead to effects that are currently neglected in structure and evolution calculations. The key parameters in confirming this result are the values of the orbital eccentricity e, the apsidal period U, and the primary star's radius, R1. Aims: The aim of this paper is to analyze the impact that Spica's line profile variability has on the derivation of its orbital elements and to explore the use of the variability for constraining R1. Methods: We use high signal-to-noise and high spectral resolution observations obtained in 2000, 2008, and 2013 to derive the orbital elements from fits to the radial velocity curves. We produce synthetic line profiles using an ab initio tidal interaction model. Results: The general variations in the line profiles can be understood in terms of the tidal flows, whose large-scale structure is relatively fixed in the rotating binary system reference frame. Fits to the radial velocity curves yield e = 0.108 ± 0.014. However, the analogous RV curves from theoretical line profiles indicate that the distortion in the lines causes the fitted value of e to depend on the argument of periastron; i.e., on the epoch of observation. As a result, the actual value of e may be as high as 0.125. We find that U = 117.9 ± 1.8, which is in agreement with previous determinations. Using the value R1 = 6.8 R⊙ derived by Palate et al. (2013) the value of the observational internal structure constant k2,obs is consistent with theory. We confirm the presence of variability in the line profiles of the secondary star. RV
Synthesis of Survey Questions That Accurately Discriminate the Elements of the TPACK Framework
ERIC Educational Resources Information Center
Jaikaran-Doe, Seeta; Doe, Peter Edward
2015-01-01
A number of validated survey instruments for assessing technological pedagogical content knowledge (TPACK) do not accurately discriminate between the seven elements of the TPACK framework particularly technological content knowledge (TCK) and technological pedagogical knowledge (TPK). By posing simple questions that assess technological,…
An accurate quadrature technique for the contact boundary in 3D finite element computations
NASA Astrophysics Data System (ADS)
Duong, Thang X.; Sauer, Roger A.
2015-01-01
This paper presents a new numerical integration technique for 3D contact finite element implementations, focusing on a remedy for the inaccurate integration due to discontinuities at the boundary of contact surfaces. The method is based on the adaptive refinement of the integration domain along the boundary of the contact surface, and is accordingly denoted RBQ for refined boundary quadrature. It can be used for common element types of any order, e.g. Lagrange, NURBS, or T-Spline elements. In terms of both computational speed and accuracy, RBQ exhibits great advantages over a naive increase of the number of quadrature points. Also, the RBQ method is shown to remain accurate for large deformations. Furthermore, since the sharp boundary of the contact surface is determined, it can be used for various purposes like the accurate post-processing of the contact pressure. Several examples are presented to illustrate the new technique.
NASA Astrophysics Data System (ADS)
Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph
Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.
Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary
NASA Technical Reports Server (NTRS)
Campbell, G. G.; Vonderhaar, T. H.
1978-01-01
The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.
NASA Astrophysics Data System (ADS)
Yang, Bin; Xu, Canhua; Dai, Meng; Fu, Feng; Dong, Xiuzhen
2013-07-01
For electrical impedance tomography (EIT) of brain, the use of anatomically accurate and patient-specific finite element (FE) mesh has been shown to confer significant improvements in the quality of image reconstruction. But, given the lack of a rapid method to achieve the accurate anatomic geometry of the head, the generation of patient-specifc mesh is time-comsuming. In this paper, a modified fuzzy c-means algorithm based on non-local means method is performed to implement the segmentation of different layers in the head based on head CT images. This algorithm showed a better effect, especially an accurate recognition of the ventricles and a suitable performance dealing with noise. And the FE mesh established according to the segmentation results is validated in computational simulation. So a rapid practicable method can be provided for the generation of patient-specific FE mesh of the human head that is suitable for brain EIT.
Analytical orbit predictions with air drag using K-S uniformly regular canonical elements
NASA Astrophysics Data System (ADS)
Xavier James Raj, M.; Sharma, R. K.
Accurate orbit prediction of the Earth's satellites is an important requirement for mission planning, satellite geodesy, spacecraft navigation, re-entry and orbital lifetime estimates. For this purpose, it has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. The problem becomes all the more complicated in the near-Earth environment due to the fact that the satellite is influenced by the non-spherical effects of the Earth's gravitational field as well as the dissipative effects of the Earth's atmosphere. The effects of the atmosphere are difficult to determine since the atmospheric density, and hence the drag, undergoes large modelled fluctuations. Though the accurate ephemeris of a near-Earth satellite can be generated by the numerical integration methods with respect to a complex force model, the analytical solutions, though difficult to obtain for complex force models and limited to relatively simple models, represent a manifold of solutions for a large domain of initial conditions and find indispensable application to mission planning and qualitative analysis. The method of the K-S total-energy element equations (Stiefel & Scheifele, 1971) is a powerful method for numerical solution with respect to any type of perturbing forces, as the equations are less sensitive to round-off and truncation errors in the numerical algorithm. The equations are everywhere regular in contrast with the classical Newtonian equations, which are singular at the collision of the two bodies. The equations are smoothed for eccentric orbits because eccentric anomaly is the independent variable. These equations have been used effectively to generate analytical solution with respect to Earth's zonal harmonic term J2 (Sharma 1997) and air drag perturbations (Sharma 1992). A particular canonical form of the K-S differential equations, known as K-S uniform regular canonical equations, where all the ten
Magnetoresistance in the Spin-Orbit Kondo State of Elemental Bismuth
Craco, Luis; Leoni, Stefano
2015-01-01
Materials with strong spin-orbit coupling, which competes with other particle-particle interactions and external perturbations, offer a promising route to explore novel phases of quantum matter. Using LDA + DMFT we reveal the complex interplay between local, multi-orbital Coulomb and spin-orbit interaction in elemental bismuth. Our theory quantifies the role played by collective dynamical fluctuations in the spin-orbit Kondo state. The correlated electronic structure we derive is promising in the sense that it leads to results that might explain why moderate magnetic fields can generate Dirac valleys and directional-selective magnetoresistance responses within spin-orbit Kondo metals. PMID:26358556
NASA Astrophysics Data System (ADS)
Liu, Bin; Tang, Jingshi; Hou, Xiyun; Liu, Lin
2016-07-01
The eccentricity and the inclination of the satellite in geosynchronous orbit are both small, under this condition, perturbations from the Earth's non-spherical gravitational field result in orbit resonances due to incommensurable small denominators, that is, the problem of small eccentricity, small inclination and commensurability small incommensurable denominator exist simultaneously. Usually we adopt the classic Kepler orbital elements to describe an orbit, However, in the case of small eccentricities and small inclinations, the geometric meaning of the perigee and ascending node of an GEO is no longer clear, and the equations of motion have small denominators which results in the failure of the usual mean orbit element perturbation solution. This phenomenon of singularity is caused by the inappropriate choice of independent variables and has nothing to do with the dynamics. Such singularities can be avoided by choosing the appropriate independent variables (called non-singularity orbital elements). Incommensurable singularity appears in the process of solving the perturbation equations by the mean element methodology. The quasi-average element methodology retains the main advantages of the mean element method and reasonably revises its definition. Quasi-average orbits, without short periodic terms, while including the long-term items are taken as the reference orbit. The reference orbit in this transformation has long-term variations which are similar to the long periodic terms within a short-time duration. So we can avoid the failure of the perturbation solution caused by the periodic terms when using the classical perturbation method or the mean element method. From the perspective of mechanics, it can eliminate the incommensurable singularity, and the perturbation solution will remain valid. This paper aims at introducing the calculation method to eliminate the singularity problem of e=0,i=0 and commensurability singularity by using the quasi-average element
NASA Astrophysics Data System (ADS)
Jo, Jung Hyun; Park, In Kwan; Choe, Nammi; Choi, Mansoo
2011-03-01
Two semi-analytic solutions for a perturbed two-body problem known as Lagrange planetary equations (LPE) were compared to a numerical integration of the equation of motion with same perturbation force. To avoid the critical conditions inherited from the configuration of LPE, non-singular orbital elements (EOE) had been introduced. In this study, two types of orbital elements, classical Keplerian orbital elements (COE) and EOE were used for the solution of the LPE. The effectiveness of EOE and the discrepancy between EOE and COE were investigated by using several near critical conditions. The near one revolution, one day, and seven days evolutions of each orbital element described in LPE with COE and EOE were analyzed by comparing it with the directly converted orbital elements from the numerically integrated state vector in Cartesian coordinate. As a result, LPE with EOE has an advantage in long term calculation over LPE with COE in case of relatively small eccentricity.
Laser Ranging for Effective and Accurate Tracking of Space Debris in Low Earth Orbits
NASA Astrophysics Data System (ADS)
Blanchet, Guillaume; Haag, Herve; Hennegrave, Laurent; Assemat, Francois; Vial, Sophie; Samain, Etienne
2013-08-01
The paper presents the results of preliminary design options for an operational laser ranging system adapted to the measurement of the distance of space debris. Thorough analysis of the operational parameters is provided with identification of performance drivers and assessment of enabling design options. Results from performance simulation demonstrate how the range measurement enables improvement of the orbit determination when combined with astrometry. Besides, experimental results on rocket-stage class debris in LEO were obtained by Astrium beginning of 2012, in collaboration with the Observatoire de la Côte d'Azur (OCA), by operating an experimental laser ranging system supported by the MéO (Métrologie Optique) telescope.
Leng, Wei; Ju, Lili; Gunzburger, Max; Price, Stephen; Ringler, Todd
2012-01-01
The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.
Periodic gravitational perturbations for conversion between osculating and mean orbit elements
NASA Technical Reports Server (NTRS)
Guinn, Joseph R.
1991-01-01
Algorithms for converting between osculating and mean orbit elements are currently limited to computing the contribution due to the second zonal harmonic (J2). This paper presents an improved conversion algorithm that includes the effects of all zonal, sectorial and tesseral harmonics, second order J2, and third-body gravitational perturbations. Mean elements are useful for preliminary orbit and maneuver design; however, for more precise work, such as groundtrack targeting, osculating elements are required. This improved conversion algorithm was developed to meet accuracy requirements for the TOPEX/Poseidon mission; but, additional use can be considered for satellites orbiting planets like Venus that do not have a dominant J2. Results are presented from tests performed using the new algorithm with the planned TOPEX/Poseidon earth orbit as well as the Mars Observer and proposed circular Magellan (Venus) orbits.
Distance-based relative orbital elements determination for formation flying system
NASA Astrophysics Data System (ADS)
He, Yanchao; Xu, Ming; Chen, Xi
2016-01-01
The present paper deals with determination of relative orbital elements based only on distance between satellites in the formation flying system, which has potential application in engineering, especially suited for rapid orbit determination required missions. A geometric simplification is performed to reduce the formation configuration in three-dimensional space to a plane. Then the equivalent actual configuration deviating from its nominal design is introduced to derive a group of autonomous linear equations on the mapping between the relative orbital elements differences and distance errors. The primary linear equations-based algorithm is initially proposed to conduct the rapid and precise determination of the relative orbital elements without the complex computation, which is further improved by least-squares method with more distance measurements taken into consideration. Numerical simulations and comparisons with traditional approaches are presented to validate the effectiveness of the proposed methods. To assess the performance of the two proposed algorithms, accuracy validation and Monte Carlo simulations are implemented in the presence of noises of distance measurements and the leader's absolute orbital elements. It is demonstrated that the relative orbital elements determination accuracy of two approaches reaches more than 90% and even close to the actual values for the least-squares improved one. The proposed approaches can be alternates for relative orbit determination without assistance of additional facilities in engineering for their fairly high efficiency with accuracy and autonomy.
Accurate Transposable Element Annotation Is Vital When Analyzing New Genome Assemblies
Platt, Roy N.; Blanco-Berdugo, Laura; Ray, David A.
2016-01-01
Transposable elements (TEs) are mobile genetic elements with the ability to replicate themselves throughout the host genome. In some taxa TEs reach copy numbers in hundreds of thousands and can occupy more than half of the genome. The increasing number of reference genomes from nonmodel species has begun to outpace efforts to identify and annotate TE content and methods that are used vary significantly between projects. Here, we demonstrate variation that arises in TE annotations when less than optimal methods are used. We found that across a variety of taxa, the ability to accurately identify TEs based solely on homology decreased as the phylogenetic distance between the queried genome and a reference increased. Next we annotated repeats using homology alone, as is often the case in new genome analyses, and a combination of homology and de novo methods as well as an additional manual curation step. Reannotation using these methods identified a substantial number of new TE subfamilies in previously characterized genomes, recognized a higher proportion of the genome as repetitive, and decreased the average genetic distance within TE families, implying recent TE accumulation. Finally, these finding—increased recognition of younger TEs—were confirmed via an analysis of the postman butterfly (Heliconius melpomene). These observations imply that complete TE annotation relies on a combination of homology and de novo–based repeat identification, manual curation, and classification and that relying on simple, homology-based methods is insufficient to accurately describe the TE landscape of a newly sequenced genome. PMID:26802115
NASA Astrophysics Data System (ADS)
Shavezipur, M.; Li, G. H.; Laboriante, I.; Gou, W. J.; Carraro, C.; Maboudian, R.
2011-11-01
This paper reports on accurate analysis of adhesion force between polysilicon-polysilicon surfaces in micro-/nanoelectromechanical systems (M/NEMS). The measurement is carried out using double-clamped beams. Electrostatic actuation and structural restoring force are exploited to respectively initiate and terminate the contact between the two surfaces under investigation. The adhesion force is obtained by balancing the electrostatic and mechanical forces acting on the beam just before the separation of the two surfaces. Different finite element models are developed to simulate the coupled-field multiphysics problem. The effects of fringing field in the electrostatic domain and geometric nonlinearity and residual stress in the structural domain are taken into consideration. Moreover, the beam stiffness is directly obtained for the case of combined loading (electrostatic and adhesion). Therefore, the overall electrostatic and structural forces used to extract the actual adhesion force from measured data are determined with high accuracy leading to accurate values for the adhesion force. The finite element simulations presented in this paper are not limited to adhesion force measurement and can be used to design or characterize electrostatically actuated devices such as MEM tunable capacitors and micromirrors, RF switches and M/NEM relays.
NASA Technical Reports Server (NTRS)
Kolomiyets, S. V.
2011-01-01
Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.
Non-singular orbital elements for special perturbations in the two-body problem
NASA Astrophysics Data System (ADS)
Baù, Giulio; Bombardelli, Claudio; Peláez, Jesús; Lorenzini, Enrico
2015-12-01
Seven spatial elements and a time element are proposed as the state variables of a new special perturbation method for the two-body problem. The new elements hold for zero eccentricity and inclination and for negative values of the total energy. They are developed by combining a spatial transformation into projective coordinates (as in the Burdet-Ferrándiz regularization) with a time transformation in which the exponent of the orbital radius is equal to one instead of two (as commonly done in the literature). By following this approach, we discover a new linearization of the two-body problem, from which the orbital elements can be generated by the variation of parameters method. The geometrical significance of the spatial quantities is revealed by a new intermediate frame which differs from a local vertical local horizontal frame by one rotation in the instantaneous orbital plane. Four elements parametrize the attitude in space of this frame, which in turn defines the orientation of the orbital plane and fixes the departure direction for the longitude of the propagated body. The remaining three elements determine the motion along the radial unit vector and the orbital longitude. The performance of the method, tested using a series of benchmark orbit propagation scenarios, is extremely good when compared to several regularized formulations, some of which have been modified and improved here for the first time.
2012-01-01
A natural bond orbital (NBO) analysis of unpaired electron spin density in metalloproteins is presented, which allows a fast and robust calculation of paramagnetic NMR parameters. Approximately 90% of the unpaired electron spin density occupies metal–ligand NBOs, allowing the majority of the density to be modeled by only a few NBOs that reflect the chemical bonding environment. We show that the paramagnetic relaxation rate of protons can be calculated accurately using only the metal–ligand NBOs and that these rates are in good agreement with corresponding rates measured experimentally. This holds, in particular, for protons of ligand residues where the point-dipole approximation breaks down. To describe the paramagnetic relaxation of heavy nuclei, also the electron spin density in the local orbitals must be taken into account. Geometric distance restraints for 15N can be derived from the paramagnetic relaxation enhancement and the Fermi contact shift when local NBOs are included in the analysis. Thus, the NBO approach allows us to include experimental paramagnetic NMR parameters of 15N nuclei as restraints in a structure optimization protocol. We performed a molecular dynamics simulation and structure determination of oxidized rubredoxin using the experimentally obtained paramagnetic NMR parameters of 15N. The corresponding structures obtained are in good agreement with the crystal structure of rubredoxin. Thus, the NBO approach allows an accurate description of the geometric structure and the dynamics of metalloproteins, when NMR parameters are available of nuclei in the immediate vicinity of the metal-site. PMID:22329704
Minesaki, Yukitaka
2013-08-01
For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators.
Zhao, A P; Cvetkovic, S R
1994-08-20
An efficient, accurate, and automated vectorial finite-element software package (named WAVEGIDE), which is implemented within a PDE/Protran problem-solving environment, has been extended to general multilayer anisotropic waveguides. With our system, through an interactive question-and-answer session, the problem can be simply defined with high-level PDE/Protran commands. The problem can then be solved easily and quickly by the main processor within this intelligent environment. In particular, in our system the eigenvalue of waveguide problems may be either a propagation constant (β) or an operated light frequency (F). Furthermore, the cutoff frequencies of propagation modes in waveguides can be calculated. As an application of this approach, numerical results for both scalar and hybrid modes in multilayer anisotropic waveguides are presented and are also compared with results obtained with the domain-integral method. These results clearly illustrate the unique flexibility, accuracy, and the ease of use f the WAVEGIDE program. PMID:20935964
Canonical orbital elements in terms of an arbitrary independent variable
NASA Technical Reports Server (NTRS)
Bond, V. R.; Janin, G.
1981-01-01
Within the framework of the Hamiltonian mechanics in the extended phase space, a set of canonical elements of the Delaunay type is developed in terms of an arbitary independent angular variable. Application to the four classical anomalies - eccentric, true, elliptic, and mean - is presented. Particular attention is given to the generalized time equation and its conjugate energy equation.
A high order accurate finite element algorithm for high Reynolds number flow prediction
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.
Joldes, Grand Roman; Wittek, Adam; Miller, Karol
2008-01-01
Real time computation of soft tissue deformation is important for the use of augmented reality devices and for providing haptic feedback during operation or surgeon training. This requires algorithms that are fast, accurate and can handle material nonlinearities and large deformations. A set of such algorithms is presented in this paper, starting with the finite element formulation and the integration scheme used and addressing common problems such as hourglass control and locking. The computation examples presented prove that by using these algorithms, real time computations become possible without sacrificing the accuracy of the results. For a brain model having more than 7000 degrees of freedom, we computed the reaction forces due to indentation with frequency of around 1000 Hz using a standard dual core PC. Similarly, we conducted simulation of brain shift using a model with more than 50 000 degrees of freedom in less than a minute. The speed benefits of our models results from combining the Total Lagrangian formulation with explicit time integration and low order finite elements. PMID:19152791
Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH+ system
NASA Astrophysics Data System (ADS)
Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing
2016-03-01
A high-level ab initio calculation on the ZnH+ cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI + Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn+(2Sg) + H(2Sg), Zn(1Sg) + H+(1Sg), and Zn+(2Pu) + H(2Sg), respectively (The Λ-S state is labeled as 2S + 1Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH+ cation split into 12 Ω states (Ω = Λ + Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0+ state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0+-X0+, (3)0+-X0+, (2)1-X0+ and (3)1-X0+ have been reported.
Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH(+) system.
Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing
2016-03-01
A high-level ab initio calculation on the ZnH(+) cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI+Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn(+)((2)Sg)+H((2)Sg), Zn((1)Sg)+H(+)((1)Sg), and Zn(+)((2)Pu)+H((2)Sg), respectively (The Λ-S state is labeled as (2S+1)Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH(+) cation split into 12 Ω states (Ω=Λ+Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0(+) state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0(+)-X0(+), (3)0(+)-X0(+), (2)1-X0(+) and (3)1-X0(+) have been reported. PMID:26637984
Element orbitals for Kohn-Sham density functional theory
Lin, Lin; Ying, Lexing
2012-05-08
We present a method to discretize the Kohn-Sham Hamiltonian matrix in the pseudopotential framework by a small set of basis functions automatically contracted from a uniform basis set such as planewaves. Each basis function is localized around an element, which is a small part of the global domain containing multiple atoms. We demonstrate that the resulting basis set achieves meV accuracy for 3D densely packed systems with a small number of basis functions per atom. The procedure is applicable to insulating and metallic systems.
NASA Astrophysics Data System (ADS)
Albin, T.; Koschny, D.; Soja, R.; Srama, R.; Poppe, B.
2016-01-01
The Canary Islands Long-Baseline Observatory (CILBO) is a double station meteor camera system (Koschny et al., 2013; Koschny et al., 2014) that consists of 5 cameras. The two cameras considered in this report are ICC7 and ICC9, and are installed on Tenerife and La Palma. They point to the same atmospheric volume between both islands allowing stereoscopic observation of meteors. Since its installation in 2011 and the start of operation in 2012 CILBO has detected over 15000 simultaneously observed meteors. Koschny and Diaz (2002) developed the Meteor Orbit and Trajectory Software (MOTS) to compute the trajectory of such meteors. The software uses the astrometric data from the detection software MetRec (Molau, 1998) and determines the trajectory in geodetic coordinates. This work presents a Monte-Carlo based extension of the MOTS code to compute the orbital elements of simultaneously detected meteors by CILBO.
Non-Periodic Finite-Element Formulation of Orbital-Free Density Functional Theory
Gavini, V; Knap, J; Bhattacharya, K; Ortiz, M
2006-10-06
We propose an approach to perform orbital-free density functional theory calculations in a non-periodic setting using the finite-element method. We consider this a step towards constructing a seamless multi-scale approach for studying defects like vacancies, dislocations and cracks that require quantum mechanical resolution at the core and are sensitive to long range continuum stresses. In this paper, we describe a local real space variational formulation for orbital-free density functional theory, including the electrostatic terms and prove existence results. We prove the convergence of the finite-element approximation including numerical quadratures for our variational formulation. Finally, we demonstrate our method using examples.
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC
2009-06-19
Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.
Orbital elements and absolute dimensions of the eclipsing system LY Aurigae
NASA Technical Reports Server (NTRS)
Mccluskey, G. E., Jr.; Kondo, Y.
1974-01-01
Orbital solutions were obtained for the early-type eclipsing binary LY Aurigae from the light curves obtained with the OAO-2 by Heap and from the V light curve obtained from ground-based observations by Mayer and Horak. The solutions take into account the existence of a nearby companion not accounted for by previous investigators. The spectroscopic observations by Mayer and Batten were used to compute absolute dimensions for the binary orbit and for each component. This binary system presents an unique opportunity to determine accurately the absolute dimensions of an O9.5 III star.
NASA Astrophysics Data System (ADS)
Kamel, Osman M.; Ammar, M. K.
2006-12-01
Firstly we derive Gauss' perturbation equation for parabolic motion using Murray-Dermott and Kovalevsky procedures. Secondly, we easily deduce the variations of the orbital elements for the parabolic trajectories due to a small impulse at any point along the path and at the vertex of the parabola.
Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method
NASA Technical Reports Server (NTRS)
Smith, James P.
1996-01-01
A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.
NASA Astrophysics Data System (ADS)
Raj, Xavier James
2016-07-01
Accurate orbit prediction of an artificial satellite under the influence of air drag is one of the most difficult and untraceable problem in orbital dynamics. The orbital decay of these satellites is mainly controlled by the atmospheric drag effects. The effects of the atmosphere are difficult to determine, since the atmospheric density undergoes large fluctuations. The classical Newtonian equations of motion, which is non linear is not suitable for long-term integration. Many transformations have emerged in the literature to stabilize the equations of motion either to reduce the accumulation of local numerical errors or allowing the use of large integration step sizes, or both in the transformed space. One such transformation is known as KS transformation by Kustaanheimo and Stiefel, who regularized the nonlinear Kepler equations of motion and reduced it into linear differential equations of a harmonic oscillator of constant frequency. The method of KS total energy element equations has been found to be a very powerful method for obtaining numerical as well as analytical solution with respect to any type of perturbing forces, as the equations are less sensitive to round off and truncation errors. The uniformly regular KS canonical equations are a particular canonical form of the KS differential equations, where all the ten KS Canonical elements αi and βi are constant for unperturbed motion. These equations permit the uniform formulation of the basic laws of elliptic, parabolic and hyperbolic motion. Using these equations, developed analytical solution for short term orbit predictions with respect to Earth's zonal harmonic terms J2, J3, J4. Further, these equations were utilized to include the canonical forces and analytical theories with air drag were developed for low eccentricity orbits (e < 0.2) with different atmospheric models. Using uniformly regular KS canonical elements developed analytical theory for high eccentricity (e > 0.2) orbits by assuming the
NASA Technical Reports Server (NTRS)
Davis, D. D., Jr.; Krishnamurthy, T.; Stroud, W. J.; Mccleary, S. L.
1991-01-01
State-of-the-art nonlinear finite element analysis techniques are evaluated by applying them to a realistic aircraft structural component. A wing panel from the V-22 tiltrotor aircraft is chosen because it is a typical modern aircraft structural component for which there is experimental data for comparison of results. From blueprints and drawings, a very detailed finite element model containing 2284 9-node Assumed Natural-Coordinate Strain elements was generated. A novel solution strategy which accounts for geometric nonlinearity through the use of corotating element reference frames and nonlinear strain-displacement relations is used to analyze this detailed model. Results from linear analyses using the same finite element model are presented in order to illustrate the advantages and costs of the nonlinear analysis as compared with the more traditional linear analysis.
NASA Astrophysics Data System (ADS)
Guseinov, I. I.; Mamedov, B. A.
2011-04-01
In this study, a new method is proposed for evaluating electric multipole transition (radial) matrix elements of the generalized type Hnl,n'l'k in hydrogenic atom and ions using the Slater type orbitals (STOs). The formula obtained allows the determination of all multipole transition matrix elements between two different nonrelativistic radial wave functions Rnl and R. A comparative study carried out between the results of analytical computations and other numerical simulations shows that the methods agree well and emphasizing thus the effectiveness and accuracy of the proposed analytical expressions. The simple equation thus obtained has been found to be remarkable accurate and has shown a wide range of applicability.
Antenna Pointing to the Geo Satellite Using Converted NORAD TLE from Osculating Orbital Elements
NASA Astrophysics Data System (ADS)
Lee, Byoung-Sun; Kim, Hae-Yeon; Hwang, Yoola; Kim, Jaehoon
2007-06-01
Antenna pointing analysis for a geostationary satellite has been performed for using the NORAD Two-Line-Elements (TLE) converted from osculating Keplerian orbital elements. In order to check the possibility of the reception of the satellite signal, the antenna offset angles have been derived for the Communications, Ocean, and Meteorological Satellite (COMS) which carries out weekly East-West and North-South station-keeping maneuvers and twice a day thruster assisted momentum dumping. Throughout the analysis, it is shown that the use of converted NORAD TLE simplifies the antenna pointing related interfaces in satellite mission control system. For a highly eccentric transfer orbit cases, further analysis presents that the converted NORAD TLE from near apogee gives more favorable results.
Finite-element reentry heat-transfer analysis of space shuttle Orbiter
NASA Technical Reports Server (NTRS)
Ko, William L.; Quinn, Robert D.; Gong, Leslie
1986-01-01
A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.
Analytical determination of orbital elements using Fourier analysis. I. The radial velocity case
NASA Astrophysics Data System (ADS)
Delisle, J.-B.; Ségransan, D.; Buchschacher, N.; Alesina, F.
2016-05-01
We describe an analytical method for computing the orbital parameters of a planet from the periodogram of a radial velocity signal. The method is very efficient and provides a good approximation of the orbital parameters. The accuracy is mainly limited by the accuracy of the computation of the Fourier decomposition of the signal which is sensitive to sampling and noise. Our method is complementary with more accurate (and more expensive in computer time) numerical algorithms (e.g. Levenberg-Marquardt, Markov chain Monte Carlo, genetic algorithms). Indeed, the analytical approximation can be used as an initial condition to accelerate the convergence of these numerical methods. Our method can be applied iteratively to search for multiple planets in the same system.
ORBITAL SOLUTIONS AND ABSOLUTE ELEMENTS OF THE ECLIPSING BINARY EE AQUARII
Wronka, Marissa Diehl; Gold, Caitlin; Sowell, James R.; Williamon, Richard M. E-mail: rwilliamon@physics.emory.edu
2010-04-15
EE Aqr is a 7.9 mag Algol variable with a 12 hr orbital period. The Wilson-Devinney program is used to simultaneously solve 11 previously published light curves together with two existing radial velocity curves. The resulting masses are M {sub 1} = 2.24 {+-} 0.13 M {sub sun} and M {sub 2} = 0.72 {+-} 0.04 M {sub sun}, and the radii are R {sub 1} = 1.76 {+-} 0.03 R {sub sun} and R {sub 2} = 1.10 {+-} 0.02 R {sub sun}. The system has the lower-mass component completely filling its Roche lobe. Its distance from Hipparcos observations is 112 {+-} 10 pc. An improved ephemeris is derived, and no deviations in the period over time were seen. Light and velocity curve parameters, orbital elements, and absolute dimensions are presented, plus a comparison is made with previous solutions.
NASA Astrophysics Data System (ADS)
Rosengren, Aaron; Scheeres, D. J.
2013-05-01
Abstract (2,250 Maximum Characters): In his monumental work on the astronomical theory of paleoclimates, Milutin Milankovitch (1879-1958) reformulated the classical method of perturbation of elements using the two vectorial integrals of the unperturbed two-body problem--the angular momentum (areal) vector and the Laplace vector. The vectorial integrals describe the spatial orientation, geometrical shape, and size of the osculating Keplerian orbit, and, together with the sixth scalar integral that represents the motion in time, constitutes a complete set of orbital elements. These elements are particularly useful in finding the first-order long-period and secular variations by averaging over the fast variables of the system. The application of the Milankovitch elements to the determination of oblateness and tidal effects leads to the equations for perturbed elements in which the small numerical divisors, the eccentricity and the sine of the inclination, are not present (Musen, P., J. Geophys. Res., 66, 1961; Allan, R.R., and Cook, G.E., Proc. R. Soc. A, 280, 1964). Tremaine et al. (AJ, 137, 2009) used the Milankovitch elements to study the classical Laplace plane, a region of space where the secular evolution of orbits driven by the combined effects of these forces is zero, so that the orbits are ``frozen.'' This talk will reintroduce the Milankovitch elements, present a completely nonsingular form of them, and show their application to the long-term orbit evolution of irregular satellites, binary asteroids, and other planetary systems. We will also show how the Laplace plane equilibrium can be generalized to accommodate non-gravitational forces, such as solar radiation perturbations.
Approximation of orbital elements of telluric planets by compact analytical series
NASA Astrophysics Data System (ADS)
Kudryavtsev, S.
2014-12-01
We take the long-term numerical ephemeris of the major planets DE424 (Folkner 2011) and approximate the orbital elements of the telluric planets from that ephemeris by trigonometric series. Amplitudes of the series' terms are the second- or third-degree polynomials of time, and arguments are the fourth-degree time polynomials. The resulting series are precise and compact; in particular the maximum deviation of the planetary mean longitude calculated by the analytical series from that given by DE-424 over [-3000; 3000].
Effects of physical librations of the moon on the orbital elements of a lunar satellite.
NASA Technical Reports Server (NTRS)
Ferrari, A. J.; Heffron, W. G.
1973-01-01
Physical librations of the moon are small cyclic perturbations with periods of one month and longer, and amplitudes of 100 arc seconds or less. This paper gives data on the magnitude of the physical librations, the geometrical effects on the orbital elements, and the equivalent changes in the coefficients in the gravitational potential. It is shown that geometrical effects can be accommodated either by using an inertial axes system or by compensating for the lunar librations and precession when the selenographic axes are used. Further, it is shown that physical effects are small and negligible for all but the most exacting endeavors.
Finite Element Modeling of Orbital Friction Welding of Eutectoid Steel Bars
NASA Astrophysics Data System (ADS)
Maalekian, M.; Kozeschnik, E.; Brantner, H. P.; Cerjak, H.
2008-04-01
The orbital friction welding of eutectoid steel bars is investigated using experimental and numerical analyses. By a three-dimensional (3-D) coupled thermomechanical finite element (FE) model, the temperature profile, axial shortening, and flash formation at the joint interface are analyzed. With a thermal phase transformation FE model, the volume fractions of the final microstructure constituents and the size of the heat-affected zone (HAZ) are also predicted. For use in the models, the frictional heat generation is estimated by inverse heat-transfer analysis. The predicted HAZ width, upset, thermal history, and final microstructure are verified successfully on the experimental measurements.
Panagiotopoulou, O; Wilshin, S D; Rayfield, E J; Shefelbine, S J; Hutchinson, J R
2012-02-01
Finite element modelling is well entrenched in comparative vertebrate biomechanics as a tool to assess the mechanical design of skeletal structures and to better comprehend the complex interaction of their form-function relationships. But what makes a reliable subject-specific finite element model? To approach this question, we here present a set of convergence and sensitivity analyses and a validation study as an example, for finite element analysis (FEA) in general, of ways to ensure a reliable model. We detail how choices of element size, type and material properties in FEA influence the results of simulations. We also present an empirical model for estimating heterogeneous material properties throughout an elephant femur (but of broad applicability to FEA). We then use an ex vivo experimental validation test of a cadaveric femur to check our FEA results and find that the heterogeneous model matches the experimental results extremely well, and far better than the homogeneous model. We emphasize how considering heterogeneous material properties in FEA may be critical, so this should become standard practice in comparative FEA studies along with convergence analyses, consideration of element size, type and experimental validation. These steps may be required to obtain accurate models and derive reliable conclusions from them. PMID:21752810
NASA Astrophysics Data System (ADS)
Rein, Hanno; Spiegel, David S.
2015-01-01
We present IAS15, a 15th-order integrator to simulate gravitational dynamics. The integrator is based on a Gauß-Radau quadrature and can handle conservative as well as non-conservative forces. We develop a step-size control that can automatically choose an optimal timestep. The algorithm can handle close encounters and high-eccentricity orbits. The systematic errors are kept well below machine precision, and long-term orbit integrations over 109 orbits show that IAS15 is optimal in the sense that it follows Brouwer's law, i.e. the energy error behaves like a random walk. Our tests show that IAS15 is superior to a mixed-variable symplectic integrator and other popular integrators, including high-order ones, in both speed and accuracy. In fact, IAS15 preserves the symplecticity of Hamiltonian systems better than the commonly used nominally symplectic integrators to which we compared it. We provide an open-source implementation of IAS15. The package comes with several easy-to-extend examples involving resonant planetary systems, Kozai-Lidov cycles, close encounters, radiation pressure, quadrupole moment and generic damping functions that can, among other things, be used to simulate planet-disc interactions. Other non-conservative forces can be added easily.
Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue; Shulin, Zhang
2014-04-24
The potential energy curves (PECs) of 54 spin-orbit states generated from the 22 electronic states of O2 molecule are investigated for the first time for internuclear separations from about 0.1 to 1.0nm. Of the 22 electronic states, the X(3)Σg(-), A(')(3)Δu, A(3)Σu(+), B(3)Σu(-), C(3)Πg, a(1)Δg, b(1)Σg(+), c(1)Σu(-), d(1)Πg, f(1)Σu(+), 1(5)Πg, 1(3)Πu, 2(3)Σg(-), 1(5)Σu(-), 2(1)Σu(-) and 2(1)Δg are found to be bound, whereas the 1(5)Σg(+), 2(5)Σg(+), 1(1)Πu, 1(5)Δg, 1(5)Πu and 2(1)Πu are found to be repulsive ones. The B(3)Σu(-) and d(1)Πg states possess the double well. And the 1(3)Πu, C(3)Πg, A'(3)Δu, 1(5)Δg and 2(5)Σg(+) states are the inverted ones when the spin-orbit coupling is included. The PEC calculations are done by the complete active space self-consistent field (CASSCF) method, which is followed by the internally contracted multireference configuration interaction (icMRCI) approach with the Davidson correction. Core-valence correlation and scalar relativistic corrections are taken into account. The convergence of present calculations is evaluated with respect to the basis set and level of theory. The vibrational properties are discussed for the 1(5)Πg, 1(3)Πu, d(1)Πg and 1(5)Σu(-) states and for the second well of the B(3)Σu(-) state. The spin-orbit coupling effect is accounted for by the state interaction method with the Breit-Pauli Hamiltonian. The PECs of all the electronic states and spin-orbit states are extrapolated to the complete basis set limit. The spectroscopic parameters are obtained, and compared with available experimental and other theoretical results. Analyses demonstrate that the spectroscopic parameters reported here can be expected to be reliably predicted ones. The conclusion is obtained that the effect of spin-orbit coupling on the spectroscopic parameters are small almost for all the electronic states involved in this paper except for the 1(5)Σu(-), 1(5)Πg and 1(3)Πu. PMID:24486866
Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R
2016-01-25
Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. PMID:26708965
CONSTRAINTS ON CHARON'S ORBITAL ELEMENTS FROM THE DOUBLE STELLAR OCCULTATION OF 2008 JUNE 22
Sicardy, B.; Lecacheux, J.; Boissel, Y.; Doressoundiram, A.; Roques, F.; Widemann, T.; Bolt, G.; Broughton, J.; Dobosz, T.; Gault, D.; Kerr, S.; Benard, F.; Peyrot, A.; Teng-Chuen-Yu, J.-P.; Frappa, E.; Beisker, W.; Colas, F.; De Witt, C.; Gruhn, C.
2011-02-15
Pluto and its main satellite, Charon, occulted the same star on 2008 June 22. This event was observed from Australia and La Reunion Island, providing the east and north Charon Plutocentric offset in the sky plane (J2000): X= + 12,070.5 {+-} 4 km (+ 546.2 {+-} 0.2 mas), Y= + 4,576.3 {+-} 24 km (+ 207.1 {+-} 1.1 mas) at 19:20:33.82 UT on Earth, corresponding to JD 2454640.129964 at Pluto. This yields Charon's true longitude L= 153.483 {+-} 0.{sup 0}071 in the satellite orbital plane (counted from the ascending node on J2000 mean equator) and orbital radius r= 19,564 {+-} 14 km at that time. We compare this position to that predicted by (1) the orbital solution of Tholen and Buie (the 'TB97' solution), (2) the PLU017 Charon ephemeris, and (3) the solution of Tholen et al. (the 'T08' solution). We conclude that (1) our result rules out solution TB97, (2) our position agrees with PLU017, with differences of {Delta}L= + 0.073 {+-} 0.{sup 0}071 in longitude, and {Delta}r= + 0.6 {+-} 14 km in radius, and (3) while the difference with the T08 ephemeris amounts to only {Delta}L= 0.033 {+-} 0.{sup 0}071 in longitude, it exhibits a significant radial discrepancy of {Delta}r= 61.3 {+-} 14 km. We discuss this difference in terms of a possible image scale relative error of 3.35 x 10{sup -3}in the 2002-2003 Hubble Space Telescope images upon which the T08 solution is mostly based. Rescaling the T08 Charon semi-major axis, a = 19, 570.45 km, to the TB97 value, a = 19636 km, all other orbital elements remaining the same ('T08/TB97' solution), we reconcile our position with the re-scaled solution by better than 12 km (or 0.55 mas) for Charon's position in its orbital plane, thus making T08/TB97 our preferred solution.
NASA Astrophysics Data System (ADS)
Neese, Frank; Wennmohs, Frank; Hansen, Andreas
2009-03-01
Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500
Subramanian, Swetha; Mast, T Douglas
2015-10-01
Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature. PMID:26352462
NASA Astrophysics Data System (ADS)
Subramanian, Swetha; Mast, T. Douglas
2015-09-01
Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.
Element Specific Spin and Orbital Moments in Fe1-x Vx Alloys
Guan, Y.; Scheck, C; Bailey, W
2009-01-01
We present transmission-mode X-ray magnetic circular dichroism (XMCD) measurements of element-specific magnetic moments for Fe and V at the L2,3 edges in polycrystalline Fe1-xVx ultrathin films. We find that the orbital-to-spin moment ratio of Fe does not change within experimental error. The V XMCD is not very informative, and a nearly pure-spin type V impurity moment ({approx}1.0 {mu}{sub B}/atom, antiparallel to the Fe host moment) is assumed to match known magnetization data. Data are further reduced to a two-sublattice model and found to be compatible with known spectroscopic splitting g-factor data in the alloy. The results confirm that the very low Gilbert damping, attained through the introduction of V into epitaxial Fe1-xVx films and found by ferromagnetic resonance (FMR), does not result from the reduction of orbital moment content in the alloy.
VizieR Online Data Catalog: Database of the orbital elements of comets (Rocher, 2007)
NASA Astrophysics Data System (ADS)
Rocher, P.
2007-09-01
comets.dat is an ASCII file of cometary orbital elements prepared at the "Institut de Mecanique Celeste et de Calcul des Ephemerides" (related to the Bureau des Longitudes, Paris). The research and computing needed to generate comets.dat are funded by the French Ministry of Education. The data can be freely used, provided that their origin (Bureau des longitudes) and the author (P. Rocher) are properly cited. User feed-back is encouraged. Unless otherwise specified, send comments and bug reports to: E-mail : stc@imcce.fr Fax : (33) 1 46 33 28 34 Postal mail : IMCCE - Observatoire de Paris 77 avenue Denfert Rochereau F-75014 PARIS (1 data file).
VizieR Online Data Catalog: Database of the orbital elements of comets (Rocher, 2007)
NASA Astrophysics Data System (ADS)
Rocher, P.
comets.dat is an ASCII file of cometary orbital elements prepared at the "Institut de Mecanique Celeste et de Calcul des Ephemerides" (related to the Bureau des Longitudes, Paris). The research and computing needed to generate comets.dat are funded by the French Ministry of Education. The data can be freely used, provided that their origin (Bureau des longitudes) and the author (P. Rocher) are properly cited. User feed-back is encouraged. Unless otherwise specified, send comments and bug reports to: E-mail : stc@imcce.fr Fax : (33) 1 46 33 28 34 Postal mail : IMCCE - Observatoire de Paris 77 avenue Denfert Rochereau F-75014 PARIS (1 data file).
VizieR Online Data Catalog: Database of the orbital elements of comets (Rocher, 2007)
NASA Astrophysics Data System (ADS)
Rocher, P.
2010-09-01
comets.dat is an ASCII file of cometary orbital elements prepared at the "Institut de Mecanique Celeste et de Calcul des Ephemerides" (related to the Bureau des Longitudes, Paris). The research and computing needed to generate comets.dat are funded by the French Ministry of Education. The data can be freely used, provided that their origin (Bureau des longitudes) and the author (P. Rocher) are properly cited. User feed-back is encouraged. Unless otherwise specified, send comments and bug reports to: E-mail : stc@imcce.fr Fax : (33) 1 46 33 28 34 Postal mail : IMCCE - Observatoire de Paris 77 avenue Denfert Rochereau F-75014 PARIS (1 data file).
NASA Astrophysics Data System (ADS)
Kiefer, F.; Halbwachs, J.-L.; Arenou, F.; Pourbaix, D.; Famaey, B.; Guillout, P.; Lebreton, Y.; Nebot Gómez-Morán, A.; Mazeh, T.; Salomon, J.-B.; Soubiran, C.; Tal-Or, L.
2016-05-01
In anticipation of the Gaia astrometric mission, a large sample of spectroscopic binaries has been observed since 2010 with the Spectrographe pour l'Observation des PHénomènes des Intérieurs Stellaires et des Exoplanètes spectrograph at the Haute-Provence Observatory. Our aim is to derive the orbital elements of double-lined spectroscopic binaries (SB2s) with an accuracy sufficient to finally obtain the masses of the components with relative errors as small as 1 per cent when the astrometric measurements of Gaia are taken into account. In this paper, we present the results from five years of observations of 10 SB2 systems with periods ranging from 37 to 881 d. Using the TODMOR algorithm, we computed radial velocities from the spectra, and then derived the orbital elements of these binary systems. The minimum masses of the components are then obtained with an accuracy better than 1.2 per cent for the 10 binaries. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 87895 with an accuracy of 0.98 and 1.2 per cent, respectively.
Bender, P L; Currie, D G; Poultney, S K; Alley, C O; Dicke, R H; Wilkinson, D T; Eckhardt, D H; Faller, J E; Kaula, W M; Mulholland, J D; Plotkin, H H; Silverberg, E C; Williams, J G
1973-10-19
previously available knowledge of the distance to points on the lunar surface. Already, extremely complex structure has been observed in the lunar rotation and significant improvement has been achieved in our knowledge of lunar orbit. The selenocentric coordinates of the retroreflectors give improved reference points for use in lunar mapping, and new information on the lunar mass distribution has been obtained. Beyond the applications discussed in this article, however, the history of science shows many cases of previously unknown, phenomena discovered as a consequence of major improvements in the accuracy of measurements. It will be interesting to see whether this once again proves the case as we acquire an extended series of lunar distance observations with decimetric and then centimetric accuracy. PMID:17749298
Coupling of Sph and Finite Element Codes for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1997-01-01
Particle-based hydrodynamics models offer distinct advantages over Eulerian and Lagrangian hydrocodes in particular shock physics applications. Particle models are designed to avoid the mesh distortion and state variable diffusion problems which can hinder the effective use of Lagrangian and Eulerian codes respectively. However conventional particle-in-cell and smooth particle hydrodynamics methods employ particles which are actually moving interpolation points. A new particle-based modeling methodology, termed Hamiltonian particle hydrodynamics, was developed by Fahrenthold and Koo (1997) to provide an alternative, fully Lagrangian, energy-based approach to shock physics simulations. This alternative formulation avoids the tensile and boundary instabilities associated with standard smooth particle hydrodynamics formulations and the diffusive grid- to-particle mapping schemes characteristic of particle-in-cell methods. In the work described herein, the method of Fahrenthold and Koo has been extended, by coupling the aforementioned hydrodynamic particle model to a hexahedral finite element based description of the continuum dynamics. The resulting continuum model retains all of the features (including general contact-impact effects) of Hamiltonian particle hydrodynamics, while in addition accounting for tensile strength, plasticity, and damage effects important in the simulation of hypervelocity impact on orbital debris shielding. A three dimensional, vectorized, and autotasked implementation of the extended particle method described here has been coded for application to orbital debris shielding design. Source code for the pre-processor (PREP), analysis code (EXOS), post-processor (POST), and rezoner (ZONE), have been delivered separately, along with a User's Guide describing installation and application of the software.
Spin–orbit DFT with Analytic Gradients and Applications to Heavy Element Compounds
Zhang, Zhiyong
2014-12-01
We have implemented the unrestricted DFT approach with one-electron spin–orbit operators in the massively parallel NWChem program. Also implemented is the analytic gradient in the DFT approach with spin–orbit interactions. The current capabilities include single-point calculations and geometry optimization. Vibrational frequencies can be calculated numerically from the analytically calculated gradients. The implementation is based on the spin–orbit interaction operator derived from the effective core potential approach. The exchange functionals used in the implementation are functionals derived for non-spin–orbit calculations, including GGA as well as hybrid functionals. Spin–orbit Hartree–Fock calculations can also be carried out. We have applied the spin–orbit DFT methods to the Uranyl aqua complexes. We have optimized the structures and calculated the vibrational frequencies of both (UO2 2+)aq and (UO2 +)aq with and without spin–orbit effects. The effects of the spin–orbit interaction on the structures and frequencies of these two complexes are discussed. We also carried out calculations for Th2, and several low-lying electronic states are calculated. Our results indicate that, for open-shell systems, there are significant effects due to the spin–orbit effects and the electronic configurations with and without spin–orbit interactions could change due to the occupation of orbitals of larger spin–orbit interactions.
NASA Technical Reports Server (NTRS)
Fernando, G. W.; Cooper, B. R.; Ramana, M. V.; Krakauer, H.; Ma, C. Q.
1986-01-01
An accurate and efficient film linearized muffin-tin orbital (FLMTO) technique for surface electronic-structure calculations is presented which uses only 60-70 basis functions, as opposed to the 300 functions used in the linear augmented plane-wave method. Calculations for three different (3d and 4d) transition-metal films resulted in high quality results for five-layer slabs of Cu(001), Fe(001), and Ru(001), in addition to good results for the work functions and projected density of states. By retaining the LMTO small basis size, computer time and memory are reduced, making practical the study of systems with a larger number of atoms in the two-dimensional unit cell.
NASA Astrophysics Data System (ADS)
Mohibul Kabir, K. M.; Matthews, Glenn I.; Sabri, Ylias M.; Russo, Salvy P.; Ippolito, Samuel J.; Bhargava, Suresh K.
2016-03-01
Accurate analysis of surface acoustic wave (SAW) devices is highly important due to their use in ever-growing applications in electronics, telecommunication and chemical sensing. In this study, a novel approach for analyzing the SAW devices was developed based on a series of two-dimensional finite element method (FEM) simulations, which has been experimentally verified. It was found that the frequency response of the two SAW device structures, each having slightly different bandwidth and center lobe characteristics, can be successfully obtained utilizing the current density of the electrodes via FEM simulations. The two SAW structures were based on XY Lithium Niobate (LiNbO3) substrates and had two and four electrode finger pairs in both of their interdigital transducers, respectively. Later, SAW devices were fabricated in accordance with the simulated models and their measured frequency responses were found to correlate well with the obtained simulations results. The results indicated that better match between calculated and measured frequency response can be obtained when one of the input electrode finger pairs was set at zero volts and all the current density components were taken into account when calculating the frequency response of the simulated SAW device structures.
NASA Astrophysics Data System (ADS)
Floria, Luis
1993-10-01
Within the framework of the Canonical Formalism in the extended phase space, a general Hamiltonian is investigated that covers a wide class of radial intermediaries accounting for the major secular effects due to a planet's oblateness perturbations. An analytical, closed-form solution for this generic Hamiltonian is developed in terms of elementary functions via the corresponding Hamilton-Jacobi equation. The analytical solution so obtained can be contemplated according to a simple geometrical and dynamical interpretation in Keplerian language by means of the usual relations characterizing elliptic elements along a hypothetic Keplerian motion. Appropriate choices for the terms appearing in the proposed Hamiltonian lead to recovering the analogs of some well-known, classical radial intermediaries (those introduced by Deprit and the one built by Alfriend and Coffey), but also certain new ones derived by Ferrandiz for the Main Problem in the Theory of Artificial Satellites of the Earth. In any case, the results are also applicable to problems dealing with orbital motion of other planetary satellites. The generality of this pattern leads to a systematic obtaining of solutions to the considered intermediaries: special choices of the Hamiltonian yield the corresponding analytical solution to the respective intermediary problem.
Solving for the Orbital Elements of Binary Systems using MCMC Simulations.
NASA Astrophysics Data System (ADS)
Mede, Kyle; Brandt, Timothy D.
2014-01-01
Recent simulation and observational data have been used to investigate the ability of Kozai oscillations to explain the formation of ``hot Jupiter'' planetary systems. One of the first exoplanets discovered, τ Boo Ab, orbits a star with a binary companion, making it an excellent testbed for this scenario. We have written a three-dimensional Markov Chain Monte Carlo (MCMC) simulator to constrain the orbit of the distant stellar companion τ Boo B, and are currently deriving orbital parameters and confidence intervals. These orbital parameters will confirm or reject Kozai oscillations as a plausible formation mechanism for τ Boo Ab.
A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations
ERIC Educational Resources Information Center
Petersson, T.; Hellsing, B.
2010-01-01
A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…
NASA Technical Reports Server (NTRS)
Nurick, W. H.
1974-01-01
An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.
Frozen Orbital Plane Solutions for Satellites in Nearly Circular Orbit
NASA Astrophysics Data System (ADS)
Ulivieri, Carlo; Circi, Christian; Ortore, Emiliano; Bunkheila, Federico; Todino, Francesco
2013-08-01
This paper deals with the determination of the initial conditions (right ascension of the ascending node and inclination) that minimize the orbital plane variation for nearly circular orbits with a semimajor axis between 3 and 10 Earth radii. An analysis of two-line elements over the last 40 years for mid-, geostationary-, and high-Earth orbits has shown, for initially quasi-circular orbits, low eccentricity variations up to the geostationary altitude. This result makes the application of mathematical models based on satellite circular orbits advantageous for a fast prediction of long-term temporal evolution of the orbital plane. To this purpose, a previous model considering the combined effect due to the Earth's oblateness, moon, and sun (both in circular orbit) has been improved in terms of required computational time and accuracy. The eccentricity of the sun and moon and the equinoctial precession have been taken into account. Resonance phenomena with the lunar plane motion have been found in mid-Earth orbit. Dynamical properties concerning the precession motions of the orbital pole have been investigated, and frozen solutions for geosynchronous and navigation satellites have been proposed. Finally, an accurate model validation has also been carried out by comparing the obtained results with two-line elements of abandoned geostationary-Earth orbit and mid-Earth orbit satellites.
Division IX / Commission 30 / Working Group Catalog of Orbital Elements of Spectroscopic Binaries
NASA Astrophysics Data System (ADS)
Pourbaix, Dimitri; Young, Andrew T.; Batten, Alan H.; Fekel, Francis C.; Hartkopf, William I.; Levato, Hugo; Morrell, Nidia I.; Tokovinin, Andrei A.; Torres, Guillermo; Udry, Stepane
The SB9 Working Group of Commission 30 aims at compiling the 9th Catalogue of Orbits of Spectroscopic Binaries. By definition, this is a never ending task as orbits of newly discovered systems keep appearing in the literature. Despite this, the working group tries to catch up with the delay as nothing was done in between 1989 when the 8th catalogue by Batten et al. and 2000 when the WG was settled. In 2006, at its business meeting, the WG decided to focus on the completeness of systems rather than on completeness of orbits. If the latter is a valuable objective, only the former is useful to any statistical investigation of spectroscopic binaries.
NASA Astrophysics Data System (ADS)
Plávalová, E.; Solovay, N. A.
2015-07-01
We have carried out an analysis of the motion of an extrasolar planet orbiting in a binary system, as a particular case of the three-body problem. The following assumptions have been made: a) the planet orbits around one of the binary components (the parent star); b) the distance between the stellar components is greater than that between the parent star and the orbiting planet (the ratio of the semi-major axes is a small parameter); c) the mass of the planet is smaller than the mass of the star, but is not negligible. We employed the Hamiltonian of the system without short-period terms, and we expanded it in terms of Legendre polynomials and truncated the expansion after the second-order terms. Such form of the Hamiltonian enables us to solve the differential equations of motion of our system and analyze of the motion of the extrasolar planet. We have applied this theory to the system HD 120136, and described the possible regions in which the planet can move. The theory permits us to calculate an unknown angular orbital element for the planet HD 120136 Ab, the ascending node: Ω1=134°±14°. The motion of the planet is expected to be stable over long time scales.
NASA Technical Reports Server (NTRS)
Taff, L. G.; Randall, P. M. S.
1985-01-01
A robust analytical formulation is developed to apply classical initial orbital determination to artificial satellites whose locations are uncertain to about 1 cu km and separated in time by no more than 30 min. An analytical simplification reduces Gauss's method, iteration on the semilatus rectum, iteration on the true anomaly, and the Lambert-Euler technique, to the solution of a single equation in one unknown, instead of the usual coupled triplet of three equations in three unknowns. The method is demonstrated for all common artificial satellite orbits over a variety of time intervals between the two location vectors, and for a varied set of position and distance errors.
NASA Astrophysics Data System (ADS)
Li, Lin-Sen
The influence of the electronic induction drag on the variation of the orbital elements of a charged satellite moving in a magnetic-field-free ionosphere are studied. The theoretical result show that the induction drag results in both the secular and periodic variations of the semi-major axis, however the eccentricity, the argument of perigee and the mean longitude of epoch exhibits no secular variation, but only periodic variation. The inclination and the ascending node remain no variation. As example, the secular effect of the induction drag on the orbital semi-major axis at a supposed satellite is calculated. It can be shown that the semi-major axis is contracted due to the induction drag, if this satellite carries many charges in an ionosphere.
NASA Astrophysics Data System (ADS)
Castiel, David
1991-09-01
On 5 Nov. 1990, Ellipsat filed with the FCC the first application to provide voice communication services via low earth orbiting (LEO) satellites. The proposed system, ELLIPSO, aims at achieving end-user costs comparable to those in the cellular industry. On 3 Jun. 1991 Ellipsat filed for the second complement of its system. Ellipsat was also the first company to propose combined position determination and mobile voice services via low-earth orbiting satellites. Ellipsat is still the only proponent of elliptical orbits for any commercial system in the United States. ELLIPSO uses a spectrum efficient combination of FDMA and CDMA techniques. Ellipsat's strategy is to tailor required capacity to user demand, reduce initial system costs and investment risks, and allow the provision of services at affordable end-user prices. ELLIPSO offers optimum features in all the components of its system, elliptical orbits, small satellites, integrated protocol and signalling system, integrated end-user electronics, novel marketing approach based on the cooperation with the tenets of mobile communications, end-user costs that are affordable, and a low risk approach as deployment is tailored to the growth of its customer base. The efficient design of the ELLIPSO constellation and system allows estimated end-user costs in the $.50 per minute range, five to six times less than any other system of comparable capability.
NASA Technical Reports Server (NTRS)
Castiel, David
1991-01-01
On 5 Nov. 1990, Ellipsat filed with the FCC the first application to provide voice communication services via low earth orbiting (LEO) satellites. The proposed system, ELLIPSO, aims at achieving end-user costs comparable to those in the cellular industry. On 3 Jun. 1991 Ellipsat filed for the second complement of its system. Ellipsat was also the first company to propose combined position determination and mobile voice services via low-earth orbiting satellites. Ellipsat is still the only proponent of elliptical orbits for any commercial system in the United States. ELLIPSO uses a spectrum efficient combination of FDMA and CDMA techniques. Ellipsat's strategy is to tailor required capacity to user demand, reduce initial system costs and investment risks, and allow the provision of services at affordable end-user prices. ELLIPSO offers optimum features in all the components of its system, elliptical orbits, small satellites, integrated protocol and signalling system, integrated end-user electronics, novel marketing approach based on the cooperation with the tenets of mobile communications, end-user costs that are affordable, and a low risk approach as deployment is tailored to the growth of its customer base. The efficient design of the ELLIPSO constellation and system allows estimated end-user costs in the $.50 per minute range, five to six times less than any other system of comparable capability.
Do the physical properties of Ap binaries depend on their orbital elements?
NASA Astrophysics Data System (ADS)
Budaj, Ján
1999-12-01
We reveal sufficient evidence that the physical characteristics of Ap stars are related to binarity. The Ap star peculiarity [represented by the Δ(V1-G) value and magnetic field strength] diminishes with eccentricity, and it may also increase with orbital period (Porb). This pattern, however, does not hold for large orbital periods. A striking gap that occurs in the orbital period distribution of Ap binaries at 160-600d might well mark a discontinuity in the above-mentioned behaviour. There is also an interesting indication that the Ap star eccentricities are relatively lower than those of corresponding B9-A2 normal binaries for Porb>10d. All this gives serious support to the pioneering idea of Abt & Snowden concerning a possible interplay between the magnetism of Ap stars and their binarity. Nevertheless, we argue instead in favour of another mechanism, namely that it is binarity that affects magnetism and not the opposite, and suggest the presence of a new magnetohydrodynamical mechanism induced by the stellar companion and stretching to surprisingly large Porb.
NASA Astrophysics Data System (ADS)
Ambrose, J. L., II; Jaffe, D. A.
2015-12-01
The most widely used method for quantifying atmospheric Hg is gold amalgamation pre-concentration, followed by thermal desorption (TD) and detection via atomic fluorescence spectrophotometry (AFS). Most AFS-based atmospheric Hg measurements are carried out using commercial analyzers manufactured by Tekran® Instruments Corp. (instrument models 2537A and 2537B). A generally overlooked and poorly characterized source of analytical uncertainty in these measurements is the method by which the raw Hg AFS signal is processed. In nearly all applications of Tekran® analyzers for atmospheric Hg measurements, researchers rely upon embedded software which automatically integrates the Hg TD peaks. However, Swartzendruber et al. (2009; doi:10.1016/j.atmosenv.2009.02.063) demonstrated that the Hg TD peaks can be more accurately defined, and overall measurement precision increased, by post-processing the raw Hg AFS signal; improvements in measurement accuracy and precision were shown to be more significant at lower sample loadings. Despite these findings, a standardized method for signal post-processing has not been presented. To better characterize uncertainty associated with Tekran® based atmospheric Hg measurements, and to facilitate more widespread adoption of an accurate, standardized signal processing method, we developed a new, distributable Virtual Instrument (VI) which performs semi-automated post-processing of the raw Hg AFS signal from the Tekran® analyzers. Here we describe the key features of the VI and compare its performance to that of the Tekran® signal processing method.
Jupiter Icy Moons Orbiter (JIMO): An Element of the Prometheus Program
NASA Astrophysics Data System (ADS)
2004-10-01
The Prometheus Program s Jupiter Icy Moons Orbiter (JIMO) Project is developing a revolutionary nuclear electric propulsion space system that would return scientific data from the icy Galilean satellites, Callisto, Ganymede, and Europa. This space system could also be used for future solar system exploration missions. Several major achievements occurred during Fiscal Year 2004 (FY 04). These include the addition of Department of Energy Naval Reactors (DOENR) and Northrop Grumman Space Technology (NGST) to the JIMO team, completion of the Science Definition Team s final report, generation of the Government and industry team trade studies and conceptual designs, and numerous technology demonstrations. The sections that follow detail these accomplishments.
Spectroscopic orbital elements for the helium-rich subdwarf binary PG 1544+488
NASA Astrophysics Data System (ADS)
Şener, H. T.; Jeffery, C. S.
2014-05-01
PG 1544+488 is an exceptional short-period spectroscopic binary containing two subdwarf B stars. It is also exceptional because the surfaces of both components are extremely helium-rich. We present a new analysis of spectroscopy of PG 1544+488 obtained with the William Herschel Telescope. We obtain improved orbital parameters and atmospheric parameters for each component. The orbital period P = 0.496 ± 0.002 d, dynamical mass ratio MB/MA = 0.911 ± 0.015 and spectroscopic radius ratio RB/RA = 0.939 ± 0.004 indicate a binary consisting of nearly identical twins. The data are insufficient to distinguish any difference in surface composition between the components, which are slightly metal-poor (1/3 solar) and carbon-rich (0.3 per cent by number). The latter indicates that the hotter component, at least, has ignited helium. The best theoretical model for the origin of PG 1544+488 is by the ejection of a common envelope from a binary system in which both components are giants with helium cores of nearly equal mass. Since precise tuning is necessary to yield two helium cores of similar masses at the same epoch, the mass ratio places very tight constraints on the dimensions of the progenitor system and on the physics of the common-envelope ejection mechanism.
NASA Astrophysics Data System (ADS)
Tao, Ran; Moussawi, Ali; Lubineau, Gilles; Pan, Bing
2016-06-01
Digital image correlation (DIC) is now an extensively applied full-field measurement technique with subpixel accuracy. A systematic drawback of this technique, however, is the smoothening of the kinematic field (e.g., displacement and strains) across interfaces between dissimilar materials, where the deformation gradient is known to be large. This can become an issue when a high level of accuracy is needed, for example, in the interfacial region of composites or joints. In this work, we described the application of global conforming finite-element-based DIC technique to obtain precise kinematic fields at interfaces between dissimilar materials. Speckle images from both numerical and actual experiments processed by the described global DIC technique better captured sharp strain gradient at the interface than local subset-based DIC.
NASA Technical Reports Server (NTRS)
Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.
1991-01-01
An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.
NASA Astrophysics Data System (ADS)
Pokorna, Lucie; Kliegrova, Stanislava; Huth, Radan; Farda, Ales; Stepanek, Petr
2014-05-01
Regional climate models (RCM) are a useful tool for a simulation of surface climate with respect to conditions of individual regions. The need of the realistic representation of surface elements at the local scale is important particularly in terrain with complex orography. The Czech Republic with the mountain chains along its border and highlands as well as lowlands in the inland seems to be a good representation of such region. A good performance of the models in reproducing recent temporal and spatial distribution of temperature and precipitation can enhance our confidence in the changes projected for future climate conditions. In this study, we compare two versions of the RCM ALARO covering a 30-year climate period (1961-1990); a simulation with a common resolution 25-km and a simulation with a very high resolution 6-km. The ALARO-Climate RCM has been developed in recent years in the Czech Hydrometeorological Institute on the basis of the numerical weather prediction model ALADIN and is already operated at other five national meteorological services. Both presented simulations are driven by the ERA-40 reanalysis and run on the large pan-European integration domain ("ENSEMBLES / Euro-Cordex domain"). As the reference dataset we use technical homogenized series based on time series from stations in the Czech Republic interpolated to the same network as both model simulations but with real altitude of the grid points (GriSt). The seasonal and monthly values of mean, maximum and minimum temperature as well as precipitation amounts are examined. We display a spatial distribution of biases of seasonal means and the temporal distribution of biases based on monthly values with respect to the altitude for both simulations. The results indicate that a higher resolution of model tends to improve the simulation of present day climate, with larger improvements in areas affected by mountains.
Gorgiladze, G I; Bukiia, R D; Kalandarishvili, E L; Taktakishvili, A D; Davitashvili, M T; Gelashvili, N Sh; Madzhagaladze, N B; Galkin, V A
2013-01-01
Statocyst epithelial lining of terrestrial pulmonary snail Helix lucorum is a spatially arranged structure consisting of 13 cell ensembles. Each ensemble has a sensory cell surrounded by companion cells. The sensory cell on the anterior statocyst pole is star-shaped due to multiple protoplasmatic protrusions on its body. The remaining 12 polygon-shaped cells form 3 tires along the statocyst internal perimeter: anterior, middle or equatorial and posterior. There are 4 cells in each tire. Topography of every sensory cell on the statocyst internal surface was described as well as cell nuclei size and form, nucleoli number and patterns of cytoplasm vacuolization. Space free of sensory cells is occupied by supporting or intercalary cells. Exposure to space microgravity over 40, 43, 102 and 135 days aboard the orbital station MIR affected morphology of the sensory cells. Specifically, this appeared as reductions in cell height and, consequently, extension of the statocyst cavity internal diameter and volume in the space-flown snails. PMID:24490279
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Salvail, J. R.
1984-01-01
A generalized model for short period comets is developed which integrates in a fairly rigorous manner the isolation history of regions on rotating comets with specified axial orientation and the complex feedback processes involving heat, gas and dust transport, dust mantle development and coma opacity. Attention is focused on development, reconfiguration and partial or complete launching of dust mantles and the reciprocal effects of these three processes on ice surface temperature and gas and dust production. The dust mantle controls the H2O flux not only by its effect on the temperature at the ice interface but (dominantly) by its dynamic stability which strongly influences vapor diffusivity. The model includes the effects of latitude, rotation and spin axis orientation are included and applied to an initially homogeneous sphere of H2O ice and silicate using the orbital parameters of comet Encke. Numerous variations of the model, using combinations of grain size distribution, dust-to-ice ratio, latitude and spin axis orientation, are presented and discussed. Resulted for a similar nonrotating, constant Sun orientation models are also included.
On-orbit spacecraft servicing: An element in the evolution of space robotics applications
NASA Technical Reports Server (NTRS)
Anders, Carl J.; Roy, Claude H.
1994-01-01
This paper addresses the renewed interest in on-orbit spacecraft servicing (OSS), and how it fits into the evolution of space applications for intelligent robots. Investment in the development of space robotics and associated technologies is growing as nations recognize that it is a critical component of the exploration and commercial development of space. At the same time, changes in world conditions have generated a renewal of the interest in OSS. This is reflected in the level of activity in the U.S., Japan and Europe in the form of studies and technology demonstration programs. OSS is becoming widely accepted as an opportunity in the evolution of space robotics applications. Importantly, it is a feasible proposition with current technologies and the direction of ongoing research and development activities. Interest in OSS dates back more than two decades, and several programs have been initiated, but no operational system has come on line, arguably with the Shuttle as the exception. With new opportunities arising, however, a fresh look at the feasibility of OSS is warranted. This involves the resolution of complex market, technical and political issues, through market studies, economic analyses, mission requirement definitions, trade studies, concept designs and technology demonstrations. System architectures for OSS are strongly dependent on target spacecraft design and launch delivery systems. Performance and cost factors are currently forcing significant changes in these areas. This presents both challenges and opportunities in the provision of OSS services. In conclusion, there is no question OSS will become a reality, but only when the technical feasibility is combined with either economic viability or political will. In the evolution of space robotics satellite servicing can become the next step towards its eventual role in support of planetary exploration and human beings' journey out into the universe.
Orbital Solutions and Absolute Elements of the W UMa Binary MW Pavonis
NASA Astrophysics Data System (ADS)
Alvarez, Gabriella E.; Sowell, James R.; Williamon, Richard M.; Lapasset, Emilio
2015-08-01
We present differential UBV photoelectric photometry obtained by Williamon of the short-period A-type W UMa binary MW Pav. With the Wilson-Devinney analysis program, we obtained a simultaneous solution of these observations with the UBV photometry of Lapasset, the V measurements by the ASAS program, and the double-lined radial velocity measurements of Rucinski and Duerbeck. Our solution indicates that MW Pav is in an overcontact state, where both components exceed their critical Roche lobes. We derive masses of M1 = 1.514 ± 0.063 Msolar and M2 = 0.327 ± 0.014 Msolar, and equal-volume radii of R1 = 2.412 ± 0.034 Rsolar and R2 = 1.277 ± 0.019 Rsolar for the primary and secondary, respectively. The system is assumed to have a circular orbit and is seen at an inclination of 86.39° ± 0.63°. The effective temperature of the primary was held fixed at 6900 K, whereas the secondary's temperature was found to be 6969 ± 10 K. The asymmetry of the light curves requires a large, single star spot on the smaller, less massive secondary component. A consistent base solution, with different spot characteristics for the Williamon, Lapasset, and ASAS data, was found. The modeled spot varied little during the 40-year range of photometric observations. The combined solution utilized a third light component and found that the period is changing at a rate of dP/dt = (6.50 ± 0.19) × 10-10.
NASA Astrophysics Data System (ADS)
Shi, De-Heng; Liu, Qionglan; Yu, Wei; Sun, Jinfeng; Zhu, Zunlue
2014-05-01
The potential energy curves (PECs) of 23 Ω states generated from the 12 electronic states (X1 Σ +, 21 Σ +, 11 Σ -, 11 Π, 21 Π, 11 Δ, 13 Σ +, 23 Σ +, 13 Σ -, a3 Π, 23 Π and 13 Δ) are studied for the first time. All the states correlate to the first dissociation channel of the SiBr+ cation. Of these electronic states, the 23 Σ + is the repulsive one without the spin-orbit coupling, whereas it becomes the bound one with the spin-orbit coupling added. On the one hand, without the spin-orbit coupling, the 11 Π, 21 Π and 23 Π are the rather weakly bound states, and only the 11 Π state possesses the double well; on the other hand, with the spin-orbit coupling included, the a3 Π and 11 Π states possess the double well, and the 13 Σ + and 13 Σ - are the inverted states. The PECs are calculated by the CASSCF method, which is followed by the internally contracted MRCI approach with the Davidson modification. Scalar relativistic correction is calculated by the third-order Douglas-Kroll Hamiltonian approximation with a cc-pVTZ-DK basis set. Core-valence correlation correction is included with a cc-pCVTZ basis set. The spin-orbit coupling is accounted for by the state interaction method with the Breit-Pauli Hamiltonian using the all-electron aug-cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The variation with internuclear separation of the spin-orbit coupling constant is discussed in brief. The spectroscopic parameters are evaluated for the 11 bound electronic states and the 23 bound Ω states, and are compared with available measurements. Excellent agreement has been found between the present results and the experimental data. It demonstrates that the spectroscopic parameters reported here can be expected to be reliably predicted ones. The Franck-Condon factors and radiative lifetimes of the transitions from the a3 Π 0 + and a3 Π 1 states to the X1 Σ + 0+ state are calculated for several low vibrational levels, and
Grassi, Lorenzo; Väänänen, Sami P; Ristinmaa, Matti; Jurvelin, Jukka S; Isaksson, Hanna
2016-03-21
Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R(2)=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10-16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response. PMID:26944687
NASA Astrophysics Data System (ADS)
Zeng, Tao; Fedorov, Dmitri G.; Klobukowski, Mariusz
2010-02-01
Careful spin-orbit multireference studies were carried out for the late p-block elements Tl, Pb, Bi, Po, At, and Rn and their hydrides using the model core potentials developed in the present work. The model core potentials were designed to treat the scalar-relativistic and spin-orbit coupling effects at the Douglas-Kroll level. The variational stability of the spin-orbit coupling operator was discussed in terms of the relativistic kinematic operators and depicted graphically. A detailed analysis of the spin-orbit multireference dissociation curves of the 6p element hydrides as well as of their atomic spectra allowed to establish the accuracy of the model core potentials with respect to all-electron calculations to be within several mÅ for re, meV (ceV) for De at the correlation level of configuration interaction (multireference perturbation theory), 30 cm-1 for ωe, and about 350 cm-1 for the low-lying atomic and molecular term and level energies. These values are expected to be the maximum error limits for the model core potentials of all the np-block elements (n =2-6). Furthermore, a good agreement with experiment requires that many terms be coupled in the spin-orbit coupling calculations. A timing study of Tl and TlH computations indicates that the model core potentials lead to 20-fold (6-fold) speedup at the level of configuration interaction (multireference perturbation theory) calculations.
Wu Baojia; Huang Xiaowei; Han Yonghao; Gao Chunxiao; Peng Gang; Liu Cailong; Wang Yue; Cui Xiaoyan; Zou Guangtian
2010-05-15
The van der Pauw technique is widely used to determine resistivity of materials. In diamond anvil cell the compressed sample will make the contact placement change under high pressure. Using finite element analysis, we study the effect of contact placement error induced by pressure on the resistivity measurement accuracy of van der Pauw method. The results show the contact placement has a significant effect on determination accuracy. This method can provide accurate determination of sample resistivity when the spacing b between the contact center and sample periphery is less than D/9 (sample diameter). And the effect of contact placement error on accuracy rapidly increases as the contact location is closing to the sample center. For the same contact placement, the contact size error has a more obvious effect on the semiconductor sample.
NASA Astrophysics Data System (ADS)
Shi, Deheng; Liu, Qionglan; Wang, Shuai; Sun, Jinfeng; Zhu, Zunlue
2015-01-01
The potential energy curves (PECs) of 59 Ω states generated from the 17 Λ-S states (X1Σ+, a3Σ+, 15Σ+, b3Δ, c3Π, 15Π, 25Σ+, 23Δ, 23Π, 33Σ+, A1Π, 23Σ+, 35Σ+, 17Σ+, 15Δ, 25Δ, and 25Π) of AsP molecule are studied for the first time for internuclear separations from about 0.10 to 1.10 nm. All the Λ-S states are contributed to the first three dissociation channels of AsP molecule except for the A1Π. The 23Σ+, 35Σ+, 17Σ+, 15Δ, 25Δ, and 25Π are found to be the repulsive states. The a3Σ+, 15Π, b3Δ, 17Σ+, 15Δ, 25Δ, and 25Π are found to be the inverted states. Each of the 33Σ+, c3Π, 23Π, 15Π, and 15Σ+ states has one potential barrier. The PECs are calculated by the CASSCF method, which is followed by the internally contracted MRCI approach with Davidson correction. Core-valence correlation and scalar relativistic corrections are included. The convergent behavior of present calculations is discussed with respect to the basis set and level of theory. The spin-orbit coupling effect is accounted for. All these PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated for the bound states involved, and are compared with available measurements. Excellent agreement has been found between the present results and the measurements. It shows that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. The conclusion is gained that the effect of spin-orbit coupling on the spectroscopic parameters is not obvious for all the Λ-S bound states except for few ones such as 15Σ+ and c3Π.
Zhu, Zunlue; Yu, Wei; Wang, Shuai; Sun, Jinfeng; Shi, Deheng
2014-10-15
The spectroscopic properties of 23 Ω states generated from the 13 Λ-S states of BO radical are studied for the first time for internuclear separations from about 0.07 to 1.0nm. Of the 13 Λ-S states, each of the F(2)Π, 1(2)Φ and 1(2)Δ states is found to possess the double well. Each of the 1(4)Π, C(2)Π, 1(2)Σ(-) and 2(2)Σ(-) states possesses one well with one barrier. The A(2)Π, 1(4)Π and F(2)Π are the inverted states with the spin-orbit coupling effect taken into account. All the states possess the deep well except for the 1(2)Φ. The potential energy curves (PECs) are calculated by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction. Core-valence correlation and scalar relativistic corrections are included into the calculations. The PECs are extrapolated to the complete basis set limit. The spin-orbit coupling effect is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian. The spectroscopic parameters are evaluated, and compared with the available measurements and other theoretical results. The Franck-Condon factors and radiative lifetimes of the transitions from the B(2)Σ(+), C(2)Π, D(2)Σ(+), 1(2)Σ(-) and 1(4)Π Λ-S states to the ground state are calculated for several low vibrational levels, and some necessary discussion is made. Analyses show that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. PMID:24820321
Boyce, Christopher M; Holland, Daniel J; Scott, Stuart A; Dennis, John S
2013-12-18
Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537
2013-01-01
Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537
Shi, Deheng; Liu, Qionglan; Wang, Shuai; Sun, Jinfeng; Zhu, Zunlue
2015-01-25
The potential energy curves (PECs) of 59 Ω states generated from the 17 Λ-S states (X(1)Σ(+), a(3)Σ(+), 1(5)Σ(+), b(3)Δ, c(3)Π, 1(5)Π, 2(5)Σ(+), 2(3)Δ, 2(3)Π, 3(3)Σ(+), A(1)Π, 2(3)Σ(+), 3(5)Σ(+), 1(7)Σ(+), 1(5)Δ, 2(5)Δ, and 2(5)Π) of AsP molecule are studied for the first time for internuclear separations from about 0.10 to 1.10nm. All the Λ-S states are contributed to the first three dissociation channels of AsP molecule except for the A(1)Π. The 2(3)Σ(+), 3(5)Σ(+), 1(7)Σ(+), 1(5)Δ, 2(5)Δ, and 2(5)Π are found to be the repulsive states. The a(3)Σ(+), 1(5)Π, b(3)Δ, 1(7)Σ(+), 1(5)Δ, 2(5)Δ, and 2(5)Π are found to be the inverted states. Each of the 3(3)Σ(+), c(3)Π, 2(3)Π, 1(5)Π, and 1(5)Σ(+) states has one potential barrier. The PECs are calculated by the CASSCF method, which is followed by the internally contracted MRCI approach with Davidson correction. Core-valence correlation and scalar relativistic corrections are included. The convergent behavior of present calculations is discussed with respect to the basis set and level of theory. The spin-orbit coupling effect is accounted for. All these PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated for the bound states involved, and are compared with available measurements. Excellent agreement has been found between the present results and the measurements. It shows that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. The conclusion is gained that the effect of spin-orbit coupling on the spectroscopic parameters is not obvious for all the Λ-S bound states except for few ones such as 1(5)Σ(+) and c(3)Π. PMID:25145917
Shi, Deheng; Liu, Qionglan; Sun, Jinfeng; Zhu, Zunlue
2014-03-25
The potential energy curves (PECs) of 28 Ω states generated from the 12 states (X(4)Σ(-), 1(2)Π, 1(2)Σ(-), 1(2)Δ, 1(2)Σ(+), 2(2)Π, A(4)Π, B(4)Σ(-), 3(2)Π, 1(6)Σ(-), 2(2)Σ(-) and 1(6)Π) of the BN(+) cation are studied for the first time for internuclear separations from about 0.1 to 1.0 nm using an ab initio quantum chemical method. All the Λ-S states correlate to the first four dissociation channels. The 1(6)Σ(-), 3(2)Π and A(4)Π states are found to be the inverted ones. The 1(2)Σ(+), 2(2)Π, 3(2)Π and 2(2)Σ(-) states are found to possess the double well. The PECs are calculated by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction. Core-valence correlation correction is included by a cc-pCV5Z basis set. Scalar relativistic correction is calculated by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. The convergent behavior of present calculations is discussed with respect to the basis set and level of theory. The spin-orbit coupling is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian using the all-electron cc-pCV5Z basis set. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are obtained, and the vibrational properties of 1(2)Σ(+), 2(2)Π, 3(2)Π and 2(2)Σ(-) states are evaluated. Analyses demonstrate that the spectroscopic parameters reported here can be expected to be reliably predicted ones. The conclusion is gained that the effect of spin-orbit coupling on the spectroscopic parameters are not obvious almost for all the Λ-S states involved in the present paper. PMID:24334021
Shi, Deheng; Li, Peiling; Sun, Jinfeng; Zhu, Zunlue
2014-01-01
The potential energy curves (PECs) of 28 Ω states generated from 9 Λ-S states (X(2)Π, 1(4)Π, 1(6)Π, 1(2)Σ(+), 1(4)Σ(+), 1(6)Σ(+), 1(4)Σ(-), 2(4)Π and 1(4)Δ) are studied for the first time using an ab initio quantum chemical method. All the 9 Λ-S states correlate to the first two dissociation limits, N((4)Su)+Se((3)Pg) and N((4)Su)+Se((3)Dg), of NSe radical. Of these Λ-S states, the 1(6)Σ(+), 1(4)Σ(+), 1(6)Π, 2(4)Π and 1(4)Δ are found to be rather weakly bound states. The 1(2)Σ(+) is found to be unstable and has double wells. And the 1(6)Σ(+), 1(4)Σ(+), 1(4)Π and 1(6)Π are found to be the inverted ones with the SO coupling included. The PEC calculations are made by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson modification. The spin-orbit coupling is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian. The convergence of the present calculations is discussed with respect to the basis set and the level of theory. Core-valence correlation corrections are included with a cc-pCVTZ basis set. Scalar relativistic corrections are calculated by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. All the PECs are extrapolated to the complete basis set limit. The variation with internuclear separation of spin-orbit coupling constants is discussed in brief for some Λ-S states with one shallow well on each PEC. The spectroscopic parameters of 9 Λ-S and 28 Ω states are determined by fitting the first ten vibrational levels whenever available, which are calculated by solving the rovibrational Schrödinger equation with Numerov's method. The splitting energy in the X(2)Π Λ-S state is determined to be about 864.92 cm(-1), which agrees favorably with the measurements of 891.80 cm(-1). Moreover, other spectroscopic parameters of Λ-S and Ω states involved here are
Fischer, Lisa; Zipfel, Barbara; Koellensperger, Gunda; Kovac, Jessica; Bilz, Susanne; Kunkel, Andrea; Venzago, Cornel; Hann, Stephan
2014-07-01
New guidelines of the United States Pharmacopeia (USP), European Pharmacopeia (EP) and international organization (ICH, International Conference on Harmonization) regulating elemental impurity limits in pharmaceuticals seal the end of unspecific analysis of metal(oid)s as outlined in USP <231> and EP 2.4.8. Chapter USP <232> and EP 5.20 as well as drafts from ICH Q3D specify both daily doses and concentration limits of metallic impurities in pharmaceutical final products and in active pharmaceutical ingredients (API) and excipients. In chapters USP <233> and EP 2.4.20 method implementation, validation and quality control during the analytical process are described. By contrast with the--by now--applied methods, substance specific quantitative analysis features new basic requirements, further, significantly lower detection limits ask for the necessity of a general changeover of the methodology toward sensitive multi element analysis by ICP-AES and ICP-MS, respectively. A novel methodological approach based on flow injection analysis and ICP-SFMS/ICP-QMS for the quick and accurate analysis of Cd, Pb, As, Hg, Ir, Os, Pd, Pt, Rh, Ru, Cr, Mo, Ni, V, Cu, Mn, Fe and Zn in drug products by prior dilution, dissolution or microwave assisted closed vessel digestion according to the regulations is presented. In comparison to the acquisition of continuous signals, this method is advantageous with respect to the unprecedented high sample throughput due to a total analysis time of approximately 30s and the low sample consumption of below 50 μL, while meeting the strict USP demands on detection/quantification limits, precision and accuracy. PMID:24667566
NASA Astrophysics Data System (ADS)
Zhang, Na; Yao, Jun; Huang, Zhaoqin; Wang, Yueying
2013-06-01
Numerical simulation in naturally fractured media is challenging because of the coexistence of porous media and fractures on multiple scales that need to be coupled. We present a new approach to reservoir simulation that gives accurate resolution of both large-scale and fine-scale flow patterns. Multiscale methods are suitable for this type of modeling, because it enables capturing the large scale behavior of the solution without solving all the small features. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, we use a multiscale finite element method (MsFEM) for two-phase flow in fractured media using the discrete-fracture model. By combining MsFEM with the discrete-fracture model, we aim towards a numerical scheme that facilitates fractured reservoir simulation without upscaling. MsFEM uses a standard Darcy model to approximate the pressure and saturation on a coarse grid, whereas fine scale effects are captured through basis functions constructed by solving local flow problems using the discrete-fracture model. The accuracy and the robustness of MsFEM are shown through several examples. In the first example, we consider several small fractures in a matrix and then compare the results solved by the finite element method. Then, we use the MsFEM in more complex models. The results indicate that the MsFEM is a promising path toward direct simulation of highly resolution geomodels.
Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M.
2014-10-15
The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.
Accurate ab Initio Spin Densities
2012-01-01
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740]. PMID:22707921
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-28
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism. PMID:23635123
NASA Astrophysics Data System (ADS)
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-01
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.
NASA Technical Reports Server (NTRS)
1978-01-01
The methodology and rationale used in the development of costs for engineering, manufacturing, testing and operating a low thrust system for placing automated shuttle payloads into earth orbits are described. Cost related information for the recommended propulsion approach is included.
Experimental evidence of orbital order in α-B12 and γ-B28 polymorphs of elemental boron
NASA Astrophysics Data System (ADS)
Mondal, Swastik; van Smaalen, Sander; Parakhonskiy, Gleb; Prathapa, Siriyara Jagannatha; Noohinejad, Leila; Bykova, Elena; Dubrovinskaia, Natalia; Chernyshov, Dmitry; Dubrovinsky, Leonid
2013-07-01
The electron density of the α form of boron has been obtained by multipole refinement against high-resolution, single-crystal x-ray diffraction data measured on a high-quality single crystal at a temperature of 100 K. Topological properties of this density have been used to show that all chemical bonds between B12 clusters in α-B12 are formed due to one orbital on each boron atom that is oriented perpendicular to the surface of the cluster. It is shown that the same orbital order on B12 clusters persists in both α-B12 and γ-B28 polymorphs and in several dodecaboranes, despite the fact that in every case the B12 clusters participate in entirely different kinds of exocluster bonds. It is likely that the same orbital order of B12 clusters can explain bonding in other boron polymorphs and boron-rich solids.
NASA Astrophysics Data System (ADS)
Kizyun, L. M.; Klimyk, V. U.
2005-06-01
We present a short survey of the nine catalogues of positions and orbital elements of the geosynchronous space objects obtained by photographic method at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Space Research Laboratory of the Uzhhorod National University in 1983--2003. The information about seven of these catalogues you can read in detail on [http://www.mao.kiev.ua]. The GOCK-2003 catalogue will be presented in our web-site in the near time. The data of these catalogues can be used to update the catalogues of orbits of geostationary satellites, to identify objects more precisely by combining our observations with those obtained at other stations.
Orbital elements of 4U 0115+63 and the nature of the hard X-ray transients
NASA Technical Reports Server (NTRS)
Rappaport, S.; Clark, G. W.; Cominsky, L.; Li, F.; Joss, P. C.
1978-01-01
Extended SAS 3 timing observations of the hard transient X-ray source 4U 0115+63 are reported, and a definitive measurement of the binary orbit of this transient source is presented. It is shown that this source is in a long orbit (period of approximately 24.3 days) that is moderately eccentric (e about 0.34) and that the mean value of the rate of decrease of the pulse period is consistent with the expected spinup of a rotating neutron star that is accreting from a disk. A distance of about 2.5 kpc is inferred, and the B-star optical counterpart is estimated to have an absolute magnitude of approximately -1.5 and a mass of at least 5 solar masses. It is suggested that the companion is a Be star which does not fill its Roche lobe and that the eccentricity and transient nature of the source result from the large orbital separation. It is proposed that hard X-ray transients as a class are collapsed stars (perhaps all neutron stars) in binary systems that are substantially wider than the more persistent X-ray binaries and that the large orbital separation, the small radius of the companion, or both, result in episodic rather than continuous mass transfer onto the X-ray star.
Kullie, O; Zhang, H; Kolb, J; Kolb, D
2006-12-28
In previous work the authors have presented a highly accurate two-spinor fully relativistic solution of the two-center Coulomb problem utilizing the finite-element method (FEM) and furthermore developed a relativistic minimax two-spinor linear combination of atomic orbitals (LCAO). In the present paper the authors present Dirac-Fock-Slater (DFS-) density functional calculations for two-atomic molecules up to super heavy systems using the fully nonlinear minimax FEM and the minimax LCAO in its linearized approximation (linear approximation to relativistic minimax). The FEM gives highly accurate benchmark results for the DFS functional. Especially considering molecules with up to super heavy atoms such as UubO and Rg2, the authors found that LCAO fails to give the correct systematic trends. The accurate FEM results shed a new light on the quality of the DFS-density functional. PMID:17199347
ERIC Educational Resources Information Center
Rom, Mark Carl
2011-01-01
Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…
NASA Astrophysics Data System (ADS)
Latvakoski, Harri M.; Watson, Mike; Topham, Shane; Scott, Deron; Wojcik, Mike; Bingham, Gail
2010-07-01
Infrared radiometers and spectrometers generally use blackbodies for calibration, and with the high accuracy needs of upcoming missions, blackbodies capable of meeting strict accuracy requirements are needed. One such mission, the NASA climate science mission Climate Absolute Radiance and Refractivity Observatory (CLARREO), which will measure Earth's emitted spectral radiance from orbit, has an absolute accuracy requirement of 0.1 K (3σ) at 220 K over most of the thermal infrared. Space Dynamics Laboratory (SDL) has a blackbody design capable of meeting strict modern accuracy requirements. This design is relatively simple to build, was developed for use on the ground or onorbit, and is readily scalable for aperture size and required performance. These-high accuracy blackbodies are currently in use as a ground calibration unit and with a high-altitude balloon instrument. SDL is currently building a prototype blackbody to demonstrate the ability to achieve very high accuracy, and we expect it to have emissivity of ~0.9999 from 1.5 to 50 μm, temperature uncertainties of ~25 mK, and radiance uncertainties of ~10 mK due to temperature gradients. The high emissivity and low thermal gradient uncertainties are achieved through cavity design, while the low temperature uncertainty is attained by including phase change materials such as mercury, gallium, and water in the blackbody. Blackbody temperature sensors are calibrated at the melt points of these materials, which are determined by heating through their melt point. This allows absolute temperature calibration traceable to the SI temperature scale.
Accurate and transferable extended Hückel-type tight-binding parameters
NASA Astrophysics Data System (ADS)
Cerdá, J.; Soria, F.
2000-03-01
We show how the simple extended Hückel theory can be easily parametrized in order to yield accurate band structures for bulk materials, while the resulting optimized atomic orbital basis sets present good transferability properties. The number of parameters involved is exceedingly small, typically ten or eleven per structural phase. We apply the method to almost fifty elemental and compound bulk phases.
STS mission duration enhancement study: (orbiter habitability)
NASA Technical Reports Server (NTRS)
Carlson, A. D.
1979-01-01
Habitability improvements for early flights that could be implemented with minimum impact were investigated. These included: (1) launching the water dispenser in the on-orbit position instead of in a locker; (2) the sleep pallet concept; and (3) suction cup foot restraints. Past studies that used volumetric terms and requirements for crew size versus mission duration were reviewed and common definitions of key habitability terms were established. An accurately dimensioned drawing of the orbiter mid-deck, locating all of the known major elements was developed. Finally, it was established that orbiter duration and crew size can be increased with minimum modification and impact to the crew module. Preliminary concepts of the aft med-deck, external versions of expanded tunnel adapters (ETA), and interior concepts of ETA-3 were developed and comparison charts showing the various factors of volume, weight, duration, size, impact to orbiter, and number of sleep stations were generated.
An M-dwarf star in the transition disk of Herbig HD 142527. Physical parameters and orbital elements
NASA Astrophysics Data System (ADS)
Lacour, S.; Biller, B.; Cheetham, A.; Greenbaum, A.; Pearce, T.; Marino, S.; Tuthill, P.; Pueyo, L.; Mamajek, E. E.; Girard, J. H.; Sivaramakrishnan, A.; Bonnefoy, M.; Baraffe, I.; Chauvin, G.; Olofsson, J.; Juhasz, A.; Benisty, M.; Pott, J.-U.; Sicilia-Aguilar, A.; Henning, T.; Cardwell, A.; Goodsell, S.; Graham, J. R.; Hibon, P.; Ingraham, P.; Konopacky, Q.; Macintosh, B.; Oppenheimer, R.; Perrin, M.; Rantakyrö, F.; Sadakuni, N.; Thomas, S.
2016-05-01
Aims: HD 42527A is one of the most studied Herbig Ae/Be stars with a transitional disk, as it has the largest imaged gap in any protoplanetary disk: the gas is cleared from 30 to 90 AU. The HD 142527 system is also unique in that it has a stellar companion with a small mass compared to the mass of the primary star. This factor of ≈20 in mass ratio between the two objects makes this binary system different from any other YSO. The HD 142527 system could therefore provide a valuable test bed for understanding the impact of a lower mass companion on disk structure. This low-mass stellar object may be responsible for both the gap and dust trapping observed by ALMA at longer distances. Methods: We observed this system with the NACO and GPI instruments using the aperture masking technique. Aperture masking is ideal for providing high dynamic range even at very small angular separations. We present the spectral energy distribution (SED) for HD 142527A and B. Brightness of the companion is now known from the R band up to the M' band. We also followed the orbital motion of HD 142527B over a period of more than two years. Results: The SED of the companion is compatible with a T = 3000 ± 100 K object in addition to a 1700 K blackbody environment (likely a circum-secondary disk). From evolution models, we find that it is compatible with an object of mass 0.13 ± 0.03 M⊙, radius 0.90 ± 0.15 R⊙, and age Myr. This age is significantly younger than the age previously estimated for HD 142527A. Computations to constrain the orbital parameters found a semimajor axis of mas, an eccentricity of 0.5 ± 0.2, an inclination of 125 ± 15 degrees, and a position angle of the right ascending node of -5 ± 40 degrees. Inclination and position angle of the ascending node are in agreement with an orbit coplanar with the inner disk, not coplanar with the outer disk. Despite its high eccentricity, it is unlikely that HD 142527B is responsible for truncating the inner edge of the outer disk.
NASA Astrophysics Data System (ADS)
Drury, A. J.; Westerhold, T.; Frederichs, T.; Wilkens, R.; Channell, J. E. T.; Evans, H. F.; Hodell, D. A.; John, C. M.; Lyle, M. W.; Roehl, U.; Tian, J.
2015-12-01
In the 8-6 Ma interval, the late Miocene is characterised by a long-term -0.3 ‰ reduction in benthic foraminiferal δ18O and distinctive short-term δ18O cycles, possibly related to dynamic Antarctic ice sheet variability. In addition, the late Miocene carbon isotope shift (LMCIS) marks a permanent long-term -1 ‰ shift in oceanic δ13CDIC, which is the largest, long-term perturbation in the global marine carbon cycle since the mid Miocene Monterey excursion. Accurate age control is crucial to investigate the origin of the δ18O cyclicity and determine the precise onset of the LMCIS. The current Geological Time Scale in the 8-6 Ma interval is constructed using astronomical tuning of sedimentary cycles in Mediterranean outcrops. However, outside of the Mediterranean, a comparable high-resolution chemo-, magneto-, and cyclostratigraphy at a single DSDP/ODP/IODP site does not exist. Generating an accurate astronomically-calibrated chemo- and magneto-stratigraphy in the 8-6 Ma interval became possible with retrieval of equatorial Pacific IODP Sites U1337 and U1338, as both sites have sedimentation rates ~2 cm/kyr, high biogenic carbonate content, and magnetic polarity stratigraphies. Here we present high-resolution correlation of Sites U1337 and U1338 using Milankovitch-related cycles in core images and X-ray fluorescence core scanning data. By combining inclination and declination data from ~400 new discrete samples with shipboard measurements, we are able to identify 14 polarity reversals at Site U1337 from the young end of Chron C3An.1n (~6.03 Ma) to the onset of Chron C4n.2n (~8.11 Ma). New high-resolution (<1.5 kyr) stable isotope records from Site U1337 correlate highly with Site U1338 records, enabling construction of a high-resolution stack. Initial orbital tuning of the U1337-U1338 records show that the δ18O cyclicity is obliquity driven, indicating high-latitude climate forcing. The LMCIS starts ~7.55 Ma and is anchored in Chron C4n.1n, which is
NASA Technical Reports Server (NTRS)
Falk, A. Y.
1976-01-01
An analytical and experimental investigation was conducted to develop an understanding of the mechanisms that cause reactive stream separation, commonly called blowapart, for hypergolic propellants. The investigation was limited to a N2O4/MMH propellant combination and to a range of engine-operating conditions applicable to the space tug and space shuttle attitude control and orbital maneuvering engines. Primary test variables were: chamber pressure (1 to 20 atm), fuel injection temperature (283 to 400 K)m and propellant injection velocity (9 to 50 m/s). The injector configuration studied was the unlike doublet. The reactive stream separation experiments were conducted using special combustors designed to permit photography of the near-injector spray combustion flow field. Analysis of color motion pictures provided the means of determining the occurrence of reactive stream separation.
Nash, C.S.; Bursten, B.E.
1999-01-21
Relativistic effective core potentials and spin-orbit operators are used in relativistic configuration interaction calculations to explore the effects of spin-orbit coupling on the electronic structures of atoms and molecules of elements 114 and 118. The monohydrides of group IVA and the tetrafluorides of group VIIIA are examined in order to provide examples of trends within families among the various periods. The spin-orbit effect is found to play a dominant role in the determination of atomic and molecular properties. Several nonintuitive consequences of spin-orbit coupling are presented, including the depiction of element 114 as a closed-shell noble atom and the suggestion that the VSEPR theory in inadequate to describe the geometry of the rare gas tetrafluoride, (118)F{sub 4}.
NASA Astrophysics Data System (ADS)
Wadley, P.; Freeman, A. A.; Edmonds, K. W.; van der Laan, G.; Chauhan, J. S.; Campion, R. P.; Rushforth, A. W.; Gallagher, B. L.; Foxon, C. T.; Wilhelm, F.; Smekhova, A. G.; Rogalev, A.
2010-06-01
Using x-ray magnetic circular dichroism (XMCD), we determine the element-specific character and polarization of unoccupied states near the Fermi level in (Ga,Mn)As and (In,Ga,Mn)As thin films. The XMCD at the AsK absorption edge consists of a single peak located on the low-energy side of the edge, which increases with the concentration of ferromagnetic Mn moments. The XMCD at the MnK edge is more detailed and is strongly concentration dependent, which is interpreted as a signature of hole localization for low Mn doping. The results indicate a markedly different character of the polarized holes in low-doped insulating and high-doped metallic films, with a transfer of the hole orbital magnetic moment from Mn to As sites on crossing the metal-insulator transition.
Piper, L.; Cho, S; Zhang, Y; DeMasi, A; Smith, K; Matsuura, A; McGuinness, C
2010-01-01
The electronic structure of copper hexadecafluorophthalocyanine (F{sub 16}CuPc) has been measured using soft x-ray emission spectroscopy and x-ray absorption spectroscopy at the C, N, and F K edges. Our element- and orbital-specific measurements confirm that substitution of hydrogen for fluorine leads to profound changes in the electronic environment of the carbon atoms in contrast to that of the nitrogen atoms. These findings are supported by simulated x-ray absorption and emission spectra of F{sub 16}CuPc calculated by density-functional theory methods. The experimental results are directly compared with those of CuPc. Additional information regarding specific carbon sites is obtained from the evolution of the C K-edge resonant x-ray emission spectra of F{sub 16}CuPc.
Density Variations Observable by Precision Satellite Orbits
NASA Astrophysics Data System (ADS)
McLaughlin, C. A.; Lechtenberg, T.; Hiatt, A.
2008-12-01
This research uses precision satellite orbits from the Challenging Minisatellite Payload (CHAMP) satellite to produce a new data source for studying density changes that occur on time scales less than a day. Precision orbit derived density is compared to accelerometer derived density. In addition, the precision orbit derived densities are used to examine density variations that have been observed with accelerometer data to see if they are observable. In particular, the research will examine the observability of geomagnetic storm time changes and polar cusp features that have been observed in accelerometer data. Currently highly accurate density data is available from three satellites with accelerometers and much lower accuracy data is available from hundreds of satellites for which two-line element sets are available from the Air Force. This paper explores a new data source that is more accurate and has better temporal resolution than the two-line element sets, and provides better spatial coverage than satellites with accelerometers. This data source will be valuable for studying atmospheric phenomena over short periods, for long term studies of the atmosphere, and for validating and improving complex coupled models that include neutral density. The precision orbit derived densities are very similar to the accelerometer derived densities, but the accelerometer can observe features with shorter temporal variations. This research will quantify the time scales observable by precision orbit derived density. The technique for estimating density is optimal orbit determination. The estimates are optimal in the least squares or minimum variance sense. Precision orbit data from CHAMP is used as measurements in a sequential measurement processing and filtering scheme. The atmospheric density is estimated as a correction to an atmospheric model.
Menendez, J.; Poves, A.
2009-10-15
We discuss the variation of the nuclear matrix element (NME) for the neutrinoless double beta (0{nu}{beta}{beta}) decay of {sup 76}Ge when the wave functions are constrained to reproduce the experimental occupancies of the two nuclei involved in the transition. In the interacting shell model description the value of the NME is enhanced about 15% compared to previous calculations, whereas in the QRPA the NME's are reduced by 20%-30%. This diminishes the discrepancies between both approaches. In addition, we discuss the effect of the short-range correlations on the NME in light of the recently proposed parametrizations based on a consistent renormalization of the 0{nu}{beta}{beta} transition operator.
Ring Orbits from Multiple Occultation Observations
NASA Astrophysics Data System (ADS)
French, Richard G.; McGhee, C. A.; Marouf, E. A.; Rappaport, N.
2006-09-01
Planetary rings provide a remarkable laboratory for the investigation of a wide range of dynamical effects, including resonance-driven density and bending waves, satellite wakes, shepherding of narrow ringlets, and non-circular edges of gaps. Careful quantitative examination of these features requires a very accurate absolute radius scale and planetary pole direction, achievable by combining multiple stellar and radio occultation observations. Uncertainty in the location of the spacecraft (at the km level) introduces a fundamental uncertainty into the geometric solution for the ring radius scale, and in the end one must solve for corrections to the spacecraft trajectory as part of the overall determination of the ring orbital model. Using JPL's NAIF toolkit, we have developed accurate algorithms for computing the event time of a ring occultation during an Earth-based or spacecraft occultation, including the effects of spacecraft trajectory errors mapped in two orthogonal directions transverse to the line of sight, based on osculating orbital elements for the instantaneous spacecraft path. These are the fundamental building blocks for a global solution for the pole direction and orbits of the rings of Saturn and Uranus. For Uranus, our new orbit solution includes the full set of digitally recorded occultation data from 1977-2002, yielding a radius scale accurate at the 100 meter level. For Saturn, we explore the potential for highly accurate ring orbit determination as occultation observations from dozens of stellar and radio occultations become publicly available over the course of the ongoing Cassini orbital tour. Saturn's pole precession is also detectable from ring occultation data, and we set limits on the accuracy of the precession rate determination and the implications for our understanding of the mass distribution in Saturn's interior. This work was supported in part by the NASA PGG program.
Using GEO Optical Observations to Infer Orbit Populations
NASA Technical Reports Server (NTRS)
Matney, Mark; Africano, John
2002-01-01
NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit. When observing very dim objects with small field-of-view telescopes, though, the observations are generally too short to obtain accurate orbital elements. However, it is possible to use such observations to statistically characterize the small object environment. A telescope pointed at a particular spot could potentially see objects in a number of different orbits. Inevitably, when looking at one region for certain types of orbits, there are objects in other types of orbits that cannot be seen. Observation campaigns are designed with these limitations in mind and are set up to span a number of regions of the sky, making it possible to sample all potential orbits under consideration. Each orbit is not seen with the same probability, however, so there are observation biases intrinsic to any observation campaign. Fortunately, it is possible to remove such biases and reconstruct a meaningful estimate of the statistical orbit populations of small objects in GEO. This information, in turn, can be used to investigate the nature of debris sources and to characterize the risk to GEO spacecraft. This paper describes these statistical tools and presents estimates of small object GEO populations.
Mardirossian, Narbe; Head-Gordon, Martin
2016-09-13
The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistry. Overall, the main strength of the hybrid Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self-interaction error (e.g., M06-2X, M08-HX, M08-SO, MN15), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-L), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-L is clearly the best from the four local Minnesota functionals). As an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most broadly useful local Minnesota functionals, although each has different strengths and weaknesses. PMID:27537680
NASA Astrophysics Data System (ADS)
Yee, Jennifer C.; Johnson, John Asher; Skowron, Jan; Gould, Andrew; Pineda, J. Sebastian; Eastman, Jason; Vanderburg, Andrew; Howard, Andrew
2016-04-01
Light curves of microlensing events involving stellar binaries and planetary systems can provide information about the orbital elements of the system due to orbital modulations of the caustic structure. Accurately measuring the orbit in either the stellar or planetary case requires detailed modeling of subtle deviations in the light curve. At the same time, the natural, Cartesian parameterization of a microlensing binary is partially degenerate with the microlens parallax. Hence, it is desirable to perform independent tests of the predictions of microlens orbit models using radial velocity (RV) time series of the lens binary system. To this end, we present 3.5 years of RV monitoring of the binary lens system OGLE-2009-BLG-020 L, for which Skowron et al. constrained all internal parameters of the 200-700 day orbit. Our RV measurements reveal an orbit that is consistent with the predictions of the microlens light curve analysis, thereby providing the first confirmation of orbital elements inferred from microlensing events.
Satellite orbit theory for a small computer
NASA Astrophysics Data System (ADS)
Abbot, R. I.; Cefola, P.; Tse, S. F.
1983-12-01
This document describes a computer program put onto an LSI-11 microprocessor with 64KB of memory which can provide accurate ephemerides for GPS (Global Positioning System) satellites. The satellite dynamics include averaged orbital element rates due to J2, tesseral resonances, solar radiation pressure and third body perturbations from both the Moon and the Sun. These rates are first integrated up to and across a satellite pass of interest, and a two point Hermitian interpolating polynomial is established for each mean element. Short periodic Fourier coefficients due to J2 and the Moon and Sun are next computed, and three point Lagrangian interpolating polynomials are finally used to provide osculating orbital elements at arbitrary times during the pass. This computer program includes an analytical Lunar/Solar ephemeris so it is self-contained except for input mean orbital elements. Partial derivatives have been implemented which will give the capability to fit observations of the satellites and to consequently obtain the necessary mean elements. The program can be modified quite easily to handle synchronous satellites by modifying the subroutine modules for tesseral resonant perturbations and lunar-solar short-periodics. With the present overlay scheme, considerable expansion of the program is possible to obtain more accuracy and versatility.
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-28
In this paper, by applying the reduced density matrix (RDM) approach for nonorthogonal orbitals developed in the first paper of this series, efficient algorithms for matrix elements between VB structures and energy gradients in valence bond self-consistent field (VBSCF) method were presented. Both algorithms scale only as nm(4) for integral transformation and d(2)n(β)(2) for VB matrix elements and 3-RDM evaluation, while the computational costs of other procedures are negligible, where n, m, d, and n(β )are the numbers of variable occupied active orbitals, basis functions, determinants, and active β electrons, respectively. Using tensor properties of the energy gradients with respect to the orbital coefficients presented in the first paper of this series, a partial orthogonal auxiliary orbital set was introduced to reduce the computational cost of VBSCF calculation in which orbitals are flexibly defined. Test calculations on the Diels-Alder reaction of butadiene and ethylene have shown that the novel algorithm is very efficient for VBSCF calculations. PMID:23635124
Accurate and efficient spin integration for particle accelerators
NASA Astrophysics Data System (ADS)
Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; Barber, Desmond P.
2015-02-01
Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.
NASA Technical Reports Server (NTRS)
Jordan, J. F.; Boggs, D. H.; Born, G. H.; Christensen, E. J.; Ferrari, A. J.; Green, D. W.; Hylkema, R. K.; Mohan, S. N.; Reinbold, S. J.; Sievers, G. L.
1973-01-01
A historic account of the activities of the Satellite OD Group during the MM'71 mission is given along with an assessment of the accuracy of the determined orbit of the Mariner 9 spacecraft. Preflight study results are reviewed, and the major error sources described. Tracking and data fitting strategy actually used in the real time operations is itemized, and Deep Space Network data available for orbit fitting during the mission and the auxiliary information used by the navigation team are described. A detailed orbit fitting history of the first four revolutions of the satellite orbit of Mariner 9 is presented, with emphasis on the convergence problems and the delivered solution for the first orbit trim maneuver. Also included are a solution accuracy summary, the history of the spacecraft orbit osculating elements, the results of verifying the radio solutions with TV imaging data, and a summary of the normal points generated for the relativity experiment.
Navigation Accuracy Guidelines for Orbital Formation Flying
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Alfriend, Kyle T.
2004-01-01
Some simple guidelines based on the accuracy in determining a satellite formation s semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.
Navigation Guidelines for Orbital Formation Flying Missions
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
2003-01-01
Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member's semi-major axis are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or vice versa. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.
NASA Technical Reports Server (NTRS)
Bergeron, R. P.
1980-01-01
Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.
THE ORBITS OF THE OUTER URANIAN SATELLITES
Brozovic, M.; Jacobson, R. A.
2009-04-15
We report on the numerically integrated orbits for the nine outer Uranian satellites. The orbits are calculated based on fits to the astrometric observations for the period from 1984 to 2006. The results include the state vectors, post-fit residuals, and mean orbital elements. We also assess the accuracy of the orbital fits and discuss the need for future measurements.
Radio frequency interference at the geostationary orbit
NASA Technical Reports Server (NTRS)
Sue, M. K.
1981-01-01
Growing demands on the frequency spectrum have increased the possibility of radio frequency interference (RFI). Various approaches to obtain in orbit RFI data are compared; this comparision indicates that the most practical way to obtain RFI data for a desired orbit (such as a geostationary orbit) is through the extrapolation of in orbit RFI measurements by a low orbit satellite. It is concluded that a coherent RFI program that uses both experimental data and analytical predictions provides accurate RFI data at minimal cost.
... Names Idiopathic orbital inflammatory syndrome (IOIS) Images Skull anatomy References Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman W, Jaeger EA, eds. Duaneâ€™s ...
Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...
... Haemophilus influenzae B) vaccine. The bacteria Staphylococcus aureus , Streptococcus pneumoniae , and beta-hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and can lead ...
Short- and Long-Term Propagation of Spacecraft Orbits
NASA Technical Reports Server (NTRS)
Smith, John C., Jr.; Sweetser, Theodore; Chung, Min-Kun; Yen, Chen-Wan L.; Roncoli, Ralph B.; Kwok, Johnny H.; Vincent, Mark A.
2008-01-01
The Planetary Observer Planning Software (POPS) comprises four computer programs for use in designing orbits of spacecraft about planets. These programs are the Planetary Observer High Precision Orbit Propagator (POHOP), the Planetary Observer Long-Term Orbit Predictor (POLOP), the Planetary Observer Post Processor (POPP), and the Planetary Observer Plotting (POPLOT) program. POHOP and POLOP integrate the equations of motion to propagate an initial set of classical orbit elements to a future epoch. POHOP models shortterm (one revolution) orbital motion; POLOP averages out the short-term behavior but requires far less processing time than do older programs that perform long-term orbit propagations. POPP postprocesses the spacecraft ephemeris created by POHOP or POLOP (or optionally can use a less accurate internal ephemeris) to search for trajectory-related geometric events including, for example, rising or setting of a spacecraft as observed from a ground site. For each such event, POPP puts out such user-specified data as the time, elevation, and azimuth. POPLOT is a graphics program that plots data generated by POPP. POPLOT can plot orbit ground tracks on a world map and can produce a variety of summaries and generic ordinate-vs.-abscissa plots of any POPP data.
NASA Astrophysics Data System (ADS)
Kıran, E.; Harmanec, P.; Değirmenci, Ö. L.; Wolf, M.; Nemravová, J.; Šlechta, M.; Koubský, P.
2016-03-01
Context. The fact that eclipsing binaries belong to a stellar group is useful, because the former can be used to estimate distance and additional properties of the latter, and vice versa. Aims: Our goal is to analyse new spectroscopic observations of BD+ 36°3317 along with the photometric observations from the literature and, for the first time, to derive all basic physical properties of this binary. We aim to find out whether the binary is indeed a member of the δ Lyr open cluster. Methods: The spectra were reduced using the IRAF program and the radial velocities were measured with the program SPEFO. The line spectra of both components were disentangled with the program KOREL and compared to a grid of synthetic spectra. The final combined radial-velocity and photometric solution was obtained with the program PHOEBE. Results: We obtained the following physical elements of BD+36°3317: M1 = 2.24 ± 0.07 M⊙, M2 = 1.52 ± 0.03 M⊙, R1 = 1.76 ± 0.01 R⊙, R2 = 1.46 ± 0.01 R⊙, log L1 = 1.52 ± 0.08 L⊙, log L2 = 0.81 ± 0.07 L⊙. We derived the effective temperatures Teff,1 = 10 450 ± 420 K, Teff,2 = 7623 ± 328 K. Both components are located close to zero age main sequence in the Hertzsprung-Russell (HR) diagram and their masses and radii are consistent with the predictions of stellar evolutionary models. Our results imply the average distance to the system d̅ = 330 ± 29 pc. We re-investigated the membership of BD+ 36°3317 in the δ Lyr cluster and confirmed it. The distance to BD+ 36°3317, given above, therefore represents an accurate estimate of the true distance for δ Lyr cluster. Conclusions: The reality of the δ Lyr cluster and the cluster membership of BD+ 36°3317 have been reinforced.
Dynamic and thermal analyses of flexible structures in orbit
NASA Astrophysics Data System (ADS)
Lin, Chijie
Due to the launch cost and functional requirements, space structures, such as satellite antenna, deployable structures, solar sails, the space station, and solar panels, are necessarily built lightweight, large, and very flexible. These space structures undergo large orbital rigid body motions as well as large structural deformations caused by gravitational force and other disturbances, such as shuttle jet impingement loading, deployment factor, thermal effects, and debris impact. It is of utmost importance to study thoroughly the dynamic behavior of flexible structures in orbit under various external forces. In this study, first a finite element methodology program based on the absolute nodal coordinate formulation is developed to determine the coupled structural and orbital response of the flexible structure under gravitational and external loading, i.e., gravitational force, impact force, and jet impingement, and thermal loading. It is found from the simulation results that pitch and structural response of the flexible structures are greatly impacted by the initial and loading conditions, such as orbit eccentricity, initial misalignment, etc. The absolute nodal coordinate formulation may lead to inaccurate results due to the fact that the orbit radius is used for element coordinate, which is much greater than the amplitude of the pitch (attitude) motion and deformations of the orbiting structures. Therefore, to improve the accuracy of structural response in the simulation, a floating (moving) frame that is attached with the orbiting structure's center of mass and that moves parallel to the inertia frame fixed at the Earth's center is introduced to separate the attitude motion and structural deformation from the orbit radius. The finite element formulation is developed in this parallel reference frame system for two and three dimensional beam structures. It is then used to study dynamic response of flexible structures in two and three dimensional orbits. In some
Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue
2013-01-15
The potential energy curves (PECs) of 15 Ω states generated from five Λ-S states (A2Π, 1(4)Σ+, 1(4)Π, 2(4)Π and 1(6)Σ+) of AlO radical are studied in detail using high level ab initio quantum chemical method for the first time. All the PEC calculations are made by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson modification (MRCI+Q). The spin-orbit coupling effect is included by the Breit-Pauli Hamiltonian with the aug-cc-pCVTZ basis set. Convergent behavior is discussed and excellent convergence has been observed with respect to the basis sets and level of theory. To improve the quality of PECs, core-valence correlation and scalar relativistic corrections are taken into account. Core-valence correlation corrections are included employing a cc-pCVQZ basis set. Scalar relativistic corrections are calculated by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. All the PECs are extrapolated to the complete basis set limit by the total-energy extrapolation scheme. With these PECs including all the corrections used here, on the one hand, the spectroscopic parameters of all the Λ-S and Ω states are calculated, which are in reasonable agreement with the experimental and other theoretical results; on the other hand, the vibrational levels and inertial rotation constants of X2Σ+, A2Π, B2Σ+ Λ-S states as well as A2Π3/2 and A2Π1/2 Ω states are determined, which also agree well with the measurements. The vibrational levels and inertial rotation constants of A(2)Π3/2 and A2Π1/2 Ω states as well as the spectroscopic parameters of four Λ-S states (1(4)Σ+, 1(4)Π, 2(4)Π and 1(6)Σ+) and their corresponding 13 Ω states can be expected to be reliable predicted ones. PMID:23143209
Navigation and attitude reference for autonomous satellite launch and orbital operations
NASA Technical Reports Server (NTRS)
Kau, S. P.
1979-01-01
The navigation and attitude reference performance of a strapdown system are investigated for applications to autonomous satellite launch and orbital operations. It is assumed that satellite payloads are integrated into existing missile systems and that the boost, orbit insertion, and in-orbit operation of the satellite are performed autonomously without relying on external support facilities. Autonomous and long term accurate navigation and attitude reference are provided by a strapdown inertial navigation system aided by a star sensor and earth landmark sensor. Sensor measurement geometry and navigation and attitude update mechanizations are discussed. Performance analysis data are presented for following functional elements: (1) prelaunch alignment; (2) boost navigation and attitude reference; (3) post boost stellar attitude and navigation updates; (4) orbital navigation update using sensor landmark measurements; and (5) in-orbit stellar attitude update and gyro calibration. The system performances are shown to satisfy the requirements of a large class of satellite payload applications.
Speckle and spectroscopic orbits of the early A-type triple system Eta Virginis
NASA Technical Reports Server (NTRS)
Hartkopf, William I.; Mcalister, Harold A.; Yang, Xinxing; Fekel, Francis C.
1992-01-01
Eta Virginis is a bright (V = 3.89) triple system of composite spectral type A2 IV that has been observed for over a dozen years with both spectroscopy and speckle interferometry. Analysis of the speckle observations results in a long period of 13.1 yr. This period is also detected in residuals from the spectroscopic observations of the 71.7919 day short-period orbit. Elements of the long-period orbit were determined separately using the observations of both techniques. The more accurate elements from the speckle solution have been assumed in a simultaneous spectroscopic determination of the short- and long-period orbital elements. The magnitude difference of the speckle components suggests that lines of the third star should be visible in the spectrum.
NASA Technical Reports Server (NTRS)
Colombo, O. L.
1984-01-01
The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.
Orbit determination methods in view of the PODET project
NASA Astrophysics Data System (ADS)
Deleflie, F.; Coulot, D.; Decosta, R.; Richard, P.
2013-11-01
We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen.
Harmonically excited orbital variations
Morgan, T.
1985-08-06
Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.
Information Measures for Statistical Orbit Determination
ERIC Educational Resources Information Center
Mashiku, Alinda K.
2013-01-01
The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain…
Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N
2014-12-01
Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. PMID:25455557
Orbital dependent functionals: An atom projector augmented wave method implementation
NASA Astrophysics Data System (ADS)
Xu, Xiao
This thesis explores the formulation and numerical implementation of orbital dependent exchange-correlation functionals within electronic structure calculations. These orbital-dependent exchange-correlation functionals have recently received renewed attention as a means to improve the physical representation of electron interactions within electronic structure calculations. In particular, electron self-interaction terms can be avoided. In this thesis, an orbital-dependent functional is considered in the context of Hartree-Fock (HF) theory as well as the Optimized Effective Potential (OEP) method and the approximate OEP method developed by Krieger, Li, and Iafrate, known as the KLI approximation. In this thesis, the Fock exchange term is used as a simple well-defined example of an orbital-dependent functional. The Projected Augmented Wave (PAW) method developed by P. E. Blochl has proven to be accurate and efficient for electronic structure calculations for local and semi-local functions because of its accurate evaluation of interaction integrals by controlling multiple moments. We have extended the PAW method to treat orbital-dependent functionals in Hartree-Fock theory and the Optimized Effective Potential method, particularly in the KLI approximation. In the course of study we develop a frozen-core orbital approximation that accurately treats the core electron contributions for above three methods. The main part of the thesis focuses on the treatment of spherical atoms. We have investigated the behavior of PAW-Hartree Fock and PAW-KLI basis, projector, and pseudopotential functions for several elements throughout the periodic table. We have also extended the formalism to the treatment of solids in a plane wave basis and implemented PWPAW-KLI code, which will appear in future publications.
Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR.
Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao
2016-01-01
The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168
Rolling Element Bearing Stiffness Matrix Determination (Presentation)
Guo, Y.; Parker, R.
2014-01-01
Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.
Techniques of orbital decay and long-term ephemeris prediction for satellites in earth orbit
NASA Technical Reports Server (NTRS)
Barry, B. F.; Pimm, R. S.; Rowe, C. K.
1971-01-01
In the special perturbation method, Cowell and variation-of-parameters formulations of the motion equations are implemented and numerically integrated. Variations in the orbital elements due to drag are computed using the 1970 Jacchia atmospheric density model, which includes the effects of semiannual variations, diurnal bulge, solar activity, and geomagnetic activity. In the general perturbation method, two-variable asymptotic series and automated manipulation capabilities are used to obtain analytical solutions to the variation-of-parameters equations. Solutions are obtained considering the effect of oblateness only and the combined effects of oblateness and drag. These solutions are then numerically evaluated by means of a FORTRAN program in which an updating scheme is used to maintain accurate epoch values of the elements. The atmospheric density function is approximated by a Fourier series in true anomaly, and the 1970 Jacchia model is used to periodically update the Fourier coefficients. The accuracy of both methods is demonstrated by comparing computed orbital elements to actual elements over time spans of up to 8 days for the special perturbation method and up to 356 days for the general perturbation method.
Orbital Evolution and Impact Hazard of Asteroids on Retrograde Orbits
NASA Astrophysics Data System (ADS)
Kankiewicz, P.; Włodarczyk, I.
2014-07-01
We present the past evolutional scenarios of known group of asteroids in retrograde orbits. Applying the latest observational data, we determined their nominal and averaged orbital elements. Next, we studied the behaviour of their orbital motion 1~My in the past (100~My in the future for two NEAs) taking into account the limitations of observational errors. It has been shown that the influence of outer planets perturbations in many cases can import small bodies on high inclination or retrograde orbits into the inner Solar System.
NASA Astrophysics Data System (ADS)
Cherevchenko, T. M.; Zaimenko, N. V.
Epiphytic orchids are shown to be more stable in a long stay on board an orbital station than terrestrial species. Simulations revealed that the activity of native growth stimulators (free auxins and gibberellines) under the prolonged clinostating conditions varied in epiphytic orchids to a lesser extent than in terrestrial orchids. This factor, together with a weaker geotropic reaction, seems to be a cause of their stability in microgravitation conditions. The authors found also that orchids with the monopodial type of shoot system branching are less stable at microgravity than the sympodial species.
NASA Astrophysics Data System (ADS)
Syusina, O. M.; Chernitsov, A. M.; Tamarov, V. A.; Baturin, A. P.
2011-07-01
The analysis various systems of initial orbital elements of comet Herschel-Rigollet defined in bases on different sample of observations was given. In spite of slight quantity of first appearance observations the introduction of weighting coefficients and the new rejection algorithm is allowed to define the most precise system of orbital elements with the least value of volume confidence region.
Deceleration Orbit Improvements
Church, M.
1991-04-26
During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.
NASA Astrophysics Data System (ADS)
Wright, J. T.; Fakhouri, O.; Marcy, G. W.; Han, E.; Feng, Y.; Johnson, John Asher; Howard, A. W.; Fischer, D. A.; Valenti, J. A.; Anderson, J.; Piskunov, N.
2011-04-01
We present a database of well-determined orbital parameters of exoplanets, and their host stars' properties. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form online through the Exoplanets Data Explorer table, and the data can be plotted and explored through the Exoplanet Data Explorer plotter. We use the Data Explorer to generate publication-ready plots, giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the different selection biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semimajor-axis distribution from apparently singleton systems.
NASA Technical Reports Server (NTRS)
Edwards, J. Darryl; Ungar, Eugene K.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e., US Laboratory module) contain a fluid accumulator to accommodate thermal expansion of the system. Other element coolant loops are parasitic (i.e., Airlock), have no accumulator, and require an alternative approach to insure that the system Maximum Design Pressure (MDP) is not exceeded during the Launch to Activation phase. During this time the element loop is a stand alone closed individual system. The solution approach for accommodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.
NASA Technical Reports Server (NTRS)
Edwards, Darryl; Ungar, Eugene K.; Holt, James M.
2002-01-01
The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.
Orbital spacecraft resupply technology
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.
1986-01-01
The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.
NASA Technical Reports Server (NTRS)
2005-01-01
The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.
NASA Astrophysics Data System (ADS)
Gorbunova, I.; Khabibullin, R.; Chernyakin, S.; Starinova, O.
2016-04-01
This paper discusses the research of functioning of different construction types for the spacecraft with a solar sail. Two types of the solar sail are considered, such as frame-type and rotary-type. The research is performed by means of application of the computer-assisted design system. The movement simulation of the spacecraft center mass and the forces acting on the solar sail is described. The finite element models of the two solar sail constructions are developed and compared.
Electric propulsion: Synergy of orbit transfer and maintenance
NASA Technical Reports Server (NTRS)
Zafran, S.
1982-01-01
Electric propulsion systems for transferring large payload masses to geosynchronous Earth orbits and providing accurate on-orbit stationkeeping are evaluated. Orbit boosting, inclination change, attitude control, stationkeeping, relocation, disposal, and power sharing on orbits using electric propulsion are compared with the use of chemical propulsion.
NASA Astrophysics Data System (ADS)
Teodoro, M.; Damineli, A.; Heathcote, B.; Richardson, N. D.; Moffat, A. F. J.; St-Jean, L.; Russell, C.; Gull, T. R.; Madura, T. I.; Pollard, K. R.; Walter, F.; Coimbra, A.; Prates, R.; Fernández-Lajús, E.; Gamen, R. C.; Hickel, G.; Henrique, W.; Navarete, F.; Andrade, T.; Jablonski, F.; Luckas, P.; Locke, M.; Powles, J.; Bohlsen, T.; Chini, R.; Corcoran, M. F.; Hamaguchi, K.; Groh, J. H.; Hillier, D. J.; Weigelt, G.
2016-03-01
Eta Carinae (η Car) is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He ii λ4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He ii λ4686 emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of the line equivalent width (EW), radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW variations, combined with other measurements, yield an orbital period of 2022.7 ± 0.3 days. The observed variability of the EW was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary’s atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135°-153°, and the longitude of periastron to 234°-252°. It also suggests that periastron passage occurred on {T}0=2456874.4\\quad (+/- 1.3 days). Our model also reproduced EW variations from a polar view of the primary star as determined from the observed He ii λ 4686 emission scattered off the Homunculus nebula. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program numbers 11506, 12013, 12508, 12750, and 13054. Support for program numbers 12013, 12508, and 12750 was provided by NASA
NASA Astrophysics Data System (ADS)
Teodoro, M.; Damineli, A.; Heathcote, B.; Richardson, N. D.; Moffat, A. F. J.; St-Jean, L.; Russell, C.; Gull, T. R.; Madura, T. I.; Pollard, K. R.; Walter, F.; Coimbra, A.; Prates, R.; Fernández-Lajús, E.; Gamen, R. C.; Hickel, G.; Henrique, W.; Navarete, F.; Andrade, T.; Jablonski, F.; Luckas, P.; Locke, M.; Powles, J.; Bohlsen, T.; Chini, R.; Corcoran, M. F.; Hamaguchi, K.; Groh, J. H.; Hillier, D. J.; Weigelt, G.
2016-03-01
Eta Carinae (η Car) is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He ii λ4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He ii λ4686 emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of the line equivalent width (EW), radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW variations, combined with other measurements, yield an orbital period of 2022.7 ± 0.3 days. The observed variability of the EW was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary’s atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135°-153°, and the longitude of periastron to 234°-252°. It also suggests that periastron passage occurred on {T}0=2456874.4\\quad (+/- 1.3 days). Our model also reproduced EW variations from a polar view of the primary star as determined from the observed He ii λ 4686 emission scattered off the Homunculus nebula. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program numbers 11506, 12013, 12508, 12750, and 13054. Support for program numbers 12013, 12508, and 12750 was provided by NASA
Iterative diagonalization for orbital optimization in natural orbital functional theory.
Piris, M; Ugalde, J M
2009-10-01
A challenging task in natural orbital functional theory is to find an efficient procedure for doing orbital optimization. Procedures based on diagonalization techniques have confirmed its practical value since the resulting orbitals are automatically orthogonal. In this work, a new procedure is introduced, which yields the natural orbitals by iterative diagonalization of a Hermitian matrix F. The off-diagonal elements of the latter are determined explicitly from the hermiticity of the matrix of the Lagrange multipliers. An expression for diagonal elements is absent so a generalized Fockian is undefined in the conventional sense, nevertheless, they may be determined from an aufbau principle. Thus, the diagonal elements are obtained iteratively considering as starting values those coming from a single diagonalization of the matrix of the Lagrange multipliers calculated with the Hartree-Fock orbitals after the occupation numbers have been optimized. The method has been tested on the G2/97 set of molecules for the Piris natural orbital functional. To help the convergence, we have implemented a variable scaling factor which avoids large values of the off-diagonal elements of F. The elapsed times of the computations required by the proposed procedure are compared with a full sequential quadratic programming optimization, so that the efficiency of the method presented here is demonstrated. PMID:19219918
Orbital origin and matrix element effects in the Ag/Si(1 1 1)-( √{3}×√{3})R30° Fermi surface
NASA Astrophysics Data System (ADS)
Pérez-Dieste, V.; Sánchez-Royo, J. F.; Avila, J.; Izquierdo, M.; Roca, L.; Tejeda, A.; Asensio, M. C.
2007-02-01
The Fermi surface (FS) of the Ag/Si(1 1 1)- √{3}×√{3} reconstruction with an excess of Ag has been mapped by angle resolved photoemission spectroscopy with polarized light in a wide region of the reciprocal space and with different detection geometries. In contrast to previous results, a strong polarization dependence is observed. Applying the dipole selection rules, it is found that the surface state at the Fermi level, S 1 state, has odd symmetry with respect to the mirror plane of the honeycomb-chained triangle structure, indicating that it is mainly derived from Ag 5p x and 5p y orbitals. This conclusion is revised in the new frame of a inequivalent-triangle structure for the Ag/Si(1 1 1)- √{3}×√{3} at room temperature. Besides, strong modulations of the intensity distribution are found that deviate the Fermi surface pattern from its expected two-dimensional periodical behavior.
An Analytical Satellite Orbit Predictor (ASOP)
NASA Technical Reports Server (NTRS)
1979-01-01
The documentation and user's guide are presented for the analytical satellite orbit predictor computer program which is intended to be used for computation of near-earth orbits including those of the shuttle orbiter and its payloads. The Poincare-Similar elements used make it possible to compute near-earth orbits to within an accuracy of a few meters. Recursive equations are used instead of complicated formulas. Execution time is on the order of a few milliseconds.
Navigation Accuracy Guidelines for Orbital Formation Flying Missions
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Alfriend, Kyle T.
2003-01-01
Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver we, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.
Orbit propagation in Minkowskian geometry
NASA Astrophysics Data System (ADS)
Roa, Javier; Peláez, Jesús
2015-09-01
The geometry of hyperbolic orbits suggests that Minkowskian geometry, and not Euclidean, may provide the most adequate description of the motion. This idea is explored in order to derive a new regularized formulation for propagating arbitrarily perturbed hyperbolic orbits. The mathematical foundations underlying Minkowski space-time are exploited to describe hyperbolic orbits. Hypercomplex numbers are introduced to define the rotations, vectors, and metrics in the problem: the evolution of the eccentricity vector is described on the Minkowski plane in terms of hyperbolic numbers, and the orbital plane is described on the inertial reference using quaternions. A set of eight orbital elements is introduced, namely a time-element, the components of the eccentricity vector in , the semimajor axis, and the components of the quaternion defining the orbital plane. The resulting formulation provides a deep insight into the geometry of hyperbolic orbits. The performance of the formulation in long-term propagations is studied. The orbits of four hyperbolic comets are integrated and the accuracy of the solution is compared to other regularized formulations. The resulting formulation improves the stability of the integration process and it is not affected by the perihelion passage. It provides a level of accuracy that may not be reached by the compared formulations, at the cost of increasing the computational time.
Mission analysis data for inclined geosynchronous orbits, part 1
NASA Technical Reports Server (NTRS)
Graf, O. F., Jr.; Wang, K. C.
1980-01-01
Data needed for preliminary design of inclined geosynchronous missions are provided. The inertial and Earth fixed coordinate systems are described, as well as orbit parameters and elements. The complete family of geosynchronous orbits is discussed. It is shown that circular inclined geosynchronous orbits comprise only one set in this family. The major orbit perturbation and their separate effects on the geosynchronous orbit are discussed. Detailed information on the orbit perturbation of inclined circular geosynchronous orbits is given, with emphasis on time history data of certain orbital elements. Orbit maintenance delta velocity (V) requirements to counteract the major orbit perturbations are determined in order to provide order of magnitude estimates and to show the effects of orbit inclination on delta V. Some of the considerations in mission design for a multisatellite system, such as a halo orbit constellation, are discussed.
Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.
Robinson, David
2014-12-01
A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation. PMID:26583218
Understanding the Code: keeping accurate records.
Griffith, Richard
2015-10-01
In his continuing series looking at the legal and professional implications of the Nursing and Midwifery Council's revised Code of Conduct, Richard Griffith discusses the elements of accurate record keeping under Standard 10 of the Code. This article considers the importance of accurate record keeping for the safety of patients and protection of district nurses. The legal implications of records are explained along with how district nurses should write records to ensure these legal requirements are met. PMID:26418404
General orbital invariant MP2-F12 theory.
Werner, Hans-Joachim; Adler, Thomas B; Manby, Frederick R
2007-04-28
A general form of orbital invariant explicitly correlated second-order closed-shell Moller-Plesset perturbation theory (MP2-F12) is derived, and compact working equations are presented. Many-electron integrals are avoided by resolution of the identity (RI) approximations using the complementary auxiliary basis set approach. A hierarchy of well defined levels of approximation is introduced, differing from the exact theory by the neglect of terms involving matrix elements over the Fock operator. The most accurate method is denoted as MP2-F12/3B. This assumes only that Fock matrix elements between occupied orbitals and orbitals outside the auxiliary basis set are negligible. For the chosen ansatz for the first-order wave function this is exact if the auxiliary basis is complete. In the next lower approximation it is assumed that the occupied orbital space is closed under action of the Fock operator [generalized Brillouin condition (GBC)]; this is equivalent to approximation 2B of Klopper and Samson [J. Chem. Phys. 116, 6397 (2002)]. Further approximations can be introduced by assuming the extended Brillouin condition (EBC) or by neglecting certain terms involving the exchange operator. A new approximation MP2-F12/3C, which is closely related to the MP2-R12/C method recently proposed by Kedzuch et al. [Int. J. Quantum Chem. 105, 929 (2005)] is described. In the limit of a complete RI basis this method is equivalent to MP2-F12/3B. The effect of the various approximations (GBC, EBC, and exchange) is tested by studying the convergence of the correlation energies with respect to the atomic orbital and auxiliary basis sets for 21 molecules. The accuracy of relative energies is demonstrated for 16 chemical reactions. Approximation 3C is found to perform equally well as the computationally more demanding approximation 3B. The reaction energies obtained with smaller basis sets are found to be most accurate if the orbital-variant diagonal Ansatz combined with localized orbitals
Martin-Hirsch, D P; Habashi, S; Hinton, A H; Kotecha, B
1992-01-01
Orbital cellulitis is an emergency. It may cause blindness and progress to life-threatening sequelae such as brain abscess, meningitis and cavernous sinus thrombosis. Successful management is dependent upon urgent referral and immediate treatment. Although isolated eyelid erythema and swelling usually indicate primary infection anterior to the orbital septum, they may also be the first signs of an underlying frontal or ethmoidal sinusitis. The condition always requires emergency referral to both an ophthalmologist and otorhinolaryngologist. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1388488
NASA Technical Reports Server (NTRS)
Kessler, D. J. (Compiler); Su, S. Y. (Compiler)
1985-01-01
Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.
Lageos orbit and solar eclipses
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1984-01-01
The objective was to assess the importance of solar eclipses on Lageos' orbit. Solar radiation pressure perturbs the orbit of the Lageos satellite. The GEODYN orbit determination computer program includes solar radiation pressure as one of the forces operating on the satellite as it integrates the orbit. GEODYN also takes into account the extinction of sunlight when Lageos moves into the Earth's shadow. The effect of solar eclipses on the semimajor axis of Lageos' orbit was computed analytically by assuming Lageos to be in a circular orbit, the Sun and the Moon to be in the plane of the orbit, and the Moon to be stationary in the sky in front of the Sun. Also, the magnitude of the radiation pressure is assumed to be linearly related to the angular separation of the Sun and Moon, and that Lageos is a perfect absorber of radiation. The computation indicates that an eclipse of the Sun by the Moon as seen by Lageos can affect the semimajor axis at the 1 centimeter (1 cm) level. Such a change is significant enough to include in GEODYN, in order to get an accurate orbit for Lageos.
General relativity and satellite orbits
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1975-01-01
The general relativistic correction to the position of a satellite is found by retaining Newtonian physics for an observer on the satellite and introducing a potential. The potential is expanded in terms of the Keplerian elements of the orbit and substituted in Lagrange's equations. Integration of the equations shows that a typical earth satellite with small orbital eccentricity is displaced by about 17 cm. from its unperturbed position after a single orbit, while the periodic displacement over the orbit reaches a maximum of about 3 cm. The moon is displaced by about the same amounts. Application of the equations to Mercury gives a total displacement of about 58 km. after one orbit and a maximum periodic displacement of about 12 km.
Accurate monotone cubic interpolation
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1991-01-01
Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Orbit determination by genetic algorithm and application to GEO observation
NASA Astrophysics Data System (ADS)
Hinagawa, Hideaki; Yamaoka, Hitoshi; Hanada, Toshiya
2014-02-01
This paper demonstrates an initial orbit determination method that solves the problem by a genetic algorithm using two well-known solutions for the Lambert's problem: universal variable method and Battin method. This paper also suggests an intuitive error evaluation method in terms of rotational angle and orbit shape by separating orbit elements into two groups. As reference orbit, mean orbit elements (original two-lines elements) and osculating orbit elements considering the J2 effect are adopted and compared. Our proposed orbit determination method has been tested with actual optical observations of a geosynchronous spacecraft. It should be noted that this demonstration of the orbit determination is limited to one test case. This observation was conducted during approximately 70 min on 2013/05/15 UT. Our method was compared with the orbit elements propagated by SGP4 using the TLE of the spacecraft. The result indicates that our proposed method had a slightly better performance on estimating orbit shape than Gauss's methods and Escobal's method by 120 km. In addition, the result of the rotational angle is closer to the osculating orbit elements than the mean orbit elements by 0.02°, which supports that the estimated orbit is valid.
Satellite Orbital Interpolation Comparison Methods
NASA Astrophysics Data System (ADS)
Richard, J.-Y.; Deleflie, F.; Gambis, D.
2012-04-01
A satellite or artificial probe orbit is made of time series of orbital elements such as state vectors (position and velocities, keplerian orbital elements) given at regular or irregular time intervals. These time series are fitted to observations, so that differences between observations (distance, radial velocity) and the theoretical quantity be minimal, according to a statistical criterion, mostly based on the least-squared algorithm. These computations are carried out using dedicated software, such as the GINS used by GRGS, mainly at CNES Toulouse and Paris Observatory. From an operational point of view, time series of orbital elements are 7-day long. Depending on the dynamical configurations, more generally, they can typically vary from a couple of days to some weeks. One of the fundamental parameters to be adjusted is the initial state vector. This can lead to time gaps, at the level of a few dozen of centimeters between the last point of a time series to the first one of the following data set. The objective of this presentation consists in the improvement of an interpolation method freed itself of such possible "discontinuities" resulting between satellite's orbit arcs when a new initial bulletin is adjusted. We show the principles of interpolation for these time series and compare solutions coming from different interpolation methods such as Lagrange polynomial, spline cubic, Chebyshev orthogonal polynomial and cubic Hermite polynomial. These polynomial coefficients are used to reconstruct and interpolate the satellite orbits without time gaps and discontinuities and requiring a weak memory size.
Autonomous orbital navigation using Kepler's equation
NASA Technical Reports Server (NTRS)
Boltz, F. W.
1974-01-01
A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.
Orbit, reentry, and landing attachment for globes
NASA Technical Reports Server (NTRS)
Pritchard, E. B.
1970-01-01
Navigational device, invented to aid recovery of spacecraft from any orbit, also illustrates motions of satellites relative to earth and their entry-ranging requirements. Device rapidly and accurately defines lateral range requirements for spacecraft returning to any desired site without manual or computerized calculation of orbital equations of motion.
Orbitals: Some Fiction and Some Facts
ERIC Educational Resources Information Center
Autschbach, Jochen
2012-01-01
The use of electron orbitals in quantum theory and chemistry is discussed. Common misconceptions are highlighted. Suggestions are made how chemistry educators may describe orbitals in the first and second year college curriculum more accurately without introducing unwanted technicalities. A comparison is made of different ways of graphically…
Solid Propulsion De-Orbiting and Re-Orbiting
NASA Astrophysics Data System (ADS)
Schonenborg, R. A. C.; Schoyer, H. F. R.
2009-03-01
With many "innovative" de-orbit systems (e.g. tethers, aero breaking, etc.) and with natural de-orbit, the place of impact of unburned spacecraft debris on Earth can not be determined accurately. The idea that satellites burn up completely upon re-entry is a common misunderstanding. To the best of our knowledge only rocket motors are capable of delivering an impulse that is high enough, to conduct a de-orbit procedure swiftly, hence to de-orbit at a specific moment that allows to predict the impact point of unburned spacecraft debris accurately in remote areas. In addition, swift de-orbiting will reduce the on-orbit time of the 'dead' satellite, which reduces the chance of the dead satellite being hit by other dead or active satellites, while spiralling down to Earth during a slow, 25 year, or more, natural de-orbit process. Furthermore the reduced on-orbit time reduces the chance that spacecraft batteries, propellant tanks or other components blow up and also reduces the time that the object requires tracking from Earth.The use of solid propellant for the de-orbiting of spacecraft is feasible. The main advantages of a solid propellant based system are the relatively high thrust and the facts that the system can be made autonomous quite easily and that the system can be very reliable. The latter is especially desirable when one wants to de-orbit old or 'dead' satellites that might not be able to rely anymore on their primary systems. The disadvantage however, is the addition of an extra system to the spacecraft as well as a (small) mass penalty. [1]This paper describes the above mentioned system and shows as well, why such a system can also be used to re-orbit spacecraft in GEO, at the end of their life to a graveyard orbit.Additionally the system is theoretically compared to an existing system, of which performance data is available.A swift market analysis is performed as well.
NASA Astrophysics Data System (ADS)
Heintz, W. D.
1981-04-01
Micrometer observations in 1979-1980 permitted the computation of substantially revised or new orbital elements for 15 visual pairs. They include the bright stars 52 Ari and 78 UMa (in the UMa cluster), four faint dK pairs, and the probable triple ADS 16185. Ephemerides for equator of data are listed in a table along with the orbital elements of the binaries. The measured positions and their residuals are listed in a second table. The considered binaries include ADS 896, 2336, 6315, 7054, 7629, 8092, 8555, 8739, 13987, 16185, Rst 1658, 3906, 3972, 4529, and Jsp 691.
Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...
NASA Astrophysics Data System (ADS)
Itano, Wayne M.; Ramsey, Norman F.
1993-07-01
The paper discusses current methods for accurate measurements of time by conventional atomic clocks, with particular attention given to the principles of operation of atomic-beam frequency standards, atomic hydrogen masers, and atomic fountain and to the potential use of strings of trapped mercury ions as a time device more stable than conventional atomic clocks. The areas of application of the ultraprecise and ultrastable time-measuring devices that tax the capacity of modern atomic clocks include radio astronomy and tests of relativity. The paper also discusses practical applications of ultraprecise clocks, such as navigation of space vehicles and pinpointing the exact position of ships and other objects on earth using the GPS.
Accurate quantum chemical calculations
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.
Formation flying in elliptic orbits with the J2 perturbation
NASA Astrophysics Data System (ADS)
Hou, Xi-Yun; Zhao, Yu-Hui; Liu, Lin
2012-11-01
Relative dynamics between the chief satellite and the deputy ones in formation flying is crucial to maintaining the formation. A good choice of the formation usually requires a lower control frequency or less control energy. For formation flying missions in highly elliptic orbits, the well-known C-W equation is not accurate enough. Instead, Lawden's equation is often used. First, the solution to Lawden's equation with a very simple form is deduced. Then the J2 perturbation is added. It is found that Lawden's solution is not necessarily valid when the J2 perturbation is considered. Completely discarding Lawden's solution and borrowing the idea of mean orbit elements, two rules to initialize the formation are proposed. The deviation speed is greatly reduced. Different from previous studies on the J2 perturbation, except for the relatively simple expression for the semi-major axis, the tedious formulae of the long period terms and the short period terms of other orbital elements are not used. In addition, the deviation speed is further reduced by compensation of the nonlinear effects. Finally, a loose control strategy of the formation is proposed. To test the robustness of this strategy, a third body perturbation is added in numerical simulations.
Meteoroid and orbital debris shielding on the Orbital Maneuvering Vehicle
NASA Technical Reports Server (NTRS)
Kirkpatrick, Marc E.
1989-01-01
NASA's Orbital Maneuvering Vehicle (OMV) is being designed to withstand a 10-year lifetime in polar and low earth orbits. A large percentage of OMV's lifetime will be spent operating in the vicinity of the Space Shuttle and Space Station or in storage at these manned locations. An extensive analysis has been performed to determine the effects of the meteoroid and orbital debris environments on OMV's external fuel tanks. A finite element model of OMV was constructed using NASTRAN and analyzed with the meteoroid and debris design analysis code BUMPER. The results show that the long design lifetime, and the ever increasing man-made orbital debris environment, will require the use of shielding over the external fuel tanks.
Michelotti, L.
1995-01-01
The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.
Orbits of the six new satellites of Neptune
NASA Astrophysics Data System (ADS)
Owen, W. M.; Vaughan, R. M.; Synnott, S. P.
1991-04-01
Orbital elements are presented for the six small satellites of Neptune, 1989N1 through 1989N6, discovered by Voyager 2. Details of the image and orbit analyses are examined. The solution for the orbits of the six satellites is presented in terms of geometric classical Keplerian elements. All six are in nearly circular direct orbits; most of the satellites have low inclinations, except the innermost, 1989N6, which is inclined at 4.7 deg to Neptune's equator.
Orbit Design and Simulation for Kufasat Nanosatellite
NASA Astrophysics Data System (ADS)
Mahdi, Mohammed Chessab
2015-12-01
Orbit design for KufaSat Nano-satellites is presented. Polar orbit is selected for the KufaSat mission. The orbit was designed with an Inclination which enables the satellite to see every part of the earth. KufaSat has a payload for imaging purposes which require a large amount of power, so the orbit is determined to be sun synchronous in order to provide the power through solar panels. The KufaSat mission is designed for the low earth orbit. The six initial Keplerian Elements of KufaSat are calculated. The orbit design of KufaSat according to the calculated Keplerian elements has been simulated and analyzed by using MATLAB first and then by using General Mission Analysis Tool.
The accuracy of Halley's cometary orbits
NASA Astrophysics Data System (ADS)
Hughes, D. W.
The accuracy of a scientific computation depends in the main on the data fed in and the analysis method used. This statement is certainly true of Edmond Halley's cometary orbit work. Considering the 420 comets that had been seen before Halley's era of orbital calculation (1695 - 1702) only 24, according to him, had been observed well enough for their orbits to be calculated. Two questions are considered in this paper. Do all the orbits listed by Halley have the same accuracy? and, secondly, how accurate was Halley's method of calculation?
NASA Astrophysics Data System (ADS)
Deleflie, Florent; Wailliez, Sébastien; Portmann, Christophe; Gilles, M.; Vienne, Alain; Berthier, J.; Valk, St; Hautesserres, Denis; Martin, Thierry; Fraysse, Hubert
To perform an orbit modelling accurate enough to provide a good estimate of the lifetime of a satellite, or to ensure the stability of a disposal orbit through centuries, we built a new orbit propagator based on the theory of mean orbital motion. It is named SECS-SD2 , for Simplified and Extended CODIOR Software -Space Debris Dedicated . The CODIOR software propagates numerically averaged equations of motion, with a typical integration step size on the order of a few hours, and was originally written in classical orbital elements. The so-called Space Debris -dedicated version is written in orbital elements suitable for orbits with small eccentricities and inclinations, so as to characterize the main dynamic properties of the motion within the LEO, MEO, and GEO regions. The orbital modelling accounts for the very first terms of the geopotential, the perturbations induced by the luni-solar attraction, the solar radiation pressure, and the atmospheric drag (using classical models). The new software was designed so as to ensure short computation times, even over periods of decades or centuries. This paper aims first at describing and validating the main functionalities of the software: we explain how the simplified averaged equations of motion were built, we show how we get sim-plified luni-solar ephemerides without using any huge file for orbit propagations over centuries, and we show how we averaged and simulated the solar flux. We show as well how we expressed short periodic terms to be added to the mean equations of motion, in order to get orbital ele-ments comparable to those deduced from the classical numerical integration of the oscultating equations of motion. The second part of the paper sheds light on some dynamical properties of space debris flying in the LEO and GEO regions, which were obtained from the new software. Knowing that each satellite in the LEO region is now supposed to re-enter the atmosphere within a period of 25 years, we estimated in various
NASA Astrophysics Data System (ADS)
Olevic, D.; Cvetkovic, Z.
2005-04-01
Preliminary orbital elements of binary systems WDS 03494-1956 = RST 2324, WDS 03513+2621 = A 1830, WDS 04093-2025 = RST 2333, WDS 06485-1226 = A 2935, WDS 07013-0906 = A 671, and WDS 18323-1439 = CHR 73 are presented. For all systems but WDS 18323-1439 the individual masses and dynamical parallaxes are derived.
Elements of orbit-determination theory - Textbook
NASA Technical Reports Server (NTRS)
Solloway, C. B.
1971-01-01
Text applies to solution of various optimization problems. Concepts are logically introduced and refinements and complexities for computerized numerical solutions are avoided. Specific topics and essential equivalence of several different approaches to various aspects of the problem are given.
Accuracy Assessment of Geostationary-Earth-Orbit with Simplified Perturbations Models
NASA Astrophysics Data System (ADS)
Ma, Lihua; Xu, Xiaojun; Pang, Feng
2016-06-01
A two-line element set (TLE) is a data format encoding orbital elements of an Earth-orbiting object for a given epoch. Using suitable prediction formula, the motion state of the object can be obtained at any time. The TLE data representation is specific to the simplified perturbations models, so any algorithm using a TLE as a data source must implement one of these models to correctly compute the state at a specific time. Accurately adjustment of antenna direction on the earth station is the key to satellite communications. With the TLE set topocentric elevation and azimuth direction angles can be calculated. The accuracy of perturbations models directly affect communication signal quality. Therefore, finding the error variations of the satellite orbits is really meaningful. In this present paper, the authors investigate the accuracy of the Geostationary-Earth-Orbit (GEO) with simplified perturbations models. The coordinate residuals of the simplified perturbations models in this paper can give references for engineers to predict the satellite orbits with TLE.
GPS as an orbit determination subsystems
NASA Technical Reports Server (NTRS)
Fennessey, Richard; Roberts, Pat; Knight, Robin; Vanvolkinburg, Bart
1995-01-01
This paper evaluates the use of Global Positioning System (GPS) receivers as a primary source of tracking data for low-Earth orbit satellites. GPS data is an alternative to using range, azimuth, elevation, and range-rate (RAER) data from the Air Force Satellite Control Network antennas, the Space Ground Link System (SGLS). This evaluation is applicable to missions such as Skipper, a joint U.S. and Russian atmosphere research mission, that will rely on a GPS receiver as a primary tracking data source. The Detachment 2, Space and Missile Systems Center's Test Support Complex (TSC) conducted the evaluation based on receiver data from the Space Test Experiment Platform Mission O (STEP-O) and Advanced Photovoltaic and Electronics Experiments (APEX) satellites. The TSC performed orbit reconstruction and prediction on the STEP-0 and APEX vehicles using GPS receiver navigation solution data, SGLS RAER data, and SGLS anglesonly (azimuth and elevation) data. For the STEP-O case, the navigation solution based orbits proved to be more accurate than SGLS RAER based orbits. For the APEX case, navigation solution based orbits proved to be less accurate than SGLS RAER based orbits for orbit prediction, and results for orbit reconstruction were inconclusive due to the lack of a precise truth orbit. After evaluating several different GPS data processing methods, the TSC concluded that using GPS navigation solution data is a viable alternative to using SGLS RAER data.
NASA Technical Reports Server (NTRS)
Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)
2016-01-01
Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.
Orbiter active thermal control system description
NASA Technical Reports Server (NTRS)
Laubach, G. E.
1975-01-01
A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.
ORBITAL SOLUTIONS FOR TWO YOUNG, LOW-MASS SPECTROSCOPIC BINARIES IN OPHIUCHUS
Rosero, V.; Prato, L.; Wasserman, L. H.; Rodgers, B. E-mail: lprato@lowell.edu E-mail: brodgers@gemini.edu
2011-01-15
We report the orbital parameters for ROXR1 14 and RX J1622.7-2325Nw, two young, low-mass, and double-lined spectroscopic binaries recently discovered in the Ophiuchus star-forming region. Accurate orbital solutions were determined from over a dozen high-resolution spectra taken with the Keck II and Gemini South telescopes. These objects are T Tauri stars with mass ratios close to unity and periods of {approx}5 and {approx}3 days, respectively. In particular, RX J1622.7-2325Nw shows a non-circularized orbit with an eccentricity of 0.30, higher than any other short-period pre-main-sequence (PMS) spectroscopic binary known to date. We speculate that the orbit of RX J1622.7-2325Nw has not yet circularized because of the perturbing action of a {approx}1'' companion, itself a close visual pair. A comparison of known young spectroscopic binaries (SBs) and main-sequence (MS) SBs in the eccentricity-period plane shows an indistinguishable distribution of the two populations, implying that orbital circularization occurs in the first 1 Myr of a star's lifetime. With the results presented in this paper we increase by {approx}4% the small sample of PMS spectroscopic binary stars with known orbital elements.
Orbit Processing and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects
NASA Astrophysics Data System (ADS)
Kelecy, T.; Deiotte, R.; Africano, J.; Stansberry, G.; Payne, T.
A population of recently discovered deep space objects is thought to be debris having origins from sources in the geosynchronous orbit (GEO) belt. Observations have been presented indicating that these objects have a high area-to-mass (A/M) ratio (1's to 10's of m2/kg), and thus would explain the observed migration of eccentricity (0.1-0.6) and inclination that distinguishes their orbital characteristics. There is a heightened interest in the international community due to the large number and small size of these objects, as they pose a hazard to active satellites operating in the vicinity of the GEO belt. Observational coverage of these objects has been limited by the orbital phasing and the locations of the tracking sites. Boeing, NASA and the U.S. Air Force Space Command have embarked on a collaborative effort with the Inter-Agency Space Debris Coordination Committee (IADC) to track selected high A/m of this population to more accurately characterize their orbits and orbit histories. Space Command tracking assets were tasked to provide angles measurements for representative set of 6 high A/m objects, and the data were used to establish a process for doing orbit updates that would accommodate a priori two-line element sets that will eventually be provided by the IADC. This paper presents the development and validation of the data processing and orbit update implementation, and preliminary analysis results of the high A/m class of objects. Limitations in the observational geometry, along with the apparent time variations in the nominal A/m values of some of the objects, pose a challenge for the orbit prediction. The ultimate goal is to establish a process that will provide long-term, relatively accurate orbital histories for these high A/m objects derived from a global set of observation metrics, and to capture photometric measurements when possible that will support characterization of these objects.
Environmental dynamics at orbital altitudes
NASA Technical Reports Server (NTRS)
Karr, G. R.
1976-01-01
The influence of real satellite aerodynamics on the determination of upper atmospheric density was investigated. A method of analysis of satellite drag data is presented which includes the effect of satellite lift and the variation in aerodynamic properties around the orbit. The studies indicate that satellite lift may be responsible for the observed orbit precession rather than a super rotation of the upper atmosphere. The influence of simplifying assumptions concerning the aerodynamics of objects in falling sphere analysis were evaluated and an improved method of analysis was developed. Wind tunnel data was used to develop more accurate drag coefficient relationships for studying altitudes between 80 and 120 Km. The improved drag coefficient relationships revealed a considerable error in previous falling sphere drag interpretation. These data were reanalyzed using the more accurate relationships. Theoretical investigations of the drag coefficient in the very low speed ratio region were also conducted.
Application of endoscopic techniques in orbital blowout fractures.
Zhang, Shu; Li, Yinwei; Fan, Xianqun
2013-09-01
Minimally invasive surgical techniques, particularly endoscopic techniques, have revolutionized otolaryngeal surgery. Endoscopic techniques have been gradually applied in orbital surgery through the sinus inferomedial to the orbit and the orbital subperiosteal space. Endoscopic techniques help surgeons observe fractures and soft tissue of the posterior orbit to precisely place implants and protect vital structures through accurate, safe, and minimally invasive approaches. We reviewed the development of endoscopic techniques, the composition of endoscopic systems for orbital surgery, and the problems and developmental prospects of endoscopic techniques for simple orbital wall fracture repair. PMID:23794028
Calculating Trajectories And Orbits
NASA Technical Reports Server (NTRS)
Alderson, Daniel J.; Brady, Franklyn H.; Breckheimer, Peter J.; Campbell, James K.; Christensen, Carl S.; Collier, James B.; Ekelund, John E.; Ellis, Jordan; Goltz, Gene L.; Hintz, Gerarld R.; Legerton, Victor N.; Mccreary, Faith A.; Mitchell, Robert T.; Mottinger, Neil A.; Moultrie, Benjamin A.; Moyer, Theodore D.; Rinker, Sheryl L.; Ryne, Mark S.; Stavert, L. Robert; Sunseri, Richard F.
1989-01-01
Double-Precision Trajectory Analysis Program, DPTRAJ, and Orbit Determination Program, ODP, developed and improved over years to provide highly reliable and accurate navigation capability for deep-space missions like Voyager. Each collection of programs working together to provide desired computational results. DPTRAJ, ODP, and supporting utility programs capable of handling massive amounts of data and performing various numerical calculations required for solving navigation problems associated with planetary fly-by and lander missions. Used extensively in support of NASA's Voyager project. DPTRAJ-ODP available in two machine versions. UNIVAC version, NPO-15586, written in FORTRAN V, SFTRAN, and ASSEMBLER. VAX/VMS version, NPO-17201, written in FORTRAN V, SFTRAN, PL/1 and ASSEMBLER.
Orbital operation for large automated satellites
NASA Technical Reports Server (NTRS)
Lusk, J. L.; Biro, V.
1974-01-01
Orbital operations concepts for the shuttle launched Large Automated Satellites (LAS) are discussed. It includes the orbital operations elements and the major options for accomplishing each element. This study is based on the preliminary payload information available in Level I and II documents and on orbital operations methods used on past programs, both manned and unmanned. It includes a definition of detailed trade studies which need to be performed as satellite design details and organization responsibilities are defined. The major objectives of this study were to define operational methods and requirements for the long duration LAS missions which are effective and primarily economical to implement.
Analytic orbit plane targeting for orbit transfers about an oblate planet
NASA Technical Reports Server (NTRS)
Mchenry, R. L.
1992-01-01
This paper develops closed-form expressions which accurately model variations in orbital inclination and longitude of the ascending node due to the influence of the J2 oblateness perturbation. These analytic expressions are particularly useful in defining perturbed orbit transfer planes which naturally regress into the target intercept position for Lambert-type transfers and in compensating for differential nodal regression between two orbiting vehicles in rendezvous targeting problems. Results of example problems for each of these scenarios demonstrate that they accurately compensate for these oblateness effects.
Precise Orbit Determination for Altimeter Satellites
NASA Astrophysics Data System (ADS)
Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Beckley, B. B.; Wang, Y.; Chinn, D. S.
2002-05-01
Orbit error remains a critical component in the error budget for all radar altimeter missions. This paper describes the ongoing work at GSFC to improve orbits for three radar altimeter satellites: TOPEX/POSEIDON (T/P), Jason, and Geosat Follow-On (GFO). T/P has demonstrated that, the time variation of ocean topography can be determined with an accuracy of a few centimeters, thanks to the availability of highly accurate orbits (2-3 cm radially) produced at GSFC. Jason, the T/P follow-on, is intended to continue measurement of the ocean surface with the same, if not better accuracy. Reaching the Jason centimeter accuracy orbit goal would greatly benefit the knowledge of ocean circulation. Several new POD strategies which promise significant improvement to the current T/P orbit are evaluated over one year of data. Also, preliminary, but very promising Jason POD results are presented. Orbit improvement for GFO has been dramatic, and has allowed this mission to provide a POESEIDON class altimeter product. The GFO Precise Orbit Ephemeris (POE) orbits are based on satellite laser ranging (SLR) tracking supplemented with GFO/GFO altimeter crossover data. The accuracy of these orbits were evaluated using several tests, including independent TOPEX/GFO altimeter crossover data. The orbit improvements are shown over the years 2000 and 2001 for which the POEs have been completed.
Procedure for the Determination of Orbits of Astronomical Bodies
ERIC Educational Resources Information Center
Birnbaum, David
1977-01-01
Presents a procedure for finding the elements of the orbit of an astronomical object from three or more observations. From a set of assumed elements an ephemeris is calculated and compared to the observations. (MLH)
Asteroid orbital error analysis: Theory and application
NASA Technical Reports Server (NTRS)
Muinonen, K.; Bowell, Edward
1992-01-01
We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).
The Spectroscopic orbits of HD 23052 and HD 90512
NASA Astrophysics Data System (ADS)
Scarfe, C. D.; Griffin, R. F.
2012-10-01
We present radial-velocity observations from DAO and Cambridge, from which we derive orbital elements. HD 23052 is a G-type main-sequence object which has been regarded as a solar analogue, in an orbit of period nearly three years. HD 90512 is a G-type giant in a nearly circular orbit with a period just over 100 days.
Orbit Prediction Tool for Different Classes of Space Debris Orbits
NASA Astrophysics Data System (ADS)
Wnuk, Edwin; Wytrzyszczak, Iwona; Golembiewska, Justyna; Klinkrad, Heiner
There are two aspects of the orbital evolution of space debris: the long-term evolution and the short-term prediction of individual object orbits. In the case of the long-term evolution (years or tens of years time span) general characteristics (e.g. total number of objects, spa-tial distribution and density) of a future space environment are predicted with the use of a relatively simple theory of motion for statistical analysis of future orbits of a large number of objects -a cloud of particles". In the short-term orbital evolution of space debris objects, as considered in this paper, future positions and velocities of individual objects are calculated for a few days or a few weeks time span. A much more sophisticated theory of satellite motion is applied in this case. The paper presents the orbital prediction tool that uses an analytical and semi-analytical theories of satellite motion. The force model includes all important perturbing factors: geopotential effects with arbitrary degree and order spherical harmonic coefficients taken into account, luni-solar attractions, solar radiation pressure and atmospheric drag. The analytical theory of motion is of the second order and is not sensitive to singularities for small eccentricities and small inclinations. A new algorithm for the transformation between mean and osculating elements for the second order theory is applied. Predicted positions of a satel-lite on a given level of accuracy are calculated only with the use of terms that essentially influence on predicted satellite orbit, all other terms are omitted. The number of terms in for-mulas for perturbations, and thus complexity of the theory, depends on the defined level of accuracy and the type of orbit. In practice, we create a dynamical model for a given class of satellite orbit. Geopotential and luni-solar perturbations are calculated in the two following steps. In the first step, values of secular terms and all amplitudes of periodic terms are calculated
Skylab Orbiter Workshop Illustration
NASA Technical Reports Server (NTRS)
1972-01-01
This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.
Orbit Modelling for Satellites Using the NASA Prediction Bulletins
NASA Technical Reports Server (NTRS)
Bonavito, N. L.; Koch, D. W.; Maslyar, G. A.; Foreman, J. C.
1976-01-01
For some satellites the NASA Prediction Bulletins are the only means available to the general user for obtaining orbital information. A computational interface between the information given in the NASA Prediction Bulletins and standard orbit determination programs is provided. Such an interface is necessary to obtain accurate orbit predictions. The theoretical considerations and their computational verification in this interface modelling are presented. This analysis was performed in conjunction with satellite aided search and rescue position location experiments where accurate orbits of the Amateur Satellite Corporation (AMSAT) OSCAR-6 and OSCAR-7 spacecraft are a prerequisite.
SCIAMACHY In-orbit Operations until 2013
NASA Astrophysics Data System (ADS)
Gottwald, Manfred; Krieg, Eckhart; Lichtenberg, Günter; Noël, Stefan; Bramstedt, Klaus; Bovensmann, Heinrich
In 2010 ENVISAT enters its next mission extension phase when a manoeuvre transfers the plat-form from its nominal into a modified orbit. This modified orbit is not only characterized by the lower altitude but also by slightly drifting parameters such as e.g. the inclination or the Mean Local Solar Time at ascending node crossing. Thus all SCIAMACHY measurements requiring an accurate pointing knowledge are affected. How the line-of-sight evolves along the orbit de-pends on orbit altitude and orbital period. Therefore adjustments to SCIAMACHY's on-board instrument configuration are necessary reflecting this orbit chance. Based on a detailed analysis simulating SCIAMACHY operations in the modified orbit until the end of 2013, the impacts on nadir, limb and solar and lunar occultation measurements when orbiting the Earth at a reduced altitude was studied. By modifying SCIAMACHY's configuration these impacts can be compensated for. Thus the current performance of instrument operations, including the pointing knowledge, can be maintained. It ensures acquisition of high quality measurement data for the entire duration of the mission. This presentation describes how the instrument will be configured for achieving successful operations until the end of 2013. In addition a brief outlook is given how the drifting modified orbit may impact an operations phase even beyond 2013 and potential corrective countermeasures.
Orbital analysis of the inner Uranian satellites from Hubble images
NASA Astrophysics Data System (ADS)
French, Robert S.; Showalter, Mark R.; de Pater, Imke; Lissauer, Jack J.
2015-11-01
The thirteen inner moons of Uranus form a densely-packed and possibly chaotic system. Numerical simulations show that several groups of moons exhibit complex resonant interactions, and Mab shows as-yet unexplained variations in its orbit. However, the masses of these moons are currently unknown, limiting the insights that can be gained from numerical simulations. Using over 650 long-exposure images taken during 2003-2013 by the Hubble Space Telescope through broadband filters, we have obtained astrometry for eleven of Uranus’s inner moons, comprising the Portia group (Bianca to Perdita) plus Puck and Mab; attempts to measure the positions of Cordelia and Ophelia are on-going. Using these measurements, which are frequently accurate to 0.05 pixels or less, we have derived Keplerian orbital elements including the influence of Uranus’s oblateness. The elements show year-to-year variations that are statistically significant and indicate the role of mutual perturbations among the moons. We are also using this information to place new constraints on the masses of these moons. We will present our most recent findings.
Orbit Design Based on the Global Maps of Telecom Metrics
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming; Edwards, Chad; Noreen, Gary K.; Vaisnys, Arvydas
2004-01-01
In this paper we describe an orbit design aide tool, called Telecom Orbit Analysis and Simulation Tool(TOAST). Although it can be used for studying and selecting orbits for any planet, we solely concentrate on its use for Mars. By specifying the six orbital elements for an orbit, a time frame of interest, a horizon mask angle, and some telecom parameters such as the transmitting power, frequency, antenna gains, antenna losses, link margin, received threshold powers for the rates, etc. this tool enables the user to view the animation of the orbit in two and three-dimensional different telecom metrics at any point on the Mars, namely the global planetary map.
Optical and photometric studies of Earth orbiting small space objects
NASA Astrophysics Data System (ADS)
Selim, I. M.; El-Hameed, Afaf M. Abd; Bakhtigaraev, N. S.; Attia, Gamal F.
2016-03-01
Variations of light curves for space objects are investigated. Optical observations and photometric measurements for small space debris on highly elliptical orbits (HEO) and geostationary orbits (GEO) are used to determine their orbital parameters. Light curves of small space debris with various area-to-mass ratios and orbital characteristics are discussed. Tracking of some objects shows very rapid brightness variations related to perturbations of the orbital parameters. Changes in brightness and equatorial coordinates of the studied objects are found in observational data. Our results allow improving the accuracy of space debris orbital elements.
On-orbit spacecraft reliability
NASA Technical Reports Server (NTRS)
Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.
1978-01-01
Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.
Post-aerocapture orbit selection and maintenance for the Aerofast mission to Mars
NASA Astrophysics Data System (ADS)
Pontani, Mauro; Teofilatto, Paolo
2012-10-01
Aerofast is the abbreviation of “aerocapture for future space transportation” and represents a project aimed at developing aerocapture techniques with regard to an interplanetary mission to Mars, in the context of the 7th Framework Program, with the financial support of the European Union. This paper describes the fundamental characteristics of the operational orbit after aerocapture for the mission of interest, as well as the related maintenance strategy. The final orbit selection depends on the desired lighting conditions, maximum revisit time of specific target regions, and feasibility of the orbit maintenance strategy. A sunsynchronous, frozen, repeating-ground-track orbit is chosen. First, the period of repetition is such that adjacent ascending node crossings (over the Mars surface) have a separation compatible with the swath of the optical payload. Secondly, the sunsynchronism condition ensures that a given latitude is periodically visited at the same local time, which condition is essential for comparing images of the same region at different epochs. Lastly, the fulfillment of the frozen condition guarantees improved orbit stability with respect to perturbations due to the zonal harmonics of Mars gravitational field. These three fundamental features of the operational orbit lead to determining its mean orbital elements. The evaluation of short and long period effects (e.g., those due to the sectorial harmonics of the gravitational field or to the aerodynamic drag) requires the determination of the osculating orbital elements at an initial reference time. This research describes a simple and accurate approach that leads to numerically determining these initial values, without employing complicated analytical developments. Numerical simulations demonstrate the long-period stability of the orbit when a significant number of harmonics of the gravitational field are taken into account. However, aerodynamic drag produces a relatively slow orbital decay at the
NNLOPS accurate associated HW production
NASA Astrophysics Data System (ADS)
Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia
2016-06-01
We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.
Charged-particle Gun Design with 3D Finite-element Methods
NASA Astrophysics Data System (ADS)
Humphries, Stanley
2002-04-01
The DARHT second-axis injector poses a major challenge for computer simulation. The relativistic electrons are subject to strong beam-generated electric and magnetic forces. The beam and applied fields are fully three-dimensional. Furthermore, accurate field calculations at surfaces are critical to model Child-law emission. Although several 2D relativistic beam codes are available, there is presently no 3D tool that can address all important processes in the DARHT injector. As a result, we created the OmniTrak 3D finite-element code suite. This talk gives a basic tutorial on finite-element methods with emphasis on electron gun design via the ray-tracing technique. Four main areas are covered: 1) the mesh as a tool to organize space, 2) transformation of the Poisson equation through the minimum residual principle, 3) orbit tracking in a complex environment and 4) handling self-consistent beam-generated fields. The components of a volume mesh (elements, nodes and facets) are reviewed. We consider motivations for choosing a 3D mesh style: structured versus unstructured, tetrahedrons versus hexahedrons. We discuss methods for taking volume integrals over arbitrary hexahedrons through normal coordinates and shape functions, leading to the fundamental field equations. The special problems of 3D magnetic field solutions and the advantages of the reduced potential method are outlined. Accurate field interpolations for orbit calculations require fast identification of occupied elements. A method for fast element identification that also yields the orbit penetration point on the element surface is described. The final topics are the assignment of charge and current to meshes from calculated orbits and techniques for space-charge-limited emission from multiple arbitrary 3D surfaces.
Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit
NASA Astrophysics Data System (ADS)
Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.
2014-10-01
Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).
Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis
NASA Technical Reports Server (NTRS)
Slojkowski, Steven E.
2014-01-01
Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.
Orbit Response Matrix Analysis Applied at PEP-II
Steier, C.; Wolski, A.; Ecklund, S.; Safranek, J.A.; Tenenbaum, P.; Terebilo, A.; Turner, J.L.; Yocky, G.; /SLAC
2005-05-17
The analysis of orbit response matrices has been used very successfully to measure and correct the gradient and skew gradient distribution in many accelerators. It allows determination of an accurately calibrated model of the coupled machine lattice, which then can be used to calculate the corrections necessary to improve coupling, dynamic aperture and ultimately luminosity. At PEP-II, the Matlab version of LOCO has been used to analyze coupled response matrices for both the LER and the HER. The large number of elements in PEP-II and the very complicated interaction region present unique challenges to the data analysis. All necessary tools to make the analysis method useable at PEP-II have been implemented and LOCO can now be used as a routine tool for lattice diagnostic.
Chalupský, Jakub Yanai, Takeshi
2013-11-28
The derivation, implementation, and validation of a new approximation to the two-electron spin–orbit coupling (SOC) terms is reported. The approximation, referred to as flexible nuclear screening spin–orbit, is based on the effective one-electron spin–orbit operator and accounts for two-electron SOC effects by screening nuclear charges. A highly flexible scheme for the nuclear screening is developed, mainly using parameterization based on ab initio atomic SOC calculations. Tabulated screening parameters are provided for contracted and primitive Gaussian-type basis functions of the ANO-RCC basis set for elements from H to Cm. The strategy for their adaptation to any other Gaussian basis set is presented and validated. A model to correct for the effect of splitting of transition metal d orbitals on their SOC matrix elements is introduced. The method is applied to a representative set of molecules, and compared to exact treatment and other approximative approaches at the same level of relativistic theory. The calculated SOC matrix elements are in very good agreement with their “exact” values; deviation below 1% is observed on average. The presented approximation is considered to be generally applicable, simple to implement, highly efficient, and accurate.
NASA Astrophysics Data System (ADS)
Chalupský, Jakub; Yanai, Takeshi
2013-11-01
The derivation, implementation, and validation of a new approximation to the two-electron spin-orbit coupling (SOC) terms is reported. The approximation, referred to as flexible nuclear screening spin-orbit, is based on the effective one-electron spin-orbit operator and accounts for two-electron SOC effects by screening nuclear charges. A highly flexible scheme for the nuclear screening is developed, mainly using parameterization based on ab initio atomic SOC calculations. Tabulated screening parameters are provided for contracted and primitive Gaussian-type basis functions of the ANO-RCC basis set for elements from H to Cm. The strategy for their adaptation to any other Gaussian basis set is presented and validated. A model to correct for the effect of splitting of transition metal d orbitals on their SOC matrix elements is introduced. The method is applied to a representative set of molecules, and compared to exact treatment and other approximative approaches at the same level of relativistic theory. The calculated SOC matrix elements are in very good agreement with their "exact" values; deviation below 1% is observed on average. The presented approximation is considered to be generally applicable, simple to implement, highly efficient, and accurate.
New instrument for orbital anthropometry.
Kohout, M; Pai, L; Berenguer, B; Tayler, P; Pracharktam, N; Mulliken, J B
1998-06-01
A new instrument for orbital anthropometry is described. It consists of the base for a slit-lamp upon which the patient's head rests and rulers mounted on three independently movable axes. The z-axis probe is used to measure sagittal relationship between the corneal apices and points on the orbital perimeter. The instrument was tested against a sliding caliper and its accuracy was found to be within 0.2 mm or 2%. Intra- and inter-observer reliability were assessed by repeated measurements of two subjects by three observers. The intra-observer reliability was 0.99. Variations between observers was not significantly different for points orbitale inferius (oi), nasion (n), and orbitale superius (os), however, there was a statistically significant difference for measurement of orbitale laterale (ol). The correlation between anthropometric readings for lateral orbital wall to apex corneal (ol-ac) and CT scans for the same landmarks was assessed. Analysis of variance showed no difference between the measurement methods. This anthropometer is convenient and accurate for measurement of the sagittal orbital-globe relationships. A disadvantage is that it cannot be used intraoperatively. PMID:9702637
Orbit design for the Laser Interferometer Space Antenna (LISA)
NASA Astrophysics Data System (ADS)
Xia, Yan; Li, Guangyu; Heinzel, Gerhard; Rüdiger, Albrecht; Luo, Yongjie
2010-01-01
The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for detecting low-frequency gravitational waves in the frequency range from 0.1 mHz to 1 Hz, by using accurate laser interferometry between three spacecrafts, which will be launched around 2018 and one year later reach their operational orbits around the Sun. In order to operate successfully, it is crucial for the constellation of the three spacecrafts to have extremely high stability. Based on the study of operational orbits for a 2015 launch, we design the operational orbits of beginning epoch on 2019-03-01, and introduce the method of orbit design and optimization. We design the orbits of the transfer from Earth to the operational orbits, including launch phase and separation phase; furthermore, the relationship between energy requirement and flight time of these two orbit phases is investigated. Finally, an example of the whole orbit design is presented.
Ethmoid Osteoma as a Culprit of Orbital Emphysema
Zhuang, Ai; Li, Yinwei; Lin, Ming; Shi, Wodong; Fan, Xianqun
2015-01-01
Abstract Orbital emphysema is generally recognized as a complication of orbital fractures involving any paranasal sinuses. The recognition about its etiology has extended beyond sole trauma, but few articles mentioned tumors to be a possible cause. In this case report, we present a patient with orbital emphysema associated with ethmoid osteoma without orbital cellulitis or trauma history. The patient developed sudden proptosis, eyelid swelling, and movement limitation of the left eye, peripheral diplopia, and left periorbital crepitus after a vigorous nose blowing. Complete surgical resection of ethmoid osteoma followed by repair of the orbital medial wall was performed with assistance of combined endoscopy and navigational techniques. Twelve-month follow-up showed no residual lesion or recurrence; the orbital medial wall was accurately repaired with good visual function and facial symmetry. Tumors should be considered for differential diagnosis of orbital emphysema, and combined endoscopy and navigational techniques may improve safety, accuracy, and effectiveness of orbital surgeries. PMID:25950683
Snyder, James W; Hohenstein, Edward G; Luehr, Nathan; Martínez, Todd J
2015-10-21
We recently presented an algorithm for state-averaged complete active space self-consistent field (SA-CASSCF) orbital optimization that capitalizes on sparsity in the atomic orbital basis set to reduce the scaling of computational effort with respect to molecular size. Here, we extend those algorithms to calculate the analytic gradient and nonadiabatic coupling vectors for SA-CASSCF. Combining the low computational scaling with acceleration from graphical processing units allows us to perform SA-CASSCF geometry optimizations for molecules with more than 1000 atoms. The new approach will make minimal energy conical intersection searches and nonadiabatic dynamics routine for molecular systems with O(10(2)) atoms. PMID:26493897
Snyder, James W.; Hohenstein, Edward G.; Luehr, Nathan; Martínez, Todd J.
2015-10-21
We recently presented an algorithm for state-averaged complete active space self-consistent field (SA-CASSCF) orbital optimization that capitalizes on sparsity in the atomic orbital basis set to reduce the scaling of computational effort with respect to molecular size. Here, we extend those algorithms to calculate the analytic gradient and nonadiabatic coupling vectors for SA-CASSCF. Combining the low computational scaling with acceleration from graphical processing units allows us to perform SA-CASSCF geometry optimizations for molecules with more than 1000 atoms. The new approach will make minimal energy conical intersection searches and nonadiabatic dynamics routine for molecular systems with O(10{sup 2}) atoms.
Accurate basis set truncation for wavefunction embedding
NASA Astrophysics Data System (ADS)
Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.
2013-07-01
Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.
How to accurately bypass damage
Broyde, Suse; Patel, Dinshaw J.
2016-01-01
Ultraviolet radiation can cause cancer through DNA damage — specifically, by linking adjacent thymine bases. Crystal structures show how the enzyme DNA polymerase η accurately bypasses such lesions, offering protection. PMID:20577203
Orbital State Uncertainty Realism
NASA Astrophysics Data System (ADS)
Horwood, J.; Poore, A. B.
2012-09-01
Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten
Accurate Evaluation of Quantum Integrals
NASA Technical Reports Server (NTRS)
Galant, David C.; Goorvitch, D.
1994-01-01
Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schr\\"{o}dinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.
Effects of DeOrbitSail as applied to Lifetime predictions of Low Earth Orbit Satellites
NASA Astrophysics Data System (ADS)
Afful, Andoh; Opperman, Ben; Steyn, Herman
2016-07-01
Orbit lifetime prediction is an important component of satellite mission design and post-launch space operations. Throughout its lifetime in space, a spacecraft is exposed to risk of collision with orbital debris or operational satellites. This risk is especially high within the Low Earth Orbit (LEO) region where the highest density of space debris is accumulated. This paper investigates orbital decay of some LEO micro-satellites and accelerating orbit decay by using a deorbitsail. The Semi-Analytical Liu Theory (SALT) and the Satellite Toolkit was employed to determine the mean elements and expressions for the time rates of change. Test cases of observed decayed satellites (Iridium-85 and Starshine-1) are used to evaluate the predicted theory. Results for the test cases indicated that the theory fitted observational data well within acceptable limits. Orbit decay progress of the SUNSAT micro-satellite was analysed using relevant orbital parameters derived from historic Two Line Element (TLE) sets and comparing with decay and lifetime prediction models. This paper also explored the deorbit date and time for a 1U CubeSat (ZACUBE-01). The use of solar sails as devices to speed up the deorbiting of LEO satellites is considered. In a drag sail mode, the deorbitsail technique significantly increases the effective cross-sectional area of a satellite, subsequently increasing atmospheric drag and accelerating orbit decay. The concept proposed in this study introduced a very useful technique of orbit decay as well as deorbiting of spacecraft.
Asteroids in Retrograde Orbits: Interesting Cases
NASA Astrophysics Data System (ADS)
Kankiewicz, Paweł; Włodarczyk, Ireneusz
2014-12-01
We present the most interesting examples of the orbital evolution of asteroids in retrograde orbits (i > 90°). First, we used the latest observational data to determine nominal and averaged orbital elements of these objects. Next, the equations of motion of these asteroids were integrated backward 1 My, taking into account the propagation of observational errors. We used so-called 'cloning' procedure to reproduce the reliability of initial data. We obtained some possible scenarios of the orbit inversion in the past, what is often caused by the long-term influence of outer planets. For two most interesting cases (Apollo and Amor type) we did additional calculations: 100 My in the future. Additionally, we investigated the potential influence of Yarkovski/YORP effects on the long-time orbital evolution.
Satellite Orbital Interpolation using Tchebychev Polynomials
NASA Astrophysics Data System (ADS)
Richard, Jean-Yves; Deleflie, Florent; Edorh, Sémého
2014-05-01
A satellite or artificial probe orbit is made of time series of orbital elements such as state vectors (position and velocities, keplerian orbital elements) given at regular or irregular time intervals. These time series are fitted to observations, so that differences between observations (distance, radial velocity) and the theoretical quantity be minimal, according to a statistical criterion, mostly based on the least-squared algorithm. These computations are carried out using dedicated software, such as the GINS used by GRGS, mainly at CNES Toulouse and Paris Observatory. From an operational point of view, time series of orbital elements are 7-day long. Depending on the dynamical configurations, more generally, they can typically vary from a couple of days to some weeks. One of the fundamental parameters to be adjusted is the initial state vector. This can lead to time gaps, at the level of a few dozen of centimetres between the last point of a time series to the first one of the following data set. The objective of this presentation consists in the improvement of an interpolation method freed itself of such possible "discontinuities" resulting between satellite's orbit arcs when a new initial bulletin is adjusted. We compare solutions of different Satellite Laser Ranging using interpolation methods such as Lagrange polynomial, spline cubic, Tchebychev orthogonal polynomial and cubic Hermite polynomial. These polynomial coefficients are used to reconstruct and interpolate the satellite orbits without time gaps and discontinuities and requiring a weak memory size. In this approach, we have tested the orbital reconstruction using Tchebychev polynomial coefficients for the LAGEOS and Starlette satellites. In this presentation, it is showed that Tchebychev's polynomial interpolation can achieve accuracy in the orbit reconstruction at the sub-centimetre level and allowing a gain of a factor 5 of memory size of the satellite orbit with respect to the Cartesian
Spectroscopic Orbits for 15 Late-type Stars
NASA Astrophysics Data System (ADS)
Willmarth, Daryl W.; Fekel, Francis C.; Abt, Helmut A.; Pourbaix, Dimitri
2016-08-01
Spectroscopic orbital elements are determined for 15 stars with periods from 8 to 6528 days with six orbits computed for the first time. Improved astrometric orbits are computed for two stars and one new orbit is derived. Visual orbits were previously determined for four stars, four stars are members of multiple systems, and five stars have Hipparcos “G” designations or have been resolved by speckle interferometry. For the nine binaries with previous spectroscopic orbits, we determine improved or comparable elements. For HD 28271 and HD 200790, our spectroscopic results support the conclusions of previous authors that the large values of their mass functions and lack of detectable secondary spectrum argue for the secondary in each case being a pair of low-mass dwarfs. The orbits given here may be useful in combination with future interferometric and Gaia satellite observations.
The Orbiting Carbon Observatory (OCO)
NASA Technical Reports Server (NTRS)
Miller, Charles E.
2005-01-01
CO2 is the principal human generated driver of climate change. Accurate forecasting of future climate requires an improved understanding of the global carbon cycle and its interaction with the climate system. The Orbiting Carbon Observatory (OCO) will make global, space-based observations of atmospheric CO2 with the precision, resolution, and coverage needed to understand sources and sinks. OCO data will provide critical information for decision makers including the scientific basis for policy formulation, guide for carbon management strategies and treaty monitoring.
Real-time shipboard orbit determination using Kalman filtering techniques
NASA Technical Reports Server (NTRS)
Brammer, R. F.
1974-01-01
The real-time tracking and orbit determination program used on board the NASA tracking ship, the USNS Vanguard, is described in this paper. The computer program uses a variety of filtering algorithms, including an extended Kalman filter, to derive real-time orbit determinations (position-velocity state vectors) from shipboard tracking and navigation data. Results from Apollo missions are given to show that orbital parameters can be estimated quickly and accurately using these methods.
On the accuracy of ERS-1 orbit predictions
NASA Technical Reports Server (NTRS)
Koenig, Rolf; Li, H.; Massmann, Franz-Heinrich; Raimondo, J. C.; Rajasenan, C.; Reigber, C.
1993-01-01
Since the launch of ERS-1, the D-PAF (German Processing and Archiving Facility) provides regularly orbit predictions for the worldwide SLR (Satellite Laser Ranging) tracking network. The weekly distributed orbital elements are so called tuned IRV's and tuned SAO-elements. The tuning procedure, designed to improve the accuracy of the recovery of the orbit at the stations, is discussed based on numerical results. This shows that tuning of elements is essential for ERS-1 with the currently applied tracking procedures. The orbital elements are updated by daily distributed time bias functions. The generation of the time bias function is explained. Problems and numerical results are presented. The time bias function increases the prediction accuracy considerably. Finally, the quality assessment of ERS-1 orbit predictions is described. The accuracy is compiled for about 250 days since launch. The average accuracy lies in the range of 50-100 ms and has considerably improved.
Is It Time to Retire the Hybrid Atomic Orbital?
ERIC Educational Resources Information Center
Grushow, Alexander
2011-01-01
A rationale for the removal of the hybrid atomic orbital from the chemistry curriculum is examined. Although the hybrid atomic orbital model does not accurately predict spectroscopic energies, many chemical educators continue to use and teach the model despite the confusion it can cause for students. Three arguments for retaining the model in the…
NASA Technical Reports Server (NTRS)
1988-01-01
One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.
NASA Astrophysics Data System (ADS)
Barker, E.; Matney, M. J.; Liou, J.-C.; Abercromby, K.; Rodriguez, H.; Seitzer, P.
Since 2002 the National Aeronautics and Space Administration (NASA) has carried out an optical survey of the debris environment in the geosynchronous Earth-orbit (GEO) region with the Michigan Orbital Debris Survey Telescope (MODEST) in Chile. The survey coverage has been similar for 4 of the 5 years allowing us to follow the orbital evolution of Correlated Targets (CTs), both controlled and un-controlled objects, and Un-Correlated Targets (UCTs). Under gravitational perturbations the distributions of uncontrolled objects, both CTs and UCTs, in GEO orbits will evolve in predictable patterns, particularly evident in the inclination and right ascension of the ascending node (RAAN) distributions. There are several clusters (others have used a "cloud" nomenclature) in observed distributions that show evolution from year to year in their inclination and ascending node elements. However, when MODEST is in survey mode (field-of-view ~1.3°) it provides only short 5-8 minute orbital arcs which can only be fit under the assumption of a circular orbit approximation (ACO) to determine the orbital parameters. These ACO elements are useful only in a statistical sense as dedicated observing runs would be required to obtain sufficient orbital coverage to determine a set of accurate orbital elements and then to follow their evolution. Identification of the source(s) for these "clusters of UCTs" would be advantageous to the overall definition of the GEO orbital debris environment. This paper will set out to determine if the ACO elements can be used to in a statistical sense to identify the source of the "clustering of UCTs" roughly centered on an inclination of 12° and a RAAN of 345°. The breakup of the Titan 3C-4 transtage on February 21, 1992 has been modeled using NASA's LEGEND (LEO-to-GEO Environment Debris) code to generate a GEO debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and delta
NASA Technical Reports Server (NTRS)
Barker, Edwin S.; Matney, M. J.; Liou, J.-C.; Abercromby, K. J.; Rodriquez, H. M.; Seitzer, P.
2006-01-01
Since 2002 the National Aeronautics and Space Administration (NASA) has carried out an optical survey of the debris environment in the geosynchronous Earth-orbit (GEO) region with the Michigan Orbital Debris Survey Telescope (MODEST) in Chile. The survey coverage has been similar for 4 of the 5 years allowing us to follow the orbital evolution of Correlated Targets (CTs), both controlled and un-controlled objects, and Un-Correlated Targets (UCTs). Under gravitational perturbations the distributions of uncontrolled objects, both CTs and UCTs, in GEO orbits will evolve in predictable patterns, particularly evident in the inclination and right ascension of the ascending node (RAAN) distributions. There are several clusters (others have used a "cloud" nomenclature) in observed distributions that show evolution from year to year in their inclination and ascending node elements. However, when MODEST is in survey mode (field-of-view approx.1.3deg) it provides only short 5-8 minute orbital arcs which can only be fit under the assumption of a circular orbit approximation (ACO) to determine the orbital parameters. These ACO elements are useful only in a statistical sense as dedicated observing runs would be required to obtain sufficient orbital coverage to determine a set of accurate orbital elements and then to follow their evolution. Identification of the source(s) for these "clusters of UCTs" would be advantageous to the overall definition of the GEO orbital debris environment. This paper will set out to determine if the ACO elements can be used to in a statistical sense to identify the source of the "clustering of UCTs" roughly centered on an inclination of 12deg and a RAAN of 345deg. The breakup of the Titan 3C-4 transtage on February 21, 1992 has been modeled using NASA s LEGEND (LEO-to-GEO Environment Debris) code to generate a GEO debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and
Preliminary orbital parallax catalog
NASA Technical Reports Server (NTRS)
Halliwell, M.
1981-01-01
The study is undertaken to calibrate the more reliable parallaxes derived from a comparison of visual and spectroscopic orbits and to encourage observational studies of other promising binaries. The methodological techniques used in computing orbital parallaxes are analyzed. Tables summarizing orbital data and derived system properties are then given. Also given is a series of detailed discussions of the 71 individual systems included in the tables. Data are listed for 57 other systems which are considered promising candidates for eventual orbital parallax determination.
A NEW RECALCULATED ORBIT FOR THE VISUAL BINARY CHR 90
Cvetkovic, Z.; Pavlovic, R.; Ninkovic, S.
2010-07-15
In this paper, new orbital elements for visual pair WDS 19531-1436 = CHR 90 of the triple system V505 Sgr obtained from speckle interferometric measurements are reported. The first speckle measurement was in 1985 and 22 more speckle measurements have been made since then. For this binary, orbits were previously determined. Our orbit has a period of 94 years, and it is significantly longer than those previously found. In addition to the orbital elements in this paper, the mass, dynamical parallax, and ephemerides for the next five years are also given.
Orbit-averaged implicit particle codes
NASA Astrophysics Data System (ADS)
Cohen, B. I.; Freis, R. P.; Thomas, V.
1982-03-01
The merging of orbit-averaged particle code techniques with recently developed implicit methods to perform numerically stable and accurate particle simulations are reported. Implicitness and orbit averaging can extend the applicability of particle codes to the simulation of long time-scale plasma physics phenomena by relaxing time-step and statistical constraints. Difference equations for an electrostatic model are presented, and analyses of the numerical stability of each scheme are given. Simulation examples are presented for a one-dimensional electrostatic model. Schemes are constructed that are stable at large-time step, require fewer particles, and, hence, reduce input-output and memory requirements. Orbit averaging, however, in the unmagnetized electrostatic models tested so far is not as successful as in cases where there is a magnetic field. Methods are suggested in which orbit averaging should achieve more significant improvements in code efficiency.
Reconciling Covariances with Reliable Orbital Uncertainty
NASA Astrophysics Data System (ADS)
Folcik, Z.; Lue, A.; Vatsky, J.
2011-09-01
There is a common suspicion that formal covariances do not represent a realistic measure of orbital uncertainties. By devising metrics for measuring the representations of orbit error, we assess under what circumstances such lore is justified as well as the root cause of the discrepancy between the mathematics of orbital uncertainty and its practical implementation. We offer a scheme by which formal covariances may be adapted to be an accurate measure of orbital uncertainties and show how that adaptation performs against both simulated and real space-object data. We also apply these covariance adaptation methods to the process of observation association using many simulated and real data test cases. We demonstrate that covariance-informed observation association can be reliable, even in the case when only two tracks are available. Satellite breakup and collision event catalog maintenance could benefit from the automation made possible with these association methods.
NASA Technical Reports Server (NTRS)
Rea, F. G.; Warmke, J. M.
1976-01-01
Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.
ERIC Educational Resources Information Center
Pauling, Linus; McClure, Vance
1970-01-01
Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)
Introducing Earth's Orbital Eccentricity
ERIC Educational Resources Information Center
Oostra, Benjamin
2015-01-01
Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…
Space missions orbits around small worlds
NASA Astrophysics Data System (ADS)
Cardoso dos Santos, Josué; dos Santos Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho; Bertachini de Almeida Prado, Antônio Fernando
2015-08-01
Space missions under study to visit icy moons and small worlds in our solar system will requires orbits with low-altitude and high inclinations. These orbits provides a better coverage to map the surface and to analyse the gravitational and magnetic fields. In this context, obtain these orbits has become important in planning of these missions. Celestial bodies like Haumea, Europa, Ganymede, Callisto, Enceladus, Titan and Triton are among the objects under study study to receive missions in a near future. In order to obtain low-altitude and high inclined orbits for future exploration of these bodies, this work aims to present an analytical study to describe and evaluate gravitational disturbances over a spacecraft's orbit around a minor body. An analytical model for the third-body perturbation is presented. Perturbations due to the non-sphericity of the minor body are considered. The effects on spacecraft's orbital elements are analyzed to provide the the more useful and desired orbits. The dynamic of these orbits is explored by numerical simulations. The results present good accordance with the literature.
Constraining the orbits of sub-stellar companions imaged over short orbital arcs
NASA Astrophysics Data System (ADS)
Pearce, Tim D.; Wyatt, Mark C.; Kennedy, Grant M.
2015-04-01
Imaging a star's companion at multiple epochs over a short orbital arc provides only four of the six coordinates required for a unique orbital solution. Probability distributions of possible solutions are commonly generated by Monte Carlo (MCMC) analysis, but these are biased by priors and may not probe the full parameter space. We suggest alternative methods to characterize possible orbits, which complement the MCMC technique. First, the allowed ranges of orbital elements are prior-independent, and we provide means to calculate these ranges without numerical analyses. Hence several interesting constraints (including whether a companion even can be bound, its minimum possible semimajor axis and its minimum eccentricity) may be quickly computed using our relations as soon as orbital motion is detected. We also suggest an alternative to posterior probability distributions as a means to present possible orbital elements, namely contour plots of elements as functions of line-of-sight coordinates. These plots are prior-independent, readily show degeneracies between elements and allow readers to extract orbital solutions themselves. This approach is particularly useful when there are other constraints on the geometry, for example if a companion's orbit is assumed to be aligned with a disc. As examples we apply our methods to several imaged sub-stellar companions including Fomalhaut b, and for the latter object we show how different origin hypotheses affect its possible orbital solutions. We also examine visual companions of A- and G-type main-sequence stars in the Washington Double Star Catalogue, and show that ≳ 50 per cent must be unbound.
Space Shuttle Orbiter descent navigation
NASA Technical Reports Server (NTRS)
Montez, M. N.; Madden, M. F.
1982-01-01
The entry operational sequence (OPS 3) begins approximately 2 hours prior to the deorbit maneuver and continues through atmospheric entry, terminal area energy management (TAEM), approach and landing, and rollout. During this flight phase, the navigation state vector is estimated by the Space Shuttle Orbiter onboard navigation system. This estimate is computed using a six-element sequential Kalman filter, which blends inertial measurement unit (IMU) delta-velocity data with external navaid data. The external navaids available to the filter are tactical air navigation (TACAN), barometric altimeter, and microwave scan beam landing system (MSBLS). Attention is given to the functional design of the Orbiter navigation system, the descent navigation sensors and measurement processing, predicted Kalman gains, correlation coefficients, and current flights navigation performance.
Satellite orbits design using frequency analysis
NASA Astrophysics Data System (ADS)
Noullez, A.; Tsiganis, K.; Tzirti, S.
2015-07-01
We present here a new method for the efficient computation of periodic orbits, which are of particular interest for low-altitude satellite orbits design in high degree/order, non-axisymmetric gravity models. Our method consists of an iterative filtering scheme, that is itself based on 'Prony's method' of frequency analysis, and is independent of the complexity of the gravity model. Applying this method to the case of a low-altitude lunar orbiter, we show that it converges rapidly, in all models and for all values of altitude and initial inclination studied. Thus, as demonstrated below, one could use it to correct the initial conditions of a desired mission orbit - usually defined within the framework of a simplified model (e.g. the 'J2 problem') - ensuring minimal orbital eccentricity variations and, for very low altitudes, collision avoidance. At the same time, an accurate quasi-periodic decomposition of the orbit is computed, giving a measure of the periodic fluctuations of the orbital parameters.
Finite-element 3D simulation tools for high-current relativistic electron beams
NASA Astrophysics Data System (ADS)
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
A new class of accurate, mesh-free hydrodynamic simulation methods
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2015-06-01
We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, smoothed particle hydrodynamics (SPH), and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both SPH and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume `overlap'. We implement and test a parallel, second-order version of the method with self-gravity and cosmological integration, in the code GIZMO:1 this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require `artificial diffusion' terms; and allows the fluid elements to move with the flow, so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages versus SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced `particle noise' and numerical viscosity, more accurate sub-sonic flow evolution, and sharp shock-capturing. Advantages versus non-moving meshes include: automatic adaptivity, dramatically reduced advection errors and numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of `grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous discs, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize `grid noise'. These differences are important for a range of astrophysical problems.
NASA Astrophysics Data System (ADS)
Löcher, Anno; Kusche, Jürgen
2014-05-01
The Lunar Reconnaissance Orbiter (LRO) launched in 2009 by the National Aeronautics and Space Administration (NASA) still orbits the Moon in a polar orbit at an altitude of 50 kilometers and below. Its main objective is the detailed exploration of the Moon's surface by means of the Lunar Orbiter Laser Altimeter (LOLA) and three high resolution cameras bundled in the Lunar Reconnaissance Orbiter Camera (LROC) unit. Referring these observations to a Moon-fixed reference frame requires the computation of highly accurate and consistent orbits. For this task only Earth-based observations are available, primarily radiometric tracking data from stations in the United States, Australia and Europe. In addition, LRO is prepared for one-way laser measurements from specially adapted sites. Currently, 10 laser stations participate more or less regularly in this experiment. For operational reasons, the official LRO orbits from NASA only include radiometric data so far. In this presentation, we investigate the benefit of the laser ranging data by feeding both types of observations in an integrated orbit determination process. All computations are performed by an in-house software development based on a dynamical approach improving orbit and force parameters in an iterative way. Special attention is paid to the determination of bias parameters, in particular of timing biases between radio and laser stations and the drift and aging of the LRO spacecraft clock. The solutions from the combined data set will be compared to radio- and laser-only orbits as well as to the NASA orbits. Further results will show how recent gravity field models from the GRAIL mission can improve the accuracy of the LRO orbits.
Orbital Evolution of Asteroids
NASA Astrophysics Data System (ADS)
Dermott, S. F.; Kehoe, T. J. J.
2011-10-01
The synthetic orbital frequencies and eccentricities of main belt asteroids computed by Knezevic and Milani [2] show evidence that the structure of the asteroid belt has been determined by a dense of web of high-order resonances. By examining the orbital frequency distribution at high resolution, we discover a correlation between asteroid number density, mean orbital eccentricity and Lyapunov Characteristic Exponent. In particular, the orbital eccentricities of asteroids trapped in resonance tend to be higher than those of non-resonant asteroids and we argue that this is observational evidence for orbital evolution due to chaotic diffusion.
NASA Technical Reports Server (NTRS)
Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim
2012-01-01
Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.
Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis
NASA Technical Reports Server (NTRS)
Slojkowski, Steven E.
2014-01-01
LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.
Orbit correction in an orbit separated cyclotron
NASA Astrophysics Data System (ADS)
Plostinar, C.; Rees, G. H.
2014-04-01
The orbit separated proton cyclotron (OSC) described in [1] differs in concept from that of a separated orbit cyclotron (SOC) [2]. Synchronous acceleration in an OSC is based on harmonic number jumps and orbit length adjustments via reverse bending. Four-turn acceleration in the OSC enables it to have four times fewer cryogenic-cavity systems than in a superconducting linac of the same high beam power and energy range. Initial OSC studies identified a progressive distortion of the spiral beam orbits by the off-axis, transverse deflecting fields in its accelerating cavities. Compensation of the effects of these fields involves the repeated use of a cavity field map, in a 3-D linac tracking code, to determine the modified arc bends required for the OSC ring. Subsequent tracking studies confirm the compensation scheme and show low emittance growth in acceleration.
Computing Rydberg Electron Transport Rates via Classical Periodic Orbits
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Mitchell, Kevin
2016-05-01
Electron transport properties of chaotic atomic systems may be computable from classical periodic orbits. This technique allows for replacing a Monte Carlo simulation launching millions of orbits with a sum over tens or hundreds of properly chosen periodic orbits. A firm grasp of the structure of the periodic orbits is required to obtain accurate transport rates. We apply a technique called homotopic lobe dynamics (HLD) to understand the structure of periodic orbits to compute the ionization rate of a hydrogen atom in strong parallel electric and magnetic fields. HLD uses information encoded in the intersections of stable and unstable manifolds of a few orbits to compute all relevant periodic orbits in the system. The ionization rate computed from periodic orbits using HLD converges exponentially to the true value as a function of the highest period used. We then use periodic orbit continuation to accurately compute the ionization rate when the field strengths are varied. The ability to use periodic orbits in a mixed phase space could allow for studying transport in even more complex few body systems.
Lukasik, S; Betkowski, A; Cyran-Rymarz, A; Szuber, D
1995-01-01
Diseases of the orbital cavity require more attention because of its specific anatomic structure and placement. Their curing requires cooperation of many medical specialties. Analysis consider orbital fractures, mainly caused by car accidents (69.2%). The next half of them consider inflammatory processes and tumor in equal numbers. Malignant tumors of orbital cavity occur most frequently (48.0%), less frequent are pseudotumors--pseudotumor orbitae (36.0%) and rare--malignant ones (16.0%). Malignant tumors more frequently infiltrate the orbit in neighborhood (63.3%), less frequently they come out from orbit tissue (16.7%). It should be emphasized that the number of orbit inflammations decreases in subsequent years, whereas occurrence of orbit tumors increases. PMID:9454170
Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination
NASA Technical Reports Server (NTRS)
Marshall, J. A.; Luthcke, S. B.; Antreasian, P. G.; Rosborough, G. W.
1992-01-01
Geodetic satellites such as GEOSAT, SPOT, ERS-1, and TOPEX/Poseidon require accurate orbital computations to support the scientific data they collect. Until recently, gravity field mismodeling was the major source of error in precise orbit definition. However, albedo and infrared re-radiation, and spacecraft thermal imbalances produce in combination no more than a 6-cm radial root-mean-square (RMS) error over a 10-day period. This requires the development of nonconservative force models that take the satellite's complex geometry, attitude, and surface properties into account. For TOPEX/Poseidon, a 'box-wing' satellite form was investigated that models the satellite as a combination of flat plates arranged in a box shape with a connected solar array. The nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. In order to test the validity of this concept, 'micro-models' based on finite element analysis of TOPEX/Poseidon were used to generate acceleration histories in a wide variety of orbit orientations. These profiles are then compared to the box-wing model. The results of these simulations and their implication on the ability to precisely model the TOPEX/Poseidon orbit are discussed.
NASA Technical Reports Server (NTRS)
Walden, H.
1974-01-01
The results of an intensive analysis of a differential orbit improvement method utilizing observational data for a 550-kilometer altitude, near-circular, near-equatorial satellite orbit are presented. Observations of the Small Astronomy Satellite (SAS-1) are in the form of direction cosines as measured at two ground interferometer tracking stations near the Equator during the first 22 orbital revolutions (approximately 37 hours) after launch of the spacecraft. Numerical results, in both tabular and graphical form, are displayed for numerous iterated fittings of various observational arcs by differential correction of the orbital elements. Parameters varied in these comparative cases include the time duration of the observational data block, the number of pairs of direction cosine data and the number of tracking station passes included in the solution, the distribution of such passes between the two available tracking stations, and the acceptance criterion for the observational residuals in the least squares fitting procedure. It was found that three observational pairs of direction cosine data, the minimum number possible for a uniquely determined solution in theory, are sufficient to promote covergence to an accurate solution, if properly selected.
Solar Sail Optimal Orbit Transfers to Synchronous Orbits
NASA Technical Reports Server (NTRS)
Powers, Robert B.; Coverstone, Victoria; Prussing, John E.; Lunney, Bryan C. (Technical Monitor)
1999-01-01
A constant outward radial thrust acceleration can be used to reduce the radius of a circular orbit of specified period. Heliocentric circular orbits are designed to match the orbital period of Earth or Mars for various radial thrust accelerations and are defined as synchronous orbits. Minimum-time solar sail orbit transfers to these synchronous heliocentric orbits are presented.
Mutual Orbits of Transneptunian Binaries
NASA Astrophysics Data System (ADS)
Grundy, William M.; Noll, K. S.; Roe, H. G.; Porter, S. B.; Trujillo, C. A.; Benecchi, S. D.; Buie, M. W.
2012-10-01
We report the latest results from a program of high spatial resolution imaging to resolve the individual components of binary transneptunian objects. These observations use Hubble Space Telescope and also laser guide star adaptive optics systems on Keck and Gemini telescopes on Mauna Kea. From relative astrometry over multiple epochs, we determine the mutual orbits of the components, and thus the total masses of the systems. Accurate masses anchor subsequent detailed investigations into the physical characteristics of these systems. For instance, dynamical masses enable computation of bulk densities for systems where the component sizes can be estimated from other measurements. Additionally, patterns in the ensemble characteristics of binary orbits offer clues to circumstances in the protoplanetary nebula when these systems formed, as well as carrying imprints of various subsequent dynamical evolution processes. The growing ensemble of known orbits shows intriguing patterns that can shed light on the evolution of this population of distant objects. This work has been supported by an NSF Planetary Astronomy grant and by several Hubble Space Telescope and NASA Keck data analysis grants. The research makes use of data from the Gemini Observatory obtained through NOAO survey program 11A-0017, from a large number of Hubble Space Telescope programs, and from several NASA Keck programs.
James Webb Space Telescope Orbit Determination Analysis
NASA Technical Reports Server (NTRS)
Yoon, Sungpil; Rosales, Jose; Richon, Karen
2014-01-01
The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-EarthMoon L2 libration point, 1.5 million km away from Earth. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate orbit determination (OD) solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cmsec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.
James Webb Space Telescope Orbit Determination Analysis
NASA Technical Reports Server (NTRS)
Yoon, Sungpil; Rosales, Jose; Richon, Karen
2014-01-01
The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-Earth/Moon L2 libration point, 1.5 million km away from Earth. This paper describes the results of an orbit determination (OD) analysis of the JWST mission emphasizing the challenges specific to this mission in various mission phases. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate OD solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cm/sec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.
Long time dynamical evolution of highly elliptical satellites orbits
NASA Astrophysics Data System (ADS)
Kuznetsov, E.; Zakharova, P.
2015-08-01
Dynamical evolution of objects near Molniya-type orbits is considered. Initial conditions correspond to highly elliptical satellite orbits with eccentricities 0.65 and a critical inclination 63.4°. Semi-major axis is varied near resonant value 26560 km in an interval 500 km. Variations were analyzed for positional orbital elements, an ascending node longitude and an argument of pericenter. Initial conditions determined when orbital elements variations are minimal. These regions can be used as orbits for safe stationing satellites which finish work on Molniya-type orbits. The study of dynamical evolution on long time intervals was performed on the basis of the results of numerical simulation. The model of disturbing forces taken into account the main perturbing factors. Time interval was up to 24 yr. Area-to-mass ratio varied from small values corresponding to satellites to big ones corresponding to space debris.
Accurate, reliable prototype earth horizon sensor head
NASA Technical Reports Server (NTRS)
Schwarz, F.; Cohen, H.
1973-01-01
The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.
Semi-Major Axis Knowledge and GPS Orbit Determination
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Schiesser, Emil R.; Bauer, F. (Technical Monitor)
2000-01-01
In recent years spacecraft designers have increasingly sought to use onboard Global Positioning System receivers for orbit determination. The superb positioning accuracy of GPS has tended to focus more attention on the system's capability to determine the spacecraft's location at a particular epoch than on accurate orbit determination, per se. The determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. It is necessary to address semi-major axis mission requirements and the GPS receiver capability for orbital maneuver targeting and other operations that require trajectory prediction. Failure to determine semi-major axis accurately can result in a solution that may not be usable for targeting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating position, velocity, and semi-major axis are useful in design and analysis of GPS receivers for near circular orbit operations, including rendezvous and formation flying missions. Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered and filtered solution data and Standard and Precise Positioning, Service modes, have been accomplished. These results indicate that semi-major axis is often not determined very accurately, due to a poor velocity solution and a lack of proper filtering to provide good radial and speed error correlation.
Semi-Major Axis Knowledge and GPS Orbit Determination
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Schiesser, Emil R.; Bauer, F. (Technical Monitor)
2000-01-01
In recent years spacecraft designers have increasingly sought to use onboard Global Positioning System receivers for orbit determination. The superb positioning accuracy of GPS has tended to focus more attention on the system's capability to determine the spacecraft's location at a particular epoch than on accurate orbit determination, per se. The determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. It is necessary to address semi-major axis mission requirements and the GPS receiver capability for orbital maneuver targeting and other operations that require trajectory prediction. Failure to determine semi-major axis accurately can result in a solution that may not be usable for targeting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating position, velocity, and semi-major axis are useful in design and analysis of GPS receivers for near circular orbit operations, including rendezvous and formation flying missions. Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered and filtered solution data and Standard and Precise Positioning Service modes, have been accomplished. These results indicate that semi-major axis is often not determined very accurately, due to a poor velocity solution and a lack of proper filtering to provide good radial and speed error correlation.
NASA Astrophysics Data System (ADS)
Painter, G. S.; Averill, F. W.
1983-11-01
The principle of augmentation, used to introduce inner-atom core structure into slowly varying basis functions, is applied to Gaussian orbitals to define a new basis set for highly accurate total-energy calculations for atomic clusters within the density-functional formalism. Diffuse Gaussian-orbital tails are matched continuously and differentiably to inner-atom numeric radial functions at the atomic-sphere radius. Major advantages of Gaussian-orbital basis sets are acquired without the need for numerous Gaussians of large exponent for the core region. The numeric functions used inside the atom permit essentially exact solutions for that region. Procedures are described which recover use of the efficient integral algorithms for the Gaussian-orbital-tail matrix elements. The interactions over the structured inner-atom region are treated by efficient integrand smoothing and integration procedures for the sphere. The new augmented Gaussian basis removes the primary limitations on the use of Gaussian orbitals for heavy atoms. As an illustration the method is applied to the copper dimer in an all-electron framework within the local-spin-density approximation (LSDA). The calculated binding energy, equilibrium separation, and first ionization potential of Cu2 are within 2% of experiment within the Xα model. Excitation energies are better described within more recent refined exchange-correlation functionals. These all-electron results show the LSDA model predicts a slightly contracted bond length for Cu2, consistent with bulk LSDA calculations for the 3d transition-metal series.
The Orbits of the Inner Uranian Satellites
NASA Astrophysics Data System (ADS)
Brozovic, Marina; Jacobson, R. A.
2009-05-01
We report on the numerically integrated orbits for the thirteen inner Uranian satellites. Our dataset includes Voyager imaging data as well as HST and Earth-based astrometric data. The observations span time period from 1985 to 2003. Our model of the inner moons' orbits accounts for the equatorial bulge of Uranus, the perturbations from the external bodies and the perturbations from the large moons of Uranus (Miranda, Umbriel, Ariel, Oberon, and Titania). The inner satellites were initially considered massless, but we found that this assumption may need to be revised in order to fine-tune the system's dynamics and obtain the orbital solutions with adequate residuals.The results are given in terms of state vectors,post-fit residuals and mean orbital elements.
Orbit Perturbations Due to Solar Radiation Pressure
NASA Technical Reports Server (NTRS)
Sawyer, G. A.
1972-01-01
This disturbing force will be important for satellites with a large area to mass ratio and also for those whose orbits are high enough that atmospheric drag is not the more dominate force. The procedure for the analysis is to represent the radiation force as the gradient of a scalar function to be compatible with existing procedures for studying perturbations due to earth's oblateness. From this analysis, solar radiation pressure appears not to be responsible for any secular or long-periodic variations in the semi-major axis of the orbit nor does it provide any secular changes in the eccentricity of the orbit or the angle of inclination of the osculating plane. Solar radiation pressure does produce secular effects in the other orbital elements, but these are in the opposite sense of secularities caused by the gravitational attraction of the sun and tend to reduce the total secularity.
Designing the Orbital Space Tourism Experience
NASA Astrophysics Data System (ADS)
Webber, Derek
2006-01-01
Sub-orbital space tourism is now well on its way to becoming a reality, with offerings by Virgin Galactic, Rocketplane, and others soon to be made available. Orbital space tourism is harder to achieve, but, if successful as a business model, will make significant contributions towards improved operational efficiencies, reusability, reliability and economies of scale to the world of crewed space flight. Some responses to the President's Vision for Space Exploration have included public space travel in low Earth orbit as sustaining and enabling elements of the vision in a post-Shuttle space architecture. This paper addresses the steps necessary to make possible such a US-based orbital space tourism business, and will assist commercial and government agencies concerned with the development of this new sector.
Spinning compact binary dynamics and chameleon orbits
NASA Astrophysics Data System (ADS)
Gergely, László Árpád; Keresztes, Zoltán
2015-01-01
We analyze the conservative evolution of spinning compact binaries to second post-Newtonian (2PN) order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. As a main result we derive a closed system of first-order differential equations in a compact form, for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained dynamical systems we perform a consistency check and prove that the constraints are preserved by the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances. This behavior is consistent with the picture that general relativity predicts stronger gravity at short distances than Newtonian theory does.
Precision orbit determination at the NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Putney, B.; Kolenkiewicz, R.; Smith, D.; Dunn, P.; Torrence, M. H.
1990-01-01
This paper describes the GEODYN computer program developed by the Geodynamics Branch at the NASA Goddard Space Flight Center and outlines the procedure for accurate satellite orbit and tracking-data analyses. The capabilities of the program allow the development of gravity fields as large as 90 by 90, and a complete modeling of tidal parameters. It is also feasible to numerically integrate a continuous orbit of a satellite such as Lageos for up to 12 years. The evolution of the orbit can be studied, and, by comparison with locally determined orbits, force model improvements can be made. The GEODYN flow diagrams are presented.
Sepinsky, J. F.; Willems, B.; Kalogera, V.; Rasio, F. A. E-mail: b-willems@northwestern.ed E-mail: rasio@northwestern.ed
2010-11-20
The rapid circularization and synchronization of the stellar components in an eccentric binary system at the onset of Roche lobe overflow is a fundamental assumption common to all binary stellar evolution and population synthesis codes, even though the validity of this assumption is questionable both theoretically and observationally. Here we calculate the evolution of the orbital elements of an eccentric binary through the direct three-body integration of a massive particle ejected through the inner Lagrangian point of the donor star at periastron. The trajectory of this particle leads to three possible outcomes: direct accretion onto the companion star within a single orbit, self-accretion back onto the donor star within a single orbit, or a quasi-periodic orbit around the companion star, possibly leading to the formation of a disk. We calculate the secular evolution of the binary orbit in the first two cases and conclude that direct impact accretion can increase as well as decrease the orbital semimajor axis and eccentricity, while self-accretion always decreases the orbital semimajor axis and eccentricity. In cases where mass overflow contributes to circularizing the orbit, circularization can set in on timescales as short as a few percent of the mass-transfer timescale. In cases where mass overflow increases the eccentricity, the orbital evolution is governed by competition between mass overflow and tidal torques. In the absence of tidal torques, mass overflow results in direct impact can lead to substantially subsynchronously rotating donor stars. Contrary to assumptions common in the literature, direct impact accretion furthermore does not always provide a strong sink of orbital angular momentum in close mass-transferring binaries; in fact, we instead find that a significant part can be returned to the orbit during the particle orbit. The formulation presented in this paper together with our previous work can be combined with stellar and binary evolution
Orbital refill of propulsion vehicle tankage
NASA Technical Reports Server (NTRS)
Merino, F.; Risberg, J. A.; Hill, M.
1980-01-01
Techniques for orbital refueling of space based vehicles were developed and experimental programs to verify these techniques were identified. Orbital refueling operations were developed for two cryogenic orbital transfer vehicles (OTV's) and an Earth storable low thrust liquid propellant vehicle. Refueling operations were performed assuming an orbiter tanker for near term missions and an orbital depot. Analyses were conducted using liquid hydrogen and N2O4. The influence of a pressurization system and acquisition device on operations was also considered. Analyses showed that vehicle refill operations will be more difficult with a cryogen than with an earth storable. The major elements of a successful refill with cryogens include tank prechill and fill. Propellant quantities expended for tank prechill appear to to insignificant. Techniques were identified to avoid loss of liquid or excessive tank pressures during refill. It was determined that refill operations will be similar whether or not an orbiter tanker or orbital depot is available. Modeling analyses were performed for prechill and fill tests to be conducted assuming the Spacelab as a test bed, and a 1/10 scale model OTV (with LN2 as a test fluid) as an experimental package.
Orbit Determination of the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.
2011-01-01
We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.
Marned Orbital Systems Concept
NASA Technical Reports Server (NTRS)
1975-01-01
Despite the indefinite postponement of the Space Station in 1972, Marshall Space Flight Center (MSFC) continued to look to the future for some type of orbital facility during the post-Skylab years. In 1975, the MSFC directed a contract with the McDonnel Douglas Aerospace Company for the Manned Orbital Systems Concept (MOSC) study. This 9-month effort examined the requirements for, and defined a cost-effective orbital facility concept capable of, supporting extended manned missions in Earth orbit. The capabilities of this concept exceeded those envisioned for the Space Shuttle and Spacelab, both of which were limited by a 7 to 30-day orbital time constraint. The MOSC's initial operating capability was to be achieved in late 1984. A crew of four would man a four-module configuration. During its five-year orbital life the MOSC would have the capability to evolve into a larger 12-to-24-man facility. This is an artist's concept of MOSC.
Accurate measurement of unsteady state fluid temperature
NASA Astrophysics Data System (ADS)
Jaremkiewicz, Magdalena
2016-07-01
In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.
Orbiter windward surface entry Heating: Post-orbital flight test program update
NASA Technical Reports Server (NTRS)
Harthun, M. H.; Blumer, C. B.; Miller, B. A.
1983-01-01
Correlations of orbiter windward surface entry heating data from the first five flights are presented with emphasis on boundary layer transition and the effects of catalytic recombination. Results show that a single roughness boundary layer transition correlation developed for spherical element trips works well for the orbiter tile system. Also, an engineering approach for predicting heating in nonequilibrium flow conditions shows good agreement with the flight test data in the time period of significant heating. The results of these correlations, when used to predict orbiter heating for a high cross mission, indicate that the thermal protection system on the windward surface will perform successfully in such a mission.
An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design
NASA Technical Reports Server (NTRS)
Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.
2009-01-01
Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.
Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits
NASA Technical Reports Server (NTRS)
Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David
2011-01-01
measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar
NASA Technical Reports Server (NTRS)
2008-01-01
This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.
All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.
Phoenix will land just south of Mars's north polar ice cap.
Introducing Earth's Orbital Eccentricity
NASA Astrophysics Data System (ADS)
Oostra, Benjamin
2015-12-01
Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.
NASA Astrophysics Data System (ADS)
Wohlfeld, Krzysztof; Marra, Pasquale; Grueninger, Markus; Schmitt, Thorsten; van den Brink, Jeroen
2013-03-01
In contrast to magnetism, phenomena associated with the orbital degrees of freedom in transition metal oxides had always been considered to be very difficult to observe. However, recently resonant inelastic x-ray scattering (RIXS) has established itself as a perfect probe of the orbital excitations and orbital order in transition metal oxides. Here we give a brief overview of these recent theoretical and experimental advances which have inter alia led to the observation of the separation of the spin and orbital degree of freedom of an electron.
NASA Technical Reports Server (NTRS)
Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)
1999-01-01
This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.
Magnetospheric Multiscale (MMS) Orbit
This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...
Astrometric Models of the Phobos Orbiter TV Cameras
NASA Technical Reports Server (NTRS)
Duxbury, T. C.
1993-01-01
Astrometric models of the 3 Phobos Orbiter TV cameras, their pointing in inertial space, the position of the Phobos Orbiter with respect to Mars, Phobos and Deimos, and transformations from inertial to body-fixed coordinates are needed to transform between the image coordinates of a picture element (.
Introducing the Moon's Orbital Eccentricity
ERIC Educational Resources Information Center
Oostra, Benjamin
2014-01-01
I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a…
Unique human orbital morphology compared with that of apes.
Denion, Eric; Hitier, Martin; Guyader, Vincent; Dugué, Audrey-Emmanuelle; Mouriaux, Frédéric
2015-01-01
Humans' and apes' convergent (front-facing) orbits allow a large overlap of monocular visual fields but are considered to limit the lateral visual field extent. However, humans can greatly expand their lateral visual fields using eye motion. This study aimed to assess whether the human orbital morphology was unique compared with that of apes in avoiding lateral visual field obstruction. The orbits of 100 human skulls and 120 ape skulls (30 gibbons; 30 orangutans; 30 gorillas; 30 chimpanzees and bonobos) were analyzed. The orbital width/height ratio was calculated. Two orbital angles representing orbital convergence and rearward position of the orbital margin respectively were recorded using a protractor and laser levels. Humans have the largest orbital width/height ratio (1.19; p < 0.001). Humans and gibbons have orbits which are significantly less convergent than those of chimpanzees/bonobos, gorillas and orangutans (p < 0.001). These elements suggest a morphology favoring lateral vision in humans. More specifically, the human orbit has a uniquely rearward temporal orbital margin (107.1°; p < 0.001), suitable for avoiding visual obstruction and promoting lateral visual field expansion through eye motion. Such an orbital morphology may have evolved mainly as an adaptation to open-country habitat and bipedal locomotion. PMID:26111067
Unique human orbital morphology compared with that of apes
Denion, Eric; Hitier, Martin; Guyader, Vincent; Dugué, Audrey-Emmanuelle; Mouriaux, Frédéric
2015-01-01
Humans’ and apes’ convergent (front-facing) orbits allow a large overlap of monocular visual fields but are considered to limit the lateral visual field extent. However, humans can greatly expand their lateral visual fields using eye motion. This study aimed to assess whether the human orbital morphology was unique compared with that of apes in avoiding lateral visual field obstruction. The orbits of 100 human skulls and 120 ape skulls (30 gibbons; 30 orangutans; 30 gorillas; 30 chimpanzees and bonobos) were analyzed. The orbital width/height ratio was calculated. Two orbital angles representing orbital convergence and rearward position of the orbital margin respectively were recorded using a protractor and laser levels. Humans have the largest orbital width/height ratio (1.19; p < 0.001). Humans and gibbons have orbits which are significantly less convergent than those of chimpanzees / bonobos, gorillas and orangutans (p < 0.001). These elements suggest a morphology favoring lateral vision in humans. More specifically, the human orbit has a uniquely rearward temporal orbital margin (107.1°; p < 0.001), suitable for avoiding visual obstruction and promoting lateral visual field expansion through eye motion. Such an orbital morphology may have evolved mainly as an adaptation to open-country habitat and bipedal locomotion. PMID:26111067
Precise and Accurate Density Determination of Explosives Using Hydrostatic Weighing
B. Olinger
2005-07-01
Precise and accurate density determination requires weight measurements in air and water using sufficiently precise analytical balances, knowledge of the densities of air and water, knowledge of thermal expansions, availability of a density standard, and a method to estimate the time to achieve thermal equilibrium with water. Density distributions in pressed explosives are inferred from the densities of elements from a central slice.
Direct oblique sagittal CT of orbital wall fractures
Ball, J.B. Jr.
1987-03-01
Direct oblique sagittal CT was used to evaluate trauma to 77 orbits. Sixty-seven orbital wall fractures with intact orbital rims (36 floor, 22 medial wall, nine roof) were identified in 47 orbits. Since persistent diplopia and/or enophthalmos may warrant surgical repair of orbital floor fractures, optimal imaging should include an evaluation of extraocular muscle status, the nature and amount of displaced orbital contents, and an accurate definition of fracture margins. For orbital floor fractures, a combination of the direct oblique sagittal and direct coronal projections optimally displayed all fracture margins, the fracture's relationship to the inferior orbital rim and medial orbital wall, and the amount of displacement into the maxillary sinus. Inferior rectus muscle status with 36 floor fractures was best seen on the direct oblique sagittal projection in 30 fractures (83.3%) and was equally well seen on sagittal and coronal projections in two fractures (5.5%). Floor fractures were missed on 100% of axial, 5.5% of sagittal, and 0% of coronal projections. Since the direct oblique sagittal projection complements the direct coronal projection in evaluating orbital floor fractures, it should not be performed alone. A technical approach to the CT evaluation or orbital wall fractures is presented.
Asteroid orbital inversion using uniform phase-space sampling
NASA Astrophysics Data System (ADS)
Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.
2014-07-01
We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in
Transition Metal Configurations and Limitations of the Orbital Approximation.
ERIC Educational Resources Information Center
Scerri, Eric R.
1989-01-01
Points out a misconception that is reinforced in many elementary and advanced chemistry texts. Discusses the general limitations of the orbital concept. Notes misconceptions related to the transition elements and their first ionization energies. (MVL)
NASA Technical Reports Server (NTRS)
Axelrad, Penina; Speed, Eden; Leitner, Jesse A. (Technical Monitor)
2002-01-01
This report summarizes the efforts to date in processing GPS measurements in High Earth Orbit (HEO) applications by the Colorado Center for Astrodynamics Research (CCAR). Two specific projects were conducted; initialization of the orbit propagation software, GEODE, using nominal orbital elements for the IMEX orbit, and processing of actual and simulated GPS data from the AMSAT satellite using a Doppler-only batch filter. CCAR has investigated a number of approaches for initialization of the GEODE orbit estimator with little a priori information. This document describes a batch solution approach that uses pseudorange or Doppler measurements collected over an orbital arc to compute an epoch state estimate. The algorithm is based on limited orbital element knowledge from which a coarse estimate of satellite position and velocity can be determined and used to initialize GEODE. This algorithm assumes knowledge of nominal orbital elements, (a, e, i, omega, omega) and uses a search on time of perigee passage (tau(sub p)) to estimate the host satellite position within the orbit and the approximate receiver clock bias. Results of the method are shown for a simulation including large orbital uncertainties and measurement errors. In addition, CCAR has attempted to process GPS data from the AMSAT satellite to obtain an initial estimation of the orbit. Limited GPS data have been received to date, with few satellites tracked and no computed point solutions. Unknown variables in the received data have made computations of a precise orbit using the recovered pseudorange difficult. This document describes the Doppler-only batch approach used to compute the AMSAT orbit. Both actual flight data from AMSAT, and simulated data generated using the Satellite Tool Kit and Goddard Space Flight Center's Flight Simulator, were processed. Results for each case and conclusion are presented.
Method to integrate full particle orbit in toroidal plasmas
NASA Astrophysics Data System (ADS)
Wei, X. S.; Xiao, Y.; Kuley, A.; Lin, Z.
2015-09-01
It is important to integrate full particle orbit accurately when studying charged particle dynamics in electromagnetic waves with frequency higher than cyclotron frequency. We have derived a form of the Boris scheme using magnetic coordinates, which can be used effectively to integrate the cyclotron orbit in toroidal geometry over a long period of time. The new method has been verified by a full particle orbit simulation in toroidal geometry without high frequency waves. The full particle orbit calculation recovers guiding center banana orbit. This method has better numeric properties than the conventional Runge-Kutta method for conserving particle energy and magnetic moment. The toroidal precession frequency is found to match that from guiding center simulation. Many other important phenomena in the presence of an electric field, such as E × B drift, Ware pinch effect and neoclassical polarization drift are also verified by the full orbit simulation.
Slow Orbit Feedback at the ALS Using Matlab
Portmann, G.
1999-03-25
The third generation Advanced Light Source (ALS) produces extremely bright and finely focused photon beams using undulatory, wigglers, and bend magnets. In order to position the photon beams accurately, a slow global orbit feedback system has been developed. The dominant causes of orbit motion at the ALS are temperature variation and insertion device motion. This type of motion can be removed using slow global orbit feedback with a data rate of a few Hertz. The remaining orbit motion in the ALS is only 1-3 micron rms. Slow orbit feedback does not require high computational throughput. At the ALS, the global orbit feedback algorithm, based on the singular valued decomposition method, is coded in MATLAB and runs on a control room workstation. Using the MATLAB environment to develop, test, and run the storage ring control algorithms has proven to be a fast and efficient way to operate the ALS.
Numerical simulations of the decay of satellite galaxy orbits
NASA Technical Reports Server (NTRS)
Lin, D. N. C.; Tremaine, S.
1983-01-01
A multiple three-body technique is used to study the orbital evolution of satellite galaxies which is similar to the N-body method but neglects two-body forces between stars in the halo of the parent galaxy. It is found that, for satellites orbiting within the halo, Chandrasekhar's (1960) dynamical friction formula accurately describes the orbital decay rate, including its variation with satellite mass and size and with the number density and mass of halo stars. Significant frictional forces are present even outside the halo, and the orbital decay rate, instead of depending on the procedure used to place the satellite in its orbit, is determined only by the current orbital parameters. This semirestricted N-body method is sufficiently fast to have permitted the running of 200 simulations to date, many more than would have been possible by means of the conventional N-body technique.
Measurement of the first ionization potential of lawrencium, element 103
NASA Astrophysics Data System (ADS)
Sato, T. K.; Asai, M.; Borschevsky, A.; Stora, T.; Sato, N.; Kaneya, Y.; Tsukada, K.; Düllmann, Ch. E.; Eberhardt, K.; Eliav, E.; Ichikawa, S.; Kaldor, U.; Kratz, J. V.; Miyashita, S.; Nagame, Y.; Ooe, K.; Osa, A.; Renisch, D.; Runke, J.; Schädel, M.; Thörle-Pospiech, P.; Toyoshima, A.; Trautmann, N.
2015-04-01
The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is electronvolts. The IP1 of Lr was measured with 256Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.
Measurement of the first ionization potential of lawrencium, element 103.
Sato, T K; Asai, M; Borschevsky, A; Stora, T; Sato, N; Kaneya, Y; Tsukada, K; Düllmann, Ch E; Eberhardt, K; Eliav, E; Ichikawa, S; Kaldor, U; Kratz, J V; Miyashita, S; Nagame, Y; Ooe, K; Osa, A; Renisch, D; Runke, J; Schädel, M; Thörle-Pospiech, P; Toyoshima, A; Trautmann, N
2015-04-01
The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is 4.96(+0.08)(-0.07) electronvolts. The IP1 of Lr was measured with (256)Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale. PMID:25855457
Titan Orbiter Aerorover Mission
NASA Technical Reports Server (NTRS)
Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.
2001-01-01
We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.
Predict amine solution properties accurately
Cheng, S.; Meisen, A.; Chakma, A.
1996-02-01
Improved process design begins with using accurate physical property data. Especially in the preliminary design stage, physical property data such as density viscosity, thermal conductivity and specific heat can affect the overall performance of absorbers, heat exchangers, reboilers and pump. These properties can also influence temperature profiles in heat transfer equipment and thus control or affect the rate of amine breakdown. Aqueous-amine solution physical property data are available in graphical form. However, it is not convenient to use with computer-based calculations. Developed equations allow improved correlations of derived physical property estimates with published data. Expressions are given which can be used to estimate physical properties of methyldiethanolamine (MDEA), monoethanolamine (MEA) and diglycolamine (DGA) solutions.
Lageos orbit and the albedo problem
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1984-01-01
The objective was to obtain an analytic expression for the radiation pressure force on a satellite due to sunlight reflected from the Earth. The Lageos satellite undergoes unexplained along-track accelerations. These accelerations are believed to be due mainly to terrestrial radiation pressure. The effect of sunlight reflected off the surface of the Earth must thus be modeled to insure an accurate orbit for Lageos. An accurate orbit is necessary for carrying out Lageos' mission of measuring tectonic plate motion, polar motion, and Earth rotation. The present investigation focuses on a spherical harmonic approach to the problem. An equation for the force was obtained by assuming the Earth's surface reflects sunlight according to Lambert's law. The equation is an integral over the whole Earth's surface. Expressions occurring inside the integral are expressed in terms of spherical harmonics. The problem is thus reduced to integrating products of spherical harmonics.
THE ORBIT OF CHARON IS CIRCULAR
Buie, Marc W.; Tholen, David J.; Grundy, William M. E-mail: tholen@ifa.hawaii.edu
2012-07-15
We present a detailed analysis of the orbit of Charon where we show its orbit to be circular. This analysis explores the effects of surface albedo variations on the astrometry and the resulting errors in the orbital elements. We present two new epochs of data from the Hubble Space Telescope taken in 2008 and 2010 and combine that with a re-analysis of previously published data from 1992 and 2002. Our adopted two-body Keplerian orbital elements for Charon are P = 6.3872273 {+-} 0.0000003 days, a = 19573 {+-} 2 km, e = 0., i = 96.218 {+-} 0.008 deg, L = 4.50177 {+-} 0.00018 rad, and {Omega} = 3.89249 {+-} 0.00012 rad for an epoch of JDT = 2452600.5 in the J2000 reference frame. The 1{sigma} upper limit to the eccentricity is 7.5 Multiplication-Sign 10{sup -5}. The predicted uncertainty in the position of Charon relative to Pluto at the time of the New Horizons encounter based on this orbit is 8 km.
Accurate thickness measurement of graphene
NASA Astrophysics Data System (ADS)
Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.
2016-03-01
Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.
NASA Technical Reports Server (NTRS)
Kelley, R. L.; Jarkey, D. R.; Stansbery, G.
2014-01-01
Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.
Orbital preservation in maxillectomy.
Stern, S J; Goepfert, H; Clayman, G; Byers, R; Wolf, P
1993-07-01
Twenty-eight previously untreated patients with squamous carcinoma of the maxillary sinus underwent maxillectomy with preservation of the orbital contents at the M. D. Anderson Cancer Center between 1971 and 1986. Eighteen patients had part or all of the orbital floor resected; nine patients were treated with radiotherapy, and nine had surgery only. Only 3 of 18 patients in this group (17%) retained significant function in the ipsilateral eye. Furthermore, local recurrence in this group was common (44%), regardless of whether postoperative radiotherapy was used. Ten patients retained the bony orbital floor; if the radiation fields did not include the eye, problems were minimal. Strong consideration should be given to orbital exenteration at the time of surgery, when the orbital floor is resected--especially if postoperative radiation fields will include the eye. PMID:8336956
NASA Technical Reports Server (NTRS)
1998-01-01
The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.
Remote Controlled Orbiter Capability
NASA Technical Reports Server (NTRS)
Garske, Michael; delaTorre, Rafael
2007-01-01
The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.
Three Orbital Burns to Molniya Orbit via Shuttle Centaur G Upper Stage
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2014-01-01
An unclassified analytical trajectory design, performance, and mission study was done for the 1982-86 joint NASA-USAF Shuttle/Centaur G upper stage development program to send performance-demanding payloads to high orbits such as Molniya using an unconventional orbit transfer. This optimized three orbital burn transfer to Molniya orbit was compared to the then-baselined two burn transfer. The results of the three dimensional trajectory optimization performed include powered phase steering data and coast phase orbital element data. Time derivatives of the orbital elements as functions of thrust components were evaluated and used to explain the optimization's solution. Vehicle performance as a function of parking orbit inclination was given. Performance and orbital element data was provided for launch windows as functions of launch time. Ground track data was given for all burns and coasts including variation within the launch window. It was found that a Centaur with fully loaded propellant tanks could be flown from a 37deg inclination low Earth parking orbit and achieve Molniya orbit with comparable performance to the baselined transfer which started from a 57deg inclined orbit: 9,545 lb vs. 9,552 lb of separated spacecraft weight respectively. There was a significant reduction in the need for propellant launch time reserve for a one hour window: only 78 lb for the three burn transfer vs. 320 lb for the two burn transfer. Conversely, this also meant that longer launch windows over more orbital revolutions could be done for the same amount of propellant reserve. There was no practical difference in ground tracking station or airborne assets needed to secure telemetric data, even though the geometric locations of the burns varied considerably. There was a significant adverse increase in total mission elapsed time for the three vs. two burn transfer (12 vs. 11/4 hrs), but could be accommodated by modest modifications to Centaur systems. Future applications were
Three Orbital Burns to Molniya Orbit Via Shuttle_Centaur G Upper Stage
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2015-01-01
An unclassified analytical trajectory design, performance, and mission study was done for the 1982 to 1986 joint National Aeronautics and Space Administration (NASA)-United States Air Force (USAF) Shuttle/Centaur G upper stage development program to send performance-demanding payloads to high orbits such as Molniya using an unconventional orbit transfer. This optimized three orbital burn transfer to Molniya orbit was compared to the then-baselined two burn transfer. The results of the three dimensional trajectory optimization performed include powered phase steering data and coast phase orbital element data. Time derivatives of the orbital elements as functions of thrust components were evaluated and used to explain the optimization's solution. Vehicle performance as a function of parking orbit inclination was given. Performance and orbital element data was provided for launch windows as functions of launch time. Ground track data was given for all burns and coasts including variation within the launch window. It was found that a Centaur with fully loaded propellant tanks could be flown from a 37 deg inclination low Earth parking orbit and achieve Molniya orbit with comparable performance to the baselined transfer which started from a 57 deg inclined orbit: 9,545 versus 9,552 lb of separated spacecraft weight, respectively. There was a significant reduction in the need for propellant launch time reserve for a 1 hr window: only 78 lb for the three burn transfer versus 320 lb for the two burn transfer. Conversely, this also meant that longer launch windows over more orbital revolutions could be done for the same amount of propellant reserve. There was no practical difference in ground tracking station or airborne assets needed to secure telemetric data, even though the geometric locations of the burns varied considerably. There was a significant adverse increase in total mission elapsed time for the three versus two burn transfer (12 vs. 1-1/4 hr), but could be
NASA Astrophysics Data System (ADS)
Ismail, M. N.; Bakry, A.; Selim, H. H.; Shehata, M. H.
2015-06-01
In this work, the circumstances of eclipse for a circular satellites' orbit are studied. The time of passage of the ingress and egress points is calculated. Finally, the eclipse intervals of satellites' orbit are calculated. An application was done taken into account the effects of solar radiation pressure and Earth's oblateness on the orbital elements of circular orbit satellite.
Orbital Causes of Incomitant Strabismus
Lueder, Gregg T.
2015-01-01
Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465
Orbits for eight Hipparcos double stars
Cvetković, Z.; Pavlović, R.; Ninković, S.
2014-03-01
In this paper, we analyze new orbital elements and the quantities that follow from them for eight binaries: WDS 00101+3825 = HDS 23Da,Db, WDS 00321–1218 = HDS 71, WDS 04287+2613 = HDS 576, WDS 04389–1207 = HDS 599, WDS 16206+4535 = HDS 2309, WDS 17155+1052 = HDS 2440, WDS 22161–0705 = HDS 3158, and WDS 23167+3441 = HDS 3315. For seven of them, the orbital elements are calculated for the first time. Binaries, denoted as HDS, were discovered during the Hipparcos mission, and their first observational epoch is 1991.25, the same as the mean epoch of the Hipparcos catalog. We found all other measurements of these binaries in databases. They were obtained in the last 15 yr using the speckle interferometric technique. All studied pairs are close, and all measured separations are less than 0.''4. The resulting orbital periods fall within 26 and 80 yr. In addition to the orbital elements, we also give (O – C) residuals in θ and ρ, masses, dynamical parallaxes, absolute magnitudes, spectral types, and ephemerides for the next 5 yr.
Orbits for Eight Hipparcos Double Stars
NASA Astrophysics Data System (ADS)
Cvetković, Z.; Pavlović, R.; Ninković, S.
2014-03-01
In this paper, we analyze new orbital elements and the quantities that follow from them for eight binaries: WDS 00101+3825 = HDS 23Da,Db, WDS 00321-1218 = HDS 71, WDS 04287+2613 = HDS 576, WDS 04389-1207 = HDS 599, WDS 16206+4535 = HDS 2309, WDS 17155+1052 = HDS 2440, WDS 22161-0705 = HDS 3158, and WDS 23167+3441 = HDS 3315. For seven of them, the orbital elements are calculated for the first time. Binaries, denoted as HDS, were discovered during the Hipparcos mission, and their first observational epoch is 1991.25, the same as the mean epoch of the Hipparcos catalog. We found all other measurements of these binaries in databases. They were obtained in the last 15 yr using the speckle interferometric technique. All studied pairs are close, and all measured separations are less than 0.''4. The resulting orbital periods fall within 26 and 80 yr. In addition to the orbital elements, we also give (O - C) residuals in θ and ρ, masses, dynamical parallaxes, absolute magnitudes, spectral types, and ephemerides for the next 5 yr.
Bayesian Statistical Approach To Binary Asteroid Orbit Determination
NASA Astrophysics Data System (ADS)
Dmitrievna Kovalenko, Irina; Stoica, Radu S.
2015-08-01
Orbit determination from observations is one of the classical problems in celestial mechanics. Deriving the trajectory of binary asteroid with high precision is much more complicate than the trajectory of simple asteroid. Here we present a method of orbit determination based on the algorithm of Monte Carlo Markov Chain (MCMC). This method can be used for the preliminary orbit determination with relatively small number of observations, or for adjustment of orbit previously determined.The problem consists on determination of a conditional a posteriori probability density with given observations. Applying the Bayesian statistics, the a posteriori probability density of the binary asteroid orbital parameters is proportional to the a priori and likelihood probability densities. The likelihood function is related to the noise probability density and can be calculated from O-C deviations (Observed minus Calculated positions). The optionally used a priori probability density takes into account information about the population of discovered asteroids. The a priori probability density is used to constrain the phase space of possible orbits.As a MCMC method the Metropolis-Hastings algorithm has been applied, adding a globally convergent coefficient. The sequence of possible orbits derives through the sampling of each orbital parameter and acceptance criteria.The method allows to determine the phase space of every possible orbit considering each parameter. It also can be used to derive one orbit with the biggest probability density of orbital elements.
Orbital Evolution of Jupiter-Family Comets
NASA Technical Reports Server (NTRS)
Ipatov, S. I.; Mather, J. S.; Oegerle, William R. (Technical Monitor)
2002-01-01
We investigated the evolution for periods of at least 5-10 Myr of 2500 Jupiter-crossing objects (JCOs) under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period less than 10 yr, and in the second series we took 500 orbits close to the orbit of Comet 10P Tempel 2. We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr and then summarized the results for all time intervals and all bodies, obtaining the total probability P(sub sigma) of collisions with a planet and the total time interval T(sub sigma) during which perihelion distance of bodies was less than a semimajor axis of the planet. The values of P = 10(exp 6)P(sub sigma)/N and T = T(sub sigma)/1000 yr are presented in Table together with the ratio r of the total time interval when orbits were of Apollo type (at e less than 0.999) to that of Amor type.
Mars Science Laboratory Orbit Determination
NASA Technical Reports Server (NTRS)
Kruizinga, Gerhard; Gustafson, Eric; Jefferson, David; Martin-Mur, Tomas; Mottinger, Neil; Pelletier, Fred; Ryne, Mark; Thompson, Paul
2012-01-01
Mars Science Laboratory (MSL) Orbit Determination (OD) met all requirements with considerable margin, MSL OD team developed spin signature removal tool and successfully used the tool during cruise, A novel approach was used for the MSL solar radiation pressure model and resulted in a very accurate model during the approach phase, The change in velocity for Attitude Control System (ACS) turns was successfully calibrated and with appropriate scale factor resulted in improved change in velocity prediction for future turns, All Trajectory Correction Maneuvers were successfully reconstructed and execution errors were well below the assumed pre-fight execution errors, The official OD solutions were statistically consistent throughout cruise and for OD solutions with different arc lengths as well, Only EPU-1 was sent to MSL. All other Entry Parameter Updates were waived, EPU-1 solution was only 200 m separated from final trajectory reconstruction in the B-plane
The long-term prediction of artificial satellite orbits
NASA Technical Reports Server (NTRS)
Cefola, P. J.; Long, A. C.; Holloway, G., Jr.
1974-01-01
Survey of averaging and multirevolution methods for long-term orbit prediction. A technical approach with the following features is recommended: (1) averaged variation-of-parameter equations, (2) analytical expressions for oblateness and third-body effects, (3) definite integrals for atmospheric drag and lunar effects (for long-period orbits), (4) nonsingular equinoctial element formulation, (5) multistep numerical integration processes, and (6) precise osculating-to-mean element transformation. Several orbital predictions illustrate the contribution of this technical approach to overall accuracy and efficiency. Future development of the analytical averaging method in nonsingular coordinates by automated manipulation of literal series is discussed.
LOP- LONG-TERM ORBIT PREDICTOR
NASA Technical Reports Server (NTRS)
Kwok, J. H.
1994-01-01
The Long-Term Orbit Predictor (LOP) trajectory propagation program is a useful tool in lifetime analysis of orbiting spacecraft. LOP is suitable for studying planetary orbit missions with reconnaissance (flyby) and exploratory (mapping) trajectories. Sample data is included for a geosynchronous station drift cycle study, a Venus radar mapping strategy, a frozen orbit about Mars, and a repeat ground trace orbit. LOP uses the variation-of-parameters method in formulating the equations of motion. Terms involving the mean anomaly are removed from numerical integrations so that large step sizes, on the order of days, are possible. Consequently, LOP executes much faster than programs based on Cowell's method, such as the companion program ASAP (the Artificial Satellite Analysis Program, NPO-17522, also available through COSMIC). The program uses a force model with a gravity field of up to 21 by 21, lunisolar perturbation, drag, and solar radiation pressure. The input includes classical orbital elements (either mean or oscillating), orbital elements of the sun relative to the planet, reference time and dates, drag coefficients, gravitational constants, planet radius, rotation rate. The printed output contains the classical elements for each time step or event step, and additional orbital data such as true anomaly, eccentric anomaly, latitude, longitude, periapsis altitude, and the rate of change per day of certain elements. Selected output is additionally written to a plot file for postprocessing by the user. LOP is written in FORTRAN 77 for batch execution on IBM PC compatibles running MS-DOS with a minimum of 256K RAM. Recompiling the source requires the Lahey F77 v2.2 compiler. The LOP package includes examples that use LOTUS 1-2-3 for graphical displays, but any graphics software package should be able to handle the ASCII plot file. The program is available on two 5.25 inch 360K MS-DOS format diskettes. The program was written in 1986 and last updated in 1989. LOP is
Computing Rydberg Electron Transport Rates via Classical Periodic Orbits
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Mitchell, Kevin
2015-05-01
Electron transport properties of chaotic atomic systems are computable from classical periodic orbits. This technique allows for replacing a Monte Carlo simulation launching millions of orbits with a sum over tens or hundreds of properly chosen periodic orbits. Such computations are easiest to realize in sufficiently unstable systems dominated by a few short orbits. However, phase spaces exhibiting a mixture of chaos and regularity present a greater challenge, due to the rich dynamics in the vicinity of stable islands. Homotopic Lobe Dynamics (HLD) uses information encoded in the intersections of stable and unstable manifolds of a few orbits to compute almost all hyperbolic periodic orbits in a system. We compute the ionization rate for a Rydberg atom in parallel electric and magnetic fields. We apply HLD to compute orbits for parameters exhibiting both mixed and fully hyperbolic phase spaces. The ionization rate computed from periodic orbits converges exponentially to the true value as a function of highest period used. We then use periodic orbit continuation to accurately compute the ionization rate when the field strengths are perturbed. The ability to use periodic orbits in a mixed phase space could allow for studying transport in arbitrarily complex physical systems.
Refining the Orbits of Known Main-Belt Binary Asteroids
NASA Astrophysics Data System (ADS)
Marchis, Franck; Berthier, Jerome; Descamps, Pascal; Hestroffer, Daniel
2006-02-01
We propose to use the high angular resolution provided by NIRI/ALTAIR to follow-up the orbits of binary main-belt systems already discovered (121 Hermione, 130 Elektra, 379 Huenna, 762 Pulcova, 1509 Esclangona) to improve their orbital elements. Determination of the precise orbital elements of the secondary can be done by multiple observations spanning large periods of time (on several years). Our group developed two independent visual methods to separate the geometrical orbit determination from the dynamical one including secular variations of the orbital plane and the pericenter. Without any assumptions, they led to the determination of the main orbital elements (a, P, e, i) of binary systems (see Marchis et al., 2004, 2005bcd). Additional observations will allow to detect unambiguously the precession of their orbit and constrain the distribution of mass in their interior (density, mass, porosity) giving direct insights on their formation processes. The recent discovery of two moonlets orbiting 87 Sylvia (Marchis et al.,2005e) indicates that multiple systems exist and should be discovered with large AO campaign.
Cunnane, Mary Beth; Curtin, Hugh David
2016-01-01
Diseases of the orbit can be categorized in many ways, but in this chapter we shall group them according to etiology. Inflammatory diseases of the orbits may be infectious or noninfectious. Of the infections, orbital cellulitis is the most common and typically arises as a complication of acute sinusitis. Of the noninfectious, inflammatory conditions, thyroid orbitopathy is the most common and results in enlargement of the extraocular muscles and proliferation of the orbital fat. Idiopathic orbital inflammatory syndrome is another cause of inflammation in the orbit, which may mimic thyroid orbitopathy or even neoplasm, but typically presents with pain. Masses in the orbit may be benign or malignant and the differential diagnosis primarily depends on the location of the mass lesion, and on the age of the patient. Lacrimal gland tumors may be lymphomas or epithelial lesions of salivary origin. Extraocular muscle tumors may represent lymphoma or metastases. Tumors of the intraconal fat are often benign, typically hemangiomas or schwannomas. Finally, globe tumors may be retinoblastomas (in children), or choroidal melanomas or metastases in adults. PMID:27432687
Visualization of atom's orbits.
Kim, Byungwhan
2014-02-01
High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions. PMID:24749452
Orbit Stabilization of Nanosat
JOHNSON,DAVID J.
1999-12-01
An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.
Orbital Debris Observations with WFCAM
NASA Astrophysics Data System (ADS)
Kendrick, R.; Mann, B.; Read, M.; Kerr, T.; Irwin, M.; Cross, N.; Bold, M.,; Varricatt, W.; Madsen, G.
2014-09-01
The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU. This paper will present the January and February results of the orbital debris surveys with WFCAM.
Accurate Cross Sections for Microanalysis
Rez, Peter
2002-01-01
To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V. PMID:27446747
Laser ranging with the MéO telescope to improve orbital accuracy of space debris
NASA Astrophysics Data System (ADS)
Hennegrave, L.; Pyanet, M.; Haag, H.; Blanchet, G.; Esmiller, B.; Vial, S.; Samain, E.; Paris, J.; Albanese, D.
2013-05-01
Improving orbital accuracy of space debris is one of the major prerequisite to performing reliable collision prediction in low earth orbit. The objective is to avoid false alarms and useless maneuvers for operational satellites. This paper shows how laser ranging on debris can improve the accuracy of orbit determination. In March 2012 a joint OCA-Astrium team had the first laser echoes from space debris using the MéO (Métrologie Optique) telescope of the Observatoire de la Côte d'Azur (OCA), upgraded with a nanosecond pulsed laser. The experiment was conducted in full compliance with the procedures dictated by the French Civil Aviation Authorities. To perform laser ranging measurement on space debris, the laser link budget needed to be improved. Related technical developments were supported by implementation of a 2J pulsed laser purchased by ASTRIUM and an adapted photo detection. To achieve acquisition of the target from low accuracy orbital data such as Two Lines Elements, a 2.3-degree field of view telescope was coupled to the original MéO telescope 3-arcmin narrow field of view. The wide field of view telescope aimed at pointing, adjusting and acquiring images of the space debris for astrometry measurement. The achieved set-up allowed performing laser ranging and angular measurements in parallel, on several rocket stages from past launches. After a brief description of the set-up, development issues and campaigns, the paper discusses added-value of laser ranging measurement when combined to angular measurement for accurate orbit determination. Comparison between different sets of experimental results as well as simulation results is given.
NASA Technical Reports Server (NTRS)
Petro, Andrew J.; Talent, David L.
1989-01-01
The several methods presently identified for the reduction of orbital debris populations are broadly classifiable as either preventive or remedial, and fall within distinctive operational regimes. For all particles, (1) in the 250-2000-km altitude band, intelligent sweepers may be used; (2) for large objects, in the 80-250-km altitude band, orbital decay renders removal impractical; (3) for the 250-750-km altitude band, deorbit devices should be used; (4) for 750-2500-km altitude, OMV rendezvous for propulsive deorbit package attachment is foreseeable; and beyond 2500 km, (5) propulsive escape from earth orbit is required.
Effects of solar radiation on the orbits of small particles
NASA Technical Reports Server (NTRS)
Lyttleton, R. A.
1976-01-01
A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.
Effects of Low Activity Solar Cycle on Orbital Debris Lifetime
NASA Technical Reports Server (NTRS)
Cable, Samual B.; Sutton, Eric K.; Lin, chin S.; Liou, J.-C.
2011-01-01
Long duration of low solar activity in the last solar minimum has an undesirable consequence of extending the lifetime of orbital debris. The AFRL TacSat-2 satellite decommissioned in 2008 has finally re-entered into the atmosphere on February 5th after more than one year overdue. Concerning its demise we have monitored its orbital decay and monthly forecasted Tacsat-2 re-entry since September 2010 by using the Orbital Element Prediction (OEP) model developed by the AFRL Orbital Drag Environment program. The model combines estimates of future solar activity with neutral density models, drag coefficient models, and an orbit propagator to predict satellite lifetime. We run the OEP model with solar indices forecast by the NASA Marshall Solar Activity Future Estimation model, and neutral density forecast by the MSIS-00 neutral density model. Based on the two line elements in 2010 up to mid September, we estimated at a 50% confidence level TacSat-2's re-entry time to be in early February 2011, which turned out to be in good agreement with Tacsat-2's actual re-entry date. The potential space weather effects of the coming low activity solar cycle on satellite lifetime and orbital debris population are examined. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of solar flux on the orbital debris population in the 200-600 km altitude environment. The results are discussed for developing satellite orbital drag application product.
Lorr, D.B. ); Garshnek, V. ); Cadoux, C. )
1989-01-01
This book contains papers presented at a conference on the challenges for space medicine. Topics covered include radiation hazards in low earth orbit, polar orbit, geosynchronous orbit, and deep space.
NASA Technical Reports Server (NTRS)
Matney, M.; Barker, E.; Seitzer, P.; Abercromby, K. J.; Rodriquez, H. M.
2006-01-01
NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit suitable for tracking purposes. Telescopes operating in survey mode, however, randomly observe objects that pass through their field of view. Typically, these short-arc observation are inadequate to obtain detailed orbits, but can be used to estimate approximate circular orbit elements (semimajor axis, inclination, and ascending node). From this information, it should be possible to make statistical inferences about the orbital distributions of the GEO population bright enough to be observed by the system. The Michigan Orbital Debris Survey Telescope (MODEST) has been making such statistical surveys of the GEO region for four years. During that time, the telescope has made enough observations in enough areas of the GEO belt to have had nearly complete coverage. That means that almost all objects in all possible orbits in the GEO and near- GEO region had a non-zero chance of being observed. Some regions (such as those near zero inclination) have had good coverage, while others are poorly covered. Nevertheless, it is possible to remove these statistical biases and reconstruct the orbit populations within the limits of sampling error. In this paper, these statistical techniques and assumptions are described, and the techniques are applied to the current MODEST data set to arrive at our best estimate of the GEO orbit population distribution.
Orbit Determination Issues for Libration Point Orbits
NASA Technical Reports Server (NTRS)
Beckman, Mark; Bauer, Frank (Technical Monitor)
2002-01-01
Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.
Distributed earth model/orbiter simulation
NASA Technical Reports Server (NTRS)
Geisler, Erik; Mcclanahan, Scott; Smith, Gary
1989-01-01
Distributed Earth Model/Orbiter Simulation (DEMOS) is a network based application developed for the UNIX environment that visually monitors or simulates the Earth and any number of orbiting vehicles. Its purpose is to provide Mission Control Center (MCC) flight controllers with a visually accurate three dimensional (3D) model of the Earth, Sun, Moon and orbiters, driven by real time or simulated data. The project incorporates a graphical user interface, 3D modelling employing state-of-the art hardware, and simulation of orbital mechanics in a networked/distributed environment. The user interface is based on the X Window System and the X Ray toolbox. The 3D modelling utilizes the Programmer's Hierarchical Interactive Graphics System (PHIGS) standard and Raster Technologies hardware for rendering/display performance. The simulation of orbiting vehicles uses two methods of vector propagation implemented with standard UNIX/C for portability. Each part is a distinct process that can run on separate nodes of a network, exploiting each node's unique hardware capabilities. The client/server communication architecture of the application can be reused for a variety of distributed applications.
Accurate stress resultants equations for laminated composite deep thick shells
Qatu, M.S.
1995-11-01
This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.
Habitability study shuttle orbiter
NASA Technical Reports Server (NTRS)
1973-01-01
Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.
Habitability study shuttle orbiter
NASA Technical Reports Server (NTRS)
1972-01-01
Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.
NASA's THEMIS spacecraft have completed their mission and are still working perfectly, so NASA is re-directing the outermost two spacecraft to special orbits around the Moon. Now called ARTEMIS, th...
NASA Technical Reports Server (NTRS)
Stoll, O. T.; Laubach, G. E.; Gibb, J. W.
1973-01-01
The Orbiter Environmental Control and Life Support System (ECLSS) provides the functions of atmosphere revitalization, crew life support, active thermal conditioning, and airlock support for EVA and docking activities. The ECLSS must satisfy the requirements of orbital missions with four to ten crewmembers and mission duration of a few hours to 30 days and the requirements associated with an atmospheric horizontal flight test program and ferry flight missions. The ECLSS development plan utilizes an ECLSS ground test article and thermal/vacuum testing to support the first horizontal flight test at the end of 1976. The ground testing and horizontal flight test program certify the Orbiter ECLSS for the first orbital flight in early 1978.
This animation shows the orbits of Magnetospheric Multiscale (MMS)mission, a Solar Terrestrial Probes mission comprising of fouridentically instrumented spacecraft that will study the Earthâsm...
Lin, Ken Y.; Ngai, Philip; Echegoyen, Julio C.; Tao, Jeremiah P.
2012-01-01
Orbital trauma is one of the most common reasons for ophthalmology specialty consultation in the emergency department setting. We survey the literature from 1990 to present to describe the role of computed tomography (CT), magnetic resonance imaging (MRI) and their associated angiography in some of the most commonly encountered orbital trauma conditions. CT orbit can often detect certain types of foreign bodies, lens dislocation, ruptured globe, choroidal or retinal detachments, or cavernous sinus thrombosis and thus complement a bedside ophthalmic exam that can sometimes be limited in the setting of trauma. CT remains the workhorse for acute orbital trauma owing to its rapidity and ability to delineate bony abnormalities; however MRI remains an important modality in special circumstances such as soft tissue assessment or with organic foreign bodies. PMID:23961028
Tethered orbital refueling study
NASA Technical Reports Server (NTRS)
Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat
1986-01-01
One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.
Aerobraking orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Scott, Carl D. (Inventor); Nagy, Kornel (Inventor); Roberts, Barney B. (Inventor); Ried, Robert C. (Inventor); Kroll, Kenneth R. (Inventor); Gamble, Joe (Inventor)
1989-01-01
An aerobraking orbital transfer vehicle which includes an aerobraking device which also serves as a heat shield in the shape of a raked-off elliptic or circular cone with a circular or elliptical base, and with an ellipsoid or other blunt shape nose. The aerobraking device is fitted with a toroid-like skirt and is integral with the support structure of the propulsion system and other systems of the space vehicle. The vehicle is intended to be transported in components to a space station in lower earth orbit where it is assembled for use as a transportation system from low earth orbit to geosynchronous earth orbit and return. Conventional guidance means are included for autonomous flight.
NASA Technical Reports Server (NTRS)
1989-01-01
The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.
First Attempt of Orbit Determination of SLR Satellites and Space Debris Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Deleflie, F.; Coulot, D.; Descosta, R.; Fernier, A.; Richard, P.
2013-08-01
We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects that appear in images obtained from robotic telescopes such as the TAROT ones. We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit ; in this case, the basic observations are made up of time series of ranges, obtained from various tracking stations. We show as well the results obtained from the observations acquired by the two TAROT telescopes on the Telecom-2D satellite operated by CNES ; in that case, the observations are made up of time series of azimuths and elevations, seen from the two TAROT telescopes. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen. The algorithm is supposed to converge towards an optimum over a reasonable computational time.
Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements
Kim, Ghangho; Kim, Chongwon; Kee, Changdon
2015-01-01
A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299
Partonic orbital angular momentum
NASA Astrophysics Data System (ADS)
Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl
2013-04-01
Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.
King-Hele, D.
1992-01-01
In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.
Shuttle Orbiter Contingency Abort Aerodynamics: Real-Gas Effects and High Angles of Attack
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.; Papadopoulos, Periklis E.; Davies, Carol B.; Wright, Michael J.; McDaniel, Ryan D.; Venkatapathy, Ethiraj; Wercinski, Paul F.
2005-01-01
An important element of the Space Shuttle Orbiter safety improvement plan is the improved understanding of its aerodynamic performance so as to minimize the "black zones" in the contingency abort trajectories [1]. These zones are regions in the launch trajectory where it is predicted that, due to vehicle limitations, the Orbiter will be unable to return to the launch site in a two or three engine-out scenario. Reduction of these zones requires accurate knowledge of the aerodynamic forces and moments to better assess the structural capability of the vehicle. An interesting aspect of the contingency abort trajectories is that the Orbiter would need to achieve angles of attack as high as 60deg. Such steep attitudes are much higher than those for a nominal flight trajectory. The Orbiter is currently flight certified only up to an angle of attack of 44deg at high Mach numbers and has never flown at angles of attack larger than this limit. Contingency abort trajectories are generated using the data in the Space Shuttle Operational Aerodynamic Data Book (OADB) [2]. The OADB, a detailed document of the aerodynamic environment of the current Orbiter, is primarily based on wind-tunnel measurements (over a wide Mach number and angle-of-attack range) extrapolated to flight conditions using available theories and correlations, and updated with flight data where available. For nominal flight conditions, i.e., angles of attack of less than 45deg, the fidelity of the OADB is excellent due to the availability of flight data. However, at the off-nominal conditions, such as would be encountered on contingency abort trajectories, the fidelity of the OADB is less certain. The primary aims of a recent collaborative effort (completed in the year 2001) between NASA and Boeing were to determine: 1) accurate distributions of pressure and shear loads on the Orbiter at select points in the contingency abort trajectory space; and 2) integrated aerodynamic forces and moments for the entire
GOCE Reduced-dynamic Orbits - Inter-agency Comparisons
NASA Astrophysics Data System (ADS)
Bock, H.; Jaeggi, A.; Meyer, U.; van den IJssel, J.; Visser, P. N.; Swatschina, P.; Montenbruck, O.
2011-12-01
The Gravity and Ocean Circulation Explorer (GOCE) mission of the European Space Agency is now in orbit since more than two years. The 12-channel, dual-frequency GPS receiver delivers high-quality data for determination of precise orbits. These orbit solutions are used to accurately geolocate the gradiometer observations and to provide complementary information for the long-wavelength gravity field part. Operational orbit products are routinely generated by the Department of Earth Observation and Space Systems at Delft University of Technology (DEOS, Rapid Science Orbit, RSO) and the Astronomical Institute of the University of Bern (AIUB, Precise Science Orbit, PSO) using different software packages (GEODYN/GHOST, BERNESE) and analysis strategies. Internal orbit comparisons and external validations with independent Satellite Laser Ranging measurements demonstrate that both orbit products fully meet the corresponding mission accuracy requirements of 50 cm (RSO) and 2 cm (PSO), respectively. For an independent performance assessment, orbit solutions are, furthermore, generated at Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) on a best effort basis using the GHOST software. In addition to the RSO product, post-processed orbit solutions based on GEODYN are generated at DEOS as well. We provide an overview of the adopted analysis strategies and present inter-agency comparisons of the individual reduced-dynamic orbit solutions based on one year of data. A cross-comparison of the various orbits indicates a good agreement of a few cm 3D rms accuracy, but reveals small systematic biases, e.g., in the radial direction. Special emphasis will be given to the assessment and discussion of the systematic biases, which are related to different orbit modeling strategies used to cope with non-gravitational accelerations.
THE ORBITS OF NEPTUNE'S OUTER SATELLITES
Brozovic, Marina; Jacobson, Robert A.; Sheppard, Scott S. E-mail: raj@jpl.nasa.gov
2011-04-15
In 2009, we used the Subaru telescope to observe all the faint irregular satellites of Neptune for the first time since 2004. These observations extend the data arcs for Halimede, Psamathe, Sao, Laomedeia, and Neso from a few years to nearly a decade. We also report on a search for unknown Neptune satellites in a half-square degree of sky and a limiting magnitude of 26.2 in the R band. No new satellites of Neptune were found. We numerically integrate the orbits for the five irregulars and summarize the results of the orbital fits in terms of the state vectors, post-fit residuals, and mean orbital elements. Sao and Neso are confirmed to be Kozai librators, while Psamathe is a 'reverse circulator'. Halimede and Laomedeia do not seem to experience any strong resonant effects.
Longterm analytical orbit decay and reentry prediction
NASA Astrophysics Data System (ADS)
Klinkrad, H. H.
An analytical approach to the prediction of close-Earth satellite orbits of moderate eccentricities is outlined. Based on the method of general averaging and on the principle of separation of perturbations, known results for the averaged time rates of change of the mean orbital elements due to J2, J3, and J4 are superimposed with results of the averaged air drag perturbation equations to obtain the total rates, which are then used to propagate the mean Kepler state in step-sizes of 1 to 15 orbits. The improved air drag model incorporates, in an analytically integrable representation, a rotating atmosphere, a variable aerodynamically effective satellite cross section, and a state-of-the-art MSIS'77 derived air density model as function of all major atmospheric parameters.
NASA Technical Reports Server (NTRS)
Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg
1992-01-01
The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.
NASA Astrophysics Data System (ADS)
The Periodic Table of the elements will now have to be updated. An international team of researchers has added element 110 to the Earth's armory of elements. Though short-lived—of the order of microseconds, element 110 bottoms out the list as the heaviest known element on the planet. Scientists at the Heavy Ion Research Center in Darmstadt, Germany, made the 110-proton element by colliding a lead isotope with nickel atoms. The element, which is yet to be named, has an atomic mass of 269.
Accurate Fission Data for Nuclear Safety
NASA Astrophysics Data System (ADS)
Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.
2014-05-01
The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.
Biomechanical modeling of eye trauma for different orbit anthropometries.
Weaver, Ashley A; Loftis, Kathryn L; Duma, Stefan M; Stitzel, Joel D
2011-04-29
In military, automotive, and sporting safety, there is concern over eye protection and the effects of facial anthropometry differences on risk of eye injury. The objective of this study is to investigate differences in orbital geometry and analyze their effect on eye impact injury. Clinical measurements of the orbital aperture, brow protrusion angle, eye protrusion, and the eye location within the orbit were used to develop a matrix of simulations. A finite element (FE) model of the orbit was developed from a computed tomography (CT) scan of an average male and transformed to model 27 different anthropometries. Impacts were modeled using an eye model incorporating lagrangian-eulerian fluid flow for the eye, representing a full eye for evaluation of omnidirectional impact and interaction with the orbit. Computational simulations of a Little League (CD25) baseball impact at 30.1m/s were conducted to assess the effect of orbit anthropometry on eye injury metrics. Parameters measured include stress and strain in the corneoscleral shell, internal dynamic eye pressure, and contact forces between the orbit, eye, and baseball. The location of peak stresses and strains was also assessed. Main effects and interaction effects identified in the statistical analysis illustrate the complex relationship between the anthropometric variation and eye response. The results of the study showed that the eye is more protected from impact with smaller orbital apertures, more brow protrusion, and less eye protrusion, provided that the orbital aperture is large enough to deter contact of the eye with the orbit. PMID:21316057
Overall view of the Orbiter Servicing Structure within the Orbiter ...
Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Introducing the Moon's Orbital Eccentricity
NASA Astrophysics Data System (ADS)
Oostra, Benjamin
2014-11-01
I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a guided exercise, rather than just telling them the facts.1 The inclination and nodes may be found by direct observation, monitoring carefully the position of the Moon among the stars. Even the regression of the nodes may be discovered in this way2 To find the eccentricity from students' observations is also possible,3 but that requires considerable time and effort. if a whole class should discover it in a short time, here is a method more suitable for a one-day class or home assignment. The level I aim at is, more or less, advanced high school or first-year college students. I assume them to be acquainted with celestial coordinates and the lunar phases, and to be able to use algebra and trigonometry.
Fungal infections of the orbit
Mukherjee, Bipasha; Raichura, Nirav Dilip; Alam, Md. Shahid
2016-01-01
Fungal infections of the orbit can lead to grave complications. Although the primary site of inoculation of the infective organism is frequently the sinuses, the patients can initially present to the ophthalmologist with ocular signs and symptoms. Due to its varied and nonspecific clinical features, especially in the early stages, patients are frequently misdiagnosed and even treated with steroids which worsen the situation leading to dire consequences. Ophthalmologists should be familiar with the clinical spectrum of disease and the variable presentation of this infection, as early diagnosis and rapid institution of appropriate therapy are crucial elements in the management of this invasive sino-orbital infection. In this review, relevant clinical, microbiological, and imaging findings are discussed along with the current consensus on local and systemic management. We review the recent literature and provide a comprehensive analysis. In the immunocompromised, as well as in healthy patients, a high index of suspicion must be maintained as delay in diagnosis of fungal pathology may lead to disfiguring morbidity or even mortality. Obtaining adequate diagnostic material for pathological and microbiological examination is critical. Newer methods of therapy, particularly oral voriconazole and topical amphotericin B, may be beneficial in selected patients. PMID:27380972
Accurate transition rates for intercombination lines of singly ionized nitrogen
Tayal, S. S.
2011-01-15
The transition energies and rates for the 2s{sup 2}2p{sup 2} {sup 3}P{sub 1,2}-2s2p{sup 3} {sup 5}S{sub 2}{sup o} and 2s{sup 2}2p3s-2s{sup 2}2p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p{sup 3} {sup 1,3}P{sub 1}{sup o} and 2s{sup 2}2p3s {sup 1,3}P{sub 1}{sup o}levels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.
NASA Astrophysics Data System (ADS)
Couteau, P.
1987-12-01
Recent interferometric and visual observations have been used to compile orbital elements for the binaries COU 79, Phi 342, ADS 5726, COU 292, ADS 15487, and COU 542. The problematic binaries COU 79 and Phi 342 are discussed in detail. The results for COU 79 indicate a dynamic parallax of 0.0182 arcsec and absolute visual magnitudes of 2.5 and 2.8, values which are not consistent with the previously-determined spectral type of F6V. A parallax of 0.01420 arcsec is found for Phi 342, and the visual magnitudes of 2.74 and 3.13 are indicative of superluminous stars outside of the main sequence.
VizieR Online Data Catalog: Orbits of visual binaries and dynamical masses (Malkov+, 2012)
NASA Astrophysics Data System (ADS)
Malkov, O. Yu.; Tamazian, V. S.; Docobo, J. A.; Chulkov, D. A.
2012-10-01
To compile the orbit list, we combined data from both OARMAC (catalog of Orbits and Ephemerides of Visual Double Stars) and ORB6 (Sixth Catalog of Orbits of Visual Binary Stars). At this stage, we maintained systems without parallax, but removed systems without a period / semi-major axis. The resulting list contains 3139 orbits for 2278 pairs: 1588 pairs have a single orbit, 548 pairs have two orbits, 120 pairs have three orbits, 19 pairs have four orbits, one pair has five orbits, and two pairs have seven orbits. Table 1 contains a compiled set (1) of 3139 orbit solutions for visual binary stars. Separate entries are provided for different pairs in multiple systems. Several solutions per pair are possible. Each entry includes main orbital elements (Semi-major axis, period, eccentricity with corresponding uncertainties), indication of multiplicity and number of solutions, as well as visual magnitudes, spectral classes of the components, parallax and interstellar extinction estimate. Table 2 contains a refined set of 652 solely binary systems with reliable orbit and determined parallax. One entry corresponds to one system. 3 masses estimates are provided: 1) Dynamical mass with uncertainty derived from Kepler's third law and trigonometric parallax, 2) Photometric mass estimated from visual magnitudes, parallax and mass-luminosity relation, 3) Spectroscopic mass based on mass-spectrum relation introduced by Straizys V. & Kuriliene G. 1981Ap&SS..80..353S. Main orbital elements, parallax, components magnitudes, spectral classes (2 data files).
Mars Geoscience Orbiter and Lunar Geoscience Orbiter
NASA Technical Reports Server (NTRS)
Fuldner, W. V.; Kaskiewicz, P. F.
1983-01-01
The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.
NASA Astrophysics Data System (ADS)
Ko, H.; Scheeres, D.
2014-09-01
Representing spacecraft orbit anomalies between two separate states is a challenging but an important problem in achieving space situational awareness for an active spacecraft. Incorporation of such a capability could play an essential role in analyzing satellite behaviors as well as trajectory estimation of the space object. A general way to deal with the anomaly problem is to add an estimated perturbing acceleration such as dynamic model compensation (DMC) into an orbit determination process based on pre- and post-anomaly tracking data. It is a time-consuming numerical process to find valid coefficients to compensate for unknown dynamics for the anomaly. Even if the orbit determination filter with DMC can crudely estimate an unknown acceleration, this approach does not consider any fundamental element of the unknown dynamics for a given anomaly. In this paper, a new way of representing a spacecraft anomaly using an interpolation technique with the Thrust-Fourier-Coefficients (TFCs) is introduced and several anomaly cases are studied using this interpolation method. It provides a very efficient way of reconstructing the fundamental elements of the dynamics for a given spacecraft anomaly. Any maneuver performed by a satellite transitioning between two arbitrary orbital states can be represented as an equivalent maneuver using an interpolation technique with the TFCs. Given unconnected orbit states between two epochs due to a spacecraft anomaly, it is possible to obtain a unique control law using the TFCs that is able to generate the desired secular behavior for the given orbital changes. This interpolation technique can capture the fundamental elements of combined unmodeled anomaly events. The interpolated orbit trajectory, using the TFCs compensating for a given anomaly, can be used to improve the quality of orbit fits through the anomaly period and therefore help to obtain a good orbit determination solution after the anomaly. Orbit Determination Toolbox (ODTBX
Precise orbit computation for the Geosat Exact Repeat Mission
NASA Technical Reports Server (NTRS)
Haines, Bruce J.; Born, George H.; Rosborough, George W.; Marsh, James G.; Williamson, Ronald G.
1990-01-01
Results are reported from an extensive investigation of orbit-determination strategies for the Geosat Exact Repeat Mission (ERM). The goal is to establish optimum geodetic parameters and procedures for the computation of the most accurate Geosat orbits possible and to apply these procedures for routine computation during the ERM for the following purposes: (1) to enhance the value of the Geosat oceanographic investigations by providing the user community with improved ephemerides, (2) to develop orbit determination techniques for the upcoming altimetric mission Topex/Poseidon, and (3) to assess the radial orbit accuracy obtainable with recently developed gravity models. To this end, ephemerides for the entire first year of the ERM have been computed using the GEODYN II orbit program on the Cyber 205 supercomputer system at the NASA Goddard.
NASA Technical Reports Server (NTRS)
Abercromby, K. J.; Seitzer, P.; Cowardin, H. M.; Barker, E. S.; Matney, M. J.
2011-01-01
NASA uses the Michigan Orbital DEbris Survey Telescope (MODEST), the University of Michigan's 0.61-m aperture Curtis-Schmidt telescope at the Cerro Tololo Inter-American Observatory in Chile, to help characterize the debris environment in geosynchronous orbit; this began in February 2001 and continues to the present day. Detected objects that are found to be on the U.S. Space Surveillance Network cataloged objects list are termed correlated targets (CTs), while those not found on the list are called uncorrelated targets (UCTs). This Johnson Space Center report provides details of observational and data-reduction processes for the entire MODEST dataset acquired in calendar years (CYs) 2007, 2008, and 2009. Specifically, this report describes the collection and analysis of 36 nights of data collected in CY 2007, 43 nights of data collected in CY 2008, and 43 nights of data collected in CY 2009. MODEST is equipped with a 2048 x 2048-pixel charged coupled device camera with a 1.3 by 1.3 deg field of view. This system is capable of detecting objects fainter than 18th magnitude (R filter) using a 5-s integration. This corresponds to a 20-cm diameter, 0.175-albedo object at 36,000 km altitude assuming a diffuse Lambertian phase function. The average number of detections each night over all 3 years was 26. The percentage of this number that represented the UCT population ranged from 34% to 18%, depending on the observing strategy and the field center location. Due to the short orbital arc over which observations are made, the eccentricity of the object s orbit is extremely difficult to measure accurately. Therefore, a circular orbit was assumed when calculating the orbital elements. A comparison of the measured inclination (INC), right ascension of ascending node (RAAN), and mean motion to the quantities for CTs from the U.S. Space Surveillance Network shows acceptable errors. This analysis lends credibility to the determination of the UCT orbital distributions. Figure 1
Simple control laws for low-thrust orbit transfers
NASA Technical Reports Server (NTRS)
Petropoulos, Anastassios E.
2003-01-01
Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.
38 CFR 4.46 - Accurate measurement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...
38 CFR 4.46 - Accurate measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...
38 CFR 4.46 - Accurate measurement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...
38 CFR 4.46 - Accurate measurement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...
38 CFR 4.46 - Accurate measurement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...
Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.
Chong, V F H
2006-01-01
Primary malignant lesions in the orbit are relatively uncommon. However, the orbits are frequently involved in haematogeneous metastasis or by direct extension from malignancies originating from the adjacent nasal cavity or paranasal sinuses. This paper focuses on the more commonly encountered primary orbital malignancies and the mapping of tumour spread into the orbits. PMID:17114076
Elliptical Orbit Performance Computer Program
NASA Technical Reports Server (NTRS)
Myler, T.
1984-01-01
Elliptical Orbit Performance (ELOPE) computer program for analyzing orbital performance of space boosters uses orbit insertion data obtained from trajectory simulation to generate parametric data on apogee and perigee altitudes as function of payload data. Data used to generate presentation plots that display elliptical orbit performance capability of space booster.
Orbital Fluid Resupply Assessment
NASA Technical Reports Server (NTRS)
Eberhardt, Ralph N.
1989-01-01
Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.
Neptune Polar Orbiter with Probes
NASA Technical Reports Server (NTRS)
Bienstock, Bernard; Atkinson, David; Baines, Kevin; Mahaffy, Paul; Steffes, Paul; Atreya, Sushil; Stern, Alan; Wright, Michael; Willenberg, Harvey; Smith, David; Frampton, Robert; Sichi, Steve; Peltz, Leora; Masciarelli, James; VanCleve, Jeffey
2005-01-01
The giant planets of the outer solar system divide into two distinct classes: the gas giants Jupiter and Saturn, which consist mainly of hydrogen and helium; and the ice giants Uranus and Neptune, which are believed to contain significant amounts of the heavier elements oxygen, nitrogen, and carbon and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, other planetary systems. By 2012, Galileo, Cassini and possibly a Jupiter Orbiter mission with microwave radiometers, Juno, in the New Frontiers program, will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune Orbiter with Probes (NOP) mission would deliver the corresponding key data for an ice giant planet. Such a mission would ideally study the deep Neptune atmosphere to pressures approaching and possibly exceeding 1000 bars, as well as the rings, Triton, Nereid, and Neptune s other icy satellites. A potential source of power would be nuclear electric propulsion (NEP). Such an ambitious mission requires that a number of technical issues be investigated, however, including: (1) atmospheric entry probe thermal protection system (TPS) design, (2) probe structural design including seals, windows, penetrations and pressure vessel, (3) digital, RF subsystem, and overall communication link design for long term operation in the very extreme environment of Neptune's deep atmosphere, (4) trajectory design allowing probe release on a trajectory to impact Neptune while allowing the spacecraft to achieve a polar orbit of Neptune, (5) and finally the suite of science instruments enabled by the probe technology to explore the depths of the Neptune atmosphere. Another driving factor in the design of the Orbiter and Probes is the necessity to maintain a fully operational flight system during the lengthy transit time
Mars Telecommunications Orbiter, Artist's Concept
NASA Technical Reports Server (NTRS)
2005-01-01
This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.
In-Orbit Lifetime Prediction for LEO and HEO Based on Orbit Determination from TLE Data
NASA Astrophysics Data System (ADS)
Agueda, A.; Aivar, L.; Tirado, J.; Dolado, J. C.
2013-08-01
Objects in Low-Earth Orbits (LEO) and Highly Elliptical Orbits (HEO) are subjected to decay and re-entry into the atmosphere due mainly to the drag force. While being this process the best solution to avoid the proliferation of debris in space and ensure the sustainability of future space activities, it implies a threat to the population on ground. Thus, the prediction of the in-orbit lifetime of an object and the evaluation of the risk on population and ground assets constitutes a crucial task. This paper will concentrate on the first of these tasks. Unfortunately the lifetime of an object in space is remarkably difficult to predict. This is mainly due to the dependence of the atmospheric drag on a number of uncertain elements such as the density profile and its dependence on the solar activity, the atmospheric conditions, the mass and surface area of the object (very difficult to evaluate), its uncontrolled attitude, etc. In this paper we will present a method for the prediction of this lifetime based on publicly available Two-Line Elements (TLEs) from the American USSTRATCOM's Joint Space Operations Center (JSpOC). TLEs constitute an excellent source to access routinely orbital information for thousands of objects even though of their reduced and unpredictable accuracy. Additionally, the implementation of the method on a CNES's Java-based tool will be presented. This tool (OPERA) is executed routinely at CNES to predict the orbital lifetime of a whole catalogue of objects.
Grant Hill, J; Mitrushchenkov, Alexander; Yousaf, Kazim E; Peterson, Kirk A
2011-10-14
Explicitly correlated CCSD(T)-F12b calculations have been carried out with systematic sequences of correlation consistent basis sets to determine accurate near-equilibrium potential energy surfaces for the X(2)Π and a(4)Σ(-) electronic states of the CCN radical. After including contributions due to core correlation, scalar relativity, and higher order electron correlation effects, the latter utilizing large-scale multireference configuration interaction calculations, the resulting surfaces were employed in variational calculations of the ro-vibronic spectra. These calculations also included the use of accurate spin-orbit and dipole moment matrix elements. The resulting ro-vibronic transition energies, including the Renner-Teller sub-bands involving the bending mode, agree with the available experimental data to within 3 cm(-1) in all cases. Full sets of spectroscopic constants are reported using the usual second-order perturbation theory expressions. Integrated absorption intensities are given for a number of selected vibronic band origins. A computational procedure similar to that used in the determination of the potential energy functions was also utilized to predict the formation enthalpy of CCN, ΔH(f)(0K) = 161.7 ± 0.5 kcal/mol. PMID:22010720
Hooke, orbital motion, and Newton's Principia
NASA Astrophysics Data System (ADS)
Nauenberg, Michael
1994-04-01
A detailed analysis is given of a 1685 graphical construction by Robert Hooke for the polygonal path of a body moving in a periodically pulsed radial field of force. In this example the force varies linearly with the distance from the center. Hooke's method is based directly on his original idea from the mid-1660s that the orbital motion of a planet is determined by compounding its tangential velocity with a radial velocity impressed by the gravitational attraction of the sun at the center. This hypothesis corresponds to the second law of motion, as formulated two decades later by Newton, and its geometrical implementation constitutes the cornerstone of Newton's Principia. Hooke's diagram represents the first known accurate graphical evaluation of an orbit in a central field of force, and it gives evidence that he demonstrated that his resulting discrete orbit is an approximate ellipse centered at the origin of the field of force. A comparable calculation to obtain orbits for an inverse square force, which Hooke had conjectured to be the gravitational force, has not been found among his unpublished papers. Such a calculation is carried out here numerically with the Newton-Hooke geometrical construction. It is shown that for orbits of comparable or larger eccentricity than Hooke's example, a graphical approach runs into convergence difficulties due to the singularity of the gravitational force at the origin. This may help resolve the long-standing mystery why Hooke never published his controversial claim that he had demonstrated that an attractive force, which is ``...in a duplicate proportion to the Distance from the Center Reciprocall...'' implies elliptic orbits.
NASA Astrophysics Data System (ADS)
Manchon, Aurelien; Ndiaye, Papa Birame; Moon, Jung-Hwan; Lee, Hyun-Woo; Lee, Kyung-Jin
2014-03-01
Utilizing spin-orbit coupling to enable the electrical manipulation of ferromagnets has recently attracted a considerable amount of interest. This spin-orbit torque appears in magnetic systems displaying inversion symmetry breaking. Another adjacent emerging topic, spin caloritronics, aims at exploiting magnonic spin currents driven by temperature gradients, allowing for the transmission of information and the control of magnetic domain walls. In this work, we demonstrate that a magnon flow generates torques on the local magnetization when subjected to Dzyaloshinskii-Moriya interaction (DMI) just as an electron flow generates torques when submitted to Rashba interaction. A direct consequence is the capability to control the magnetization direction of a homogeneous ferromagnet by applying a temperature gradient or local RF excitations. Merging the spin-orbit torques with spin caloritronics is rendered possible by the emergence of DMI in magnetic materials and opens promising avenues in the development of chargeless information technology.
Orbital Superstructures in Spinels
NASA Astrophysics Data System (ADS)
Khomskii, Daniel
2006-03-01
Orbital degrees of freedom often lead to specific types of orbital and spin ordering. Complicated and interesting superstructures are observed in B-sublattice of spinels. This is connected with the geometric frustration of this lattice and with the interconnection of edge-sharing MO6 octahedra, which is especially important for transition metals with partially-filled t2g levels. In some such systems (MgTi2O4, CuIr2S4, AlV2O4) there appears strange superstructures with the formation of spin gap states. In other cases (ZnV2O4) structural transitions, apparently connected with orbital ordering, are followed by long-range magnetic ordering. Last but not least, the famous Verwey transition in magnetite Fe3O4 leads to a very complicated structural pattern, accompanied by the appearance of ferroelectricity. In this talk I will discuss all these examples, paying main attention to an interplay of charge, spin and orbital degrees of freedom. In particular, for MgTi2O4, and CuIr2S4 we proposed the picture of orbitally-driven Peierls state [1]. Similar phenomenon can also explain situation in ZnV2O4 [2], although the corresponding superstructure has not yet been observed experimentally. Finally, I propose the model of charge and orbital ordering in magnetite [3], which uses the idea of an interplay of site- and bond-centered ordering [4] and which seems to explain both the structural data and the presence of ferroelectricity in Fe3O4 below Verwey transition. [1] D.I.Khomskii and T.Mizokawa, Phys.Rev.Lett. 94, 156402 (2005); [2] Hua Wu, T.Mizokawa and D.I.Khomskii, unpublished; [3] D.I.Khomskii, unpublished; [4] D.V.Efremov, J.van den Brink and D.I.Khomskii, Nature Mater. 3, 853 (2004)
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.
2007-01-01
The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.
Magliozzi, Patrizio; Strianese, Diego; Bonavolontà, Paola; Ferrara, Mariantonia; Ruggiero, Pasquale; Carandente, Raffaella; Bonavolontà, Giulio; Tranfa, Fausto
2015-01-01
AIM To describe a series of Italian patients with orbital metastasis focusing on the outcomes in relation to the different primary site of malignancy. METHODS Retrospective chart review of 93 patients with orbital metastasis collected in a tertiary referral centre in a period of 38y and review of literature. RESULTS Out of 93 patients, 52 were females and 41 were males. Median age at diagnosis was 51y (range 1 to 88y). The patients have been divided into four groups on the basis of the year of diagnosis. The frequency of recorded cases had decreased significantly (P<0.05) during the last 9.5y. Primary tumor site was breast in 36 cases (39%), kidney in 10 (11%), lung in 8 (9%), skin in 6 (6%); other sites were less frequent. In 16 case (17%) the primary tumor remained unknown. The most frequent clinical findings were proptosis (73%), limited ocular motility (55%), blepharoptosis (46%) and blurred vision (43%). The diagnosis were established by history, ocular and systemic evaluation, orbital imaging studies and open biopsy or fine needle aspiration biopsy (FNAB). Treatment included surgical excision, irradiation, chemotherapy, hormone therapy, or observation. Ninety-one percent of patients died of metastasis with an overall mean survival time (OMST) after the orbital diagnosis of 13.5mo. CONCLUSION Breast, kidney and lung are the most frequent primary sites of cancer leading to an orbital metastasis. When the primary site is unknown, gastrointestinal tract should be carefully investigated. In the last decade a decrease in the frequency of orbital metastasis has been observed. Surgery provides a local palliation. Prognosis remains poor with a OMST of 13.5mo ranging from the 3mo in the lung cancer to 24mo in the kidney tumor. PMID:26558220
NASA Technical Reports Server (NTRS)
Friedman, Morton l.; Garrett, James, Major
An analog aid to determine satellite coverage of Emergency Locator Transmitters Emergency Position Indicating Radio Beacon (ELT/EPIRB) distress incidence is discussed. The satellite orbit predictor is a graphical aid for determining the relationship between the satellite orbit, antenna coverage of the spacecraft and coverage of the Local User Terminal. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite.A table of equator crossings for each satellite is included.
NASA Technical Reports Server (NTRS)
Zuber, Maria T.
1997-01-01
The objective of this study was to support the rebuild and implementation of the Mars Orbiter Laser Altimeter (MOLA) investigation and to perform scientific analysis of current Mars data relevant to the investigation. The instrument is part of the payload of the NASA Mars Global Surveyor (MGS) mission. The instrument is a rebuild of the Mars Observer Laser Altimeter that was originally flown on the ill-fated Mars Observer mission. The instrument is currently in orbit around Mars and has so far returned remarkable data.
Trends in Ionization Energy of Transition-Metal Elements
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2005-01-01
A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…
NASA Astrophysics Data System (ADS)
Cordelli, E.; Vananti, A.; Schildknecht, T.
2016-05-01
An in-depth study, using simulations and covariance analysis, is performed to identify the optimal sequence of observations to obtain the most accurate orbit propagation. The accuracy of the results of an orbit determination/improvement process depends on: tracklet length, number of observations, type of orbit, astrometric error, time interval between tracklets and observation geometry. The latter depends on the position of the object along its orbit and the location of the observing station. This covariance analysis aims to optimize the observation strategy taking into account the influence of the orbit shape, of the relative object-observer geometry and the interval between observations.
Interaction dynamics of on-orbit construction
NASA Technical Reports Server (NTRS)
Park, K. C.
1991-01-01
Deployment and assembly of large structures in orbit is a critical technology to the overall problem of orbital construction. The attendant large configuration changes of structures will cause significant changes in the dynamic characteristics of the entire system, and perturbation to the orbital dynamics of the spacecraft from which the structures are deployed and/or assembled. To better design structures for deployment and assembly, and to better design controlled deployment/assembly processes, accurate modeling techniques are absolutely essential. The problem of modeling the dynamics of deploying and retrieving beam-like structures from a rotating base was addressed. A methodology for discrete modeling, and a computational procedure were developed. These results give us the capability of understanding and predicting the effects on the overall satellite motion of deploying flexible appendages. This is an initial step towards a general capability of treating axially moving three-dimensional beams. The interaction dynamics of the orbiter, its flexible manipulator, and the structures to be assembled/deployed, as a prerequisite in order to simulate incremental in-space structural construction processes are investigated. Preliminary results so obtained indicate that, as the inertia properties of the flexible large space structure under construction change during the space assembly/construction process, the interaction dynamics undergo significant changes in their characteristics, thus revealing the need for a variety of control strategies throughout construction.
Orbital and photometric properties of SZ Lyncis
NASA Technical Reports Server (NTRS)
Moffett, Thomas J.; Barnes, Thomas G., III; Fekel, Francis C., Jr.; Jefferys, William H.; Achtermann, Jeffrey M.
1988-01-01
New photometric results based on 3760 observations made on the Johnson BVRI system and 69 new radial-velocity measurements of the large-amplitude Delta Scuti binary SZ Lyncis are reported. Using these data and previous observations from the literature, improved values for the pulsation and orbital parameters are derived. The pulsation period is found to be 0.12052115 days, which is shorter than earlier determinations. The pulsation period is undergoing a secular period change of 3 X 10 to the -12th days/cycle. The orbital period of the binary is found to be 1181.1 days, with an orbital eccentricity of 0.188. A new ephemeris is given, which accurately predicts the times of light maximum and is consistent with the spectroscopic orbit. The mass function is 0.101 solar, which, together with other known properties of SZ Lyn, indicates that the unseen companion is most likely on the main sequence with a spectral type between F2 and K3.
Chemical characterization of bohrium (element 107)
NASA Astrophysics Data System (ADS)
Eichler, R.; Brüchle, W.; Dressler, R.; Düllmann, Ch. E.; Eichler, B.; Gäggeler, H. W.; Gregorich, K. E.; Hoffman, D. C.; Hübener, S.; Jost, D. T.; Kirbach, U. W.; Laue, C. A.; Lavanchy, V. M.; Nitsche, H.; Patin, J. B.; Piguet, D.; Schädel, M.; Shaughnessy, D. A.; Strellis, D. A.; Taut, S.; Tobler, L.; Tsyganov, Y. S.; Türler, A.; Vahle, A.; WiIk, P. A.; Yakushev, A. B.
2000-09-01
The arrangement of the chemical elements in the periodic table highlights resemblances in chemical properties, which reflect the elements' electronic structure. For the heaviest elements, however, deviations in the periodicity of chemical properties are expected: electrons in orbitals with a high probability density near the nucleus are accelerated by the large nuclear charges to relativistic velocities, which increase their binding energies and cause orbital contraction. This leads to more efficient screening of the nuclear charge and corresponding destabilization of the outer d and f orbitals: it is these changes that can give rise to unexpected chemical properties. The synthesis of increasingly heavy elements, now including that of elements 114, 116 and 118, allows the investigation of this effect, provided sufficiently long-lived isotopes for chemical characterization are available. In the case of elements 104 and 105, for example, relativistic effects interrupt characteristic trends in the chemical properties of the elements constituting the corresponding columns of the periodic table, whereas element 106 behaves in accordance with the expected periodicity. Here we report the chemical separation and characterization of six atoms of element 107 (bohrium, Bh), in the form of its oxychloride. We find that this compound is less volatile than the oxychlorides of the lighter elements of group VII, thus confirming relativistic calculations that predict the behaviour of bohrium, like that of element 106, to coincide with that expected on the basis of its position in the periodic table.
Chemical characterization of bohrium (element 107)
Eichler; Bruchle; Dressler; Dullmann; Eichler; Gaggeler; Gregorich; Hoffman; Hubener; Jost; Kirbach; Laue; Lavanchy; Nitsche; Patin; Piguet; Schadel; Shaughnessy; Strellis; Taut; Tobler; Tsyganov; Turler; Vahle; Wilk; Yakushev
2000-09-01
The arrangement of the chemical elements in the periodic table highlights resemblances in chemical properties, which reflect the elements' electronic structure. For the heaviest elements, however, deviations in the periodicity of chemical properties are expected: electrons in orbitals with a high probability density near the nucleus are accelerated by the large nuclear charges to relativistic velocities, which increase their binding energies and cause orbital contraction. This leads to more efficient screening of the nuclear charge and corresponding destabilization of the outer d and f orbitals: it is these changes that can give rise to unexpected chemical properties. The synthesis of increasingly heavy elements, now including that of elements 114, 116 and 118, allows the investigation of this effect, provided sufficiently long-lived isotopes for chemical characterization are available. In the case of elements 104 and 105, for example, relativistic effects interrupt characteristic trends in the chemical properties of the elements constituting the corresponding columns of the periodic table, whereas element 106 behaves in accordance with the expected periodicity. Here we report the chemical separation and characterization of six atoms of element 107 (bohrium, Bh), in the form of its oxychloride. We find that this compound is less volatile than the oxychlorides of the lighter elements of group VII, thus confirming relativistic calculations that predict the behaviour of bohrium, like that of element 106, to coincide with that expected on the basis of its position in the periodic table. PMID:10993071
ARTEMIS Lunar Orbit Insertion and Science Orbit Design Through 2013
NASA Technical Reports Server (NTRS)
Broschart, Stephen B.; Sweetser, Theodore H.; Angelopoulos, Vassilis; Folta, David; Woodard, Mark
2015-01-01
As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit insertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth's gravity and restrictive spacecraft capabilities to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future planetary moon missions.
The challenge of precise orbit determination for STSAT-2C using extremely sparse SLR data
NASA Astrophysics Data System (ADS)
Kim, Young-Rok; Park, Eunseo; Kucharski, Daniel; Lim, Hyung-Chul; Kim, Byoungsoo
2016-03-01
The Science and Technology Satellite (STSAT)-2C is the first Korean satellite equipped with a laser retro-reflector array for satellite laser ranging (SLR). SLR is the only on-board tracking source for precise orbit determination (POD) of STSAT-2C. However, POD for the STSAT-2C is a challenging issue, as the laser measurements of the satellite are extremely sparse, largely due to the inaccurate two-line element (TLE)-based orbit predictions used by the SLR tracking stations. In this study, POD for the STSAT-2C using extremely sparse SLR data is successfully implemented, and new laser-based orbit predictions are obtained. The NASA/GSFC GEODYN II software and seven-day arcs are used for the SLR data processing of two years of normal points from March 2013 to May 2015. To compensate for the extremely sparse laser tracking, the number of estimation parameters are minimized, and only the atmospheric drag coefficients are estimated with various intervals. The POD results show that the weighted root mean square (RMS) post-fit residuals are less than 10 m, and the 3D day boundaries vary from 30 m to 3 km. The average four-day orbit overlaps are less than 20/330/20 m for the radial/along-track/cross-track components. The quality of the new laser-based prediction is verified by SLR observations, and the SLR residuals show better results than those of previous TLE-based predictions. This study demonstrates that POD for the STSAT-2C can be successfully achieved against extreme sparseness of SLR data, and the results can deliver more accurate predictions.
Orbital prosthesis: a novel reconstructive approach.
Soni, Bhavita Wadhwa; Soni, Nitin; Bansal, Mohit
2014-09-01
Rehabilitation of facial defects is a daunting task, requiring an individualized design of the technique for each patient. The disfigurement associated with the loss of an eye may result in significant physical and emotional problems. Various treatment modalities are available, one of which is the use of implants. Although implant-supported orbital prosthesis has a superior outcome, it may not be advisable in all the patients due to economic factors. The present article describes a reconstructive approach for a patient with exenterated right eye using silicone orbital prosthesis which improved his psychological, physical, social, functional, emotional and spiritual needs. Multidisciplinary management and team approach are essential in providing accurate and effective rehabilitation. PMID:25284538
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.
Goddard Brouwer Orbit Bulletin
NASA Technical Reports Server (NTRS)
Morgan, D. B.; Gordon, R. A.
1971-01-01
The bulletin provides operational support for earth space research and technological missions by producing a tape containing pertinent spacecraft orbital information which is provided to a number of cities around the world in support of individual missions. A program description of the main and associated subroutines, and a complete description of the input, output and requirements of the bulletin program are presented.
Symon, K.
1987-11-01
There are various reasons for preferring local (e.g., three bump) orbit correction methods to global corrections. One is the difficulty of solving the mN equations for the required mN correcting bumps, where N is the number of superperiods and m is the number of bumps per superperiod. The latter is not a valid reason for avoiding global corrections, since, we can take advantage of the superperiod symmetry to reduce the mN simultaneous equations to N separate problems, each involving only m simultaneous equations. Previously, I have shown how to solve the general problem when the machine contains unknown magnet errors of known probability distribution; we made measurements of known precision of the orbit displacements at a set of points, and we wish to apply correcting bumps to minimize the weighted rms orbit deviations. In this report, we will consider two simpler problems, using similar methods. We consider the case when we make M beam position measurements per superperiod, and we wish to apply an equal number M of orbit correcting bumps to reduce the measured position errors to zero. We also consider the problem when the number of correcting bumps is less than the number of measurements, and we wish to minimize the weighted rms position errors. We will see that the latter problem involves solving equations of a different form, but involving the same matrices as the former problem.
NASA Technical Reports Server (NTRS)
Wallace, R. A.; Spilker, T. R.
1998-01-01
This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.
Impact orbits of the asteroid 2009 FJ with the Earth
NASA Astrophysics Data System (ADS)
Wlodarczyk, Ireneusz
2012-07-01
We show how to calculate the impact orbits of dangerous asteroids using the freely available the OrbFit software, and compare our results with impact orbits calculated using Sitarski's independent software (Sitarski, 1999; 2000; 2006). The new method is tested on asteroid 2009 FJ. Using the OrbFit package to integrate alternate orbits along the line of variation (Milani et al., 2002; 2005a; 2005b), we identify impact orbits and can plot paths of risk for the Earth or any other body in the Solar System. We present the orbital elements of asteroid 2009 FJ and its ephemerides, along with uncertainties, for the next 100 years. This paper continues a long-term research program on impact solutions for asteroids (Wlodarczyk, 2007; 2008; 2009).
Ni-cd Battery Life Expectancy in Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Broderick, R. J.
1984-01-01
The feasibility of using nickel cadmium batteries as an alternate if flight qualified NiH2 batteries are not available is explored. Battery life expectancy data being a key element of power system design, an attempt is made to review the literature, life test data and in orbit performance data to develop an up to date estimate of life expectancy for NiCd batteries in a geosynchronous orbit.
Use of the VLBI delay observable for orbit determination of Earth-orbiting VLBI satellites
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.
1992-01-01
Very long-baseline interferometry (VLBI) observations using a radio telescope in Earth orbit were performed first in the 1980s. Two spacecraft dedicated to VLBI are scheduled for launch in 1995; the primary scientific goals of these missions will be astrophysical in nature. This article addresses the use of space VLBI delay data for the additional purpose of improving the orbit determination of the Earth-orbiting spacecraft. In an idealized case of quasi-simultaneous observations of three radio sources in orthogonal directions, analytical expressions are found for the instantaneous spacecraft position and its error. The typical position error is at least as large as the distance corresponding to the delay measurement accuracy but can be much greater for some geometries. A number of practical considerations, such as system noise and imperfect calibrations, set bounds on the orbit-determination accuracy realistically achievable using space VLBI delay data. These effects limit the spacecraft position accuracy to at least 35 cm (and probably 3 m or more) for the first generation of dedicated space VLBI experiments. Even a 35-cm orbital accuracy would fail to provide global VLBI astrometry as accurate as ground-only VLBI. Recommended charges in future space VLBI missions are unlikely to make space VLBI competitive with ground-only VLBI in global astrometric measurements.
NASA Technical Reports Server (NTRS)
Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.
1998-01-01
An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS
LSST: Comprehensive NEO detection, characterization, and orbits
NASA Astrophysics Data System (ADS)
Ivezić, Željko; Tyson, J. Anthony; Jurić, Mario; Kubica, Jeremy; Connolly, Andrew; Pierfederici, Francesco; Harris, Alan W.; Bowell, Edward; LSST Collaboration
2007-05-01
The Large Synoptic Survey Telescope (LSST) is currently by far the most ambitious proposed ground-based optical survey. Design and development and fabrication of long lead components is underway. Solar System mapping is one of the four key drivers, with emphasis on efficient Potentially Hazardous Asteroid (PHA) detection, orbit determination, and characterization. To obtain orbits for a significant fraction of PHAs down to 100m, a wide-fast-deep survey with an étendue of at least several hundred m2deg2, and a sophisticated and robust data processing system is required. LSST will produce 20-30 TB per night. The LSST system will be sited at Cerro Pachon in northern Chile. In a continuous observing campaign of pairs of 15 second exposures of its 3200 megapixel camera, LSST will cover the entire available sky every three nights in two photometric bands to a depth of V=25 mag per visit (two exposures), with accurate astrometry and photometry. Over the proposed survey lifetime of 10 years, each sky location will be observed over 2000 times, with the total exposure time of 8 hours distributed over several photometric bandpasses. The LSST baseline design satisfies strong constraints on the cadence of observations mandated by PHA detection such as closely spaced pairs of observations, and frequent revisits to link different detections, and short exposures to avoid trailing losses. Equally important, due to its frequent repeat visits LSST will provide its own follow-up to derive orbits for detected moving objects. Modeling of LSST operations incorporating real historical weather and seeing data from Cerro Pachon, shows that the LSST system can detect 90% of PHAs larger than 140m in ten years of operation. In addition to detecting, tracking, and determining orbits for these PHAs, LSST will also yield accurate color and variability data, constraining PHA properties relevant for risk mitigation.
Achieving Climate Change Absolute Accuracy in Orbit
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.
2013-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.
Orbital construction support equipment
NASA Technical Reports Server (NTRS)
1977-01-01
Approximately 200 separate construction steps were defined for the three solar power satellite (SPS) concepts. Detailed construction scenarios were developed which describe the specific tasks to be accomplished, and identify general equipment requirements. The scenarios were used to perform a functional analysis, which resulted in the definition of 100 distinct SPS elements. These elements are the components, parts, subsystems, or assemblies upon which construction activities take place. The major SPS elements for each configuration are shown. For those elements, 300 functional requirements were identified in seven generic processes. Cumulatively, these processes encompass all functions required during SPS construction/assembly. Individually each process is defined such that it includes a specific type of activity. Each SPS element may involve activities relating to any or all of the generic processes. The processes are listed, and examples of the requirements defined for a typical element are given.
Kaguya Orbit Determination from JPL
NASA Technical Reports Server (NTRS)
Haw, Robert J.; Mottinger, N. A.; Graat, E. J.; Jefferson, D. C.; Park, R.; Menom, P.; Higa, E.
2008-01-01
Selene (re-named 'Kaguya' after launch) is an unmanned mission to the Moon navigated, in part, by JPL personnel. Launched by an H-IIA rocket on September 14, 2007 from Tanegashima Space Center, Kaguya entered a high, Earth-centered phasing orbit with apogee near the radius of the Moon's orbit. After 19 days and two orbits of Earth, Kaguya entered lunar orbit. Over the next 2 weeks the spacecraft decreased its apolune altitude until reaching a circular, 100 kilometer altitude orbit. This paper describes NASA/JPL's participation in the JAXA/Kaguya mission during that 5 week period, wherein JPL provided tracking data and orbit determination support for Kaguya.
Orbital hemorrhage and eyelid ecchymosis in acute orbital myositis.
Reifler, D M; Leder, D; Rexford, T
1989-02-15
We examined two patients with acute orbital myositis associated with orbital hemorrhage and eyelid ecchymosis. Both patients were young women (aged 22 and 30 years) who had painful proptosis, diplopia, and computed tomographic evidence of single extraocular muscle involvement with spillover of inflammatory edema into the adjacent orbital fat. Patient 1 showed contralateral preseptal eyelid inflammation and did not suffer an orbital hemorrhage until after an episode of vomiting. In Patient 2, the diagnosis of occult orbital varix was initially considered but an orbital exploration and a biopsy specimen showed no vascular anomaly. Both patients were treated successfully with high-dose systemic corticosteroids. Some cases of idiopathic orbital inflammation may be related to preexisting vascular anomalies or orbital phlebitis. PMID:2913803
Single Frequency GPS Orbit Determination for Low Earth Orbiters
NASA Technical Reports Server (NTRS)
Bertiger, Willy; Wu, Sien-Chong
1996-01-01
A number of missions in the future are planning to use GPS for precision orbit determination. Cost considerations and receiver availability make single frequency GPS receivers attractive if the orbit accuracy requirements can be met.
Challenges in the development of the orbiter atmosphere revitalization subsystem
NASA Technical Reports Server (NTRS)
Prince, R. N.; Swider, J.; Wojnarowski, J.; Decrisantis, A.; Ord, G. R.; Walleshauser, J. J.; Gibb, J. W.
1985-01-01
The space shuttle orbiter atmospheric revitalization subsystem provides thermal and contaminant control as well as total- and oxygen partial-pressure control of the environment within the orbiter crew cabin. Challenges that occurred during the development of this subsystem for the space shuttle orbiter are described. The design of the rotating hardware elements of the system (pumps, fans, etc.) required significant development to meet the requirements of long service life, maintainability, and high cycle-fatigue life. As a result, a stringent development program, particularly in the areas of bearing life and heat dissipation, was required. Another area requiring significant development was cabin humidity control and condensate collection.
Orbits of the ten small satellites of Uranus
Owen, W.M. Jr.; Synnott, S.P.
1987-05-01
Orbital elements are presented for the ten small satellites discovered by Voyager 2 at Uranus. These ten new satellites, whose provisional IAU designations are 1985UI and 1986UI through 1986U9, lie for the most part in equatorial, circular orbits; the most notable exception is 1986U8, the outer epsilon-ring shepherd, whose eccentricity e = 0.0101. Unlike the Voyager discoveries at Saturn, which included two co-orbiting satellites and three librators, the ten small Uranian satellites all have quite different semimajor axes. 11 references.
Unusual sclerosing orbital pseudotumor infiltrating orbits and maxillofacial regions.
Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin
2014-01-01
Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses. PMID:24991481
Unusual Sclerosing Orbital Pseudotumor Infiltrating Orbits and Maxillofacial Regions
Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin
2014-01-01
Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses. PMID:24991481
Shuttle on-orbit rendezvous targeting: Circular orbits
NASA Technical Reports Server (NTRS)
Bentley, E. L.
1972-01-01
The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.
Comerci, M.; Elefante, A.; Strianese, D.; Senese, R.; Bonavolontà, P.; Alfano, B.; Bonavolontà, G.; Brunetti, A.
2013-01-01
Summary This study was designed to validate a novel semi-automated segmentation method to measure regional intra-orbital fat tissue volume in Graves' ophthalmopathy. Twenty-four orbits from 12 patients with Graves' ophthalmopathy, 24 orbits from 12 controls, ten orbits from five MRI study simulations and two orbits from a digital model were used. Following manual region of interest definition of the orbital volumes performed by two operators with different levels of expertise, an automated procedure calculated intra-orbital fat tissue volumes (global and regional, with automated definition of four quadrants). In patients with Graves' disease, clinical activity score and degree of exophthalmos were measured and correlated with intra-orbital fat volumes. Operator performance was evaluated and statistical analysis of the measurements was performed. Accurate intra-orbital fat volume measurements were obtained with coefficients of variation below 5%. The mean operator difference in total fat volume measurements was 0.56%. Patients had significantly higher intra-orbital fat volumes than controls (p<0.001 using Student's t test). Fat volumes and clinical score were significantly correlated (p<0.001). The semi-automated method described here can provide accurate, reproducible intra-orbital fat measurements with low inter-operator variation and good correlation with clinical data. PMID:24007725
The numerical renormalization group and multi-orbital impurity models
NASA Astrophysics Data System (ADS)
Weichselbaum, Andreas; Stadler, K. M.; von Delft, J.; Yin, Z. P.; Kotliar, G.; Mitchell, Andrew
The numerical renormalization group (NRG) is a highly versatile and accurate method for the simulation of (effective) fermionic impurity models. Despite that the cost of NRG is exponential in the number of orbitals, by now, symmetric three-band calculations have become available on a routine level. Here we present a recent detailed study on the spin-orbital separation in a three-band Hund metal with relevance for iron-pnictides via the dynamical mean field theory (DMFT). In cases, finally, where the orbital symmetry is broken, we demonstrate that interleaved NRG still offers an accurate alternative approach within the NRG with dramatically improved numerical efficiency at comparable accuracy relative to conventional NRG.
Planck Surveyor On Its Way to Orbit
Borrill, Julian
2009-01-01
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.
Planck Surveyor On Its Way to Orbit
None
2010-01-08
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center
Development of orbital debris spacecraft breakup models
NASA Astrophysics Data System (ADS)
Tedeschi, William J.; Connell, John C.; McKnight, Darren S.
1991-08-01
The Defense Nuclear Agency has initiated an Orbital Debris Spacecraft Breakup Modeling Program to improve the accuracy and usefulness of satellite breakup models with an emphasis on collision-induced events. Empirical, semianalytic, and complex approaches are used in the modeling. Current results from the modeling effort are presented and discussed along with data from associated hypervelocity impact test programs. It is shown that major improvements in modeling have been made but that milestones must be achieved before the models will routinely provide accurate predictions for a wide range of collision scenarios.
Planck Surveyor On Its Way to Orbit
Borrill, Julian
2013-05-29
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.
Bounds on dark matter in solar orbit
Anderson, J.D.; Lau, E.L.; Taylor, A.H.; Dicus, D.A.; Teplitz, D.C.; Texas Univ., Austin; Maryland Univ., College Park )
1989-07-01
The possibility is considered that a spherical distribution of dark matter (DM), matter not visible with current instruments, is trapped in the sun's gravitational field. Bounds are placed from the motion of Uranus and Neptune, on the amount of DM that could be so trapped within the radius of those planets' orbits, as follows: from the Voyager 2, Uranus-flyby data new, more accurate ephemeris values are generated. Trapped DM mass is bounded by noting that such a distribution would increase the effective mass of the sun as seen by the outer planets and by using the new ephemeris values to bound such an increase. 34 refs.
Planck Surveyor On Its Way to Orbit
2009-05-14
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center
Close up view of the Orbiter Discovery in the Orbiter ...
Close up view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The view is a detail of the aft, starboard landing gear and a general view of the Thermal Protection System tiles around the landing-gear housing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Forbidden tangential orbit transfers between intersecting Keplerian orbits
NASA Technical Reports Server (NTRS)
Burns, Rowland E.
1990-01-01
The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.
NASA Technical Reports Server (NTRS)
1991-01-01
The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the
Helioseismology with Solar Orbiter
NASA Astrophysics Data System (ADS)
Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.
2015-12-01
The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its
Spin-orbit evolution of Mercury revisited
NASA Astrophysics Data System (ADS)
Noyelles, Benoît; Frouard, Julien; Makarov, Valeri V.; Efroimsky, Michael
2014-10-01
yet formed by the time of trapping. We also provide a critical analysis of the hypothesis by Wieczorek et al. (Wieczorek, M.A., Correia, A.C.M., Le Feuvre, M., Laskar, J., Rambaux, N. [2012]. Nat. Geosci., 5, 18-21) that the early Mercury might had been retrograde, whereafter it synchronised its spin and then accelerated it to the 3:2 resonance. Accurate processing of the available data on cratering does not support that hypothesis, while the employment of a realistic rheology invalidates a key element of the hypothesis, an intermediate pseudosynchronous state needed to spin-up to the 3:2 resonance.
NASA Technical Reports Server (NTRS)
Mashiku, Alinda; Garrison, James L.; Carpenter, J. Russell
2012-01-01
The tracking of space objects requires frequent and accurate monitoring for collision avoidance. As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full probability density function (PDF) of the random orbit state. Through representing the full PDF of the orbit state for orbit maintenance and collision avoidance, we can take advantage of the statistical information present in the heavy tailed distributions, more accurately representing the orbit states with low probability. The classical methods of orbit determination (i.e. Kalman Filter and its derivatives) provide state estimates based on only the second moments of the state and measurement errors that are captured by assuming a Gaussian distribution. Although the measurement errors can be accurately assumed to have a Gaussian distribution, errors with a non-Gaussian distribution could arise during propagation between observations. Moreover, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique that is capable of propagating and estimating a more complete representation of the state distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs to generate particles that approximate the full PDF representation. The PF is applied in the estimation and propagation of a highly eccentric orbit and the results are compared to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate its proficiency.
ERIC Educational Resources Information Center
Saputra, Andrian; Canaval, Lorentz R.; Sunyono; Fadiawati, Noor; Diawati, Chansyanah; Setyorini, M.; Kadaritna, Nina; Kadaryanto, Budi
2015-01-01
Quick and real-time plotting equations using the Winplot software can be employed to create accurate hybrid atomic orbitals without complicated scripting. Performing this task on their own, students can more easily understand and remember hybrid atomic orbitals, in terms of shape and orientation.
Real-Time and Post-Processed Orbit Determination and Positioning
NASA Technical Reports Server (NTRS)
Bar-Sever, Yoaz E. (Inventor); Bertiger, William I. (Inventor); Dorsey, Angela R. (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Kevin J. (Inventor); Miller, Mark A. (Inventor); Romans, Larry J. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); Garcia Fernandez, Miquel (Inventor); Gross, Jason (Inventor)
2016-01-01
Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.
Real-Time and Post-Processed Orbit Determination and Positioning
NASA Technical Reports Server (NTRS)
Bar-Sever, Yoaz E. (Inventor); Bertiger, William I. (Inventor); Dorsey, Angela R. (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Kevin J. (Inventor); Miller, Mark A. (Inventor); Romans, Larry J. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); Garcia Fernandez, Miquel (Inventor); Gross, Jason (Inventor)
2015-01-01
Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.
[Orbital non-Hodgkin's lymphoma: description of a case diagnosed with magnetic resonance imaging].
Macarini, Luca; Cotroneo, Antonio Raffaele; Zeppa, Pio; Briganti, Francesco; Genovese, Eugenio Annibale
2012-11-01
Orbital non-Hodgkin's lymphoma is a rare tumor. Correct diagnosis and accurate staging are of paramount importance for timely treatment and better outcome. We report the case of a female patient with bilateral orbital lymphoma, and describe the clinical-pathological aspects of the disease and its neuroradiological features. PMID:23096746
Interactive Web-Based Pointillist Visualization of Hydrogenic Orbitals Using Jmol
ERIC Educational Resources Information Center
Tully, Shane P.; Stitt, Thomas M.; Caldwell, Robert D.; Hardock, Brian J.; Hanson, Robert M.; Maslak, Przemyslaw
2013-01-01
A Monte Carlo method is used to generate interactive pointillist displays of electron density in hydrogenic orbitals. The Web applet incorporating Jmol viewer allows for clear and accurate presentation of three-dimensional shapes and sizes of orbitals up to "n" = 5, where "n" is the principle quantum number. The obtained radial…
Orbital Debris Observations with WFCAM
NASA Technical Reports Server (NTRS)
Bold, Matthew; Cross, Nick; Irwin, Mike; Kendrick, Richard; Kerr, Thomas; Lederer, Susan; Mann, Robert; Sutorius, Eckhard
2014-01-01
The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU.
Very Precise Orbits of 1998 Leonid Meteors
NASA Technical Reports Server (NTRS)
Betlem, Hans; Jenniskens, Peter; vantLeven, Jaap; terKuile, Casper; Johannink, Carl; Zhao, Hai-Bin; Lei, Chen-Ming; Li, Guan-You; Zhu, Jin; Evans, Steve; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
Seventy-five orbits of Leonid meteors obtained during the 1998 outburst are presented. Thirty-eight are precise enough to recognize significant dispersion in orbital elements. Results from the nights of 1998 November 16/17 and 17/18 differ, in agreement with the dominant presence of different dust components. The shower rate profile of 1998 November 16/17 was dominated by a broad component, rich in bright meteors. The radiant distribution is compact. The semimajor axis is confined to values close to that of the parent comet, whereas the distribution of inclination has a central condensation in a narrow range. On the other hand, 1998 November 17/18 was dominated by dust responsible for a more narrow secondary peak in the flux curve. The declination of the radiant and the inclination of the orbit are more widely dispersed. The argument of perihelion, inclination, and the perihelion distance are displaced. These data substantiate the hypothesis that trapping in orbital resonances is important for the dynamical evolution of the broad component.
Lunar Reconnaissance Orbiter Mission Highlights
Since launch on June 18, 2009 as a precursor mission, the Lunar Reconnaissance Orbiter (LRO) has remained in orbit around the moon, collecting vast amounts of science data in support of NASA's expl...
Management of complex orbital fractures.
Bhatti, N; Kanzaria, A; Huxham-Owen, N; Bridle, C; Holmes, S
2016-09-01
The treatment of orbital injuries has evolved considerably over the last two decades. We describe strategies involved in the emergency management of orbital injuries, the use of imaging, preformed and customised materials for reconstruction, and endoscopic techniques. PMID:27268464
NASA Astrophysics Data System (ADS)
Tang, J. S.
2011-03-01
It has been over half a century since the launch of the first artificial satellite Sputnik in 1957, which marks the beginning of the Space Age. During the past 50 years, with the development and innovations in various fields and technologies, satellite application has grown more and more intensive and extensive. This thesis is based on three major research projects which the author joined in. These representative projects cover main aspects of satellite orbit theory and application of precise orbit determination (POD), and also show major research methods and important applications in orbit dynamics. Chapter 1 is an in-depth research on analytical theory of satellite orbits. This research utilizes general transformation theory to acquire high-order analytical solutions when mean-element method is not applicable. These solutions can be used in guidance and control or rapid orbit forecast within the accuracy of 10-6. We also discuss other major perturbations, each of which is considered with improved models, in pursuit of both convenience and accuracy especially when old models are hardly applicable. Chapter 2 is POD research based on observations. Assuming a priori force model and estimation algorithm have reached their accuracy limits, we introduce empirical forces to Shenzhou-type orbit in order to compensate possible unmodeled or mismodeled perturbations. Residuals are analyzed first and only empirical force models with actual physical background are considered. This not only enhances a posteriori POD accuracy, but also considerably improves the accuracy of orbit forecast. This chapter also contains theoretical discussions on modeling of empirical forces, computation of partial derivatives and propagation of various errors. Error propagation helps to better evaluate orbital accuracy in future missions. Chapter 3 is an application of POD in space geodesy. GRACE satellites are used to obtain Antarctic temporal gravity field between 2004 and 2007. Various changes
NASA Astrophysics Data System (ADS)
Choi, Jin; Jo, Jung Hyun; Roh, Kyoung-Min; Son, Ju-Young; Kim, Myung-Jin; Choi, Young-Jun; Yim, Hong-Suh; Moon, Hong-Kyu; Kim, Bang-Yeop; Park, Jang-Hyun; Pavlis, Erricos C.
2015-09-01
Increasing numbers of Geostationary Earth Orbit satellites have led to the requirement of accurate station keeping and precise orbit prediction to avoid collision between satellites. In the case of ground-based optical observation, angular resolution is better than other tracking systems, such as radar systems; however, the observation time of optical observation is limited by weather or lighting conditions. To develop an effective optical observation strategy, the optical observation campaign from January to February 2014 for Communication, Ocean and Meteorological Satellite (COMS) was conducted. Because COMS is a controlled satellite with station keeping manoeuvres performed twice a week, the observation results for 1- and 2-day observations were analysed. Sparse and sporadic cases for the sequential observation of multiple satellites and a dense case for the intensive observation of specific targets were assumed for the experiments. In the 1-day arc observation experiment, the estimated orbits for dense observation cases over 10% of the orbital period showed that the maximum difference was less than 40 km (station keeping area) for 7-day propagation compared to the estimation result using the whole 1-day measurement. For the 2-day arc observation, the orbit estimation difference could be maintained within 2 km using a more frequent observation than the 1-h interval for 13 h that was used in the sparse case. Additionally, the longitudinal and latitudinal positions via the estimation result using the optical observation were compared with the Two-Line Elements (TLEs) and operator's data. Through this study, an adequate optical tracking strategy was studied, and the possibility of cooperation with other systems was also validated.
Orbiter based construction equipment
NASA Technical Reports Server (NTRS)
Goodwin, C. J.
1982-01-01
Many orbiter based activities need equipment to hold a payload steady while it is being worked on. This work may be construction, updating, repair, services, check out, or refueling operations in preparation for return to Earth. The Handling and Positioning Aid (HPA) is intended for use as general purpose equipment. The HPA provides a wide choice of work station positions, both immediately above the orbiter cargo bay and beyond. It can act in a primary docking role and, if required, can assist actively in the berthing process. From an analysis of ten reference missions, it was determined that two types of HPA mobility are needed; a tilt table, which simply swings out of the cargo bay, pivoting about an athwartships y axis, and an articulated arm. Illustration of the aid are provided.
Mercury orbiter transport study
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Feingold, H.
1977-01-01
A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.
Three orbital transfer vehicles
NASA Technical Reports Server (NTRS)
1990-01-01
Aerospace engineering students at the Virginia Polytechnic Institute and State University undertook three design projects under the sponsorship of the NASA/USRA Advanced Space Design Program. All three projects addressed cargo and/or crew transportation between low Earth orbit and geosynchronous Earth orbit. Project SPARC presents a preliminary design of a fully reusable, chemically powered aeroassisted vehicle for a transfer of a crew of five and a 6000 to 20000 pound payload. The ASTV project outlines a chemically powered aeroassisted configuration that uses disposable tanks and a relatively small aerobrake to realize propellant savings. The third project, LOCOST, involves a reusable, hybrid laser/chemical vehicle designed for large cargo (up to 88,200 pounds) transportation.